

February 22, 1996

Mr. Barney Chan Alameda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station #9-1851 451 Hegenberger Road, Oakland, CA

Dear Mr. Chan:

Chevron U.S.A. Products Company 6001 Bollinger Canyon Rd., Bldg. L P.O. Box 5004 San Ramon, CA 94583-0804

Mark A. Miller SAR Engineer Phone No. 510 842-8134 Fax No. 510 842-8252

Phil Briggs 842-9146

Enclosed is the Preliminary Site Assessment dated December 29, 1995, prepared by our consultant Gettler-Ryan, Inc. for the above referenced site. Five soil borings were advanced and four were completed as ground water monitor wells (MW-1, MW-2, MW-3, and MW-4). This work was done to characterize subsurface soil and ground water conditions at the site.

Soil samples collected were submitted to Sequoia Analytical (SA) for analysis. Laboratory results indicate that low concentrations of TPH-G, BTEX, TPH-D, TOG, and Chloroform were detected in a sample collected from MW-2. Concentrations of these constituents were below method detection limits for all other samples.

Ground water samples collected were also submitted to SA for analysis. Laboratory results indicate that low concentrations of TPH-G, BTEX, TPH-D, and HVOC's were detected in a sample collected from MW-2. Concentrations of these constituents were below method detection limits for all other samples.

We will instruct our consultant to begin a quarterly monitoring and sampling program to verify dissolved hydrocarbon concentrations observed in ground water and ground water flow direction.

If you have any questions or comments, please feel free to contact me at (510) 842-8134.

Sincerely,

CHEVRON U.S.A. PRODUCTS COMPANY

Mark A. Miller

Site Assessment and Remediation Engineer

Mr. Barney Chan February 22, 1996 Page 2

Enclosure

cc: Mr. S.A. Willer

Mr. Ben Shimek 451 Hegenberger Road Oakland, CA 94621

PRELIMINARY SITE ASSESSMENT

for

Chevron Service Station #9-1851 451 Hegenberger Road Oakland, California

Project No. 5145.01

Prepared for:

Chevron USA Products Company P.O. Box 5004 San Ramon, California 94583

Prepared by:

Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

> Barbara Sieminski Project Geologist

Stephen J. Carter Senior Geologist R.G. #5577 No. 5577

December 29, 1995

TABLE OF CONTENTS

EXECUTIVE	SUMMARY
1.0 INTROD	OUCTION
	SCRIPTION
2.1 G	eneral
	eology and Hydrogeology
3.0 FIELD V	VORK 1
3.1 D	rilling Activities 2
	Vell Development
	Vellhead Survey
	roundwater Sampling 3
	nalytical Program
	'S
4.1 St	absurface Condition
4.2 Se	oil Analytical Results
4.3 G	roundwater Analytical Results
5.0 CONCL	JSIONS
	m m m
	TABLES
Table 1:	Soil Analytical Results
Table 2:	Water Level Data and Groundwater Analytical Results
	FIGURES
	rigeres
Figure 1.	Vicinity Map
Figure 2.	Potentiometric Map
	APPENDICES
Appendix A:	G-R Field Methods and Procedures
Appendix B:	Well Installation Permit
Appendix C:	Boring Logs
Appendix D:	Well Development and Sampling Field Data Sheets
Appendix E:	Wellhead Survey Report
Appendix F:	Laboratory Analytical Reports and Chain-of-Custody Records
	A

EXECUTIVE SUMMARY

Gettler-Ryan Inc. (G-R) presents this report for the initial subsurface investigation at Chevron Service Station #9-1851 located at 451 Hegenberger Road in Oakland, California. Five soil borings were drilled at the site during this investigation and groundwater monitoring wells MW-1 through MW-4 were installed in four of these borings to assess the absence or presence of dissolved hydrocarbons in soil and groundwater and to evaluate the groundwater flow direction and gradient beneath the site.

Soil encountered beneath the site consists predominantly of clay with a thin (two to four feet thick) sandy layer from approximately three to seven feet below ground surface (bgs). Shallow groundwater was encountered at the site at depths of approximately 4.3 to 6 feet below ground surface (bgs). Based on groundwater monitoring data collected during this investigation, groundwater beneath the site flows toward the west at an approximate gradient of 0.01.

Based on the analytical results of soil and groundwater samples collected and analyzed during this investigation, it appears that soil and shallow groundwater at the site has been impacted by petroleum hydrocarbons only in the immediate downgradient (western) vicinity of the waste oil UST. The benzene concentration detected in the groundwater sample collected and analyzed from well MW-2 is above the current California Maximum Contaminant Level of 1.0 ppb.

PRELIMINARY SITE ASSESSMENT

for
Chevron Service Station #9-1851
451 Hegenberger Road
Oakland, California

Project No. 5145.01

1.0 INTRODUCTION

G-R is pleased to present this report documenting the results of the preliminary site assessment performed at the above-referenced location (Figure 1). This investigation was performed to assess subsurface conditions beneath the site. The scope of work included: drilling five on-site soil borings (SB-1 and MW-1 through MW-4) and installing groundwater monitoring wells in four of these borings; collecting soil samples from the borings for chemical analysis; developing wells MW-1 through MW-4; surveying wellhead elevations; monitoring and sampling wells MW-1 through MW-4; arranging for disposal of the waste materials; and preparing a report documenting the work.

2.0 SITE DESCRIPTION

2.1 General

Chevron Station 9-1851 is an operating service station located at the northeastern corner of the intersection of Hegenberger and Edgewater Roads in Oakland, California. Site topography is relatively flat at the elevation of approximately four feet above mean see level. Three gasoline USTs are located in the common pit in the southwestern portion of the site. A methanol UST is located immediately east of the station building and a waste oil UST is located immediately north of the station building. The locations of the USTs and other pertinent site features are shown on Figure 2. It is our understanding that no environmental work has been performed at this site prior to this investigation.

2.2 Geology and Hydrogeology

The subject site is located within the California Coast Ranges. The Coast Ranges have a Franciscan basement composed of graywackes, limestone, shale and radiolarian chert¹. Locally, the site is generally underlain by silts and clays.

The nearest surface water is the San Leandro Creek, located approximately 1/4 mile west of the site. The San Leandro Bay is located approximately one mile northwest of the site. The direction of groundwater flow in the vicinity of the site is inferred to be toward west, based on the local topography and drainage pattern.

Norris, Robert M. and Webb, Robert W., Geology of California, John Wiley and Sons, 537 pages.

3.0 FIELD WORK

Field work at the site was conducted in accordance with the G-R Field Methods and Procedures presented in Appendix A, and the Site Safety Plan (dated September 5, 1995). A well installation permit was acquired from the Zone 7 Water Agency prior to drilling at the site. A copy of the permit is included in Appendix B.

3.1 Drilling Activities

On October 11, 1995, G-R personnel observed and documented the drilling of five on-site soil borings (SB-1 and MW-1 through MW-4) by Bay Area Exploration Services, Inc., of Cordelia, California (C57 #522125). Boring locations are shown on Figure 2. Boring SB-1 was drilled to 6.5 feet bgs using a hand auger. Boring MW-1 was drilled to 15.5 feet bgs and borings MW-2 through MW-4 were drilled to 16.5 feet bgs using eight-inch hollow-stem augers driven by a truck-mounted CME-55 drill rig.

Soil samples were collected from the borings at a minimum of five-foot intervals. Soil samples were field screened during drilling for the presence of volatile organic compounds using an organic vapor meter (OVM). OVM readings are presented on the boring logs (Appendix C).

Groundwater monitoring wells were constructed in borings MW-1 through MW-4. The wells were constructed using two-inch diameter, 0.010-inch machine-slotted Schedule 40 PVC screen. A sand pack of #2/12 graded sand was placed across the entire screen interval, extending approximately 1/2 to 1 foot above the top of the screen. Each well was then sealed with 1/2 foot of hydrated bentonite chips followed by neat cement. Soil boring SB-1 was backfilled to ground surface with neat cement after collection of one soil sample at 5.5 feet bgs (just above groundwater). Graphic well construction details are presented on the boring logs in Appendix C.

Drill cuttings were stockpiled on-site, placed on and covered with plastic sheeting. After completion of well installation, four samples for disposal characterization were collected from the stockpiled soil and submitted to the laboratory for compositing and analysis as one sample SP-(A-D)comp. On October 19, 1995, the soil stockpile was removed from the site and transported to BFI Landfill in Livermore by Integrated Waste Management of Milpitas, California.

3.2 Well Development

On October 13, 1995, groundwater monitoring wells MW-1 through MW-4 were developed by G-R personnel using a vented surge block and hand-bailing. The groundwater evacuated during well development activities was transported to the Chevron Refinery in Richmond, California. Copies of Well Development Data Field Sheets are included in Appendix D.

3.3 Wellhead Survey

On November 22, 1995, wells MW-1 through MW-4 were surveyed relative to mean sea level by Virgil Chavez, licensed land surveyor (#6323) of Vallejo, California. The survey report is included in Appendix E and the survey data are summarized in Table 2.

3.4 Groundwater Sampling

On October 17, 1995, G-R personnel measured depth to groundwater levels in wells MW-1 through MW-4, checked the wells for the presence of separate-phase hydrocarbons, and purged and sampled the wells. Groundwater monitoring data are summarized in Table 2. Copies of Well Sampling Field Sheets are included in Appendix F.

3.5 Analytical Program

Soil and groundwater samples collected during this investigation were preserved as required and delivered under chain-of-custody to Sequoia Analytical of Redwood City, California (ELAP #1210). Groundwater samples and selected soil samples from borings were analyzed for total petroleum hydrocarbons as gasoline TPHg and gasoline constituents benzene, toluene, ethylbenzene and total xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8015Mod/8020. In addition soil and groundwater samples from MW-2 were analyzed for total petroleum hydrocarbons as diesel TPHd by EPA 8015Mod, oil and grease (O&G) using Standard Method 5520 E&F Mod. (soil) or 5520 B&FMod (water), and halogenated volatile organic compounds HVOCs using EPA Method 8010. Soil and groundwater samples collected from MW-3 were analyzed for volatile organic compounds (VOCs) using EPA Method 8240 and methanol and methyl ethyl ketone (MEK) using EPA 8015Mod. Soil stockpile sample SP-(A-D)comp was analyzed for TPHg and BTEX using methods described above. Copies of the laboratory analytical reports and chain-of-custody records are included in Appendix G. G-R is not responsible for laboratory omissions or errors.

4.0 RESULTS

4.1 Subsurface Conditions

Soil encountered in borings SB-1 and MW-1 through MW-4 consisted predominantly of clay. A sandy layer approximately two to four feet thick was encountered in all borings between three and seven feet bgs. This sandy layer appears to be laterally continuous across the site. Groundwater was encountered in borings MW-1 through MW-4 at depths of approximately 4.3 to 6 feet bgs. Detailed descriptions of the subsurface materials encountered during drilling are presented on the boring logs in Appendix C.

Separate phase hydrocarbons were not present in any of the site wells on October 17, 1995. Using groundwater monitoring data collected on October 17, 1995, G-R has prepared a potentiometric map for the site (Figure 2). Based on these data, shallow groundwater beneath the site appears to flow toward the west at an approximate gradient of 0.01.

4.2 Soil Analytical Results

TPHg and BTEX were not detected at laboratory method detection limits in the soil samples collected and analyzed from borings SB-1, MW-1, MW-3 and MW-4. VOCs, methanol and MEK were not detected in the soil samples collected from boring MW-3. TPHg (8.4 parts per million [ppm]), ethylbenzene (0.0097 ppm), xylenes (0.025 ppm), TPHd (77 ppm), O&G (2,100 ppm) and chloroform (9.2 ppm) were detected in the soil sample collected and analyzed from boring MW-2 at 5.5 feet bgs. Benzene, toluene and HVOCs other than chloroform were not detected at laboratory method detection limits in the soil sample from this boring. TPHg were not detected in the composite stockpile sample SP-(A-D)comp, however, benzene (0.044 ppm), toluene (0.064 ppm), ethylbenzene (0.015 ppm) and xylenes (0.058 ppm) were detected in this sample. Soil Chemical analytical data are presented in Table 1.

4.3 Groundwater Analytical Results

TPHd and BTEX were not detected at laboratory method detection limits in the groundwater samples collected from wells MW-1, MW-3 and MW-4. VOCs, methanol and MEK were not detected in the samples collected from well MW-3. The groundwater sample from well MW-2 did contain detectable concentrations of TPHg (170 ppb), benzene (3.5 ppb), ethylbenzene (1.0 ppb), xylenes (6.1 ppb), TPHd (1,600 ppb), 1,1-dichloroethane (1.7 ppb) and cis-1,2-dichloroethene (11 ppb). Toluene, O&G and HVOCs other than the two mentioned above were not detected at laboratory method detection limits in the samples collected from this well. Groundwater chemical analytical data are presented in Table 2.

5.0 CONCLUSIONS

Based on the analytical results of soil and groundwater samples collected and analyzed during this investigation, it appears that soil and shallow groundwater at the site has been impacted by petroleum hydrocarbons only in the immediate downgradient (western) vicinity of the waste oil UST. The benzene concentration detected in the groundwater sample collected and analyzed from well MW-2 is above the current California Maximum Contaminant Level of 1.0 ppb.

