

RECEIVED

11:52 am, Nov 02, 2009

Alameda County Environmental Health LBermudez@pcandf.com Direct: 925-884-0860 Fax: 925-867-4627

October 30, 2009

Mr. Paresh Khatari Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Quarterly Status/Monitoring Report – Third Quarter 2009

Site:

76 Station No. 5748/6419 6401 Dublin Boulevard

Dublin, California

Fuel Leak Case No. RO0000459

Dear Mr. Khatari;

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call:

Liz Bermudez

Pacific Convenience & Fuel 2603 Camino Ramon, Suite 350

San Ramon, California 94583

Tel: (925) 884-0860 Fax: (925) 867-4687 lbermudez@pcandf.com

Sincerely,

PACIFIC CONVENIENCE & FUEL

Fiz Bermudez

LIZ BERMUDEZ

Senior Paralegal

Attachment

October 20, 2009

Mr. Paresh Khatari Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Semi-Annual Summary Report – April 2009 through September 2009

76 Station No. 5748/6419 6401 Dublin Boulevard Dublin, California Fuel leak case No. RO0000459

Dear Mr. Khatari,

Delta Consultants (Delta) is submitting the subject report and forwarding a copy of TRC Solutions, Inc. (TRC's) Semi-Annual Monitoring Report April 2009 through September 2009, dated September 18, 2009 for the above site.

Please contact Tony Perini at (408) 826-1867 if you have questions.

DENNIS SHANNON DETTLOFF No.7480

Sincerely,

Delta Consultants

auco 15 Banco

Tony Perini

Senior Project Manager

Dennis S. Dettloff, P.G.

Senior Project Manager

California Registered Professional Geologist No. 7480 CA

Enclosure

cc: Mr. Terry Grayson- ConocoPhillips (electronic copy only)

SEMI-ANNUAL SUMMARY REPORT April 2009 through September 2009

76 Station No. 5748/6419 6401 Dublin Boulevard Dublin, California

County: Alameda

SITE DESCRIPTION

The subject site is an active 76 station located on the western corner of Dublin Boulevard and Dougherty Road in Dublin, California. The site is bounded to the south by Dublin Boulevard, to the northeast by Dougherty Road, and to the northwest and southwest by a shopping center parking lot. Properties in the immediate site vicinity are commercial, including service stations and retail facilities.

Current aboveground site facilities consist of two dispenser islands, a car wash, and a station building/convenience store. Two 12,000-gallon gasoline underground storage tanks (USTs) are located in the common pit, east of the station building.

SITE BACKGROUND AND ACTIVITY

<u>September 1993:</u> Two 10,000-gallon gasoline USTs, one 55-gallon waste-oil UST, and the associated product piping were removed from the site subsequent to confirmation sampling. Groundwater was observed entering the UST excavation. Concentrations of petroleum hydrocarbons in confirmation soil samples beneath the fuel USTs were non-detect to low. Petroleum hydrocarbon and volatile organic compounds (VOCs) concentrations in confirmation soil samples beneath the waste oil UST were non-detect to low, and concentrations of metals were considered background levels. Petroleum hydrocarbon and lead concentrations in confirmation soil samples from the dispenser islands were non-detect, and low, respectively. Petroleum hydrocarbon and lead concentrations in confirmation soil samples from the piping trenches were non-detect, and low, respectively.

February 1994: Three on-site monitoring wells (MW-1 through MW-3) were installed.

<u>June 1999:</u> Four on-site monitoring wells (MW-4 through MW-7) were installed to a depth of approximately 19 feet below ground surface (bgs).

<u>November 1999:</u> A four-inch diameter groundwater observation and extraction well (TPW-1) was installed in the gasoline UST pit backfill to allow purging of methyl tertiary-butyl ether (MTBE) impacted groundwater.

<u>September 2001:</u> Two off-site monitoring wells (MW-8 and MW-9) were installed to a depth of 20 feet bgs.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

<u>December 2004:</u> Off-site monitoring wells MW-8 and MW-9 were abandoned due to construction activities planned at those locations by Pin Brothers Fine Homes.

<u>January 12, 2006:</u> On-site monitoring wells MW-2, MW-4, MW-6, and MW-7 were abandoned at the request of the City of Dublin in anticipation of street widening on both Dougherty Road and Dublin Boulevard.

SENSITIVE RECEPTORS

<u>July 3, 2007:</u> TRC completed a sensitive receptor survey for the site. According to California Department of Water Resources (DWR) and the Zone 7 Water Agency records, four water supply wells are located within a one-half mile of the site. Three of the wells are listed by the Zone 7 Water Agency as water supply wells and are located approximately 1,940 feet east, 2,175 feet north, and 2,070 feet northwest of the site. One well is listed by the Zone 7 Water Agency as an abandoned water supply well and is located approximately 2,440 feet west-southwest of the site.

Three surface water bodies were identified within a one-half mile of the site. San Ramon Creek is located approximately 2,145 feet northwest of the site, an unnamed canal is located approximately 625 feet southwest of the site, and the Chabot Canal is located approximately 1,650 feet east of the site.

GROUNDWATER MONITORING AND SAMPLING

The monitoring wells were sampled by TRC on August 21, 2009. TRC's semi-annual monitoring report is presented as **Attachment A**. Groundwater samples collected from the monitoring wells were analyzed for total purgeable petroleum hydrocarbons (TPPH), benzene, toluene, ethylbenzene, and total xylenes (BTEX), MTBE and ethanol by Environmental Protection Agency (EPA) Method 8260.

The three remaining monitoring wells (MW-1, MW-3, and MW-5) are currently monitored and sampled semi-annually during the first and third quarters. During the August 2009 monitoring event the depth to groundwater ranged from 7.50 feet (MW-1) to 8.04 feet (MW-3) below the top of casing (below TOC). The groundwater flow direction was calculated to be to the west with a gradient of 0.005 foot per foot (ft/ft). The flow direction and gradient calculated during the previous sampling event (March 6, 2009) was to the northwest at 0.005 ft/ft. The predominant historical groundwater flow direction at the site is to the southwest. Historical groundwater flow directions are shown on a rose diagram presented as **Attachment B**.

Contaminants of Concern:

TPPH: TPPH was above the laboratory's indicated reporting limit in the groundwater sample collected and submitted for analysis from monitoring well MW-5 (260 micrograms per liter (μ g/L)) during the current event. However, laboratory notes indicate that the TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.

Benzene: benzene was below the laboratory's indicated reporting limits in each of the groundwater samples collected and submitted for analysis from the monitoring wells during the current event.

MTBE: MTBE was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1 (3.3 μ g/L) MW-3 (33 μ g/L), and MW-5 (310 μ g/L) during the current event.

All other constituents tested were below the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis during the current event.

REMEDIATION STATUS

<u>September 2003</u>: Approximately 19,000 gallons of groundwater were removed from the UST excavation and properly disposed off-site. A hydrocarbon sheen was observed on the surface of the groundwater in the southwest corner of the excavation. Approximately 850 cubic yards of excavated soil was properly disposed off-site. Two 12,000-gallon and one 520-gallon double-wall glasteel replacement USTs were installed in the same excavation.

<u>July 1998</u>: A soil vapor extraction test was conducted. Approximately 0.53 pounds of total petroleum hydrocarbons as gasoline (TPHg) and 6.5 pounds of MTBE (approximately 1 gallon of gasoline/additive) were extracted during the four day test. The effective radius of influence was calculated to be less than 40 feet.

<u>December 1999 through December 2002</u>: Approximately 649,600 gallons of groundwater containing an estimated 130.21 pounds of MTBE were removed from the tank pit observation and extraction well. Batch extractions were ended on February 5, 2003, due to asymptotic levels of cumulative pounds of MTBE removed. The purged groundwater was transported to, treated, and disposed of at the ConocoPhillips refinery located in Rodeo, California.

Remediation is not currently being conducted at the site.

CHARACTERIZATION STATUS

Site assessment appears complete along the southeastern corner of the site through the borings and samplings of monitoring wells MW-4, MW-5, MW-8, and MW-9. The plume is concentrated in the vicinity monitoring well MW-5. It is likely that the plume, particularly the MTBE component, is now largely present off-site. Further assessment is therefore needed off-site and in the vicinity of the destroyed monitoring wells MW-8 and MW-9 to support an effort for site closure.

RECENT CORRESPONDENCE

On August 20, 2009, Delta met with the Alameda County Health Care Services Agency (ACHCSA) to discuss project activities. During this meeting the original Delta work plan dated January 14, 2009 for conducting a site investigation by the advancement of borings using cone penetration test (CPT) technology was discussed. Other options were also discussed for the additional investigation. The options included the installation of groundwater monitoring wells. Delta agreed on the additional monitoring well installations.

RECENT ACTIVITIES (April through September 2009)

- Delta Prepared *Semi-Annual Summary Report April 2009 through September 2009*, dated September 21, 2009.
- No site activities were conducted during the second quarter 2009.

UPCOMING ACTIVITIES (October 2009 through March 2010)

- Delta will prepare a work plan outlining the proposed installation of additional groundwater monitoring wells.
- Delta will prepare Semi-Annual Summary Report October 2009 through March 2010.

CONSULTANT: Delta Consultants

Attachments

Attachment A: TRC Report Attachment B: Rose Diagram Attachment A TRC Report

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www TRCsolutions.com

DATE:

September 18, 2009

TO:

Delta Consultants

11050 White Rock, Suite 110 Rancho Cordova, CA 95670

ATTN:

MR. TONY PERINI

SITE:

76 STATION 6419

6401 DUBLIN BOULEVARD DUBLIN, CALIFORNIA

RE:

SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2009

Dear Mr. Perini,

Please find enclosed our Semi-Annual Monitoring Report for 76 Station 6419, located at 6401 Dublin Boulevard, Dublin, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

Anju Farfan

Groundwater Program Operations Manager

Enclosures 20-0400/6419R13.QMS

SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2009

76 STATION 6419 6401 Dublin Boulevard Dublin, California

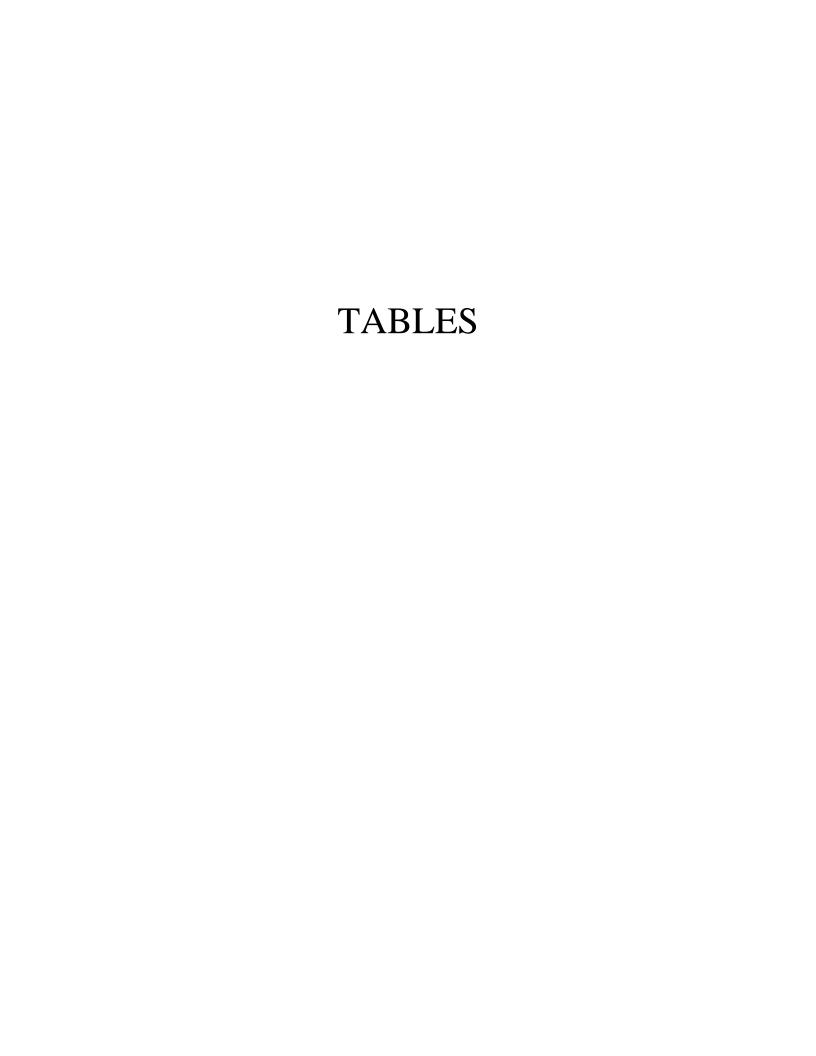
Prepared For:

