Detterman, Mark, Env. Health

From: Detterman, Mark, Env. Health
Sent: Thursday, May 16, 2013 1:08 PM

To: 'Bob Clark-Riddell'

Cc: Michael Collings; grewalngns@yahoo.com Subject: RE: ACEH Correspondence for RO464

Please see Geotracker.

Mark Detterman

Senior Hazardous Materials Specialist, PG, CEG

Alameda County Environmental Health

1131 Harbor Bay Parkway Alameda, CA 94502 Direct: 510.567.6876 Fax: 510.337.9335

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Bob Clark-Riddell [mailto:briddell@pangeaenv.com]

Sent: Thursday, May 16, 2013 12:06 PM **To:** Detterman, Mark, Env. Health

Cc: Michael Collings; grewalngns@yahoo.com **Subject:** FW: ACEH Correspondence for RO464

Mark,

The landowner is providing his information in response to your letter. Meanwhile, the landowner is disposing of shallow soil at the site, which he removed to provide better support for his new building. The landfill rep (Mike Collings of Pacific States) is requesting information about closure status for the property.

Please confirm via email (reply all) that the ACEH is in the process of closing this case. An expeditious reply would be appreciated, since soil disposal has put the project on hold. Thank you.

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 510.435.8664

From: dehloptoxic, Env. Health [mailto:deh.loptoxic@acgov.org]

Sent: Tuesday, May 14, 2013 12:57 PM

To: ESPINO@CHEVRON.COM; MGOMEZ@OAKLANDNET.COM; GREWALNGNS@YAHOO.COM

Cc: Lee, Nathan; Bob Clark-Riddell; Griffin, Leroy; Drogos, Donna, Env. Health; Roe, Dilan, Env. Health; Detterman,

Mark, Env. Health

Subject: ACEH Correspondence for RO464

Dear Interested Parties,

Attached is Alameda County Environmental Health's (ACEH) correspondence for your case, RO0000464.

Please add our e-mail address to your address book to prevent future e-mails from being filtered as spam.

Sincerely,

ACEH

Detterman, Mark, Env. Health

From: Detterman, Mark, Env. Health
Sent: Thursday, May 16, 2013 3:41 PM

To: 'Bob Clark-Riddell'; dharlan@oaklandnet.com; tlow@oaklandnet.com;

cburns@oaklandnet.com grewalngns@yahoo.com RE: 451 Hegenberger

Please note that quite significant concentrations of very shallow gasoline contamination will remain at the site. These concentrations do not met the Low Threat Closure Policy, but appear to be limited to beneath, or in the vicinity of, the dispensers, and thus can be managed through a site management plan (SMP). The SMP will likely require that with any construction at the site, ACEH is to be notified, and that city approved redevelopment plans be reviewed and approved at ACEH.

Mark Detterman
Senior Hazardous Materials Specialist, PG, CEG
Alameda County Environmental Health
1131 Harbor Bay Parkway
Alameda, CA 94502
Direct: 510.567.6876

Fax: 510.337.9335

Cc:

Subject:

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Bob Clark-Riddell [mailto:briddell@pangeaenv.com]

Sent: Thursday, May 16, 2013 1:57 PM

To: dharlan@oaklandnet.com; tlow@oaklandnet.com; cburns@oaklandnet.com; cburns@oaklandnet.com

Cc: grewalngns@yahoo.com; Detterman, Mark, Env. Health

Subject: 451 Hegenberger

Hello City,

The property owner (Navdeep) requested I forward you this information about the soil being used for backfill and disposed offsite.

Last fall Chevron overexcavated TPH impact adjacent the former UST behind the current building. The excavation extent was based on borings performed by Chevron. Having removed all significant impact, ACEH plans to close the case. I have copied this email to the ACEH caseworker.

For the new building location, Navdeep had shallow soil re-graded to mix in coarse soil with the bay mud to provide a better base for the future building, and to offhaul excess (about 300 yards) soil to a local landfill. The landfill required two discrete samples from the stockpiled soil. Analytic results for these discrete samples are attached and indicate no VOCs, no SVOCs, no pesticides, metals within background, and low TPH levels in one of the two samples. The maximum TPH detected as ND mg/kg TPHg, 7.6 mg/kg TPHd, and 41 mg/kg TPHmo. Note that TPHd and TPHmo are not volatile and do not pose a vapor intrusion concern. Also note that the ACEH closed the case with residual hydrocarbons so they are not concerned about these TPH levels.

Please contact me if you have any additional questions.