Table 1. Soil Analytical Results - Chevron Service Station #9-1851, 451 Hegenberger Road, Oakland, California

Sample ID	Depth (ft)	Date	Analytic Method	TPHg <	B	Т	E	X ppm	O&G	TPHd	HVOCs	VOCs	Methanol	MEK >
SB1-5.5	5.5	10/12/95	8015/8020	<1	<0.0050	< 0.0050	< 0.0050	< 0.0050						
MW1-4	4.0	10/12/95	0815/8020	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050						
MW2-5.5	5.5	10/12/95	8015/8020/ 8010/5520E&F	8.4	< 0.005	< 0.0050	0.0097	0.025	2,100	77	9.2*			
MW3-5	5.0	10/12/95	8015/8020 8240	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050				ND	<1.0	< 0.20
MW4-5	5.0	10/12/95	8015/8020	<1	< 0.0050	< 0.0050	< 0.0050	< 0.0050				~~~		
SP-(A-D)cor	mp	10/12/95	8015/8020	<1	0.044	0.064	0.015	0.058						

EXPLANATION:

TPHg = Total Petroleum Hydrocarbons as gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

O&G = Oil and Grease

TPHd = Total Petroleum Hydrocarbons as diesel

HVOCs = Halogenated Volatile Organic Compounds

VOCs = Volatile Organic Compounds

MEK = Methyl ethyl ketone

ppm = Parts per million

--- = Not analyzed/not applicable

= Sequoia indicates the chromatograph pattern is unidentified in the C9-C24 range.

* = Chloroform (other HVOCs were not detected)

ND = 38 compounds analyzed not detected

ANALYTICAL METHODS:

8015 = EPA Method 8015Mod for TPHg, TPHd, methanol and MEK.

8020 = EPA Method 8020 for BTEX

5520E&F = Standard Method 5520E&F for O&G

8010 = EPA Method for HVOCs

8240 = EPA Method for VOCs

ANALYTICAL LABORATORY:

Sequoia Analytical of Redwood City, California.

Sample Identification: MW1-4

Sample depth

-Boring number

-Soil sample from boring

Table 2. Water Level Data and Groundwater Analytical Results - Chevron Service Station #9-1851, 451 Hegenberger Road, Oakland, California

Well ID/ TOC (ft)	Date	DTW (ft)	GWE (msl)	Product Thickness	•	TPHg <	В	Т	E	X	O&G ppb	TPHd	HVOCs	VOCs	Methanol	MEK >
MW-1/ 2.61	10/17/95	4.12	-1.51	0	8015/8020	< 50	< 0.50	< 0.50	< 0.50	< 0.50						
MW-2/ 3.51	10/17/95	5.33	-1.81	0	8015/8020/ 8010/5520B&F	170	3.5	< 0.50	1.0	6.1	<5,000	1,600¹	1.7* 11**			
MW-3/ 3.08	10/17/95	4.42	-1.34	0	8015/8020 8240	< 50	< 0.50	< 0.50	< 0.50	< 0.50				ND	<1000	<200
MW-4/ 3.48	10/17/95	5.08	-1.60	0	8015/8020	<125	<1.2	<1.2	<1.2	<1.2						er erw
ТВ	10/17/95				8015/8020	< 50	< 0.50	< 0.50	<0.50	<0.50			****			

EXPLANATION:

DTW = Depth to water

TOC = Top of casing elevation

GWE = Groundwater elevation

msl = Measurements referenced relative to mean sea level

TPHg = Total Petroleum Hydrocarbons as gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

O&G = Oil and Grease

TPHd = Total Petroleum Hydrocarbons as diesel

HVOCs = Halogenated Volatile Organic Compounds

VOCs = Volatile Organic Compounds

MEK = Methyl ethyl ketone

ppb = Parts per billion

--- = Not analyzed/not applicable

* = 1,1-Dichloroethane

**= cis-1,2-Dichloroethene

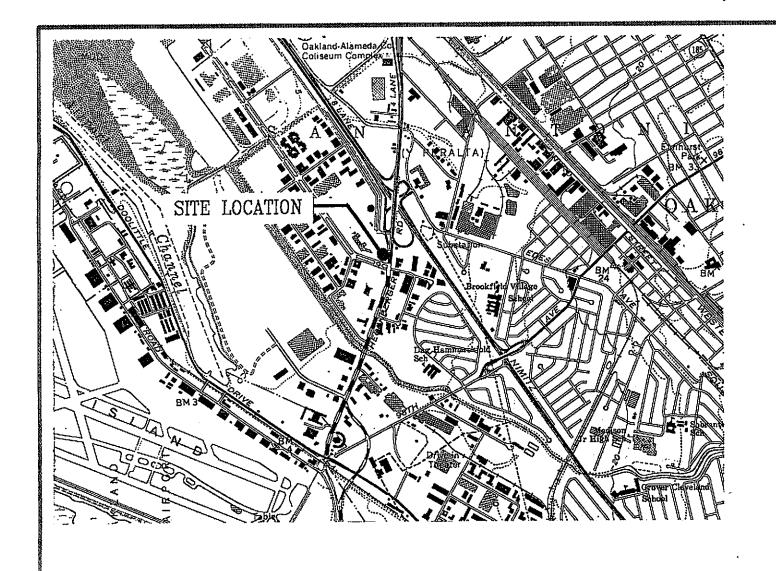
ND = 38 compounds analyzed not detected

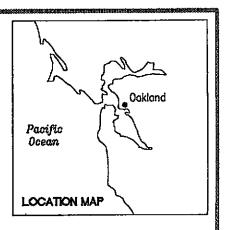
¹ = Sequoia notes the chromatograph pattern is unidentified in the range of C9-C24.

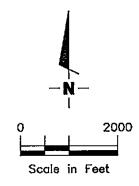
ANALYTICAL METHODS:

8015 = EPA Method 8015Mod for TPHg, TPHd, methanol and MEK.

8020 = EPA Method 8020 for BTEX


5520B&F = Standard Method 5520B&F for O&G


8010 = EPA Method for HVOCs


8240 = EPA Method for VOCs

NOTES:

Top of casing elevations were surveyed by Virgil Chavez, PLS #6323, on November 22, 1995.

Base Map: USGS Topographic Map

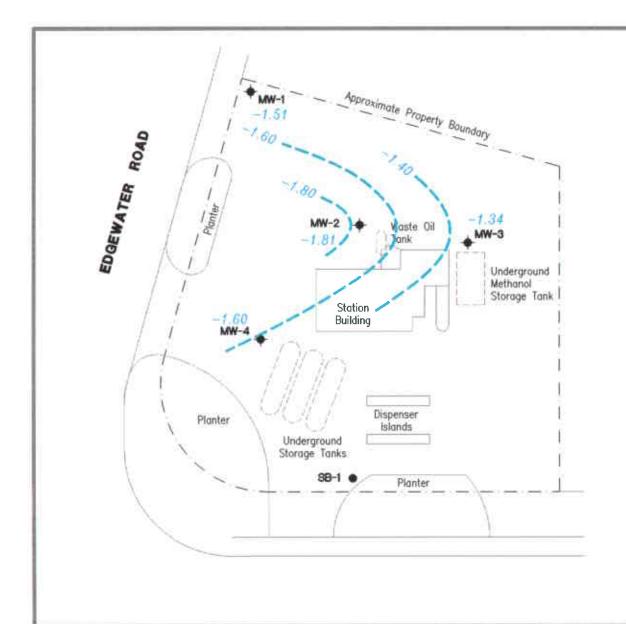
Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(510) 551-7555

VICINITY MAP

Chevron Service Station No. 9-1851 451 Hegenberger Road Oakland, California

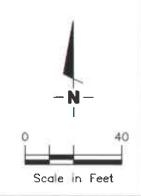

September, 1995

FIGURE

JOB NUMBER 5145

REVIEWED BY

REVISED DATE



EXPLANATION

- Groundwater monitoring well
- Soil boring
- 99 99 Groundwater elevation in feet referenced to Mean Sea Level (MSL)
- 99.99 Groundwater elevation contour, dashed where inferred.

Approximate groundwater flow direction at a gradient of DOT Ft. Ft

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568 (510) 551-7555

POTENTIOMETRIC MAP

Chevron Service Station No. 9-1851 451 Hegenberger Road Oakland, California

DATE

October 17, 1995

figure 2

JOB NUMBER 5145.01 REVIEWED BY

REVISED DATE

APPENDIX A G-R FIELD METHODS AND PROCEDURES

GETTLER - RYAN

FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan, Inc. (G-R) is conducted in accordance with G-R's Health and Safety Plan and the Site Safety Plan. G-R personnel and subcontractors who perform work at the site are briefed on the contents of these plans prior to initiating site work. The G-R geologist or engineer at the site when the work is performed acts as the Site Safety Officer. G-R utilizes a organic vapor meter (OVM) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Soil Borings are drilled by a California-licensed well driller. A G-R geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples are collected from the soil boring with a split-barrel sampling device fitted with 2-inch-diameter, clean brass stainless steel liners. The sampling device is driven approximately 18 inches with a 140-pound hammer falling 30 inches. The number of blows required to advance the sampler each successive 6 inches is recorded on the boring log. The encountered soils are described using the Unified Soil Classification System (ASTM2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting, capped, labeled, and placed in a cooler and maintained at 4 C for preservation. A chain-of-custody document is initiated in the field and accompanies the selected soil samples to analytical laboratory. Samples are selected for chemical analysis based on:

- a. depth relative to underground storage tanks and existing surface
- b. depth relative to known or suspected groundwater
- c. presence or absence of contaminant pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- f. presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

An OVM is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing soil from the tip of the sampling device sample or sample liner into a clean glass jar, and immediately covering the jar with aluminum foil secured under a ring-type threaded lid. After approximately twenty minutes, the foil is pierced and the atmosphere within the jar is tested using an OVM. Head-space screening results are recorded on the boring log. Head-space screening procedures are performed and results recorded as reconnaissance data. G-R does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Construction of Monitoring Wells

Monitoring wells are constructed in the exploratory soil borings with Schedule 40 polyvinyl chloride (PVC) casing. All joints are thread-joined; no glues, cements, or solvents are used in well construction. The screened interval is constructed of machine-slotted PVC well screen which extends from the total well depth to a point above the groundwater. An appropriately-sized sorted sand is placed in the annular space above the sand, and the remaining annular space is sealed with neat cement or cement grout.

Wellheads are protected with water-resistant traffic-rated vault boxes placed flush with the ground surface. The top of the well casing is sealed with a locking waterproof cap. A lock is placed on the well cap to prevent vandalism and unitentional introduction of materials into the well.

Measurement of Water Levels

The top of the newly installed well casing is surveyed by a California-licensed Land Surveyor to mean sea level (MSL). Depth-to-groundwater in the well is measured from the top of the well casing with an electronic water-level indicator. Depth-to-groundwater is measured to the nearest 0.01-foot, and referenced to MSL.

Well Development and Sampling

The purpose of well development is to improve hydraulic communication between the well and the surrounding aquifer. Prior to development, each well is monitored for the presence of separate-phase hydrocarbons and the depth-to-water is recorded. Wells are then developed by alternately surging the well with a bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized. Wells are monitored and sampled on a quarterly basis by Chevron's monitoring and sampling contractor.

APPENDIX B

WELL INSTALLATION PERMIT

APPLICANT'S

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

91992

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT	PERMIT NUMBER 95615
451 HEGENBERGER ROAD	LOCATION NUMBER
OAKLAND, CA.	
CLIENT	·
Name CHEVRON USA	PERMIT CONDITIONS
Address PO Box 5004 Voice 510/842-8134	/
City SAN RAMON Zip 94583	Circled Permit Requirements Apply
APPLICANT .	
Name GETTLER- RYAN	(A.) GENERAL
ATTN: ARGY LEYTONI FOX 510/551-7588	1. A permit application should be submitted so as to arrive at the
Address 6747 Sienes CT, ±J Voice 510/551-7555	Zone 7 office five days prior to proposed starting date.
City BUBLIN Zip 94568	Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well
TYPE OF PROJECT	Drillers Report or equivalent for well Projects, or drilling logs
Well Construction Geotechnical Investigation	and location sketch for geotechnical projects.
Cathodic Protection General	Permit is void if project not begun within 90 days of approval
Water Supply Contamination Monitoring Well Destruction	date. (B. WATER WELLS, INCLUDING PIEZOMETERS
Well Desillaction	Minimum surface seal thickness is two inches of cement grout
PROPOSED WATER SUPPLY WELL USE	placed by tremie.
Domestic Industrial Other	Minimum seal depth is 50 feet for municipal and industrial wells
Municipal Irrigation	or 20 feet for domestic and irrigation wells unless a lesser
DRILLING METHOD:	depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
Mud Rotary Air Rotary Auger	C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or
Cable Other	heavy bentonite and upper two feet with compacted material. In
DRILLER'S LICENSE NO. C57 522/25	areas of known or suspected contamination, tremied cement grout
DRILLER'S LICENSE NO. 2'5 7 522/25	shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by
WELL PROJECTS	tremie.
Drill Hole Diameter	E. WELL DESTRUCTION. See attached.
Casing Diameter 2 in. Depth 30 ft. Surface Seal Depth 5 ft. Number 4	
SOIL BOZING	
GEOTECHNICAL PROJECTS	
Number of Borings Maximum	
Hole Diameter S in. Depth 25 ft.	•
ESTIMATED STARTING DATE 9/25/95	
ESTIMATED COMPLETION DATE 4/27/95	We II
Lhoroby garon to secretarith all result	Approved Myman Holla Date 20 Sep 9
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Wyman Hong
and a section of the table of the section of the se	V

APPENDIX C

BORING LOGS

	MAJOR DIVIS	SIONS		TYPICAL NAMES
SVE		CLEAN GRAVELS WITH LITTLE	GW	WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
). 200 SIE	GRAVELS	OR NO FINES	GP	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO, 200 SIEVE	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GΜ	SILTY GRAVELS, SILTY GRAVELS WITH SAND
COARSE-GRAINED		OVER 15% FINES	GC	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
COARSE HALF IS		CLEAN SANDS WITH LITTLE	sw	WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
RE THAN	SANDS MORE THAN HALF COARSE FRACTION	OR NO FINES	SP	POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
MOF	IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM	SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	sc	CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
)][.S N NO, 200	+	ID CLAYS 50% OR LESS	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
INED SC NER THA			OL	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
NE-GRA ALF IS FII			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO, 200 SIEVE		ID CLAYS · EATER THAN 50%	сн	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE			ОН	ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORG	SANIC SOILS	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS

LL - Liquid Limit (%)

Pl - Plastic Index (%)

PID - Volatile Vapors in ppm

MA - Particle Size Analysis

2.5 YR 6/2 - Soil Color according to Munsell Soil Color Charts (1975 Edition)

5 GY 5/2 - GSA Rock Color Chart

No Soil Sample Recovered
 "Undisturbed" Sample
 Bulk or Classification Sample
 First Encountered Ground Water Level
 Piezometric Ground Water Level
 Penetration
 Sample drive hammer weight - 140 pounds

etration - Sample drive hammer weight - 140 pound falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

		G	ettler-	Ry	an,	Inc.		L	og of Borin	g MW-1		
PRO	PROJECT: Chevron SS# 9-1851							LOCATION: 451	Hegenberger Ros	d Oakland C4		
G-F	PROJ	ECT I	NO.: 514	5.01	-			LOCATION: 451 Hegenberger Road, Oakland, CA SURFACE ELEVATION: 2.61 feet MSL				
DAT	E STA	RTE	D: 10/11/8	95				WL (ft. bgs): 4.3	DATE: 10/11/95	TIME: 14:50		
DAT	EFIN	ISHE	D: 10/12/	95				WL (ft. bgs): 4.3	DATE: 10/12/95	TIME: 10:40		
DRI	LLING	METH	10D: <i>8 in</i>	. Ho	llow S	Stem A	uger	TOTAL DEPTH:				
DRI	LLING	COME	PANY: Ba	y Ar	ea E	xplora	tion, Inc.	GEOLOGIST: B.	Sieminski			
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTI	DN	MELL DIAGRAM		
				▎ၨ▋	, , , ,		PAVEMENT - 3 in	ches asphalt over b	aserock.			
5—	0	2	MW1-4			SW	SILTY CLAY (CL) damp, stiff, mediu	— dark greenish gra m plasticity; 100% fir EL (SW) — olive brow se; 55% fine to coar	ay (5GY 4/1), les.	(0.01 incn)		
10-	0	5	MW1-11			СH	CLAY (CH) – very medium stiff, high	/ dark gray (N3 3/0 plasticity; 100% clay), saturated, ; roots.	machine slotted pvc		
15-	0	10	MWI-15			CL	mottled gray (N5 95% fines, 5% fine	- light yellowish bro /0), moist, stiff, med sand. at 15.5 feet, 10/12/98	lium plasticity;			
20-							(* = converted to blows/ft.)	o equivalent standar	d penetration			
25— - -										- - - -		
30-										- - - -		
) _{2F}				1						4		
35-	NI IMP	- <u>D</u> -	5145.01	工								

JOB NUMBER: 5145.01

Page 1 of 1

	·	Ge	ettler-	Rya	an,	Inc.		Log of Boring MW-2
PRO	JECT:	Che	vron SS#	9-18	951			LOCATION: 451 Hegenberger Road, Oakland, CA
G-R	PROJE	ECT N	10.: <i>5145</i>	5.01				SURFACE ELEVATION: 3.52 feet MSL
DAT	E STA	RTED	: <i>10/11/9</i>	5				WL (ft. bgs): 6.0 DATE: 10/11/95 TIME: 11:55
DAT	E FINI	SHE	D: 10/12/	95				WL (ft. bgs): 6.8 DATE: 10/12/95 TIME: 11:30
DRIL	LING	METH	IOD: <i>8 in</i> .	Hoi	llow S	tem A	uger	TOTAL DEPTH: 16.5 Feet
ORIL	LING	COMP	ANY: <i>Ba</i>	y Ar	ea E	plora	tion, Inc.	GEOLOGIST: B. Sieminski
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION SS SA WELL DIAGRAM
							PAVEMENT - 3 ir	nches asphalt over baserock.
1 1				- -		ML SW	5/3), damp, stiff, gravel.	TH GRAVEL (ML) - brown (10YR low plasticity; 80% fines, 20% fine
5-	41	2	MW2-5.5			CL	moist, dense; 50% subrounded to w diameter, 0-5% f	K fine to coarse sand, 45-50% ell rounded gravel up to 1 inch in ines; hydrocarbon odor.
10-	0	5	MW2-11	-		СН	CLAY (CH) - bla	s to 35% at 5 feet. eet. e (5Y 5/3), saturated, soft, medium clay; hydrocarbon odor. ck (5Y 2.5/1), saturated, medium ity; 100% clay; roots.
15-	0	5	MW2-16			CL	SILTY CLAY (CL mottled dark gra medium plasticity) - dark greenish gray (5G 4/1) y (N 4/1), moist, medium stiff, ; 100% fines.
20-				1 1 1				at 16.5 feet, 10/11/95. to equivalent standard penetration
25— - -								
30-								
35-			ELAE OL	-				Page Lef L

		Ge	ettler-	Ryaı	n, Inc.		Log of Boring MW-3	
PRO	JECT:	Che	vron SS#	9-185	ī1		LOCATION: 451 Hegenberger Road, Oakland, CA	
G-R	PROJE	ECT N	10.: 5148	5.01			SURFACE ELEVATION: 3.08 feet MSL	
DAT	E STA	RTEC): <i>10/11/9</i>	5			WL (ft. bgs): 5.5 DATE: 10/11/95 TIME: 10:45	
DAT	E FIN	SHE	D: 10/11/9	95		<u> </u>	WL (ft. bgs); 5.1 DATE: 10/11/95 TIME: 11:25	
DRII	LING	METH	IOD: 8 in.	Hollo	w Stem A	uger	TOTAL DEPTH: 16.5 Feet	
DRI	LING	СОМР	ANY: Ba	y Area	a Explorat	tion, Inc.	GEOLOGIST: B. Sieminski	
OEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	SOIL CLASS	GE	DLOGIC DESCRIPTION WELL DIAGR.	MA B
						PAVEMENT - 3 in	ches asphalt over baserock.	X \$
-	0	2	MW3-5		CL	CLAY (CL) - oliv (10YR 5/6), moist 100% clay.	e (5Y 4/3) mottled yellowish brown, medium stiff, medium plasticity;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5-	U	2	- MWJ-5		СН	woist, very loose, subrounded to we diameter. Saturated at 5.5 CLAY (OH) - dar	EL (SW) - olive gray (5Y 4/2), 70% fine to coarse sand, 30% Ill rounded gravel up to 1 inch in feet. k gray (5Y 4/2), saturated, soft,	and ————————————————————————————————————
10-	0	2	MW3-11			high plasticity; 10	k gray (5Y 4/2), saturated, soft, 0% clay; roots.	#2/12 sand
15-	0	9	MW3-16		CL	SILTY CLAY (CL) 5/I), moist to sati fines; rootholes.	- olive (56 5/3) mottled gray (5Y prated, stiff, medium plasticity; 100%	- - - - -
						Bottom of boring	at 16.5 feet, 10/11/95.	
20-						(* = converted t blows/ft.)	o equivalent standard penetration	-
25-								-
30-								-
35-	NII II ATT	<u></u>	5145.01					re 1 of I

		Ge	ettler-	Ryan,	Inc.		Log of Boring	g MW-4
PRO	JECT:	Che	vron SS#	9-1851			LOCATION: 451 Hegenberger Roa	d, Oakland, CA
			IO.: 5145				SURFACE ELEVATION: 3.48 feet	
			: 10/11/9				WL (ft. bgs): 5.5 DATE: 10/11/95	TIME: 14:15
⊢—			D: 10/11/9				WL (ft. bgs): 5.5 DATE: 10/12/95	TIME: 10:15
			IOD: 8 in.		Stem A	uger	TOTAL DEPTH: 16.5 Feet	131121 73773
			ANY: Ba				GEOLOGIST: B. Sieminski	
		00,11		7 7/03 2	<i>Apiora</i>	1770.	dedecorot. D. Olemmon	
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	ank pvc Sch. 40 MERL DIAGRAM
	•					PAVEMENT - 3 in	nches asphalt over baserock.	
5—	0	2	MW4-5		CL	SILTY CLAY (CL) – very dark gray (5y 3/1), moist, ticity; 100% fines.	(0.01 inch)
10-	0	2	MW4-11		SM	very loose; 85% f	1) – dark gray (2.5Y 4/1), saturated, fine sand, 15% silt. ck (5Y 2.5/1), saturated, soft, high lay; roots.	2" machine slotted pvc
15-	0	7	MW4-16		CL	dark gray (N4/1) medium plasticity) - greenish gray (56 5/1) mottled), moist to saturated, medium stiff, ; 100% fines. at 16.5 feet, 10/11/95.	
20-			:			(* = converted blows/ft.)	to equivalent standard penetration	
25— - -								
30 - -				-				
-								-
35-								-
			5145 O1			•		Page 1 of 1

DATE FINISHED: 10/12/95 DRILLING METHOD: 8 in. Hollow Stem Auger DRILLING COMPANY: Bay Area Exploration, Inc. GEOLOGIST: B. Sieminski * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' NAMER IN THE INC. GEOLOGIST: B. SIEMINSKI * 'LL' N			Ge	ettler-	Rya	n, Inc.		Log of Borin	g SB-1
DATE STARTED: 10/12/95 DATE FINISHED: 10/12/95 DRILLING METHOD: 8 in. Hollow Stem Auger DRILLING COMPANY: Bay Area Exploration, Inc. DRILLING COMPANY: Bay A						51			d, Oakland, CA
DATE FINISHED: 10/12/95 DRILLING METHOD: 8 in. Hollow Stem Auger DRILLING COMPANY: Bay Area Exploration, Inc. SECOLOGIST: B. Sieminski PAVEMENT - 4 inches of asphalt over baserock CLAY (CL) - olive (SY 4/3), moist, stiff, medium plasticity; 100X clay; 100X clay								10 to 10	
DRILLING METHOD: 8 in. Hollow Stem Auger DRILLING COMPANY: Bay Area Exploration, Inc. Company: Bay Area Exploration, Inc. GEOLOGIST: B. Sieminski	_								TIME: 12:00
DRILLING COMPANY: Bay Area Exploration, Inc. Bod SS SS SS SS SS SS SS									TIME:
SB-5.5 SB-5.5 SB	DRII	LLING	METH	IOD: 8 in.	. Hollo	ow Stem Al	uger	TOTAL DEPTH: 6.5 Feet	
PAVEMENT - 4 inches of asphalt over baserock CLAY (CL.) - olive (SY 4/3), moist, stiff, medium plasticity; 100% clay; roots. CH CLAY (CH) - black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) - black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) - dark greenish gray (5 6 1/1), moist, soft, low plasticity; 80% clay; 20% fine sand. Saturated at 8.2 feet. Bottom of boring at 6.5 feet, 10/12/95.	DRI	LLING	COMP		y Are	ea Explorat	tion, Inc.	GEOLOGIST: B. Sieminski	
CL CLAY (CL) - olive (5Y 4/3), moist, stiff, medium plasticity: 100% clay; roots. CLAY (CH) - black (5Y 2.5/l), moist, soft, high plasticity: 100% clay; roots. CL/SC SILTY CLAY WITH LENSES OF CLAYEY SAND (CL/SC) - dark greenish gray (5 G 1/1), moist, soft, low plasticity: 80% clay, 20% fine sand. Saturated at 6.2 feet. Bottom of boring at 6.5 feet, 10/12/95.	DEPTH feet	PID (ppm)		SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS
CLAY (CL) – olive (SY 4/3), moist, stiff, medium plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CH) – black (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CL) – claw (SY 2.5/1), moist, soft, high plasticity; 100% clay; roots. CLAY (CL) – claw (SY 2.5/1), moist, soft, high plasticity; 100% clay; 100% cl					7	/// CI	PAVEMENT - 4 is	nches of asphalt over baserock	-
SB-5.5 CLAY (CH) - Dlack (SY 2.5/I), moist, soft, high plasticity: 100% clay, roots. CL/SC STATE LENSES OF CLAYEY SAND (CL/SC) - dark greenish gray (5 6 1/1), moist, soft, low plasticity: 80% clay, 20% fine sand. Saturated at 6.2 feet. Bottom of boring at 6.5 feet, 10/12/95.	-								Boring backfilled with neat - cement with 5% bentonite.
UL/SC WITH LENSES OF CLAYEY SAND (CL/SC) - dark greenish gray (56 d/1), moist, soft, low plasticity; 80% clay, 20% fine sand. Saturated at 6.2 feet, 10/12/95. Bottom of boring at 6.5 feet, 10/12/95.							CLAY (CH) - bla plasticity; 100% c	ck (5Y 2.5/1), moist, soft, high lay; roots.	
	10-15-	0	N/A	SB-5.5		CL/SC	SILTY CLAY WIT (CL/SC) - dark is low plasticity; 80 Saturated at 6.2	H LENSES OF CLAYEY SAND greenish gray (5 G 1/1), moist, soft, % clay, 20% fine sand. feet.	
	25—								-
	30-								