Mr. Tony Perini DELTA CONSULTANTS 11050 White Rock Road, Suite 110 Rancho Cordova, California 95670

By:

Senior Project Geologist, Irvine Operations

Date: <u>9/17/09</u>



DENNIS E JENSEN No 3531

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
	Table 2b: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	TPH-G Concentrations vs. Time
	Benzene Concentrations vs. Time
	MTBE Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 8/21/09
	Groundwater Sampling Field Notes – 8/21/09
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Disposal	Disposal/Treatment Manifest – Current (Pending)
Documents	
Statements	Limitations

Summary of Gauging and Sampling Activities April 2009 through September 2009 76 Station 6419 6401 Dublin Boulevard Dublin, CA

Project Coordinator: Tony Perini	Water Sampling Contractor: <i>TRC</i>											
Telephone: 408-826-1867 Date(s) of Gauging/Sampling Event: 08/21/09	Compiled by: Christina Carrillo											
Sample Points Groundwater wells: 3 onsite, 0 offsite Purging method: Bailer/diaphragm pump Purge water disposal: Crosby and Overton treatment Other Sample Points: 0 Type:	Points gauged: 3 Points sampled: 3 ent facility											
Liquid Phase Hydrocarbons (LPH) Sample Points with LPH: 0 Maximum thickness (fee LPH removal frequency:	eet): Method:											
Treatment or disposal of water/LPH:	wethou											
Hydrogeologic Parameters												
Depth to groundwater (below TOC): Minimum: 7.5 feet Maximum: 8.04 feet Average groundwater elevation (relative to available local datum): 322.50 feet Average change in groundwater elevation since previous event: -2.15 feet Interpreted groundwater gradient and flow direction: Current event: 0.005 ft/ft, west Previous event: 0.005 ft/ft, northwest (03/06/09)												
Selected Laboratory Results												
Sample Points with detected Benzene: 0 Sam Maximum reported benzene concentration:	nple Points above MCL (1.0 μg/l):											
	ximum: 260 μg/l (MW-5) ximum: 310 μg/l (MW-5)											
Notes:												

TABLE KEY

STANDARD ABBREVIATIONS

-- = not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons Trace = less than 0.01 foot of LPH in well

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit TOC = top of casing (surveyed reference elevation)

D = duplicate

P = no-purge sample

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether
ETBE = ethyl tertiary butyl ether
MTBE = methyl tertiary butyl ether
PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether 1.1-DCA = 1.1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 6419 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 6419

Current	Event												
Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	Ethanol (8260B)											
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Cadmium (dissolved)	Chromium (total)	Lead (total)	Nickel (total)
Table 2b	Well/ Date	Zinc (total)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen									

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
August 21, 2009
76 Station 6419

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation	Ì	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$					
MW-1			(Scree	n Interva	l in feet: 4.0	19.0)								
08/21/0	9 330.17	7.50	0.00	322.67	-2.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.3	
MW-3			(Scree	n Interva	l in feet: 4.0	-20.0)								
08/21/0	9 330.59	8.04	0.00	322.55	-2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		33	
MW-5 (Screen Interval in feet: 4.0-19.0)														
08/21/0	9 330.18	7.90	0.00	322.28	-2.11		260	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310	

Table 1 a ADDITIONAL CURRENT ANALYTICAL RESULTS 76 Station 6419

Date					
Sampled	Ethanol				
	(8260B)				
	(µg/l)				
MW-1					
08/21/09	ND<250				
MW-3					
08/21/09	ND<250				
MW-5					
08/21/09	ND<250				

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness		Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation	l	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1			(Scre	en Interva	ıl in feet: 4.0)-19.0)								
03/14/9	94 330.45	7.27	0.00	323.18		1800		17	ND	ND	ND			
08/25/9	94 330.45	8.57	0.00	321.88	-1.30	9200		48	ND	540	ND			
09/30/9	94 330.45	8.78	0.00	321.67	-0.21									
10/20/9	94 330.45	8.98	0.00	321.47	-0.20									
11/18/9	94 330.45	7.69	0.00	322.76	1.29	5100		33	ND	560	38			
12/20/9	94 330.45	7.58	0.00	322.87	0.11									
01/17/9	95 330.45	6.03	0.00	324.42	1.55									
02/15/9	95 330.45	6.29	0.00	324.16	-0.26	3300		13	ND	180	5.2			
03/13/9	95 330.45	5.64	0.00	324.81	0.65									
04/06/9	95 330.45	5.62	0.00	324.83	0.02									
05/17/9	95 330.45	6.26	0.00	324.19	-0.64	130		0.75	ND	1.5	ND			
06/15/9	95 330.45	6.75	0.00	323.70	-0.49									
08/25/9	95 330.45	7.91	0.00	322.54	-1.16	490		9.1	ND	21	2			
11/28/9	95 330.45	9.03	0.00	321.42	-1.12	1400		18	3	98	3.6			
02/26/9	96 330.45	5.77	0.00	324.68	3.26	560		9.3	ND	22	ND	1300		
08/23/9	96 330.45	7.78	0.00	322.67	-2.01	ND		ND	ND	ND	ND	640		
02/17/9	97 330.23	5.73	0.00	324.50	1.83	120		1	0.95	ND	ND	280		
08/18/9	97 330.23	7.38	0.00	322.85	-1.65	ND		ND	ND	ND	ND	100		
02/02/9	98 330.23	5.10	0.00	325.13	2.28	ND		130	ND	ND	ND	32000		
08/24/9	98 330.23	6.73	0.00	323.50	-1.63	ND		ND	ND	ND	ND	26000	24000	
02/10/9	99 330.23	5.46	0.00	324.77	1.27	ND		ND	ND	ND	ND	84000	100000	
04/12/9	99 330.23	6.38	0.00	323.85	-0.92	ND		ND	ND	ND	ND	140000	120000	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation									Comments
Sampled	Elevation	water	Tilless	Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total	MTBE (8021B)	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	ου13 (μg/l)	(GC/MS) (μg/l)	βenzene (μg/l)	(µg/l)	benzene (μg/l)	Xylenes (μg/l)	(δ021 B) (μg/l)	(8260B) (µg/l)	
		(reet)	(Teet)	(Icct)	(Icct)	(μg/1)	(μg/1)	(μg/1)	(μβ/1)	(μg/1)	(μg/1)	(μβ/1)	(μg/1)	
MW-1 05/21/9	continued 9 330.21	5.95	0.00	324.26	0.41									
08/02/9			0.00	323.46		ND		ND	ND	ND	ND	91000	140000	
02/11/0			0.00	323.77		ND		ND	ND	ND	ND	38000	39000	
07/26/0			0.00	323.10		146		ND	ND	ND	ND	30900	42800	
02/02/0			0.00	323.19		ND		ND	ND	ND	ND	5380	6430	
05/16/0														
08/24/0		3 7.72	0.00	322.46		ND<50		8.3	ND<0.50	ND<0.50	ND<0.50	10000	6600	
10/11/0		7.72	0.00	322.45	-0.01									
02/06/0	2 330.17	6.43	0.00	323.74	1.29	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	450	420	
07/30/0	2 330.17	7.45	0.00	322.72	-1.02		ND<1000	ND<10	ND<10	ND<10	ND<20		2400	
02/17/0	330.17	6.18	0.00	323.99	1.27		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		600	
08/18/0	330.17	6.25	0.00	323.92	-0.07		3900	ND<20	ND<20	ND<20	ND<40		2700	
02/24/0	330.17	5.59	0.00	324.58	0.66		ND<1000	ND<10	ND<10	ND<10	ND<20		1400	
09/17/0	330.17	7.08	0.00	323.09	-1.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		14	
03/22/0	5 330.17	5.29	0.00	324.88	1.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		100	
09/29/0	5 330.17	·												Dry well
01/09/0	6 330.17	7.05	0.00	323.12			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.8	
09/27/0	6 330.17	8.05	0.00	322.12	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.4	
03/29/0	7 330.17	8.38	0.00	321.79	-0.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
09/21/0	7 330.17	9.93	0.00	320.24	-1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.5	
03/27/0	8 330.17	6.59	0.00	323.58	3.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/02/0	8 330.17	7.37	0.00	322.80	-0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		16	
03/06/0	9 330.17	5.36	0.00	324.81	2.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
								ъ с	C 10					

Page 2 of 10

6419

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1994 Through August 2009 **76 Station 6419**

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPH-G			Ethyl	Total	MTBE	MTBE	Comments
Sumpres	210 (411011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111101111000	Elevation		8015	(GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
MW-1	continued													
08/21/0		7.50	0.00	322.67	-2.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.3	
MW-2			(Scre	en Interva	al in feet: 4.0	-20.0)								
03/14/9	330.40	7.23	0.00	323.17	7	ND		ND	2.8	1.1	8			
08/25/9	330.40	8.41	0.00	321.99	-1.18	ND		ND	ND	ND	ND			
09/30/9	330.40	8.73	0.00	321.67	-0.32									
10/20/9	330.40	8.92	0.00	321.48	-0.19									
11/18/9	330.40	7.67	0.00	322.73	3 1.25	ND		ND	ND	ND	ND			
12/20/9	330.40	7.48	0.00	322.92	0.19									
01/17/9	330.40	6.00	0.00	324.40	1.48									
02/15/9	330.40	6.16	0.00	324.24	-0.16	ND		ND	ND	ND	ND			
03/13/9	330.40	5.59	0.00	324.81	0.57									
04/06/9	330.40	5.51	0.00	324.89	0.08									
05/17/9	330.40	6.15	0.00	324.25	-0.64	ND		ND	ND	ND	ND			
06/15/9	330.40	6.61	0.00	323.79	-0.46									
08/25/9	330.40	7.45	0.00	322.95	-0.84	ND		ND	ND	ND	ND			
11/28/9	330.40	8.85	0.00	321.55	-1.40	ND		ND	ND	ND	ND			
02/26/9	6 330.40	5.49	0.00	324.91	3.36	ND		ND	ND	ND	ND			
08/23/9	6 330.40	7.44	0.00	322.96	5 -1.95									SAMPLED ANNUALLY
02/17/9	7 330.27	5.64	0.00	324.63	3 1.67	ND		ND	ND	ND	ND	ND		
08/18/9	7 330.27	7.40	0.00	322.87	-1.76									
02/02/9	98 330.27	5.09	0.00	325.18	3 2.31	ND		ND	ND	ND	ND	62		
08/24/9	98 330.27	6.70	0.00	323.57	-1.61									
02/10/9	9 330.27	5.56	0.00	324.71	1.14	ND		ND	ND	ND	ND	130		
6419								Page 3	3 of 10					@TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1994 Through August 2009 **76 Station 6419**