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 510.435.8664 phone 510.836.3709 fax

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: 451 Helen	Date Sampled: 05	5/13/13
1710 Franklin Street, Ste. 200		Date Received: 05	5/13/13
1770 Hankim Street, Sec. 200	Client Contact: Bob Clark-Riddell	Date Reported: 05	5/15/13
Oakland, CA 94612	Client P.O.:	Date Completed: 05	5/15/13

WorkOrder: 1305396

May 15, 2013

Dear Bob:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **451 Helen**,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 \ 2053

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269

	CHAIN OF	CUST	ODY	RECO	RD
TURN	CHAIN OF AROUND TIME			X) [

RUSH 24 HR

72 HR 5 DAY

eoTracker	EDF		PDF	Excel	Write O	n (DW)	
		-			ant and 6 I		

Analysis Request Other Comments													-							9	Circ			11/1/	C 13	CILI	icit		d "J" fla	B 10	required
Company: As At	Report To: Bob Cutok-	RIDINE	U B	ill To	: 6	NO)											A	naly	sis l	Req	uest							Other		Comments
E-Mail: Tele: 610) 435 -8664 Fax: () Project Location: 451 Material (1000 (000)) Sampler Signature: 451 Material	Company: ANGEN														6					SLS											Filter
E-Mail: Tele: 610) 435 -8664 Fax: () Project Location: 451 Wetenbertlen (OANCAM) Sampler Signature: E-Mail: Froject (1881) W/ (5108 110 6020) W/ (178 6020) W/ (178													TBE		B&I					gen		6							2		
Tele: 610) 435 -8604 Fax: () Project #: Project Name: 457 Willy Project Location: 451 William Project Location: 451 William			E	-Mai	l:								N.		3 0 E					S						(0)	6	- 1	1		
Project #: Project Name: 421 MARCHAN Sampler Signature: PA 602 / 8 / 6010 0.08 / 601	Tele: 610) 435-866	4)							1015)		552	0	(\$	21)		ors/					_	/ 602	602		5		
Project Location: 42 Mctanterfor COANCAMD 111. A 121 Living 12 Links A 12 Lin	Project #:	/	P	rojec	t Nam	lame: 457 HELEN						999	418.	00/	/ 80	n	rock		cide			NAS	010	/010		_		Yes / No			
Sampler Signature:	Project Location: 457	When	Benter	7L ((DAK	to	P						8021		se (1	oms ((H)	602	icide	Y: A	3	lerbi	3	3	s/P	8/6	9/8	020)	7		
5 5 5 5 5 5 5 5 5 5	Sampler Signature:												027		Srea	arbo	8021	EPA	Pest	NE	ticid	CE	No	SVO	PAH	200.	2007	9/0	1		
SAMPLING S MATRIX METHOD S S S S S S S S S S S S S S S S S S S		SAMP	PLING		S.	1	MAT	TRIX					as (6	6		droc	110/	7.	5	3,80	P Pes	idic	093	200	10 (1	0.77	1.77	109/	7		
SAMI PILO S S S S S S S S S S S S S S S S S S S				LS.	inel				-	PRE	SER	VED	Is G	8015	iO .	a Hy	1/80	ON	808	PC	2	(Ac	1/83	8 / 82	/ 83	\$ (20	(20	8.00	7		
Containers HCL HNO3 Water Soil Soil HCL HNO3 Soil HCL HNO3 Soil HCL HO3 Soil HCL HO3 Soil HCL HO3 Soil HCL				ine	nta								Hd.	esel (leun	oleun	109/	LEX	/809	8082	8141	8151	1624	/ 625	SIM	fetals	etals	7 / 20	40	1	
Name Date Time at 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Date	Time	nts	ပိ	er		90	13		3 6	2 2	8	s Di	Petr	Petr	02.2	8 / B	/508	/80	1 100	115/	24.2	25.2	8270	17 N	SM	200.	7		
Mater Soli # Conta Petro Coher Fero Soli # Conta Petro Coher Total Petro Coher Fero Soli # Conta Petro Coher Fero Soli #					уре	Vat	Ho .	lud bud	th	CE	S Z	1	LEX	PH a	otal	otal	PA 5	TBE	PA S	PA 6	PA S	PA S	PA S	PA S	V.	AM	UFT	ead (7		
				#	-	>	S.	N N	9	-	H H	0	20	H	Ŧ	T	100	×	(64)	(m)	ω	(m)	(a)	(M)	M	0	7	7	·	_	
5P-2 12:25 1 TMP X X X X X X X X X X X X X X X X X X X	50-1		12:25	(-	TVBE	- 1	X			X									X			1	\prec	X		X					
50-2	50-2		(2:30	1	1		1			T									,				\times			\times			X		
																						1								\top	100,100
										-	+	+	+						-											+	
				-				-		-	-	+	-	-					-		-	-	-							+	
													_																	_	
												+																		+	
		-	-		-			-	\vdash		-	+	-	-	-		_		-				-	-			-			-	
						_		-				+	-	-																-	
		1972																													
			-							- 3																	-	-			717
											-	1	+			1															
Relinquished By: 1 Date: Time: Received By: 1CE/10 COMMENTS:	Relinguished By: 4	Dates	Times	Dage	olamit D	_	7		1				10	TF /40	>	4	_	_	_		_	_	_	_	_		CO	MAI	ENTS.	_	
GOOD CONDITION	(RA) 11 Jul	1.1		I Kee	pareu B	y.	1			_	7	/	G	OOD	CO	TIUN	ION	1									co	IVIIVI	ENIS:		
THEAD COLOR ADDRESS			Time	D	OI P	1	/		_	_	_	_	H	EAD	SPA	CE A	BSE	TMS		_											
Relinguished By: Datey Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB	Kennquismed By:	1/2/12	15 B	Kec	erved B	y:		1	1				D	ECH PPR	LOR)PRI	ATE	CO	IN L	INF	RS	_										
					11	es	/		10	1		_								_		-									
Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER	Kennquished By:	Date:	Time:	Rece	eiven B	ry:			,	V							V	048	0	&C	MI	TAI	9	OT	HED						
PRESERVATION pH<2							P	RESE	RVA	TIO		Uno	0	œu			20	011	EER			11.									