APPENDIX D

WELL DEVELOPMENT AND SAMPLING FIELD DATA SHEETS

WELL DEVELOPMENT DATA

OB NO.	5145.01	
AME	Guadalina	Sanchar

LOCATION Cherra# 9- 1857

MW-1

10-13-95)ATE

451 Hezenberger Rd Oakland

TIME	WATER LEVEL	рН	TEMP	CONDUCTIVITY	PURGE	SURGE	AMOUNT REMOVED GALLONS	COMMENTS (odor, color, sediments, etc.)
tart: 13:44						-		* Surged for 15 min
tart 1305	4.39	7.1	79.2	4700	V		2	gray none gray silty /saudo
tart: 1307	4.67	7.0	78.1	4400	c		4	ti u
pa+ 1309	5.31	7.0	77.9	4300	<i>(</i>		6	Ca come to
tart: 311	5.78	6.9	76-8	5100	-		8	is co to
Stat 1313	6-10	6.9	74.5	5800			10	٠
tart: 1315	6-70	6-9	76.1	4900	V		12	Ca Kig 4
Stort 1317	6-68	6.8	76-8	4500)		14	u e v
tart: 1319	7.01	6.8	77.1	4300	/	•	16	(1) 7 4
top: 1322	7.10	6-8	77.0	4100		ند. ب	18	* to le to

DTW BEFORE 7.79	BEFORE DEVELOPMENT 14.6
DTW AFTER 7.10	TOTAL DEPTH 14.7
OTAL DEPTH INITIAL	$x \qquad (\qquad /7 \qquad) \qquad = \qquad \frac{/.8}{(1 \text{ WELL VOL})}$ ${\text{FACTOR}}$

DEVELOPMENT METHOD

PURGE

INJECTION A

AMT. INJECTED

CONVERSION FACTORS

2" = 0.17 3" = 0.38

4" = 0.66

 $6^* = 1.50$

WELL DEVELOPMENT DATA

OB NO.		45.01 alupe	Sauche	- Δ		LOCATION	1 Chev 451	Hegenberger Rd Oakland
ATE .	/0	-/3-5	5					
TIME	WATER LEVEL	pН	ТЕМР	CONDUCTIVITY	PURGE	SURGE	AMOUNT REMOVED GALLONS	COMMENTS (odor, color, sediments, etc.)
art: 13:35						2		* Surged for 15 min
tuf 13:58	9.27	7.1	84.3	15400	<u>ب</u>		2	none sien sitte sand
art: ၂५८००	13.15	7.0	76.6	14400			4	dewatered
op stop y	14.89	6.9	71.0	14000	/		6	in in a dewatered
art:								
5+2+ op:- art:								
art:				3				·
70.+ 01								
art:								
op:								
								DEVELOPMENT METHOD
DTW BEFORE DEVELOPMENT	5.40	}	_ В	TOTAL DEPTH EFORE DEVELOPMENT	12	1.8	_	SURGE Block / Stainless Steel Bailer
DTW AFTER	1	10		TOTAL DEPTH	. 15	~ 43		PURGE Suction
DEVELOPMENT .	14.8	9	<u>-</u>	AFTER DEVELOPMENT	/3	.0	-	INJECTION
atial well vo	LUME:				٠			AMT. INJECTED
14.8 TAL DEPTH INITIAL		5,49 DIW (INITIA	<u> </u>	CONVERSION FACTOR	=	(1 WELL VOI		2° = 0.17 3° = 0.38
								4" = 0.66 6" = 1.50

WELL DEVELOPMENT DAT	WEL	L DEVEI	OPMENT	DAT
----------------------	-----	---------	--------	-----

OB NO.	5145.01
AME	Guadalye Sanches
ATE	10-13-55

LOCATION	457	Herenberger Rd	MW-3
	Oak	land	

TIME	WATER LEVEL	рН	ТЕМР	CONDUCTIVITY	PURGE	SURGE	AMOUNT REMOVED GALLONS	D (odor, color, sediments, etc.)
art: 14:20								# Surged For 15 min
tor+ 14:40	7.67	7.6	77.4	7500	<i>~</i>		2	none cran silty /coundy
art: ၂५ ४५१	- 10.13	ो - 3	76.5	6700	L		9	te te u u
start 14:44	11.75	73	728	6300	~		E	a a co
art: 14:49		7.4	73.5	6100			8	11 te ce 14
op: 14:50	14.59	7.5	73.8	5800			10	u u is a * well dematered
art:								
ор								
art:								
o p:								

DTW BEFORE DEVELOPMENT	4.39	TOTAL DEPTH BEFORE DEVELOPMENT	14.8
DTW AFTER	14.59	TOTAL DEPTH	14.2

		DEVELOP	MENT METH	IOD	
SURGE	Block	1 Stainless	Steel	Bailer	
PURGE	Suction	<u></u>			
INJECTION					
AMT. INJE	CTED				

CONVERSION FACTORS

 $2^* = 0.17$ $3^* = 0.38$ $4^* = 0.66$

 $6^{\circ} = 1.50$

WELL	DEVEL	OPMENT	DATA
------	-------	--------	------

				441	TE DE AEF	OLIMBIAT DA	i i a	•
5	145.0	1	_		LOCATION	Cheun	m# 9-1857	MW-4
60	ada lup	e Sand	Let			451 H	legenberger Rd (Oakland
JO-	-13-85		-					
WATER LEVEL	pН	ТЕМР	CONDUCTIVITY	PURGE	SURGE	AMOUNT REMOVED GALLONS	(4	COMMENTS odor, color, sediments, etc.)
							* Jurged For 1	5 min
10-27	6.5	79.5	719-90 ms	V		2	PO 18 CI	en silty/sand
12,92	6.9	74.5	719.90ms			4	1,	ic lie
14.75	6.8	74-1	219.90 mS	-		6	(.	ce ce * well dewa tend
						<u>.</u>		
							·	
	<u> </u>	<u> </u>	<u>.l</u>		l			DEVELOPMENT METHOD
8.59	}	В	TOTAL DEPTH	15.	2	•		
		-	•				PURGE Suction	-
14.7	<u> </u>	_	TOTAL DEPTH AFTER DEVELOPMENT	/5.7	<u></u>		INJECTION	
I INGE.							AMT. INJECTED	
	8.59	¥	(.17)	=	1.1			CONVERSION FACTORS
	DTW (INITIAL	Ī.	CONVERSION FACTOR	i I	(I WELL VOL)		$2^* = 0.17$ $3^* = 0.38$
				•				4" = 0.66 6" = 1.50
	8.59 14.7	WATER LEVEL PH 10-13-95 WATER PH 10-27 6.5 12.92 6.9 14.75 6.8	WATER LEVEL PH TEMP 10-13-95 10-13	WATER LEVEL PH TEMP CONDUCTIVITY 10.27 6.5 79.5 >19.90 m.S 12.92 6.9 74.5 >19.90 m.S 14.75 6.8 74.1 >19.90 m.S TOTAL DEPTH BEFORE DEVELOPMENT 14.75 TOTAL DEPTH AFTER DEVELOPMENT LUME: S.59 DTW (INITIAL) CONVERSION	Siys.01 Grada lige Sander 10-13-95	SIYS.01 Grada Cyc Sander 10-13-95	SIYS.01 Grada Loge Sander JO-13-95 WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE AMOUNT REMOVED GALLONS 10.27 6.5 79.5 >19.90 m.S	WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE AMOUNT REMOVED GALLONS WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE AMOUNT REMOVED GALLONS WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE AMOUNT REMOVED GALLONS WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE AMOUNT REMOVED GALLONS WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE AMOUNT REMOVED GALLONS WATER LEVEL PH TEMP CONDUCTIVITY PURGE SURGE

MONITORING WELL OBSERVATION SUMMARY SHEET

COMPANY	Chewn #	9-1851	(. JOB NO	51	45.01
LOCATION	451 Hegen	berger Re	<u>I</u> DAT	E	-17-95
CITY .	Oakland		· · · · · · · · · · · · · · · · · · ·	E '	
WELL ID	TOTAL WELL DEPTH	DEPTH TO LIQUID `	HYDROCARBON THICKNESS	MEASUREMENT POINT TOB or TOC	COMMENTS
MW-1	14.7	4.12	<u> </u>	TOC	
MW-Z	15.0	5.33			
MW-3	14.8	4.42			•
nw-4	15.2	5.08			
				·	
			-		-
		•			
				-	·
					
					·
Comments:	`.				
Sampler:	G. Sanch	c	Assistant:		

SAMPLER	Guadalupe	Sanchez	DATE	10-17-95
ADDRESS	Guadalupe 451 Hege	uberry Rd	JOB#	5145.05
CITY	Oakland	. J	_ SS#	9-1851
Well ID	MW-1	Well Condition	O _K	
Well Location Des	cription	At SW conner a		o' from sidewalko
Well Diameter	2in		'''	
Total Depth	14.7 ft	Volume	2" = 0.17 6"	= 1.50 12" = 5.80
Depth to Liquid	4.12 ft	Factor	3" = 0.38	
7	10 00	(VF)	4" = 0.66	
<pre>3 # of casing Volume</pre>	10.58	х <u></u>	x(VF) /- 8 #Estim	
	$c \mapsto c$	· · · · · ·	~ Vo	urge lume
Purge Equipment	Stack Pump	Sampling Equipm	nent Disposable	Bailer
Did well dewater	No	If yes, Time	Volume	
``e				· ·
Starting Time	1258	Purging Flow Rat	te <u>2</u>	gpm.
Sampling Time _	1306			
Time	pН	Conductivity	Temperature	Volume
1300	6.7	3300	75.7	Zgal
1301	<u>6.7</u> 6.8	3 000 3 200	75·1	4 0
1306	6.8	3000	74.8 74.8	<u>6</u>
	-			
Weather Condition	s Smny			
Water Color:	brown		Odor:	
Sediment Descripti			Odoi.	none
	1	ABORATORY INFORM	IATION	
				
Sample ID		Refrig Preservative	Tγpe Lab	Anaiysis
Sample ID		Preservative Y HCL	SEQ	Analysis Gay BTEX
, , , , , , , , , , , , , , , , , , , ,	Container			· · · · · · · · · · · · · · · · · · ·
, , , , , , , , , , , , , , , , , , , ,	Container			· · · · · · · · · · · · · · · · · · ·

Juadalupe 451 Hese Oakland	berger Rd	JOB#	(-) LI (A
Oakland	J		5145.
		SS#	9-1851
MW-2	Well Condition	0/	<u> </u>
ption	next to w/o		
_ 2 in			
15.0 ft			" = 1.50
			" = 1.50 12" = 5.80
	•		
9.67			mated 4.9 gal.
			purge
Stack Pump	Sampling Equip	nent Disposable	olume <u>e B</u> ailer
NO	If yes, Time	Volume	
1324	Purging Flow Ra	ite 1.5	- anm
<i>1</i> 333			gpm.
pH	Conductivity	Temperature	Volume,
6.9		77-2	1.5 gal
7-0			_ 3.0 %
7-1			5.0
Sunny			
. }		Odor:	sone
none			
	ABORATORY INFORM		
			A = =1
3 x70 m			Analysis Gas BTEX
2 Nyond	1 Hel		8010
2 X I L	none		DIESEC
IXIL	W H, Soy		046
	2 in 15.0 ft 5.33 ft 9.67 Stack Pump NO 1324 B333 6.9 7-0 7-1 7-1 Sunny Clear None Container F 3240 ml 2x1L	In Hydrocarbon The 15.0 ft Volume 5.33 ft Volume 5.33 ft Factor (VF) 9.67 x .17 Stack Pung Sampling Equipm NO If yes, Time 1324 Purging Flow Ra 1333 pH Conductivity 9000 7-0 9900 7-1 1/200 7-1 1/400 Sunny Clear LABORATORY INFORM Container Refrig Preservative 12x1L None	15 - 0 15 15 15 15 15 15 15

SAMPLER _	Guadalupe 451 Hege	Sanchez	DATE	10-17-95	
ADDRESS	451 Hege	uberry Rd	JOB#	5145.00	
CITY	Oakland		SS#	5-1851	
Well ID	_MW-3	Well Condition	~)K	
Well Location Desc	ription		e Methand Tank	Complex	
Well Diameter	2 in Hydrocarbon Thickness				
Total Depth	14.8 ft			" = 1.50 12" = 5.80	
Depth to Liquid	4.42ft	Factor	3" = 0.38	" = 1.50 12" = 5.80	
7 # of casing	10.38	(VF)	4" = 0.66		
Volume	10.20	×17		mated 5-3 gal. purge	
Purge Equipment	Stack Punp	Sampling Equip	_ V	olume	
Did well dewater	No	lf yes, Time	Volume		
Starting Time	1700	Purging Flow Ra	nte	• .	
Sampling Time	1410	· organis view inc		gpm.	
Time	pH	Conductivity	Temperature	Volume	
1407	- 6.9 -	3800	77.5	h5 gal	
1403	7.0	<u>4100</u> <u>4000</u>	77.9 78.1	3.0 9.5	
1410	7-1	4000	780	5.5	
				_	
Veather Conditions	301101		·		
Water Color:	clear		Odor:	none	
Sediment Descriptio	n _ none				
		ABORATORY INFORM	1ATION -		
Sample ID		lefrig Preservative	Type Lab	Analysis	
Sample ID MW - 3	Container F	Y HCL	Type Lab	Analysis GAS BTEX	
	Container F 3x40 ml	Y HCR HCR		GAS BTEX	
	Container F	Y HCL		GAS BTEX	

SAMPLER	Guadalupe 451 Hege	Sanchez	DATE	10-17-95
ADDRESS	451 Here	aberrer Rd	JOB#	5145.01
CITY	Oakland		SS#	<u>9-1851</u>
Well ID	MW-4	Well Condition		
Well Location Descr	ription 🎍		on tank e-	plex ~ 20' from 6
Well Diameter	2 in	Hydrocarbon Thi		prex -c co from b
Total Depth	15.2 ft			J
Depth to Liquid	5.08 ft	Volume Factor	2" = 0.17 3" = 0.38	6" = 1.50 12" = 5.80
3 # of casing	10.12	(VF) x . 17	4" = 0.66 x(VF) 1 - 7 #Est	imand a Co
Volume			A(V) 1 12 7 #ESE	imated 52 gal. purge
Purge Equipment	Stack Pump	Sampling Equipm	ent Disposable	/oluma
Did well dewater	<u>~o</u>	If yes, Time	Volume	
Starting Time Sampling Time	1436	Purging Flow Rat	e/.ງ´	gpm.
Time 1437 1438 1439 1447	7.0 7.1 7.2 7.2	Conductivity 5300 7100 8200 8400	Temperature 77-0 75-4 75-1 75-0	Volume 3-0 5-0 5.5
Veather Conditions	Sunna			
Water Color:	_ clear		Odor:	
ediment Description	none			nong
	LA	BORATORY INFORMA	ATION	
Sample ID	Container Re	frig Preservative T		Analysis
Μω-4	3 xyoul >	HCL	SEQ	GOU BTEX
			. 1	i i

APPENDIX E

WELLHEAD SURVEY REPORT

Virgil Chavez Land Surveying

1418 Lassen Street Vallejo, California 94591 707.553.2476

November 27, 1995 Project No. 1104-28

Barbara Sieminski Gettler-Ryan, Inc. 6747 Sierra Ct. Suite J Dublin, Ca. 94568

Subject: Monitoring Well Survey Chevron Service Sta. No. 9-1851 451 Hegenberger Road Oakland, Ca.