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	
MW-2	continued													
05/21/9	99 330.30	5.98	0.00	324.32	-0.39									
08/02/9	99 330.30	6.72	0.00	323.58	-0.74	ND		ND	ND	ND	ND	120		
02/11/0	00 330.30	6.43	0.00	323.87	0.29	ND		ND	ND	ND	ND	39		
07/26/0	00 330.24	7.03	0.00	323.21	-0.66	ND		ND	ND	ND	ND	89.9		
02/02/0	01 330.24	6.81	0.00	323.43	0.22	ND		ND	ND	ND	ND	20.1		
05/16/0)1													
08/24/0	330.24	7.57	0.00	322.67		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	36		
10/11/0	330.24	7.62	0.00	322.62	-0.05									
02/06/0	02 330.24	6.40	0.00	323.84	1.22	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	23	21	
07/30/0	02 330.24	7.12	0.00	323.12	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
02/17/0	330.24	6.17	0.00	324.07	0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		25	
08/18/0	330.24	6.36	0.00	323.88	-0.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2	
02/24/0	04 330.24	5.87	0.00	324.37	0.49		ND<100	ND<1.0	ND<1.0	ND<1.0	ND<2.0		100	
09/17/0	04 330.24	7.22	0.00	323.02	-1.35		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		70	
03/22/0	05 330.24	5.55	0.00	324.69	1.67		110	ND<0.50	1.3	0.68	2.4		29	
09/29/0	05 330.24	8.26	0.00	321.98	-2.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		23	
01/09/0	06 330.24	7.41	0.00	322.83	0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		25	
09/27/0)6													Destroyed on 1/12/06
MW-3			(Scre	en Interva	l in feet: 4.0	0-20.0)								
03/14/9	94 331.11	7.93	0.00	323.18		150		ND	ND	ND	ND			
08/25/9	94 331.11	9.20	0.00	321.91	-1.27	130		ND	ND	ND	ND			
09/30/9	94 331.11	9.43	0.00	321.68	-0.23									
10/20/9	94 331.11	9.64	0.00	321.47	-0.21									
6419								Page 4	of 10					@TPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	
MW-3	continue	i												
11/18/9	94 331.1	1 8.39	0.00	322.72	1.25	130		ND	ND	ND	ND			
12/20/9	94 331.1	1 8.20	0.00	322.91	0.19									
01/17/9	95 331.1	1 6.72	0.00	324.39	1.48									
02/15/9	95 331.1	1 6.93	0.00	324.18	-0.21	130		ND	ND	ND	ND			
03/13/9	95 331.1	1 6.30	0.00	324.81	0.63									
04/06/9	95 331.1	1 8.20	0.00	322.91	-1.90									
05/17/9	95 331.1	1 6.88	0.00	324.23	1.32	99		ND	ND	ND	ND			
06/15/9	95 331.1	1 7.35	0.00	323.76	-0.47									
08/25/9	95 331.1	1 8.20	0.00	322.91	-0.85	ND		ND	ND	ND	ND			
11/28/9	95 331.1	1 9.52	0.00	321.59	-1.32	ND		ND	ND	ND	ND			
02/26/9	96 331.1	1 6.25	0.00	324.86	3.27	ND		ND	ND	ND	ND			
08/23/9	96 331.1	1 7.98	0.00	323.13	-1.73									SAMPLED ANNUALLY
02/17/9	97 330.6	6.07		324.61	1.48	ND		ND	ND	ND	ND	68		
08/18/9	97 330.6	7.82	0.00	322.86	-1.75									
02/02/9	98 330.6	8 5.50	0.00	325.18	2.32	ND		ND	ND	ND	ND	100		
08/24/9	98 330.6	7.12	0.00	323.56	-1.62									
02/10/9	99 330.6	5.80	0.00	324.88	1.32	ND		ND	ND	ND	ND	92		
05/21/9	99 330.4	9 6.16	0.00	324.33	-0.55									
08/02/9		9 6.95	0.00	323.54	-0.79	ND		ND	ND	ND	ND	140		
02/11/0	00 330.4	9 6.71	0.00	323.78	0.24	ND		ND	ND	ND	ND	46		
07/26/0	00 330.6	7.35	0.00	323.25	-0.53	ND		ND	ND	ND	ND	927		
02/02/0	01 330.6	7.17	0.00	323.43	0.18	ND		ND	ND	ND	ND	2240		
05/16/0	01													

Page 5 of 10

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1994 Through August 2009 **76 Station 6419**

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TDLLC	TDII C			E4. 1	T 1	MTDE	MTDE	Comments
Sampled	Lievation	water	THICKHOSS	Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued													
08/24/0		7.88	0.00	322.72		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	2500		
10/11/0	330.59	7.83	0.00	322.76	0.04									
02/06/0	330.59	6.73	0.00	323.86	1.10	ND<1000		ND<10	ND<10	ND<10	ND<10	4300	3300	
07/30/0	330.59	7.38	0.00	323.21	-0.65		ND<2500	ND<25	ND<25	ND<25	ND<50		4900	
02/17/0	330.59	6.49	0.00	324.10	0.89		ND<2500	ND<25	ND<25	ND<25	ND<50		4400	
08/18/0	330.59	6.70	0.00	323.89	-0.21		4400	ND<20	ND<20	ND<20	ND<40		3300	
02/24/0	330.59	6.11	0.00	324.48	0.59		ND<2500	ND<25	ND<25	ND<25	ND<50		3000	
09/17/0	330.59	7.61	0.00	322.98	-1.50		ND<1300	ND<13	ND<13	ND<13	ND<25		2300	
03/22/0	330.59	5.79	0.00	324.80	1.82		ND<1300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1600	
09/29/0	330.59	9.24	0.00	321.35	-3.45		680	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1600	
01/09/0	06 330.59	7.74	0.00	322.85	1.50		410	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1200	
09/27/0	06 330.59	8.54	0.00	322.05	-0.80		780	ND<5.0	ND<5.0	ND<5.0	ND<5.0		1500	
03/29/0	330.59	8.82	0.00	321.77	-0.28		230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		230	
09/21/0	330.59	9.38	0.00	321.21	-0.56		140	ND<0.50	ND<0.50	ND<0.50	ND<0.50		160	
03/27/0	08 330.59	7.08	0.00	323.51	2.30		84	ND<0.50	ND<0.50	ND<0.50	ND<1.0		98	
09/02/0	08 330.59	7.84	0.00	322.75	-0.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		50	
03/06/0	9 330.59	5.85	0.00	324.74	1.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		43	
08/21/0	9 330.59	8.04	0.00	322.55	-2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		33	
MW-4			(Scre	en Interva	l in feet: 4.0	0-19.0)								
05/21/9	99 330.36	6.43	0.00	323.93		ND		ND	ND	ND	ND	960	910	
08/02/9	99 330.36	7.34	0.00	323.02	-0.91	ND		10	ND	13	11	ND		
02/11/0	00 330.36	6.92	0.00	323.44	0.42	ND		ND	ND	ND	ND	2700		
07/26/0	00 330.35	7.68	0.00	322.67	-0.77	ND		ND	ND	ND	ND	3710		
6419								Page 6	of 10					@TPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
						8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
	continued													
02/02/0	01 330.35	7.40	0.00	322.95	0.28	ND		ND	ND	ND	ND	5340		
08/24/0	01 330.35	8.14	0.00	322.21	-0.74	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	7800		
10/11/0	01 330.35	5 8.29	0.00	322.06	-0.15									
02/06/0	02 330.35	7.28	0.00	323.07	1.01	ND<100		ND<1.0	ND<1.0	ND<1.0	ND<1.0	2300	3100	
07/30/0	02 330.35	7.76	0.00	322.59	-0.48		ND<500	ND<5.0	ND<5.0	5.8	ND<10		1600	
02/17/0	330.35	6.85	0.00	323.50	0.91		ND<1000	ND<10	ND<10	ND<10	ND<20		2200	
08/18/0	330.35	7.30	0.00	323.05	-0.45		2000	ND<10	ND<10	ND<10	ND<20		1400	
02/24/0	04 330.35	6.55	0.00	323.80	0.75		ND<2000	ND<20	ND<20	ND<20	ND<40		2000	
09/17/0	04 330.35	8.00	0.00	322.35	-1.45		340	ND<2.5	ND<2.5	ND<2.5	ND<5.0		610	
03/22/0	05 330.35	6.37	0.00	323.98	1.63		ND<200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	
09/29/0	05 330.35	9.43	0.00	320.92	-3.06		84	ND<0.50	ND<0.50	0.53	ND<1.0		57	
01/09/0	06 330.35	7.97	0.00	322.38	1.46		100	ND<0.50	ND<0.50	1.5	ND<1.0		150	
09/27/0	06													Destroyed on 1/12/06
MW-5			(Scre	en Interva	ıl in feet: 4.0)-19.0)								
05/21/9	99 330.20	5.99	`	324.21		ND		ND	ND	ND	ND	32	33	
08/02/9	99 330.20	6.83	0.00	323.37	-0.84	ND		ND	ND	ND	ND	230		
02/11/0	00 330.20	6.34	0.00	323.86	0.49	ND		ND	ND	ND	ND	98		
07/26/0	00 330.20	7.06	0.00	323.14	-0.72	ND		ND	ND	ND	ND	25.9		
02/02/0	01 330.20	6.81	0.00	323.39	0.25	ND		ND	ND	ND	ND	18		
08/24/0	01 330.20	7.60	0.00	322.60	-0.79	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	18		
10/11/0	01 330.18	3 7.34	0.00	322.84	0.24									
02/06/0	02 330.18	6.55	0.00	323.63	0.79	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	7.7	7.9	
07/30/0				323.03			ND<50			ND<0.50			4.6	
0440								Page 7	of 10					

Page 7 of 10

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date	TOC	Depth to	LPH Thiolmoon		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(JC/MS) (µg/l)	(µg/l)	(μg/l)	θεπzene (μg/l)	(µg/l)	(6021 B) (µg/l)	(8200 D) (μg/l)	
	continued					407	407	407	(0)	407	407	407	407	
02/17/0		6.27	0.00	323.91	0.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.8	
08/18/0	330.18	6.57	0.00	323.61	-0.30		75	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.8	
02/24/0	04 330.18	5.88	0.00	324.30	0.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.3	
09/17/0	04 330.18	7.41	0.00	322.77	-1.53		ND<50	ND<0.50	ND<0.50	ND<0.50	1.4		6.0	
03/22/0	330.18	5.58	0.00	324.60	1.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.8	
09/29/0	330.18	9.42	0.00	320.76	-3.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.8	
01/09/0	06 330.18	7.93	0.00	322.25	1.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		14	
09/27/0	06 330.18	8.60	0.00	321.58	-0.67		300	ND<0.50	ND<0.50	ND<0.50	ND<0.50		860	
03/29/0	07 330.18	8.82	0.00	321.36	-0.22		520	ND<0.50	ND<0.50	ND<0.50	ND<0.50		690	
09/21/0	330.18	9.66	0.00	320.52	-0.84		300	ND<0.50	ND<0.50	ND<0.50	ND<0.50		490	
03/27/0	08 330.18	7.12	0.00	323.06	2.54		580	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1400	
09/02/0	08 330.18	7.70	0.00	322.48	-0.58		360	ND<0.50	ND<0.50	ND<0.50	ND<1.0		840	
03/06/0	9 330.18	5.79	0.00	324.39	1.91		240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		480	
08/21/0	9 330.18	7.90	0.00	322.28	-2.11		260	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310	
MW-6			(Scre	en Interva	ıl in feet: 4.0	0-19.0)								
05/21/9	99 330.49	6.24	0.00	324.25		ND		ND	ND	ND	ND	2200	2300	
08/02/9	99 330.49	7.10	0.00	323.39	-0.86	ND		ND	ND	ND	ND	ND		
02/11/0	00 330.49	6.60	0.00	323.89	0.50	ND		ND	ND	ND	ND	2500		
07/26/0	00 330.49	7.31	0.00	323.18	-0.71	ND		ND	ND	ND	ND	4280		
02/02/0	330.49	7.02	0.00	323.47	0.29	ND		ND	ND	ND	ND	1990		
08/24/0)1 330.49	7.84	0.00	322.65	-0.82	ND<200		ND<2.0	ND<2.0	ND<2.0	ND<2.0	1100		
10/11/0	330.47	8.03		322.44	-0.21									
02/06/0	330.47	6.78	0.00	323.69	1.25	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	610	680	
								Dogo C	of 10					