McCampbell Analytical, Inc.

FAX: (510) 836-3709

□WaterTrax

WriteOn

CHAIN-OF-CUSTODY RECORD

✓ Email

□HardCopy

EQuIS

Page 1 of 1

□ J-flag

☐ ThirdParty

Prepared by: Zoraida Cortez

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 836-3700

WorkOrder: 1305396 ClientCode: PEO □ Excel

	_		_		_		_	_
Report to:				Bill to:			Requested TAT:	2 days
Bob Clark-Riddell	Email:	BRiddell@pangea	env.com	Bob Clark-	Riddell			
Pangea Environmental Svcs., Inc.	cc:			Pangea Er	nvironmental Sv	cs., Inc.		
1710 Franklin Street, Ste. 200	PO:			1710 Frank	klin Street, Ste.	200	Date Received:	05/13/2013
Oakland, CA 94612	ProjectN	o: 451 Helen		Oakland, C	CA 94612		Date Printed:	05/13/2013

□EDF

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1305396-001	SP-1	Soil	5/13/2013 12:25		Α	Α	Α	Α	Α							
1305396-002	SP-2	Soil	5/13/2013 12:30			Α		Α	Α							

Test Legend:

1 8081_S	2 8260B_S	3 8270D_S	4 CAM17MS_S	5 G-MBTEX_S
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

		Date at	id Tillie Received. 3/13/2013	3:17:07 PW
		LogIn F	Reviewed by:	Zoraida Cortez
		Carrier:	Rob Pringle (MAI Courier)	
hain of Cu	stody (CC	C) Informati	<u>on</u>	
Yes	✓	No 🗌		
Yes	✓	No 🗌		
Yes	✓	No 🗌		
Yes	✓	No 🗌		
Yes	✓	No 🗌		
Yes		No 🗸		
<u>Sample</u>	Receipt li	nformation		
Yes		No 🗌	NA 🗹	
Yes	✓	No 🗌		
Yes	✓	No 🗌		
Yes	✓	No 🗌		
Yes	✓	No 🗆		
reservation	and Hold	d Time (HT) I	nformation	
Yes	✓	No 🗌		
Cooler	Temp:	3.4°C	NA 🗆	
Yes		No 🗌	No VOA vials submitted 🗹	
Yes	✓	No 🗌		
Yes		No 🗆	NA 🗹	
Yes	✓	No 🗌		
ype: WET	rice)			
	Yes	Yes Yes Yes Yes Yes Yes Yes Yes	LogIn F Carrier: hain of Custody (COC) Information Yes No No No Yes No No No Yes No No No Yes No No No No No No No No No N	LogIn Reviewed by: Carrier: Rob Pringle (MAI Courier)

Pangea Environmental Svcs., Inc.	Client Project ID: 451 Helen	Date Sampled:	05/13/13
1710 Franklin Street, Ste. 200		Date Received:	05/13/13
1710 Hankim Street, Stc. 200	Client Contact: Bob Clark-Riddell	Date Extracted:	05/13/13
Oakland, CA 94612	Client P.O.:	Date Analyzed:	05/14/13