Dear Barbara:

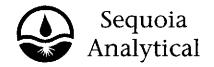
This is to confirm that we have proceeded at your request to survey the ground water monitoring wells located at the above referenced location. The survey was performed on November 22, 1995. Our findings are shown in the tables below. The benchmark used was the "O" in Oakland on an inlet in the westerly curb of Oakport Road, 150' southerly of the end of curve. Benchmark Elevation = 1.82 feet, USGS Datum.

Well No.	Rim Elevation	TOC Elevation
MW - 1	2.84'	2.61'
MW - 2	3.98′	3.52′
MW - 3	3.59′	3.08′
MW - 4	3.78′	3.48'

The table shown below is for top of casing locations. The back of an existing two foot redwood fence at the approximate easterly property line was used as the reference line.

Monitoring Well No.	Station	Offset
MW - 1	1+82.28	121.78' (Lt.)
MW - 2	1+40.54	94.71' (Lt.)
MW - 3	1+32.06	36.10' (Lt.)
MW - 4	0+93.27	121.74' (Lt.)
Back of curb	0+00	0.00′

No. 6323
Exp.12-31-98


OF CALIFORNIA

Sincerely,

Virgil D. Chavez, P.L.S. 6323 Virgil Chavez Land Surveying

APPENDIX F

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) _364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies
6747 Sierra Court Suite G

Client Proj. ID:

Chevron 9-1851, Oakland

Sampled: 10/12/95 Received: 10/13/95

Dublin, CA 94568°

Lab Proj. ID: 9510A05

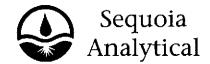
Analyzed: see below

Attention:

Argy Leyton

Reported: 11/27/95

LABORATORY ANALYSIS


Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9510A05-02 Sample Desc : SOLID,MW-2-5.5				
TRPH (SM 5520 E&F Mod.)	mg/Kg	10/19/95	50	2100

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

ξΩ,

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G 5 Dublin, CA 94568

Attention: Argy Leyton

Client Proj. ID: Chevron 9-1851, Oakland Sample Descript: MW-3-5

Matrix: SOLID Analysis Method: EPA 8240 Lab Number: 9510A05-01 Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/16/95 Analyzed: 10/16/95 Reported: 11/27/95

QC Batch Number: MS1013958240EXA

Instrument ID: F3

Volatile Organics (EPA 8240)

Analyte ●	Detection Limit ug/Kg	Sample Results ug/Kg
Acetone	500	N.D.
Benzene	100	N.D.
Bromodichloromethane	100	N.D.
Bromoform	100	N.D.
Bromomethane	100	N.D.
2-Butanone	500	N.D.
Carbon disulfide	100	N.D.
Carbon tetrachloride	100	N.D.
Chlorobenzene	100	N.D.
Chloroethane	100	N.D.
2-Chloroethyl vinyl ether	500	N.D.
Chloroform	. 100	N.D.
Chloromethane	100	N.D.
Dibromochloromethane	100	N.D.
1,1-Dichloroethane	100	N.D.
1,2-Dichloroethane	100	N.D.
1,1-Dichloroethene	100	Ŋ.D.
cis-1,2-Dichloroethene	100	N.D.
trans-1,2-Dichloroethene	100	N.D.
1,2-Dichloropropane	100	N.D.
Cis-1,5-Dicinoroproperie	100	N.D.
trans-1,3-Dichloropropene	100	N.D.
Ethylbenzene 2-Hexanone	100	N.D.
	500	N.D.
Methylene chloride 4-Methyl-2-pentanone	250 500	N.D.
Styrene	500	N.D.
1,1,2,2-Tetrachloroethane	100	N.D.
Tetrachloroethene	100	N.D.
Toluene	100	N.D.
1,1,1-Trichloroethane	100	N.D.
1,1,2-Trichloroethane	100 100	N.D. N.D.
Trichloroethene	100	
Trichlorofluoromethane	100	N.D. N.D.
Vinyl acetate	250	N.D. N.D.
Vinyl acetate Vinyl chloride	100	N.D. N.D.
viriyi omonue	100	N.D.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland Sample Descript: MW-3-5 Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/16/95

Attention: Argy Leyton

Matrix: SOLID' Analysis Method: EPA 8240 Lab Number: 9510A05-01

Analyzed: 10/16/95 Reported: 11/27/95

QC Batch Number: MS1013958240EXA

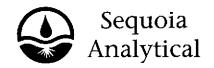
Instrument ID: F3

Analyte Detection Limit ug/Kg Sample Results ug/Kg

Total Xylenes 100 N.D.

 Surrogates
 Control Limits %
 % Recovery

 1,2-Dichloroethane-d4
 70
 121
 96


 Toluene-d8
 81
 117
 98

 4-Bromofluorobenzene
 74
 121
 105

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: MW-3-5

Matrix: SOLID

Analysis Method: EPA 8015 Mod

Lab Number: 9510A05-01

Sampled: 10/12/95

Received: 10/13/95 Extracted: 10/19/95 Analyzed: 10/19/95 Reported: 11/27/95

QC Batch Number: GC101995ISHSHSB

Instrument ID: GCV-01

Attention: Argy Leyton

Industrial Solvents

Analyte		Detection Limit mg/Kg	\$	Sample Results mg/Kg
Acetone		<u>.</u> •		
Acetonitrile		, -		
Benzene				
iso-Butanol	•••••			
n-Butanol				-
sec-Butanol				
t-Butanol		. -		
Carbon tetrachloride	***************************************	. -		
Chloroform	••••	. -		
Cyclohexane	***************************************			
1,2-Dichloroethane	****************	. •		
t-1,2-Dichloroethene	***************	. -		
Ethanol		, -		. -
Ethyl acetate		. -		
Ethyl benzene	*************	. •		
Ethyl ether				
Freon 113				
Hexane	***************************************	· •	******	·
Methanol		1.0		N.D.
Methyl ethyl ketone		0.20		N.D.
Methyl isobutyl ketone		<u>-</u>		
Methylene chloride				-
iso-Octane		. -		-
iso-Propanol		, -		
n-Propanol	*************	-		
n-Propyl benzene	•••••			-
Tetrachloroethylene		. -		- -
Tetrahydrofuran	•••••	. -		•
1,1,1-Trichloroethane				· -
Trichloroethylene	• • • • • • • • • • • • • • • • • • • •	. -		. -
Toluene	***************************************	. -		. -
m-Xylene		. -		· -
o-Xylene	************	. -	• • • • • • • • • • • • • • • • • • • •	. -
p-Xylene	***************************************			-
Surrogates		Control Limits %	۵/4	Recovery
Pentanol RTX 200	31		166	122

166 121 Pentanol DBWAX 49

Analytes reported as N.D. were not present above the stated limit of detection.

● SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568 Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: MW-3-5

Matrix: SOLID

Analysis Method: 8015Mod/8020

Lab Number: 9510A05-01

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/18/95

Analyzed: 10/18/95 Paparted: 11/27/95

Reported: 11/27/95

QC Batch Number: GC101895BTEXEXA

Instrument ID: GCHP06

Attention: Argy Leyton

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 76

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland Sample Descript: MW-2-5.5 Matrix: SOLID

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/18/95 Analyzed: 10/20/95

Attention: Argy Leyton

Analysis Method: EPA 8010 Lab Number: 9510A05-02

Reported: 11/27/95

QC Batch Number: GC1018958010EXA

Instrument ID: GCHP9

Halogenated Volatile Organics (EPA 8010)

•	Analyte .	Detection Limit ug/Kg	Sample Results ug/Kg
	Bromodichloromethane Bromoform Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Methylene chloride 1,1,2-Tetrachloroethane Tetrachloroethene 1,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene	5.0 5.0 10 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.
,	Vinyl chloride Surrogates 1-Chloro-2-fluorobenzene	5.0 10 Control Limits % 60 130	N.D. N.D. % Recovery 91

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: MW-2-5.5 Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9510A05-02

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/18/95 Analyzed: 10/18/95

Reported: 11/27/95

QC Batch Number: GC101895BTEXEXA

Instrument ID: GCHP18

Attention: Argy Leyton

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte)		ection Limit mg/Kg	\$	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:		1.0 0.0050 0.0050 0.0050 0.0050		N.D. N.D. 0.0097
Weathered Gas	***************************************			. C8-C12
Surrogates Trifluorotoluene	Con 70	trol Limits %	% 130	Recovery 92

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: MW-2-5.5 Matrix: SOLID

Analysis Method: EPA 8015 Mod Lab Number: 9510A05-02

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/16/95 Analyzed: 10/18/95 Reported: 11/27/95

Attention: Argy Leyton

QC Batch Number: GC1014950HBPEXA Instrument ID: GCHP4A

Total Extractable Petroleum Hydrocarbons (TEPH)

Detection Limit Analyte Sample Results mg/Kg mg/Kg **TEPH as Diesel** 10 C9-C24 UNIDENTIF Chromatogram Pattern: **Control Limits %** % Recovery Surrogates n-Pentacosane (C25) 150

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

6747 Sierra Court Suite G Dublin, CA 94568

eostrategies Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: MW-4-5

Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9510A05-03

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/18/95

Analyzed: 10/18/95 Reported: 11/27/95

QC Batch Number: GC101895BTEXEXA

Instrument ID: GCHP18

Attention: Argy Leyton

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 89

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Miké Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: MW-1-4

Matrix: SOLID

Analysis Method: 8015Mod/8020

ton Lab Number: 9510A05-04

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/18/95 Analyzed: 10/18/95

Reported: 11/27/95

QC Batch Number: GC101895BTEXEXA

Instrument ID: GCHP18

Attention: Argy Leyton

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 91

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, Oakland

Sample Descript: SB1-5.5 Matrix: SOLID

Received: 10/13/95 Extracted: 10/18/95 Analyzed: 10/18/95 Reported: 11/27/95

Sampled: 10/12/95

Attention: Argy Leyton

Analysis Method: 8015Mod/8020 Lab Number: 9510A05-05

QC Batch Number: GC101895BTEXEXA

Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit mg/Kg	Sample Results mg/Kg
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	1.0 0.0050 0.0050 0.0050 0.0050	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 86

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568 Argy Leyton Attention:

Client Proj. ID: Chevron 9-1851, Oakland

Received: 10/13/95

Lab Proj. ID: 9510A05

Reported: 11/27/95

LABORATORY NARRATIVE

DIESEL: Surrogate is diluted out.

SEQUOIA ANALYTICAL

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Client Project ID:

Chevron 9-1851, Oakland

Matrix:

Solid

Dublin, CA 94568 Attention: Argy Leyton

Work Order #:

9510A05

-01 - 05

Reported:

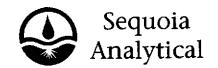
Oct 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	
			Benzene	1	
	GC101895BTEXEXA	GC101895BTEXEXA	GC101895BTEXEXA	GC101895BTEXEXA	
Analy. Method:		EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	·
Analyst:	G. Garcia	G. Garcia	G. Garcia	G. Garcia	•
MS/MSD #:		9510709-27	9510709-27	9510709-27	
Sample Conc.:		N.D.	N.D.	N.D.	
Prepared Date:	10/18/95	10/18/95	10/18/95	10/18/95	
Analyzed Date:	10/18/95	10/18/95	10/18/95	10/18/95	
Instrument I.D.#:	GCHP1	GCHP1	GCHP1	GCHP1	•
Conc. Spiked:	0.20 mg/kg	0.20 mg/kg	0.20 mg/kg	0.60 mg/kg	
Result:	0.17	0.17	0.18	0.53	
MS % Recovery:	85	85	90	88	*
Dup. Result:	0.17	0.17	0.18	0.52	
MSD % Recov.:	85	85	85	87	
RPD:	0.0	0.0	5.7	1.9	
RPD Limit:	0-50	0-50	0-50	0-50	

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:


> LCS Result: LCS % Recov.:

MS/MSD LCS	1				
Control Limits	55-145	47-149	47-155	56-140	

SEQUOIA ANALYTICAL

Mike Gregory **Project Manager** Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does лоt fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Client Project ID:

Chevron 9-1851, Oakland

Matrix: 1

Solid

Dublin, CA 94568 Attention: Argy Leyton

Work Order #:

9510A05 -01 Reported:

Oct 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Acetone	MIBK	Tetra	1,1,1-TCA	
•			Hydrofuran		
QC Batch#:	QC Batch#: GC101995ISHSHSB		GC101995ISHSHSB	GC101995ISHSHSB	
Analy. Method:	ISHS	GC101995ISHSHSB ISHS	ISHS	ISHS	44
Prep. Method:	HS HS HS			HS	
Analyst:	T. Tran	T. Tran	T. Tran	T. Tran	
MS/MSD #:	9510A05-01	9510A05-01	9510A05-01	9510A05-01	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	10/19/95	10/19/95	10/19/95	10/19/95	
Analyzed Date:	10/19/95	10/19/95	10/19/95	10/19/95	
Instrument I.D.#:	GCV1	GCV1	GCV1	GCV1	•
Conc. Spiked:	4.0 mg/kg	1.0 mg/kg	2.0 mg/kg	1.0 mg/kg	
Result:	5.3	1.2	2.6	0.77	
MS % Recovery:	133	120	130	77	
Dup. Result:	5.0	1.1	2.5	0.70	
MSD % Recov.:		110	125	70	
RPD:	5.8	8.7	3.9	9.5	
RPD Limit:		0-50	0-50	0-50	
LCS#:	ISBLK101995/SPK	ISBLK101995/SPK	ISBLK101995/SPK	ISBLK101995/SPK	
Prepared Date:	10/19/95	10/19/95	10/19/95	10/19/95	
Analyzed Date:		10/19/95	10/19/95	10/19/95	
Instrument I.D.#:	GCV1	GCV1	GCV1	GCV1	
Conc. Spiked:	4.0 mg/kg	1.0 mg/kg	2.0 mg/kg	1.0 mg/kg	
LCS Result:	4.2	1.0	2.1	0.93	
LCS % Recov.:		100	105	93	
MS/MSD					
LCS Control Limits	50-150	50-150	50-150	50-150	

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

Page 1 of 2

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Client Project ID:

Chevron 9-1851, Oakland

-01

Matrix:

Solid

Dublin, CA 94568 Attention: Argy Levton

Work Order #:

9510A05

Reported:

Oct 23, 1995

QUALITY CONTROL DATA REPORT

Analyte: TCE p-Xylene

QC Batch#: GC101995ISHSHSB GC101995ISHSHSB

Analy. Method: ISHS ISHS Prep. Method: HS HS

Analyst: T. Tran T. Tran MS/MSD #: 9510A05-01 9510A05-01 Sample Conc.: N.D. N.D. Prepared Date: 10/19/95 10/19/95 Analyzed Date: 10/19/95 10/19/95 Instrument I.D.#: GCV1 GCV1 Conc. Spiked: 1.0 mg/kg 0.20 mg/kg

Result: 0.080 0.66 MS % Recovery: 66 40

Dup. Result: 0.60 0.080 MSD % Recov.: 60 40

> RPD: 9.5 0.0 RPD Limit: 0-50 0-50

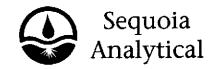
LCS #: ISBLK101995/SPK ISBLK101995/SPK

Prepared Date: 10/19/95 10/19/95 Analyzed Date: 10/19/95 10/19/95 Instrument I.D.#: GCV1 GCV1 Conc. Spiked: 1.0 mg/kg mg/kg

LCS Result: 0.97 0.20 LCS % Recov.: 97 100

MS/MSD LCS 50-150 50-150 **Control Limits**

SEQUOIA ANALYTICAL


Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

Page 2 of 2

9510A05.GET <3>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court. Ste J

6747 Sierra Court, Ste J Dublin, CA 94568

Attention: Argy Leyton

Client Project ID: Chevron 9-1851, Oakland

Matrix: Solid

Work Order #: 9510A05

-01

Reported:

Oct 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	1,1-Dichloroethene	Trichloroethene	Benzene	Toluene	Chloro-
				•	benzene
QC Batch#:	M\$1013958240EXA	MS1013958240EXA	MS1013958240EXA	MS1013958240EXA	MS1013958240EXA
Analy. Method:	EPA 8240	EPA 8240	EPA 8240	EPA 8240	EPA 8240
Prep. Method:	EPA 8240	EPA 8240	EPA 8240	EPA 8240	EPA 8240
Analyst:	L. Duong	L. Duong	L. Duong	L. Duong	L. Duong
MS/MSD#:	9510889-01	9510889-01	9510889-01	9510889-01	9510889-01
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Prepared Date:	10/13/95	10/13/95	10/13/95	10/13/95	10/13/95
Analyzed Date:	10/13/95	10/13/95	10/13/95	10/13/95	10/13/95
nstrument I.D.#:	F3	F3	F3	F3	F3
Conc. Spiked:	2500 ug/kg	2500 ug/kg	2500 ug/kg	2500 ug/kg	2500 ug/kg
Result:	1700	2100	2200	2200	2100
MS % Recovery:	68	84	88	88	84 .
Dup. Result:	1900	2200	2300	2400	2300
MSD % Recov.:	76	88	92	96	92
RPD:	11	4.6	4.4	8.7	9.1
RPD Limit:	0-50	0-50	0-50	0-50	0-50

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

MS/MSD LCS	DL-234	71-157	37-151	47-150	37-160
Control Limits		71-102	07-101	47 100	07 100

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Client Project ID:

Chevron 9-1851, Oakland

Matrix:

Solid

Dublin, CA 94568 Attention: Argy Leyton

Work Order #:

9510A05 -02

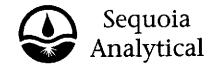
Reported:

Oct 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	1,1-Dichloro-	Trichloro-	Chloro-		
	ethene	ethene	benzene		
QC Batch#:	GC1018958010EXA	GC1018958010EXA	GC1018958010E	EXA	
Analy. Method:	EPA 8010	EPA 8010	EPA 8010		
Prep. Method:	EPA 5030	EPA 5030	EPA 5030		
Analyst:	D. Nelson	D. Nelson	D. Nelson		
MS/MSD #:		9510B76-01	9510B76-01		
Sample Conc.:		N.D.	N.D.		
Prepared Date:		10/18/95	10/18/95		
Analyzed Date:		10/19/95	10/19/95		
nstrument I.D.#:		GCHP9	GCHP9		
Conc. Spiked:	25 ug/kg	25 ug/kg	25 ug/kg		
Result:	22	28	23		
MS % Recovery:		112	92		
Dup. Result:	19	36	34		
MSD % Recov.:		144	136		Ť
RPD:	15	25	39		
RPD Limit:		0-50	0-50		

LCS #:	VBLK101895BS	VBLK101895BS	VBLK101895B\$
Prepared Date:	10/18/95	10/18/95	10/18/95
Analyzed Date:	10/19/95	10/19/95	10/19/95
Instrument I.D.#:	GCHP9	GCHP9	GCHP9
Conc. Spiked:	25 ug/kg	25 ug/kg	25 ug/kg
LCS Result:	21	30	24
LCS % Recov.:	84	120	96


MS/MSD			
LCS	28-167	35-146	38-150
	20-101	33-140	38-130
Control Limits			

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Reported:

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Client Project ID:

Chevron 9-1851, Oakland

Dublin, CA 94568

Matrix: Solid

Attention: Argy Leyton

Work Order #:

9510A05 -02

Oct 23, 1995

QUALITY CONTROL DATA REPORT

Analyte: Total Recoverable Diesel

Pet, Hydrocarbons

QC Batch#: OP101695SM5520EXA

GC101495OHBPEXA

Analy. Method: SM 5520 EF Mod EPA 8015 M

Prep. Method: EPA 3550

EPA 3550

Analyst:

C. Garde

B. Ali

MS/MSD #: Sample Conc.: 9510967-11

9510854-01

Prepared Date:

N.D. 10/16/95

1.5 10/14/95

Analyzed Date: Instrument I.D.#: Conc. Spiked:

10/17/95 MANUAL 500 mg/kg

10/15/95 GCHP4A 25 mg/kg

Result:

570

23

MS % Recovery:

114

86

Dup. Result: MSD % Recov.: 580

24

RPD:

116

90

RPD Limit:

1.7 0-50

1.1 0-50

LCS #:

BLK101695

BLK101495

Prepared Date: Analyzed Date:

10/16/95 10/17/95 10/14/95

Instrument I.D.#:

10/15/95

Conc. Spiked:

MANUAL 500 mg/kg

GCHP4A 25 mg/kg

LCS Result: LC\$ % Recov.:

440 88

24 96

MS/MSD

60-140

LCS

70-110

38-122

Control Limits

Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Mike Gregory

Project Manager

SEQUOIA ANALYTICAL

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9510A05.GET <6>

Fax cop	by of	Lab	Rep	ort	and	COC to	Che	vron	Co	ntac	ot: [<u>ый</u>	0			<u> </u>	<u>hai</u>	<u>n-c</u>	<u> </u>	<u>`ust</u>	ody-Re	cord
Chevron U.S P.O. BOX San Ramon, C FAX (415)84	5.A. Inc. 5004 CA 94583	Chev Cons Cons	ron Facil Facil ultant Pr ultant No	ity Numb ity Addres	mbor ther	-1851 1 Hegenber 145,01 -Ryan 2 (f, Sui Avgy Ley 510)551-75	erger teJ,	RJ _I C Dubl	alda in 1	nd,	CA 1456	<u>-</u>	Chevron	ry Name ry Relea Collecte	(Phone Phone Num d by (N)_(5 equa ber ame)	10) 3741 Bart 195	480 bara	5 ieu		, ku'	
Sampie Number	Lab Sample Number	Number of Containers	Matrix S = Soll A = Air W = Water C = Charcoal	Type G m Grab C = Composite D = Discrete	Time	Sample Preservation	Iced (Yes or No)	BTEX + TPH GAS (8020 + 8015)	TPH Diesel (8015)	Oil and Grease (5520)	Purgeable Halocarbons (8010)	Purgeable Aromatics (8020)	1	anics	Metals Cd,Cr,Pb,Zn,Ni (ICAP or AA)		Ketone	HETTER			7510 A Remarke	19 12 <u>3</u> 05
MW3-5		1	5	G	10:40		Yes	X					X			X	X	X				
MW3-11 .		1			10:50			<u> </u>										ļ			HOLD	
-MW3-16					11:00			<u> </u>				ļ		<u> </u>	ļ			ļ. ·			4	
MW2-5.5		١			11:50			X	×	X	X			<u> </u>	ļ. <u>.</u>			<u> </u>	1			2
MW2-11					12:00			<u> </u>	<u>.</u>		ļ . <u> </u>				ļ						How	
19W2-16 19W4-5					12:10				_				ļ	<u> </u>	<u> </u>			ļ	 	<u> </u>	4	
14W4-5					14:10			X						ļ	ļ			ļ .		<u> </u>		3
MW4-11		1			14:2		,]		<u> </u>								ļ			HOUS	
MW4-16		١			14:2								ļ					<u> </u>				
MW1-4.		١			14:50			X						ļ				<u> </u>				4
MW1-11-		1			10:40													ļ			HOLD	
MW1-15		[V	Y	10:4	1	V										ļ				1	
(581-5.5		1	1	V	12:00	7	V	X									ļ	<u> </u>	1			5_
											· .	<u> </u>						<u> </u>			<u> </u>	
Relinquished By Barbana Relinquished By	Siemi	nsli 1	<u>. 6</u>	anization 	i	Date/Time 2.		celved B	res	Elel	<u> </u>		Organizal Organizal	LOL)	910	//3/ e/Time	_		Turn Area	24 48	e (Circle Cholos Hrs. Hrs. Joys)
Relinquished By	(Signoture)			<u>Ayle to</u> panization	reey	10/13/45 Date/Time		oleved E	or Labo	pratory 1	By (Sign	atyre)			Dat	/Time	د عح مد عم			(10)	Days Intracted	

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

ent Proj. ID: Chevron 9-1851, Oakland Client Proj. ID:

Sample Descript: SP-(A-D)Comp Matrix: SOLID

Analysis Method: 8015Mod/8020 Lab Number: 9510979-01

Sampled: 10/12/95 Received: 10/13/95 Extracted: 10/16/95 Analyzed: 10/16/95

Reported: 10/17/95

QC Batch Number: GC101695BTEXEXA Instrument ID: GCHP18

Attention: Argy Leyton

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Det	Sa	mple Results mg/Kg	
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:		1.0 0.0050 0.0050 0.0050 0.0050		N.D. 0.044 0.064 0.015 0.058
Surrogates Trifluorotoluene	Con 70	trol Limits % 1	% F	Recovery 88

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -

Mike Gregory Project Manager

ive Redwood City, CA 94063 Walnut Creek, CA 94598 Suite 8 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Client Project ID:

Chevron 9-1851, Oakland

Matrix:

Solid

Dublin, CA 94568 Attention: Argy Leyton

Work Order #:

9510979 01

Reported:

Oct 17, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	
			Benzene	•	ļ
QC Batch#:	GC101695BTEXEXA	GC101695BTEXEXA	GC101695BTEXEXA	GC101695BTEXEXA	
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	
Analyst:	G. Garcia	G, Garcia	G. Garcia	G. Garcia	
MS/MSD #:	951070906	951070906	951070906	951070906	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	10/16/95	10/16/95	10/16/95	10/16/95	
Analyzed Date:	10/16/95	10/16/95	10/16/95	10/16/95	•
Instrument I.D.#:	GCHP1	GCHP1	GCHP1	GCHP1	
Conc. Spiked:	0.20 mg/Kg	0.20 mg/Kg	0.20 mg/Kg	0.60 mg/Kg	
Result:	0.16	0.16	0.16	0.50	
MS % Recovery:	80	80	80	83	
Dup. Result:	0.16	0.16	0.16	0.49	
MSD % Recov.:	80	80	80	82	
RPD:	0.0	0.0	0.0	2.0	
RPD Limit:	0-50	0-50	0-50	0-50	

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

MS/MSD LCS					
Control Limits	55-145	47-149	47-155	56-140	

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

• Fax cop			Den	ort c	and (• 100 to	Ch	evror	Co	ntac) [Ye:	S •			•Cł	nain	1-0	f-C	ust	ody-Record
Fax cob	ру от	Lab	кер	ort t	inu (-1.90-1	Oil	CVICI				T			/u\	V	uk 1	tille	· ·)
Chevron U.S P.O. BOX San Ramon, C FAX (415)84	5.A. Inc. 5004 CA 94583 42-9591	. ~	UQ 840			-1851 Hegend 145:01 Ryan 2 Ct, Si Tray Ley 10)551-7	ton	·				_ c	aboratory aboratory amples (/ Nante / Releas Collected	(Name) (Phone) Sey Numb by (No	(510) or 3 or 3 or 3 2/90	9)84. 7414 Barb	2-8 120 2re	9134 Die	uúr	sler
			Ā										Analyse	e To B	Perfor	med	······································			-	
Sample Number	Lab Sample Number	Number of Containers	Matrix S = Soll A = Air W = Water C = Charcoal	Type G = Grob C = Composite D = Discrete	Time	Sample Preservation	iced (Yes or No)	BTEX + TPH GAS (8020 + 8015)	TPH Diesel (8015)	Oil and Grease (5520)	Purgeable Halocarbons (8010)	Purgeable Aromotics (8020)	Purgeable Organics (8240)	Extractable Organics (8270)	Metals C4,Cr,Pb,Zn,Ni (ICAP or AA)						9510979 J CI = 3
SP-Ale		1	5	6	12:15	01 A	Ye	×							<u> </u>		-				- John -
5P-B/5		- -	1		12:17	18		Y		<u> </u>	ļ		<u> </u>	ļ			<u> </u>				Jon WHOMONG
3P-C(3) 3P-D)3		1	V		12:19	, D	1	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \													Jan W Homan Har ay2-1499 (400) ay2-1499 (400) ay2-1499
			 	-	 		-		 	 	 										jours la
		 	 	- 	 	 				-											Gold
			 	 -		 		- -		-	 										
	<u> </u>	-	<u> </u>	 		 				1	-										
	 	_		-		<u>- </u>	-			1	 -		 								
	 		-			 	+-		 	 	1	1 -	1								
	 				- 	-			-	1	 	 	<u> </u>	 	1						
	 		<u> </u>			<u> </u>				+	 	+	-				1				
Relinquished B Barbara Relinquished B	Glew	ingl	u (rganization R rganization	n	Date/Time 10/13/9° Date/Time 3/9/13/9	5	Received Received	Die	Del	2		Organiza Sepa	(ee)	Do	te/Ilme			Tum Ar	24 46 5	me (Circle Choloe) Hre. Doye Daye
Reliriquished B	Signature)	0	rodnizatio	• • •	Date/Time		Recleved	For Lab	oratory	By (Slai	peture)			Do //	10/11mo	13/52			Ar C	ontracted

Argy Leyton

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G

Client Proj. ID: Chevron 9-1851, 451 Hegenberg

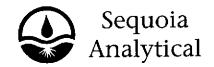
Sampled: 10/17/95 Received: 10/19/95 Analyzed: see below

Dublin, CA 94568

Attention:

Lab Proj. ID: 9510E35

Reported: 11/27/95


LABORATORY ANALYSIS

Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9510E35-03 Sample Desc : LIQUID,MW2				
TRPH (SM 5520 B&F Mod)	mg/L	10/27/95	5.0	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, 451 Hegenberg

Sample Descript: TB

Matrix: LIQUID Analysis Method: 8015Mod/8020 Analyzed: 10/21/95

Attention: Argy Leyton

Lab Number: 9510E35-01

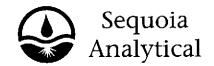
Reported: 11/27/95

Sampled: 10/17/95

Received: 10/19/95

QC Batch Number: GC102095BTEX21A

Instrument ID: GCHP21


Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 71

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, 451 Hegenberg

Sample Descript: MW1

Matrix: LIQUID

Analysis Method: 8015Mod/8020 Lab Number: 9510E35-02

Sampled: 10/17/95 Received: 10/19/95

Analyzed: 10/21/95 Reported: 11/27/95

QC Batch Number: GC102095BTEX21A

Instrument ID: GCHP21

Attention: Argy Leyton

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 79

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Miké Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G

Chevron 9-1851, 451 Hegenberg Client Proj. ID:

Sampled: 10/17/95 Received: 10/19/95

Dublin, CA 94568

Sample Descript: MW2 Matrix: LIQUID

Attention: Argy Leyton

Analysis Method: 8015Mod/8020 Lab Number: 9510E35-03

Analyzed: 10/23/95 Reported: 11/27/95

QC Batch Number: GC102395BTEX02A

Instrument ID: GCHP02

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Anaiyte	Detection Limit ug/L	Sa	mple Results ug/L
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 0.50 0.50 0.50 0.50		170 3.5 N.D. 1.0 6.1 Gas
Surrogates Trifluorotoluene	Control Limits %	% F	lecovery 74

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Chevron 9-1851, 451 Hegenberg Sampled: 10/17/95 Client Proj. ID:

Sample Descript: MW2

Matrix: LIQUID

Analysis Method: EPA 8015 Mod

Lab Number: 9510E35-03

Received: 10/19/95

Extracted: 10/23/95 Analyzed: 10/25/95 Reported: 11/27/95

QC Batch Number: GC1023950HBPEXZ

Instrument ID: GCHP4A

Attention: Argy Leyton

Total Extractable Petroleum Hydrocarbons (TEPH)

Detection Limit Sample Results Analyte ug/L ug/L 1600 100 TEPH as Diesel UNIDENTIF C9-C24 **Chromatogram Pattern: Control Limits %** % Recovery Surrogates 150 n-Pentacosane (C25)

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies
6747 Sierra Court Suite G Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, 451 Hegenberg Sample Descript: MW2

Sampled: 10/17/95 Received: 10/19/95

Attention: Argy Leyton

Matrix: LIQUID Analysis Method: EPA 8010 Lab Number: 9510E35-03

Analyzed: 10/24/95 Reported: 11/27/95

QC Batch Number: GC102395801008A

Instrument ID: GCHP8

Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/L	Sample Results ug/L
Bromodichloromethane	0.50	N.D.
Bromoform	0.50	N.D.
Bromomethane	1.0	N.D.
Carbon Tetrachloride	0.50	N.D.
Chlorobenzene	0.50	N.D.
Chloroethane	1.0	N.D.
2-Chloroethylvinyl ether	1.0	N.D.
Chloroform	0.50	, N.D.
Chloromethane	1.0	N.D.
Dibromochloromethane	0.50	N.D.
1,2-Dichlorobenzene	0.50	N.D.
1,3-Dichlorobenzene	0.50	N.D.
1,4-Dichlorobenzene	0.50	N.D.
1,1-Dichloroethane	0.50	1.7
1,2-Dichloroethane	0.50	N.D.
1,1-Dichloroethene	0 .50	N.D.
cis-1,2-Dichloroethene	0.50	11
trans-1,2-Dichloroethene	0.50	N.D.
1,2-Dichloropropane	0.50	N.D.
cis-1,3-Dichloropropene	0.50	N.D.
trans-1,3-Dichloropropene	0.50	N.D.
Methylene chloride	5.0	N.D.
1,1,2,2-Tetrachloroethane	0.50	N.D.
Tetrachloroethene	0.50	N.D.
1,1,1-Trichloroethane	0.50	N.D.
1,1,2-Trichloroethane	0.50	N.D.
Trichloroethene	0.50	N.D.
 Trichlorofluoromethane 	0.50	N.D.
Vinyl chloride	1.0	N.D.
Surrogates	Control Limits %	% Recovery
1-Chloro-2-fluorobenzene	70 130	93

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

■ Gettler Ryan/Geostrategies■ 6747 Sierra Court Suite G■ Dublin, CA 94568

Client Proj. ID: Chevron 9-1851, 451 Hegenberg

Sample Descript: MW3

Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9510E35-04

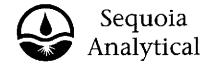
Sampled: 10/17/95 Received: 10/19/95

Analyzed: 10/21/95 Reported: 11/27/95

QC Batch Number: GC102095BTEX21A

Instrument ID: GCHP21

Attention: Argy Leyton


Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 75

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G

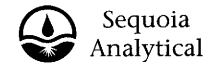
Client Proj. ID: Chevron 9-1851, 451 Hegenberg

Sampled: 10/17/95 Received: 10/19/95

Dublin, CA 94568

Sample Descript: MW3 Matrix: LIQUID Analysis Method: EPA 8240

Attention: Argy Leyton Lab Number: 9510E35-04


Analyzed: 10/24/95 Reported: 11/27/95

QC Batch Number: MS1023958240H6A

Instrument ID: H6

Volatile Organics (EPA 8240)

Analyte ●	Detection Limit ug/L	Sample Results ug/L
Acetone	10	N.D.
Benzene	2.0	N.D.
Bromodichloromethane	2.0	N.D.
Bromoform	2.0	. N.D.
Bromomethane	2.0	N.D.
2-Butanone	10	N.D.
- Carbon distince	2.0	N.D.
Carbon tetrachloride	2.0	N.D.
Chlorobenzene	2.0	N.D.
Chloroethane	2.0	N.D.
2-Chloroethyl vinyl ether	10	N.D.
Chloroform	2.0	Ŋ.D.
Chloromethane	2.0	Ŋ.D.
 Dibromochloromethane 	2.0	Ŋ.D.
1,1-Dichloroethane	2.0	Ŋ.D.
1,2-Dichloroethane	2.0	Ŋ.D.
1,1-Dichloroethene	2.0	Ŋ.D.
cis-1,2-Dichloroethene	2.0	N.D.
trans-1,2-Dichloroethene	2.0	Ŋ.D.
1,2-Dichloropropane	2.0	N.D.
cis-1,3-Dichloropropene	2.0	N.D.
trans-1,3-Dichloropropene	2.0	N.D.
Ethylbenzene	2.0	N.D.
2-Hexanone	10	N.D.
Methylene chloride	5.0	N.D.
4-Methyl-2-pentanone	10	N.D.
Styrene	2.0	N.D.
 1,1,2,2-Tetrachloroethane 	2.0	N.D.
Tetrachloroethene	2.0	N.D.
Toluene	2.0	N.D.
1,1,1-Trichloroethane	2.0	N.D.
1,1,2-Trichloroethane	2.0	N.D.
Trichloroethene	2.0	N.D.
Trichlorofluoromethane	2.0	N.D.
Vinyl acetate	5.0	N.D.
Vinyl chloride	2.0	N.D.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

Attention: Argy Leyton

Gettler Ryan/Geostrategies Client Proj. ID: Chevron 9-1851, 451 Hegenberg S

Sample Descript: MW3

Matrix: LIQUID Analysis Method: EPA 8240 Lab Number: 9510E35-04 Sampled: 10/17/95 Received: 10/19/95

Analyzed: 10/24/95 Reported: 11/27/95

QC Batch Number: MS1023958240H6A


Instrument ID: H6

Detection Limit Sample Results Analyte ug/L ug/L 2.0 N.D. **Total Xylenes Control Limits %** % Recovery Surrogates 1,2-Dichloroethane-d4 76 114 97 88 110 102 Toluene-d8 86 115 100 4-Bromofluorobenzene

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite G Dublin, CA 94568

evron 9-1851, 451 Hegenberg Sampled: 10/17/95 Client Proj. ID: Chevron 9-1851, 451 Hegenberg

Sample Descript: MW3

Matrix: LIQUID

Analysis Method: EPA 8015 Mod Lab Number: 9510E35-04

Received: 10/19/95

Analyzed: 10/23/95 Reported: 11/27/95

QC Batch Number: GC101995ISHSHSA

Instrument ID: GCV-01

Attention: Argy Leyton

Industrial Solvents

Analyte	De	tection Limit mg/L	5	Sample Results mg/L
Acetone	******	-		
Acetonitrile		-		
Benzene		-		
iso-Butanol	***************************************	-		
n-Butanol		-		
sec-Butanol		-		. -
t-Butanol		-		
Carbon tetrachloride		-		. -
Chloroform		-		
Cyclohexane	************	-		
1,2-Dichloroethane	************	-		
t-1,2-Dichloroethene		-	,	
Ethanol		-		<u>-</u>
Ethyl acetate		-		
Ethyl benzene	* * * * * * * * * * * * * * * * * * * *	-		
Ethýl ether	**********	-		<u>-</u>
Freon 113		-		
Hexane		-		
Methanol		1.0		N.D.
Methyl ethyl ketone		0.20		N.D.
Methyl isobutyl ketone		-		
Methylene chloride		•		_
iso-Octane		-		
iso-Propanol	***************************************	-		
π-Propanol	***************************************			<u>.</u>
n-Propyl benzene		-		
Tetrachloroethylene		-		
Tetrahydrofuran		-		
1,1,1-Trichloroethane		-		
Trichloroethylene		_		_
Toluene		_		· -
m-Xylene	***************************************	-	***************************************	_
o-Xylene		-		<u>-</u>
p-Xylene		-		
) Summantan	0	ntrallimita o/	9/	Popovomi
Surrogates		ntrol Limits %		Recovery
Pentanol RTX 200	55		157	102

57 170 114 Pentanol DBWAX

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

6747 Sierra Court Suite G

Client Proj. ID: Chevron 9-1851, 451 Hegenberg Sampled: 10/17/95

Dublin, CA 94568

Sample Descript: MW4 Matrix: LIQUID

Received: 10/19/95

Attention: Argy Leyton

Analysis Method: 8015Mod/8020 Lab Number: 9510E35-05

Analyzed: 10/23/95 Reported: 11/27/95

QC Batch Number: GC102395BTEX02A

Instrument ID: GCHP02

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	125 1.2 1.2 1.2 1.2	N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70 130	% Recovery 78