Page 8 of 10

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TEDLI G	TDII G			F.1.1	7 7 1) (TEDE) (TDE	Comments
Sampled	Elevation	vv ater	THICKHESS	Elevation		TPH-G	TPH-G	D	Т-1	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS)	Benzene	Toluene	benzene (ug/l)	Xylenes	(8021B)	(8260B)	
		(IEEI)	(IEEI)	(IEEI)	(ICCI)	(μg/1)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued	7.40	0.00	222.05	0.62		180	ND <0.50	ND<0.50	ND <0.50	ND<1.0		160	
07/30/0 02/17/0			0.00	323.07 323.98			ND<250	ND<0.30	ND<0.50	ND<0.50 ND<2.5	ND<1.0 ND<5.0		400	
			0.00											
08/18/0				323.66			320	ND<1.0	ND<1.0	ND<1.0	ND<2.0		280	
02/24/0			0.00	324.36			130	ND<1.0	ND<1.0	ND<1.0	ND<2.0		200	
09/17/0			0.00	322.83			110	ND<1.0	ND<1.0	ND<1.0	ND<2.0		200	
03/22/0			0.00	324.66			ND<50		ND<0.50		ND<1.0		83	
09/29/0		9.19	0.00	321.28			110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	
01/09/0	06 330.47	7.65	0.00	322.82	2 1.54		100	ND<0.50	ND<0.50	ND<0.50	ND<1.0		160	
09/27/0)6													Destroyed on 1/12/06
MW-7			(Scre	en Interva	al in feet: 4.0	-19.0)								
05/21/9	99 330.43	6.13	0.00	324.30)	ND		ND	ND	ND	ND	22	22	
08/02/9	99 330.43	6.92	0.00	323.51	-0.79	ND		ND	ND	ND	ND	31		
02/11/0	00 330.43	6.50	0.00	323.93	0.42	ND		ND	ND	ND	ND	20		
07/26/0	00 330.43	7.18	0.00	323.25	-0.68	ND		ND	ND	ND	ND	17.9		
02/02/0	330.43	6.95	0.00	323.48	3 0.23	ND		ND	ND	ND	ND	ND		
08/24/0	330.43	7.72	0.00	322.71	-0.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	4.4		
10/11/0	01 330.41	7.87	0.00	322.54	-0.17									
02/06/0)2 330.41	6.62	0.00	323.79	1.25	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3.9	3.2	
07/30/0	02 330.41		0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.3	
02/17/0	330.41		0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.7	
08/18/0	330.41	6.64	0.00	323.77	7		76	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.3	
02/24/0		6.01	0.00	324.40	0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.2	
09/17/0		7.45	0.00	322.96			ND<50		ND<0.50		ND<1.0		8.7	
6410									of 10					

Page 9 of 10

6419

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1994 Through August 2009
76 Station 6419

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
						8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-7														
03/22/0			0.00	324.68			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
09/29/0	05 330.41	8.94	0.00	321.47	-3.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
01/09/0	06 330.41	7.43	0.00	322.98	1.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.6	
09/27/0)6													Destroyed on 1/12/06
MW-8			(Scre	en Interva	l in feet:)									
10/11/0	01 329.97	7.57	0.00	322.40		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<2.0	
02/06/0	02 329.97	6.35	0.00	323.62	1.22	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	ND<1.0	
07/30/0	02 329.97	6.95	0.00	323.02	-0.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
02/17/0	329.97	6.11	0.00	323.86	0.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
08/18/0	329.97	6.33	0.00	323.64	-0.22		53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2	
02/24/0	04 329.97	13.37	0.00	316.60	-7.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/17/0	04 329.97	7.23	0.00	322.74	6.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.0	
03/22/0)5 329.97													Abandoned
MW-9			(Scre	en Interva	ıl in feet:)									
10/11/0	01 329.51	7.12	0.00	322.39	· ´	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	22	15	
02/06/0	329.51	5.94	0.00	323.57	1.18	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	19	14	
07/30/0	329.51	6.53	0.00	322.98	-0.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9	
02/17/0	329.51	5.63	0.00	323.88	0.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.9	
08/18/0	329.51	5.99	0.00	323.52	-0.36		57	ND<0.50	ND<0.50	ND<0.50	ND<1		6.2	
02/24/0	04 329.51	5.27	0.00	324.24	0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
09/17/0	04 329.51	6.80	0.00	322.71	-1.53		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.8	
03/22/0)5 329.51													Abandoned

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS **76 Station 6419**

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	Cadmium (dissolved) (mg/l)	Chromium (total) (mg/l)	Lead (total) (mg/l)	Nickel (total) (mg/l)
MW-1												
03/14/94	810								ND	0.000012	ND	0.00003
08/25/94	910								ND	ND	0.024	ND
11/18/94	910								ND	0.067	ND	0.067
02/15/95	660								ND	ND	ND	ND
05/17/95	200								ND	ND	ND	0.021
07/26/00		ND		ND	ND	ND	ND	ND				
08/24/01		ND<1000	ND<25000	ND<100	ND<100	ND<100	ND<100	ND<100				
02/06/02		ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0				
07/30/02		ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40				
02/17/03		ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10				
08/18/03		ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80				
02/24/04		ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40				
09/17/04		470	ND<50	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<0.5				
03/22/05		ND<5.0	ND<50	ND<0.50	ND<0.5	ND<0.5	ND<0.5	ND<0.5				
01/09/06		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
09/27/06			ND<250									
03/29/07			ND<250									
09/21/07			ND<250									
03/27/08			ND<250									
09/02/08			ND<250									
03/06/09			ND<250									
08/21/09			ND<250									
MW-2 02/06/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
08/18/03			ND<500	ND<1.0		ND<1.0						
6419			110 300			Page 1 of 4					0-	-

Page 1 of 4

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6419

Date Sampled			Ethanol	Ethylene- dibromide	1,2-DCA				Cadmium	Chromium	Lead	Nickel
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	(dissolved)	(total)	(total)	(total)
	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(mg/l)	(mg/l)	(mg/l)	(mg/l)
MW-2 co	ontinued											
02/24/04			ND<1000									
09/17/04			ND<50									
03/22/05			ND<50									
09/29/05			ND<250									
01/09/06			ND<250									
MW-3												
02/06/02		ND<670	ND<17000	ND<33	ND<33	ND<33	ND<33	ND<33				
08/18/03			ND<20000									
02/24/04			ND<25000									
09/17/04			ND<1300									
03/22/05			ND<1300									
09/29/05			ND<250									
01/09/06			ND<250									
09/27/06			ND<2500									
03/29/07			ND<250									
09/21/07			ND<250									
03/27/08			ND<250									
09/02/08			ND<250									
03/06/09			ND<250									
08/21/09			ND<250									
MW-4												
02/06/02		ND<500	ND<12000	ND<25	ND<25	ND<25	ND<25	ND<25				
08/18/03			ND<10000									
02/24/04			ND<20000									
09/17/04			ND<250									
6419						Page 2 of 4					0	TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6419

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	Cadmium (dissolved) (mg/l)	Chromium (total) (mg/l)	Lead (total) (mg/l)	Nickel (total) (mg/l)
MW-4 c	continued											
03/22/05			ND<200									
09/29/05			ND<250									
01/09/06			ND<250									
MW-5												
02/06/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
08/18/03			ND<500									
02/24/04			ND<500									
09/17/04			ND<50									
03/22/05			ND<50									
09/29/05			ND<250									
01/09/06			ND<250									
09/27/06			ND<250									
03/29/07			ND<250									
09/21/07			ND<250									
03/27/08			ND<250									
09/02/08			ND<250									
03/06/09			ND<250									
08/21/09			ND<250									
MW-6												
05/21/99		ND<170				ND<8.3	ND<8.3	ND<8.3				
02/06/02		ND<170	ND<4200	ND<8.3	ND<8.3	ND<8.3	ND<8.3	ND<8.3				
08/18/03			ND<1000									
02/24/04			ND<1000									
09/17/04			ND<100									
03/22/05			ND<50									
						Daga 2 of 4					-	

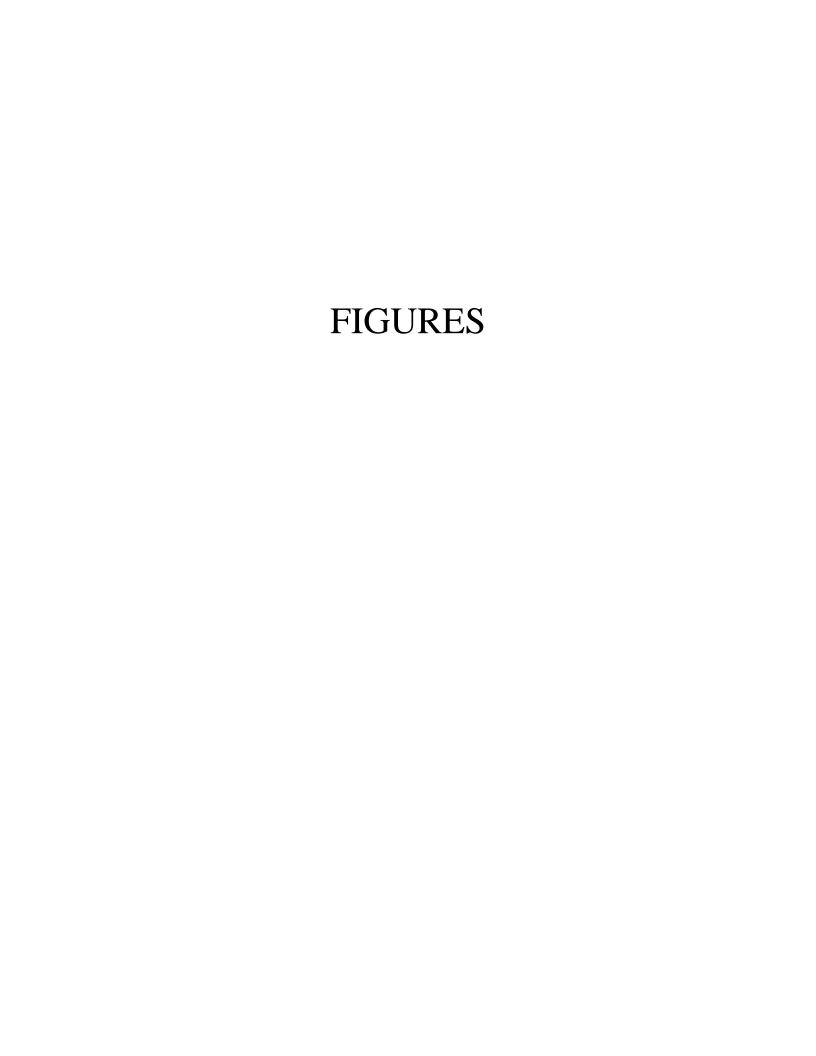
Page 3 of 4

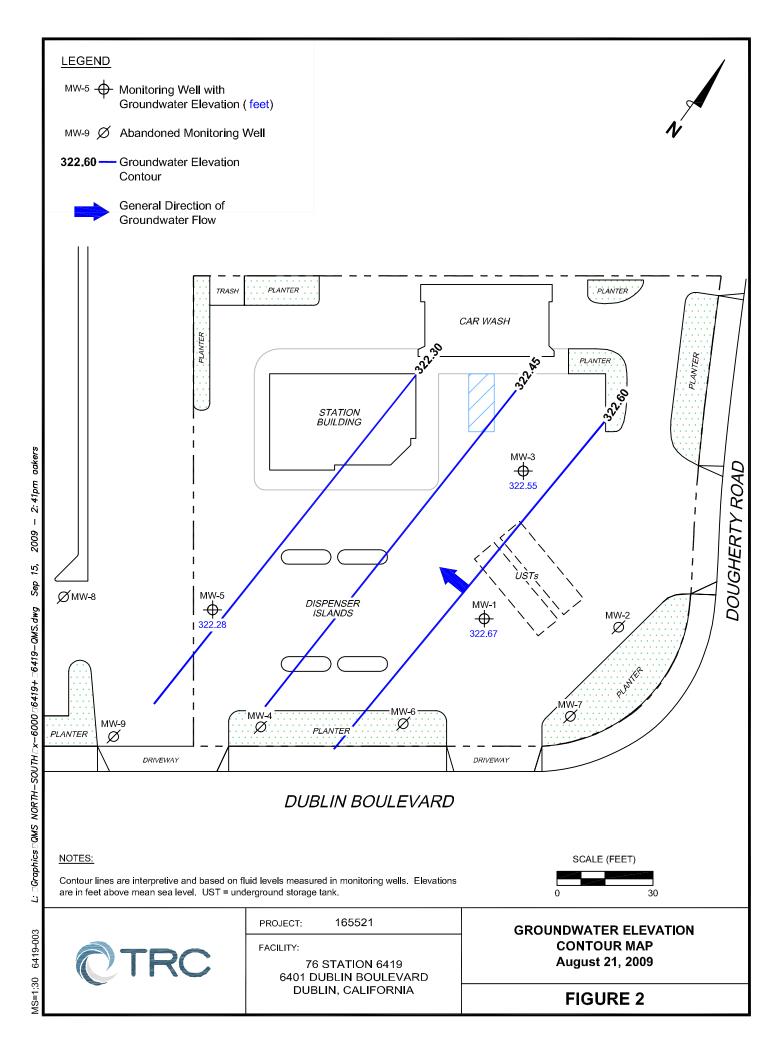
Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6419

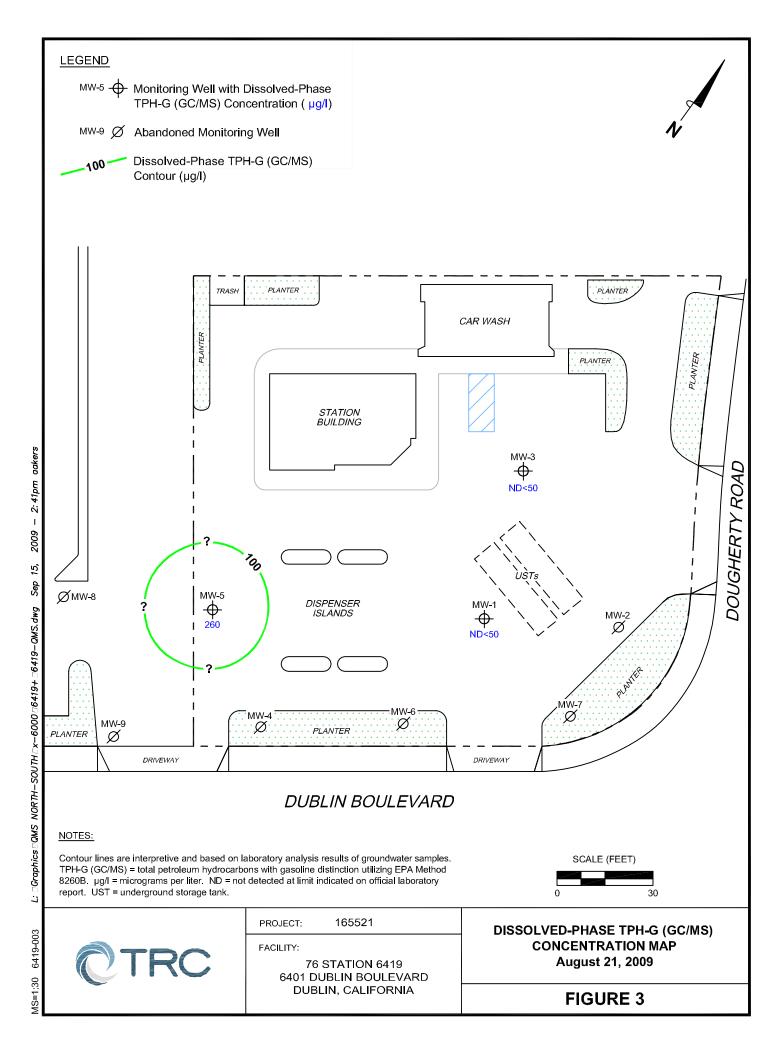
Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	Cadmium (dissolved) (mg/l)	Chromium (total) (mg/l)	Lead (total) (mg/l)	Nickel (total) (mg/l)
MW-6 c	ontinued											
09/29/05			ND<250									
01/09/06			ND<250									
MW-7												
02/06/02		ND<20	ND<500	ND<1.0	ND<1.0	1.4	ND<1.0	ND<1.0				
08/18/03			ND<500									
02/24/04			ND<500									
09/17/04			ND<50									
03/22/05			ND<50									
09/29/05			ND<250									
01/09/06			ND<250									
MW-8												
10/11/01		ND<20	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
02/06/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
08/18/03			ND<500									
02/24/04			ND<500									
09/17/04			ND<50									
MW-9												
10/11/01		ND<20	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
02/06/02		ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
08/18/03			ND<500									
02/24/04			ND<500									
09/17/04			ND<50									

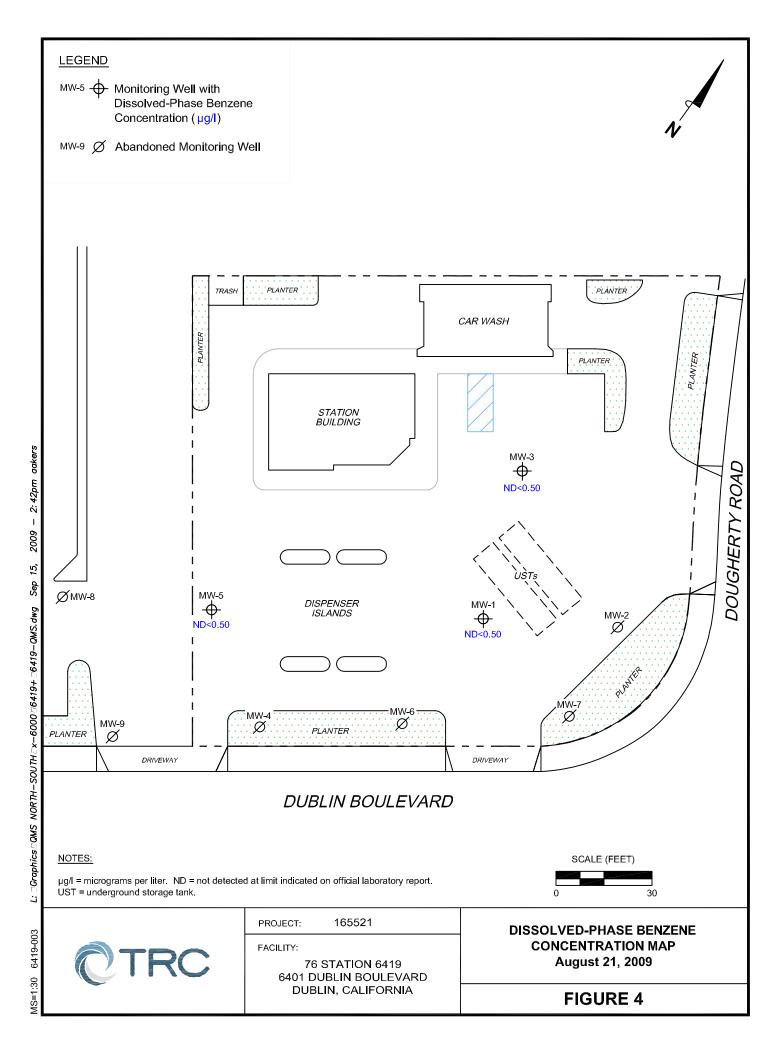
Page 4 of 4

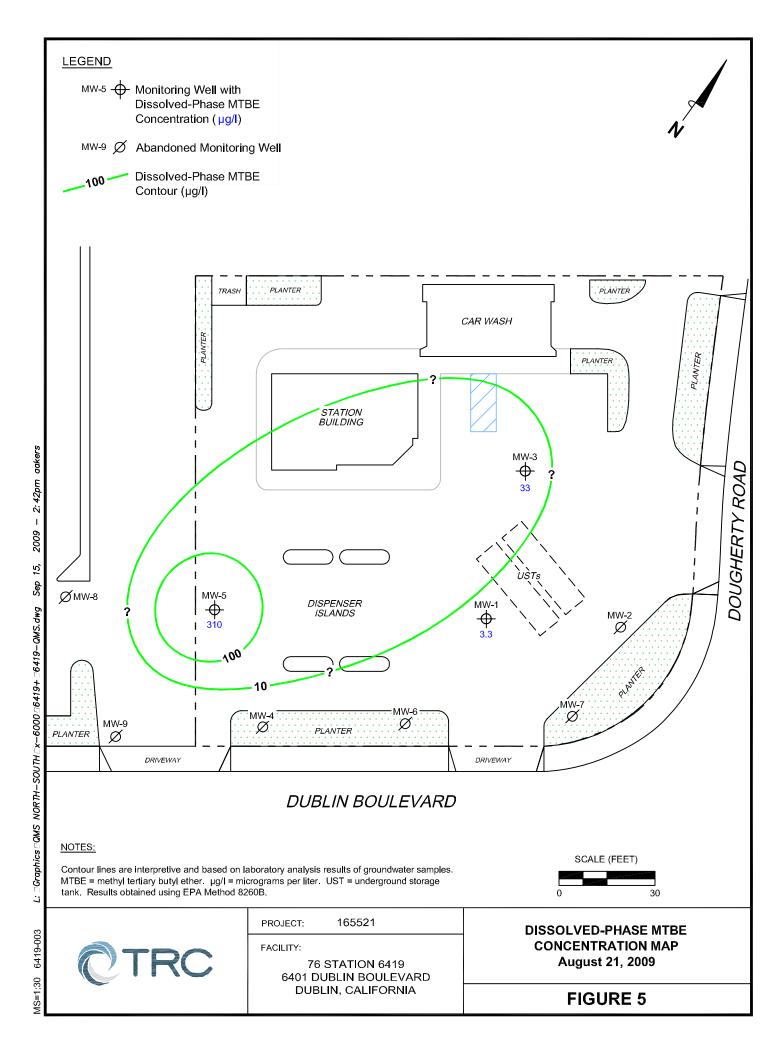
Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6419

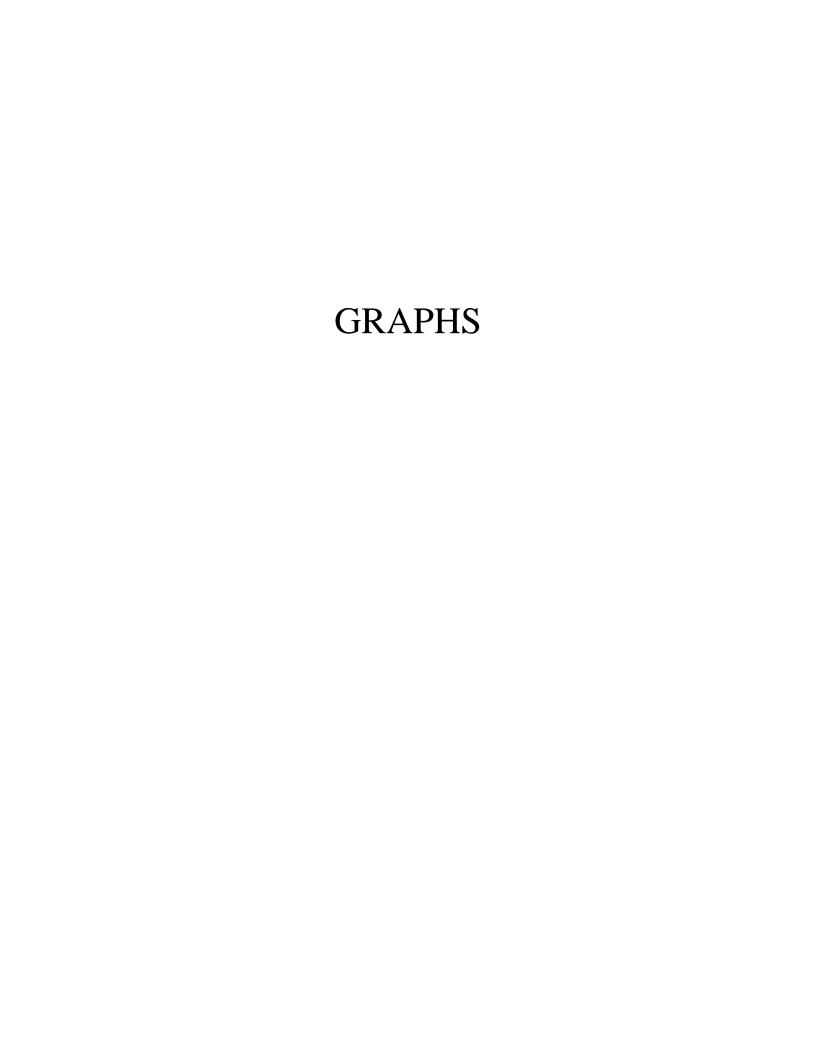

Date		Post-purge	Pre-purge
Sampled	Zinc	Dissolved	Dissolved
	(total)	Oxygen	Oxygen
	(mg/l)	(mg/l)	(mg/l)
MW-1			
03/14/94	0.039		
02/15/95		4.3	
05/17/95		1.2	
08/25/95		2.71	
11/28/95		3.25	
02/26/96		1.41	5.23
08/23/96			3.83
02/17/97		0.78	0.82
08/18/97		2.35	1.28
05/16/01			1.54
08/24/01		3.1	
MW-2			
02/15/95		1.9	
02/26/96		0.43	0.62
08/23/96			2.04
02/17/97		0.82	0.9
08/18/97			1.16
05/16/01			1.47
08/24/01		2.6	
MW-3			
02/15/95		2.6	
03/13/95		1.13	
08/25/95		1.86	
11/28/95		6.81	

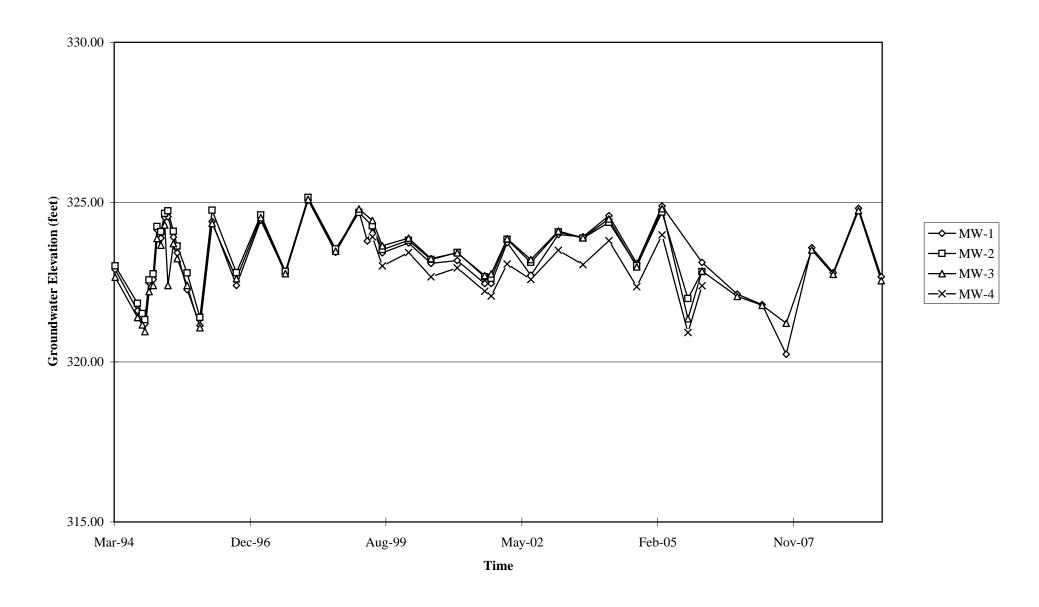

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6419

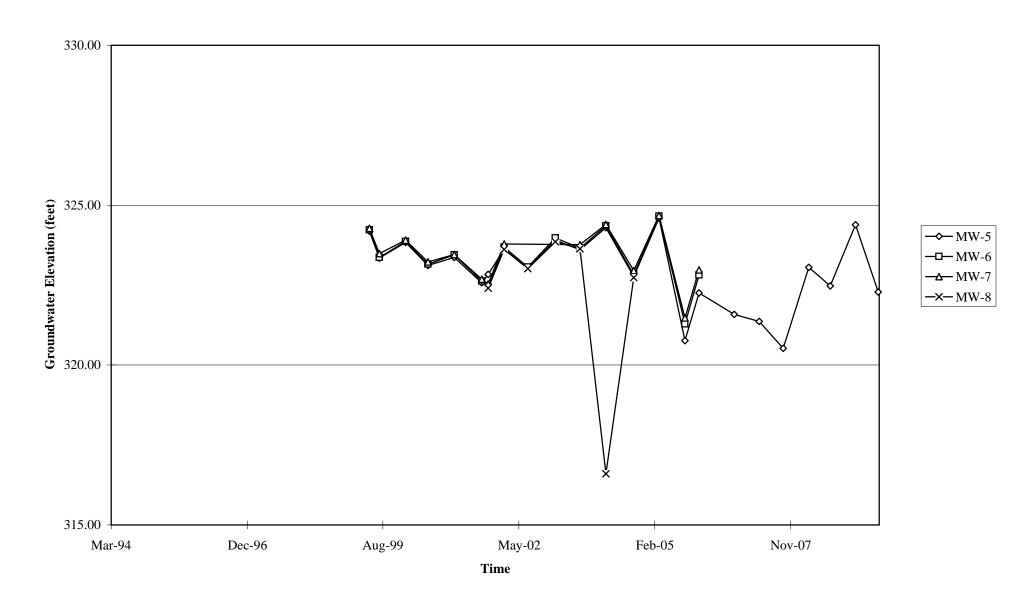

Date		Post-purge	Pre-purge
Sampled	Zinc	Dissolved	Dissolved
	(total)	Oxygen	Oxygen
<u> </u>	(mg/l)	(mg/l)	(mg/l)
MW-3 cor	ntinued		
02/26/96		1.11	16.83
08/23/96			3.29
02/17/97		0.8	0.8
08/18/97			1.43
05/16/01		2.6	1.65
08/24/01		2.60	
MW-4			
08/24/01		2.3	
MW-5 08/24/01		2.1	
06/24/01		2.1	
MW-6			
08/24/01		2.7	
MW-7			
08/24/01		2.7	

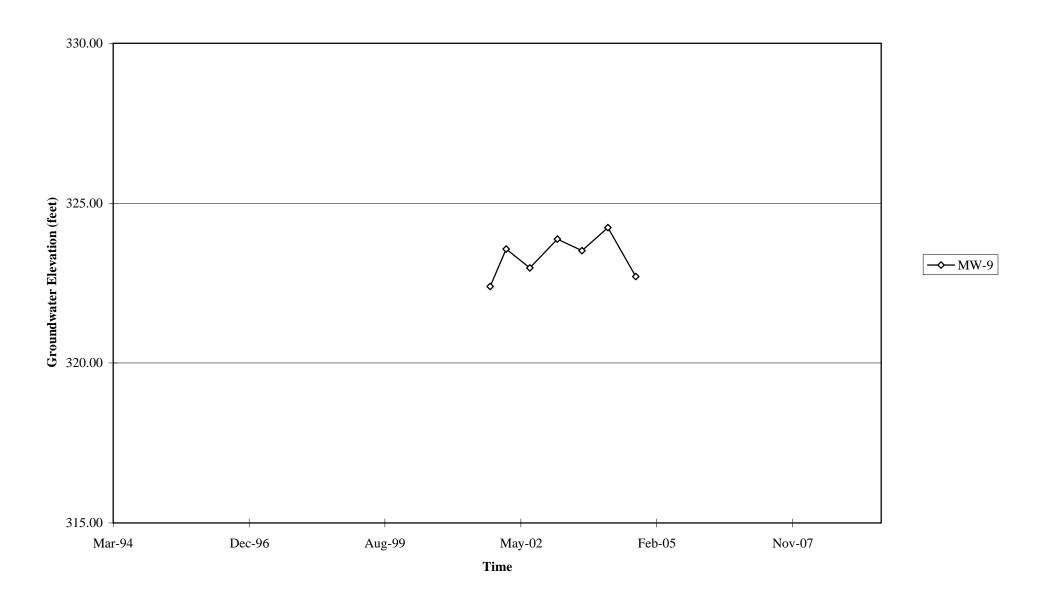


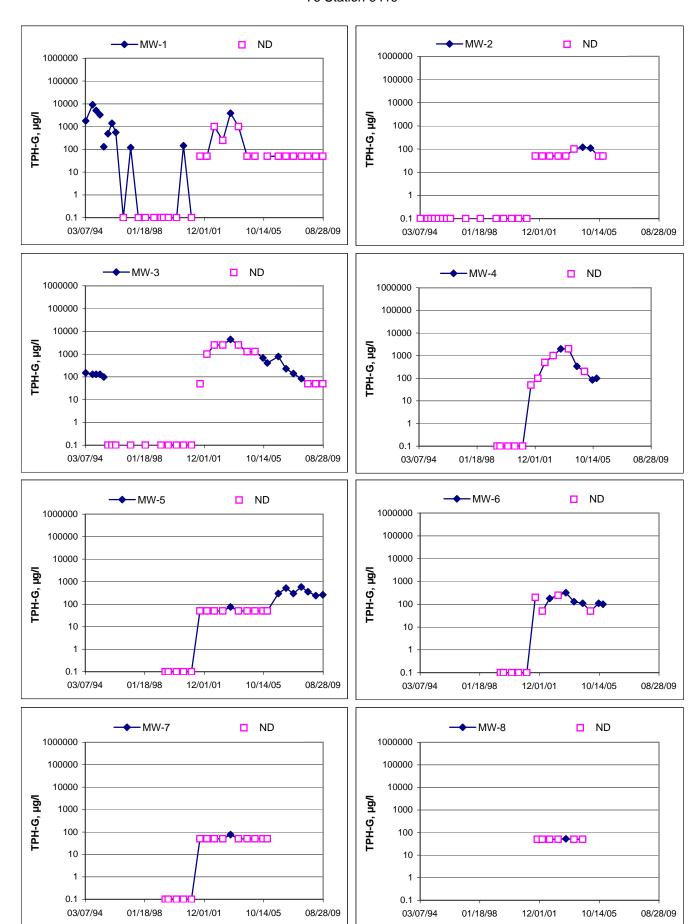


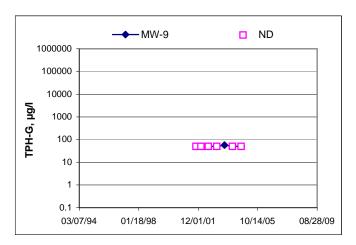

Village

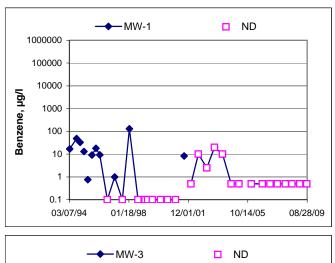


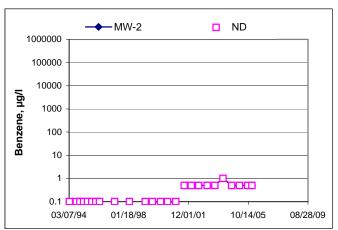


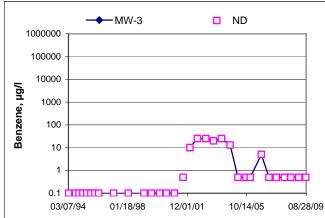


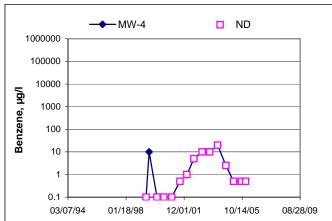

Groundwater Elevations vs. Time 76 Station 6419

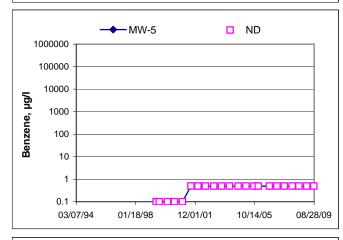


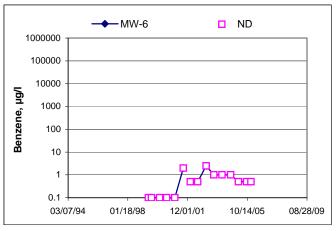

TPH-G Concentrations vs Time

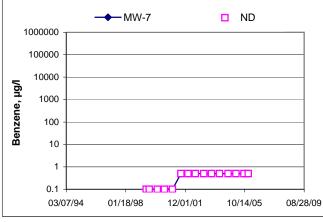


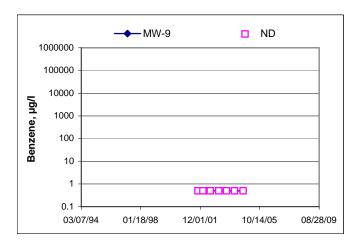

TPH-G Concentrations vs Time

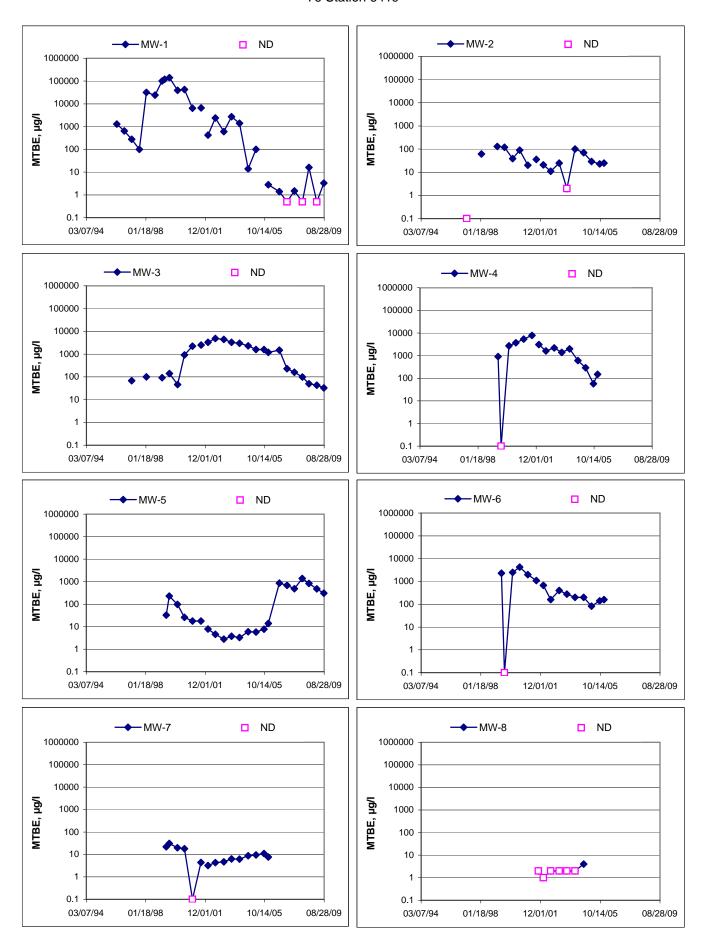


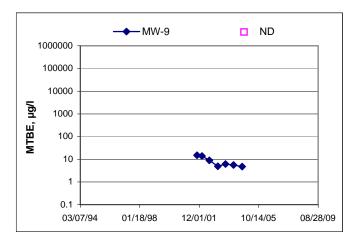

Benzene Concentrations vs Time










Benzene Concentrations vs Time

MTBE Concentrations vs Time

MTBE Concentrations vs Time

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

3/7/08 version

FIELD MONITORING DATA SHEET

 Technician: JoE
 Job #/Task #: 165521/FAZO
 Date: 08-21-09

 Site # 6419
 Project Manager A : Collins
 Page 1 of /

Well#	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
		0900		7.50	Troduct		1028	2"
MW-1		n925	13.46	0 04				z"
MW-3 MW-5	X						1012	Z"
/MW-5	<u>X</u>	0707	19.36	1.70	***************************************		1023	<u> </u>
					<u> </u>			<u> </u>
					<u> </u>			
								
	.,							
	•							
								
		3	<u></u>	<u> </u>				
		<u> </u>	<u> </u>	 				
				<u> </u>				
			-		-			
			<u> </u>	1				
								
FIELD DATA	COMPL	ETE	QA/QC	,	<u> </u>	W	ELI/BOX C	ONDITION SHEETS
MANIFEST		DRUM IX	/ IVENTOR	Y	TRAFFIC	CONTROL	1	
		/						

GROUNDWATER SAMPLING FIELD NOTES

		Ted	hnician:	JOE		_			
Site: <u>64</u>	19	Proj	ect No.:/	65521			Date:	08-2	1-09
Weli No	19 MW-1			Purge Metho	d:	4	_		
	/ater (feet):_			Depth to Pro		(Parameter)			
Total Depth	n (feet)	9.25		•	Recovered (g	allons): ´			
Water Colu	ımn (feet):	1.75			eter (Inches):_			-	
80% Recha	arge Depth(f	eet): 7.85			ne (gallons):				*
Time	Time	Depth to	Volume	Conductivity	Temperature		D.O		
Start	Stop	Water (feet)	Purged (gallons)	(µS/cm)	(F(C)	рН	(mg/L)	ORP	Turbidity
	Purge		2340-1340 -1 34						
0923	600 m		1	1258	21.6	7.59 7.59			
1004	1007		2	1269	21.9				
1009	1007		<u> </u>	1010	29.1	7.61			
Stat	tic at Time S	ampled	To	tal Gallons Pur	ged		Sample		
Comments	7.72	- 7 (0 21	100			1028	<i>i</i>	**.
Hand	Bailed	last G	- 1-1-1-1-1 	to pail	or well	reci	101520	Wit	h in 45"
•	MW-	1 10.00		Purge Metho	d: 50 D	- 4-	HB		
Depth to W	ater (feet):_	8,04		Depth to Pro	duct (feet):	- Marie Charles			
		18:46		•	Recovered (ga		And in contrast of the Contras		
		10.42		Casing Diam	eter (Inches):_	2"		-	
		eet): 10.12	· · · · · · · · · · · · · · · · · · ·	1 Well Volum		2			
	1	Depth to	Volume					****	
Time Start	Time Stop	Water (feet)	Purged (gallons)	Conductivity (µS/cm)	Temperature (F C)	pН	D.O. (mg/L.)	ORP	Turbidity
	Purge								
0931	 		2	2562	23,0	7.02			
	0 940		4	2568	22.7	6.89			

Start	Stop	VVater (feet)	Purged (gallons)	(µS/cm)	(F (C)	pН	(mg/L)	ORP	Turbidity
	Purge								
0931			2	2562	23,0	7.02			
			4	2568	22.7	6.89			
	0940		6	2434	226	6.94			
			<u> </u>						
Stat	tic at Time Sa	ampled	Tot	al Gallons Pur	ged		Sample	Time	
	8.31		6				1012		
Comments	s:						/-/2		
						. , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

GROUNDWATER SAMPLING FIELD NOTES

		Tec	:hnician: _	JOE					
Site: <u>64</u>	19	Proj	ect No.:/	165521	<i>i</i>		Date:	08-	21-09
Well No	19 mw-5	•		Purge Methc	od: <i></i>	I 1			-
	Vater (feet):				duct (feet):	· ·			
Total Dept	h (feet)	19.36			r Recovered (ga			_	
		11.46			r recovered (ga reter (Inches):			-	
	•	eet): 10:19	· 	1 Well Volum	ne (gallons):	2		_	
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F(C)	рН	D.O. (mg/L)	ORP	Turbidity
	-Purge	g seek greater is							
0948			7	1585	23.8	7.43			
	0956		6	1641	21.7	7.19			
Sta	tic at Time Sa			al Gallons Pur	ged			· · · · · · · · · · · · · · · · · · ·	
Comment	<u> 7,92</u>	gar.	6				1023	<u>, </u>	
	<u> </u>								
Well No				Purge Metho	d:	w. *			
	•				duct (feet):				
					Recovered (ga				
		· · · · · · · · · · · · · · · · · · ·			eter (Inches):	-		-	
	arge Depth(fe			1 Well Volum				_	
	1190 2 Cp 11.(J.J		I WEII VOIGH	e (galions)				
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-	Purge								
						<u> </u>			
Sta	tic at Time Sa	mpled	Tota	al Gallons Purç	ged		Sample	Time	
Comments									
	····								

Date of Report: 08/27/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

RE: 6419

BC Work Order: 0911073

Invoice ID: B067075

Enclosed are the results of analyses for samples received by the laboratory on 8/21/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Authorized Signature

21 Technology Drive Project Number: 4510932387
Irvine, CA 92618 Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	n			
0911073-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 6419 MW-1 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	08/21/2009 18:50 08/21/2009 10:28 Water	Delivery Work Order: Global ID: T0600101443 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0911073-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 6419 MW-3 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	08/21/2009 18:50 08/21/2009 10:12 Water	Delivery Work Order: Global ID: T0600101443 Location ID (FieldPoint): MW-3 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0911073-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 6419 MW-5 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	08/21/2009 18:50 08/21/2009 10:23 Water	Delivery Work Order: Global ID: T0600101443 Location ID (FieldPoint): MW-5 Matrix: W Sample QC Type (SACode): CS Cooler ID:

21 Technology Drive Project Number: 4510932387
Irvine, CA 92618 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0911073-	01 Client	Sample Name	e: 6419, N	1W-1, 8/21/2	009 10:28:00	DAM							
	=					Prep	Run		Instru-		QC	MB	Lab
Constituent	Res	ult Uni	ts PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	NI	O ug/	L 0.50		EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
Ethylbenzene	NI	O ug/	L 0.50		EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
Methyl t-butyl ether	3.3	3 ug/	L 0.50		EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
Toluene	NI	O ug/	L 0.50		EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
Total Xylenes	NI	O ug/	L 1.0		EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
Ethanol	NI	O ug/	L 250		EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
Total Purgeable Petroleum Hydrocarbons	NI	O ug/	L 50		Luft-GC/M S	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417	ND	
1,2-Dichloroethane-d4 (Surrogate)	10	4 %	76 - 114 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417		
Toluene-d8 (Surrogate)	10	2 %	88 - 110 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417		
4-Bromofluorobenzene (Surrogate)	10	0 %	86 - 115 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 06:06	KEA	MS-V12	1	BSH1417		

21 Technology DriveProject Number:4510932387Irvine, CA 92618Project Manager:Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 091107	3-02	Client Sample	e Name:	6419, MW-3, 8/2	21/2009 1	10:12:00	AM							
	-						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MI	DL Me	thod	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
Ethylbenzene		ND	ug/L	0.50	EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
Methyl t-butyl ether		33	ug/L	0.50	EP#	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
Toluene		ND	ug/L	0.50	EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
Total Xylenes		ND	ug/L	1.0	EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
Ethanol		ND	ug/L	250	EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft S	t-GC/M	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417	ND	
1,2-Dichloroethane-d4 (Surrogate)		95.4	%	76 - 114 (LCL - UCI	_) EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417		
Toluene-d8 (Surrogate)		96.3	%	88 - 110 (LCL - UCI	_) EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417		
4-Bromofluorobenzene (Surrogate)		100	%	86 - 115 (LCL - UCI	_) EPA	A-8260	08/25/09	08/26/09 05:48	KEA	MS-V12	1	BSH1417		

21 Technology DriveProject Number:4510932387Irvine, CA 92618Project Manager:Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0911073-03	Client Sample	e Name:	6419, MW-5, 8/21	/2009 10:23:00	DAM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDI	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417	ND	
Methyl t-butyl ether	310	ug/L	2.5	EPA-8260	08/25/09	08/26/09 22:03	KEA	MS-V12	5	BSH1417	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417	ND	
Ethanol	ND	ug/L	250	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417	ND	
Total Purgeable Petroleum Hydrocarbons	260	ug/L	50	Luft-GC/M S	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 22:03	KEA	MS-V12	5	BSH1417		
1,2-Dichloroethane-d4 (Surrogate)	97.6	%	76 - 114 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417		
Toluene-d8 (Surrogate)	99.2	%	88 - 110 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417		
Toluene-d8 (Surrogate)	97.5	%	88 - 110 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 22:03	KEA	MS-V12	5	BSH1417		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 05:29	KEA	MS-V12	1	BSH1417		
4-Bromofluorobenzene (Surrogate)	99.4	%	86 - 115 (LCL - UCL)	EPA-8260	08/25/09	08/26/09 22:03	KEA	MS-V12	5	BSH1417		

21 Technology Drive Project Number: 4510932387
Irvine, CA 92618 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Control Limits		
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSH1417	Matrix Spike	0909743-69	0	23.190	25.000	ug/L		92.8		70 - 130
		Matrix Spike Duplicate	0909743-69	0	23.990	25.000	ug/L	3.4	96.0	20	70 - 130
Toluene	BSH1417	Matrix Spike	0909743-69	0	21.070	25.000	ug/L		84.3		70 - 130
		Matrix Spike Duplicate	0909743-69	0	20.820	25.000	ug/L	1.2	83.3	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSH1417	Matrix Spike	0909743-69	ND	9.4800	10.000	ug/L		94.8		76 - 114
		Matrix Spike Duplicate	0909743-69	ND	9.9800	10.000	ug/L		99.8		76 - 114
Toluene-d8 (Surrogate)	BSH1417	Matrix Spike	0909743-69	ND	9.9800	10.000	ug/L		99.8		88 - 110
		Matrix Spike Duplicate	0909743-69	ND	9.9100	10.000	ug/L		99.1		88 - 110
4-Bromofluorobenzene (Surrogate)	BSH1417	Matrix Spike	0909743-69	ND	9.7000	10.000	ug/L		97.0		86 - 115
		Matrix Spike Duplicate	0909743-69	ND	10.190	10.000	ug/L		102		86 - 115

21 Technology Drive Project Number: 4510932387
Irvine, CA 92618 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

									Control Limits				
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
Benzene	BSH1417	BSH1417-BS1	LCS	23.220	25.000	0.50	ug/L	92.9		70 - 130			
Toluene	BSH1417	BSH1417-BS1	LCS	20.990	25.000	0.50	ug/L	84.0		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	BSH1417	BSH1417-BS1	LCS	10.100	10.000		ug/L	101		76 - 114			
Toluene-d8 (Surrogate)	BSH1417	BSH1417-BS1	LCS	10.210	10.000		ug/L	102		88 - 110			
4-Bromofluorobenzene (Surrogate)	BSH1417	BSH1417-BS1	LCS	9.6700	10.000		ug/L	96.7		86 - 115			

21 Technology Drive Project Number: 4510932387
Irvine, CA 92618 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BSH1417	BSH1417-BLK1	ND	ug/L	0.50		
Ethylbenzene	BSH1417	BSH1417-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BSH1417	BSH1417-BLK1	ND	ug/L	0.50		
Toluene	BSH1417	BSH1417-BLK1	ND	ug/L	0.50		
Total Xylenes	BSH1417	BSH1417-BLK1	ND	ug/L	1.0		
Ethanol	BSH1417	BSH1417-BLK1	ND	ug/L	250		
Total Purgeable Petroleum Hydrocarbons	BSH1417	BSH1417-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSH1417	BSH1417-BLK1	103	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BSH1417	BSH1417-BLK1	101	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSH1417	BSH1417-BLK1	96.8	%	86 - 115 (LCL - UCL)	

21 Technology Drive Project Number: 4510932387 Irvine, CA 92618 Project Manager: Anju Farfan

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A90 TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.

C LABORATORIES INC. SAMPLE RECEIPT FORM Rev. No. 12 06/24/08 Page Of												
Submission #: 09-11073	shipping information shipping container											
SHIPPING INFORMATION SHIPPING CONTAINER ederal Express UPS Hand Delivery Ice Chest												
Federal Express UPS	Hand Deliv	ery □		Į.	ce Chest-l							
BC Lab Field Service Other	☐ (Specify)				Box (r □ (Spec	ify)			
								Line movement				
Refrigerant: Ice Blue Ice [□ None	□ Oth	er□ C	Comment	is:							
Custody Seals Ice Chest □	Containe	rs □	None 🗹	Comme	nts:							
Intact? Yes ☐ No ☐	Intact? Yes											
All samples received? Yes 7 No D	All samples received? Yes ☑ No □ All samples containers intact? Yes ☑ No □ Description(s) match COC? Yes ☑ No □											
				/				11000. 1	110 6	1900		
COC Received	Emissivity: <u>(</u>	<u> </u>	ntainer: _	<u>VOQ</u> 7	hermomete	er ID: <u>Tht</u>	720	Date/Time	= <u> 8 21 D</u> 0	1 100		
YES DNO	Temperature:	A 3.	4 .	c / c	2.4	°C		Analyst Ir	(۱۱۱ <u>۵ ناران</u>			
				·								
SAMPLE NUMBERS SAMPLE CONTAINERS												
	1 1	2	3	4	5	6	7	8	9	10		
QT GENERAL MINERAL/ GENERAL PHYSICA PT PE UNPRESERVED	\ <u>_</u> }	-										
OT INORGANIC CHEMICAL METALS												
PT INORGANIC CHEMICAL METALS												
PT CYANIDE												
PT NITROGEN FORMS	1						*****					
PT TOTAL SULFIDE	Section 1						· · · · · · · · · · · · · · · · · · ·					
2oz. NITRATE / NITRITE		-;										
PT TOTAL ORGANIC CARBON												
PT TOX	3											
PT CHEMICAL OXYGEN DEMAND	Common American											
PtA PHENOLICS												
40mi VOA VIAL TRAVEL BLANK												
40mi VOA VIAL	A3	A (3)	A-3	()	()	()	()	()	()	()		
QT EPA 413.1, 413.2, 418.1												
PT ODOR												
RADIOLOGICAL												
BACTERIOLOGICAL												
40 ml VOA VIAL- 504												
QT EPA 508/608/8080						·						
OT EPA 515.1/8150												
QT EPA 525				· ·								
OT EPA 525 TRAVEL BLANK		-										
100ml EPA 547	10000											
100ml EPA 531.1												
QT EPA 548												
QT EPA 549				7.7								
QT EPA 632	and											
QT EPA 8015M												
QT AMBER	TO COLUMN TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO T			· · · · · · · · · · · · · · · · · · ·				<u> </u>				
8 OZ. JAR												
32 OZ. JAR						,,,,,						
SOIL SLEEVE PCB VIAL	est de la companya de											
PLASTIC BAG			-									
FERROUS IRON												
ENCORE							<u> </u>					
Commente					<u> </u>			<u> </u>				

Comments:
Sample Numbering Completed By:
A = Actual / C = Corrected リンル Date/Time: [H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD] BC LABORATORIES, INC.

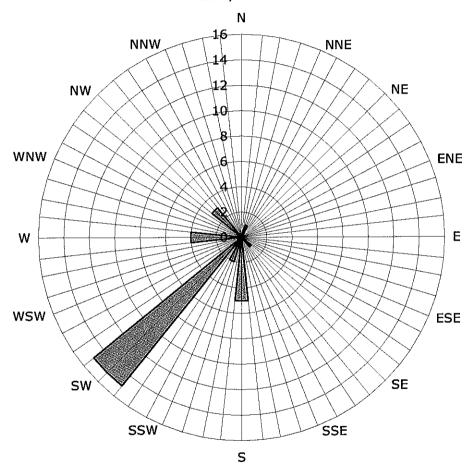
4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

			09-11073			An	aly	/sis	Red	que	ested		
Bill to: Conoco Phillips/ TRC		Consultant Firm: TRC		(SL)	BTEX/MTBE by 8021B, Gas by 8015	TPH GAS by 8015M	TPH DIESEL by 8015	3260 full list w/ oxygenates	BTEX/MTBE/ OXYS -BY 8260B	ETHANOL by 8260B	-G by GC/MS		
Address: 6401 Dublin Bivá.		21 Technology Drive Irvine, CA 92618-2302 Attn: Anju Farfan											nested
City: Dublin		4-digit site#: (6419 Workorder #02527-4510932387											Time Requested
State: CA Zip:		Project #: /6557/											T
Conoco Phillips Mgr. Terryson		Sampler Name: JOE		Sludge									Tunaround
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTE	Ī	T L	8260	<u>m</u>	Ī			decim decim excep excep excep
	,\	mw-1	08-21-09 1028	Gev					X	X			570
	,2	mw-3	1012						<u> </u>				
	<i>.</i> 5	Mw-5	V 1023	I V					W	W			
CHI BY DISTRIBUTION THE STATE OF THE STATE												1000	
Comments:	Run & OXYS by 8260 on Relinquished by (Signature) ments: MTBE hit on MW-1 only				Received by				l 1	Date &	1233		
GLOBAL ID: 70600101443		Refinquished By: (21/09	21/05			Received by: Received by:				Date & Time 9-21.09 (\$37) Date & Time		
	-	1 A A	Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)			The converted by					1 1	109	1850

Receipt of Manifest is Pending

(September 11, 2009)


LIMITATIONS

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.

Attachment B Rose Diagram

Historic Groundwater Flow Directions 76 Station No. 6419

6401 Dublin Blvd. Dublin, California

Legend
Groundwater flow directions are based on data from August 1994 to August 2009. 31 data points shown.

■ Groundwater Flow Direction