Organochlorine Pesticides by GC-ECD (8080 Basic Target List)*

Extraction Method: SW3550B	O	alytical Method: SW8081A	Work Order: 13	05396
Lab	ID 1305396-001A		5 .	T
Client	ID SP-1		Reporting DF	
Mat	rix S			
]	OF 2		S	W
Compound		Concentration	mg/kg	μg/L
Aldrin	ND<0.0020		0.001	NA
a-BHC	ND<0.0020		0.001	NA
b-BHC	ND<0.0020		0.001	NA
d-BHC	ND<0.0020		0.001	NA
g-BHC	ND<0.0020		0.001	NA
Chlordane (Technical)	ND<0.050		0.025	NA
a-Chlordane	ND<0.0020		0.001	NA
g-Chlordane	ND<0.0020		0.001	NA
p,p-DDD	ND<0.0020		0.001	NA
p,p-DDE	ND<0.0020		0.001	NA
p,p-DDT	ND<0.0020		0.001	NA
Dieldrin	ND<0.0020		0.001	NA
Endosulfan I	ND<0.0020		0.001	NA
Endosulfan II	ND<0.0020		0.001	NA
Endosulfan sulfate	ND<0.0020		0.001	NA
Endrin	ND<0.0020		0.001	NA
Endrin aldehyde	ND<0.0020		0.001	NA
Endrin ketone	ND<0.0020		0.001	NA
Heptachlor	ND<0.0020		0.001	NA
Heptachlor epoxide	ND<0.0020		0.001	NA
Hexachlorobenzene	ND<0.020		0.01	NA
Hexachlorocyclopentadiene	ND<0.040		0.02	NA
Methoxychlor	ND<0.0020		0.001	NA
Toxaphene	ND<0.10		0.05	NA
	;	Surrogate Recoveries (%)		
%SS:	86			

Comments	as					
* water samples in µg/L, soil/sludge/solid sa	mples in mg/kg, wip	e samples in μg/wipe,	filter samples in µg/	filter, product/oil/non	-aqueous liquid samples and	d
all TCLP & SPLP extracts are reported in ma	σ/I					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor.

surrogate diluted out of range or surrogate coelutes with another peak/sample contains surrogate.

a3) sample diluted due to high organic content.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: 451 Helen	Date Sampled: 05/13/13
1710 Franklin Street Sta 200		Date Received: 05/13/13
1710 Franklin Street, Ste. 200	Client Contact: Bob Clark-Riddell	Date Extracted: 05/13/13
Oakland, CA 94612	Client P.O.:	Date Analyzed: 05/13/13

Volatile Organics by P&T and GC/MS (Basic Target List)*								
Analytical Method: SW8260B Work Order: 1305396								
	1305396-001A							
			SP-1					
			Soil					
Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit		
ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005		
ND	1.0	0.005	Bromobenzene	ND	1.0	0.005		
ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005		
ND	1.0	0.005	Bromomethane	ND	1.0	0.005		
ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05		
ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005		
ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005		
ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005		
ND	1.0	0.005	Chloroform	ND	1.0	0.005		
ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005		
ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005		
ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004		
ND			ND	1.0	0.005			
ND	1.0	1.0 0.005 1,4-Dichlorobenzene		ND	1.0	0.005		
ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005		
ND	1.0	1.0 0.004 1.1-Dichloroethene		ND	1.0	0.005		
ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005		
ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005		
ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005		
ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005		
ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005		
ND	1.0	0.005	Freon 113	ND	1.0	0.1		
ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005		
ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005		
ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005		
ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005		
ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005		
ND	1.0	0.005	i	ND	1.0	0.005		
ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005		
ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005		
ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005		
ND	1.0	0.005	Trichloroethene	ND	1.0	0.005		
	1.0	0.005	1	ND	1.0	0.005		
ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005		
ND	1.0	0.005	, , , , , , , , , , , , , , , , , , ,	ND	1.0	0.005		
	Concentration * ND	Concentration * DF ND	Concentration * DF Reporting Limit	Analytical Method: SW8260B	Analytical Method: SW8260B SW64 Order: 1305	SW8260B		

	Surrogate R	ecoveries (%)	
%SS1:	110	%SS2:	114
%SS3:	97		

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Pangea Environmental Svcs., Inc.	Client Project ID: 451 Helen	Date Sampled: 05/13/13
1710 Franklin Street Sta 200		Date Received: 05/13/13
1710 Franklin Street, Ste. 200	Client Contact: Bob Clark-Riddell	Date Extracted: 05/13/13
Oakland, CA 94612	Client P.O.:	Date Analyzed: 05/13/13

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1305396

Lab ID		1305396-002A					
Client ID		SP-2					
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total	ND	1.0	0.005

	Surrogate R	ecoveries (%)	
%SS1:	115	%SS2:	110
%SS3:	97		

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Pangea Environmental Svcs., Inc. Client Project ID: 451 Helen Date Sampled: 05/13/13 05/13/13 Date Received: 1710 Franklin Street, Ste. 200 Client Contact: Bob Clark-Riddell Date Extracted: 05/14/13 Oakland, CA 94612 Client P.O.: Date Analyzed: 05/14/13