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies
6747 Sierra Court Suite G Dublin, CA 94568 Attention: Argy Leyton

Client Proj. ID: Chevron 9-1851, 451 Hegenberg

Received: 10/19/95

Lab Proj. ID: 9510E35

Reported: 11/27/95

LABORATORY NARRATIVE

For sample: #3 (TPHDW) #5 (TPHGBW)

the detection limit was raised by a factor of

2.5

SEQUOIA ANALYTICAL

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-960° (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568 Attention: Argy Leyton

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Work Order #:

9510E35 -01, 02, 04

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes
			Benzene	* .
QC Batch#:	GC102095BTEX21A	GC102095BTEX21A	GC102095BTEX21A	GC102095BTEX21A
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030
Analyst:	D. Jirsa	D. Jirsa	D. Jirsa	D. Jirsa
MS/MSD #:		9510A0602	9510A0602	9510A0602
Sample Conc.:		N.D.	N.D.	N.D.
Prepared Date:		10/20/95	10/20/95	10/20/95
Analyzed Date:		10/20/95	10/20/95	10/20/95
Instrument I.D.#:	•	GCHP21	GCHP21	GCHP21
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L
Result:	9.3	8.8	8.6	26
MS % Recovery:	93	88	86	87
Dup. Result:	9.2	8.9	8.9	27
MSD % Recov.:		89	89	90
RPD:	1.1	1.1	3.4	3.8
RPD Limit:	0-50	0-50	0-50	0-50

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

MS/MSD LCS	71-133	72-128	72-130	71-120	
Control Limits					

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568

Attention: Argy Leyton

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Work Order #:

9510E35-03,05

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl Benzene	Xylenes	
QC Batch#:	GC102395BTEX02A	GC102395BTEX02A	GC102395BTEX02A	GC102395BTEX02A	
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	
Analyst:	B. Sullivan	B. Sullivan	B. Sullivan	B. Sullivan	
MS/MSD #:	9510A0604	9510A0604	9510A0604	9510A0604	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	10/23/95	10/23/95	10/23/95	10/23/95	
Analyzed Date:	10/23/95	10/23/95	10/23/95	10/23/95	
Instrument I.D.#:	GCHP2	GCHP2	GCHP2	GCHP2	
Conc. Spiked:	10 µg/L	10 μg/L	10 μg/L	30 μg/L	
Result:	7.8	7.6	7.6	23	
MS % Recovery:	78	76	76	77	
Dup. Result:	7.6	7.7	7.6	23	
MSD % Recov.:	76	77	76	77	
RPD:	2.6	1.3	0.0	0.0	
RPD Limit:	0-50	0-50	0-50	0-50	

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

MS/MSD				•	
LCS	71-133	72-128	72-130	71-120	
Control Limits					

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568 Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Attention: Argy Leyton

Work Order #:

9510E35-03

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte: Total Recoverable

Petroleum Hydrocarbons

QC Batch#: OP1020955520EXA
Analy. Method: SM 5520BF MOD
Prep. Method: SPE

Analyst:

C. Garde

MS/MSD #:

BLK102095

Sample Conc.:

N.D.

Prepared Date:

10/20/95

Analyzed Date: Instrument I.D.#:

10/20/95

Conc. Spiked:

MANUAL 10 mg/L

Result:

9.1

MS % Recovery:

91

Dup. Result:

11

MSD % Recov.:

110

RPD:

19

RPD Limit:

0-50

LCS #:

Prepared Date:

Analyzed Date:

Instrument I.D.#:

Conc. Spiked:

LCS Result: LCS % Recov.:

MS/MSD

LCS

70-110

Control Limits

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Mike Gregory Project Manager

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

9510E35.GET <3>

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Attention: Argy Leyton

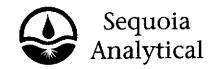
Work Order #:

9510E35-03

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT


Analyte:		Trichloro-	Chloro-	
	ethene	ethene	benzene	٠.
	GC102395801008A	GC102395801008A	GC102395801008A	
Analy. Method:		EPA 8010	EPA 8010	
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	
Analyst:	T. Costello	T. Costello	T. Costello	
MS/MSD #:		951082101	951082101	
Sample Conc.:		N.D.	N.D.	
Prepared Date:		10/23/95	10/23/95	
Analyzed Date:		10/23/95	10/23/95	
nstrument I.D.#:		GCHP8	GCHP8	
Conc. Spiked:		25 μg/L	25 μg/L	
Result:	28	23	24	
MS % Recovery:	=	92	96	
Dup. Result:	27	23	24	
MSD % Recov.:		92	96	·
RPD:	3.6	0.0	0.0	
RPD Limit:		0-50	0-50	
LCS #:	BLK102395	BLK102395	BLK102395	
Prepared Date:	10/23/95	10/23/95	10/23/95	
Analyzed Date:		10/23/95	10/23/95	
Instrument I.D.#:		GCHP8	GCHP8	
Conc. Spiked:		25 μg/L	25 μg/L	
LCS Result:	27	23	25	
LCS % Recov.:		92	100	
MS/MSD LCS Control Limits	28-167	35-146	38-150	· .

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Attention: Argy Leyton

Work Order #:

9510E35-03

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte:

Diesel

QC Batch#: GC1023950HBPEXZ Analy, Method: Prep. Method:

EPA 8015M

Analyst:

EPA 3520

MS/MSD #:

J. Minkel 9510E3503

Sample Conc.: Prepared Date:

1600 10/23/95

Analyzed Date:

10/24/95

Instrument I.D.#:

GCHP4A

Conc. Spiked:

1000 µg/L

Result:

3200

MS % Recovery:

160

Dup. Result:

2600

MSD % Recov.:

100

RPD:

21

RPD Limit:

0-50

LCS #:

BLK102395

Prepared Date:

10/23/95

Analyzed Date:

10/24/95

Instrument I.D.#:

GCHP5A

Conc. Spiked:

 $1000 \, \mu g/L$

LCS Result:

1100

LCS % Recov.:

110

MS/MSD

LCS

38-122

Control Limits

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Attention: Argy Leyton

Work Order #: 9510E35-04 Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Acetone	MIBK	Tetra Hydrofuran	1,1,1-TCA	
QC Batch#: Analy. Method: Prep. Method:		GC101995ISHSHSA ISHS HS	GC101995ISHSHSA ISHS HS	GC101995ISHSHSA ISHS HS	
Analyst: MS/MSD #:		T. Tran 951023602	T. Tran 951023602	T. Tran 951023602	
Sample Conc.: Prepared Date:	N.D.	N.D. 10/19/95	N.D. 10/19/95	N.D. 10/19/95	
Analyzed Date:	10/19/95	10/19/95 GCV1	10/19/95 GCV1	10/19/95 GCV1	
Conc. Spiked:		1.0 mg/L	2.0 mg/L	1.0 mg/L	
Result:	_	1.2	2.4	0.85	
MS % Recovery:	120	120	120	85	
Dup. Result: MSD % Recov.:		1.2 120	2.5 125	0.96 96	
RPD: RPD Limit:		0.0 0-50	4.1 0-50	12 0-50	

LCS #:

Prepared Date: **Analyzed Date:** Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

	MS/MSD LCS	50-150	50-150	50-150	50-150	
1	Control Limits					

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Attention: Argy Leyton

Work Order #:

9510E35-04

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte:	TCE	p-Xylene	
QC Batch#:	GC101995ISHSHSA	GC101995ISHSHSA	
Analy. Method:	ISHS	ISHS	·
Prep. Method:	HS	HS	
Analyst:	T. Tran	T. Tran	
MS/MSD #:		951023602	
Sample Conc.:		N.D.	
Prepared Date:		10/19/95	
Analyzed Date:		10/19/95	
Instrument I.D.#:		GCV1	
Conc. Spiked:		0.20 mg/L	
Result:	0.89	0.18	
MS % Recovery:	89	90	
Dup. Result:	0.99	0.19	
MSD % Recov.:		95	
RPD:	11	5.4	

LCS #:

RPD Limit:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

MS/MSD LCS **Control Limits**

50-150

0-50

50-150

0-50

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste G Dublin, CA 94568

Client Project ID:

Chevron 9-1851, 451 Hegenberg

Matrix:

Liquid

Attention: Argy Leyton

Work Order #:

9510E35-04

Reported:

Nov 6, 1995

QUALITY CONTROL DATA REPORT

Analyte:	1,1-Dichloroethene	Trichloroethene	Benzene	Toluene	Chloro- benzene
QC Batch#: Analy. Method: Prep. Method:	M\$1023958240H6A EPA 8240 N.A.	MS1023958240H6A EPA 8240 N.A.	MS1023958240H6A EPA 8240 N.A.	MS1023958240H6A EPA 8240 N.A.	MS1023958240H6A EPA 8240 N.A.
Frep. Metriou.	N.A.	111.72	13.74		
Analyst: MS/MSD #:	L. Duong 9510E3801	L. Duong 9510E3801	L. Duong 9510E3801	L. Duong 9510E3801	L. Duong 9510E3801
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Prepared Date:	N.A.	N.A.	N.A.	N.A.	N.A.
Analyzed Date:	10/23/95	10/23/95	10/23/95	10/23/95	10/23/95
Instrument I.D.#:	H6	H6	H6	H6	H6
Conc. Spiked:	50 μg/L	50 μg/L	50 μg/L	50 μg/L	50 μg/L
Result:	50	50	50	53	50
MS % Recovery:	100	100	100	106	100
Dup. Result:	49	48	49	49	47
MSD % Recov.:	98	96	98	98	94
RPD:	2.0	4.1	2.0	7.8	6.2
RPD Limit:	0-50	0-50	0- 50	0-50	0-50

LCS #:

Prepared Date: Analyzed Date: Instrument I.D.#: Conc. Spiked:

> LCS Result: LCS % Recov.:

MS/MSD LCS Control Limits	DL-234	71-157	37-151	47-150	37-160
I CONTOLLIMIS					

SEQUOIA ANALYTICAL

Mike Gregory **Project Manager** Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

	,					coc to জ্-	タゲノ							Contact	(Name)		M	-of- ark	Mill	4/	
Chevron U.S	.A. Inc.	1	Faoil	ity Addres	• <u>45</u>	He gen	berra	<u> </u>	4			-					<u>لا</u> (د	742 -	8134		
P.O. BOX 5		h ^			Gettle	>r-kvan									es Numb			374	148	O	
San Ramon, C		۱ ،	ddress	6747	Sierra	Ct, Ste	J, D	ublin	945	68		_ s	amples	Collecte	d by (No	me)	_6	<u>uada</u>	<u>. lu pe</u>	Sand	he.
FAX (415)84	2-9091	P	roject C	ontact (H	p(P)	Argy Ley 51-7555	ton/ ₅	BAZZ 10	ARA	<u>, 200</u>	MINSK	د c		Date_	\overline{A}		10-	<u>- /7 - '</u>	<u>خر و</u>	·	
		<u> </u>		(P	hone) 5	1-/555	(Fax	Number	.) 55	1-/00	0	s	ignature.				cere	1~	Z	<u> </u>	
			<u> </u>							1			Analyse	To B	e Perfor	med [·	DO NO.	
	ber	Containers	Air Charcoal	Grab Composite Discrete		gg.	_	ا س			rpour	otics	<u>₹</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_]				TB-LB	ANALYSIS
<u>ئو</u>	Sample Number		ע≻	682 682		P	و اگ	9.80 9.00		96 06	dec	Aron	040	ğ	23	9					
Nen	eldma	יל פ	Soll Water	1 1 I		و م	, se	++	5) 5)	90 0	di (side	• <u>1</u> q (2)	96. ()	45(5)	7.70	e thano				951	OE35
Sample Number	ά g	Number	Matrix S = S	15 8 8	€EE	Sample Precervation	iced (Yes	BTEX + TPH GAS (8020 + 8015)	TPH Diesel (8015)	Oil and Grease (5520)	Purgeable Halocarbons (8010)	Purgeable Aromatica (8020)	Purgedble Organica (8240) */ MEK	Extractable Organics (8270)	Metals Cd,Cr,Pb,Zn,Ni (ICAP or AA)	Me		-		1	narks
TB-LB	1	2	W	6		Itcl	У	1												Ana	lyze iż
	2	3			1206	HCL	1												<u> </u>	0	rder
4w-2	3	9			1373	HLL/none Hz Soy				-	•								<u> </u>		
MW-3	4	9			1 -	HCR/none	I I						•			•			_		
MW-4	5	3	V	V	1445	1 1	V	V	<u></u>						<u> </u>						$\overline{\Psi}$
						•		-		-			<u> </u>								
										1.							-		-		er 2 11
					-			1	<u> </u>				 	 	<u> </u>		-				
				 				-													
		<u> </u>		 																	
																,	<u> </u>				
					<u></u>	4															
Relinquished By	n 11	1	1	anization		Date/Time /80	٦ ا	oelved E	y (\$166	oture)		•	Organiza		1	o/Time		Turn		me (Circle (4 Hre.	Choloe)
Relinquished By	(Signature)	1-		panization		/0-/7-95 Date/Time		colygo E	y (slan	ature	7	1	Organiza	tlen	Dat	e/Ilme			44	B Hre.	1/8/2,
				6/1	_ ا					1			Sel	<u> </u>	10/	99	4٥,			Days Days	10 /
Reilnquielled By	(Signature)		Orr	onlantion		Date/filme (0/19/12)	Re	oleved	واجرا الأ	Dalogy !	y (Sign	ature)				o/Timo 19/92		ا سبد د.	A0 0	ontracted	$\searrow V$