Semi-Volatile Organics by GC/MS (Basic Target List)*

	Semi-Volatile	Orgai	nics by (GC/MS (Basic Target List)*	•		
Extraction Method: SW3550B	Analytical Method			thod: SW8270C	Work Ore	der: 130	05396
Lab ID	Lab ID 1305396-001A						
Client ID				SP-1			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND<0.50	2.0	0.25	Acenaphthylene	ND<0.50	2.0	0.25
Acetochlor	ND<0.50	2.0	0.25	Anthracene	ND<0.50	2.0	0.25
Benzidine	ND<2.6	2.0	1.3	Benzoic Acid	ND<5.0	2.0	2.5
Benzo (a) anthracene	ND<0.50	2.0	0.25	Benzo (b) fluoranthene	ND<0.50	2.0	0.25
Benzo (k) fluoranthene	ND<0.50	2.0	0.25	Benzo (g,h,i) perylene	ND<0.50	2.0	0.25
Benzo (a) pyrene	ND<0.50	2.0	0.25	Benzyl Alcohol	ND<2.6	2.0	1.3
1,1-Biphenyl	ND<0.50	2.0	0.25	Bis (2-chloroethoxy) Methane	ND<0.50	2.0	0.25
Bis (2-chloroethyl) Ether	ND<0.50	2.0	0.25	Bis (2-chloroisopropyl) Ether	ND<0.50	2.0	0.25
Bis (2-ethylhexyl) Phthalate	ND<0.50	2.0	0.25	4-Bromophenyl Phenyl Ether	ND<0.50	2.0	0.25
Butylbenzyl Phthalate	ND<0.50	2.0	0.25	4-Chloroaniline	ND<0.50	2.0	0.25
4-Chloro-3-methylphenol	ND<0.50	2.0	0.25	2-Chloronaphthalene	ND<0.50	2.0	0.25
2-Chlorophenol	ND<0.50	2.0	0.25	4-Chlorophenyl Phenyl Ether	ND<0.50	2.0	0.25
Chrysene	ND<0.50	2.0	0.25	Dibenzo (a,h) anthracene	ND<0.50	2.0	0.25
Dibenzofuran	ND<0.50	2.0	0.25	Di-n-butyl Phthalate	ND<0.50	2.0	0.25
1,2-Dichlorobenzene	ND<0.50	2.0	0.25	1,3-Dichlorobenzene	ND<0.50	2.0	0.25
1.4-Dichlorobenzene	ND<0.50	2.0	0.25	3,3-Dichlorobenzidine	ND<1.0	2.0	0.5
2,4-Dichlorophenol	ND<0.50	2.0	0.25	Diethyl Phthalate	ND<0.50	2.0	0.25
2,4-Dimethylphenol	ND<0.50	2.0	0.25	Dimethyl Phthalate	ND<0.50	2.0	0.25
4,6-Dinitro-2-methylphenol	ND<2.6	2.0	1.3	2,4-Dinitrophenol	ND<13	2.0	6.3
2,4-Dinitrotoluene	ND<0.50	2.0	0.25	2,6-Dinitrotoluene	ND<0.50	2.0	0.25
Di-n-octyl Phthalate	ND<1.0	2.0	0.5	1,2-Diphenylhydrazine	ND<0.50	2.0	0.25
Fluoranthene	ND<0.50	2.0	0.25	Fluorene	ND<0.50	2.0	0.25
Hexachlorobenzene	ND<0.50	2.0	0.25	Hexachlorobutadiene	ND<0.50	2.0	0.25
Hexachlorocyclopentadiene	ND<2.6	2.0	1.3	Hexachloroethane	ND<0.50	2.0	0.25
Indeno (1,2,3-cd) pyrene	ND<0.50	2.0	0.25	Isophorone	ND<0.50	2.0	0.25
2-Methylnaphthalene	ND<0.50	2.0	0.25	2-Methylphenol (o-Cresol)	ND<0.50	2.0	0.25
3 &/or 4-Methylphenol (m,p-Cresol)	ND<0.50	2.0	0.25	Naphthalene	ND<0.50	2.0	0.25
2-Nitroaniline	ND<2.6	2.0	1.3	3-Nitroaniline	ND<2.6	2.0	1.3
4-Nitroaniline	ND<2.6	2.0	1.3	Nitrobenzene	ND<0.50	2.0	0.25
2-Nitrophenol	ND<2.6	2.0	1.3	4-Nitrophenol	ND<2.6	2.0	1.3
N-Nitrosodiphenylamine	ND<0.50	2.0	0.25	N-Nitrosodi-n-propylamine	ND<0.50	2.0	0.25
Pentachlorophenol	ND<2.6	2.0	1.3	Phenanthrene	ND<0.50	2.0	0.25
Phenol	ND<0.50	2.0	0.25	Pyrene	ND<0.50	2.0	0.25
1,2,4-Trichlorobenzene	ND<0.50	2.0	0.25	2,4,5-Trichlorophenol	ND<0.50	2.0	0.25
2,4,6-Trichlorophenol	ND<0.50	2.0	0.25				,
1 2 2	15.55			ecoveries (%)			
%SS1:	84			%SS2:	76		
%SS3:	72			%SS4:	74		
%SS5:	44			%SS6:	91		

Comments: a3

Analyst's Initial

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

HK

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content.

^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 Lab ID Client ID Matrix Extraction Type	Client Co Client P.C C. 1305396-001A SP-1	ntact: Bob Clark D.: AM / CCR 17 Me 1305396-002A SP-2 S	c-Riddell	Date Sampled Date Received Date Extracte Date Analyzed	d 05/13/13 d 05/13/13 d 05/13/13-0	5/14/13 mit for DF =1; not detected
Oakland, CA 94612 Lab ID Client ID Matrix	Client P.C C. 1305396-001A SP-1 S	D.: AM / CCR 17 Me 1305396-002A SP-2		Date Extracte	d 05/13/13 d 05/13/13-0 Reporting Lir ND means	mit for DF =1;
Oakland, CA 94612 Lab ID Client ID Matrix	Client P.C C. 1305396-001A SP-1 S	D.: AM / CCR 17 Me 1305396-002A SP-2			Reporting Lir ND means	mit for DF =1;
Lab ID Client ID Matrix	Client P.C C. 1305396-001A SP-1 S	D.: AM / CCR 17 Me 1305396-002A SP-2			Reporting Lir ND means	mit for DF =1;
Lab ID Client ID Matrix	C. 1305396-001A SP-1 S	AM / CCR 17 Me 1305396-002A SP-2	tals*	Date Analyze	Reporting Lir ND means a	mit for DF =1;
Client ID Matrix	1305396-001A SP-1 S	1305396-002A SP-2	tals*		ND means	
Client ID Matrix	SP-1	SP-2			ND means	
Matrix	S				ND means	
		C			above the re	eporting limit
Extraction Type		S			S	W
	TOTAL	TOTAL			mg/Kg	mg/L
	ICP	Metals, Concenti	ation*			
Analytical Method: SW6020	Extr	raction Method: SW305	0B		Work Order:	1305396
Dilution Factor	1	1			1	1
Antimony	0.60	0.54			0.5	NA
Arsenic	8.8	12			0.5	NA
Barium	240	250			5.0	NA
Beryllium	0.58	ND			0.5	NA
Cadmium	ND	0.38			0.25	NA
Chromium	58	52			0.5	NA
Cobalt	12	11			0.5	NA
Copper	28	22			0.5	NA
Lead	16	11			0.5	NA
Mercury	0.090	0.060			0.05	NA
Molybdenum	0.80	0.57			0.5	NA
Nickel	55	61			0.5	NA
Selenium	ND	ND			0.5	NA
Silver	ND	ND			0.5	NA
Thallium	ND	ND			0.5	NA
Vanadium	55	45			0.5	NA
Zinc	82	59			5.0	NA
%SS:	113	105				

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

Analyst's Initial

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Angela Rydelius, Lab Manager

Page 9 of 17

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269

)	''When Quality Cou	ints"		pbell.com / E-mail: 1				
Pangea Envi	ronmental Svcs., Inc.	Client Project ID:	451 Helen	Date Sample	Date Sampled: 05/13/13			
1710 E 11	g, , g, 200		Date Received: 05/13/13					
1/10 Frankli	in Street, Ste. 200	Client Contact: Bo	ob Clark-Riddell	Date Extract	ed 05	5/13/13		
Oakland, CA	x 94612	Client P.O.:		Date Analyz	ed 05	5/14/13		
	Gasoline Rai	nge (C6-C12) Volat	tile Hydrocarbons as (
Extraction method:		•	ethods: SW8015Bm	34 50 1111	W	ork Order:	1305396	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments	
001A	SP-1	S	ND		1	95		
002A	SP-2	S	ND		1	97		
					<u> </u>	1		
	Reporting Limit for DF =1;	W	NA			NA		
· ·	D means not detected at or above the reporting limit	S	1.0			mg/K	g	
	or samples are reported in µg/L, soil/s SPLP extracts in mg/L.	sludge/solid samples in n	ng/kg, wipe samples in μg/w	ipe, product/oil/no	on-aquec	ous liquid	samples	
	natogram; sample peak coelutes w/su ard; DF = Dilution Factor	ırrogate peak; low surrog	ate recovery due to matrix in	terference; %SS =	= Percen	t Recover	y of	
The following de	escriptions of the TPH chromatogram	n are cursory in nature an	d McCampbell Analytical is	not responsible fo	or their in	iterpretatio	on:	
DHS ELAP C	Certification 1644	IA Anal	yst's Initial	Angela 1	Rydeliı	us, Lab l	Manager	

Pangea Environmental Svcs., Inc.	Client Project ID: 451 Helen	Date Sampled:	05/13/13
1710 Franklin Street, Ste. 200		Date Received:	05/13/13
	Client Contact: Bob Clark-Riddell	Date Extracted:	05/13/13
Oakland, CA 94612	Client P.O.:	Date Analyzed:	05/13/13

Total Extractable Petroleum Hydrocarbons*

		·		
Extraction method: SW	V3550B	SW8015B	Work Order:	1305396

Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments
1305396-001A	SP-1	S	7.6	41	1	108	e7,e2
1305396-002A	SP-2	S	ND	ND	1	89	

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern

e7) oil range compounds are significant

DHS ELAP Certification 1644

MAM Analyst's Initial

Angela Rydelius, Lab Manager

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8081A

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77300 WorkOrder: 1305396

EPA Method: SW8081A Extraction:	SW3550B					;	Spiked Sam	ple ID:	1305396-001A
Analyte	Sample	Sample Spiked MS N				LCS	Acceptance Criteria (%)		
, mayte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Aldrin	ND<0.002	0.050	NR	NR	NR	97.5	N/A	N/A	70 - 130
g-BHC	ND<0.002	0.050	NR	NR	NR	106	N/A	N/A	70 - 130
p,p-DDT	ND<0.002	0.050	NR	NR	NR	96.6	N/A	N/A	70 - 130
Dieldrin	ND<0.002	0.050	NR	NR	NR	118	N/A	N/A	70 - 130
Endrin	ND<0.002	0.050	NR	NR	NR	114	N/A	N/A	70 - 130
Heptachlor	ND<0.002	0.050	NR	NR	NR	112	N/A	N/A	70 - 130
%SS:	86	0.050	NR	NR	NR	73	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77300 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305396-001A	05/13/13 12:25 PM	I 05/13/13	05/14/13 2:03 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

surrogate diluted out of range or surrogate coelutes with another peak

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix inteference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

OC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77282 WorkOrder: 1305396

EPA Method: SW8260B Extraction:	SW5030B					;	Spiked Sam	ple ID:	1305385-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	MS-MSD LCS Acceptance Crite			Criteria (%)
, well to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	0.050	97.9, F1	93.6	4.5	97.8	56 - 94	30	70 - 130
Benzene	ND	0.050	96.6	94.1	2.60	97.9	60 - 106	30	70 - 130
t-Butyl alcohol (TBA)	ND	0.20	107	96	11.0	110	56 - 140	30	70 - 130
Chlorobenzene	ND	0.050	98.2	95.8	2.50	101	61 - 108	30	70 - 130
1,2-Dibromoethane (EDB)	ND	0.050	97.1	95.2	1.99	99.8	54 - 119	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	92.1	89.8	2.54	95	48 - 115	30	70 - 130
1,1-Dichloroethene	ND	0.050	99.7	94.3	5.57	101	46 - 111	30	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	88.5	87.7	0.994	90.6	53 - 111	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	93.6	91.8	1.96	96.8	61 - 104	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	97.7	94	3.89	100	58 - 107	30	70 - 130
Toluene	ND	0.050	103	105	1.60	112	64 - 114	30	70 - 130
Trichloroethene	ND	0.050	102	98.5	3.36	106	60 - 116	30	70 - 130
%SS1:	108	0.12	117	116	0.986	117	70 - 130	30	70 - 130
%SS2:	113	0.12	110	112	1.41	113	70 - 130	30	70 - 130
%SS3:	92	0.012	122	128	4.55	130	70 - 130	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

F1 = MS/MSD recovery was out of acceptance criteria; LCS validated the prep batch.

BATCH 77282 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305396-001A	05/13/13 12:25 PM	I 05/13/13	05/13/13 8:06 PM	1305396-002A	05/13/13 12:30 PM	I 05/13/13	05/13/13 8:48 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

OC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77323 WorkOrder: 1305396

EPA Method: SW8270C	Extraction: SW3550B						Spiked Sam	ple ID:	1305396-001A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance		e Criteria (%)	
Allalyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
Acenaphthene	ND<0.5	5	NR	NR	NR	81.6	N/A	N/A	30 - 130	
4-Chloro-3-methylphenol	ND<0.5	5	NR	NR	NR	79.8	N/A	N/A	30 - 130	
2-Chlorophenol	ND<0.5	5	NR	NR	NR	83	N/A	N/A	30 - 130	
1,4-Dichlorobenzene	ND<0.5	5	NR	NR	NR	71.9	N/A	N/A	30 - 130	
2,4-Dinitrotoluene	ND<0.5	5	NR	NR	NR	77.1	N/A	N/A	30 - 130	
4-Nitrophenol	ND<2.6	5	NR	NR	NR	49.8	N/A	N/A	30 - 130	
N-Nitrosodi-n-propylamine	ND<0.5	5	NR	NR	NR	56.4	N/A	N/A	30 - 130	
Pentachlorophenol	ND<2.6	5	NR	NR	NR	78.2	N/A	N/A	30 - 130	
Phenol	ND<0.5	5	NR	NR	NR	71.5	N/A	N/A	30 - 130	
Pyrene	ND<0.5	5	NR	NR	NR	90.8	N/A	N/A	30 - 130	
1,2,4-Trichlorobenzene	ND<0.5	5	NR	NR	NR	83.8	N/A	N/A	30 - 130	
%SS1:	84	5	NR	NR	NR	85	N/A	N/A	30 - 130	
%SS2:	76	5	NR	NR	NR	79	N/A	N/A	30 - 130	
%SS3:	72	5	NR	NR	NR	81	N/A	N/A	30 - 130	
%SS4:	74	5	NR	NR	NR	78	N/A	N/A	30 - 130	
%SS5:	44	5	NR	NR	NR	57	N/A	N/A	30 - 130	
%SS6:	91	5	NR	NR	NR	87	N/A	N/A	30 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77323 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1305396-001A	05/13/13 12:25 PM	1 05/14/13	05/14/13 5:10 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and / or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix, sample diluted due to high matrix or analyte content, or MS/MSD samples diluted due to high organic content.

#) surrogate diluted out of range; & = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A QA/QC Officer

QC SUMMARY REPORT FOR SW6020

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77283 WorkOrder: 1305396

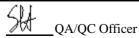
EPA Method: SW6020	Extraction: SW3050B		ple ID:	N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%		Criteria (%)
, many to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Antimony	N/A	50	N/A	N/A	N/A	93.8	N/A	N/A	75 - 125
Arsenic	N/A	50	N/A	N/A	N/A	101	N/A	N/A	75 - 125
Barium	N/A	500	N/A	N/A	N/A	98.2	N/A	N/A	75 - 125
Beryllium	N/A	50	N/A	N/A	N/A	96.6	N/A	N/A	75 - 125
Cadmium	N/A	50	N/A	N/A	N/A	96.7	N/A	N/A	75 - 125
Chromium	N/A	50	N/A	N/A	N/A	98	N/A	N/A	75 - 125
Cobalt	N/A	50	N/A	N/A	N/A	102	N/A	N/A	75 - 125
Copper	N/A	50	N/A	N/A	N/A	101	N/A	N/A	75 - 125
Lead	N/A	50	N/A	N/A	N/A	99.8	N/A	N/A	75 - 125
Mercury	N/A	1.25	N/A	N/A	N/A	93	N/A	N/A	75 - 125
Molybdenum	N/A	50	N/A	N/A	N/A	96.7	N/A	N/A	75 - 125
Nickel	N/A	50	N/A	N/A	N/A	102	N/A	N/A	75 - 125
Selenium	N/A	50	N/A	N/A	N/A	104	N/A	N/A	75 - 125
Silver	N/A	50	N/A	N/A	N/A	120	N/A	N/A	75 - 125
Thallium	N/A	50	N/A	N/A	N/A	98.2	N/A	N/A	75 - 125
Vanadium	N/A	50	N/A	N/A	N/A	97.6	N/A	N/A	75 - 125
Zinc	N/A	500	N/A	N/A	N/A	103	N/A	N/A	75 - 125
%SS:	N/A	500	N/A	N/A	N/A	99	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77283 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305396-001A	05/13/13 12:25 PM	1 05/13/13	05/14/13 2:03 PM	1305396-002A	05/13/13 12:30 PM	I 05/13/13	05/13/13 11:57 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77292 WorkOrder: 1305396

EPA Method: SW8021B/8015Bm Extraction: S	5	Spiked Sam	ple ID:	1305383-008A						
Analyte	Sample	le Spiked MS MSD MS-MSD LCS Acc						eptance Criteria (%)		
, may c	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	0.60	96.4	93.5	3.05	100	70 - 130	20	70 - 130	
MTBE	ND	0.10	102	99.6	2.45	106	70 - 130	20	70 - 130	
Benzene	ND	0.10	106	104	2.21	109	70 - 130	20	70 - 130	
Toluene	ND	0.10	102	100	1.22	106	70 - 130	20	70 - 130	
Ethylbenzene	ND	0.10	109	107	1.48	110	70 - 130	20	70 - 130	
Xylenes	ND	0.30	109	109	0	110	70 - 130	20	70 - 130	
%SS:	95	0.10	95	113	17.3	109	70 - 130	20	70 - 130	

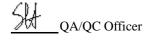
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77292 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305396-001A	05/13/13 12:25 PM	I 05/13/13	05/14/13 3:21 AM	1305396-002A	05/13/13 12:30 PM	05/13/13	05/14/13 3:51 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77290 WorkOrder: 1305396

EPA Method: SW8015B Extraction:	SW3550B					,	Spiked Sam	ple ID:	1305385-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
,,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	11	40	108	106	1.03	104	70 - 130	30	70 - 130
%SS:	103	25	103	102	0.968	94	70 - 130	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77290 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305396-001A	05/13/13 12:25 PM	05/13/13	05/13/13 7:04 PM	1305396-002A	05/13/13 12:30 PM	1 05/13/13	05/13/13 8:20 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer