**Groundwater Monitoring Report** Third Quarter 2000 Former Glovatorium 3815 Broadway, Oakland, California

> 6895.00-030 November 2, 2000

Prepared for Smiland & Khachigian 601 West Fifth Street, 7<sup>th</sup> Floor Los Angeles, California 90071-2004





November 2, 2000 6895.00-030

Mr. Scott Seery, CHMM
Hazardous Materials Specialist
Alameda County Health Care Services Agency
Department of Environmental Health
1131 Harbor Bay Parkway, 2<sup>nd</sup> Floor
Alameda, California 94502

Subject: Third Quarter 2000 Groundwater Monitoring Report, Former Glovatorium,

3815 Broadway, Oakland, California

Dear Mr. Seery:

LFR Levine · Fricke is submitting the enclosed quarterly groundwater monitoring report for the subject site, which covers the period from June 1 through August 31, 2000. The report discusses groundwater sampling results from the third quarter 2000 sampling event, which includes the initiation of the bioattenuation evaluation and presents a summary and recommendations.

If you have any questions or comments regarding the enclosed report, please call either of the undersigned.

Sincerely,

Julie C. Sharp, P.E.

Senior Engineer

Charles H. Pardini, R.G.

Principal Geologist,

Assistant Operations Manager

Enclosure

cc: Stuart Depper, Clean Tech Machinery
Albert M. Cohen, Smiland & Khachigian
Betty Graham, Regional Water Quality Control Board
Bruce Page, Bruce W. Page Consulting

#### **CONTENTS**

| 1.0 | INTRODUCTION                                       | 1  |
|-----|----------------------------------------------------|----|
| 2.0 | ACTIVITIES COMPLETED IN THIRD QUARTER 2000         | 1  |
| 3.0 | SITE DESCRIPTION AND BACKGROUND                    | 3  |
|     | 3.1 Site Description                               | 3  |
|     | 3.2 Summary of Previous Investigations             | 4  |
|     | 3.3 Local and Site Geology                         | 5  |
|     | 3.3.1 Lithology Encountered in LFR-1 through LFR-4 | 5  |
| 4.0 | RESULTS OF THIRD QUARTER 2000 SAMPLING EVENT       | 6  |
|     | 4.1 Groundwater Elevations                         | 6  |
|     | 4.2 Soil Analyses and Results                      | 7  |
|     | 4.3 Groundwater Analyses and Results               | 7  |
|     | 4.3.1 Routine Analysis Results                     | 7  |
|     | 4.3.2 Bioattenuation Parameter Analysis Results    | 8  |
| 5.0 | SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS          | 12 |
|     | 5.1 Summary                                        | 12 |
|     | 5.2 Conclusions                                    | 14 |
|     | 5.3 Recommendations                                | 15 |
| REF | FERENCES                                           | 16 |

#### **TABLES**

- 1 Construction Data for Temporary Sampling Points and Monitoring Wells
- 2 Groundwater Elevations
- 3 Summary of Analytical Results for Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses of Soil Samples Collected in the Vicinity of the Former Glovatorium
- 4 Summary of Analytical Results for Volatile Organic Compound (VOC) Analyses of Soil Samples Collected in the Vicinity of the Former Glovatorium

- 5 Summary of Analytical Results for Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses of Groundwater Samples
- 6 Summary of Analytical Results for Volatile Organic Compound (VOC) Analyses of Groundwater Samples
- 7 Summary of Analytical Results and Field Measurements For Dissolved Anions, Cations, and Gases in Groundwater Samples

#### **FIGURES**

- 1 Site Location Map
- 2 Site Plan Showing Groundwater Sampling Locations
- 3 Groundwater Elevations, August 9, 2000
- 4 Stoddard Solvent Concentrations (mg/l) in Groundwater Samples, August 2000
- 5 Benzene Concentrations (mg/l) in Groundwater Samples, August 2000
- 6 PCE Concentrations (mg/l) in Groundwater Samples, August 2000
- 7 TCE Concentrations (mg/l) in Groundwater Samples, August 2000
- 8 cis-1,2-DCE Concentrations (mg/l) in Groundwater Samples, August 2000
- 9 Vinyl Chloride Concentrations (mg/l) in Groundwater Samples, August 2000
- 10 Dissolved Oxygen Concentrations (mg/l) in Groundwater Samples, August 2000
- 11 Nitrate Nitrogen Concentrations (mg/l) in Groundwater Samples, August 2000
- 12 Sulfate Concentrations (mg/l) in Groundwater Samples, August 2000
- 13 Carbon Dioxide and Methane Concentrations (mg/l) in Groundwater Samples, August 2000

#### APPENDICES

- A Permits
- B Boring Logs and Well Construction Details
- C Field Methods for Soil and Groundwater Investigation
- D Water-Quality Sampling Information Forms and Water-Level Measurements Log
- E Laboratory Certificates

#### 1.0 INTRODUCTION

This quarterly groundwater monitoring report describes activities completed and presents the results of groundwater monitoring conducted during the third quarter 2000, which covers the period from June 1 through August 31, 2000, at the former Glovatorium, a dry cleaning business located at 3815 Broadway in Oakland, California ("the Site"; Figure 1). This report was prepared by LFR Levine · Fricke (LFR) on behalf of Smiland & Khachigian. The quarterly groundwater monitoring activities were conducted in accordance with the June 14, 2000 Work Plan (LFR 2000b) that was approved by the Alameda County Health Care Services Agency (ACHCSA). The report was prepared pursuant to the June 14, 2000 Work Plan, a letter from the ACHCSA dated January 5, 2000, and discussions on May 10, 2000, between Mr. Scott Seery of ACHCSA, Ms. Betty Graham of the Regional Water Quality Control Board (RWQCB), and representatives of LFR and Bruce W. Page Consulting.

The report is organized into the following sections:

Section 1.0 is an introduction and summarizes the organization of this report.

Section 2.0 discusses activities completed in the third quarter 2000.

Section 3.0 provides a description of the Site and background information.

Section 4.0 presents soil and groundwater monitoring results, including groundwater-level measurements, laboratory analysis results of soil and groundwater samples, and field screening results of groundwater samples.

Section 5.0 presents a summary, conclusions, and recommendations.

This work is needed to determine the nature and extent of environmental contamination, and thus whether contamination is affecting the neighboring Thompson property. This information is needed to defend against the claim that Mr. Thompson brought against the Glovatorium and the Deppers. This work may also provide data that could help determine when releases occurred, which is also significant to defending against the claims brought by the Johnsons.

# 2.0 ACTIVITIES COMPLETED IN THIRD QUARTER 2000

Activities completed in the third quarter 2000 included routine groundwater monitoring plus groundwater monitoring well installation, temporary sampling point abandonment, and evaluating the potential of bioattenuation as a means to reduce chemical concentrations in groundwater. As agreed to by ACHCSA during our May 10, 2000, meeting and proposed in LFR's June 14, 2000 Work Plan, four new groundwater monitoring wells were installed to help further assess groundwater flow direction and

to assess the lateral extent of affected groundwater in the site vicinity. The wells were located to provide an adequate distribution of monitoring points for measuring groundwater levels to assess groundwater flow patterns at the Site. Two temporary sampling points were selected to be abandoned as agreed in the May 10, 2000 discussions and proposed in the June 14, 2000 Work Plan. Groundwater gradient and groundwater quality assessments were conducted based on the results obtained. The following activities were conducted during the third quarter 2000 monitoring period (June 1 through August 31, 2000):

- Preliminary Activities. Before field work began, permits to abandon the two temporary sampling points and to drill the four soil borings and install four groundwater monitoring wells were obtained from the Alameda County Public Works Agency. In addition, two excavation permits (one for the borings on 38th Street and one for the borings on Manila Avenue) were obtained by the Site owner from the City of Oakland. A traffic plan was also prepared for the City of Oakland. These forms are included in Appendix A. An access agreement was obtained to drill at location LFR-2, which is on private property. The proposed drilling locations were marked using white paint and cleared for underground utilities by a subcontracted utility locator using geophysical methods. Underground Services Alert (USA) was notified of drilling activities. A Health and Safety Plan (HSP) was prepared and distributed to on-site field personnel. Personnel engaged in field activities were briefed on the contents and procedures of the HSP. Field personnel signed a copy of the HSP, which is retained by LFR, documenting that they had read the HSP. Field activities were monitored to ensure that appropriate health and safety procedures were followed.
- Temporary Sampling Point Abandonment Activities. Temporary grab groundwater sampling points GW-6 and GW-8 were abandoned and sealed, in accordance with County of Alameda and City of Oakland regulations. GW-6 was abandoned because it had been dry since it was installed. GW-8 was abandoned because monitoring well LFR-1 was installed at that location.
- Groundwater Monitoring Well Installation. Four groundwater monitoring wells, LFR-1 through LFR-4, were installed to provide additional groundwater quality data in the site vicinity. Monitoring well LFR-1 was installed to replace grab groundwater sampling point GW-8 in Manila Avenue. Monitoring well LFR-2 was installed at a location downgradient from the storm drain on property located at 340 38th Street. The location of this monitoring well is intended to provide water quality data for groundwater that may be migrating under houses that are located near the corner of Manila Avenue and 38th Street. Monitoring well LFR-3 was installed at a location approximately 75 feet downgradient from grab groundwater sampling point GW-3, near the southwest corner of the intersection of 38th Street and Manila Avenue. No preliminary groundwater quality data previously existed for this location. Monitoring well LFR-4 was installed near the former grab groundwater sampling point GW-7 on 38th Street, to further assess groundwater quality downgradient from the USTs located under the sidewalk nearby.

- Groundwater Gradient Assessment. Information regarding the groundwater gradient was obtained by measuring groundwater levels in newly installed monitoring wells LFR-1 through LFR-4, in previously installed temporary sampling points, and in wells MW-8, MW-9, and MW-11.
- Groundwater Quality Assessment. Information regarding groundwater quality was obtained by collecting and analyzing groundwater samples from the newly installed monitoring wells, from the temporary sampling points, and from well MW-11. In addition to the routine compounds previously analyzed (total petroleum hydrocarbons as Stoddard solvent [TPHss] and TPH as gasoline [TPHg], volatile organic compounds [VOCs], benzene, toluene, ethylbenzene, total xylenes [BTEX], and methyl tertiary-butyl ether [MTBE]), bioattenuation parameters (dissolved oxygen [DO], nitrate nitrogen, total iron, ferrous iron, sulfate, methane, carbon dioxide, alkalinity, chloride, oxidation-reduction potential [ORP], nitrite nitrogen, sulfide, ethene, and ethane) were analyzed to evaluate natural bioattenuation of dissolved organic chemicals in the groundwater.

#### 3.0 SITE DESCRIPTION AND BACKGROUND

# 3.1 Site Description

The Site is located between Manila Avenue and Broadway, near the intersection with 38th Street, in Oakland, California. The ground surface at the Site slopes gently southwest, with surface elevations ranging from approximately 84 to 78 feet above mean sea level (msl).

A 54-inch-inside-diameter storm drain culvert passes under the property, from Manila Avenue on the west to 38<sup>th</sup> Street on the south (Figure 2). The depth of the storm drain invert is approximately 8.5 feet under the sidewalk on the eastern side of Manila Avenue and approximately 13.2 feet bgs at the bend in the drain that is approximately 60 feet south of GW-4 (Figure 2; LFR 1999).

A 10-inch-diameter, cast iron sanitary sewer lateral slopes down from a manhole inside the building to a connection with the sanitary sewer main that runs north-south down the middle of Manila Avenue. The floor drain lines inside the building are less than 2 feet below the surface. The depth of the sanitary sewer line increases gradually inside the building near the manhole and then slopes more steeply downward near the western wall of the building, where it plunges underneath the storm drain (LFR 1999).

Six underground storage tanks (USTs) are located at the Site. Two USTs are located under the sidewalk on 38th Street and four USTs are located inside the building (Figure 2). The volumes of the USTs have been variously reported as ranging from 800 gallons up to 5,000 gallons. They reportedly contained Stoddard solvent, fuel oil, and possibly waste oil. The six USTs were closed in-place by backfilling them with either cement-sand slurry or pea gravel in August 1997. In addition to these six USTs, there

are an additional three USTs owned by Earl Thompson, Sr. under the sidewalk on 38th Street (Figure 2).

Further description of Site history, land uses, geology, and previous soil and groundwater investigations are contained in LFR 1999, LFR 2000a, and LFR 2000b.

# 3.2 Summary of Previous Investigations

- Geosolv, LLC ("GeoSolv") performed a soil and grab groundwater investigation in August 1997. Fourteen soil borings were advanced to depths of approximately 10 to 24 feet below ground surface (bgs) using the direct-push drilling method. Seven of the soil borings (B-2, B-3, B-7, B-8, B-9, B-10, and B-13; Figure 2) were converted to temporary sampling points, from which grab groundwater samples were collected.
- Geosolv performed an additional soil and grab groundwater investigation in September 1998. Twelve direct-push soil borings were advanced to depths of approximately 19 to 25 feet bgs. All 12 of the soil borings were converted to temporary sampling points (E-15 through E-26; Figure 2), from which grab groundwater samples were collected. All of the temporary grab groundwater sampling points were abandoned and sealed.
  - In July 1999, LFR drilled 10 soil borings (GW-1 through GW-8, GW-5A, and GW-6A; Figure 2) to depths ranging from approximately 8 feet to 20 feet bgs using the direct-push method. LFR collected soil samples for laboratory analysis and lithologic description, and installed nine temporary sampling points in the borings.
- In July and August 1999, LFR collected grab groundwater samples from seven of the nine temporary sampling points (GW-2, GW-3, GW-4, GW-5, GW-6A, GW-7, and GW-8). Sampling point GW-1 has not yielded water since it was installed and therefore has not been sampled. Sampling point GW-6 was not measured or sampled because the adjacent sampling point, GW-6A, was sampled instead. (GW-6 had not yielded water since it was installed. The adjacent sampling point GW-6A is deeper and has yielded water.) Temporary grab groundwater sampling point GW-7 was abandoned and sealed with cement grout after a grab groundwater sample was collected from it on July 15, 1999, in accordance with the LFR May 1999 Work Plan.
- In January and April 2000, LFR completed quarterly groundwater monitoring events (the first quarter and second quarter 2000 events, respectively). Groundwater monitoring included measuring groundwater levels and collecting groundwater samples. Groundwater levels were measured in the temporary sampling points installed by LFR and GeoSolv, and in off-site wells MW-8, MW-9, and MW-11 owned by TOSCO Marketing Company ("TOSCO"). Groundwater samples were collected from temporary sampling points installed by LFR and from well MW-11. Groundwater samples collected from the temporary sampling points are designated grab samples.

Construction data for the temporary groundwater sampling points and wells installed by GeoSolv and LFR are presented in Table 1. Construction data for the wells owned by TOSCO are not available.

# 3.3 Local and Site Geology

The Site is located on the alluvial plain between the San Francisco Bay shoreline and the Oakland hills. Surface sediments in the Site vicinity consist of Holocene alluvial deposits that are representative of an alluvial fan depositional environment. These deposits consist of brown, medium dense sand that fines upward to sandy or silty clay. The pattern of stream channel deposition results in a three-dimensional network of coarse-grained sediments interspersed with finer-grained silts and clays. The individual units tend to be discontinuous lenses aligned parallel to the axis of the former stream flow direction.

Sediments encountered in soil borings at the Site are typical of those encountered in an alluvial fan depositional environment. The sediments are predominantly fine-grained, consisting of clay, silty clay, sandy clay, gravelly clay, and clayey silt. Discontinuous layers of coarse-grained sediments (clayey sand, silty sand, and clayey gravel) generally also contain relatively high percentages of silt and clay, which tend to reduce their permeability.

During previous investigations conducted by GeoSolv and LFR, a relatively coarse-grained layer of silty sand, clayey sand, and clayey gravel was encountered in soil borings E-23, E-25, E-26, GW-2, GW-3, GW-7, and GW-8 at depths between approximately 4.5 to 14 feet bgs (at elevations ranging from approximately 66 to 74 feet msl). A discontinuous layer of silty to clayey sand was encountered at depths from 17 to 21 feet bgs (60 to 64 feet msl) in borings B-11, E-23, E-25, GW-7, and GW-8.

# 3.3.1 Lithology Encountered in LFR-1 through LFR-4

Lithology encountered in the borings for monitoring wells LFR-1 through LFR-4 was consistent with lithology encountered in previous investigations. Soils encountered during this investigation were predominantly silty clay to clayey silt, varying to sandy silt. A layer of silty sand was encountered in LFR-1 from approximately 13 to 16 feet bgs. A poorly graded sand lens was encountered in LFR-1 at approximately 9 feet bgs (71 feet msl). Poorly graded sand was also encountered in LFR-1 from approximately 16 to 18 feet bgs (62 to 64 feet msl) and in LFR-2 from approximately 6 to 6.5 feet bgs (75.5 to 76 feet msl) and from approximately 16.5 to 17 feet bgs (65 to 65.5 feet msl).

The field descriptions of the consistencies of the fine-grained soils varied from soft to very stiff. The field descriptions of the densities of the sands were loose. The field descriptions of consistency and density did not always correlate with the consistency and density as reflected by the corresponding blow counts from the hammer on the drill rig. Both the field description of the lithology and the blow counts are presented on the boring logs as they were observed in the field.

Boring logs for LFR-1 through LFR-4 are presented in Appendix B. Table 1 summarizes construction data for the groundwater monitoring wells.

# 4.0 RESULTS OF THIRD QUARTER 2000 SAMPLING EVENT

This section presents the results of the third quarter 2000 sampling event. Section 4.1 presents the results of groundwater level measurements. Section 4.2 presents analysis results of soil samples collected during drilling of the borings for monitoring wells LFR-1 through LFR-4. Section 4.3 presents groundwater analysis results of groundwater samples collected during the third quarter 2000 sampling event. Boring logs for groundwater monitoring wells LFR-1 through LFR-4 are presented in Appendix B. Field methods used to abandon temporary sampling points, collect soil samples, install groundwater monitoring wells, collect groundwater samples, and perform field testing using the spectrophotometer are presented in Appendix C. Water-quality sampling information forms are presented in Appendix D. Laboratory certificates are presented in Appendix E.

#### 4.1 Groundwater Elevations

Table 2 presents groundwater depths measured on August 9, 2000, and the corresponding elevations in temporary sampling points B-2, B-3, B-7 through B-10, B-13, GW-1, GW-2, GW-3, GW-4, GW-5, GW-6A; and in monitoring wells MW-8, MW-9, MW-11, and in LFR-1 through LFR-4. Depth to groundwater ranged from 8.02 feet bgs in B-3 to 13.73 feet bgs in GW-6A. Groundwater elevations ranged from 66.54 feet msl in GW-3 to 77.26 feet msl in MW-8.

Groundwater elevations measured in several of the temporary sampling points could not be used in the groundwater contouring and groundwater gradient calculations. The reasons these measurements were not used are presented below.

- Temporary sampling points GW-1 (screen interval from 3 feet to 8 feet bgs), GW-4 (screen interval from 7 feet to 12 feet bgs), GW-5 (screen interval from 8 feet to 13 feet bgs), and GW-6A (screen interval from 5 feet to 15 feet bgs) are constructed in backfill material adjacent to the storm drain culvert and have screened intervals shallower than those of most other points (Table 1).
- Temporary sampling points B-2, B-3, B-7, B-8, B-9, B-10, and B-13, located inside the building, exhibit groundwater elevations that are either higher or lower than those measured in wells or temporary sampling points outside the building, indicating that apparently both a groundwater mound and depression exist in close proximity. The groundwater elevations measured in these points might be affected by a number of occurrences such as the presence of backfill material in the vicinity of the USTs or possibly by leaking floor drain lines inside the building.

Three monitoring wells were used to calculate the horizontal groundwater gradient: LFR-3, LFR-4, and MW-11. LFR estimated the horizontal gradient to be approximately 0.017 foot per foot (ft/ft) towards the southwest.

Groundwater elevations in wells LFR-1 through LFR-4, MW-8, MW-9, MW-11, and in temporary sampling point GW-3 were used to construct a groundwater-elevation contour map (Figure 3).

# 4.2 Soil Analyses and Results

Selected soil samples were collected from the borings for wells LFR-1 through LFR-4 to assess concentrations of VOCs and petroleum hydrocarbons in soils at these new well locations. Selected soil samples from the borings for wells LFR-1 through LFR-4 were analyzed for TPHss and TPHg using modified Method 8015; for VOCs using EPA Method 8260B; and for BTEX and MTBE using EPA Method 8021B. Samples were selected based on associated PID readings, changes in lithology, or to characterize a representative sample of the soil. The soil samples were submitted to Curtis & Tompkins, of Berkeley, California, a state-certified laboratory, for analysis.

TPHss and TPHg were each detected in two samples at concentrations of 10 mg/kg and 22 mg/kg, respectively, collected at a depth of approximately 11 feet in LFR-2, and 2.7 mg/kg and 6 mg/kg, respectively, collected at a depth of approximately 11 feet in LFR-1. Ethylbenzene was detected in the sample collected from LFR-1 at approximately 11 feet bgs at 0.0052 mg/kg. Total xylenes were detected in two samples: 0.043 mg/kg in LFR-1 at approximately 11 feet bgs and 0.016 mg/kg in LFR-2 at approximately 11 feet bgs. Benzene, toluene, and MTBE were not present above analytical detection limits. The only VOC present above analytical detection limits was chlorobenzene (0.01135 mg/kg) in LFR-1 at approximately 11 feet.

Laboratory analysis results are summarized in Tables 3 and 4.

# 4.3 Groundwater Analyses and Results

Groundwater samples were collected on August 9 through 11, 2000, from newly installed monitoring wells LFR-1 through LFR-4, MW-11 and temporary sampling points GW-3, B-7, and B-10. The groundwater samples were submitted to Curtis & Tompkins, of Berkeley, California. Performance Analytical, Inc. of Simi Valley, California conducted some of the bioattenuation parameter analyses (carbon dioxide, methane, ethane, and ethene) as a subcontract laboratory to Curtis & Tompkins.

#### 4.3.1 Routine Analysis Results

Groundwater samples were analyzed for TPHss and TPHg using modified EPA Method 8015; for VOCs using EPA Method 8260B (with a listing of compounds from the 8010 analytical method); and for BTEX and MTBE using EPA Method 8021B.

Laboratory analysis results are summarized in Tables 5 and 6. Results for TPHss, benzene, tetrachloroethehe (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride are illustrated on Figures 4 through 9.

- TPHss was detected in B-7, B-10, LFR-1, LFR-2, and LFR-4 at concentrations up to 3.7 mg/l (B-7). TPHss was not detected in GW-3, MW-11, LFR-3 or the sample designated as LFR-3 split. These results are shown on Figure 4.
- Benzene was detected in B-7, B-10, LFR-2, and LFR-4 at concentrations up to 0.011 mg/l (LFR-4). Benzene was not detected in GW-3, LFR-1, LFR-3 or LFR-3 split, or MW-11. These results are shown on Figure 5.
- MTBE was detected in B-7, B-10, MW-11, LFR-1, LFR-2, and LFR-4 at concentrations up to 0.16 mg/l (B-10). MTBE was not detected in GW-3 or LFR-3.
- PCE was detected in B-10, GW-3, and LFR-1<sup>1</sup> at concentrations up to 2.9 mg/l (B-10). PCE was not detected in B-7, MW-11, LFR-2, LFR-3, or LFR-4. These results are shown on Figure 6.
- TCE was detected in B-10, GW-3, and LFR-1<sup>1</sup> at concentrations up to 1.6 mg/l (B-10). TCE was not detected in B-7, MW-11, LFR-2, LFR-3, or LFR-4. These results are shown on Figure 7.
- cis-1,2-DCE was detected in B-7, B-10, GW-3, LFR-1<sup>1</sup>, LFR-2, and LFR-4 at concentrations up to 6.5 mg/l (B-10). cis-1,2-DCE was not detected in LFR-3 or MW-11. These results are shown on Figure 8.
- Vinyl chloride was only detected in LFR-2 at a concentration of 0.0045 mg/l. These results are shown on Figure 9.

# 4.3.2 Bioattenuation Parameter Analysis Results

A natural attenuation study was initiated in this third quarter 2000 sampling event to evaluate whether intrinsic bioremediation processes are active at the Site and whether PCE and other chemicals dissolved in groundwater are biodegrading as a result of these processes because of the presence of indigenous microbes. In the process of degrading dissolved organic chemicals, bacteria use electron acceptors, typically dissolved oxygen, nitrate, ferric iron, or sulfate. As a result, a decrease in these parameters would be observed during the process of organic chemical degradation. Similarly, during the process of organic chemical degradation, an increase in ferrous iron, alkalinity, methane, and carbon dioxide would be observed.

Page 8

<sup>&</sup>lt;sup>1</sup> The fourth quarter 2000 sample from LFR-1 was collected on October 30, 2000, and VOC results have been received by LFR. Results for PCE (0.82 mg/l in fourth quarter compared with 2.8 mg/l in third quarter), TCE (0.034 mg/l in fourth compared with 0.064 mg/l in third quarter), and for cis-1,2-DCE (0.010 mg/l in fourth quarter compared with 0.041 mg/l in third quarter) indicate decreased concentrations from the third to the fourth quarter. The reasons for these differences will be evaluated and discussed in the fourth quarter 2000 report.

Groundwater samples collected during this third quarter 2000 sampling event were analyzed for common electron acceptors or other geochemical indicators as described below.

The bioattenuation parameters analyzed in the laboratory consisted of the following: alkalinity by EPA Method 310.1; chloride by EPA Method 300.00; iron by EPA Method 6010B; ferrous iron by bioattenuation parameter protocol; sulfide by EPA Method 376.2; sulfate by EPA Method 300.00; nitrite nitrogen and nitrate nitrogen by EPA Method 300.00; and carbon dioxide, methane, ethene, and ethane by modified RSK Method 175.

Additionally, several of these parameters (iron, ferrous iron, sulfide, sulfate, nitrite nitrogen and nitrate nitrogen) were measured in the field using a Hach spectrophotometer. DO, ORP, pH, conductivity, and temperature were measured in the field using a flow-through instrument as described in Appendix C. A description of the field screening process is also provided in Appendix C. Results for these are summarized in Table 7 and in Appendix Table C-1. Results for DO, nitrate nitrogen, sulfate, and carbon dioxide/methane are presented on Figures 10 through 13, respectively. Selected samples were analyzed for the bioattenuation parameters to obtain results from at least one upgradient location (MW-11), one location within the chemically affected portion of the Site (B-7 and/or B-10), and one location downgradient of the Site (LFR-3).

Results for selected parameters (DO, nitrate nitrogen, sulfate, ferrous iron, methane, alkalinity, chloride, and carbon dioxide) are presented in Table 7. Results of the other parameters tested (ORP, iron, nitrite nitrogen, sulfide, ethene and ethane, pH, temperature, and conductivity) are summarized in Table C-1 and the field sheets contained in Appendix D. All analytical laboratory results are contained in Appendix E.

The results of the bioattenuation parameter analysis are presented below.

**Dissolved Oxygen.** DO is the most favored electron acceptor used by microbes for the biodegradation of organic carbon. Concentrations of DO less than 0.5 mg/l, indicating anaerobic conditions, were measured in the apparent source area and slightly downgradient in B-10 and LFR-2. Concentrations of DO from this sampling point and well were 0.44 mg/l and 0.48 mg/l, respectively. Results for the centrally located B-7 (0.63 mg/l) and further downgradient GW-3 (0.72 mg/l) indicate a condition between aerobic and anaerobic. Results for LFR-1 (3.63 mg/l), LFR-3 (1.3 mg/l), LFR-4 (1.13 mg/l), and MW-11 (2.52 mg/l) indicate low DO, aerobic conditions downgradient, upgradient, and crossgradient of the apparent source area. These results indicate that conditions in the apparent source area are anaerobic and conducive to anaerobic biodegradation processes.

Nitrate Nitrogen. After DO has been depleted, nitrate may be used as an electron acceptor for anaerobic biodegradation. Nitrate concentrations less than 1.0 mg/l may indicate that reductive dechlorination is occurring. Nitrate nitrogen concentrations less

than 1.0 mg/l occurred near the apparent source area in B-7 and B-10, and in the southerly crossgradient well LFR-4, indicating conditions that are conducive to anaerobic biodegradation. Nitrate nitrogen concentrations ranged from 1 mg/l to 5.5 mg/l at the downgradient, upgradient, and crossgradient wells and/or sampling points LFR-1, LFR-2, LFR-3, GW-3, and MW-11. These results indicate that conditions in the apparent source area are conducive to anaerobic biodegradation processes.

Sulfate. After DO and nitrate have been depleted, sulfate may be used as an electron acceptor for anaerobic biodegradation. This process is termed sulfate reduction and results in the production of sulfide. Sulfate concentrations less than 20 mg/l are indicative of reductive dechlorination (EPA 1998). Sulfate concentrations ranged from less than 0.5 mg/l to 3 mg/l in the apparent source area locations B-7 and B-10, and in the downgradient and crossgradient locations LFR-2 and LFR-4, indicating conditions that are conducive to anaerobic biodegradation. Sulfate concentrations ranged from 30 mg/l to 67 mg/l at GW-3, LFR-1, LFR-3, and MW-11.

Ferrous Iron. Increased ferrous iron accompanies anaerobic degradation. Sometimes ferric iron is used as an electron acceptor during anaerobic biodegradation. During this process, ferric iron is reduced to ferrous iron that may be soluble in water. Ferrous iron concentrations can thus be used as an indicator of anaerobic biodegradation. The highest ferrous iron concentrations were in the apparent source area (5.7 mg/l in B-10) and in the slightly downgradient location LFR-2 (2.7 mg/l), indicating conditions that are conducive to anaerobic biodegradation. Ferrous iron concentrations were less than 1 mg/l at LFR-3, LFR-4, and MW-11.

Methane. The presence of methane in groundwater is indicative of strongly reducing conditions and suggests reductive dechlorination by the process of methanogenesis. Methane was not detected (detection limit of 0.0005 mg/l) in downgradient locations GW-3, LFR-3 split, or in upgradient MW-11. Methane was detected from 0.00051 mg/l to 0.062 mg/l in LFR-1, LFR-3, and LFR-4. Methane concentrations ranged from 6.6 mg/l to 11 mg/l in the apparent source area and slightly downgradient in B-7, B-10, and LFR-2, indicating conditions that are conducive to anaerobic biodegradation. Methane was not detected (detection limit of 0.0005 mg/l) in B-10-Field Blank.

Alkalinity. Alkalinity is a general water quality parameter. Increases in alkalinity result from interaction between carbon dioxide (a product of several biodegradation processes) and aquifer minerals. Background alkalinity in the site vicinity would presumably be reflected in the result of 360 mg/l in well MW-11 because this well is upgradient of the Site. Results from LFR-1 (250 mg/l), LFR-3 (310 mg/l and 300 mg/l), and GW-3 (340 mg/l) were within about 70 percent of the concentration in MW-11. Results from the apparent source area and downgradient locations B-10 (520 mg/l), LFR-2 (590 mg/l), LFR-3 (630 mg/l), and B-7 (760 mg/l) were up to about twice that of MW-11, indicating conditions that are consistent with biodegradation. The alkalinity of B-10-Field Blank was 1.1 mg/l.

Chloride. Chloride is the final product of chlorinated solvent reduction and is a general water quality parameter. The concentrations in GW-3 (25 mg/l), LFR-2 (33 mg/l), and

B-7 (39 mg/l) were lower than those in LFR-4 (71 mg/l), B-10 (74 mg/l), LFR-3 (110 mg/l), and LFR-1 and MW-11 (both 110 mg/l). Chloride was not detected (detection limit of 0.2 mg/l) in B-10-Field Blank. These results are inconclusive regarding the occurrence of reductive dechlorination.

Carbon Dioxide. Carbon dioxide is a product of several biodegradation processes. Concentrations of carbon dioxide ranged from 51.1 mg/l (LFR-1) to 216 mg/l (MW-11). Concentrations in LFR-1 (51.1 mg/l) and GW-3 (54.3 mg/l) were considerably lower than those in B-7, B-10, LFR-2, LFR-3, LFR-4, and MW-11 which ranged from 145 mg/l to 216 mg/l. Carbon dioxide was not detected (detection limit of 0.1 mg/l) in B-10-Field Blank. These results may indicate that conditions are conducive to reductive dechlorination (e.g., in the apparent source area locations [B-7, B-10] and downgradient locations [LFR-2, LFR-4]); however, the furthest downgradient location (LFR-3) and the upgradient location (MW-11) also have elevated concentrations, making these results somewhat inconclusive regarding the occurrence of reductive dechlorination.

#### Other Parameters

pH, Temperature, and Conductivity. The pH of groundwater has an affect on the activity of microbial populations in groundwater, with optimal pH values from 6 to 8 standard units for microbes capable of degrading PCE and other chlorinated aliphatic hydrocarbons. Groundwater temperature affects the metabolic activity of bacteria, and groundwater conductivity is directly related to the concentration of ions in solution. Temperature, pH, and conductivity results are included in Appendix Table C-1.

Oxygen Reduction Potential. The ORP of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. ORP may range from greater than 800 milliVolts (mV) to less than -400 mV, with negative values expected in areas where anaerobic processes are occurring. ORP measurements obtained in this sampling event ranged from 193 mV (B-7) to 476 mV (MW-11). Although the highest concentration was found in the upgradient location (MW-11) and the lowest in the apparent source area (B-7 and B-10), more variation in concentrations would be necessary to indicate whether reductive dechlorination is occurring. ORP results are included in Appendix Table C-1. ORP will continue to be measured in subsequent quarters.

Nitrite Nitrogen. Nitrate may reduce to nitrite during the process of anaerobic biodegradation. Nitrite nitrogen concentrations ranged from less than the detection limit of 0.05 mg/l (B-10 and MW-11) to 0.227 mg/l (GW-3). Nitrite nitrogen results are included in Appendix Table C-1. These results are inconclusive regarding the occurrence of reductive dechlorination, and nitrite nitrogen may not be measured in subsequent quarters.

Sulfide. When sulfate is used as an electron acceptor for anaerobic biodegradation, it is reduced to sulfide. Sulfide concentrations ranged from less than 0.04 mg/l (B-10

[laboratory result], GW-3, MW-11, LFR-1, and LFR-3) to 0.06 mg/l (B-10 [field result]). The higher concentration in the B-10 field result may indicate sulfate reduction at this location, however, the variation between laboratory and field results and the similarities between the upgradient, apparent source area, and downgradient locations makes the sulfide results inconclusive, and sulfide may not be measured in subsequent quarters. Sulfide results are included in Appendix Table C-1.

Ethane and Ethene. Ethane and ethene are analyzed where chlorinated solvents are suspected of undergoing biological transformation. Ethane was not detected in any samples (detection limit 0.0005 mg/l). Ethene concentrations were 0.0017 mg/l (LFR-2), 0.00057 mg/l (B-10), and less than the detection limit of 0.0005 mg/l in the remaining samples. These results indicate that if reductive dechlorination is producing these compounds, they are not accumulating in significant concentrations. Ethane and ethene results are included in Appendix Table C-1.

**Iron.** Ferric iron may be used as an electron acceptor during anaerobic biodegradation. During this process, ferric iron is reduced to ferrous iron that may be soluble in water. Ferric iron concentrations may be obtained by subtracting ferrous iron concentrations from total iron concentrations. Total iron concentrations ranged from less than 0.1 mg/l (LFR-3) to 6 mg/l (B-10) and are included in Appendix Table C-1.

Hydrogen. Sampling and analysis for hydrogen was not conducted because this sampling event occurred about two weeks after installation of wells LFR-1 through LFR-4. Standard hydrogen sampling procedures suggest that at least 30 to 90 days elapse after well installation before conducting hydrogen sampling and analysis because of the influence of ground disturbance and exposure of fresh mineral surfaces in the soil resulting in reaction of anaerobic groundwater with iron in the soil to produce hydrogen. This disturbance and exposure has been found to result in elevated hydrogen concentrations in the groundwater, however, these concentrations have been observed to dissipate over a period of about 90 days (Microseeps 2000). Hydrogen results from subsequent sampling events may be useful in assessing whether reductive dechlorination is occurring because elevated hydrogen concentrations are indicative of reductive dechlorination. Groundwater samples for hydrogen analysis would be collected using the bubble strip or equivalent method as described in EPA 1998.

# 5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

# 5.1 Summary

The following is a summary of the work performed in July and August 2000 and the results of this work.

Four monitoring wells were installed to further assess the lateral extent of the affected groundwater.

TPHss, TPHg, ethylbenzene, total xylenes, PCE, and chlorobenzene were detected at very low levels in some soil samples. Benzene, toluene, MTBE, TCE, and cis-1,2-DCE, were not detected in soil above analytical detection limits.

Groundwater samples were collected from the newly installed monitoring wells LFR-1 through LFR-4, temporary sampling points GW-3, B-7, B-10, and from well MW-11. These samples were analyzed for TPHss, TPHg, MTBE, BTEX, and VOCs.

The PCE concentration of 2.8 mg/l in the cross-gradient well LFR-1 is nearly as high as the PCE concentration detected in the temporary sampling point B-10 located at the Site. Subsequent sampling results from LFR-1 will be assessed to establish whether any mitigation measures may be required to address affected groundwater in this area.

Except for MTBE in B-10, which increased an order of magnitude from 0.014 mg/l in January 2000 to 0.16 mg/l in August 2000, analytical results for each compound at each sampling location were within one order of magnitude of the previously collected samples from April or January 2000.

This was the first sampling event in which bioattenuation parameters were analyzed. Selected samples were analyzed for the following: DO, nitrate nitrogen, sulfate, ferrous iron, total iron, methane, alkalinity, chloride, carbon dioxide, ORP, nitrite nitrogen, sulfide, ethene, and ethane. The bioattenuation parameters analysis provided a baseline for these parameters and a means to compare their concentrations at locations within the apparent source area against surrounding upgradient, downgradient and crossgradient locations.

The maximum concentrations of the compounds analyzed during this third quarter 2000 sampling event for the following wells or sampling points are: B-7 (MTBE [0.02 mg/l]; benzene [0.0077 mg/l]; ethylbenzene [0.007 mg/l]; and trans-1,2-DCE [0.0048 mg/l]; B-10 (TPHg [6.1 mg/l]; MTBE [0.16 mg/l]; benzene [0.0073 mg/l]; and PCE [2.9 mg/l]]; GW-3 (TCE [0.0028 mg/l] and cis-1,2-DCE [0.012 mg/l]; and MW-11 (MTBE [0.011 mg/l].

Chemical concentrations detected in the third quarter 2000 sampling event were less than in the previous (January or April 2000) sampling events for the following wells or sampling points: B-7 (TPHss, TPHg, toluene, total xylenes, and cis-1,2-DCE); B-10 (toluene, ethylbenzene, total xylenes, TCE, cis-1,2-DCE, and trans-1,2-DCE); and GW-3 (TPHss, TPHg, and PCE).

Vinyl chloride was only detected in LFR-2 at a concentration of 0.0045 mg/l in the August 2000 sampling event.

Benzene was not detected in GW-3, LFR-3 or LFR-3 split, or MW-11, but was detected in B-7, B-10, LFR-1, LFR-2, and LFR-4 at concentrations up to 0.011 mg/l (LFR-4) in the August 2000 sampling event.

#### 5.2 Conclusions

LFR's conclusions about the Site based on the data obtained in July and August 2000 are as follows:

The furthest downgradient well, LFR-3, did not contain VOCs or petroleum hydrocarbons at concentrations above their respective analytical detection limits. These results indicate that migration of these compounds to this downgradient location is not occurring. Historical PCE results in GW-3 (located upgradient of LFR-3), however, indicate that PCE has been present from July 1999 to August 2000 at fluctuating concentrations.

The data collected to date regarding the distribution of PCE and other VOCs in groundwater indicates the degradation of PCE to breakdown product VOCs. The typical breakdown of PCE into TCE, cis-1,2-DCE, trans-1,2-DCE (at much lower concentrations than cis-1,2-DCE), and vinyl chloride would be anticipated where biological reductive dehalogenation of PCE is occurring. These breakdown products and relative concentrations are present at the Site. The presence of TCE in the apparent source area temporary sampling point B-10 in January and August 2000 indicates that PCE breakdown is occurring. The presence of relatively high concentrations of cis-1,2-DCE in B-10 and in nearby B-7 and the relatively low concentrations of trans-1,2-DCE in these temporary sampling points is also indicative of biodegradation. Historical data from former temporary sampling point GW-8 indicate the presence of vinyl chloride between July 1999 and April 2000. Vinyl chloride was also detected in LFR-2 in the August 2000 sampling event.

Analysis results of DO, nitrate, sulfate, ferrous iron, methane, and alkalinity indicate that conditions in the apparent source area are conducive to reductive dechlorination processes, because of their concentration distributions across the Site.

- DO concentrations of less than approximately 0.5 mg/l in a groundwater are indicative of anaerobic biodegradation conditions. DO results less than 0.5 mg/l were encountered in the apparent source area (B-10) and slightly downgradient in LFR-2, indicating anaerobic conditions that are conducive to PCE biodegradation.
- We would anticipate relatively low concentrations of nitrate nitrogen (e.g. less than 1.0 mg/l) in locations where the oxygen has been depleted, because nitrate ion can be an effective electron acceptor in anaerobic biodegradation. Nitrate nitrogen concentrations less than 1.0 mg/l occurred in the apparent source area (B-7 and B-10), and in the crossgradient well LFR-4.
- We would also anticipate relatively low concentrations of sulfate (e.g. less than 20 mg/l) in locations where the oxygen has been depleted, because sulfate ion can be used as an effective electron acceptor in anaerobic biodegradation. Sulfate concentrations were less than 3 mg/l in B-7 and B-10, and in the downgradient and crossgradient locations LFR-2 and LFR-4.

- The reducing conditions conducive to dehalogenation of VOCs can also reduce iron to the soluble ferrous state. Therefore; we anticipate a relatively higher concentration of ferrous iron in locations of biodegradation than in other areas. The highest ferrous iron concentrations were in the apparent source area (B-10) and in the slightly downgradient location LFR-2.
- We would anticipate a relatively higher concentration of methane in locations of biodegradation because methane is indicative of strongly reducing conditions and suggests reductive dechlorination by the process of methanogenesis. Methane concentrations up to 11 mg/l were encountered in B-7, B-10, and in the slightly downgradient well LFR-2.
- Relatively high concentrations of alkalinity would be expected in locations of biodegradation, because of the interaction between carbon dioxide (a product of several biodegradation processes) and aquifer minerals. Alkalinity results from the apparent source area and downgradient locations B-10, LFR-2, LFR-3, and B-7 were up to about twice that of upgradient well MW-11.

#### 5.3 Recommendations

LFR's recommendations for future work at the Site are as follows:

Continue implementing the sampling and analysis plan for the routine parameters and natural bioattenuation parameters established through discussion with representatives of ACHCSA and the RWQCB. Collection of groundwater samples for hydrogen analysis has been initiated in the fourth quarter 2000 sampling event.

Continue quarterly groundwater monitoring in the four newly installed wells LFR-1 through LFR-4, in the upgradient well MW-11, and in selected previously installed temporary sampling points. Groundwater levels will be measured in LFR-1 through LFR-4, MW-8, MW-9, and MW-11, and in temporary sampling points.

As further results are obtained, continue to evaluate PCE and potential breakdown product concentrations in the on-site temporary sampling points, and downgradient and crossgradient temporary sampling points and groundwater monitoring wells to assess plume stability, the progress of reductive dechlorination, and any potential migration issues.

#### **REFERENCES**

- EPA 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater, EPA/600/R-98/128, September.
- Helley, E.J., K.R. Lajoie, and D.B. Burke. 1972. Geologic Map of Late Cenozoic Deposits, Alameda County, California.
- LFR 1999. Results of Utility Survey and Work Plan for Soil and Grab Groundwater Investigation, dated May 6.
- LFR 2000a. Soil and Groundwater Investigation Report, March 20.
- LFR 2000b. Work Plan for Installation of Groundwater Monitoring Wells, Former Glovatorium, 3815 Broadway, Oakland, California, June 14.
- LFR 2000c. Groundwater Monitoring Report, Second Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California, July 7.
- Microseeps 2000. Monitored Natural Attenuation As a Remedial Alternative In Groundwater Contamination. Lecture at LFR Levine · Fricke (LFR) Emeryville office by Robert J. Pirkle, Ph.D. of Microseeps, May 31.
- U.S. Geological Survey. Quaternary Geology of Alameda County, and Parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, California: A Digital Database. U.S. Department of the Interior.

Table 1
Construction Data for Temporary Sampling Points and Monitoring Wells
Former Glovatorium
3815 Broadway, Oakland, California

| Location  | Date<br>Installed | Ground Surface<br>Elevation (ft msl) | Top of Casing<br>Elevation (ft msl) | Total Depth (ft bgs) | Screened<br>Interval<br>Depth (ft bgs) | Screened<br>Interval<br>Elevation (ft msl) | Note: |
|-----------|-------------------|--------------------------------------|-------------------------------------|----------------------|----------------------------------------|--------------------------------------------|-------|
| Temporary | / sampling p      | oints installed by (                 | GeoSolv, LLC:                       | (11 0 80)            | <b>5 (p</b> (11 × <b>3</b> 5)          | (11111)                                    |       |
| B-2       | 19-Aug-97         | •                                    | 82.09                               | 21                   | 5 to 21                                | 77.2 to 61.2                               |       |
| B-3       | 19-Aug-97         |                                      | 82.57                               | 18                   | 5 to 18                                | 77.6 to 64.6                               | (1)   |
| B-7       | 20-Aug-97         |                                      | 76.96                               | 17.5                 | 5 to 17.5                              | 72.3 to 59.8                               | (-)   |
| B-8       | 20-Aug-97         |                                      | 81.82                               | 24                   | 9 to 24                                | 73.1 to 58.1                               |       |
| B-9       | 21-Aug-97         |                                      | 77.37                               | 19.5                 | 4.5 to 19.5                            | 73.1 to 58.1                               |       |
| B-10      | 21-Aug-97         |                                      | 81.50                               | 19                   | 4 to 19                                | 77.7 to 62.7                               |       |
| B-13      | 22-Aug-97         |                                      | 84.58                               | 20                   | 5 to 20                                | 80.1 to 65.1                               |       |
| Temporary | sampling p        | oints installed by I                 | _FR:                                |                      |                                        |                                            |       |
| GW-1      | 16-Jul-99         | 80.24                                | 79.94                               | 8                    | 3 to 8                                 | 77.2 to 72.2                               |       |
| GW-2      | 16-Jul-99         | 79.44                                | 79.14                               | 20                   | 10 to 20                               | 69.4 to 59.4                               |       |
| GW-3      | 15-Jul-99         | 78.48                                | 77.92                               | 20                   | 10 to 20                               | 68.5 to 58.5                               |       |
| GW-4      | 16-Jul-99         | 82.55                                | 82.37                               | 12                   | 7 to 12                                | 75.6 to 70.6                               |       |
| GW-5      | 15-Jul-99         | 81.31                                | 81.01                               | 13                   | 8 to 13                                | 73.3 to 68.3                               |       |
| GW-6      | 15-Jul-99         | 81.91                                | 81.65                               | 13.5                 | 7.5 to 13.5                            | 74.4 to 68.4                               | (2)   |
| GW-6A     | 16-Jul-99         | 81.93                                | 81.61                               | 15                   | 5 to 15                                | 76.9 to 66.9                               |       |
| GW-7      | 15-Jul-99         | 81.3                                 | NS                                  | 20                   | 10 to 20                               | 71.3 to 61.3                               | (2)   |
| GW-8      | 16-Jul-99         | 80.28                                | 80.10                               | 20                   | 10 to 20                               | 70.3 to 60.3                               | (2)   |
| Groundwa  | ater Monitor      | ing Wells Installed                  | by Tosco:                           |                      |                                        |                                            |       |
| MW-8      | unknown           | NS                                   | 87.44                               | unknown              | unknown                                | unknown                                    |       |
| MW-9      | unknown           | NS                                   | 86.56                               | unknown              | unknown                                | unknown                                    |       |
| MW-11     | unknown           | NS                                   | 84.13                               | unknown              | unknown                                | unknown                                    |       |
| Groundwa  | ater Monitor      | ing Wells Installed                  | by LFR:                             |                      |                                        |                                            |       |
| LFR-1     | 28-Jul-00         | NS                                   | 79.97                               | 19                   | 9 to 19                                |                                            |       |
| LFR-2     | 27-Jul-00         | NS                                   | 81.89                               | 19                   | 9 to 19                                |                                            |       |
| LFR-3     | 27-Jul-00         | NS                                   | 77.96                               | 22                   | 12 to 22                               |                                            |       |
| LFR-4     | 28-Jul-00         | NS                                   | 81.65                               | 19                   | 9 to 19                                |                                            |       |

#### Notes:

ft msl = feet above mean sea level

ft bgs = feet below ground surface

NS = Not surveyed.

<sup>(1)</sup> Top of casing surveyed on south side on January 21, 2000, because the casing was broken.

<sup>(2)</sup> GW-7 was abandoned on July 15, 1999, in accordance with LFR's work plan dated May 6, 1999, and GW-6 and GW-8 were abandoned on July 26, 2000, in accordance with LFR's work plan dated June 14, 2000.

Table 2
Groundwater Elevations
Former Glovatorium
3815 Broadway, Oakland, California

| Location    | Date<br>Measured | Top of Casing<br>Elevation (ft msl) | Depth To<br>Groundwater (feet) | Groundwater<br>Elevation (ft msl) | Notes        |  |
|-------------|------------------|-------------------------------------|--------------------------------|-----------------------------------|--------------|--|
| Temporary : | sampling points  | installed by GeoS                   | olv, LLC:                      |                                   |              |  |
| B-2         | 26-Oct-97        | 82.20                               | 9.54                           | 72.66                             | (1)          |  |
|             | 18-Feb-98        |                                     | 4.04                           | 78.16                             | (1)          |  |
|             | 19-Jan-00        | 82.09                               | 8.12                           | 73.97                             | (P)          |  |
|             | 24-Jan-00        |                                     | 6.16                           | 75.93                             | (P)          |  |
|             | 27-Apr-00        |                                     | 6.68                           | 75.41                             | (P)          |  |
|             | 09-Aug-00        |                                     | 8.19                           | 73.90                             | (P)          |  |
| B-3         | 26-Oct-97        | 82.60                               | 8.93                           | 73.67                             | (1)          |  |
|             | 18-Feb-98        |                                     | 4.53                           | 78.07                             | (1)          |  |
|             | 19-Jan-00        | 82.57                               | 9.35                           | 73.22                             | (2)          |  |
|             | 24-Jan-00        |                                     | 6.74                           | 75.83                             |              |  |
|             | 27-Apr-00        |                                     | 6.71                           | 75.86                             | (P)          |  |
|             | 09-Aug-00        |                                     | 8.02                           | 74.55                             | (P)          |  |
| B-7         | 26-Oct-97        | 77.33                               | 9.24                           | 68.09                             | (1)          |  |
|             | 18-Feb-98        |                                     | 5.76                           | 71.57                             | (1)          |  |
|             | 19-Jan-00        | 76.96                               | 8.36                           | 68.60                             | (P)          |  |
|             | 24-Jan-00        |                                     | 7.3                            | 69.66                             | (P)          |  |
|             | 27-Apr-00        |                                     | 7.11                           | 69.85                             | (P)          |  |
|             | 09-Aug-00        |                                     | 8.35                           | 68.61                             |              |  |
| B-8         | 26-Oct-97        | 82.06                               | 10.95                          | 71.11                             | (1)          |  |
|             | 18-Feb-98        |                                     | 5.42                           | 76.64                             | (1)          |  |
|             | 19-Jan-00        | 81.82                               | 10.01                          | 71.81                             | ( <b>P</b> ) |  |
|             | 24-Jan-00        |                                     | 8.98                           | 72.84                             | <b>(P)</b>   |  |
|             | 27-Apr-00        |                                     | 7.68                           | 74.14                             | <b>(P)</b>   |  |
|             | 09-Aug-00        |                                     | 9.02                           | 72.80                             | (P)          |  |
| B-9         | 26-Oct-97        | 77.57                               | 9.18                           | 68.39                             | (1)          |  |
|             | 18-Feb-98        |                                     | 6.13                           | 71.44                             | (1)          |  |
|             | 19-Jan-00        | 77.37                               | 8.46                           | 68.91                             | (P)          |  |
|             | 24-Jan-00        |                                     | 7.12                           | 70.25                             | ( <b>P</b> ) |  |
|             | 27-Apr-00        |                                     | 7.41                           | 69.96                             |              |  |
|             | 09-Aug-00        |                                     | 8.55                           | 68.82                             |              |  |
| B-10        | 26-Oct-97        | 81.65                               | 9.39                           | 72.26                             | (1)          |  |
|             | 18-Feb-98        |                                     | 6.52                           | 75.13                             | (1)          |  |
|             | 19-Jan-00        | 81.50                               | 8.48                           | 73.02                             | (P)          |  |
|             | 24-Jan-00        |                                     | 7.35                           | 74.15                             | (P)          |  |

Table 2 Groundwater Elevations Former Glovatorium 3815 Broadway, Oakland, California

| Location     | Date<br>Measured | Top of Casing<br>Elevation (ft msl) | Depth To<br>Groundwater (feet) | Groundwater<br>Elevation (ft msl) | Notes |
|--------------|------------------|-------------------------------------|--------------------------------|-----------------------------------|-------|
| B-10         | 27-Apr-00        | 81.50                               | 7.80                           | 73.70                             |       |
|              | 09-Aug-00        |                                     | 8.85                           | 72.65                             |       |
| B-13         | 26-Oct-97        | 85.12                               | 12.10                          | 73.02                             | (1)   |
|              | 18-Feb-98        |                                     | 6.61                           | 78.51                             | (1)   |
|              | 19-Jan-00        | 84.58                               | 10.40                          | 74.18                             |       |
|              | 24-Jan-00        |                                     | 8.26                           | 76.32                             |       |
|              | 27-Apr-00        |                                     | 8.71                           | 75.87                             |       |
|              | 09-Aug-00        |                                     | 9.35                           | 75.23                             |       |
| Temporary sa | mpling points    | installed by LFR:                   |                                |                                   |       |
| GW-1         | 27-Aug-99        | 79.94                               | DRY                            | DRY                               |       |
|              | 19-Jan-00        |                                     | DRY                            | DRY                               |       |
|              | 27-Apr-00        |                                     | DRY                            | DRY                               |       |
|              | 09-Aug-00        |                                     | DRY                            | DRY                               |       |
| GW-2         | 27-Aug-99        | 79.14                               | 10.68                          | 68.46                             |       |
|              | 19-Jan-00        |                                     | 10.90                          | 68.24                             |       |
|              | 21-Jan-00        |                                     | 10.82                          | 68.32                             |       |
|              | 27-Apr-00        |                                     | 8.55                           | 70.59                             |       |
|              | 09-Aug-00        |                                     | 10.03                          | 69.11                             |       |
| GW-3         | 27-Aug-99        | 77.92                               | 10.26                          | 67.66                             |       |
|              | 19-Jan-00        |                                     | 10.06                          | 67.86                             |       |
|              | 20-Jan-00        |                                     | 9.99                           | 67.93                             |       |
|              | 27-Apr-00        |                                     | 9.76                           | 68.16                             |       |
|              | 09-Aug-00        |                                     | 11.38                          | 66.54                             |       |
| GW-4         | 27-Aug-99        | 82.37                               | NM                             | NM                                |       |
|              | 19-Jan-00        |                                     | 7.66                           | 74.71                             |       |
|              | 21-Jan-00        |                                     | 8.04                           | 74.33                             |       |
|              | 27-Apr-00        |                                     | 8.40                           | 73.97                             |       |
|              | 09-Aug-00        |                                     | DRY                            | DRY                               |       |
| GW-5         | 27-Aug-99        | 81.01                               | 12.30                          | 68.71                             |       |
|              | 19-Jan-00        |                                     | 12.40                          | 68.61                             |       |
|              | 20-Jan-00        |                                     | 12.40                          | 68.61                             |       |
|              | 27-Apr-00        |                                     | 12.31                          | 68.70                             |       |
|              | 09-Aug-00        |                                     | 12.30                          | 68.71                             |       |
| GW-6A        | 27-Aug-99        | 81.61                               | 13.90                          | 67.71                             |       |
|              | 19-Jan-00        |                                     | 13.98                          | 67.63                             |       |

Table 2
Groundwater Elevations
Former Glovatorium
3815 Broadway, Oakland, California

| Location   | Date<br>Measured  | Top of Casing<br>Elevation (ft msl) | Depth To<br>Groundwater (feet) | Groundwater<br>Elevation (ft msl) | Notes |
|------------|-------------------|-------------------------------------|--------------------------------|-----------------------------------|-------|
|            |                   |                                     |                                |                                   |       |
| GW-6A      | 27-Apr-00         | 81.61                               | 13.61                          | 68.00                             |       |
|            | 09-Aug-00         |                                     | 13.73                          | 67.88                             |       |
| GW-8       | 27-Aug-99         | 80.10                               | 9.50                           | 70.60                             |       |
|            | 19-Jan-00         |                                     | 9.66                           | 70.44                             |       |
|            | 20-Jan-00         |                                     | 9.68                           | 70.42                             |       |
|            | 27-Apr-00         |                                     | 8.76                           | 71.34                             |       |
| Monitoring | wells owned by    | / TOSCO:                            |                                |                                   |       |
| MW-8       | 27-Apr-00         | 87.44                               | 8.29                           | 79.15                             |       |
|            | 10-Aug-00         |                                     | 10.18                          | 77.26                             |       |
| MW-9       | 27-Apr-00         | 86.56                               | 9.31                           | 77.25                             |       |
|            | 10-Aug-00         |                                     | 9.42                           | 77.14                             |       |
| MW-11      | 25-Jan-00         | 84,21                               | 10.73                          | 73.48                             |       |
|            | 27-Apr-00         |                                     | 8.86                           | 75.35                             |       |
|            | 09-Aug-00         |                                     | 10.09                          | 74.12                             |       |
| Monitoring | wells installed b | by LFR:                             |                                |                                   |       |
| LFR-1      | 09-Aug-00         | 79.97                               | 9.81                           | 70.16                             |       |
| LFR-2      | 09-Aug-00         | 81.89                               | 11.90                          | 69.99                             |       |
| LFR-3      | 09-Aug-00         | 77.96                               | 11.20                          | 66.76                             |       |
|            | 09-Aug-00         |                                     | 11.20                          | 66.76                             |       |
| LFR-4      | 09-Aug-00         | 81.65                               | 13.26                          | 68.39                             |       |

#### Notes:

(1) Survey elevation and water level measurement taken at concrete surface. Elevations and water levels without a (1) in the Notes Column were measured from top-of-casing.

ft msl = Feet above mean sea level

NM = Not measured

(P) = Floating product or sheen was observed

<sup>(2)</sup> Top of casing was resurveyed because it was broken.

Table 3
Summary of Analytical Results For Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses
Soil Samples Collected in the Vicinity of the Former Glovatorium
3815 Broadway, Oakland, California

All results expressed in milligrams per kilogram (mg/kg)

| Location | Date      | Depth (ft bgs) | TPH,                | TPH,                | MTBE    | Benzene  | Toluene  | Ethylbenzene | Total Xylenes |
|----------|-----------|----------------|---------------------|---------------------|---------|----------|----------|--------------|---------------|
|          | Sampled   |                | purge.,<br>Stoddard | purge.,<br>Gasoline |         |          |          |              |               |
| GW-1     | 16-Jul-99 | 8              | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-1     | 16-Jul-99 | 7              | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-4     | 16-Jul-99 | 9              | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-5A    | 16-Jul-99 | 9              | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-6A    | 16-Jul-99 | 10             | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-7     | 15-Jul-99 | 11             | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-7     | 15-Jul-99 | 9              | < 1                 | 1.4 YH              | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-7     | 15-Jul-99 | 14             | <1                  | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-7     | 15-Jul-99 | 16             | < 1                 | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-8     | 16-Jul-99 | 9              | <1                  | < 1                 | < 0.02  | < 0.005  | < 0.005  | < 0.005      | < 0.005       |
| GW-8     | 16-Jul-99 | 12             | 4.8                 | 8.2 YH              | < 0.02  | < 0.005  | < 0.005  | < 0.005      | 0.14 C        |
| LFR-1    | 28-Jul-00 | 11             | 2.7                 | 6 YH                | < 0.019 | < 0.0048 | < 0.0048 | 0.0052 C     | 0.043 C       |
| LFR-2    | 27-Jul-00 | 6.5            | < 0.97              | < 0.97              | < 0.019 | < 0.0049 | < 0.0049 | < 0.0049     | < 0.0049      |
| LFR-2    | 27-Jul-00 | 11             | 10                  | 22 YH               | < 0.018 | < 0.0046 | < 0.0046 | < 0.0046     | 0.016 C       |
| LFR-3    | 27-Jul-00 | 14             | < 0.97              | < 0.97              | < 0.019 | < 0.0049 | < 0.0049 | < 0.0049     | < 0.0049      |
| LFR-4    | 28-Jul-00 | 8              | < 0.98              | < 0.98              | < 0.02  | < 0.0049 | < 0.0049 | < 0.0049     | < 0.0049      |

#### Notes:

C = Presence of this compound confirmed by second column, however, the confirmation concentration differed from the reported result by more than a factor of two.

YH = Sample exhibits fuel pattern which does not resemble TPH gasoline standard. Heavier hydrocarbons than the TPH gasoline standard are present in the sample.

ft. bgs = feet below ground surface

MTBE = Methyl tertiary-butyl ether

For LFR-1-11 and LFR-2-11, TPHg and/or BTEX results are estimated due to surrogate recovery of bromofluorobenzene above upper QC limit.

Table 4
Summary of Analytical Results For Volatile Organic Compound (VOC) Analyses
Soil Samples Collected in the Vicinity of the Former Glovatorium
3815 Broadway, Oakland, California

All results expressed in milligrams per kilogram (mg/kg)

| Location | Date Sampled | Depth (ft bgs) | PCE      | TCE      | Cis-1,2-DCE    |
|----------|--------------|----------------|----------|----------|----------------|
| GW-1     | 16-Jul-99    | 7              | 0.71     | < 0.023  | < 0.023        |
| GW-1     | 16-Jul-99    | 8              | 0.14     | < 0.0048 | < 0.0048       |
| GW-4     | 16-Jul-99    | 9              | < 0.0046 | < 0.0046 | < 0.0046       |
| GW-5A    | 16-Jul-99    | 9              | < 0.005  | < 0.005  | < 0.005        |
| GW-6A    | 16-Jul-99    | . 10           | < 0.0051 | < 0.0051 | < 0.0051       |
| GW-7     | 15-Jul-99    | 9              | < 0.0051 | < 0.0051 | < 0.0051       |
| GW-7     | 15-Jul-99    | 11             | < 0.0049 | < 0.0049 | < 0.0049       |
| GW-7     | 15-Jul-99    | 14             | < 0.0046 | < 0.0046 | < 0.0046       |
| GW-7     | 15-Jul-99    | 16             | < 0.0049 | < 0.0049 | < 0.0049       |
| GW-8     | 16-Jul-99    | 9              | 0.05     | 0.0061   | < 0.0046       |
| GW-8     | 16-Jul-99    | 12             | < 0.005  | 0.013    | < 0.005        |
| LFR-1    | 28-Jul-00    | 11             | 0.1      | < 0.0048 | < 0.0048 · (1) |
| LFR-2    | 27-Jul-00    | 6.5            | < 0.0046 | < 0.0046 | < 0.0046       |
| LFR-2    | 27-Jul-00    | 11             | < 0.005  | < 0.005  | < 0.005        |
| LFR-3    | 27-Jul-00    | 14             | < 0.005  | < 0.005  | < 0.005        |
| LFR-4    | 28-Jul-00    | 8              | < 0.0052 | < 0.0052 | < 0.0052       |

#### Notes:

(1) = Chlorobenzene was detected at 0.01135 mg/kg

ft. bgs = feet below ground surface

Cis-1,2-DCE = Cis-1,2-Dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

Table 5
Summary of Analytical Results For Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses of
Groundwater Samples
Former Glovatorium

All results expressed in milligrams per liter (mg/l)

| Location    | Date          | Screened                   | TPH,              | TPH,                | TPH,            | TPH,                | MTBE     | Benzene  | Toluene  | Ethyl-    | Total Xylenes | Notes |
|-------------|---------------|----------------------------|-------------------|---------------------|-----------------|---------------------|----------|----------|----------|-----------|---------------|-------|
|             | Sampled       | Interval<br>Depth (ft bgs) | ext.,<br>Stoddard | purge.,<br>Stoddard | ext.,<br>Diesel | purge.,<br>Gasoline |          |          |          | Benzene   |               | i     |
| Temporary s | ampling poin  | ts installed by (          |                   | C:                  | <u> </u>        |                     |          |          |          |           |               |       |
| B-2         | 24-Jan-00     | 5 to 21                    | NA                | 20                  | NA              | 31 Y                | < 0.05   | < 0.013  | < 0.013  | 0.11 C    | 0.22 C        | (1)   |
| B-3         | 24-Jan-00     | 5 to 18                    | NA                | 4.9                 | NA              | 8.8 Y               | < 0.01   | 0.0048   | < 0.0025 | < 0.0025  | 0.0714        | (1)   |
| B-7         | 24-Jan-00     | 5 to 17.5                  | NA                | 19                  | NA ,            | 30 Y                | < 0.05   | < 0.013  | 0.062    | < 0.013   | 0.207         |       |
| B-7         | 11-Aug-00     |                            | NA                | <b>3.7</b>          | NA              | 6.8 YH              | 0.02     | 0.0077   | 0.047    | 0.007     | 0.065 C       | (3)   |
| B-8         | 24-Jan-00     | 9 to 24                    | NA                | 11                  | NA              | 19 Y                | < 0.01   | < 0.0025 | < 0.0025 | < 0.0025  | 0.17 C        | (1)   |
| <b>B</b> -9 | 24-Jan-00     | 4.5 to 19.5                | NA                | 1 Y                 | NA              | 1.8 YH              | < 0.002  | < 0.0005 | < 0.0005 | 0.01 C    | 0.0089 C      | (1)   |
| B-10        | 24-Jan-00     | 4 to 19                    | NA                | 2.4 Y               | NA              | 4.2                 | 0.014 C  | 0.0072   | 0.027    | 0.025 C   | 0.032         |       |
| B-10        | 10-Aug-00     |                            | NA                | 2.8 Y               | NA              | 6.1 Y               | 0.16     | 0.0073   | 0.012    | < 0.005   | 0.0241        |       |
| B-13        | 24-Jan-00     | 5 to 20                    | NA                | 1.7                 | NA              | 3 Y                 | < 0.01   | < 0.0025 | < 0.0025 | < 0.0025  | 0.02          | (1)   |
| Temporary s | sampling poin | ts installed by I          | .FR:              |                     |                 |                     |          |          |          |           |               |       |
| GW-2        | 19-Jul-99     | 10 to 20                   | NA                | < 0.05              | NA              | < 0.05              | 0.0025   | < 0.0005 | 0.00071  | < 0.0005  | 0.00074       |       |
| GW-2        | 20-Jan-00     |                            | NA                | 0.15                | NA              | 0.25 Y              | 0.0044   | < 0.0005 | < 0.0005 | 0.00097 C | 0.0013        |       |
| GW-2        | 28-Apr-00     |                            | NA                | < 0.05              | NA              | 0.095 YZ            | < 0.0021 | < 0.0005 | < 0.0005 | < 0.0005  | < 0.0005      | (2)   |
| GW-3        | 19-Jul-99     | 10 to 20                   | NA                | 0.07 Z              | NA              | 0.1 Z               | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005  | 0.00064       |       |
| GW-3        | 20-Jan-00     |                            | NA                | 0.15                | NA              | 0.26 Y              | < 0.002  | < 0.0005 | 0.00051  | < 0.0005  | 0.0013 C      |       |
| GW-3        | 27-Apr-00     |                            | NA                | 0.2 YZ              | NA              | 0.38 YZ             | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005  | < 0.0005      |       |
| Split       | 27-Apr-00     |                            | NA                | 0.3 Z               | NA              | 0.57 YZ             | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005  | < 0.0005      |       |

Rpt6895BTEXWater Page 1 of 4 10/18/2000

Table 5
Summary of Analytical Results For Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses of Groundwater Samples
Former Glovatorium

## All results expressed in milligrams per liter (mg/l)

| Location | Date      | Screened                   | TPH,              | TPH,                | TPH,            | TPH,                | MTBE     | Benzene  | Toluene  | Ethyl-   | Total Xylenes | Notes |
|----------|-----------|----------------------------|-------------------|---------------------|-----------------|---------------------|----------|----------|----------|----------|---------------|-------|
|          | Sampled   | Interval<br>Depth (ft bgs) | ext.,<br>Stoddard | purge.,<br>Stoddard | ext.,<br>Diesel | purge.,<br>Gasoline |          |          |          | Вепzепе  |               |       |
| GW-3     | 11-Aug-00 | 10 to 20                   | NA                | < 0.05              | NA              | 0.077 YZ            | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | 0.00051       |       |
| GW-4     | 21-Jul-99 | 7 to 12                    | NA                | 6.8                 | NA              | 10 YH               | 0.0022   | < 0.0005 | < 0.0005 | < 0.0005 | 0.0029        | (3)   |
| GW-4     | 20-Jan-00 |                            | NA                | 0.97                | NA              | 1.6 Y               | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      | (4)   |
| Split    | 20-Jan-00 |                            | NA                | 0.85                | NA              | 1.5 Y               | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      | (4)   |
| GW-4     | 27-Apr-00 |                            | NA                | 0.31                | NA              | 0.6 Y               | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | 0.0027        | ` '   |
| GW-5     | 27-Aug-99 | 8 to 13                    | NA                | < 0.05              | NA              | < 0.05              | < 0.001  | < 0.001  | < 0.001  | < 0.001  | < 0.001       |       |
| GW-5     | 20-Jan-00 |                            | NA                | < 0.05              | NA              | 0.057 Y             | 0.0007   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| GW-5     | 27-Apr-00 |                            | NA                | 0.05 Y              | NA              | 0.096 Y             | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| GW-6A    | 27-Aug-99 | 5 to 15                    | NA                | < 0.05              | NA              | 0.054 Y             | 0.0089   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Split    | 27-Aug-99 |                            | NA                | < 0.05              | NA              | 0.057 Y             | 0.0087   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| GW-6A    | 25-Jan-00 |                            | NA                | < 0.05              | NA              | < 0.05              | 0.0022   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| GW-6A    | 27-Apr-00 |                            | NA                | < 0.05              | NA              | 0.087 Y             | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| GW-7     | 15-Jul-99 | 10 to 20                   | 0.697 B           | NA                  | 1.79 A          | NA                  | < 0.0025 | 0.05     | < 0.0005 | 0.000727 | 0.00313       | (5)   |
| Split    | 15-Jul-99 |                            | 1.42 B            | NA                  | 3.1 A           | NA                  | NA       | NA       | NA       | NA       | NA            | (5)   |
| GW-7     | 15-Jul-99 |                            | NA                | NA                  | NA              | NA                  | NA       | 0.0567   | < 0.002  | < 0.002  | < 0.002       | (6)   |
| Split    | 15-Jul-99 |                            | NA                | NA                  | NA              | NA                  | NA       | 0.0755   | < 0.002  | < 0.002  | < 0.002       | (6)   |
| GW-8     | 19-Jul-99 | 10 to 20                   | NA                | < 0.05              | NA              | < 0.05              | 0.0078   | < 0.0005 | 0.00064  | < 0.0005 | 0.00151       |       |
| GW-8     | 20-Jan-00 |                            | NA                | 0.19                | NA              | 0.33 Y              | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
|          |           |                            |                   |                     |                 |                     |          |          |          |          |               |       |

Rpt6895BTEXWater

Page 2 of 4

10/18/2000

Table 5
Summary of Analytical Results For Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses of Groundwater Samples
Former Glovatorium

All results expressed in milligrams per liter (mg/l)

| Location     | Date            | Screened                   | TPH,              | TPH,                | TPH,            | TPH,                | MTBE     | Benzene  | Toluene  | Ethyl-   | Total Xylenes | Notes |
|--------------|-----------------|----------------------------|-------------------|---------------------|-----------------|---------------------|----------|----------|----------|----------|---------------|-------|
|              | Sampled         | Interval<br>Depth (ft bgs) | ext.,<br>Stoddard | purge.,<br>Stoddard | ext.,<br>Diesel | purge.,<br>Gasoline |          |          |          | Benzene  |               |       |
| Split        | 20-Jan-00       | 10 to 20                   | NA                | 0.2                 | NA              | 0.37 Y              | < 0.002  | 0.00058  | < 0.0005 | < 0.0005 | < 0.0005      |       |
| GW-8         | 28-Apr-00       |                            | NA                | 0.064 YZ            | NA              | 0.12 YZ             | 0.013    | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Monitoring v | _               | y TOSCO:                   |                   |                     |                 |                     |          |          |          |          |               |       |
| MW-11        | 25-Jan-00       | unknown                    | NA                | < 0.05              | NA              | < 0.05              | 0.009    | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| MW-11        | 28-Apr-00       |                            | NA                | < 0.05              | NA              | < 0.05              | < 0.0087 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      | (2)   |
| MW-11        | 10-Aug-00       |                            | NA                | < 0.05              | NA              | < 0.05              | 0.011    | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Monitoring v | wells installed | by LFR:                    |                   |                     |                 |                     |          |          |          |          |               |       |
| LFR-1        | 09-Aug-00       | 9 to 19                    | NA                | 0.53                | NA              | 1.2                 | 0.0095   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| LFR-2        | 11-Aug-00       | 9 to 19                    | NA                | 0.59                | NA              | 1.1 YH              | 0.0022   | 0.0018   | < 0.0005 | < 0.0005 | 0.0013 C      |       |
| LFR-3        | 10-Aug-00       | 12 to 22                   | NA                | < 0.05              | NA              | < 0.05              | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Split        | 10-Aug-00       |                            | NA                | < 0.05              | NA              | < 0.05              | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| LFR-4        | 11-Aug-00       | 9 to 19                    | NA                | 0.22 Y              | NA              | 0.41 Y              | 0.0051   | 0.011    | < 0.0005 | < 0.0005 | 0.00162 C     |       |
| Blanks       |                 |                            |                   |                     |                 |                     |          |          |          |          |               |       |
| Trip Blank   | 19-Jul-99       |                            | NA                | < 0.05              | NA              | < 0.05              | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Trip Blank   | 20-Jan-00       |                            | NA                | < 0.05              | NA              | < 0.05              | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Trip Blank   | 27-Apr-00       |                            | NA                | < 0.05              | NA              | < 0.05              | 0.0024   | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |
| Field Blank  | 27-Apr-00       |                            | NA                | < 0.05              | NA              | < 0.05              | < 0.002  | < 0.0005 | 0.00054  | < 0.0005 | < 0.0005      |       |
| Field Blank  | 10-Aug-00       | •                          | NA                | < 0.05              | NA              | < 0.05              | < 0.002  | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005      |       |

Rpt6895BTEXWater Page 3 of 4 10/18/2000

#### Table 5

# Summary of Analytical Results For Total Petroleum Hydrocarbon, BTEX, and MTBE Analyses of

#### Groundwater Samples Former Glovatorium

#### 3815 Broadway, Oakland, California

#### All results expressed in milligrams per liter (mg/l)

| Location | Date    | Screened       | TPH,     | TPH,     | TPH,   | TPH,     | MTBE | Benzene | Toluene | Ethyl-  | Total Xylenes | Notes |
|----------|---------|----------------|----------|----------|--------|----------|------|---------|---------|---------|---------------|-------|
|          | Sampled | Interval       | ext.,    | purge.,  | ext.,  | purge.,  |      |         |         | Benzene |               |       |
|          |         | Depth (ft bgs) | Stoddard | Stoddard | Diesel | Gasoline |      |         |         |         |               | i i   |

#### Notes:

- (1) = TPH results are estimated due to high surrogate recoveries for bromofluorobenzene.
- (2) = MTBE was considered not detected due to blank contamination.
- (3) = Gasoline, Stoddard solvent, and/or BTEX results are estimated due to surrogate recovery of bromofluorobenzene above upper QC limit.
- (4) = Gasoline and Stoddard solvent results estimated due to high surrogate recoveries above the upper QC limit.
- (5) = TPH diesel results are estimated due to high RPD > 50%. BTEX results are estimated due to high surrogate recovery above upper QC limits.
- (6) = Results are estimated because EPA-recommended hold time was exceeded.
- A = Chromatogram pattern: unidentified hydrocarbons C9-C24
- B = Chromatogram pattern: unidentified hydrocarbons C9-C13
- C = Presence of this compound confirmed by second column, however, the confirmation concentration differed from the reported result by more than a factor of two.
- Y = Sample exhibits fuel pattern which does not resemble standard.
- H = Heavier hydrocarbons than the standard are present in the sample.
- Z = Sample exhibits unknown single peak or peaks.

ft bgs = Feet below ground surface

NA = Not analyzed

TPH, ext. = Total petroleum hydrocarbons (extractable)

TPH, purge. = Total petroleum hydrocarbons (purgeable)

MTBE = Methyl tertiary-butyl ether

Groundwater samples collected from the temporary sampling points are considered grab samples; therefore, the results should be considered estimates of groundwater quality.

Table 6
Summary of Analytical Results For Volatile Organic Compound (VOC) Analyses of

# **Groundwater Samples Former Glovatorium**

3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/l)

| Location  | Date<br>Sampled | Screened<br>Interval<br>Depth (ft bgs) | Acetone      | PCE      | TCE      | cis-1,2-<br>DCE | trans-1,2-<br>DCE | Vinyl<br>Chloride | 1,2-Dichloro-<br>propane | Notes |
|-----------|-----------------|----------------------------------------|--------------|----------|----------|-----------------|-------------------|-------------------|--------------------------|-------|
| Temporary | sampling poin   | ts installed by G                      | eoSolv, LLC: |          |          |                 |                   |                   |                          |       |
| B-2       | 24-Jan-00       | 5 to 21                                | NA           | < 0.0013 | < 0.0013 | 0.27            | 0.0014            | < 0.0013          | < 0.0013                 |       |
| B-3       | 24-Jan-00       | 5 to 18                                | NA           | < 0.002  | < 0.002  | 0.61            | < 0.002           | < 0.002           | < 0.002                  |       |
| B-7       | 24-Jan-00       | 5 to 17.5                              | NA           | < 0.0036 | < 0.0036 | 0.92            | 0.0043            | < 0.0036          | < 0.0036                 |       |
| B-7       | 11-Aug-00       |                                        | NA           | < 0.0031 | < 0.0031 | 0.86            | 0.0048            | < 0.0031          | < 0.0031                 |       |
| B-8       | 24-Jan-00       | 9 to 24                                | NA           | < 0.0005 | < 0.0005 | 0.035           | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| B-9       | 24-Jan-00       | 4.5 to 19.5                            | NA           | < 0.0005 | 0.0006   | 0.0032          | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| B-10      | 24-Jan-00       | 4 to 19                                | NA           | 1.2      | 2.4      | 14              | 0.09              | < 0.063           | < 0.063                  |       |
| B-10      | 10-Aug-00       |                                        | NA           | 2.9      | 1.6      | 6.5             | 0.05              | < 0.025           | < 0.025                  |       |
| B-13      | 24-Jan-00       | 5 to 20                                | NA           | 0.02     | 0.029    | 0.13            | 0.0049            | < 0.0005          | < 0.0005                 |       |
| Temporary | sampling poin   | ts installed by LF                     | R:           |          |          |                 |                   |                   |                          |       |
| GW-2      | 19-Jul-99       | 10 to 20                               | NA           | 0.014    | 0.0014   | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-2      | 20-Jan-00       |                                        | NA           | 0.13     | 0.019    | 0.0055          | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-2      | 28-Apr-00       |                                        | NA           | 0.12     | 0.016    | 0.0033          | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-3      | 19-Jul-99       | 10 to 20                               | NA           | 0.22     | < 0.001  | < 0.001         | < 0.001           | < 0.001           | < 0.001                  |       |
| GW-3      | 20-Jan-00       |                                        | NA           | 0.055    | 0.001    | 0.02            | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-3      | 27-Apr-00       |                                        | NA           | 0.35     | 0.0023   | 0.0056          | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| Split     | 27-Apr-00       |                                        | NA           | 0.27     | 0.0015   | 0.0023          | < 0.0013          | < 0.0013          | < 0.0013                 |       |

Table 6
Summary of Analytical Results For Volatile Organic Compound (VOC) Analyses of Groundwater Samples
Former Glovatorium

## All results expressed in milligrams per liter (mg/l)

| Location | Date<br>Sampled | Screened<br>Interval<br>Depth (ft bgs) | Acetone | PCE      | TCE      | cis-1,2-<br>DCE | trans-1,2-<br>DCE | Vinyl<br>Chloride | 1,2-Dichloro-<br>propane | Notes |
|----------|-----------------|----------------------------------------|---------|----------|----------|-----------------|-------------------|-------------------|--------------------------|-------|
| GW-3     | 11-Aug-00       | 10 to 20                               | NA      | 0.068    | 0.0028   | 0.012           | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-4     | 19-Jul-99       | 7 to 12                                | NA      | < 0.0005 | < 0.0005 | 0.0035          | < 0.0005          | < 0.0005          | 0.0017                   |       |
| GW-4     | 20-Jan-00       |                                        | < 0.01  | 0.0008   | < 0.0005 | 0.0036          | < 0.0005          | < 0.0005          | 0.0015                   | (1)   |
| Split    | 20-Jan-00       |                                        | < 0.01  | 0.0006   | < 0.0005 | 0.0044          | < 0.0005          | < 0.0005          | 0.0021                   | (2)   |
| GW-4     | 27-Apr-00       |                                        | NA      | 0.0017   | < 0.0005 | 0.001           | < 0.0005          | < 0.0005          | 0.0006                   |       |
| GW-5     | 27-Aug-99       | 8 to 13                                | 0.24    | < 0.001  | < 0.001  | < 0.001         | < 0.001           | < 0.001           | < 0.001                  |       |
| GW-5     | 20-Jan-00       |                                        | < 0.01  | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-5     | 27-Apr-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-6A    | 27-Aug-99       | 5 to 15                                | 0.19    | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| Split    | 27-Aug-99       |                                        | 0.11    | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-6A    | 25-Jan-00       |                                        | < 0.01  | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-6A    | 27-Apr-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005          | < 0.0005                 |       |
| GW-7     | 15-Jul-99       | 10 to 20                               | NA      | < 0.0005 | < 0.0005 | 0.00358         | < 0.0005          | < 0.0005          | 0.000632                 |       |
| GW-7     | 15-Jul-99       |                                        | NA      | < 0.002  | < 0.002  | 0.00398         | < 0.002           | < 0.002           | < 0.002                  | (3)   |
| Split    | 15-Jul-99       |                                        | NA      | < 0.002  | < 0.002  | 0.00383         | < 0.002           | < 0.002           | < 0.002                  | (4)   |
| GW-8     | 19-Jul-99       | 10 to 20                               | NA      | 0.024    | 0.015    | 0.0038          | 0.0017            | 0.0012            | < 0.0005                 |       |
| 3W-8     | 20-Jan-00       |                                        | NA      | 0.15     | 0.19     | 0.053           | 0.012             | 0.0045            | < 0.0007                 |       |
| Split    | 20-Jan-00       |                                        | NA      | 0.15     | 0.18     | 0.052           | 0.011             | 0.0046            | < 0.0005                 |       |

Rpt6895VOCWater

Page 2 of 5

Table 6
Summary of Analytical Results For Volatile Organic Compound (VOC) Analyses of

# Groundwater Samples Former Glovatorium

3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/l)

| Location    | Date<br>Sampled | Screened<br>Interval<br>Depth (ft bgs) | Acetone | PCE      | TCE      | cis-1,2-<br>DCE | trans-1,2-<br>DCE | <b>Vinyl</b><br>Chloride | 1,2-Dichloro-<br>propane | Notes |
|-------------|-----------------|----------------------------------------|---------|----------|----------|-----------------|-------------------|--------------------------|--------------------------|-------|
| GW-8        | 28-Apr-00       | 10 to 20                               | NA      | 0.12     | 0.11     | 0.029           | 0.0053            | 0.0023                   | < 0.0005                 |       |
| Monitoring  | wells owned b   | y TOSCO:                               |         |          |          |                 |                   |                          |                          |       |
| MW-11       | 25-Jan-00       | Unknown                                | < 0.01  | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| MW-11       | 28-Apr-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 | (5)   |
| MW-11       | 10-Aug-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Monitoring  | wells installed | l by LFR:                              |         |          |          |                 |                   |                          |                          |       |
| LFR-1       | 09-Aug-00       | 9 to 19                                | NA      | 2.8      | 0.064    | 0.041           | < 0.0083          | < 0.0083                 | < 0.0083                 | (6)   |
| LFR-2       | 11-Aug-00       | 9 to 19                                | NA      | < 0.0005 | < 0.0005 | 0.035           | < 0.0005          | 0.0045                   | < 0.0005                 |       |
| LFR-3       | 10-Aug-00       | 12 to 22                               | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Split       | 10-Aug-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| LFR-4       | 11-Aug-00       | 9 to 19                                | NA      | < 0.0005 | < 0.0005 | 0.0012          | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Blanks      |                 |                                        |         |          |          |                 |                   |                          |                          |       |
| Trip Blank  | 19-Jul-99       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Trip Blank  | 20-Jan-00       |                                        | < 0.01  | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Trip Blank  | 27-Apr-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Trip Blank  | 10-Aug-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Field Blank | 27-Apr-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 |       |
| Field Blank | 10-Aug-00       |                                        | NA      | < 0.0005 | < 0.0005 | < 0.0005        | < 0.0005          | < 0.0005                 | < 0.0005                 | (7)   |

#### Table 6

# Summary of Analytical Results For Volatile Organic Compound (VOC) Analyses of Groundwater Samples Former Glovatorium

#### 3815 Broadway, Oakland, California

#### All results expressed in milligrams per liter (mg/l)

| Location | Date    | Screened       | Acetone | PCE | TCE | cis-1,2- | trans-1,2- | Vinyl    | 1,2-Dichloro- | Notes |
|----------|---------|----------------|---------|-----|-----|----------|------------|----------|---------------|-------|
|          | Sampled | Interval       |         |     |     | DCE      | DCE        | Chloride | propane       |       |
|          |         | Depth (ft bgs) |         |     |     |          |            |          |               |       |

#### Notes:

- (1) = 1,2,4-Trimethylbenzene was detected at 0.0034 mg/l; 1,3,5-trimethylbenzene was detected at 0.0009 mg/l; isopropylbenzene was detected at 0.0055 mg/l; n-butylbenzene was detected at 0.0041 mg/l; para-isopropyl toluene was detected at 0.0009 mg/l; propylbenzene was detected at 0.0094 mg/l; sec-butylbenzene was detected at 0.017 mg/l; tert-butylbenzene was detected at 0.0027 mg/l; 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, para-isopropyl toluene, and n-butylbenzene results are estimated due to FD RPD > 50%.
- (2) = 1,2,4-Trimethylbenzene was detected at 0.0083 mg/l; 1,3,5-trimethylbenzene was detected at 0.0022 mg/l; isopropylbenzene was detected at 0.0078 mg/l; n-butylbenzene was detected at 0.0067 mg/l; para-isopropyl toluene was detected at 0.0021 mg/l; propylbenzene was detected at 0.014 mg/l; sec-butylbenzene was detected at 0.024 mg/l; tert-butylbenzene was detected at 0.0034 mg/l; 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, para-isopropyl toluene, and n-butylbenzene results are estimated due to FD RPD > 50%
- (3) = tert-Butylbenzene was detected at 0.00307 mg/l. Results are estimated because EPA-recommended hold time was exceeded.
- (4) = sec-Butylbenzene was detected at 0.00206 mg/l; tert-butylbenzene was detected at 0.0031 mg/l; carbon tetrachloride was detected at 0.00786 mg/l. Results are estimated because EPA-recommended hold time was exceeded.
- (5) = 1,3-Dichlorobenzene was detected at 0.0005 mg/l.
- (6) = The fourth quarter 2000 sample from LFR-1 was collected on October 30, 2000, and VOC results have been received by LFR. Results for PCE (0.82 mg/l in fourth quarter compared with 2.8 mg/l in third quarter), TCE (0.034 mg/l in fourth compared with 0.064 mg/l in third quarter), and for cis-1,2-DCE (0.010 mg/l in fourth quarter compared with 0.041 mg/l in third quarter) indicate decreased concentrations from the third to the fourth quarter. The reasons for these differences will be evaluated and discussed in the fourth quarter 2000 report.
- (7) = Chloroform was detected at 0.0088 mg/l.

ft bgs = Feet below ground surface

NA = Not analyzed

#### Table 6

# Summary of Analytical Results For Volatile Organic Compound (VOC) Analyses of

# Groundwater Samples Former Glovatorium

3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/l)

| Location | Date    | Screened       | Acetone | PCE | TCE | cis-1,2- | trans-1,2- |          | 1,2-Dichloro- | Notes |
|----------|---------|----------------|---------|-----|-----|----------|------------|----------|---------------|-------|
|          | Sampled | Interval       |         |     |     | DCE      | DCE        | Chloride | propane       |       |
|          |         | Depth (ft bgs) |         |     |     |          |            |          |               |       |

cis-1,2-DCE = cis-1,2-dichloroethene

trans-1,2-DCE =trans-1,2-dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

Groundwater samples collected from the temporary sampling points are considered grab samples; therefore the results should be considered estimates of groundwater quality.

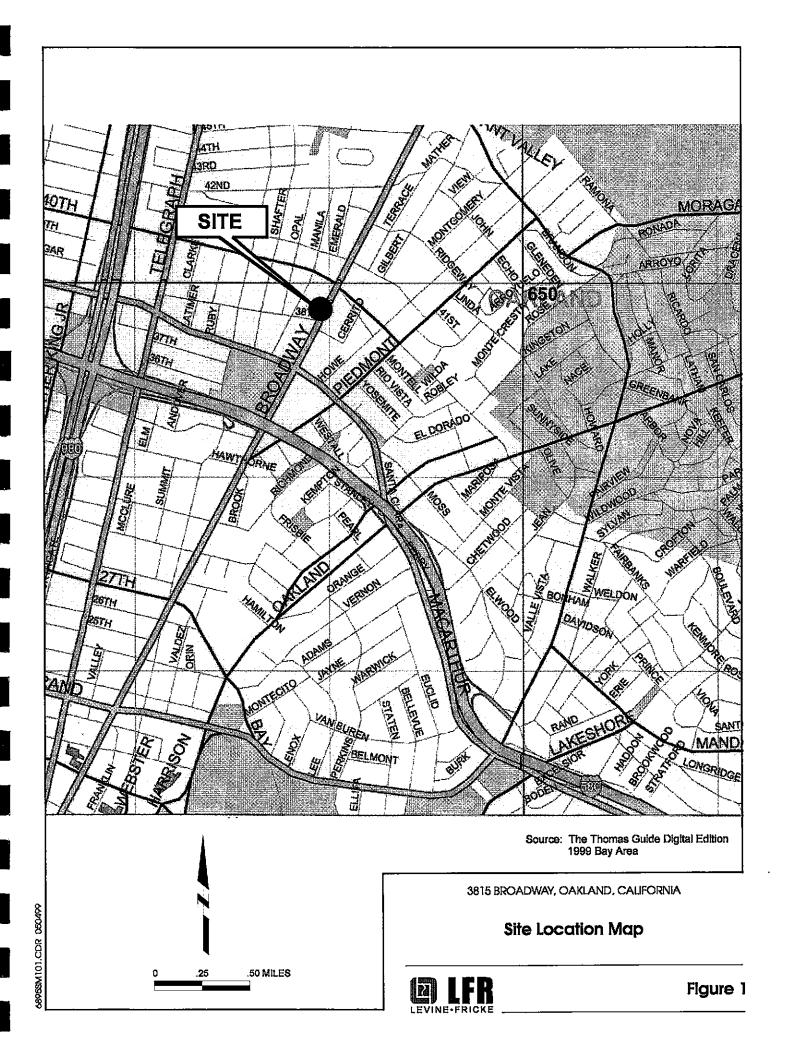
Table 7
Summary of Analytical Results and Field Measurements For Dissolved Anions, Cations, and Gases in Groundwater Samples
Former Glovatorium
3815 Broadway, Oakland, California

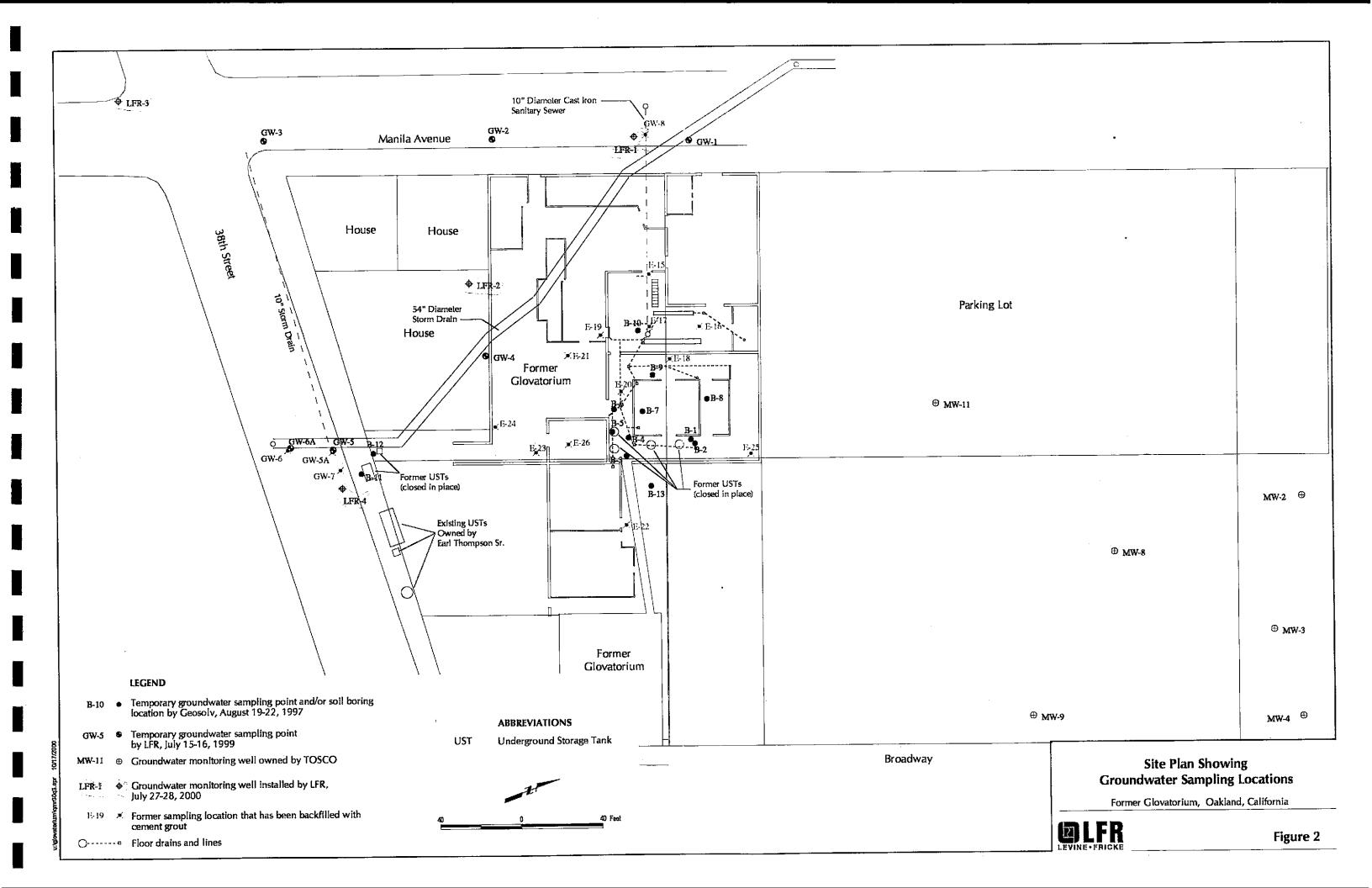
(concentrations in milligrams per liter [mg/l])

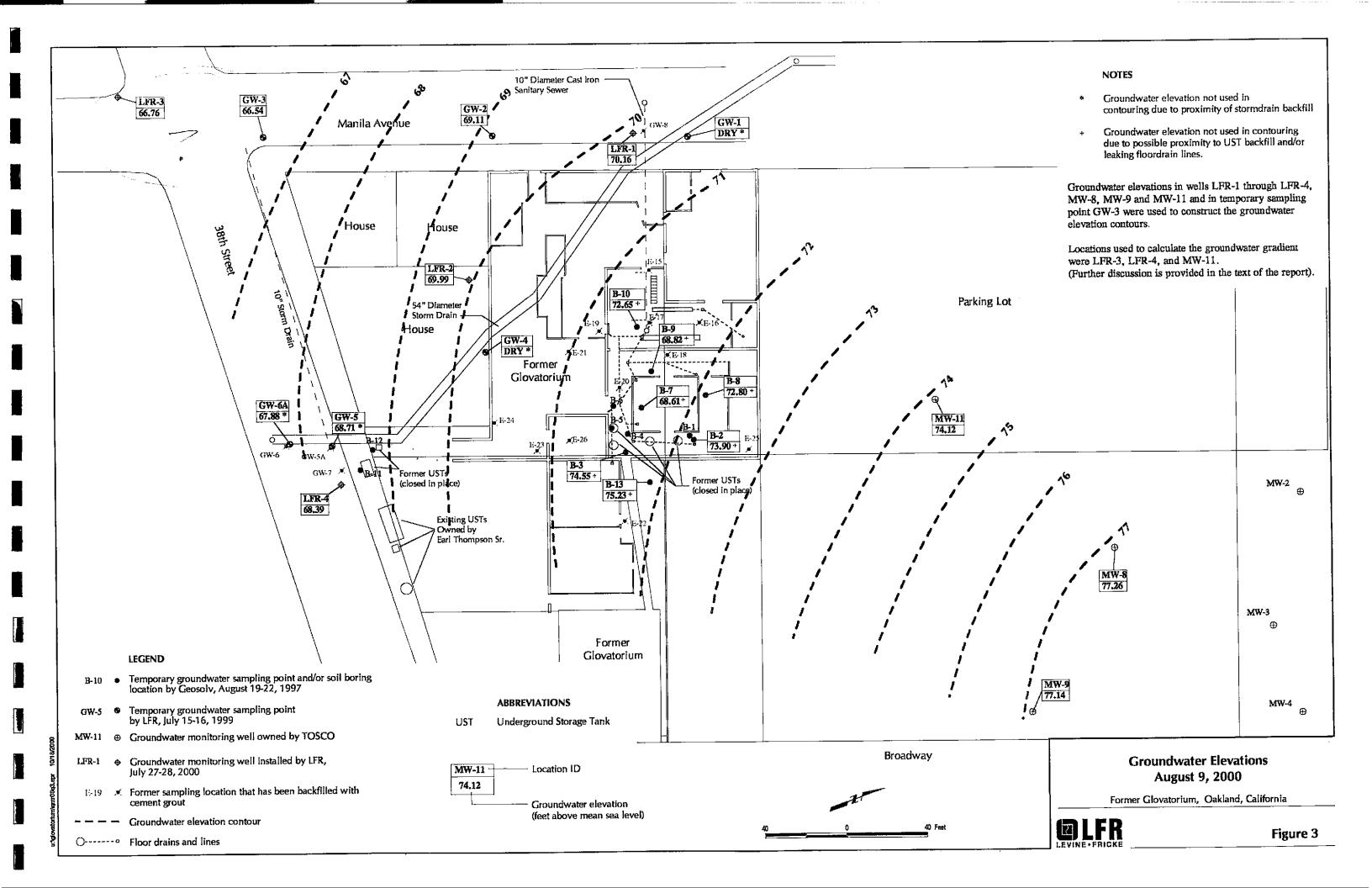
| Well Number | Date Sampled | Dissolved<br>Oxygen | Methane  | Carbon<br>Dioxide | Ferrous<br>Iron (Fe+2) | Alkalinity, Total<br>as CaCO3,<br>Bicarbonate | Chloride | Nitrogen,<br>Nitrate | Sulfate |
|-------------|--------------|---------------------|----------|-------------------|------------------------|-----------------------------------------------|----------|----------------------|---------|
| B-7         | 08/11/2000   | 0.63                | 11       | 202               |                        | 760                                           | 39       |                      |         |
| B-7-field   | 08/11/2000   |                     |          |                   |                        |                                               |          | (1)                  | 3       |
| B-10        | 08/10/2000   | 0.44                | 10       | 145               | 5.7                    | 520                                           | 74       | < 0.05               | < 0.5   |
| B-10-field  | 08/10/2000   |                     |          |                   |                        |                                               |          | (1)                  | (2)     |
| GW-3        | 08/11/2000   | 0.72                | < 0.0005 | 54.3              |                        | 340                                           | 25       |                      |         |
| GW-3-field  | 08/11/2000   |                     |          |                   | -                      |                                               |          | 1                    | 46      |
| MW-11       | 08/10/2000   | 2.52                | < 0.0005 | 216               | < 0.1                  | 360                                           | 110      | 2.8                  | 63      |
| MW-11-field | 08/10/2000   |                     |          |                   |                        |                                               |          | 4.1                  | 67      |
| LFR-1       | 08/09/2000   | 3.63                |          |                   |                        | 250                                           | 110      |                      |         |
|             | 08/11/2000   |                     | 0.0096   | 51.1              |                        |                                               |          |                      |         |
| LFR-1-field | 08/09/2000   |                     |          |                   |                        |                                               |          | 5.5                  | 30      |
| LFR-2       | 08/11/2000   | 0.48                | 6.6      | 174               |                        | 590                                           | 33       |                      |         |
| LFR-2-field | 08/11/2000   |                     |          |                   | 2.7                    |                                               |          | 1.5                  | (1)     |
| LFR-3       | 08/10/2000   | 1.3                 | 0.00051  | 162               | < 0.1                  | 310                                           | 85       | 2.4                  | 64      |
| Split       | 08/10/2000   |                     | < 0.0005 | 152               |                        | 300                                           | 85       |                      |         |
| LFR-3-field | 08/10/2000   |                     |          |                   |                        |                                               |          | 2.4                  | 64      |
| LFR-4       | 08/11/2000   | 1.13                | 0.062    | 161               |                        | 630                                           | 71       |                      |         |
| LFR-4-field | 08/11/2000   |                     |          |                   | 0.14                   |                                               |          | 0.7                  | 1       |
| Field Blank | 08/10/2000   |                     | < 0.0005 | < 0.1             |                        | 1.1                                           | < 0.2    |                      |         |

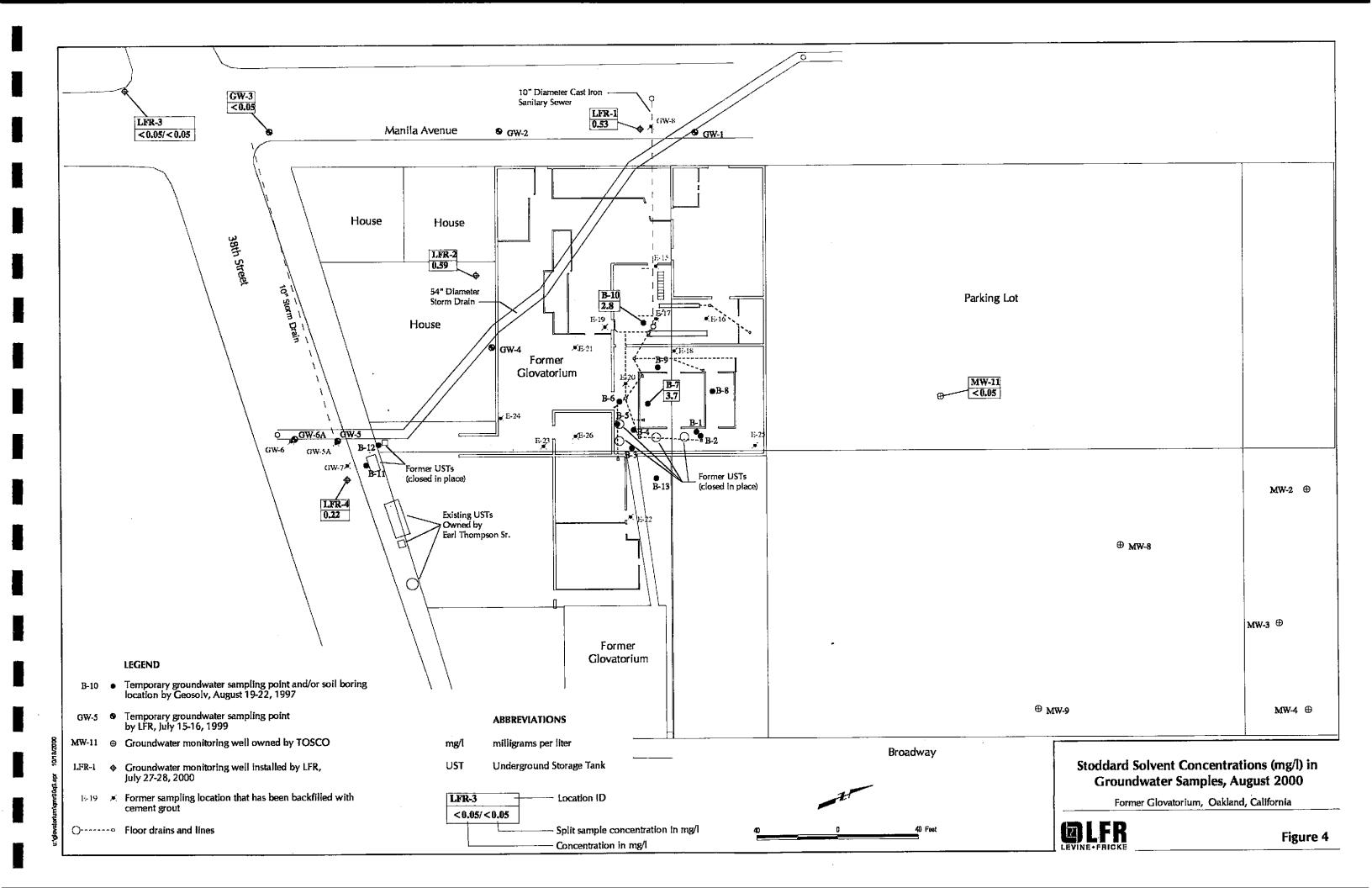
## Table 7

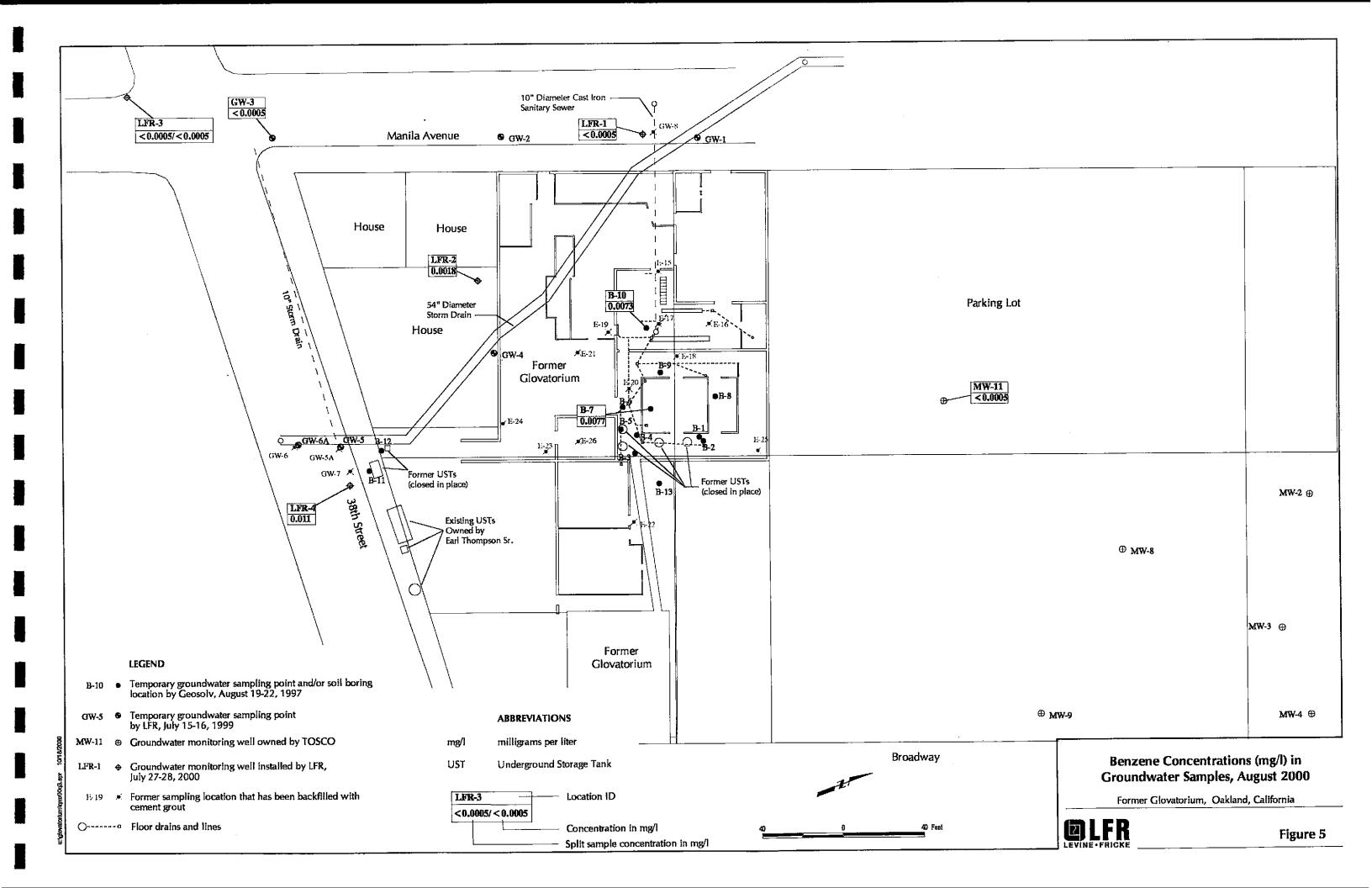
# Summary of Analytical Results and Field Measurements For Dissolved Anions, Cations, and Gases in Groundwater Samples Former Glovatorium 3815 Broadway, Oakland, California

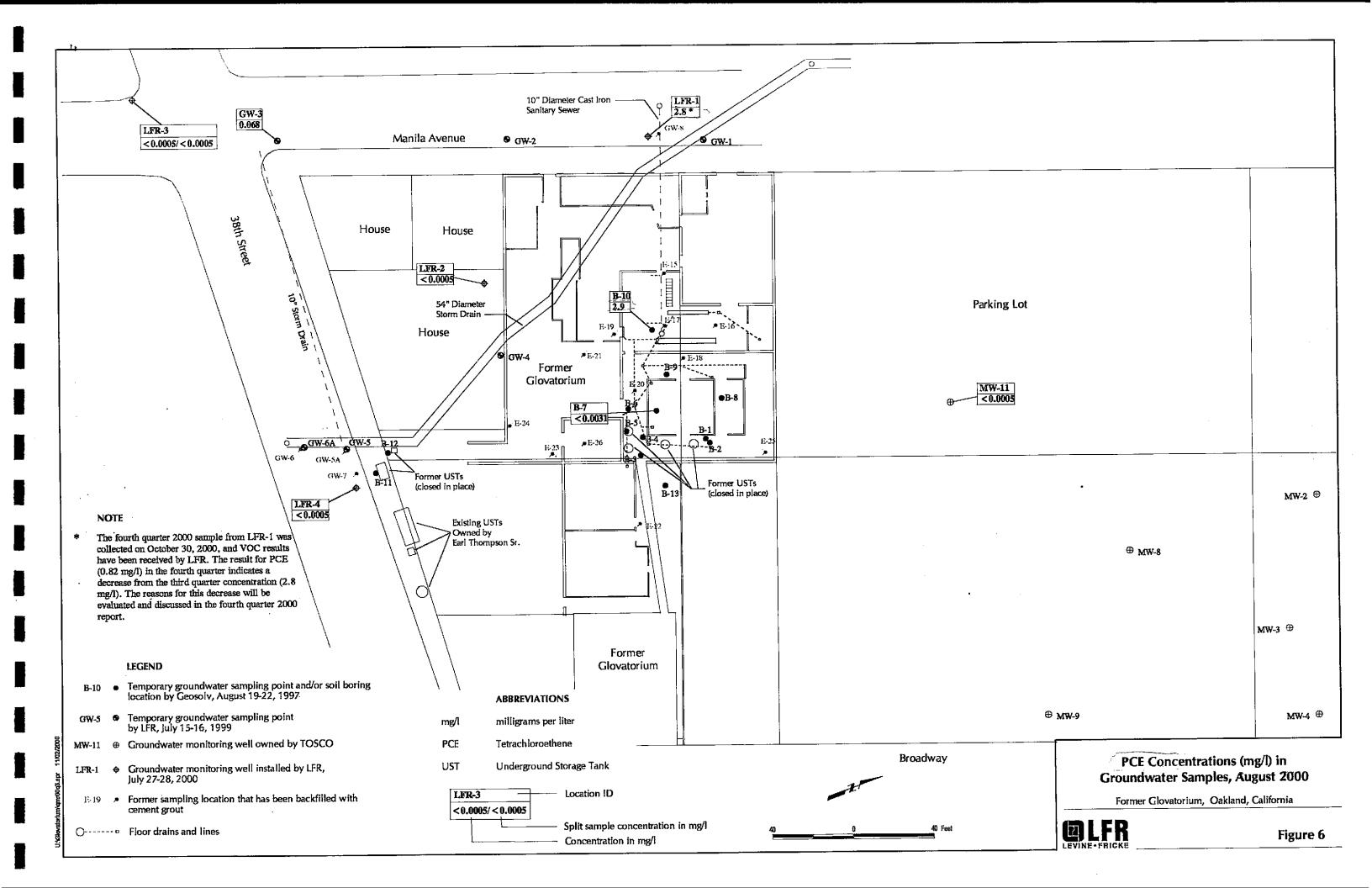

(concentrations in milligrams per liter [mg/l])

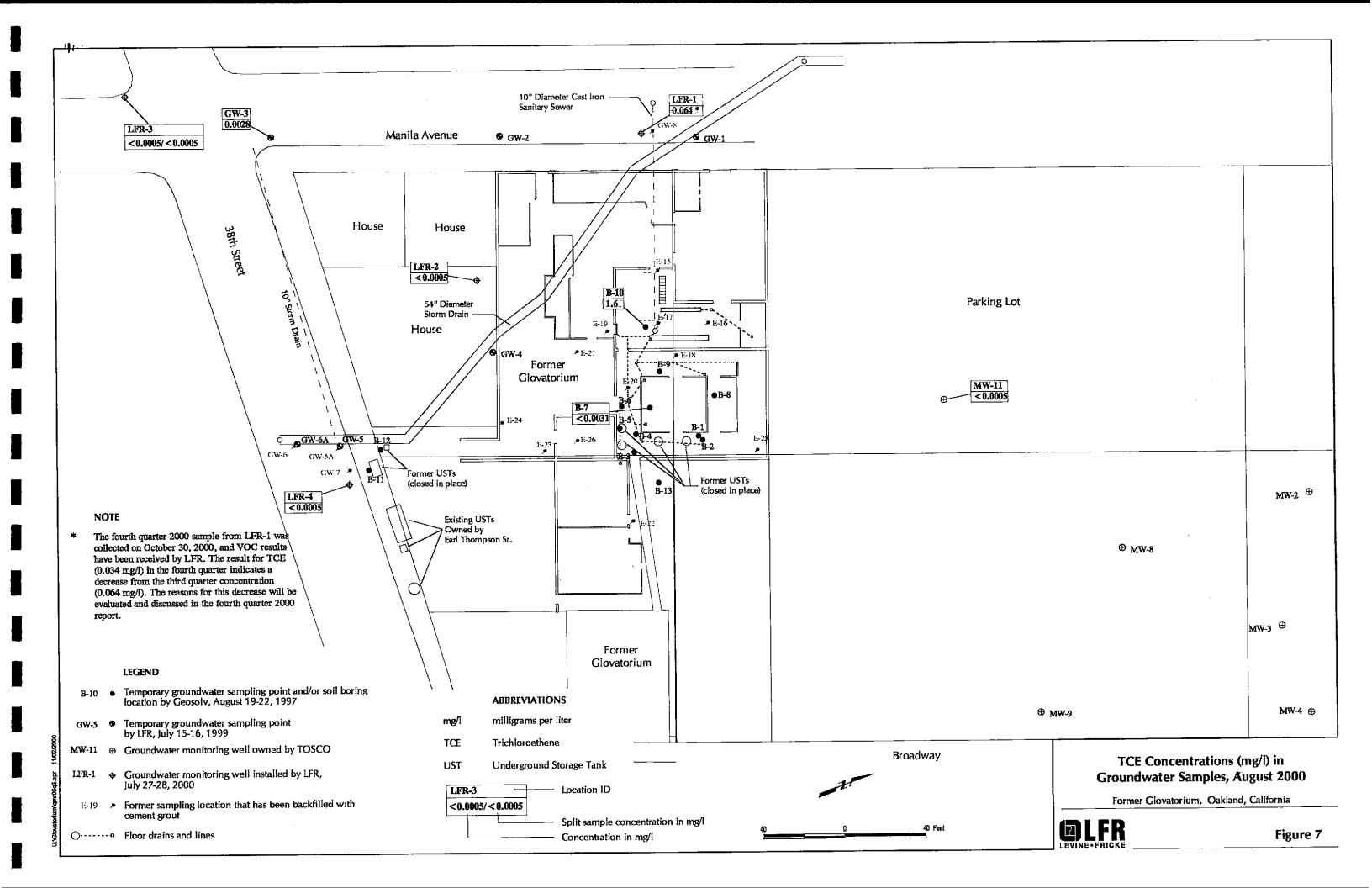

| Well Number Date Sampled Dissolved Oxygen Metha | Carbon Ferrous Dioxide Iron (Fe + 2) | Alkalinity, Total Chloride<br>as CaCO3,<br>Bicarbonate | Nitrogen, Sulfate | e |
|-------------------------------------------------|--------------------------------------|--------------------------------------------------------|-------------------|---|
|-------------------------------------------------|--------------------------------------|--------------------------------------------------------|-------------------|---|

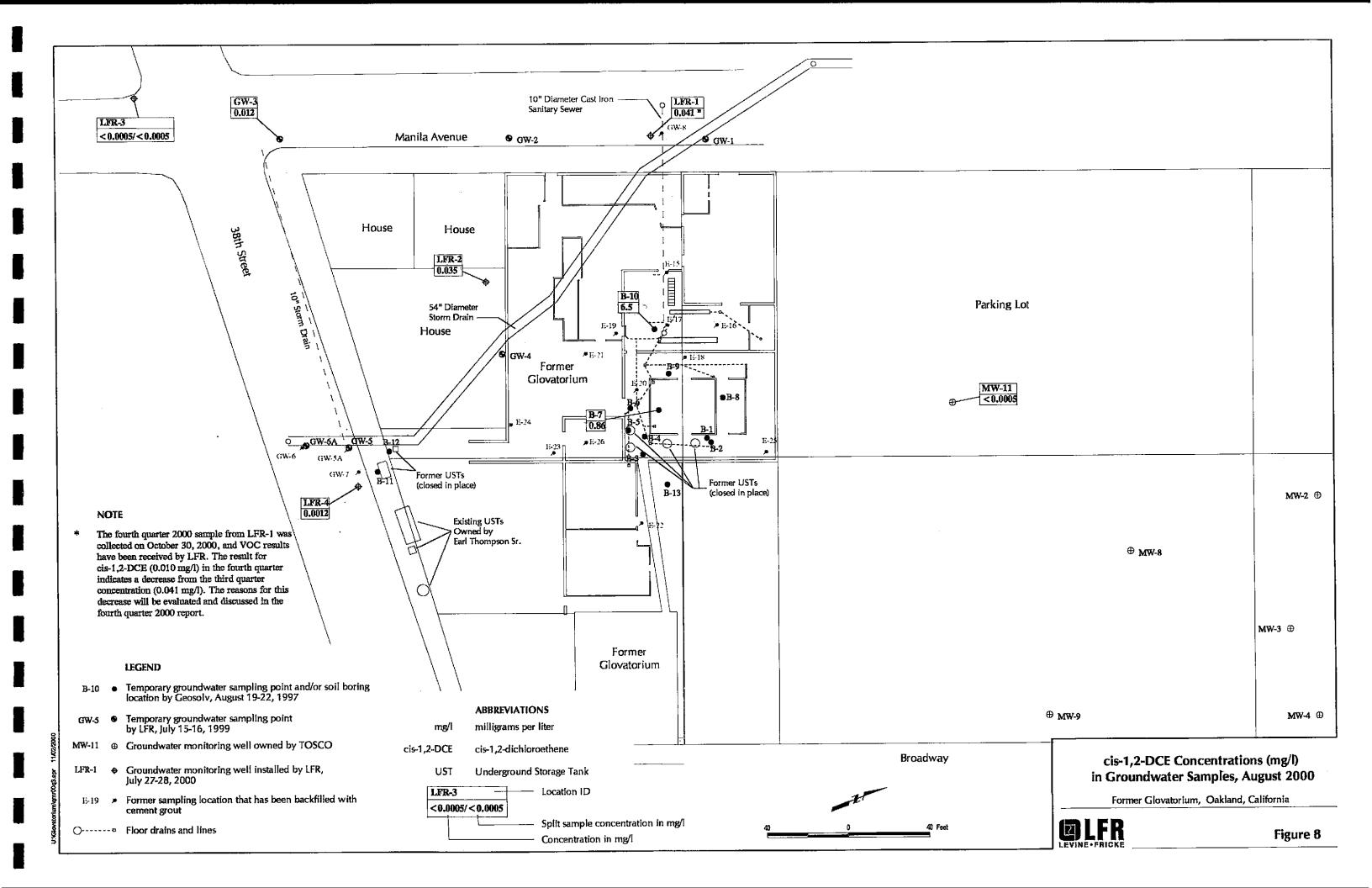

#### Notes:

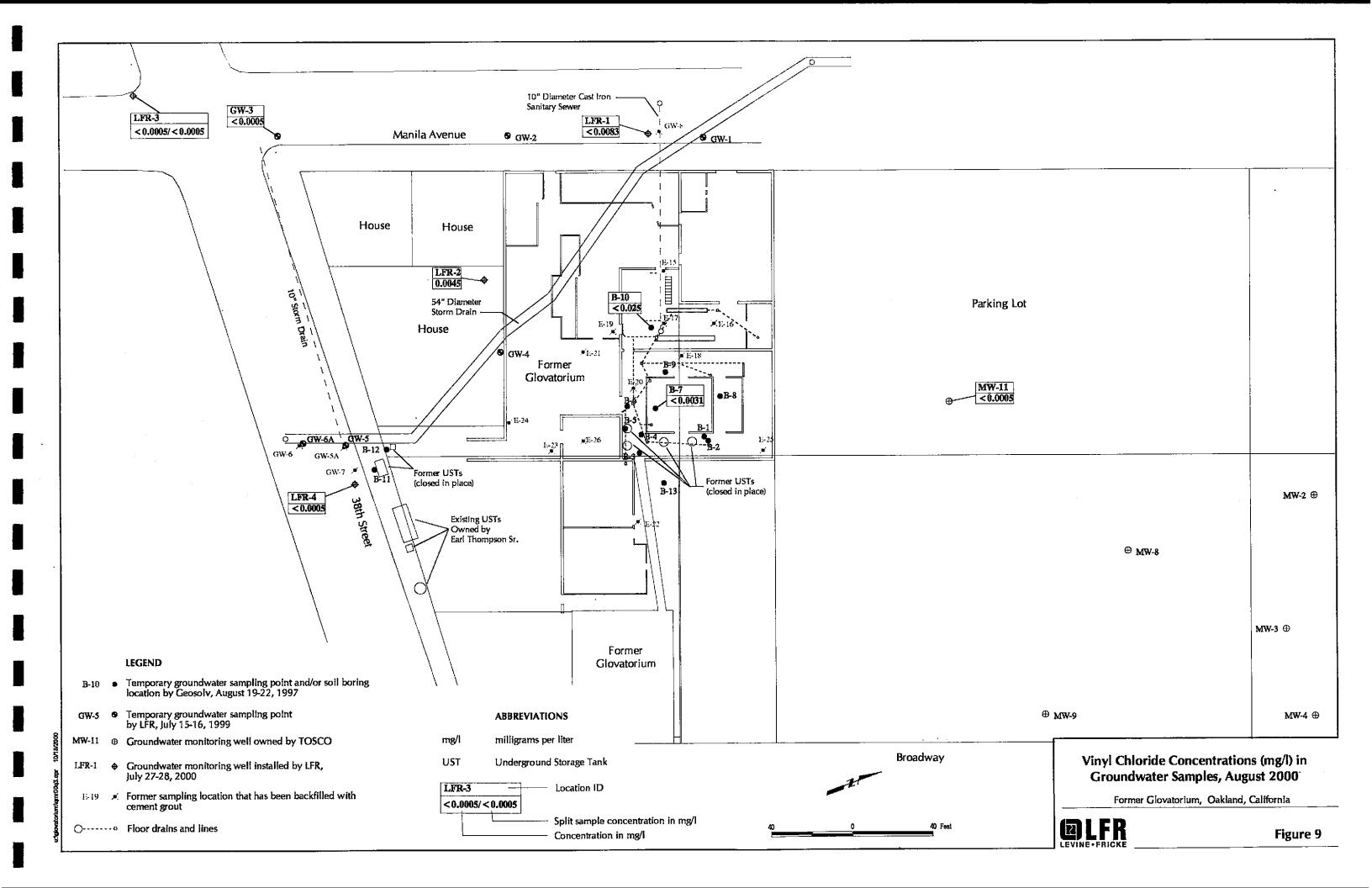

Samples with "field" in the Well Number indicate that the results are from field measurements obtained using a Hach spectrophotometer.

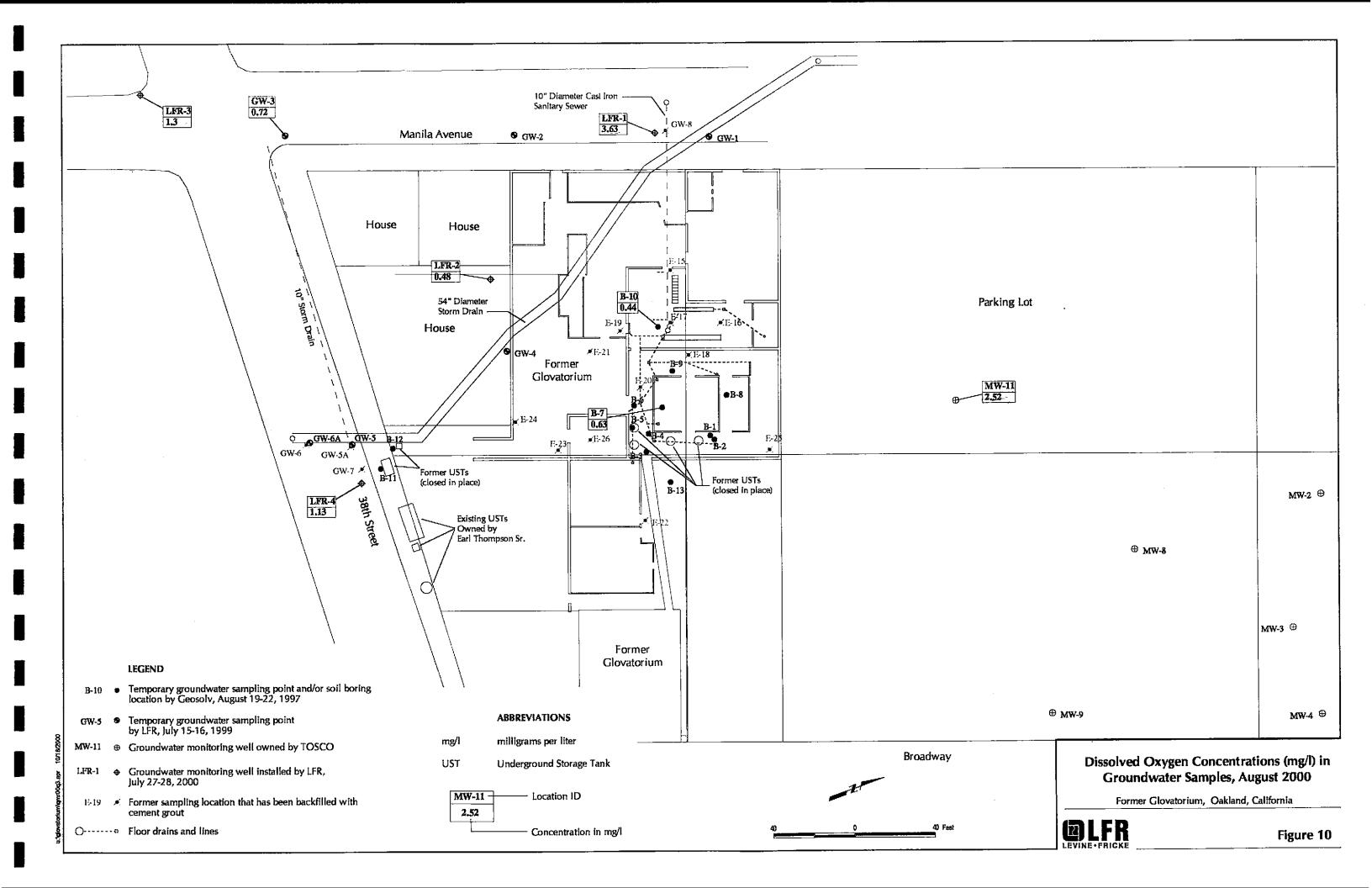

- (1) Sample concentration was too dilute to be reproducibly measured using the Hach spectrophotometer.
- (2) Field measurement sample was not recorded.

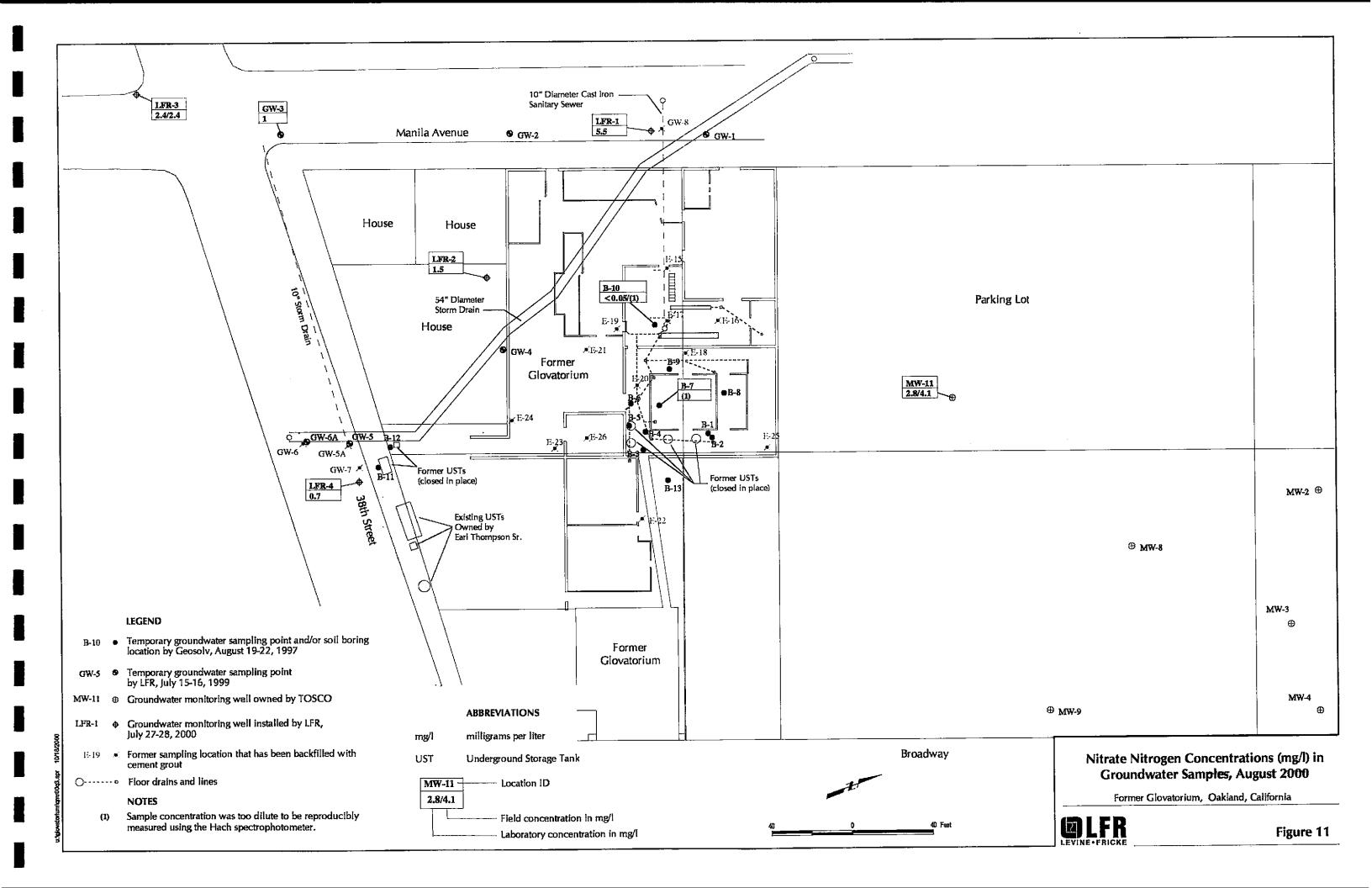


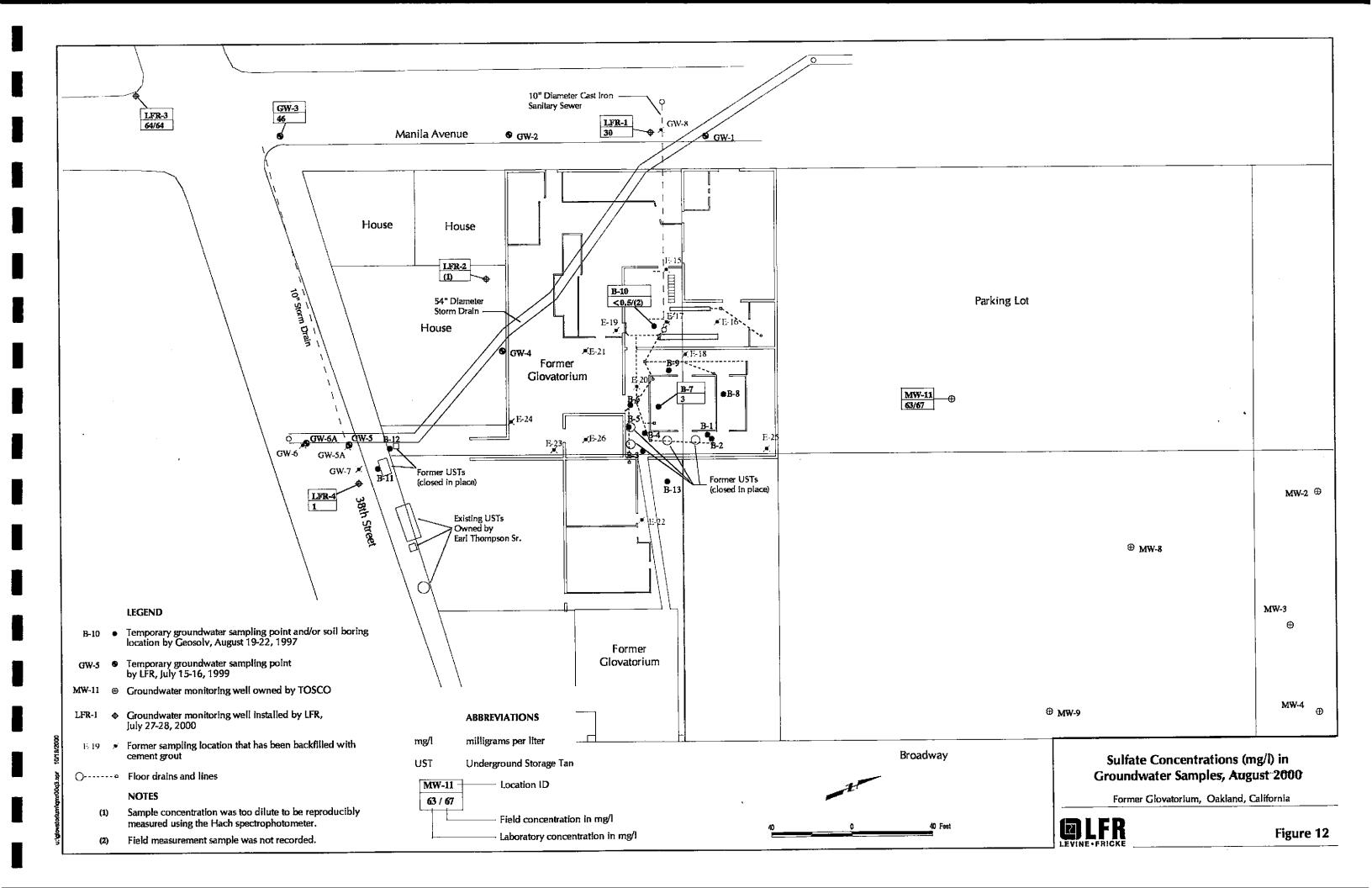



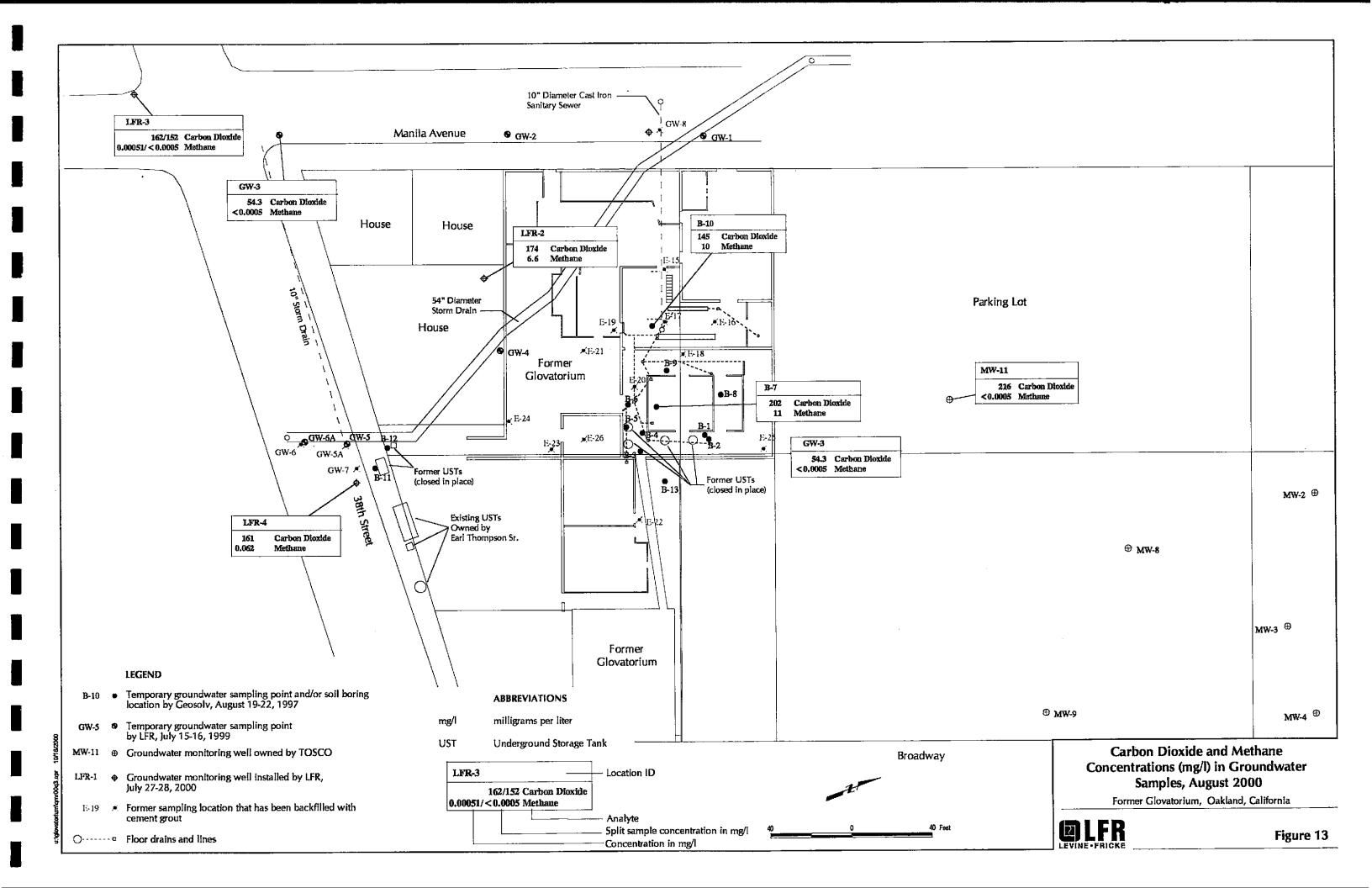
















944 <del>(</del>

# ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

199 ELMHURST ST. HAYWARD CA. 94544-1395
PHONE (310) 670-3534 MARLON MAGALLANES/FRANK CODD (510) 670-5783
FAX (510)181-1939

# DRILLING PERMIT APPLICATION

| for applicant to complete                                                                                                                                        | FOR DEFICE USE 1000-449                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION OF PROJECT Manifa Avenue                                                                                                                                | PERMIT NUMBER VOO                                                                                                                                                                         |
| _ kelicen 35 de 37                                                                                                                                               | APN                                                                                                                                                                                       |
| Oukland, CA                                                                                                                                                      | PERMIT CONDITIONS                                                                                                                                                                         |
|                                                                                                                                                                  | Ciroled Permit Requirements Apply                                                                                                                                                         |
| CLIENT Stuart Desper Clean Tech Machina, Name Stuart Desper Clean Tech Machina, Address BT No Coard F2E Phone (634) 529-7677 City South San Thorses CA Zip 94080 | A. GEVERAL  1. Permit application should be submitted to as to mive at the ACPWA office five days prior to proposed starting date.  2. Submit to ACPWA within 60 days after completion of |
| Name Like Course Fricks Par (570) 652-4906                                                                                                                       | permitted original Department of Water Resources- Woll Completion Report  Dermitte vaid if project and begun within 30 days of                                                            |
| Address 1900 Posell St. DA Py Thone (574) (59 yras) City Enguille, Et 219 44608                                                                                  | approval date                                                                                                                                                                             |
| TYPE OF PROJECT                                                                                                                                                  | 1. Minimum surface seel thickness is two inches of coment grout placed by memic.  2. Minimum seel dopth is 50 feet for muhicipal and                                                      |
| WEIT COURT CANONI                                                                                                                                                | industrial wells or 20 feat for domestie and irrigation                                                                                                                                   |
| Catable Motorius                                                                                                                                                 | wells unless a leaser depth is specially approved.                                                                                                                                        |
| Water Supply () Contamination  Manipoins () Well Destruction D                                                                                                   | C. CROUNDWATER MONITORING WELLS                                                                                                                                                           |
| Maninui)                                                                                                                                                         | INCLUDING PIEZOMETERS  1. Minimum surface seal thicknoss is two Inches of                                                                                                                 |
| PROPOSED WATER SUPPLY WELL USE                                                                                                                                   | comest grout placed by tremic.                                                                                                                                                            |
| New Domacila O Replacement Domestic 13                                                                                                                           | 2. Minimum test depth for monitoring wells is the                                                                                                                                         |
| Muntelpal O Irrigation                                                                                                                                           | maximum depth practicable or 10 feet.                                                                                                                                                     |
| Industrial D Other C                                                                                                                                             | n GEOTECHNICAL                                                                                                                                                                            |
|                                                                                                                                                                  | packfil have hole by tremie with economi group or proment                                                                                                                                 |
| BRILLING METHOD:  Med Rodry C Air Rodry U Auger                                                                                                                  | groudsand mixture. Upper two-three feet replaced in kind                                                                                                                                  |
| Cable O Other O                                                                                                                                                  | or with compacted earlings.                                                                                                                                                               |
|                                                                                                                                                                  | E. CAYHODIC  Fill hole anode zone with concrete placed by tremis.                                                                                                                         |
| DRILLER'S NAME GTGS Dirlling & Tresting                                                                                                                          | F. WELL DISTRUCTION                                                                                                                                                                       |
| 485116                                                                                                                                                           | 2 Con Mint production                                                                                                                                                                     |
| DRILLER'S LICENSE NO                                                                                                                                             | wells.Send a map of work site. A different permit application is required for wells desper than 45 feet.                                                                                  |
|                                                                                                                                                                  | G. SPECIAL CONDITIONS                                                                                                                                                                     |
| Orill Hale Diameter 8 in Maximum Casing Diameter 2 in Oepih 20 in Owner's Well Number UFR-1                                                                      | NOTE: One application must be submitted for each well or well destruction. Multiple borings on the application are acceptable for genechnical and contamination investigations.           |
| GEOTECHNICAL PROJECTS  Number of Boringsin. Dapthft.                                                                                                             | 1 10 5 10                                                                                                                                                                                 |
| estimated statiting date 7/26/00 estimated completion date 7/28/00                                                                                               | APPROVED DATE 18-0                                                                                                                                                                        |
| I hereby agree to comply with all requirements of this parmit and Alameda County Or                                                                              | dinance No. 73-08.                                                                                                                                                                        |
| APPLICANT'S SIGNATURB Ali Ma DATE TO PLEASE PRINT NAME JULIE Share Rev                                                                                           | ACTION A                                                                                                                                                                                  |
| PLEASE PRINT NAME Julic Sharp Rev                                                                                                                                | ,\$ -\$-00                                                                                                                                                                                |

5107821939



# ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION
139 ELMHURST ST. HAYWARD CA. 94544-1395
1310NE (510) 676-5554 MARLON MAGALLANES/FRANK CODD (510) 676-5783
FAX (410)782-1339

## Drilling Permit Application

|     | FOR APPLICANT TO COMPLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FOR OFFICE USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | LOCATION OF PROJECT 340 38th 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PERMIT NUMBER WOO-945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PERMIT CONDITIONS Civeled Permit Requirements Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | CLIENT Name Stuart Dever Clean tech Machinery Address J2R Na Casel; # 56 Phone (620) 577-3677 City Sent 32 Charles (A 24 94070  APPLICANT Name AFR Cevine Fricte  Fax (510) 652-4366  Address 1700 Forcett St. 12 For Phone (510) 652-4306  City Emergialle (A 21p 94609  TYPE OF PROJECT  Well Conservation General U Water Supply Q Contamination Q Water Supply Q Contamination Q Monitoring Well Destruction D  PROPOSED WATER SUPPLY WELL USE Now Domestic D Replacement Domestic D  Municipal Q Irrigation Q Industrial D Other Q  DRILLING METHOD: Mud Roury C Air Rebry U Augel & Caste Q Other Q  DRILLER'S NAME Green Dalling & Festing | A. GENERAL  1. A permit application should be submitted to as to derive at the ACPWA office five days prior to apopulad statuting date.  2. Submitte ACPWA within 80 days of the completion of permitted original Department of Water Resources.  3. Permitte original Department of Water Resources.  4. Completion Report.  3. Permittic void if project out begun within 90 days of approval date.  L. Minimum sortice and thickness is two taches of temporary take.  2. Minimum sortice and thickness is two taches of temporary takes by sermin.  2. Minimum sortice and thickness is two taches of industrial with or 20 feat for domestic and irrigation wells unless a lesser dapth is specially approved.  C. GROUNDWATER MONITORING WELLS  INCLUDING PIEZOMETERS  I. Minimum surface that thickness is two indust of coment grout placed by termic.  2. Minimum surface that thickness is two indust of coment grout placed by termic.  D. GEOTECHNICAL  Backfill bore hole by tremic with equant grout or coment growtend militure. Upper two-three feet registed in kind or with compacted cratiage.  E. CATHODIC  Fill hole anouse zone with concrete placed by termic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| :   | DRILLER'S LICHNSE NO. 485/65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F. WELL DESTRUCTION  See stacked requirements for destruction of thellow wells.Bood a map of work site. A different permit application is required for wells deoper than 43 feel G. SPECIAL CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | WELL PROJECTS  Drill Hole Diameter 8 in. Maximum  Casing Diameter 2 in. Depth 20 it.  Surface Seal Depth > 5 it. Owner's Well Number LFR - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTE: One application must be submitted for each well or well as well |
|     | GEOTECHNICAL PROJECTS  Number of Borings Hazimum  Ilain Dismoter to. Depth n.  ESTIMATEO STARTINO DATE 7/24/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | APPROVED 1 40DATE )-18-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . 4 | ESTIMATED COMPLETION DATE 7/29/04  I hareby spree to comply with all requirements of this permits and Alameda County C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·   | APPLICANT'S SIGNATURE fuli May DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7/17/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | PLEASE PRINT NAME Julie Share Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v.6 - 3-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | JUL 17 '22 18:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5107821939 PAGE.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

MOV.6 11-00-1

5107821939

PUBLIC

**W** 

# ALAMEDA COUNTY PUBLIC WORKS AGENCY

1107000

WATER RESOURCES SECTION
199 ELMHURST ST. HAYWARD CA. 94544-1395
FIGURE (519) 170-3554 MARLON MAGALLANES/FRANK CODD (618) 476-8783
FAX (510)752-1539

# DRILLING PERMIT APPLICATION

| FOR APPLICANT TO COMPLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FOR OFFICE USE                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| LOCATION OF PROJECT intersection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERMIT NUMBER WOO - 444                                                                                            |
| 382 St and Marke Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| Oakland CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APN                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Permit Conditions                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Circled Permis Requirements Apply                                                                                  |
| CLIENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ( GENERAL                                                                                                          |
| Nama Stuart Dapper, Clean Fach Machine, Address 728 Ab Cant #21 Phone 6501 589-3677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 A normit conflication should be submitted to at to                                                               |
| Address 329 No Camp 72 Phone 16307 384-3677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Litting at the ACPWA office live days prior to                                                                     |
| City South for Consistence Zip 14080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aproposed starting dete.                                                                                           |
| APPLICANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. Submit to ACPWA within 60 days after completion of permitted original Department of Water Resources.            |
| 1 Get I made a 174 William                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vell Completion Raporti                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Hermit is vold if project not began wiship 90 days of                                                           |
| Address 1900 Powell St. 120 Pyhone (316) (F) - 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100roval dele                                                                                                      |
| Address 1700 Fourth St. 12th Mone (210) 652 - 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R WATER CHIPPLY WELLS                                                                                              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Minimum surface sest mickness is two makes of                                                                   |
| TYPE OF PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coment growt placed by womle.  2. Minimum seal depth is 50 feet for municipal and                                  |
| Well Construction Geotechnical Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Industrial wells or 20 feet for domestic and irrigation                                                            |
| Cathodic Protoction O Ceneral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wells unless a leaser depth is specially approved.                                                                 |
| Water Supply () Contimination ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C. EROUNDINATER MONITORING WELLS                                                                                   |
| Monitoring Le Well Destruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INCLUDING PIEZOMETERS                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Minimum surlose rest thickness is two inches of                                                                 |
| PROPOSED WATER SUPPLY WELL USE New Domestic O Replacement Domestic D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | coment grout placed by bemis.                                                                                      |
| Municipal D Irrigation C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.Minimum test depth for montaring wells is the                                                                    |
| Industrial O Other D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | maximum depth practicable or 20 feet.                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. GEOTECHNICAL Backfill bare hole by wants with centent group or coment                                           |
| DRILLING METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | grouvising mixture. Upper two-three feet replaced in kind                                                          |
| Mud Rolary C Air Rolary LI Auger 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or with compacted cuttings.                                                                                        |
| Cable O Other O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E. CATHODIC                                                                                                        |
| DRILLER'S NAME Gray DATIN & Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fill halo anode zone with concrete placed by tremis.                                                               |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F. WELL DESTRUCTION                                                                                                |
| DRILLER'S LICENSE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See attached requirements for destruction of shellow wells. Send 4 map of work site. A different permit            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | application is required for wells desper than 45 feet.                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G. SPECIAL CONDITIONS                                                                                              |
| WELL PROJECTS ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| Dill Hole Diameter in. Marinani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOTE: One application must be submitted for each well or well                                                      |
| Casing Diameter 2 In Ochin 26 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | destruction. Multiple borings on one application are acceptable for georechnical and contamination investigations. |
| Surface Stal Depth > 5 ft. Owner's Well Number LFR-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to. Ecolecunicat aus adulamitation in acrail annum.                                                                |
| Geotechnical Projects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    |
| Number of Borner Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , ·                                                                                                                |
| Hole Diameter in Depth It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 de                                                                                                               |
| alast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D-18-0                                                                                                             |
| ESTIMATED STATES SALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | APPROVED DATE                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -/ / <i>/</i> /                                                                                                    |
| I hereby agree to comply with all requirements of this permit and Alameda Councy C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ordinance No. 13-66,                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alalan ( )                                                                                                         |
| APPLICANT'S SIGNATURE DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>-41.4</del>                                                                                                   |
| PLEASE PRINT NAME JULIE Shape R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .cv.6 -5-00                                                                                                        |
| TUBOUS TOURS INVOICE TO THE PROPERTY OF THE PR |                                                                                                                    |

5107021939



# ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

JIP ELMHURSTST. HAYWARD CA. 94544-1395

FILONE (510) 670-5534 MARLON MAGALLANES/FRANK CODD (510) 670-5783

FAX (510)781-1839

| Drilling Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION OF PROJECT 38th St between Breadway and Month Av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FOR OFFICE USE PERMIT NUMBER WOO - 446 WELL NUMBER APN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CLIENT  Name Strant Deper, Clean Tech Machinery  Address 338 Ma Cann. NZG Phone [650] 587- 3677  City South Jan Practice, CA 219 94080  APPLICANT  Name LFK Levine Fick L  Fax (510) 652-4506  Address 1900 Parell St. 124 Fl. Phone (510) 652-4500  City Emergially CA 219 94608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PERMIT CONDITIONS  Ciraled Permit Requirements Apply  1. A permit application should be submitted to at to invice at the ACPWA office five days prior to proposed starting date.  2. Submit to ACPWA within 60 days after completion of permitted original Department of Water Resources.  Vell Completion Report.  3. Pirmit is void if project not begun within 90 days of approval date.  b. WATER SUPPLY WELLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TYPE OF PROJECT  Well Construction  Cathodic Protection  B. General  Water Supply  Consumination  Monitorias  Well Octivation  PROPOSED WATER SUPPLY WELL USE  New Domestia  Industrial  Consumer Consumer Construction  Municipal  Industrial  Cother  Catholic Coth | I. Minimum surfises seed thickness is two inches of coment grout placed by memic.  J. Minimum seed dopth is 50 feet for much alpst and industrial wells or 30 feet for domestic and infiguration wells unless a leaser depth is specially approved.  C. PROUNDWATER MONITORING WELLS  INCLUDING PIEZOMETERS  I. Minimum surface seed thickness is two inches of sement grout placed by tramic.  L. Minimum seed dopth for monitoring wells is the maximum depth producable or 20 feet.  D. GEOTECHNICAL  Backfill bore hole by tramic with coment grout or coment grouteful mixture. Upper two-three feet replaced in kind or with compacted cuttings.  E. CATHODIC  Fill hole should sone with concrete placed by tramic.  F. WELL DESTRUCTION  Joe attached requirements for destruction of shallow wells. Send a map of work site. A different permit application is required for wells deeper than 45 feet.  G. SPECIAL CONDITIONS |
| WELL PROJECTS  DINI Hole Diameter 8 In. Maximum  Casing Diameter 2 in. Death 20 IL  Surface Seal Death 5 IL Owner's Wall Number 4FR-4  CEOTECHNICAL, PROJECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOTE: One application must be submitted for each well or well as well destruction. Multiple borings on one application are acceptable for geotechnical and contamination investigations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Number of Bornesin. Maximum  Itale Diameterin. Depthft.  ESTIMATED STARTING DATE7/26/00  ESTIMATED COMPLETION DATE2/28/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | APPROVED DATE D-18-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 heroby agree to comply with all requirements of this permit and Alameda Courty Ordin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| APPLICANT'S SIGNATURE from the Date 7/1  PLEASE PRINT NAME Julie Skog Rov.6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

FAMED

PUBLIC WORKS

**07**0

# ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION
199 ELMHURST ST. HAYWARD CA. 34544-1393
PHONE (310) 670-5554 MARLON MAGALLANES/FRANK CODD (510) 670-5713 PAX (\$10)781-1939

| TOUR OFFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LOCATION OF PROJECT 38th St patrices  Broading and Marila Ax  Addison of the state | PERMIT NUMBER WOO - 447 WELL NUMBER APN PERMIT CONDITIONS Circled Permit Regulaments Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CLIENT Name  Thank Device Chantech Melihary Address 337 N- Con-1 4721 Phone (650) 487-2677  City Street Fan Project II 219 94080  Address 1202 Feeld St. 10 Phone (570) 652-4720  City Street II 219 Phone (570) 652-4720  City Street II 219 94607  TYPE OF PROJECT  Well Conserved on General O Consembration  Cathodic Protection O General O  Water Supply O Consembration O  Monitoring D Well Description  PROPOSED WATER SUPPLY WELL USE  New Domestic D Replacement Domestic D  Municipal D Irrigation D  Industrial O Other O  DRILLING METTIOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A. GENERAL  1. A permit application should be submitted so as to arrive at the ACPWA office five days prior to proposed starting date.  2. Submit to ACPWA within 60 days after completion of permitted eliginal Department of Water Resources.  Well Completion Report  3. Primit is void if project not begun within 90 days of approval date  8. WATER SUPPLY WELLS  1. Minimum surface seed thinkness is two inches of cement group placed by tremic.  2. Minimum seel depth is 30 feet for municipal and industrial wells or 20 feet for domestic and intigation wells unless a leaser depth is specially approved.  C. GROUNDIVATER MONITORING WELLS  1. Minimum surface seel thickness is two inches of cement group placed by tremis.  2. Minimum surface seel thickness is two inches of cement group placed by tremis.  2. Minimum depth for manitoring wells is the maximum depth practicable or 20 feet.  D. GEOTECINICAL  Beckfill bore hole by tremic with accusent group or cement groups and mixture. Upper two-three feet replaced in kind |
| Mud Roury C Air Roury U Auger 28  Cable D Other O  DRILLER'S NAME Gress Distling ( Peshing DRILLER'S LICHNST NO. 485 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or with compacted custings.  E. CATHODIC  Fill hole anode zone with concrete placed by tremto.  F. WELL DESTRUCTION  See elleched requirements for destruction of shallow wells. Send a map of work after A different permit application is required for wells desper than 45 feet.  G. SPECIAL CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WELL PROJECTS  OI III Hale Diameter in. Meximum  Casing Diameter in. Ocpik 13.5 it.  Surface Stall Dopin in. Owner's Well Number GW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOTE: One application must be submitted for each, wall or well destruction. Multiple borings on one application are acceptable for geolechnical and contamination investigations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GEOTECHNICAL, PROJECTS  Number of Bosings (n. Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APPROVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PLEASE PRINT NAME JULIE DHATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 A 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



锁锁

# ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION JOS ELMHURST ST. HAYWARD CA. 94544-1395 MIONE (518) 670-3934 MARLON MAGALLANES/FRANK CODD (610) 670-5783 FAX (510)192-1939

| Drilling Fermi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION OF PROJECT Many/a Amenica  Aprilem After St and Got St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR OFFICE USE  PERMIT NUMBER WELL NUMBER  APN                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERMIT CONDITIONS Circled Permit Requirements Apply                                                                                                                                                                                                                                                                                                                                                                      |
| CLIENT Styart Deper Clean Tech Mucliman Name Styart Deper Clean Tech Mucliman Address SiT No. Coad F25 Prone (650) 655-3677  Cliy Soluth Son Foresser 12 21p 94080  APPLICANT Name For Confer For (570) 652-4906  Address 1908 15-48 5tyart 17 Phone (570) 652-4700  City Bretognilles Cr 21p 94603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GENERAL  1 A permit application should be submitted to as to active at the ACPWA office five days prior to preposed staring date.  2. Submit to ACPWA within 60 days after completion of permitted original Department of Water Resources.  Well Completion Report.  1. I crimitis void if project not begun within 00 days of approval date.  B. WATER SUPPLY WELLS  1. Minimum surface scal thickness is two inches of |
| TYPE OF PROJECT Well Construction Cathodic Protection O Ceneral Water Supply Monitoring O Walf Destruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | coment grout placed by temia.  2. Minimum seed dopth is 50 feet for municipal and industrial wells or 20 feet for domestic and imagation wells unless a lesser depth is specially approved.  C. JROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS                                                                                                                                                                       |
| PROPOSED WATER SUPPLY WELL USE  New Domestic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. Minimum surface good thickness is two inches of comment grout placed by termic.  2. Minimum soal depth for monitoring wells is the maximum depth practicable or 20 feet.  D. GEOTECINICAL Backfill bose hole by termic with expecting grout or exment                                                                                                                                                                 |
| Mud Rowry C Air Rowry U Auger Lar Cable D Other C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | erouvered mixture. Upper two-three feet replaced in kind or with compacted curings.  E. CATHODIC  Fill hole anode zone with construct placed by vemic.                                                                                                                                                                                                                                                                   |
| DRILLER'S LICENSE NO. 485 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F. WELL DESTRUCTION  See attached requirements for destruction of shallow wells. Send a map of work size. A different permit application is required for wells dapper than 45 (ast.)  G. SPECIAL CONDITIONS                                                                                                                                                                                                              |
| WELL PROJECTS  Orill Hole Diameter in. Maximum  Casing Diameter I in. Depth 20 ft.  Surface Scal Depth ft. Owner's Well Number GW = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOTE: One application must be submitted for each well or well destruction. Multiple borings on one application are acceptable for gentleficial and contamination investigations.                                                                                                                                                                                                                                         |
| GEOTECHNICAL PROJECTS Number of Bornes in. Ocph it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ESTIMATED STARTING DATE 7/26/00 ESTIMATED COMPLETION DATE 7/28/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APPROVED DATE 7-18-00                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/17/00                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The state of the s | •                                                                                                                                                                                                                                                                                                                                                                                                                        |

\$107821939



# ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 955 ELMHURST ST. HAYWARD, CA. 94544-1395 PHONE (510) 670-5554 FAX (510) 782-1939

# WATER RESOURCES SECTION GROUNDWATER PROTECTION ORDINANCE For Destruction of Shallow Water Wells (Less than 45 feet in depth)

# Destruction Requirements:

- 1. Sound the well as deeply as practicable and record for your drillers well report.
- 2. Remove from the well any pump, appurtenances, debris, and clean out all bridged or poorly compacted materials to the bottom of the well.
- 3. Remove any casing(s) and annular seal to 2 feet below finished grade of original ground, whichever is the lower elevation.
- 4. Fill, using a tremie pipe, the casing with neat cement, cement grout or concrete. Allow the sealing material to spill over the top of the casing to fill any annular space between easing and soil.
- 5, After the scal has set, backfill the remaining hole with compacted material.
- 6. Submit to ACPWA within 60 days after completion of permitted original Department of Water Resources-Well Completion Report.
- 7. Permit is void if project not begun within 90 days of approval date.



# EXCAVATION PERMIT TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

CIVIL ENGINEERING

**AGE 2** of 2

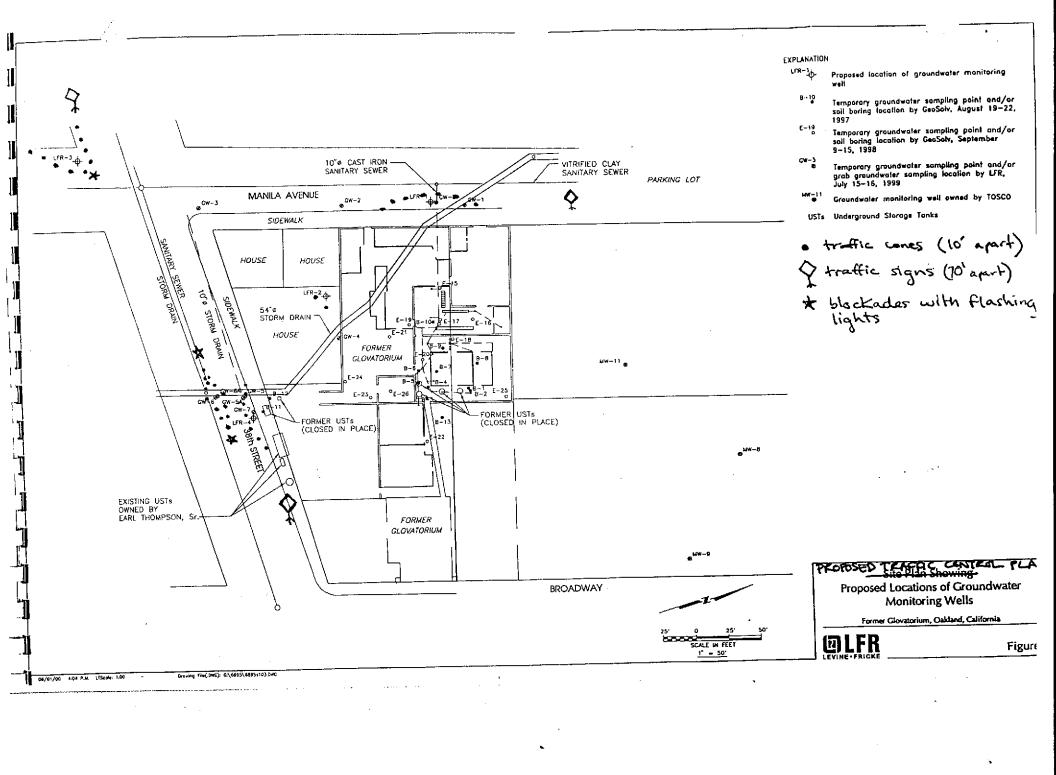
| PEUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SITE ADDRESS/LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3820 Manda Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| APPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X. START DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | APPROX. END DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24-HOUR EMERGENCY PROME NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Permit net valid without 24-Hour number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CONTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NACTOR'S LICENSE / AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD CLASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CITY BUSINESS TAX #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State law requires that t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he contractorioweer call Underground !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Service Aller (USA) two working days before externing. This permit is not valid unless applicant has record as been established in 1 (800) 542-2444. UNDERGROUND SERVICE ALERT (USA) &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 hours prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to starting work, YOU N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MUST CALL (510) 238-3651 TO SCHEDULE AN INSPECTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R/RUILDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| alleged s Profession P | streambies. Any violations of an enterior of the property, of the property, of the footenant's of the streambies of the stream of proving that he did not be returned prior to sale, (2) I have to more than once thering any covers of the property, and of a spily to an owner of of property and the streambies of property and of the property and of property and of the property and of the property and the streambies of property and of the property and of the property and of the property and t | of Sarrious 2031.5 by any apparent fire at or any complexes two at the rest of any complexes are the rest of a License Law door act apply to an own as est intended or offered for sale. If he sakes the residence for the 12 may be resided in the residence for the 12 may three-year period. (Sec., 7044 Business exclusively contracting with Licensed country who builds or improves thereon, apply who builds or improves thereon, apply who builds or improves the realous country who builds or improves the realous and the first of consent to self-inverse, or a contribute of consent to self-inverse. | be above due to: (1) I am suproving my principal place of (alternation application and this subdivision on more banks are the property of the work, and (4) I have not claimed examption on this subdivision on more than one property (Sec. 7044, Buriace- and Professions Code: The Contractor's Limmer Law of white contracts for such projects with a contractor(s) themsed parential to the Contractor's Limmer law).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _<br>_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rify that in the performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of the work for which this permit is fast<br>a valued at one hundred sodiers (\$100) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | med, I shall not employ say person in my resource to as to become rabject to the Worker's Companied on Lewis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ecomply to<br>prefere<br>and cosp<br>sectations<br>in cosp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with such provisions or this<br>apon the express condition it<br>is obligations with respect<br>playees. From and against act<br>d or arizing in the constructs<br>a void 90 days from the date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | permit that he decired covolent. The partition is the permittee shall be responsible for the street maintenance. The partition day and all rails, chains, or actions broughton of the work perfected wader the per a of insecure values as extension is grape.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e, you should become subject to the Worker's Compensation provisions of the Labor Code, you must fordered a percent in issued pursuant to all provisions of Tide 12 Chapter 12.12 of the Orkinst Hemisted Code. It is or all claims not inhibites arising out of work performed mater the penult or entirely out of penultur's littles to all this are by acceptance of the permit agrees to defend, indepently, save and hold hamalors the Cap, its officers that by any person for or on account of any hosfily injuries, distant or literator damage to person safety property or in consequence of permitter's failure to perform the obligations with respect to strong assignments. This send by the Director of the Office of Francing and Building.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I hereby<br>this part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reffirm that I was Monasco us<br>mid mad surger to its requirem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ocats, and that the object intermediate is t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m 3 of the Basiness and Professions Code and my licease in its full force and offers (if contrasted, due I have send true and correct under penalty of law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re of Perunities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C Agent for C Contractor Chow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TINGTED OPERATION AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STREET LAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | REQUIREDT NYES ONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second s |
| RÉSUR!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FA TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AND - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE USUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000m M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Myser 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-11-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>}</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~ '//// · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

· File 6895.00-030



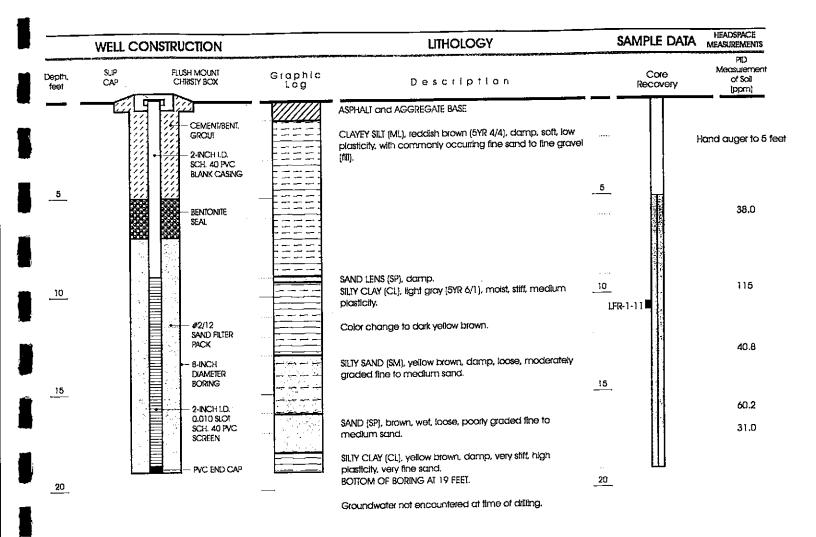
Office of Penning and Building

# **EXCAVATION PERMIT**


TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

CIVIL ENGINEERING

PAGE 2 of 2


| PERMIT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                           | 900 972                                                                                                                                                                                                                                                                                                                                                                                                                 | 3815 Broslway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPROX. START DATE                                                                                                                                                                                                                                                                                                                                                                                                                      | AFTROX, END DATE                                                                                                                                                                                                                                                                                                                                                                                                        | 24-HOUR EMERGENCY PROME NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                         | (Panel sot valid without 74-Hoer same)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CONTRACTOR'S LICENSE # ANT                                                                                                                                                                                                                                                                                                                                                                                                              | O CLASS                                                                                                                                                                                                                                                                                                                                                                                                                 | CITY BUSINESS TAX /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ATTENTION                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| State law requires that the<br>inquiry identification one                                                                                                                                                                                                                                                                                                                                                                               | s commission over tall Underground Section insured by USA. The USA indeplets                                                                                                                                                                                                                                                                                                                                            | reice Alert (USA) two working days before convening. This persis is not valid unless applicant has secured as<br>a sember is 1 (600) 641-2444. UNDERGROUND SERVICE ALERT (USA) &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a 48 hours prior t                                                                                                                                                                                                                                                                                                                                                                                                                      | o starting work, YOU M                                                                                                                                                                                                                                                                                                                                                                                                  | IST CALL (510) 238-3651 TO SCHEDULE AN INSPECTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OWNEX/BUTLDEX                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         | offereing reason (Sec. 7051.5 Business and Professions Code: Any city or county which requires a promit to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Alloyd exemption. Any Volation of:  It, as an obview of the property, or Profusions Code: This Contractor's provided that stock improvements are backed of proving that he did not bell  It, as owner of the property, me or he performed-prior to main, (3) I have structures mere then come during any  O I, as obview of the property, so or does not apply to ad other or propert  I I am element under Sec.  WORKER'S COMPENSATION | Socies 7031,3 by my applicant for a pe<br>any complayme with wagen as their sole of<br>License Law does not apply to an owner<br>not intended or offered for sale. If how<br>d or inperove for the purpose of sale,<br>coupl from the sale requirements of the<br>resided in the residence for the 12 next<br>three-year period. (Sec. 7044 Resistent<br>y who hadds or improves thatmen, sale<br>8APC for this renace. | nctors to construct the project, (nex. 7000, Denemos man (100000000 Constructor) & Linears law).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bullet &                                                                                                                                                                                                                                                                                                                                                                                                                                | Conserve Name                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D. Lorridy that in the performance of                                                                                                                                                                                                                                                                                                                                                                                                   | The work for which this permit is issue<br>absed at one insulred delians (\$100) or is                                                                                                                                                                                                                                                                                                                                  | 4. I shall not employ say pursuit in any manage so as to bucome ambject to the Worker's Companiestics. Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| comply with such provisions or this p<br>perform the obligations with respect and<br>and employees, from one against any                                                                                                                                                                                                                                                                                                                | erial stall be designed reveloped. This poset the permittee stall he compounded for a<br>activate minimization. The permittee shall he add all suits, claims, or occurs brought to<br>and all suits, claims, or occurs brought to<br>a of the sunt performed to day the morning.                                                                                                                                        | as should become subject to the Wesker's Companyation provisions of the Labor Code, you must furthwith raid is labord purposes to all provisions of Trile 12 Chapter 12.12 of the Calcined himselped Code. It is it is claims and labeliles arising out of work performed under the permit of principal cut of parasitor's failure to it claims and labeliles arising out of work performed under the permit of principal cut of parasitor's failure to it claims and hold hermions the Cay, its officers by any parase for at an eccess of any bodily injeries, discuss or illness or damage to persons and/or properly it or is consequence of parasitas's failure to perform the chliquious with respect to dreet maintaneous. This is the Director of the Office of Planning and Building. |
| hereby affirm that   me ficeward tool this permit and agree to its requirement                                                                                                                                                                                                                                                                                                                                                          | er provisions of Chapter 9 of Division 3 for and that the shows information is true  Agent for O Chapter D Owner                                                                                                                                                                                                                                                                                                        | K 7/11/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DATE STREET LAST                                                                                                                                                                                                                                                                                                                                                                                                                        | SPECIAL PAVEYO DETAIL                                                                                                                                                                                                                                                                                                                                                                                                   | HOLDAY RESTRICTION? LEGITED OPERATION AREAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RESURFACED                                                                                                                                                                                                                                                                                                                                                                                                                              | FEODERSON O ASS 4 NO                                                                                                                                                                                                                                                                                                                                                                                                    | (NOV 1 - JAN 1) A TES ONO DICKMAN A TENTAN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TZZAGD BA                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>.                                    </u>                                                                                                                                                                                                                                                                                                                                                                            | 7-11-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

fateral considerations and 101/00



Appendix B

Boring Logs and Well Construction Details



Well Permit No. W00-449

Date Well Drilled: July 28, 2000

Drilling Company: Gregg Drilling

Driller: Trevor

Drill Rig: Marl M5-T (Rhino) Hollow Stem Auger

Sampling Method: Hydraulic, continous core

LFR Geologist: Dan Foster

EXPLANATION

Sät

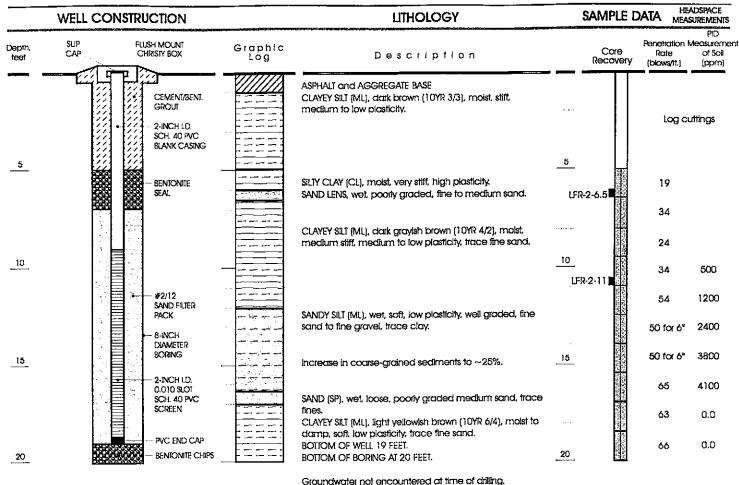
Sand

Gravei





Interval sampled using continuous core barrel


Soil sample collected for analysis

proved by: 27 21 c Torses

# CONSTRUCTION AND LITHOLOGY FOR LFR-1

© LFR

FORMER GLOVATORIUM



Note: PiD operation questionable - PID measurements considered qualitative.

Well Permit No. W00-445 Date Well Drilled: July 27, 2000 Drilling Company: Gregg Drilling Driller: Trevor

Mobile B-53 Hollow Stem Auger Drill Rig:

140 lbs./30-inch Hammer Weight and Drop: LFR Geologist:

Dan Foster

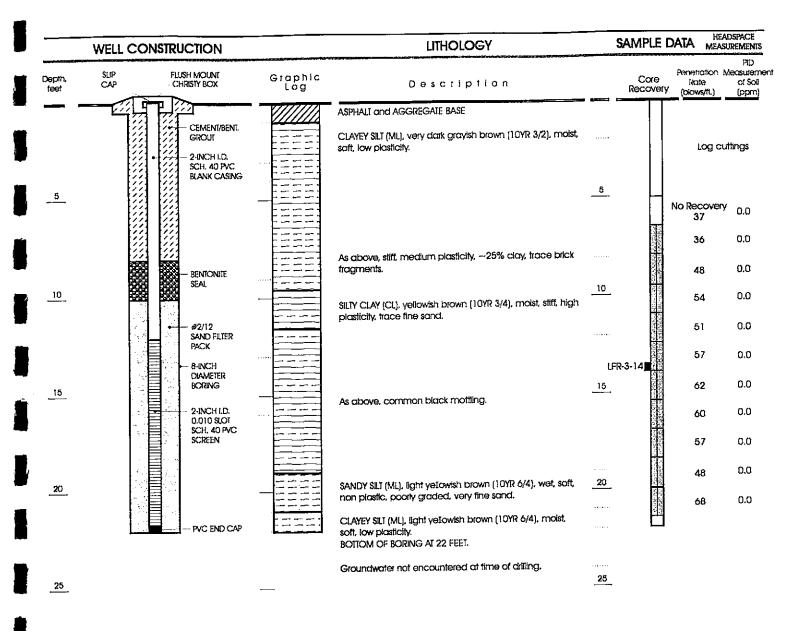
**EXPLANATION** Ciay

Sitt

Sand

Gravel

Interval sampled using


2-inch I.D. Modified California Sampler

Soil sample collected for analysis

Approved by: 1. 45000

CONSTRUCTION AND LITHOLOGY FOR LFR-2





Well Permit No. Date Well Drilled:

W00-444 July 27, 2000

Drilling Company:

Gregg Drilling

Driller:

Mobile B-53 Hollow Stem Auger Drill Rig: 140 lbs./30-inch

Hammer Weight and Drop:

Dan Foster LFR Geologist:

**EXPLANATION** 



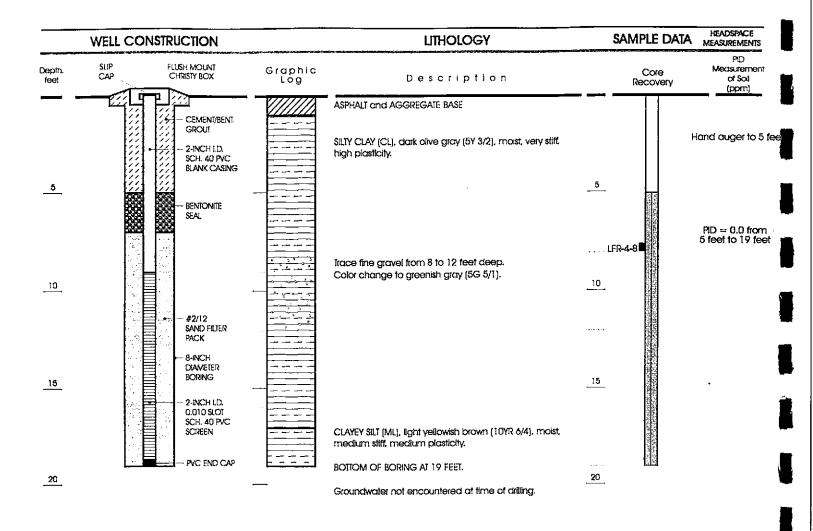
Silt



Sand

Gravel

interval sampled using


2-inch I.D. Modified California Sampler

Soil sample collected for analysis

# 5046. Approved by:

# **CONSTRUCTION AND LITHOLOGY FOR LFR-3**





Weil Permit No.
Date Well Drilled:
Drilling Company:

Driller:
Drill Rig:
Mart M5-T (Rhino) Hollow Stem Auger

LFR Geologist:
Dan Foster

W00-446

July 28, 2000

Gregg Drilling

Mart M5-T (Rhino) Hollow Stem Auger

Hydraulic, continous core

Dan Foster

EXPLANATION Clay

Sand

Gravel

interval sampled using continuous core barrel

Soil sample collected for analysis

Approved by: July 12 # 55 467

#### CONSTRUCTION AND LITHOLOGY FOR LFR-4



Appendix C

Field Methods for Soil and Groundwater Investigation

#### INTRODUCTION

Field activities were performed under the direct supervision of a California-registered geologist and/or a registered engineer. Before use, all downhole equipment used for drilling, soil sampling, and well construction was new or decontaminated by washing with high-pressure, hot water (steam cleaned) and/or a solution of laboratory-grade detergent and tap water, followed by rinsing with tap water. Soil cuttings, water generated from decontaminating the drilling and sampling equipment, and development and purge water were stored at the Site in 55-gallon drums pending selection of an appropriate disposal alternative.

#### TEMPORARY SAMPLING POINT ABANDONMENT ACTIVITIES

Two temporary sampling points, GW-6 and GW-8, were abandoned on July 26, 2000, by Gregg Drilling & Testing, Inc., of Martinez, California ("Gregg"), a California state licensed drilling company, under the observation of an LFR geologist. GW-6 was 13.5 bgs and GW-8 was 20 feet bgs. Gregg used a Mobile B-53 hollow stem auger rig. The augers were forwarded with the temporary sampling point casing inside the augers. Casing fragments were removed from the borings with drill cuttings. The borings were overdrilled to approximately 1 foot below the bottom of the casings. To seal the boreholes, a cement-bentonite grout was pumped, through a hose placed in the bottom of the borehole, from the bottom of the boring to the top. The borings were subsequently topped off with grout. The surfaces of the grouted holes were sealed with hot asphalt-concrete per City of Oakland requirements. GW-6 and GW-8 were abandoned under Alameda County Public Works Agency permit numbers WOO-447 and WOO-448, respectively.

#### DRILLING AND SOIL SAMPLING

Gregg drilled four soil borings in the vicinity of the Site and installed four groundwater-monitoring wells in the borings. The soil borings were drilled using a Mobile B-53 or a Marl M5-T (Rhino) hollow-stem auger rig with 8-inch-outside-diameter augers. An LFR geologist logged the borings in accordance with the Unified Soil Classification System. Soil samples from the borings were collected for lithologic description using a continuous core sampler or a modified California sampler. Sample depths are shown on the boring logs. A photoionization detector (PID) was used to screen soil samples in the field. Soils were monitored with the PID by placing a portion of the soil sample into a glass jar, then placing the jar lid on. The jar lid had a hole approximately the diameter of the PID probe. The PID probe was inserted into the jar through the hole, and the PID measurement was recorded. Soils were tested in this way at approximate intervals of 5 feet. The boring logs in Appendix B show PID measurements recorded for the soil samples.

The samples retained for chemical analysis were collected in brass tubes that were labeled, capped with Teflon™ sheets and plastic caps, and transported in a chilled cooler under standard chain-of-custody protocol to the analytical laboratory.

The locations of the soil borings and temporary groundwater sampling points are shown on Figure 2.

### GROUNDWATER MONITORING WELL INSTALLATION

Groundwater monitoring wells LFR-1 through LFR-4 were constructed under the observation of an LFR geologist. The wells used 2-inch-diameter, Schedule 40, factory-slotted (with 0.010-inch slots), polyvinyl chloride (PVC) casing. The PVC casing was installed through the augers, then a sand filter pack consisting of No. 2/12 sand was placed in the annulus between the borehole and the PVC screen as the augers were slowly withdrawn. To reduce the potential for grout to enter the sand pack, the annulus was then backfilled with approximately 2 feet of bentonite. The remaining annular space, above the bentonite seal, was filled with cement-bentonite grout (approximately 5 percent bentonite). Flush-mounted, traffic-rated well boxes were installed on the wells.

LFR-1, LFR-2, LFR-3, and LFR-4 were installed under Alameda County Public Works Agency permit numbers WOO-449, WOO-445, WOO-444, and WOO-446, respectively.

## **GROUNDWATER MONITORING WELL DEVELOPMENT**

Well development for LFR-1 through LFR-4 was conducted on July 31, 2000, to remove sediment and sand remaining after well construction and to enhance hydraulic communication with the surrounding sediments. First, the screened interval was surged with a bailer to stir up sediment before bailing out water. Groundwater was then bailed from the wells to remove the finer-grained soil particles from around the screened interval and to enhance hydraulic communication with surrounding saturated soils. During groundwater withdrawal, the LFR environmental technician recorded measurements or observations of several groundwater parameters (pH, temperature, conductivity, quantity, and clarity). Each well was bailed until approximately ten casing volumes of groundwater were removed. A new disposable polyethylene bailer fitted with new nylon rope was used for each well.

### GROUNDWATER PURGING AND SAMPLING

To optimize representative sample collection, monitoring wells and temporary sampling points were purged using a low-flow peristaltic pump (i.e., the "low-flow" or "micro-purge" technique) before sampling. The wells and temporary sampling points

were micro-purged to minimize cascading of the groundwater down the casing during purging, whenever possible. The pump intake hose was typically located in approximately the middle of the screened interval in the wells and temporary sampling points in which the screen interval was known. The wells and temporary sampling points were purged at a rate that maintained approximately 90% of the water column.

Measurements of depth to groundwater, pH, temperature, conductivity, ORP, DO, and turbidity were read and recorded approximately every five minutes. (Samples were collected from wells and temporary sampling points that produced water. The temporary sampling point GW-2 did not produce enough water, and therefore was not sampled.) When these parameters had stabilized to within the approximate respective amounts listed; pH (+/- 0.1 standard units), conductivity (+/- 3%), ORP (+/- 10 mV), DO (+/- 10%), and turbidity (+/- 10%) for three successive readings, samples were collected from the discharge tube to be used for the bioattenuation parameter indicator tests. (The reading taken just before sampling is the reading presented in Tables 7 and C-1.)

Groundwater samples were collected using a peristaltic pump with new polyethylene and PVC tubing. The groundwater samples were pumped directly through the tubing into laboratory-supplied, 40-milliliter (ml) volatile organic analysis (VOA) vials with Teflon septa and/or laboratory-supplied plastic bottles. The VOA vials were filled to eliminate headspace after the vials were sealed. Samples for the analysis of metals were filtered through a new QED™ 0.45-micron water filter before filling the sampling bottles.

The VOA vials and plastic bottles were capped, labeled, and placed in a chilled cooler for transport to the analytical laboratory under standard chain-of-custody protocol. Laboratory-prepared trip blanks were placed in the coolers with the samples to check for possible contamination of the samples during shipment. Duplicate and field blank (equipment rinse) samples were also submitted for analysis. These field QC samples were collected and analyzed in addition to the QA/QC procedures that are part of the standard program followed by certified laboratories.

#### GROUNDWATER LEVEL MEASUREMENT

Groundwater monitoring well top-of-casing elevations for wells LFR-1 through LFR-4 and MW-11 were surveyed by Carlson, Barbee, & Gibson of San Ramon, California, a California state licensed surveyor. Groundwater levels were measured in previously installed temporary sampling points or monitoring wells B-2, B-3, B-7, B-8, B-9, B-10, B-13, GW-2, GW-3, GW-4, GW-5, GW-6A, MW-8, MW-9, and MW-11 and in newly installed wells LFR-1 through LFR-4. The groundwater levels were measured to approximately the nearest 0.01 foot using an electric water-level probe graduated in 0.01-foot increments. Floating product was observed in B-2, B-3, and in B-8. Groundwater level data and elevations are summarized in Table 2.

#### **GROUNDWATER FIELD SCREENING**

The following parameters—iron, ferrous iron, sulfide, sulfate, nitrite and nitrate nitrogen—were screened in the field using a Hach ISO 9001 Certified spectrophotometer. Each parameter has a corresponding wavelength, which was entered into the spectrophotometer before the testing began. Testing was conducted per the manufacturer's specifications. Typically, as samples were collected, a portion of the sample was poured into a clean 150-ml beaker. An AcuVac™ ampul containing a reagent corresponding to the parameter being measured was then placed at the bottom of the beaker and the tip broken off under the groundwater sample, allowing the groundwater to enter the ampul with minimal air contact. The sample would then react with the reagent to form a color in proportion to the parameter's concentration. After the sample had reacted with the reagent, the ampul was placed into the spectrophotometer, and the concentration was measured and recorded. Dilutions were performed as necessary, and correction factors were applied per manufacturer's specifications. Results of the field parameter testing are presented in Table 7 and Table C-1.

The pH, temperature, conductivity, ORP, and DO were measured using a Hydrolab Quanta<sup>™</sup> flow through instrument which measured each parameter from sensors housed in the flow through cell. Turbidity measurements were recorded using a LaMotte<sup>™</sup> Model 2008 turbidity meter.

Table C-1
Summary of Analytical Results and Field Measurements for ORP, Iron, Nitrite Nitrogen, Sulphide,
Ethane, Ethene, pH, Temperature, and Conductivity in Groundwater Samples
Former Glovatorium

## 3815 Broadway, Oakland, California

(concentrations in milligrams per liter [mg/l] unless otherwise noted)

|                  |              |              |       |          |         |          |          | ρН        | Temperature |                   |
|------------------|--------------|--------------|-------|----------|---------|----------|----------|-----------|-------------|-------------------|
|                  |              | ORP          |       | Nitrite  |         |          |          | (standard | (degrees    | Conductivity      |
| Well ID          | Date Sampled | (milliVolts) | iron  | Nitrogen | Sulfide | Ethane   | Ethene   | units)    | Celcius)    | (millisiemens/cm) |
| <b>B</b> -7      | 8/11/00      | 193          |       |          |         | < 0.0005 | < 0.0005 | 6.86      | 17.55       | 1.279             |
| B-7-field        | 8/11/00      |              |       | (1)      | 0.049   |          |          |           |             |                   |
| B-10             | 8/10/00      | 213          | 6     | < 0.05   | < 0.04  | < 0.0005 | 0.00057  | 6.86      | 16.8        | 1.13              |
| B-10-field       | 10-Aug-00    |              |       | 0.023    | 0.06    |          |          |           |             |                   |
| GW-3             | 11-Aug-00    | 395          |       |          |         | < 0.0005 | < 0.0005 | 7.05      | 21.43       | 0.86              |
| GW-3-field       | 11-Aug-00    |              |       | 0.046    | (1)     |          |          |           |             |                   |
| MW-11            | 10-Aug-00    | 476          | 0.13  | < 0.05   | < 0.04  | < 0.0005 | < 0.0005 | 6.47      | 21          | 1.089             |
| MW-11-field      | 10-Aug-00    |              |       | 0.036    | 0.002   |          |          |           |             |                   |
| LFR-1            | 11-Aug-00    | 462          |       |          |         | < 0.0005 | < 0.0005 | 6.97      | 19.73       | 0.936             |
| LFR-1-field      | 9-Aug-00     |              |       | 0.02     | (1)     |          |          |           |             |                   |
| LFR-2            | 11-Aug-00    | 270          |       |          |         | < 0.0005 | 0.0017   | 6.8       | 19.87       | 1.088             |
| LFR-2-field      | 11-Aug-00    |              | 2.95  | (1)      | 0.005   |          |          |           |             |                   |
| LFR-3            | 10-Aug-00    | 464          | < 0.1 | 0.15     | < 0.04  | < 0.0005 | < 0.0005 | 6.57      | 19.92       | 0.951             |
| LFR-3 split      | 10-Aug-00    |              |       |          |         | < 0.0005 | < 0.0005 |           |             |                   |
| LFR-3-field      | 10-Aug-00    |              |       | 0.058    | (1)     |          |          |           |             |                   |
| LFR-4            | 11-Aug-00    | 402          |       |          |         | < 0.0005 | < 0.0005 | 6.9       | 20.11       | 1.24              |
| LFR-4-field      | 11-Aug-00    |              | 0.22  | 0.018    | 0.002   |          |          |           |             |                   |
| B-10-Field Blank | 10-Aug-00    |              |       |          |         | < 0.0005 | < 0.0005 |           |             |                   |

#### Notes:

Samples with "field" in the Well Number indicate that the results are from field measurements obtained using a Hach spectrophotometer.

(1) Sample concentration was too dilute to be reproducibly measured using the Hach spectrophotometer.

LFR-Levine Fricke

#### MiniSonde Groundwater Parameter Log

4

Page of 2

| Project #:        | 6895.00.030  |             |                     |               |                        | Date: <u>8</u> | 1 1 100 | WELL:_           | B    | <u>- フ</u> |        |
|-------------------|--------------|-------------|---------------------|---------------|------------------------|----------------|---------|------------------|------|------------|--------|
| Project Name:     | Gloveatorium | n           | <del></del>         | <del></del> - | Sample Number:         |                |         |                  |      |            |        |
| Location:         | Oakland, CA  |             |                     |               |                        | Blank:_        |         | _                | 1    |            |        |
| Sampler:          | MXD          |             |                     |               | DUP:                   |                |         |                  |      |            |        |
| Sampling Plan By: | JCS          |             |                     |               | Depth to               |                | B.25    | Inlet: _         | 1F   | 7 From     | Botton |
| Purge Method:     | Peristaltic  | Submersible | Sampling<br>Method: | Peristaltic   | Ana<br>Ee+2 +3 Nitrat  |                |         | Bott<br>1 Unpres |      | HCI Poly   |        |
|                   | Centrifugal  | Extraction  |                     | Bailer        | Metals Filter in       |                | Cases   | -500mL H         | NO3  | Surpres 1  | 245    |
|                   |              |             |                     | Sample Port   | TPH\Solvents Delivery: | Hand           | Ç       | VOAs (           | w Hc | C&T        |        |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer  | TEMP (C) | COND<br>(mS/cm) | D.O. (4.5) | pH      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|------------|----------|-----------------|------------|---------|----------|--------------------|------------------------------|
| Stabiliz | zation if 3 su | ccessive pare       | meters are | NA       | +/-3%           | +/-10%     | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| 1435     | 8.85           | 0                   | MA         |          |                 |            |         |          |                    | stert prop as slaves         |
| 1445     | 10.40          | 0.25                |            | 17.62    | 1.435           | 0.71       | 6.79    | 190      | -                  | 51. turbid                   |
| 1450     | 11.53          | 0.5                 |            | 17.42    | 1.391           | 0.69       | 6.80    | 195      | 66.8               | Sliterbid                    |
| 1455     | 11.51          | 0.6                 |            | 17.37    | 1.384           | 069        | 6.79    | (99      | >200               | Slitursia                    |
| 1500     | K84            | 0.8                 |            | 17.36    | 1.373           | 0.59       | 6.80    | 200      | Ą                  | Turbidy meter malfunctioning |
| 1503     |                | (.0                 |            |          |                 |            |         |          |                    | Stop DUTR Solinst was sound  |
|          |                |                     |            |          |                 |            |         |          |                    | an wet hose?                 |
| 1510     | 10.00          |                     |            |          |                 |            |         |          |                    | restart                      |
| 1515     | 11.03          | 1.25                |            | 17.51    | 1.339           | 0.73       | 6.85    | 198      | -                  | S. turbid                    |
| 1520     |                | 1.35                | <u> </u>   | 17.68    | 1.353           | 0.75       | 6.35    | (48      |                    | SI.tubid T/Hodor             |

NOTES: # #5 ronging from <20 to ORange. Porticulates?

## MiniSonde

Groundwater Parameter Log

| Project #:        | 6895.00.030  |             | ·                   |              |                               | Date: 8/ 1 /00                      | WELL:           | B-7                |
|-------------------|--------------|-------------|---------------------|--------------|-------------------------------|-------------------------------------|-----------------|--------------------|
| Project Name:     | Gloveatoriur | <u>n</u>    |                     | <del> </del> | Sample                        | Number:                             | B-7             | ·                  |
| Location:         | Oakland, CA  |             |                     |              |                               | Blank:                              |                 |                    |
| Sampler:          | MXD          |             |                     |              |                               | DUP:                                | /               | <b>,</b>           |
| Sampling Plan By: | JCS          |             |                     |              | Depth t                       | o Water:                            | nlet:           | Bottom             |
| Purge Method:     | Peristaltic  | Submersible | Sampling<br>Method: | Peristaltic  | Fe+2,+3 Nitra                 | alysis<br>te, Nitrite, Sulfate, Alk |                 | . Poly, 1 HCl Poly |
|                   | Centrifugal  | Extraction  |                     | Bailer       | Metals Filter in TPH\Solvents |                                     | 500mL H<br>VOAs | NO3                |
|                   |              |             |                     | Sample Port  | Delivery:                     | Hand                                | LAB:            | C&T                |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | D.O. (9/5) | pH      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|-------------|----------|-----------------|------------|---------|----------|--------------------|------------------------------|
| Stabiliz | ration if 3 su | ccessive pan        | ameters are | NA       | +/-3%           | +/-10%     | +/- 0.1 | +/+10mv  | +/-10%             | Take Readings every 3-5 min. |
| 15.25    | 13.41          | 1.5                 | MA          | 17.64    | 1.319           | 0.74       | 6.94    | 196      | 96.8               | SI. turbid                   |
| 1530     |                | 1.75                | 1           | 17.75    | 1.312           | 0.75       | 6.84    | 196      | 101.4              | Stiturbid                    |
| 1531     |                | 1.8                 |             |          |                 |            |         |          |                    | DWTR Off 15.90               |
| 1540     | 10.70          |                     |             | 80%      | DTW=            | 10. 5      | 6       |          | 8.85               | 7:03                         |
| 1545     | 9.81           | 1.8                 |             | <u> </u> |                 |            |         |          |                    | Restart purge                |
| 1885     | 11.00          | رع<br>ن             |             | 17.53    | 1.298           | 0.78       | 6.86    | 192      | 40.8               | sl.turbid                    |
| 1600     | 12-41          | 3.1                 |             | 17.59    | 1.286           | 0.71       | 6.87    | 193      | 18.8               | 51. turbid                   |
| 1605     | 13.40          | 3.25                |             | 17.62    | 1.281           | 0.69       | 6.85    | (93      | 29.6               | S1. turbid                   |
| 1608     |                | 2-4                 |             | 17.55    | 1.279           | 0.63       | 6.86    | 193      | 769                | stitusiz off DuTR            |
| 1619     | 10.25          |                     | V)          |          |                 |            |         |          |                    | sample &                     |

10.26 80% DTW: Conduct Standard Rige 7 35WTRS

\*\*Efflowerscent well DWTR at end of Lab sampling. Allow
to recover before collecting HACH NOTES:

LFR-Levine Fricke

### MiniSonde Groundwater Parameter Log

Page of 2

| Project #:        | 6895.00.030  | Date: 8/ 10 /00 WELL: B - 10 |
|-------------------|--------------|------------------------------|
| Project Name:     | Gloveatorium | Sample Number: B - 10        |
| Location:         | Oakland, CA  | Blank: B- 10 FB (1330)       |
| Sampler:          | MXD          | DUP:                         |
| Sampling Plan By: | JCS          | Depth to Water: 8.85 Inlet:  |

| Purge Method: | Peristaltic | Submersible | Sampling | Peristaltic | Ana              | lysis                   | Bottles      |                |  |
|---------------|-------------|-------------|----------|-------------|------------------|-------------------------|--------------|----------------|--|
|               |             |             | Method:  |             | Fe+2,+3 Nitrate  | , Nitrite, Sulfate, Alk | 1 Unpres. Po | ly, 1 HCl Poly |  |
|               | Centrifugal | Extraction  |          | Bailer      | Metals Filter in | Field                   | 500mL HNO    | 3              |  |
|               | -           |             |          |             | TPH\Solvents     |                         | VOAs         |                |  |
|               |             |             |          | Sample Port | Delivery:        | Hand                    | LAB:         | C&T            |  |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | D.O. (945) |         | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|-------------|----------|-----------------|------------|---------|----------|--------------------|------------------------------|
| Stabiliz | cation if 3 sc | ccessive par        | ameters are | NA       | +/-3%           | +/-10%     | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| 1430     | 8.85           | 0                   | NA          |          |                 |            |         |          |                    | start purge                  |
| 1433     | 9,80           | 0.05                |             |          |                 |            |         |          |                    | slow as possible             |
| 1435     | 10.25          | 0.1                 |             | 13.63    | 1.239           | 0.13       | 6.85    | 980      | 7200               | clady '                      |
| 1440     | 10.40          | 0.25                |             | 17.69    | 1.274           |            | 6.84    | 265      | >200               | clady'                       |
| 1440     | 10.70          |                     |             | 17.34    | 1274            | 0.12       | 6.83    | 255      | > 200              | stop-cloudy                  |
| 1448     | 9.55           |                     |             |          |                 |            |         |          |                    |                              |
| 1450     |                |                     |             |          |                 |            |         |          |                    | restert                      |
| 1455     | 9.95           | 0.5                 |             | 17.18    | 1.256           | 0.16       | 6.35    | 236      |                    | cloudy                       |
| 1505     | 10.45          | 1.0                 |             | 16.49    | 1.242           | 0.18       | 6.85    | 230      | 58.5               | clad                         |
| 1515     | 10.51          | 1.5                 |             | 16.97    | 1.229           | o. 20      | 6-85    | 228      | 32.7               |                              |

NOTES: Obstruction noted at 10' by (when inserting tubing) " FI

FB.at 1330

LFR-Levine Fricke

### MiniSonde Groundwater Parameter Log

Page 🔊 2

| Project #:        | 6895.00.030  | Date: <u>8/</u> | /00 WELL: 5-10 |              |
|-------------------|--------------|-----------------|----------------|--------------|
| Project Name:     | Gloveatorium | Sample Number:  | B-10           |              |
| Location:         | Oakland, CA  | Blank:          | /              |              |
| Sampler:          | MXD          | DUP:            |                |              |
| Sampling Plan By: | JCS          | Depth to Water: | Inlet:         | <del> </del> |
| <b>5</b>          | 21.10        |                 |                |              |

| Purge Method: | Peristaltic | Submersible | Sampling | Peristaltic | An               | alysis                   | Bottles         |            |
|---------------|-------------|-------------|----------|-------------|------------------|--------------------------|-----------------|------------|
|               |             |             | Method:  |             | Fe+2,+3 Nitrat   | e, Nitrite, Sulfate, Alk | 1 Unpres. Poly, | 1 HCI Poly |
|               | Centrifugal | Extraction  |          | Bailer      | Metals Filter in | ı Field                  | 500mL HNO3      | <u> </u>   |
|               |             |             |          |             | TPH\Solvents     |                          | VOAs            |            |
|               |             |             |          | Sample Port | Delivery:        | Hand                     | LAB:            | C&T        |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | D.O. (%S) | pH      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|-------------|----------|-----------------|-----------|---------|----------|--------------------|------------------------------|
| Stabilia | zation if 3 sc | ocessive para       | imeters are | NA       | +/-3%           | +/-10%    | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| 1520     | 10.45          | 1.75                | MA          | 16.91    | [.209           | 0.21      | 6.86    | 225      | 18.2               | 51, turbed and to stain and  |
| 1550     | 10.70          | 2.0                 |             | 16.96    | 1.130           | 0.62      | 6.86    | 225      | 44.1               | SI. turbida                  |
| 15:35    | 10.93          | 2.15                |             | 16.81    | 1.132           | 0.53      | 6.86    | 215      | 37.0               | SI. turbid                   |
| 15:40    | 11.00          | 235                 |             | 16-80    | 1.130           | 0.44      | 6.86    | 213      | 25.2               | SI. turbid                   |
| 1545     |                |                     |             |          |                 | <u> </u>  |         |          |                    | sample                       |
|          |                |                     |             |          |                 |           |         |          |                    |                              |
|          |                |                     |             |          |                 |           |         |          | <u> </u>           |                              |
|          |                |                     |             | ,        |                 | ļ         |         |          |                    |                              |
|          | •              |                     | 1/          |          |                 |           |         |          |                    |                              |
|          | <u></u>        |                     |             |          |                 |           |         |          |                    |                              |

| NOTES: |  |                                       |      |
|--------|--|---------------------------------------|------|
|        |  | · · · · · · · · · · · · · · · · · · · | <br> |

3

LFR-Levine Fricke

### MiniSonde Groundwater Parameter Log

Page of .

| Project #:        | 6895.00.030  |             |                     | ·           |                                  | Date: 8   | 819100       | WELL:              | GW-2                          |
|-------------------|--------------|-------------|---------------------|-------------|----------------------------------|-----------|--------------|--------------------|-------------------------------|
| Project Name:     | Gloveatorium | 1           |                     | · ·         | Sample I                         | Number: _ | G(           | J-2                |                               |
| Location:         | Oakland, CA  |             | ··-                 |             |                                  | Blank:    |              |                    |                               |
| Sampler:          | MXD          |             |                     |             |                                  | DUP:      | <u> </u>     | -102               |                               |
| Sampling Plan By: | JCS          |             |                     |             | Depth to                         | Water: _  | E0.0]        | inlet:             | 14FT - 18FT                   |
| Purge Method:     | Peristaltic  | Submersible | Sampling<br>Method: | Peristaltic | Fe+2,+3 Nitrat                   |           | Sulfate, Alk | Bottl<br>1 Unpres. | <u>es</u><br>Poly, 1 HCl Poly |
|                   | Centrifugal  | Extraction  |                     | Bailer      | Metals Filter in<br>TPH\Solvents |           |              | 500mL HI<br>VOAs   | NO3                           |
|                   |              |             |                     | Sample Port | Delivery:                        | Hand      |              | LAB:               | C&T                           |
|                   |              |             |                     |             |                                  |           |              |                    |                               |

| TIME     | DTW           | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | D.O. (%)<br>Mg/4- | рН      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                    |
|----------|---------------|---------------------|-------------|----------|-----------------|-------------------|---------|----------|--------------------|-----------------------------|
| Stabiliz | ation if 3 su | ccessive para       | ameters are | NA       | +/-3%           | +/-10%            | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min |
| 1540     | 50.0          | 0                   | NA          |          |                 |                   |         |          |                    | start argo                  |
| 1545     | 11.72         | 0.25                | /           | 24.94    | 0.890           | 2.91              | 7.05    | 213      | 15.23              | clear                       |
| 1550     | 13.50         | 0.4                 |             | 24.91    | 0.878           | 1.97              | 7.05    | 217      | 9.94               | Birying as slaw as possib   |
| 1600     | 15.20         | 0.5                 |             | 24.77    | 0.830           | 1.95              | 7.09    | 218      | 8.76               | clear                       |
| 1605     | 16.86         | 0.6                 |             | 24.81    | 0.841           | 1.88              | 7.04    | 219      | 4.65               | Clear                       |
| 1610     | 11.81         | 0.75                |             | 24.75    | 0.852           | 1.79              | 7.03    | 214      | 4.77               | clear                       |
| 1615     |               | 1.0                 |             | 25.02    | ර. පිහි         | 1.78              | 7.06    | 199      | 5.10               | clear                       |
| 1620     |               | 1.25                |             | 25.11    | 0.922           | 2.00              | 7.04    | 216      |                    | Clear - DusTR-05            |
| 1015     | 17:01         |                     |             |          |                 |                   |         |          |                    | Bartle & 10/00              |
|          |               |                     |             |          |                 |                   |         |          |                    |                             |

| NOTES: |      |      |   |  |
|--------|------|------|---|--|
|        | <br> | <br> |   |  |
|        | •    |      | 1 |  |

well: <u>G</u>(4)-3

Date: 8/ 9 /00

6895.00.030

Project #:

### MiniSonde Groundwater Parameter Log

12. No.

| Project Name:     | Gloveatoriur           | <u>n</u>    |                     |                               | Sample Number: <u>GW-3</u> |                                    |          |                                    |     |  |  |
|-------------------|------------------------|-------------|---------------------|-------------------------------|----------------------------|------------------------------------|----------|------------------------------------|-----|--|--|
| Location:         | Oakland, CA            |             |                     |                               |                            | Blank:                             |          |                                    |     |  |  |
| Sampler:          | MXD                    |             |                     |                               | DUP:                       |                                    |          |                                    |     |  |  |
| Sampling Plan By: | JCS                    |             | ·····               |                               | Depth to                   | Water: 44F                         | Inlet: _ | 14FT -> BO                         | Hom |  |  |
| Purge Method:     | Peristaltic            | Submersible | Sampling<br>Method: | Peristaltic                   |                            | alysis<br>e, Nitrite, Sulfate, Alk |          | <u>tles</u><br>s. Poly, 1 HCl Poly |     |  |  |
|                   | Centrifugal Extraction |             | Bailer              | Metals Filter in TPH\Solvents |                            | 500mL l                            |          |                                    |     |  |  |
|                   |                        |             |                     | Sample Port                   | Delivery:                  | Hand                               | LAB:     | C&T                                |     |  |  |

| TIME     | DTW           | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | D.O. (%5) | pH      | ORP (mV)         | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|---------------|---------------------|-------------|----------|-----------------|-----------|---------|------------------|--------------------|------------------------------|
| Stabiliz | ation if 3 su | ocessive pan        | ameters are | NA.      | +/-3%           | +/-10%    | +/- 0.1 | + <i>I</i> -10mv | +/-10%             | Take Readings every 3-5 min. |
| 1440     | 1             | ٥                   | 20          |          |                 |           |         |                  |                    | STARTPURSE Trendungs         |
| 1443     | 13.40         | -                   |             |          |                 |           |         |                  |                    | shuas shuas possite          |
| 1452     |               | ٥٠                  |             |          |                 |           |         |                  |                    | lower Lose and resum         |
| 1457     | 632           | 0.5                 |             | 20.63    | సింది           | 0.82      | 6.98    | 393              | 3.24               | clear                        |
| 15:02    |               | 0.6                 |             | 21.10    | .829            | 0.87      | 7.05    | 595              | 2.62               | cler                         |
| 1505     |               | 0.6                 |             | 21.43    | .860            | 0.72      | 7.05    | 395              | ~                  | off DWTR                     |
| 1010     | 15.21         |                     |             |          |                 |           |         |                  |                    | Date 8/10/00                 |
| 0706     |               | 0.6                 |             | <u></u>  |                 |           |         |                  |                    | Purse 003/11/00              |
| ०७४      | •             | 1.5                 |             |          |                 |           |         |                  |                    | DWTR -095                    |
| 1740     | 16.70         | 1.5                 | 0           |          |                 |           |         |                  |                    | Sample                       |

NOTES: He well benefers while sampling only able to collect 9 1645

LFR-Levine Fricke

### MiniSonde Groundwater Parameter Log

Page of .

| Project #:        | 6895,00.030                              | Date: 8/15 /00 WELL: MW-((                                                                 |  |  |  |  |  |  |  |
|-------------------|------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Project Name:     | Gloveatorium                             | Sample Number: $_{-}$ $M\omega$ – ( )                                                      |  |  |  |  |  |  |  |
| Location:         | Oakland, CA                              |                                                                                            |  |  |  |  |  |  |  |
| Sampler:          | MXD                                      | DUP:                                                                                       |  |  |  |  |  |  |  |
| Sampling Plan By: | JCS                                      | Depth to Water: 10.09 Inlet: 18F7                                                          |  |  |  |  |  |  |  |
| Purge Method:     | Peristaltic Submersible Sampling Method: | Peristaltic Analysis Bottles  Fe+2 +3 Nitrate Nitrite Sulfate Alk 1 Unpres Poly 1 HCl Poly |  |  |  |  |  |  |  |

|                  | Centrifugal         | Extraction  | Metilog: | Bailer                     | Metals Filte |         | 500mL HI<br>VOAs  | VO3                     |
|------------------|---------------------|-------------|----------|----------------------------|--------------|---------|-------------------|-------------------------|
|                  | <del></del>         |             |          | Sample Port                | Delivery:    | Hand    | LAB:              | C&T                     |
| TIME DTY         | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) D.O. (9/5) | рĦ           |         | IRBIDITY<br>(NTU) | COMMENTS                |
| Stabilization If | 3 successive para   | imeters are | NA .     | +43% +410%                 | 4/- 0.1      | +/-10mv | +/-10% Take       | Readings every 3-5 min. |
| 1115 100         | 90                  | NA          |          |                            |              |         | <u> </u>          | + Arge                  |

| Stabiliz | ation if 3 su | ccessive par | ameters are | NA    | +/-3% | +7-10% | +/- 0.1 | +/-10mv | +/-10%                | Take Readings every 3-5 min. |
|----------|---------------|--------------|-------------|-------|-------|--------|---------|---------|-----------------------|------------------------------|
| 1115     | 10-09         | 0            | NA          |       |       |        |         |         |                       | Stert Arge                   |
| 1190     | 10.50         | 0.25         | 2011        | 20.23 | 1.106 | 2.51   | 6.48    | 464     | 1.16                  | clear                        |
| 1125     | 10.50         | o.S          | NA          | 20.31 | 1.100 | 2.49   | 6.47    | 469     | 1.18                  | clear                        |
| 1130     | 11.00         | 0.75         | 1           | 20.41 | 1.096 | 2.47   | 6.47    | 472     | <del>69.40</del> 1.30 | clear                        |
| 1135     | 11.03         | 1.0          |             | 20.61 | 1.092 | 2.48   | 6-47    | 474     | 1.67                  | clear                        |
|          | 11.37         | 1:15         |             | 20.66 | 1.089 | 2.49   | 6.47    | 476     | 1.05                  | clear slow down pung         |
| اررح     | 11.40         | 1.5          |             | 21.00 | 1.039 | 2.52   | 6.47    | 476     | 1.01                  | clear                        |
| 1150     | -11           |              |             | ;     |       |        |         |         |                       | sample                       |
|          | •             |              |             |       |       |        |         |         |                       |                              |
|          |               |              | N/          |       |       |        |         |         |                       |                              |

| NOTES: | <br> | <br> | <br> | <del></del> |
|--------|------|------|------|-------------|
|        |      |      |      |             |

### MiniSonde Groundwater Parameter Log

Page \of &

| Project #:        | 6895.00.030  | 6895.00.030 |                     |                                        | Da                     | ite: 8/ 9 /00   | WELL:       | LF                     | R-1     | <del></del> |
|-------------------|--------------|-------------|---------------------|----------------------------------------|------------------------|-----------------|-------------|------------------------|---------|-------------|
| Project Name:     | Gloveatorium |             |                     |                                        | Sample Numb            | er: LF          | 2-1         |                        |         |             |
| Location:         | Oakland, CA  |             |                     |                                        | Bla                    | nk:             |             | •<br>                  |         |             |
| Sampler:          | MXD          | MXD         |                     |                                        | DU                     | JP:             |             |                        |         |             |
| Sampling Plan By: | JCS          | <del></del> | <u> </u>            | ······································ | Depth to Wat           | er: <u>9.81</u> | Inlet: _    | 14 F                   | -T      |             |
| Purge Method:     | Peristaltic  | Submersible | Sampling<br>Method: | Peristaltic                            | Analysis               |                 |             | ttles<br>s. Poly, 1 Ht | El PolV |             |
|                   | Centrifugal  | Extraction  |                     | Bailer                                 | Metals Filter in Field |                 | 500mL l     |                        |         |             |
|                   |              |             |                     | OI- D. (                               | TPH\Solvents           |                 | <b>VOAs</b> | 11/HC                  | 76505   | 3U/2/C      |
|                   |              |             | <u> </u>            | Sample Port                            | <b>Delivery:</b> Ha    | ınd             | LAB:        |                        | C&T     | mes         |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer  | TEMP (C) | COND<br>(mS/cm) | D.O. (%8) | рН      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|------------|----------|-----------------|-----------|---------|----------|--------------------|------------------------------|
| Stabiliz | ration if 3 su | iccessive para      | meters are | NA       | +/-3%           | +/-10%    | +/+ 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| 1/25     |                | 0                   | NA         | í        | -               | 1         | l       | _        | ~                  | startpurge                   |
| 130      | 10.13          | 0.1                 |            | 20.75    | 1.022           | 4.72      | 7.13    | 372      | 14.18              | Clear                        |
| 1145     | 10.43          | 1269                |            | 20.80    | 1.029           | 4.52      | 7.0     | 375      | 1.94               | clear: speak to client       |
| 1150     |                | 1.75                |            | 20.77    | 1.023           | 4.56      | 7.08    | 375      | 1.95               | clear.                       |
| 1155     | 10.52          | 2.0                 |            | 2075     | 1.009           | 4.56      | ?ं•S    | 376      | 1.46               | clear                        |
| 1205     | 10.61          | 3.0                 |            | 20.68    | 0.977           | 4.3       | 6.99    | 378      | 1.40               | clear                        |
| 1210     |                | 3.25                |            | 20.83    | 0.965           | 4.07      | 6.94    | 380      | 1.77               | clear                        |
| 1220     | 10.92          | 4.0                 |            | 20.85    | 0.950           | 4,20      | 6.92    | 382      | 1.97               | clear                        |
| 1392     | i              | 4.a                 |            | 21.16    | 0.942           | 4.06      | 6.91    | 383      | 143                | Clear.                       |
| 1235     | 10.50          | \$.⊙                | W          | 20.31    | 0.931           | 4.12      | 6.89    | 385      | 1.55               | Clecc Stop.                  |
| NOTES:   |                |                     |            |          |                 |           |         |          |                    | Sayle                        |

LFR-Levine Fricke

, :

MiniSonde Groundwater Parameter Log Page of 2

| Project #:        | 6395.02.050                              | Date: 8/U/O WELL: LFR-       |
|-------------------|------------------------------------------|------------------------------|
| Project Name:     | Glave                                    | Sample Number: LFR-          |
| Location:         | cakland, CA                              | Blank:                       |
| Sampler:          | MXO                                      | DUP:                         |
| Sampling Plan By: | jes                                      | Depth to Water: 7.8/ Inlet:  |
| Purge Method:     | Peristaltic Submersible Sampling Method: | Peristaltic Analysis Bottles |
|                   | Centrifugal Extraction                   | Bailer COS 73 mars WAS       |
|                   |                                          | Sample Port Delivery: LAB:   |

| TIME         | WTD   | VOLUME<br>(Gallons) | Totalizer | TEMP<br>(Celsius) | COND<br>(mS/cm) | D.O. (%5) | рН   | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                  |
|--------------|-------|---------------------|-----------|-------------------|-----------------|-----------|------|----------|--------------------|---------------------------|
| 0730         | 9.81  | 0                   | NA        | -                 |                 |           |      |          |                    | resume pargetur gas vorts |
| 0740         | 10.15 |                     | 1         | 19.64             | 1.024           | 4.91      | 6.99 | 393      | 1.73               | clear shudun P            |
| 0745         | 10.30 | 1.1                 |           | 19.63             | 0.938           | 3.99      | 7.00 | 421      | 1.59               | Clear ·                   |
| 0750         | 10.22 | 1.25                |           | 19.62             | 0.937           | 3.99      | 6.99 | 436      | 1.49               | clear                     |
| 0755         | 10.24 | 1.4                 |           | 19.45             | 0.943           | 3.89      | 7.00 | 444      | 1.50               | clear                     |
| 0800<br>0805 |       | 1.5                 |           | 19.70             | 0.926           | 3.69      | 6.98 | 454      | 1.49               | clear                     |
| 0805         | 10.30 | 1.0                 |           | 19.73             | 0.93)           | 3.61      | 7.00 | 459      | 1.42               | clear                     |
| 03/0         |       | 1.7                 |           | 19.73             | 0.936           | 3.43      | 6.97 | 41.2     | 1.33               | cleer - stopper           |
| 0815         |       |                     |           |                   |                 |           |      |          | 1                  | sample                    |
|              |       |                     |           |                   |                 |           |      |          |                    |                           |
|              |       |                     |           |                   |                 |           |      |          |                    |                           |

| NOTES: | 10-2 | œ. | OBIO |
|--------|------|----|------|
|        |      |    |      |

|   | -      | • |           | -   |       |
|---|--------|---|-----------|-----|-------|
| t | $-\nu$ |   | evine     | 147 | 70 00 |
|   | .1 1   |   | E Y III E | 1.1 |       |

### MiniSonde Groundwater Parameter Log

Page of .

| Project #:        | 6895.00.030  | Date: 8/ \ /00 WELL: CFC C |                      |  |  |  |  |
|-------------------|--------------|----------------------------|----------------------|--|--|--|--|
| Project Name:     | Gloveatorium | Sample Number:             | LFR-a                |  |  |  |  |
| Location:         | Oakland, CA  | Blank:                     | :                    |  |  |  |  |
| Sampler:          | MXD          | DUP:                       | :                    |  |  |  |  |
| Sampling Plan By: | JCS          | Depth to Water:            | : 10.91 Inlet: 14 FT |  |  |  |  |

| Purge Method: | Peristaltic | Submersible S | Sampling | Peristaltic | <u>Analysis</u>                        |      | Bottles                    |     |
|---------------|-------------|---------------|----------|-------------|----------------------------------------|------|----------------------------|-----|
|               |             | [M            | flethod: |             | Fe+2,+3 Nitrate, Nitrite, Sulfate, Alk |      | 1 Unpres. Poly, 1 HCl Poly |     |
|               | Centrifugal | Extraction    |          | Bailer      | Metals Filter in Field                 |      | 500mL HNO3                 |     |
|               |             | ĺ             |          |             | TPH\Solvents                           |      | VOAs                       |     |
|               |             |               |          | Sample Port | Delivery:                              | Hand | LAB:                       | C&T |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | D.O. (%S) | pH      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|-------------|----------|-----------------|-----------|---------|----------|--------------------|------------------------------|
| Stabilit | zation if 3 sc | occessive pan       | ameters are | NA       | +/-3%           | +4-10%    | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| 1150     | 10.91          | 0                   | wa          |          |                 |           |         |          |                    | startlurge                   |
| 1200     | 11.35          | 0.25                | ħ           | 19.35    | 1.072           | 0.66      | 6.77    | 319      | 2.80               | clear standown punc          |
| 1205     | 11.54          | 0.5                 |             | 19.98    | 1.087           | 0-61      | 6.79    | 308      |                    | Clear                        |
| 1312     | 11.78          | 0.75                |             | 19.34    | 1,038           | 053       | 6.8     | 300      | 2.37               | clear.                       |
| 1990     | 11.82          | 0.9                 |             | (9.99    | 1.073           | 0.51      | 6.8(    | 398      | 2.66               | clear                        |
| 1995     | 11.92          | 1.1                 |             | 19.92    | 1.085           | 0.50      | 6.90    | 279      | 2.39               | Clear                        |
| 1330     | 19.00          | 1.5                 |             | 19.35    | 1.088           | 0.48      | 6.80    | 27Ce     | 2.36               | clear                        |
| 1235     | 12.08          |                     |             | 19.87    | 1.038           | 0.48      | 6.80    | 270      | 2.33               | clear stop                   |
| 1240     | •              |                     |             |          | -               |           |         |          |                    | Sample                       |
|          |                |                     | <i></i>     |          |                 |           |         |          |                    |                              |

| NOTES: |                                       |             |                                        |  |
|--------|---------------------------------------|-------------|----------------------------------------|--|
|        | · · · · · · · · · · · · · · · · · · · | <del></del> | ······································ |  |

LFR-Levine Fricke

### MiniSonde Groundwater Parameter Log

Page of

| Project #:        | 6895.00.030  | Date: 8/ 10 /00 WELL:              |
|-------------------|--------------|------------------------------------|
| Project Name:     | Gloveatorium | Sample Number: <u>LFL-3</u>        |
| Location:         | Oakland, CA  | Blank:                             |
| Sampler:          | MXD          | DUP: <u>LFR-103</u>                |
| Sampling Plan By: | JCS          | Depth to Water: 10.99 Inlet: 16 FT |

| Purge Method: | Peristaltic | Submersible Samp |             |                                        | alysis | <u>Botties</u>    |            |
|---------------|-------------|------------------|-------------|----------------------------------------|--------|-------------------|------------|
|               |             | Metho            | od:         | Fe+2,+3 Nitrate, Nitrite, Sulfate, Alk |        | k 1 Unpres. Poly, | 1 HCI Poly |
| -             | Centrifugal | Extraction       | Bailer      | Metals Filter in Field                 |        | 500mL HNO3        |            |
| ŀ             | •           | <b>!</b>         |             | TPH\Solvents                           |        | VOAs              |            |
|               |             |                  | Sample Port | Delivery:                              | Hand   | LAB:              | C&T        |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer   | TEMP (C) | COND<br>(mS/cm) | 0.0.045)<br>109/4 |         | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|-------------|----------|-----------------|-------------------|---------|----------|--------------------|------------------------------|
| Stabiliz | zation if 3 su | ccessive pare       | imeters are | NA       | +/-3%           | +/-10%            | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| 0820     | 14.99          | 0                   | NA          |          |                 |                   |         |          | ,                  | start                        |
| 0825     | 12.00          | 0.25                |             | 20.19    | 1.094           | 3.23              | 4.77    | 456      | 1.44               | clear slow down Ru           |
| 0930     |                | 0.35                |             | 20.05    | 1.00            | 2.57              | 6.74    | 459      | 1.77               | Clar                         |
| 0838     | 11.87          | 0.45                |             | 20.11    | 1.057           | 2.15              | 6.68    | 461      | 1.10               | dear                         |
| 0843     | 11.90          | 0.35                |             | 19.98    | 1.024           | 1.80              | 6.65    | 462      | 1.23               | dear                         |
| 0848     |                | 1.00 0.75           |             | 20.03    | 1.000           | 1.66              | 6.62    | 463      | 1-16               | clear                        |
| 08:55    | 11.96          | 1.15                |             | 19.96    | 0.996           | 1.55              | 6-61    | 463      | 1.23               | dear                         |
| 08:58    | 11.98          | 1.50                |             | 19.95    | 0.910           | 1-41              | 6.60    | 464      | 1.08               | clear                        |
| 09:03    | 12.06          | 1.75                |             | 19.93    | 0.960           | 1.34              | 6.57    | 464      | 1.08               | clear                        |
| 09:08    | 1207           | 2.10                |             | 19.92    | 0.951           | 1.30              | 6.57    | 464      | (-11               | elear                        |

NOTES: 0910; SAMPLE

0915: DUP

|     | •   |       | *** | •  |             |
|-----|-----|-------|-----|----|-------------|
| HR. | . І | evine | H   | m, | <b>۱</b> ۲0 |
|     |     |       |     |    |             |

### MiniSonde Groundwater Parameter Log

| Page | of |
|------|----|
| rage | O. |

| Project #:        | 6895.00.030  | Date: 8/   ( /00   WELL:                          |
|-------------------|--------------|---------------------------------------------------|
| Project Name:     | Gloveatorium | Sample Number: <u>LFR-4</u>                       |
| Location:         | Oakland, CA  | Blank:                                            |
| Sampler:          | MXD          | DUP: LFR-104 HOLD                                 |
| Sampling Plan By: | JCS          | Depth to Water: 13.25 Inlet: To: 19.40 Inlet 18FT |

| Purge Method: | Peristaltic | Submersible | , ,     | Peristaltic | <del></del> -          | nalysis                               | Bottles         |            |
|---------------|-------------|-------------|---------|-------------|------------------------|---------------------------------------|-----------------|------------|
|               |             |             | Method: |             | Fe+2,+3 Nitra          | ate, Nitrite, Sulfate, Alk            | 1 Unpres. Poly, | 1 HCi Poly |
|               | Centrifugal | Extraction  |         | Bailer      | Metals Filter in Field |                                       | 500mL HNO3      |            |
|               |             |             |         | 1           | TPH\Solvents           |                                       | VOAs            |            |
|               |             |             |         | Sample Port | Delivery:              | Hand                                  | LAB:            | C&T        |
|               |             |             |         |             |                        | · · · · · · · · · · · · · · · · · · · |                 |            |

| TIME     | DTW            | VOLUME<br>(Gallons) | Totalizer  | TEMP (C) | COND<br>(mS/cm) | 0.0.(%)<br>re/L | pH      | ORP (mV) | TURBIDITY<br>(NTU) | COMMENTS                     |
|----------|----------------|---------------------|------------|----------|-----------------|-----------------|---------|----------|--------------------|------------------------------|
| Stabiliz | cation if 3 su | ocessive para       | meters are | NA       | +/-3%           | +/-10%          | +/- 0.1 | +/-10mv  | +/-10%             | Take Readings every 3-5 min. |
| c855     | 13.25          | ٥                   | NA         |          |                 |                 |         |          |                    | stert purge                  |
| 090      | 1351           | 0.75                | ſ          | 19.94    | 1.256           | 1.09            | 6.90    | 363      | 3.56               | Clear                        |
| 0910     |                | 0.5                 |            | (9.90    | 1.223           | 0.73            | 6.95    | 402      | 2.35               | clear pumper as slowes, po   |
| 0915     | 13.97          | 0.7                 |            | 19.95    | 1.213           | 0.85            | 6.99    | 404      | 2.33               | clear                        |
| 0920     | 14.20          | 1.0                 |            | 20.20    | 1.209           | 1.16            | 6.97    | 405      | 2.02               | clear                        |
| 0930     | 15.30          | 1.5                 | i          | 20.13    | 1.233           | 1-16            | 6.91    | 402      | 2.00               | Clear                        |
| 0935     | 15.37          | 1.75                |            | 20.11    | 1.240           | 1.13            | 6.90    | 402      | 1.98               | clear - ox stop              |
| 0940     |                |                     |            |          |                 |                 |         |          |                    | sample                       |
| 0945     | •              |                     |            |          |                 |                 |         |          | ,                  | DUP                          |
|          |                |                     | 4          |          |                 |                 |         |          |                    |                              |

Appendix D

Water-Quality Sampling Information Forms And Water-Level Measurements Log 6.3

|               |                  | 1200              | - ~~ /                                           | 23           |              |                                        |                                       |             |         |            |
|---------------|------------------|-------------------|--------------------------------------------------|--------------|--------------|----------------------------------------|---------------------------------------|-------------|---------|------------|
|               |                  | <u>6895</u>       |                                                  |              |              | <del></del>                            | 4                                     | Date:       | 7/31/00 | )          |
| rojec         | α Name:⊥         | Glove             | a toriu                                          | $\alpha$     |              |                                        |                                       | Sample No.: |         |            |
|               |                  | . Cati            | •                                                | <u>CH</u>    |              |                                        |                                       | FB:         | /       |            |
| Sampl         | lers Name:       | MX                | <u> </u>                                         |              |              |                                        |                                       | DUP:        |         |            |
| Sampl         | ing Plan P       | repared By:       | 70                                               |              |              | <del></del>                            |                                       | 15.91       |         |            |
|               |                  | l:                |                                                  | ·            | · ·          | <del></del>                            |                                       | 19193       |         |            |
|               | Cer              | urifugal Pump     | ፟.                                               | Disposable I | Bailer       |                                        | i                                     | 977         |         |            |
|               | Sut              | mersible Pump     |                                                  | Teffon Baile | r            |                                        |                                       | 1.77        |         |            |
|               | Ma⊥ Hau          | id Bail           | <b>-</b>                                         |              | ·            |                                        |                                       | 9           | 9       |            |
|               |                  | raction Well Port |                                                  | (Other)      |              |                                        |                                       | 7:1         | ,'      |            |
| Апа.          | lyses Requi      | ssted             |                                                  | Number a     | nd Types of  | Bottle use                             | ·d                                    | ۱۱۰         | ٠,      | [          |
|               | • ) ^            | <del>,</del>      |                                                  |              |              |                                        |                                       | 2           | 4       |            |
|               | NA               |                   |                                                  | <u>Dere</u>  | 100          | only                                   |                                       | 37 (        | ! D     |            |
|               | ~~~~             |                   | ······································           |              | •            | ``                                     |                                       | 7 4 1       |         |            |
| Meth          | od of Ship       | ment              |                                                  |              | //           |                                        |                                       | 148         | 64      |            |
| (             | Lab Name)        |                   | Cou                                              | uier         | -J           | ·                                      |                                       | 1.1         | _       |            |
|               | (                |                   | [] Han                                           | d Deliver: / |              |                                        |                                       | 9.2         | 9       |            |
| 1 - NJ - N    | 10cr: <b>L</b> . | FOLI              |                                                  | /_           | ····         | ~~************************************ |                                       |             | سيرا    | ş .        |
|               | Water:           | _                 | <del></del>                                      | V            | Vell Diamete |                                        |                                       | 135         | S       |            |
| Well Dept     |                  | 9.05              | <del></del>                                      |              | -            | 16 Gallon/F                            |                                       | 9.73        |         |            |
| -             |                  | mn: 9.29          | 7                                                |              | _            | 65 Gallon/F<br>02 Gallon/F             |                                       | -           |         |            |
|               | Well:            |                   |                                                  |              |              | 47 Gallon/F                            |                                       | ያበረሩ ከተናለ   | 11.58   | •          |
| TLME          | Depth            | Volume            | Totalizer                                        | Temperature  |              | Cond                                   | Turbidity                             | 80 % D [ W  |         |            |
|               |                  | Purged (Gallons)  | Reading                                          | °C           | (SU)         | (mohs)                                 | (NTU)                                 |             | Remarks |            |
| 713           | 9.73             | _0_               | NA                                               |              |              |                                        | <u> </u>                              | collect     | 770     |            |
| 936           |                  |                   |                                                  |              |              |                                        |                                       | Strot 6     | lor a   | Edite?     |
| 2940          |                  | _1.5              |                                                  | 19.7         | 7.01         | 1640                                   | >∂∞                                   | Cloudy      | or ge   |            |
| 143           |                  | >                 |                                                  | 19.6         | 6.68         |                                        | >200                                  |             |         |            |
| 946           |                  | 4.5               |                                                  | 19.5         | 6.47         |                                        |                                       | coudy       |         |            |
| 750           |                  | 1                 |                                                  | 100          |              |                                        | >&c                                   | 11          |         |            |
|               | 13.48            | 76                | <del>                                     </del> | 17.3         |              |                                        | 200                                   | <u> </u>    |         |            |
|               | 10.70            | 7.5               | <del></del>                                      | 12.4         | 6.51         | 1054                                   | >200                                  | ţ+          |         |            |
| 200           |                  | 7.0               | <b>  </b>                                        | 17.3         | 6.60         | 1027                                   | > 200                                 | (1          |         |            |
| 004           | U 6 =            | 10.5              | <u> </u>                                         | 18.8         | 6.55         | 1566                                   | >2∞                                   | 1,          |         | 3          |
|               | 16.35            | 2.0               |                                                  | 18.8         | G.73         | 1771                                   | >200                                  | clardy      |         |            |
| 013_          |                  | 13.5              |                                                  | 18.7         | 6.74         | 1614                                   | >300                                  | 1,1         |         | - loth odu |
|               | 6.83             | 15.0              |                                                  | 18.9         | 6.85         | 1051                                   | 5200                                  | 11          | 7400    |            |
| inlet Dep     |                  |                   |                                                  |              |              | 1031                                   | 7,00                                  | <del></del> | 3 100   | - low work |
| Commen        |                  | MW-11             | Dīw:                                             | = 9.9        | 72 a         | 09                                     | <i>3</i> 7                            |             |         | . •        |
| . Komuniner 3 |                  | Punging Well)     |                                                  |              |              |                                        | <u> </u>                              |             | ·       | 4 2        |
|               |                  |                   |                                                  |              |              |                                        | · · · · · · · · · · · · · · · · · · · |             |         |            |

| •               | 6899                                  |                                                  |                                         |             |                                                   |              | Date: 7/31/00    |                |
|-----------------|---------------------------------------|--------------------------------------------------|-----------------------------------------|-------------|---------------------------------------------------|--------------|------------------|----------------|
| Project Nac     | ne: Glove                             | a toriu                                          | <u> </u>                                |             |                                                   | 4.           | Sample No.:      |                |
|                 | atlon: Cak                            | •                                                | <u>CA</u>                               |             |                                                   |              | FB:              |                |
| : Samplers N    | ame:                                  |                                                  |                                         |             |                                                   |              | DUP:             | -              |
| Sampling Pi     | an Prepared By:                       | 7                                                | <u> </u>                                |             |                                                   |              |                  | [              |
| Sampling M      | ethod:                                |                                                  |                                         |             | ···                                               |              | 19.95            | 1              |
|                 | Centrifugal Pump                      | -                                                | Disposable l                            |             |                                                   |              | 131              |                |
|                 | Submersible Pump                      |                                                  | Teflon Baile                            | τ           |                                                   |              | 172              |                |
| . Ò₹            | Hand Bail                             |                                                  |                                         | 6.32        |                                                   |              |                  |                |
| : Analyses i    | Extraction Well Port                  |                                                  | × .                                     |             |                                                   |              | 116              |                |
| ·               |                                       |                                                  | Number a                                | ind Types o | f Bottle use                                      | ed           | 1-192            |                |
|                 | )A                                    |                                                  | Dove                                    | رام         | anle                                              |              | 37/              |                |
| ·               |                                       |                                                  |                                         |             | ~ · MY                                            |              | 6320             |                |
| Method of       | Shiparent                             | ·····                                            | *************************************** |             |                                                   |              | 1112             |                |
| Lab Na          | me)                                   | Co                                               | unier                                   | <u></u>     |                                                   |              | 22               | - [].          |
|                 | /                                     | ☐ Har                                            | nd Deliver:                             | •           |                                                   |              | 6.32             |                |
| Number <u>.</u> | 1201                                  |                                                  | <u> </u>                                | ·····       | ~~~ <del>**********************************</del> |              |                  | -              |
| on to Water:    |                                       | <u></u>                                          | V                                       | Vell Diamet |                                                   |              | 1) (4            | ,              |
| Well Depth:     |                                       | ·                                                |                                         |             | 16 Gallon/I                                       | 1            | (2 64<br>13.11   |                |
|                 | Column: 63                            | <del>}</del>                                     |                                         |             | .65 Gallon/E<br>.02 Gallon/F                      | 1            | 13***            |                |
| Volume in Well: |                                       | <del>3</del> 91                                  |                                         |             | 47 Gallon/F                                       | · 1          | 80% DTW_14.37    |                |
| TIME Dep        | th Volume<br>ater Purged (Gallons)    | Totalizer                                        | Temperature                             | 1 -         | Cond                                              | Turbidity    |                  | ╣"             |
| 0920 13.        |                                       |                                                  | °C                                      | (SU)        | (mops)                                            | (NTU)        | Remarks          | _ 1            |
| 1035            | 0                                     | NA                                               |                                         |             |                                                   | <del> </del> | DTW measuremen   | 15             |
|                 | 7. —                                  |                                                  | 102                                     | 1           | 2                                                 |              | star purge       |                |
| 1043            | (1)                                   |                                                  | 17.3                                    | 6.75        |                                                   |              | Cloudy'          |                |
| 1042            | MAX 2.5                               | <del>-</del>                                     | 13.4                                    | 6.72        | 2.36                                              | 107.2        | 10               |                |
| 1045            | 3.75                                  |                                                  | 19.2                                    | 6.68        | 2.40                                              | 148.6        | te               |                |
| 1050 17.        |                                       | <del>                                     </del> | 19,1                                    | 6.53        | 2.46                                              | >200         | Cloudy           | _   [          |
| 1054            | 6.25                                  | <del>                                     </del> | 190                                     | 663         | 2.26                                              | >200         | cloudy           |                |
| 1100            | (-/->                                 |                                                  | 19.1                                    | 6.67        | 2.20                                              | >200         | clady - DWTR - a | Ē              |
| 250 14.         | 76 /.5                                |                                                  | 100                                     |             |                                                   |              | Resume avose     |                |
| 1253            | ×.75                                  |                                                  | 19.7                                    | 6.34        | 1230                                              | 58.7         | SILYUSIZ         |                |
| 1256            | 10.0                                  | 1,                                               | 19.5                                    | 634         | 453                                               | 1229         | Clarky           | - In Swelling  |
| 22 18.          | 24.]] 58                              | W                                                | 19.4                                    | 6.41        | 1336                                              | >200         | SIVO .           | :<br> 3 <br> ¥ |
|                 | 112.0                                 |                                                  | 19.6                                    | 6.45        |                                                   | >200         | " Stop Disto     | -              |
| Comments:       | od For Punang Well)                   |                                                  |                                         |             |                                                   |              | " stop DWIR      | ` ر            |
|                 | · · · · · · · · · · · · · · · · · · · |                                                  |                                         |             |                                                   |              |                  |                |

|                     | <del></del>            | <del></del> -     |                                         |                   |                                         |                                           |                                         | - Oldinilion         |
|---------------------|------------------------|-------------------|-----------------------------------------|-------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|----------------------|
| roje                | ect No.:               | 6895              | , 00.                                   | 030               |                                         |                                           | · · · · · ·                             | Date: 7/31/00        |
| tΥοje               | ect Name:              | _Glove            | <del>م امدن</del>                       | <u></u>           |                                         | <del>_</del>                              | 4                                       | Sample No.:          |
| Samp                | le Location            | . Carl            | طع۲٬                                    | CA                |                                         |                                           |                                         | ☐ FB:                |
|                     |                        | MXI               |                                         |                   |                                         |                                           |                                         | DUP:                 |
| Samp                | ling Plan Pi           | repared By:       | 7                                       |                   | ···-                                    | <del></del>                               |                                         |                      |
| Samp                | ling Method            | d:                |                                         |                   |                                         |                                           |                                         | 18.95                |
| :                   | Ccr                    | itrifugal Pump    | Ø                                       | Disposable B      | lailer                                  |                                           |                                         | 10.72                |
| :<br>ŧ              | ☐ Sub                  | mersible Pump     |                                         | Teflon Bailer     | r                                       |                                           |                                         | , , , , ,            |
| 1                   | Mg Han                 | nd Bail           |                                         | (Other)           | ·····-                                  |                                           | i                                       | 8.23                 |
| !                   |                        | raction Well Port |                                         |                   |                                         |                                           |                                         | .16                  |
| AD8                 | llyses Reque           | ested<br>         |                                         | Number a          | nd Types o                              | f Bottle use                              | :d                                      | 4938                 |
| !                   | NA                     |                   |                                         | <u> </u>          | (                                       |                                           |                                         | 70 30                |
|                     | 1,-,-,-                |                   |                                         | Deve              | <u> (001</u>                            | only                                      |                                         |                      |
| Met                 | hod of Ship            | ment              | *************************************** | ·····             | *************************************** |                                           |                                         | 13069                |
|                     | <u> </u>               | 7                 | <b>(</b> 0.                             |                   | 1                                       |                                           | 200                                     | 8.23                 |
|                     | (Lab Name)             |                   | _                                       | uri <del>ar</del> | · · ·                                   |                                           | <b>[</b>                                |                      |
| ****************    |                        |                   | ☐ Har                                   | id Deliver:       |                                         |                                           | *************************************** | 1646                 |
|                     |                        | F-R-2             |                                         | //                | /ell Diamete                            |                                           |                                         | 10.72                |
|                     |                        | 10.72             | <del></del>                             |                   |                                         | 16 Gallon/F                               | eci)                                    |                      |
|                     | th:                    |                   |                                         |                   | <b>4"</b> (0.                           | 65 Gallon/F                               | ect                                     |                      |
| Volume in           |                        | mn: Sign          | 2                                       |                   |                                         | 02 Gallon/F                               | •                                       |                      |
|                     | Depth                  | Volume            | <del>- 241</del>                        |                   |                                         | 47 Gallon/F                               | ect)                                    | 80% DTW(2.36         |
| TIME                |                        | Purged (Gallons)  | Totalizer<br>Reading                    | Temperature<br>°C | pH<br>(SU)                              | Cond<br>(mohs)                            | Turbidity<br>(NTU)                      | Remarks              |
| 0933.               | 10.72                  |                   | NA                                      |                   |                                         | ·                                         | , , , , , , , , , , , , , , , , , , ,   | NT.                  |
| 110                 |                        | ٥                 | 1                                       |                   |                                         | ····                                      |                                         | DTW measure          |
| 1113                |                        | 1.5               |                                         | 18.5              | 4.53                                    | MOC                                       | 7200                                    | Star - Jurge         |
| 11/6                |                        | 3.0               |                                         | 18.4              | 6.45                                    | 1403                                      | 7200                                    | Cloudy               |
| 1119                | 14.16                  | 4.5               |                                         | 18.4              | ( UL                                    | 1535                                      | +                                       | 2                    |
| 1126                | 1.2.02                 | 6.0               | ·                                       | 127               | ( (1)                                   | 10.20                                     | -                                       |                      |
| 1130                |                        | 73                |                                         | 10.3              | 1 /3                                    | 1730                                      | 2000                                    | Cloudy               |
| 1174                |                        | 9.0               |                                         | 10.1              | 4.63                                    | 4.17                                      | 7200                                    | 16                   |
| 137                 | 13.47                  | 7.0               |                                         | 18.5              | 6.17                                    | کا کے                                     | 7200                                    | DWTK -cloudy-Stor    |
| 1315                | 12.40                  |                   |                                         | 10:               | /                                       | 1.0                                       | 100 10                                  | leune prae           |
| 300                 | -                      | 10.5              |                                         | 18.6              | 649                                     | 1097                                      | 118.4                                   | Sliturdia            |
| 323                 |                        | 19.0              | /_                                      | 186               | 6.55                                    | 1068                                      | >200                                    | Cloudy               |
| 98                  | 1753                   | 13.5              | Ч                                       | 18.2              | 6.74                                    | 1507                                      | >200                                    | Cloudy               |
| 139                 | ch:l                   | 14-0              |                                         | 18.8              | 6.87                                    | 1401                                      | صهد                                     | Clarky - NWTR - Stor |
| Commen<br>'Kasanman | I/S:<br>and Method For | Pyrana Well!      |                                         |                   |                                         |                                           |                                         | 0)4                  |
|                     |                        |                   |                                         |                   |                                         | ·<br>———————————————————————————————————— |                                         |                      |
|                     |                        |                   |                                         |                   |                                         |                                           |                                         |                      |

5,5

| Profect No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6899                                          | ് ഉം                                         | 030                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | **                                                                                                   |                                                                                                                                                                                                                              |                                                                             | 7/                    |               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------|---------------|
| Project No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glass                                         | <u>,                                    </u> | 000                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | •                                                                                                                                                                                                                            | Date:                                                                       | 7/31/0                | <del>20</del> |
| Project Name:<br>Sample Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cat                                           | = <u>q 70/14</u>                             | <u> </u>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              | Sample No.:                                                                 |                       |               |
| Sample Location Samplers Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                              | <u>Cri</u>                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              | FB:                                                                         |                       | <u>-</u>      |
| Sampling Plan Pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | renored Day                                   | <u> </u>                                     | <u> </u>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>                                                                                          |                                                                                                                                                                                                                              | DUP:                                                                        | _/_                   |               |
| Sampling Methox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               |                                              |                                                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                                                                                                                                                                              | 21/2-                                                                       | <del></del>           |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rtrifugal Pump                                |                                              | Disposable 1                                                         | Railer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                                                                                              | 2107                                                                        | •                     |               |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mersible Pump                                 |                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              | 16.11                                                                       | _                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd Bail                                       |                                              | Turion Darie                                                         | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | -                                                                                                                                                                                                                            | 109                                                                         | 6                     |               |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | raction Well Port                             |                                              | (Other)                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              | 111                                                                         | h                     |               |
| Analyses Reque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                              | Number 2                                                             | and Types o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | if Bottla rea                                                                                        | ad                                                                                                                                                                                                                           | , (()                                                                       |                       |               |
| . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del> ,                                 |                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T DOLLIE 036                                                                                         | <del></del>                                                                                                                                                                                                                  | 157                                                                         | , <b>B</b> C          |               |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |                                              | Dere                                                                 | low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | only                                                                                                 |                                                                                                                                                                                                                              | 65                                                                          | 1. D                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | •                                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <del> </del>                                                                                       |                                                                                                                                                                                                                              | 109                                                                         |                       |               |
| Method of Ship.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ment.                                         | ······································       | ***************************************                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              | 1.75                                                                        | 36                    |               |
| (Lab Name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | Cot                                          | யர் <b>எ</b> _                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              | 1.                                                                          |                       | ı             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | ☐ Har                                        | nd Deliver                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              |                                                                             | 10.7                  | <u>ه</u>      |
| -li Numberi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.3                                          |                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X4.204.004.004.00                                                                                    | ***************************************                                                                                                                                                                                      |                                                                             |                       |               |
| pth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               | <del></del>                                  | V                                                                    | Vell Diamete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                                                                                                                              |                                                                             | 219                   | 72            |
| ell Depths 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | <del>.</del>                                 |                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 Gallon/F<br>65 Gallon/F                                                                           | ì                                                                                                                                                                                                                            |                                                                             | 16.0                  | \             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 0                                          |                                              |                                                                      | - 1 14 (U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DD (tellon/k                                                                                         |                                                                                                                                                                                                                              |                                                                             | , -                   |               |
| aght of Water Colu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mn: O · 7                                     | 6                                            |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                                                                                                                              |                                                                             |                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.7                                          | 1                                            |                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02 Gallon/F                                                                                          | cct)                                                                                                                                                                                                                         | 80% DTS                                                                     | , (3                  | 2 N           |
| Nume in Well:  Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume Volume                                 | Totalizer                                    | Temperature                                                          | 5" (1.<br>6" (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      | cct)                                                                                                                                                                                                                         | 80% DTV                                                                     | (3.                   | 30            |
| ME Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume<br>Purged (Gallons)                    | Totalizer<br>Reading                         | Temperature<br>°C                                                    | 5" (1.<br>6" (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 Gallon/F<br>47 Gallon/F                                                                           | cct)                                                                                                                                                                                                                         | 80% DTW                                                                     | /(3.                  | 30            |
| Iume in Well:  Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume Volume                                 | Totalizer                                    |                                                                      | 5" (1.<br>6" (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 Gallon/F<br>47 Gallon/F<br>Cond                                                                   | cet) Turbidity                                                                                                                                                                                                               | _                                                                           | Remarks               |               |
| ME Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume<br>Purged (Gallons)                    | Totalizer<br>Reading                         |                                                                      | 5" (1.<br>6" (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 Gallon/F<br>47 Gallon/F<br>Cond                                                                   | cet) Turbidity                                                                                                                                                                                                               | _                                                                           | Remarks               |               |
| ME Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volume<br>Purged (Gallons)                    | Totalizer<br>Reading                         |                                                                      | 5" (1.<br>6" (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02 Gallon/F<br>47 Gallon/F<br>Cond                                                                   | cet) Turbidity                                                                                                                                                                                                               | DTW<br>Start                                                                | Remarks               |               |
| Iume in Well:  Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume<br>Purged (Gallons)                    | Totalizer<br>Reading                         | *C                                                                   | 5" (1.<br>6" (1.<br>pH<br>(SU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Gallon/F<br>47 Gallon/F<br>Cond                                                                   | Turbidity<br>(NTU)                                                                                                                                                                                                           | DTW<br>Start<br>Cloud                                                       | Remarks               |               |
| Depth to Water   16   11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume<br>Purged (Gallons)                    | Totalizer<br>Reading                         | %                                                                    | 5" (1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02 Gallon/F<br>47 Gallon/F<br>Cond<br>(mohs)                                                         | Turbidity (NTU)                                                                                                                                                                                                              | DTW<br>Start<br>Cloud,<br>Cloud,                                            | Remarks  Meacu  Purge |               |
| Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume<br>Purged (Gallons)                    | Totalizer<br>Reading                         | 30.4<br>30.0                                                         | 5" (1.<br>6" (1.<br>pH<br>(SU)<br>6.57<br>6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 02 Gallon/F<br>47 Gallon/F<br>Cond<br>(mohs)                                                         | Turbidity (NTU)                                                                                                                                                                                                              | DTW<br>Start<br>Cloud<br>Cloud                                              | Remarks  Meacu  Purge |               |
| Depth to Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume Purged (Gallons)  O                    | Totalizer<br>Reading                         | 20.4<br>20.0<br>19.8                                                 | 5"(1.)   6"(1.)   (SU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02 Gallon/F<br>47 Gallon/F<br>Cond<br>(mohs)                                                         | Turbidity (NTU)                                                                                                                                                                                                              | DTW<br>Start<br>Clouds<br>Clouds<br>Clouds<br>Clouds                        | Remarks  Measu  Purge |               |
| Depth to Water   16   11.   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume Purged (Gallons)  O                    | Totalizer<br>Reading                         | 20.4<br>20.0<br>19.8                                                 | 5"(1)<br>  6"(1)<br>  (SU)<br>  (SU)<br>  (SY)<br>  (SY) | 02 Gallon/F<br>47 Gallon/F<br>Cond<br>(mohs)                                                         | Turbidity (NTU)                                                                                                                                                                                                              | DTW<br>Start<br>Cloud<br>Cloud<br>Cloud<br>Cloud                            | Remarks  Measu  Purge |               |
| Depth to Water 766 11.11 45 51 55 60 15.14 66 13 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volume Purged (Gallons)  O                    | Totalizer<br>Reading                         | 20.4<br>20.0<br>19.8                                                 | 5"(1.<br>6"(1.<br>(SU))<br>6.59<br>6.49<br>6.43<br>6.31<br>6.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 02 Gallon/F<br>47 Gallon/F<br>Cond<br>(mohs)                                                         | Turbidity (NTU)                                                                                                                                                                                                              | DTW<br>Start<br>Clouds<br>Clouds<br>Clouds<br>Clouds                        | Remarks  Measu  Purge |               |
| Depth to Water   1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume Purged (Gallons)  Q  Q  Q  IO  IO  IV  | Totalizer<br>Reading                         | 20.4<br>20.0<br>19.8                                                 | 659<br>6.49<br>6.43<br>6.31<br>6.25<br>6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192 Gallon/F<br>47 Gallon/F<br>Cond<br>(mohs)<br>1923<br>1725<br>1662<br>1578<br>1423<br>1344<br>102 | Turbidity (NTU)  > 200  > 200  > 200  > 200  > 200  > 200  > 200  > 200                                                                                                                                                      | Start<br>Clouds<br>Clouds<br>Clouds<br>Clouds<br>Clouds<br>Clouds<br>Clouds | Remarks  Measu  Purge |               |
| 16   11.    <br>15    <br>15    <br>15    <br>15    <br>15    <br>15    <br>15    <br>15    <br>16    <br>18    <br>18 | Volume Purged (Gallons)  Q  Q  Q  IO  IO  IV  | Totalizer<br>Reading                         | 20.4<br>20.0<br>19.8                                                 | 659<br>6.49<br>6.43<br>6.31<br>6.27<br>6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1923<br>1783<br>1785<br>1662<br>1578<br>1423<br>1344<br>102                                          | Turbidity (NTU)  > Jeo                                                                                                                                                                   | Start<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud        | Remarks  Measu  Purge |               |
| Depth to Water   16   11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume Purged (Gallons)  O  14  6  10  14  14 | Totalizer<br>Reading                         | 20.4<br>20.4<br>20.0<br>19.8<br>19.2<br>19.6<br>19.7<br>(9.8<br>19.7 | 659<br>6.49<br>6.43<br>6.31<br>6.25<br>6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192 Gallon/F Cond (mohs) 1923 1725 1662 1578 1422 1344 102 193 955                                   | Turbidity (NTU)  > Jeo | DTW<br>Start<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud          | Remarks  Measu  Purge | rment         |
| Depth to Water   P/6   11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume Purged (Gallons)  Q  Q  Q  IO  IO  IV  | Totalizer<br>Reading                         | 20.4<br>20.0<br>19.8                                                 | 659<br>6.49<br>6.43<br>6.31<br>6.27<br>6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1923<br>1783<br>1785<br>1662<br>1578<br>1423<br>1344<br>102                                          | Turbidity (NTU)  > Jeo                                                                                                                                                                   | Start<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud        | Remarks  Measu  Purge | rmen t        |
| Depth to Water   P/6   11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume Purged (Gallons)  O  14  6  10  14  14 | Totalizer<br>Reading                         | 20.4<br>20.4<br>20.0<br>19.8<br>19.2<br>19.6<br>19.7<br>(9.8<br>19.7 | 659<br>6.49<br>6.43<br>6.31<br>6.27<br>6.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 192 Gallon/F Cond (mohs) 1923 1725 1662 1578 1422 1344 102 193 955                                   | Turbidity (NTU)  > Jeo | DTW<br>Start<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud<br>Cloud          | Remarks  Measu  Purge | rmen t        |

| 回 | LFR         |  |
|---|-------------|--|
|   | IE . FRICKE |  |

## WATER-LEVEL MEASUREMENTS LOG

| Project No. 6895.02,030          | Date <u>8/9/</u>               | Page of             |
|----------------------------------|--------------------------------|---------------------|
| Project Name Glosa for im        | Day: ☐ Sun ☐ Mon ☐ Tues ≠ Weds | ☐ Thurs ☐ Fri ☐ Sat |
| Field Personnel MXC; CMS;        | · ·                            |                     |
| General Observations Cloudy Goos |                                |                     |

| WELL<br>NO.    | WELL<br>ELEVATION | DEPTH T | O WATER        | WATER     | WELL SE      |   | REMARKS        |
|----------------|-------------------|---------|----------------|-----------|--------------|---|----------------|
| UFR-1          | ELEVATION         |         | 2              | ELEVATION | Y            | Z | (UNITS = FEET) |
| LFR-2          |                   | 9.81    | 9.81           |           | x            |   | loso           |
|                |                   | 11.90   | 11.70          |           | 1            |   | 1123           |
| LFR-3<br>LFR-4 |                   | 11.90   | 11.20          |           | <u> </u>     |   | 1100           |
|                |                   | 13.26   | 13.26          |           | Υ .          |   | 1100           |
| Mu-11          |                   | 10.09   | (0.09          |           | <u> </u>     |   | 1403           |
| GW-1           | 1                 | DK-4    |                |           | X.           |   | losa           |
| 3 -3           | (0.0              | 10. 78  |                |           | く            |   | 1028           |
| <u> </u>       |                   | 11.38   | 11.38          |           | ×            |   | 1104           |
| GW-4           |                   | DRY     | DRY            |           |              |   | 1130           |
| 3w-5           |                   | 12.30   | 17-30          |           | -X           |   | 108            |
| GW-GA          |                   | 13.73   | 13.73          |           | K            |   | 1114           |
| B-2            |                   | 8.19    | 8.19           |           | <u> </u>     |   | Product 1155   |
| B-3            |                   | 8.03    | 8.02           |           | K            |   | Product 1145   |
| B-7            |                   | 8.35    | <u>835</u>     |           | <u> </u>     |   | 1143           |
| B-8            |                   | 9.00    | 9.02           |           | ×            |   | Product 1204   |
| 8-9            |                   | 8.55    | <u> ୫.</u> ୧.୯ |           | <            |   | 1138           |
| B-10           |                   | 8.85    | છ. હડ          |           | X            |   | 1135           |
| B-13           |                   | TRACE   | TRACE          |           | $\mathbf{x}$ |   | TO= 9.85 1150  |
| mw-8           |                   | 10.18   | 10.18          | 8/10      | ~            |   | 1634           |
| MW-9           |                   | 9.42    | 9.42           | 8/10      | x            |   | 1636           |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              |   |                |
|                |                   |         |                |           |              | 1 |                |
|                | -                 |         |                |           |              |   |                |
|                |                   |         |                |           |              |   | •              |
| _              | ·                 |         |                |           |              |   |                |

(movuter-level measurements log: lith; 11.95 TORN LROST)

Appendix E

**Laboratory Certificates** 



### Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

#### ANALYTICAL REPORT

Prepared for:

LFR-Levine-Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 25-SEP-00

Lab Job Number: 146813

Project ID: N/A 0895.00.030

Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

This package may be reproduced only in its entirety.

CA ELAP # 1459



Laboratory Numbers: 146813 Client: LFR-Levine-Fricke Project #: 6895.00-030 Location: Glovatorium

COC#: 10170 & 10210

Sampled Date: 07/27,28/00 Received Date: 07/28/00

### **CASE NARRATIVE**

This hardcopy data package contains sample and QC results for twenty-seven soil samples, which were received from the site referenced above on July 28, 2000. The samples were received intact. All data were faxed to Julie Sharp on August 07,2000.

### TVH/BTXE:

High surrogate recoveries for bromofluorobenzene were observed in samples 1-11 (CT# 146813-002) and 2-11 (CT# 146813-008) due to hydrocarbons coeluting with the surrogate peak. No other analytical problems were encountered.

### VOCs (EPA 8260):

No analytical problems were encountered.

146813

### CHAIN OF CUSTODY / ANALYSES REQUEST FORM

| Project No                  | 6875.80 - 030 |          |                                                                   |                            |              |               | No.:     | 0.: Date: 7/2-8 |           |                |                 | 128/00        | Seria                                        | l No.:             | 1017              | <u> </u>       |              |              |
|-----------------------------|---------------|----------|-------------------------------------------------------------------|----------------------------|--------------|---------------|----------|-----------------|-----------|----------------|-----------------|---------------|----------------------------------------------|--------------------|-------------------|----------------|--------------|--------------|
| Projec Nar                  | ne:           |          | ·                                                                 |                            | Pr           | oject<br>38(S | Loc<br>B | catio           | n:<br>WAY | ۸ .            | OAK             | LAN           | •                                            | <u> </u>           |                   |                | 1017         | U            |
| Sampler (Si                 |               |          | _عح_                                                              |                            |              |               |          |                 |           |                | NAL             |               | :                                            |                    | Sar               | nplers         | :            |              |
|                             |               | S        | AMPLES                                                            |                            |              |               |          | 7.              | /\\\\     | $\overline{/}$ | $\overline{}$   | $\overline{}$ | 7.                                           | 79/ <i>&amp;</i> / | $\setminus$ $D_2$ | Έ /            | CNS          |              |
| SAMPLE NO.                  | DATE          | TIME     | LAB SAMPLE<br>NO.                                                 | NO. OF<br>CON -<br>TAINERS |              | IPLE<br>'PE   | /4       | 34 GOT          | igh Jo    | 1/2            | 1 E             | (1) XX        | 200/                                         | HOLD STRIP         |                   | REM            | ARKS         |              |
| 1-7                         | 7/28/0        | <u> </u> | <del>, , , , , , , , , , , , , , , , , , , </del>                 |                            | <u>&amp;</u> | 1. <u></u>    |          |                 |           |                |                 |               | X                                            |                    |                   |                |              |              |
| 1-11                        |               |          |                                                                   | 1                          |              |               |          |                 | $\times$  | ×              | $\times$        | X             |                                              |                    |                   |                |              |              |
| j-15                        |               |          |                                                                   | 1                          |              |               |          |                 |           |                |                 |               | X                                            | N                  | orma              | <del>ا</del> ل | TAT          |              |
| 1-19                        | $ \Psi $      |          |                                                                   | 1                          |              |               |          |                 |           |                |                 |               | X                                            |                    |                   |                | 1 , , 1      |              |
| 2-6.5                       | 7/27          |          |                                                                   | \                          |              |               |          |                 | X         | X              | X               | X             |                                              |                    |                   |                |              |              |
| 2-8                         | 1 1           |          |                                                                   |                            |              |               |          |                 |           |                |                 | -             | X                                            | PLE                | ASE.              | PAY            | ( REZ.       | <u> </u>     |
| 29.5                        |               | 2        |                                                                   | l                          |              |               |          |                 |           |                |                 |               | M                                            |                    |                   |                | SHAR         |              |
| 2-11                        |               | 4        |                                                                   | 1                          |              |               |          |                 | X         | X              | X               | X             |                                              |                    | (SR               |                |              |              |
| 2-12.5                      |               | इ        |                                                                   |                            |              |               |          |                 |           |                |                 |               | X                                            |                    |                   |                |              |              |
| 2-13.5                      |               |          |                                                                   | 1                          |              |               |          |                 |           |                |                 |               | X                                            |                    |                   |                |              |              |
| 2-15                        |               |          |                                                                   | 1                          |              |               |          |                 |           |                |                 |               | X                                            |                    |                   |                |              | ·            |
| 2-16.5                      |               |          |                                                                   |                            |              |               |          |                 |           |                |                 |               | X                                            |                    |                   | <u>-</u> .     | <u>-</u>     |              |
| 2-18                        |               |          |                                                                   | 1                          |              |               |          |                 |           |                |                 |               | X                                            |                    |                   |                |              |              |
| 2-19.5                      |               | 1.       |                                                                   | 1                          |              |               |          |                 |           |                |                 |               | $\times$                                     |                    |                   |                |              |              |
| 3-8                         |               |          |                                                                   | 1                          |              |               |          |                 |           | <u> </u>       |                 |               | X                                            |                    |                   |                |              |              |
| 3-9.5                       | $oxed{V}$     |          |                                                                   | ]                          |              |               |          |                 |           |                |                 |               | X                                            |                    |                   |                |              |              |
| RELINQUISHED<br>(Signature) | BY:           | hust     | DEwnst                                                            | <i>t</i>                   | DAT          | E<br>128      | Ţ        | ME<br>3 50      | ) R       | ECEIV<br>Signa | ED BY:          | Ge            | 1/5                                          | AH                 |                   |                | DATE<br>7/28 | ZIME<br>ZiSO |
| RELINQUISHED                | BY:           | 00000    | V G-4-1-00                                                        |                            | DAT          | Έ             |          | ME              | R         | ECEIV          | ED BY:          |               | <u>u                                    </u> | YELL V             |                   |                | DATE         | TIME         |
| (Signature) RELINQUISHED    |               |          |                                                                   |                            | DAT          | F             | +        | ME              |           | Signa          | ture)<br>ED BY: |               |                                              |                    |                   |                | DATE         | ****         |
| (Šignature)                 |               |          |                                                                   |                            |              |               |          |                 |           | Signa          |                 |               |                                              |                    |                   |                | DATE         | TIME         |
| METHOD OF SHI               | PMENT:        |          |                                                                   |                            | DAT          | E             | TI       | ME              | L         | AB CO          | MMENTS          | :             |                                              |                    |                   |                |              |              |
| Sample Col                  | lector:       |          | LEVINE-FRICK<br>1900 Powell S<br>Emeryville, Co<br>(415) 652-4500 | itreet, 12t<br>a 94608     | h Fk         | oor           |          |                 | 1         | Analy          | tical           | Lab           | oratoi                                       | ry:                |                   | - "-           |              |              |

Shipping Copy (White)

Lab Copy (Green)

File Copy (Yellow)

Field Copy (Pink)

FORM NO. 86/COC/ARF

### CHAIN OF CUSTODY / ANALYSES REQUEST FORM

| Project No                  | ·· 68   | 95.0         | Ø - <b>Ø</b> 3Ø                                                    | •                   | Fi          | eld Lo     | gbook          | No.:         |                   |         |                       | Date                                             | 1/20                                             | /00      | Serial       | No.: 1021                             | <u> </u>      |
|-----------------------------|---------|--------------|--------------------------------------------------------------------|---------------------|-------------|------------|----------------|--------------|-------------------|---------|-----------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------|---------------------------------------|---------------|
| Project Na                  |         |              | ORLUM                                                              |                     | Pr          | oject      | Locatio        | n:           |                   |         |                       |                                                  | _                                                |          |              | 1021                                  | U             |
| Sampler (Si                 |         |              |                                                                    | <u> </u>            | <del></del> |            | S BE           | 241          |                   | NAL     | <del>ری</del><br>۲۹۶۷ | ς                                                |                                                  | CA       | / Samr       | olers:                                |               |
|                             |         |              | AMPLES                                                             | <del> </del>        |             |            |                |              |                   | 7       |                       |                                                  | KOL                                              | /&/      | ,            |                                       |               |
|                             |         |              | LAB SAMPLE                                                         | NO. OF              | SAN         | MPLE       | 184 80,        | the on       |                   | 55/     | (t)                   | ريكي.                                            | ′ω,                                              | RIST _   | D34          | / cms                                 |               |
| SAMPLE NO.                  | DATE    | TIME         | NO.                                                                | CON -<br>TAINERS    | T           | YPE /      | <u> </u>       | <u> </u>     |                   | 1       | <u> </u>              | NO.                                              | /_                                               | <u> </u> |              | REMARKS                               |               |
| 3-11                        | 7/27    | <b>\</b>     |                                                                    | 1                   | 80          | 10         |                |              |                   | <u></u> | <u></u>               | <u>&gt;</u>                                      |                                                  |          |              |                                       |               |
| 3-12.5                      |         |              |                                                                    | 1                   |             |            |                |              |                   |         |                       | $\geq$                                           |                                                  | NOR      | MAL.         | TATIC                                 |               |
| 3-14                        |         | <u></u>      |                                                                    | 1                   |             |            | i_             | $ \times $   | ×                 | ×       | ×                     |                                                  |                                                  |          |              | , , , , , , , , , , , , , , , , , , , |               |
| 3-15.5                      |         | 13           |                                                                    | 1                   |             |            |                |              |                   |         |                       | ×                                                |                                                  |          |              |                                       | •             |
| 3-17                        |         | र्ड          |                                                                    | l                   |             |            |                |              |                   |         |                       | ×                                                |                                                  | DLDO     | 250 \$       | as Pas                                | aldre         |
| 3-18.5                      |         |              |                                                                    | -                   |             |            |                |              |                   |         |                       | X                                                |                                                  | 42       | 7.1.         | e Shar                                | 000           |
| 3-20                        |         |              |                                                                    | 1                   |             |            |                |              |                   |         |                       | $\forall$                                        |                                                  |          | ۱۷۲۰ عرا     | R                                     | K 6           |
| 3-21.5                      | Ψ       |              |                                                                    | ı                   |             |            |                |              |                   |         |                       | ľX                                               |                                                  |          |              |                                       |               |
| 4-8                         | 7/28    | 1            |                                                                    | 1                   |             |            | <u> </u>       | ×            | $\times$          | X       | X                     | <del>                                     </del> | i i                                              | at .     |              |                                       |               |
| 4-12                        | Ī       |              | \                                                                  | i                   |             |            |                | 1            |                   |         | ``                    | $\forall$                                        |                                                  |          |              |                                       |               |
| 4-20                        | 1       |              | •                                                                  | ١                   | 4           | 7          |                |              | <del></del>       |         |                       | X                                                |                                                  |          |              |                                       | <del></del>   |
| <b>.</b>                    |         |              |                                                                    |                     |             |            |                |              |                   |         |                       | <b>X</b>                                         |                                                  |          |              |                                       |               |
|                             |         |              |                                                                    |                     |             |            | -              | <u> </u>     |                   |         |                       | X                                                |                                                  |          |              |                                       |               |
|                             |         |              |                                                                    |                     |             | <u> </u>   | _ †            |              |                   | -       |                       | <del> </del>                                     | -                                                |          |              |                                       | <b>-</b> "    |
| <del></del>                 |         |              | , , , , , , , , , , , , , , , , , , , ,                            |                     |             | -          |                | <del> </del> |                   |         |                       | <del> </del>                                     | <del>-                                    </del> | · · ·    | <del></del>  |                                       | <del></del> - |
|                             |         |              |                                                                    | _                   |             |            |                |              |                   |         |                       |                                                  |                                                  |          |              | ·····                                 |               |
| RELINQUISHED                |         | <b>.</b>     |                                                                    | <u> </u>            | DAT         | E/20       | でいます。<br>では、50 | R            | ECEIV             | D BY:   | 200                   | Su                                               | 01                                               | ,        |              | DATE                                  | TIME          |
| (Signature) RELINOUISHED    |         | <i>veist</i> | MIWS F                                                             | DUNG                | 7<br>DAT    | <u>/28</u> | ろう(<br>TIME    | 7   (        | Signat<br>ECE IVE | ure)    | DEV                   | Zu                                               | M                                                | ·        | <del> </del> | DATE 7/28                             |               |
| (Signature)                 |         |              | <u>.</u>                                                           |                     |             |            | IIME           |              | Signat            |         |                       |                                                  |                                                  |          |              | DATE                                  | TIME          |
| RELINQUISHED<br>(Signature) | BY:     |              |                                                                    |                     | DAT         | Æ          | TIME           |              | ECETVI<br>Signat  |         |                       |                                                  |                                                  |          | _            | DATE                                  | TIME          |
| METHOD OF SHI               | PMENT:  |              |                                                                    |                     | DAT         | E          | TIME           |              | AB CO             |         | :                     |                                                  |                                                  |          |              |                                       |               |
| Sample Col                  |         |              | LEVINE-FRICK<br>1900 Powell St<br>Emeryville, Co<br>(415) 652-4500 | reet, 12t<br>194608 | h Flo       | oor        |                |              | Analy             | tical   | Lab                   | orato                                            | ry:                                              |          |              |                                       | <u>-</u> .    |
| Shipping Copy               | (White) | Lab          | Copy (Green)                                                       | File                | Cop         | y (Ye11    | ow)            | Field        | ј Сору            | (Pini   | :)                    |                                                  |                                                  |          |              | FORM NO                               | . 86/COC/ARI  |



Gasoline by GC/FID CA LUFT Lab #: 146813 Location: Glovatorium Prep:
Analysis: Client: LFR-Levine-Fricke EPA 5030 Project#: STANDARD EPA 8015M Matrix: 1.000 Soil Diln Fac: Units: mg/Kg 07/28/00 Received: Basis: wet

Field ID: 1-11 Batch#: 57421
Type: SAMPLE Sampled: 07/28/00
Lab ID: 146813-002 Analyzed: 08/02/00

 Analyte
 Result
 RL

 Gasoline C7-C12
 6.0 H Y
 2.1

 Stoddard Solvent C7-C12
 2.7
 2.1

Surrogate %REC Limits
Trifluorotoluene (FID) 103 62-138
Bromofluorobenzene (FID) 121 46-150

 Field ID:
 2-6.5
 Batch#:
 57385

 Type:
 SAMPLE
 Sampled:
 07/27/00

 Lab ID:
 146813-005
 Analyzed:
 08/02/00

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 0.97

 Stoddard Solvent C7-C12
 ND
 0.97

 Surrogate
 %REC Limits

 Trifluorotoluene (FID)
 111 62-138

 Bromofluorobenzene (FID)
 114 46-150

Field ID: 2-11 Batch#: 57385
Type: SAMPLE Sampled: 07/27/00
Lab ID: 146813-008 Analyzed: 08/02/00

 Analyte
 Result
 RL

 Gasoline C7-C12
 22 H Y
 0.92

 Stoddard Solvent C7-C12
 10
 0.92

Surrogate %REC Limits
Trifluorotoluene (FID) 110 62-138
Bromofluorobenzene (FID) 160 \* 46-150

Field ID: 3-14 Batch#: 57385
Type: SAMPLE Sampled: 07/27/00
Lab ID: 146813-019 Analyzed: 08/02/00

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 0.97

 Stoddard Solvent C7-C12
 ND
 0.97

 Surrogate
 %REC Limits

 Trifluorotoluene (FID)
 106 62-138

 Bromofluorobenzene (FID)
 107 46-150

\* = Value outside of QC limits; see narrative

H = Heavier hydrocarbons contributed to the quantitation

Y = Sample exhibits fuel pattern which does not resemble standard ND = Not Detected

RL = Reporting Limit Page 1 of 2

#### GC19 TVH 'X' Data File (FID)

Sample Name : 146813-002,57421,tvh stod only

FileName ; G:\GC19\DATA\215X009.raw

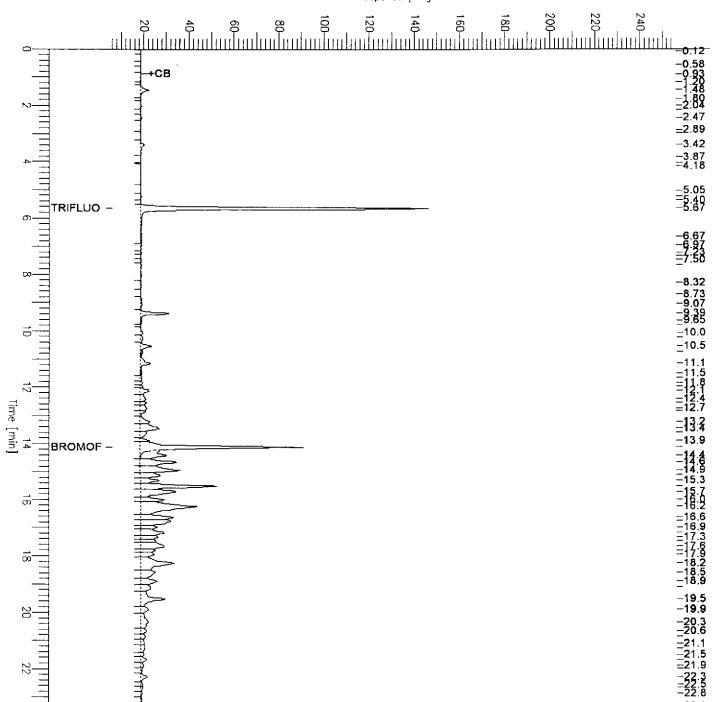
Method : TVHBTXE Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 6 mV

Sample #: a,2x

Page 1 of 1

=23.3 -23.7 -24.3 -24.8 -25.1 -25.5


Date: 8/2/00 10:44 PM

Time of Injection: 8/2/00 10:16 PM

High Point : 255.97 mV Low Point : 5.97 mV

Plot Scale: 250.0 mV

Response [mV]



#### GC19 TVH 'X' Data File (FID)

Sample Name : 146813-008,57385,+mtbe & stoddard

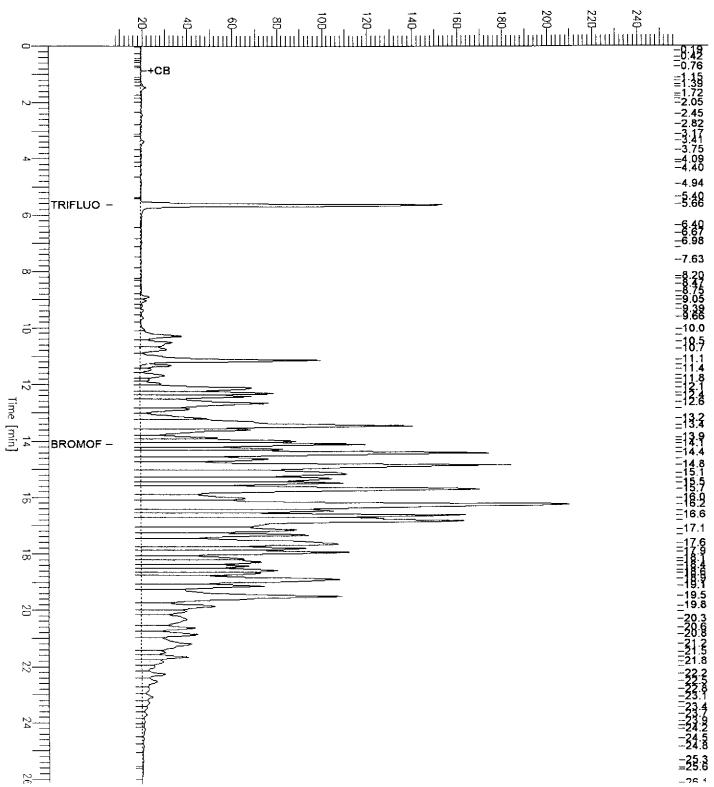
FileName : G:\GC19\DATA\214X021.raw

Method : TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 7 mV

Page 1 of 1


Sample #: a Date : 8/2/00 03:19 AM

Time of Injection: 8/2/00 02:52 AM

High Point : 256.55 mV

Low Point : 6.55 mV Plot Scale: 250.0 mV





### GC19 TVH 'X' Data File (FID)

Sample Name : ccv/bs,qc121593,57385,00ws9465,5/5000 FileName : G:\GC19\DATA\214X003.raw

FileName

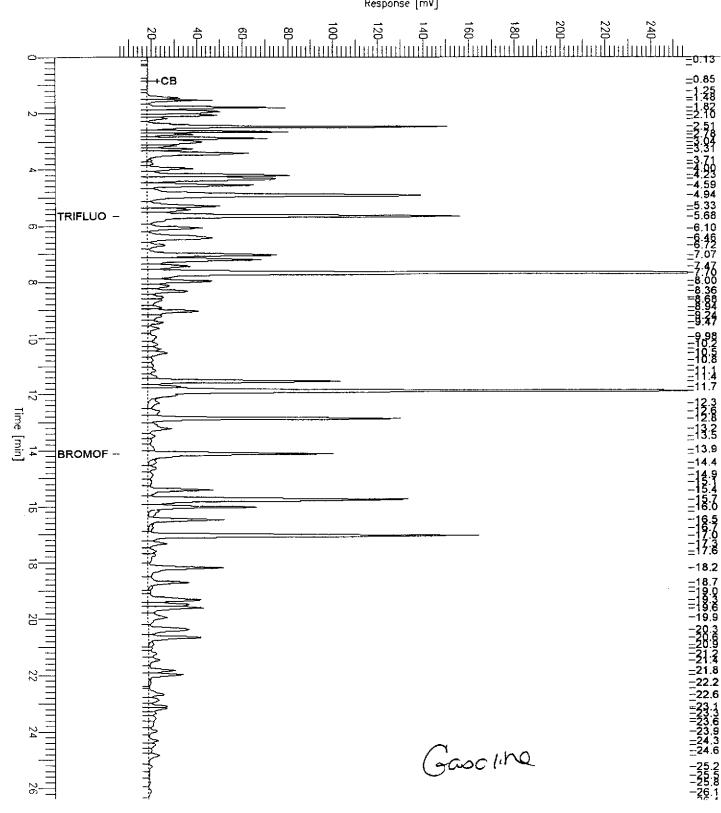
: TVHETXE Method

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 6 mV

Sample #: gas

Page 1 of 1


Date: 8/1/00 03:51 PM

Time of Injection: 8/1/00 03:24 PM

Low Point: 5.59 mV Plot Scale: 250.0 mV

High Point : 255.59 mV





#### GC19 TVH 'X' Data File (FID)

Sample Name: ccv, stoddard, 57385, 00ws8810, 5/5000

: G:\GC19\DATA\214X002.raw FileName

: TVHBTXE Method

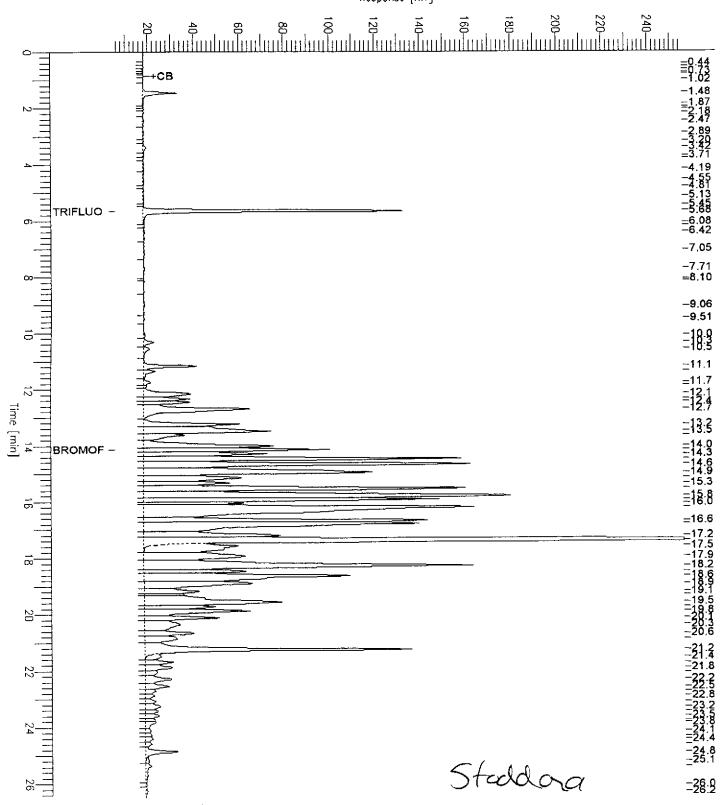
Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 5 mV

Sample #. stoddard

Page 1 of 1

Date : 8/1/00 03:13 PM


Time of Injection: 8/1/00 02:46 PM

Low Point : 5.35 mV

High Point : 255.35 mV

Plot Scale: 250.0 mV







|           | Gasolin           | e by GC/FID CA LU | s.t.        |  |
|-----------|-------------------|-------------------|-------------|--|
| Lab #:    | 146813            | Location:         | Glovatorium |  |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |  |
| Project#: | STANDARD          | Analvsis:         | EPA 8015M   |  |
| Matrix:   | Soil              | Diln Fac:         | 1.000       |  |
| Units:    | mg/Kg             | Received:         | 07/28/00    |  |
| Basis:    | wet               |                   |             |  |

Field ID: Type: Lab ID:

4-8

SAMPLE

146813-025

Batch#: Sampled: Analyzed:

57385 07/28/00 08/02/00

|                         | Kesult | RL   |
|-------------------------|--------|------|
| Gasoline C7-C12         | ND     | 0,98 |
| Stoddard Solvent C7-C12 | ND     | 0.98 |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 108  | 62-138 |  |
| Bromofluorobenzene (FID) | 111  | 46-150 |  |

Type: Lab ID:

BLANK QC121592 Batch#:

Analyzed:

57385 08/01/00

| Analyte                 | Result | RL  |
|-------------------------|--------|-----|
| Gasoline C7-C12         | ND     | 1.0 |
| Stoddard Solvent C7-C12 | ND     | 1.0 |

| Surrogate                | *REC | Limita |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 103  | 62-138 |
| Bromofluorobenzene (FID) | 104  | 46-150 |

Type: Lab ID:

BLANK QC121744

Batch#: Analyzed: 57421 08/02/00

| Analyte                 | Result | Ris |
|-------------------------|--------|-----|
| Gasoline C7-C12         | ND     | 1.0 |
| Stoddard Solvent C7-C12 | NDND_  | 1.0 |

| Surrogate                | %REC |        |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 103  | 62-138 |  |
| Bromofluorobenzene (FID) | 106  | 46-150 |  |

\* = Value outside of QC limits; see narrative
H = Heavier hydrocarbons contributed to the quantitation
Y = Sample exhibits fuel pattern which does not resemble standard
ND = Not Detected
RL = Reporting Limit
Page 2 of 2



|           | Gasoline          | by GC/FID CA LU | IFIT        |
|-----------|-------------------|-----------------|-------------|
| Lab #:    | 146813            | Location:       | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:           | EPA 5030    |
| Project#: | STANDARD          | Analysis:       | EPA 8015M   |
| Matrix:   | Soil              | Diln Fac:       | 1.000       |
| Units:    | mg/Kg             | Batch#:         | 57385       |
| Basis:    | wet               | Analyzed:       | 08/01/00    |

BS

Lab ID: QC121593

| Analyte         | Spiked | Result | %RE | C Limits |  |
|-----------------|--------|--------|-----|----------|--|
| Gasoline C7-C12 | 10.00  | 9.847  | 98  | 75-123   |  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 124  | 62-138 |
| Bromofluorobenzene (FID) | 130  | 46-150 |

Type:

BSD

Lab ID: QC121594

| Analyte         | Spiked | Result | %REC | Limits | RPL | ) Lim |
|-----------------|--------|--------|------|--------|-----|-------|
| Gasoline C7-C12 | 10.00  | 9.988  | 100  | 75-123 | 1   | 20    |

| Surrogate                | %RE( | C Limits |     |
|--------------------------|------|----------|-----|
| Trifluorotoluene (FID)   | 123  | 62-138   |     |
| Bromofluorobenzene (FID) | 131  | 46-150   | · · |



|           | Gasoline          | ∍ by GC/FID CA LU | IFT         |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146813            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | STANDARD          | Analysis:         | EPA 8015M   |
| Matrix:   | Soil              | Diln Fac:         | 1.000       |
| Units:    | mg/Kg             | Batch#:           | 57421       |
| Basis:    | wet               | Analyzed:         | 08/02/00    |

BS

Lab ID: QC121745

| Analyte         | Spiked | Result | %RE | C Limits |  |
|-----------------|--------|--------|-----|----------|--|
| Gasoline C7-C12 | 10.00  | 9.242  | 92  | 75-123   |  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 113  | 62-138 |
| Bromofluorobenzene (FID) | 120  | 46-150 |

Type:

BSD

Lab ID:

QC121746

| Analyte         | Spiked | Result | %RE | C Limits RPD | Lim |
|-----------------|--------|--------|-----|--------------|-----|
| Gasoline C7-C12 | 10.00  | 9.901  | 99  | 75-123 7     | 20  |

| Surrogate             |          | C Limits |
|-----------------------|----------|----------|
| Trifluorotoluene (FII | D) 122   | 62-138   |
| Bromofluorobenzene (1 | FID) 130 | 46-150   |



|             | Gasoline          | ∍ by GC/FID CA LU | (PT         |
|-------------|-------------------|-------------------|-------------|
| Lab #:      | 146813            | Location:         | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#:   | STANDARD          | Analysis:         | EPA 8015M   |
| Field ID:   | ZZZZZZZZZ         | Dıln Fac:         | 1.000       |
| MSS Lab ID: | 146840-045        | Batch#:           | 57421       |
| Matrix:     | Soil              | Sampled:          | 08/01/00    |
| Units:      | mg/Kg             | Received:         | 08/01/00    |
| Basis:      | wet               | Analyzed:         | 08/03/00    |

MS

Lab ID: QC121749

| Analyte         | MSS Result | Spiked | Result | %RE | C Limits |
|-----------------|------------|--------|--------|-----|----------|
| Gasoline C7-C12 | 0.2389     | 9.709  | 5.496  | 54  | 41-132   |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 125  | 62-138 |
| Bromofluorobenzene (FID) | 134  | 46-150 |

Type:

MSD

Lab ID: QC121750

| Analyte         | Spiked | Result | %RE | C Limits | RPD | Lim |
|-----------------|--------|--------|-----|----------|-----|-----|
| Gasoline C7-C12 | 9.709  | 5.444  | 54  | 41-132   | 1   | 25  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 124  | 62-138 |
| Bromofluorobenzene (FID) | 132  | 46-150 |



|           |                   | ie, Ethylbenzene, | Xylenes     |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146813            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | STANDARD          | Analysis:         | EPA 8021B   |
| Matrix:   | Soil              | Diln Fac:         | 1.000       |
| Units:    | ug/Kg             | Batch#:           | 57385       |
| Basis:    | wet               | Received:         | 07/28/00    |

Field ID: Type: Lab ID:

1-11 SAMPLE 146813-002

Sampled: Analyzed:

07/28/00 08/02/00

| Analyte                     | Result | ŔĿ  |  |
|-----------------------------|--------|-----|--|
| MTBE                        | ND     | 19  |  |
| Benzene                     | ND     | 4.8 |  |
| Toluene                     | ND     | 4.8 |  |
| Ethylbenzene                | 5.2 C  | 4.8 |  |
| Ethylbenzene<br>m,p-Xylenes | 13 C   | 4.8 |  |
| o-Xylene                    | 30_C   | 4.8 |  |

| Surroqate                | %REC  | Limits  |
|--------------------------|-------|---------|
| Trifluorotoluene (PID)   | 112   | 65-134  |
| Bromofluorobenzene (PID) | 156 * | _55-138 |

Field ID:

2-6.5

SAMPLE

Sampled: Analyzed:

07/27/00 08/02/00

Type: Lab ID: 146813-005

| Analyte                     | Result | RL  |
|-----------------------------|--------|-----|
| MTBE                        | ND     | 19  |
| Benzene                     | ND     | 4.9 |
| Toluene                     | ND     | 4.9 |
| Ethylbenzene                | ND     | 4.9 |
| Ethylbenzene<br>m,p-Xylenes | ND     | 4.9 |
| o-Xylene                    | ND     | 4.9 |

| Surrogate                | %RBC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 112  | 65-134 |
| Bromofluorobenzene (PID) | 117  | 55-138 |

Field ID:

2-11 SAMPLE

07/27/00

Type: Lab ID:

146813-008

Sampled: Analyzed:

08/02/00

| Analyte      | Result | RE  |  |
|--------------|--------|-----|--|
| MTBE         | ND     | 18  |  |
| Benzene      | ND     | 4.6 |  |
| Toluene      | ND     | 4.6 |  |
| Ethylbenzene | ND     | 4.6 |  |
| m,p-Xylenes  | ND     | 4.6 |  |
| o-Xylene     | 16 C   | 4.6 |  |

| Surrogate                | %RE |        | 9099999999 |
|--------------------------|-----|--------|------------|
| Trifluorotoluene (PID)   | 109 | 65-134 |            |
| Bromofluorobenzene (PID) | 129 | 55-138 |            |

<sup>\* =</sup> Value outside of QC limits; see narrative
C = Presence confirmed, but confirmation concentration differed by more than a factor of two

ND = Not Detected
RL = Reporting Limit
Page 1 of 2



|           | Benzene, Toluen   | e, Ethylbenzene, | Xylenes     |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8021B   |
| Matrix:   | Soil              | Diln Fac:        | 1.000       |
| Units:    | ug/Kg             | Batch#:          | 57385       |
| Basis:    | wet               | _Received:       | 07/28/00    |

Field ID:

Sampled: Analyzed:

07/27/00 08/02/00

Type: Lab ID:

3-14 SAMPLE 146813-019

| Analyte      | Result | RL  |  |
|--------------|--------|-----|--|
| MTBE         | ND     | 19  |  |
| Benzene      | ND     | 4.9 |  |
| Toluene      | ND     | 4.9 |  |
| Ethylbenzene | ND     | 4.9 |  |
| m,p-Xylenes  | ND     | 4.9 |  |
| o-Xylene     | ND     | 4.9 |  |

| Surrogate                | %REC |        |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 104  | 65-134 |
| Bromofluorobenzene (PID) | 108  | 55-138 |

Field ID:

4-8

Type: Lab ID:

SAMPLE

Sampled: Analyzed:

07/28/00 08/02/00

146813-025

| Analyte                 | Result | RL  |   |
|-------------------------|--------|-----|---|
| MTBE                    | ND     | 20  |   |
| Benzene                 | ND     | 4.9 |   |
| Toluene                 | ND     | 4.9 | İ |
| Ethylbenzene            | ND     | 4.9 |   |
| m,p-Xylenes<br>o-Xylene | ND     | 4.9 |   |
| o-Xylene                | ND     | 4.9 |   |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 107  | 65-134 |  |
| Bromofluorobenzene (PID) | 111  | 55-138 |  |

Type: Lab ID:

BLANK QC121592

Analyzed:

08/01/00

| Analyte      | Result | RL  |
|--------------|--------|-----|
| MTBE         | ND     | 20  |
| Benzene      | ND     | 5.0 |
| Toluene      | ND     | 5.0 |
| Ethylbenzene | ND     | 5.0 |
| m,p-Xylenes  | ND     | 5.0 |
| o-Xylene     | ND     | 5.0 |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 104  | 65-134 |  |
| Bromofluorobenzene (PID) | 108  | 55-138 |  |

\* = Value outside of QC limits; see narrative
C = Presence confirmed, but confirmation concentration differed by more than a factor of two
ND = Not Detected
RL = Reporting Limit
Page 2 of 2



|           | Benzene, Tolue    | ne, Ethylbenzene, | . Xylenes   |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146813            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | STANDARD          | Analysis:         | EPA 8021B   |
| Type:     | LCS               | Basis:            | wet         |
| Lab ID:   | QC121595          | Diln Fac:         | 1.000       |
| Matrix:   | Soil              | Batch#:           | 57385       |
| Units:    | ug/Kg             | Analyzed:         | 08/01/00    |

| Analyte      | Spiked | Result | %REC | ' Limits |
|--------------|--------|--------|------|----------|
| MTBE         | 100.0  | 107.3  | 107  | 58-115   |
| Benzene      | 100.0  | 92.12  | 92   | 68-117   |
| Toluene      | 100.0  | 96.65  | 97   | 70-120   |
| Ethylbenzene | 100.0  | 101.5  | 102  | 67-124   |
| m,p-Xylenes  | 200.0  | 215.1  | 108  | 72-124   |
| o-Xylene     | 100.0  | 102.8  | 103  | 72-123   |

| Surrogate                | %REC | Limits | 83.5 |
|--------------------------|------|--------|------|
| Trifluorotoluene (PID)   | 109  | 65-134 |      |
| Bromofluorobenzene (PID) | 115  | 55-138 | 1    |



|             | Benzene, Tolue    | ne, Ethylbenzene, | Xylenes     |
|-------------|-------------------|-------------------|-------------|
| Lab #:      | 146813            | Location:         | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#:   | STANDARD          | Analysis:         | EPA 8021B   |
| Field ID:   | ZZZZZZZZZZ        | Diln Fac:         | 1.000       |
| MSS Lab ID: | 146806-005        | Batch#:           | 57385       |
| Matrix:     | Soil              | Sampled:          | 07/27/00    |
| Units:      | ug/Kg             | Received:         | 07/31/00    |
| Basis:      | wet               | Analyzed:         | 08/01/00    |

MS

Lab ID: QC121596

| Analyte      | MSS Result | Spiked | Result | %REC | Limits |
|--------------|------------|--------|--------|------|--------|
| MTBE         | ND         | 100.0  | 108.9  | 109  | 58-116 |
| Benzene      | ND         | 100.0  | 90.97  | 91   | 62-117 |
| Toluene      | ND         | 100.0  | 93.87  | 94   | 55-121 |
| Ethylbenzene | ND         | 100.0  | 96.03  | 96   | 46-128 |
| m,p-Xylenes  | ND         | 200.0  | 202.6  | 101  | 33-141 |
| o-Xylene     | ND         | 100.0  | 97.90  | 98   | 40-136 |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 108  | 65-134 |  |
| Bromofluorobenzene (PID) | 116  | 55-138 |  |

Type:

MSD

Lab ID:

QC121597

| Analyte      | Spiked | Result | %REC | Dimits | RPD | Lim |
|--------------|--------|--------|------|--------|-----|-----|
| MTBE         | 100.0  | 109.4  | 109  | 58-116 | 0   | 20  |
| Benzene      | 100.0  | 92.58  | 93   | 62-117 | 2   | 20  |
| Toluene      | 100.0  | 95.59  | 96   | 55-121 | 2   | 20  |
| Ethylbenzene | 100.0  | 98.70  | 99   | 46-128 | 3   | 20  |
| m,p-Xylenes  | 200.0  | 208.1  | 104  | 33-141 | 3   | 20  |
| o-Xylene     | 100.0  | 100.4  | 100  | 40-136 | 3   | 20  |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 108  | 65-134 |  |
| Bromofluorobenzene (PID) | 117  | 55-138 |  |

ND = Not Detected

RPD= Relative Percent Difference

Page 1 of 1



|           | Purgeable         | Halocarbons by ( | GC/MS       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Field ID: | 1-11              | Diln Fac:        | 0.9615      |
| Lab ID:   | 146813-002        | Batch#:          | 57431       |
| Matrix:   | Soil              | Sampled:         | 07/28/00    |
| Units:    | ug/Kg             | Received:        | 07/28/00    |
| Basis:    | wet               | Analyzed:        | 08/03/00    |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Chloromethane             | ND     | 9.6 |
| Vinyl Chloride            | ND     | 9.6 |
| Bromomethane              | ND     | 9.6 |
| Chloroethane              | ND     | 9.6 |
| Trichlorofluoromethane    | ND     | 4.8 |
| Freon 113                 | ND     | 4.8 |
| 1,1-Dichloroethene        | ND     | 4.8 |
| Methylene Chloride        | ND     | 19  |
| trans-1,2-Dichloroethene  | ND     | 4.8 |
| 1,1-Dichloroethane        | ND     | 4.8 |
| cis-1,2-Dichloroethene    | ND     | 4.8 |
| Chloroform                | ND     | 4.8 |
| 1,1,1-Trichloroethane     | ND     | 4.8 |
| Carbon Tetrachloride      | ND     | 4,8 |
| 1,2-Dichloroethane        | ND     | 4.8 |
| Trichloroethene           | ND     | 4.8 |
| 1,2-Dichloropropane       | ND     | 4.8 |
| Bromodichloromethane      | ND     | 4.8 |
| cis-1,3-Dichloropropene   | ND     | 4.8 |
| trans-1,3-Dichloropropene | ND     | 4.8 |
| 1,1,2-Trichloroethane     | ND     | 4.8 |
| Tetrachloroethene         | 100    | 4.8 |
| Dibromochloromethane      | ИD     | 4.8 |
| Chlorobenzene             | ND     | 4.8 |
| Bromoform                 | ND     | 9.6 |
| 1,1,2,2-Tetrachloroethane | ND     | 4.8 |
| 1,3-Dichlorobenzene       | ND     | 4.8 |
| 1,4-Dichlorobenzene       | ND     | 4.8 |
| 1,2-Dichlorobenzene       | ND     | 4.8 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 110  | 76-127 |
| Toluene-d8            | 102  | 80-111 |
| Bromofluorobenzene    | 95   | 77-126 |

ND = Not Detected RL = Reporting Limit Page 1 of 1



|           | Purgeable         | Halocarbons by C | SC/MS       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Field ID: | 2-6.5             | Diln Fac:        | 0.9259      |
| Lab ID:   | 146813-005        | Batch#:          | 57410       |
| Matrix:   | Soil              | Sampled:         | 07/27/00    |
| Units:    | ug/Kg             | Received:        | 07/28/00    |
| Basis:    | wet               | Analyzed:        | 08/02/00    |

| Analyte                   | Result | RL. |
|---------------------------|--------|-----|
| Chloromethane             | ND     | 9.3 |
| Vinyl Chloride            | ND     | 9.3 |
| Bromomethane              | ND     | 9.3 |
| Chloroethane              | ND     | 9.3 |
| Trichlorofluoromethane    | ND     | 4.6 |
| Freon 113                 | ND     | 4.6 |
| 1,1-Dichloroethene        | ИD     | 4.6 |
| Methylene Chloride        | ND     | 19  |
| trans-1,2-Dichloroethene  | ND     | 4.6 |
| 1,1-Dichloroethane        | ND     | 4.6 |
| cis-1,2-Dichloroethene    | ND     | 4.6 |
| Chloroform                | ND     | 4.6 |
| 1,1,1-Trichloroethane     | ND     | 4.6 |
| Carbon Tetrachloride      | ND     | 4.6 |
| 1,2-Dichloroethane        | ИD     | 4.6 |
| Trichloroethene           | МD     | 4.6 |
| 1,2-Dichloropropane       | ND     | 4.6 |
| Bromodichloromethane      | ND     | 4.6 |
| cis-1,3-Dichloropropene   | ND     | 4.6 |
| trans-1,3-Dichloropropene | ND     | 4.6 |
| 1,1,2-Trichloroethane     | ND     | 4.6 |
| Tetrachloroethene         | ND     | 4.6 |
| Dibromochloromethane      | ND     | 4.6 |
| Chlorobenzene             | ND     | 4.6 |
| Bromoform                 | ND     | 9.3 |
| 1,1,2,2-Tetrachloroethane | ND     | 4.6 |
| 1,3-Dichlorobenzene       | ND     | 4.6 |
| 1,4-Dichlorobenzene       | ND     | 4.6 |
| 1,2-Dichlorobenzene       | ND     | 4.6 |

| Surrogate             | %REC | Limits | 90.6% oc |
|-----------------------|------|--------|----------|
| 1,2-Dichloroethane-d4 | 109  | 76-127 |          |
| Toluene-d8            | 106  | 80-111 |          |
| Bromofluorobenzene    | 100  | 77-126 |          |

ND = Not Detected RL = Reporting Limit Page 1 of 1



|           |                   | Halocarbons by 0 |             |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Field ID: | 2-11              | Diln Fac:        | 1.000       |
| Lab ID:   | 146813-008        | Batch#:          | 57431       |
| Matrix:   | Soil              | Sampled:         | 07/27/00    |
| Units:    | ug/Kg             | Received:        | 07/28/00    |
| Basis:    | wet               | Analyzed:        | 08/03/00    |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Chloromethane             | ND     | 10  |
| Vinyl Chloride            | ND     | 10  |
| Bromomethane              | ND     | 10  |
| Chloroethane              | ND     | 10  |
| Trichlorofluoromethane    | ND     | 5.0 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 5.0 |
| Methylene Chloride        | ND     | 20  |
| trans-1,2-Dichloroethene  | ND     | 5.0 |
| 1,1-Dichloroethane        | ND     | 5.0 |
| cis-1,2-Dichloroethene    | ND     | 5.0 |
| Chloroform                | ND     | 5.0 |
| 1,1,1-Trichloroethane     | ND     | 5.0 |
| Carbon Tetrachloride      | ND     | 5.0 |
| 1,2-Dichloroethane        | ND     | 5.0 |
| Trichloroethene           | ND     | 5.0 |
| 1,2-Dichloropropane       | ND     | 5.0 |
| Bromodichloromethane      | ND     | 5.0 |
| cis-1,3-Dichloropropene   | ND     | 5.0 |
| trans-1,3-Dichloropropene | ND     | 5.0 |
| 1,1,2-Trichloroethane     | ND     | 5.0 |
| Tetrachloroethene         | ND     | 5.0 |
| Dibromochloromethane      | ND     | 5.0 |
| Chlorobenzene             | ND     | 5.0 |
| Bromoform                 | ND     | 10  |
| 1,1,2,2-Tetrachloroethane | ND     | 5.0 |
| 1,3-Dichlorobenzene       | ND     | 5.0 |
| 1,4-Dichlorobenzene       | ND     | 5.0 |
| 1,2-Dichlorobenzene       | ND     | 5.0 |

| Bromofluorobenzene    | 105  | 77-126 |
|-----------------------|------|--------|
| Toluene-d8            | 105  | 80-111 |
| 1,2-Dichloroethane-d4 | 121  | 76-127 |
| Surrogate             | %REC | Limits |

ND = Not Detected

RL = Reporting Limit Page 1 of 1



|           | Purgeable         | Halocarbons by G |             |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Field ID: | 3-14              | Diln Fac:        | 1.000       |
| Lab ID:   | 146813-019        | Batch#:          | 57410       |
| Matrix:   | Soil              | Sampled:         | 07/27/00    |
| Units:    | ug/Kg             | Received:        | 07/28/00    |
| Basis:    | wet               | Analyzed:        | 08/02/00    |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Chloromethane             | ND     | 10  |
| Vinyl Chloride            | ND     | 10  |
| Bromomethane              | ND     | 10  |
| Chloroethane              | ND     | 10  |
| Trichlorofluoromethane    | ND     | 5.0 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 5.0 |
| Methylene Chloride        | ND     | 20  |
| trans-1,2-Dichloroethene  | ND     | 5.0 |
| 1,1-Dichloroethane        | ND     | 5.0 |
| cis-1,2-Dichloroethene    | ND     | 5.0 |
| Chloroform                | ND     | 5.0 |
| 1,1,1-Trichloroethane     | ND     | 5.0 |
| Carbon Tetrachloride      | ND     | 5.0 |
| 1,2-Dichloroethane        | ND     | 5.0 |
| Trichloroethene           | ND     | 5.0 |
| 1,2-Dichloropropane       | ND     | 5.0 |
| Bromodichloromethane      | ND     | 5.0 |
| cis-1,3-Dichloropropene   | ND     | 5.0 |
| trans-1,3-Dichloropropene | ND     | 5.0 |
| 1,1,2-Trichloroethane     | ND     | 5.0 |
| Tetrachloroethene         | ND     | 5.0 |
| Dibromochloromethane      | ND     | 5.0 |
| Chlorobenzene             | ND     | 5.0 |
| Bromoform                 | ND     | 10  |
| 1,1,2,2-Tetrachloroethane | ND     | 5.0 |
| 1,3-Dichlorobenzene       | ND     | 5.0 |
| 1,4-Dichlorobenzene       | ND     | 5.0 |
| 1,2-Dichlorobenzene       | ND     | 5.0 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 104  | 76-127 |
| Toluene-d8            | 106  | 80-111 |
| Bromofluorobenzene    | 106  | 77-126 |

ND = Not Detected RL = Reporting Limit Page 1 of 1



|           | Purgeable         | Halocarbons by 6 | C/MS        |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Type:     | BLANK             | Diln Fac:        | 1.000       |
| Lab ID:   | QC121795          | Batch#:          | 57431       |
| Matrix:   | Water             | Analyzed:        | 08/03/00    |
| Units:    | ug/L              |                  |             |

| Analyte                   | Result | RL. |
|---------------------------|--------|-----|
| Chloromethane             | ND     | 10  |
| Vinyl Chloride            | ND     | 10  |
| Bromomethane              | ND     | 10  |
| Chloroethane              | ND     | 10  |
| Trichlorofluoromethane    | ND     | 5.0 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 5.0 |
| Methylene Chloride        | ND     | 20  |
| trans-1,2-Dichloroethene  | ND     | 5.0 |
| 1,1-Dichloroethane        | ND     | 5.0 |
| cis-1,2-Dichloroethene    | ND     | 5.0 |
| Chloroform                | ND     | 5.0 |
| 1,1,1-Trichloroethane     | ND     | 5.0 |
| Carbon Tetrachloride      | ND     | 5.0 |
| 1,2-Dichloroethane        | ND     | 5.0 |
| Trichloroethene           | ND     | 5.0 |
| 1,2-Dichloropropane       | ND     | 5.0 |
| Bromodichloromethane      | ND     | 5.0 |
| cis-1,3-Dichloropropene   | ND     | 5.0 |
| trans-1,3-Dichloropropene | ND     | 5.0 |
| 1,1,2-Trichloroethane     | ND     | 5.0 |
| Tetrachloroethene         | ND     | 5.0 |
| Dibromochloromethane      | ND     | 5.0 |
| Chlorobenzene             | ND     | 5.0 |
| Bromoform                 | ND     | 10  |
| 1,1,2,2-Tetrachloroethane | ND     | 5.0 |
| 1,3-Dichlorobenzene       | ND     | 5.0 |
| 1,4-Dichlorobenzene       | ND     | 5.0 |
| 1,2-Dichlorobenzene       | ND     | 5.0 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 111  | 76-127 |
| Toluene-d8            | 101  | 80-111 |
| Bromofluorobenzene    | 96   | 77-126 |



|           |                   | Halocarbons by G | C/MS        |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Type:     | LCS               | Basis:           | wet         |
| Lab ID:   | QC121704          | Diln Fac:        | 1.000       |
| Matrix:   | Soil              | Batch#:          | 57410       |
| Units:    | ug/Kg             | Analyzed:        | 08/02/00    |

| Analyte            | Spiked | Result | %REC | ' Limits |
|--------------------|--------|--------|------|----------|
| 1,1-Dichloroethene | 50.00  | 55.09  | 110  | 66-138   |
| Trichloroethene    | 50.00  | 57.46  | 115  | 75-124   |
| Chlorobenzene      | 50.00  | 53.98  | 108  | 78-115   |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 104  | 76-127 |
| Toluene-d8            | 107  | 80-111 |
| Bromofluorobenzene    | 102  | 77-126 |



|             | ubility was also not wise a decrease a serior and a finite with a first of the serior and the se | Halocarbons by ( | GC/MS       |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Lab #:      | 146813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location:        | Glovatorium |
| Client:     | LFR-Levine-Fricke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prep:            | EPA 5030    |
| Project#:   | STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis:        | EPA 8260B   |
| Field ID:   | 1-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diin Fac:        | 0.9804      |
| MSS Lab ID: | 146813-002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Batch#:          | 57410       |
| Matrix:     | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampled:         | 07/28/00    |
| Units:      | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Received:        | 07/28/00    |
| Basis:      | wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed:        | 08/02/00    |

Type:

MS

Lab ID: QC121725

| Analyte            | MSS Result | Spiked | Result | %REC | Limits |
|--------------------|------------|--------|--------|------|--------|
| 1,1-Dichloroethene | <4.808     | 49.02  | 51.83  | 106  | 42-145 |
| Trichloroethene    | <4.808     | 49.02  | 54.38  | 108  | 33-133 |
| Chlorobenzene      | <4.808     | 49.02  | 54.26  | 88   | 38-137 |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 94    | 76-127 |
| Toluene-d8            | 116 * | 80-111 |
| Bromofluorobenzene    | 117   | 77-126 |

Type:

MSD

Lab ID: QC121726

| Analyte            | Spiked | Result | %REC | Limits | RPD | Lim |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 49.02  | 48.67  | 99   | 42-145 | 6   | 31  |
| Trichloroethene    | 49.02  | 54.79  | 108  | 33-133 | 1   | 30  |
| Chlorobenzene      | 49.02  | 51.06  | 81   | 38-137 | 6   | 31  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 93   | 76-127 |
| Toluene-d8            | 107  | 80-111 |
| Bromofluorobenzene    | 117  | 77-126 |

<sup>\* =</sup> Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1



|           | Purgeable         | Halocarbons by G | C/MS        |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146813            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | STANDARD          | Analysis:        | EPA 8260B   |
| Type:     | LCS               | Diln Fac:        | 1.000       |
| Lab ID:   | QC121794          | Batch#:          | 57431       |
| Matrix:   | Water             | Analyzed:        | 08/03/00    |
| Units:    | ug/L              | _                |             |

| Analyte            | Spiked | Result | %REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 50.00  | 47,95  | 96   | 66-138 |
| Trichloroethene    | 50.00  | 54.70  | 109  | 75-124 |
| Chlorobenzene      | 50.00  | 53.54  | 107  | 78-115 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 108  | 76-127 |
| Toluene-d8            | 100  | 80-111 |
| Bromofluorobenzene    | 90   | 77-126 |



|             |                   | Halocarbons by | GC/MS       |
|-------------|-------------------|----------------|-------------|
| Lab #:      | 146813            | Location:      | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#:   | STANDARD          | Analysis:      | EPA 8260B   |
| Field ID:   | ZZZZZZZZZZ        | Diln Fac:      | 0.9434      |
| MSS Lab ID: | 146805-010        | Batch#:        | 57431       |
| Matrix:     | Soil              | Sampled:       | 07/27/00    |
| Units:      | ug/Kg             | Received:      | 07/28/00    |
| Basis:      | wet               | Analyzed:      | 08/03/00    |

Type:

MS

Lab ID: QC121812

| Analyte            | MSS Result | Spiked | Result | %REC | Limits |
|--------------------|------------|--------|--------|------|--------|
| 1,1-Dichloroethene | <4.717     | 47.17  | 44.88  | 95   | 42-145 |
| Trichloroethene    | <4.717     | 47.17  | 48.93  | 104  | 33-133 |
| Chlorobenzene      | <4.717     | 47.17  | 46.02  | 98   | 38-137 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 113  | 76-127 |
| Toluene-d8            | 101  | 80-111 |
| Bromofluorobenzene    | 92   | 77-126 |

Туре:

MSD

Lab ID: QC121813

| Analyte            | Spiked | Result | %RE( | Limits | RPD | Lim |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 47.17  | 42.83  | 91   | 42-145 | 5   | 31  |
| Trichloroethene    | 47.17  | 46.70  | 99   | 33-133 | 5   | 30  |
| Chlorobenzene      | 47.17  | 42.93  | 91   | 38-137 | 7   | 31  |

| Surrogate             | %RBC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 116  | 76-127 |
| Toluene-d8            | 102  | 80-111 |
| Bromofluorobenzene    | 92   | 77~126 |



## Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

#### ANALYTICAL REPORT

Prepared for:

LFR-Levine-Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 21-AUG-00

Lab Job Number: 146981 Project ID: N/A- 0895.00.030 Location: Gloveatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459



Laboratory Numbers: 146981 Client: LFR-Levine-Fricke Location: Gloveatorium

COC#: 7590

Sampled Date: **08/09/00** Received Date: **08/09/00** 

#### **CASE NARRATIVE**

This hardcopy data package contains sample and QC results for one water sample, which was received from the site referenced above on August 09, 2000. The sample was received intact. All data were faxed to Julie Sharp on August 21, 2000.

#### TVH/BTXE:

No analytical problems were encountered.

## VOCs (EPA 8260):

No analytical problems were encountered.

### General Chemistry:

No analytical problems were encountered.

# 146981 CHAIN OF CUSTODY / ANALYSES REQUEST FORM

| Project No.: 6895.00.030        |                                      |        |                   | t Locatio                 |               | a        |                     |             |          | Date:    | 9,2            | <i>በ</i> ረስ | Serial     |                      |
|---------------------------------|--------------------------------------|--------|-------------------|---------------------------|---------------|----------|---------------------|-------------|----------|----------|----------------|-------------|------------|----------------------|
| Project Name:                   |                                      |        |                   | Logbook I                 | /             |          |                     | S           | ample F  | vent Nam | / <u>~</u> _   |             | H NTO      | H F 0.0              |
| Gloveatorium                    |                                      |        | , icia            | My.                       | (P 3          |          |                     |             |          | tr. 3    | С.             | ~ ``        | / No       | 7590                 |
| Sanipler (Signature):           | /1                                   | XXX    | 2                 |                           |               |          |                     | / A         |          |          | Q              | yo a        | REN        | Samplers:<br>2. HxD, |
| SA                              | MPLE INFO                            | DRMATI | ON (Print Clearly | ·)                        |               |          | X                   | 1/          | X        | 1200/2   | 63°X           |             | 7          |                      |
| SAMPLE NO.                      | DATE                                 | TIME   | LAB SAMPLE<br>NO. | NO. OF<br>CON-<br>FAINERS | SAMPL<br>TYPE | E NO     | 38 / 88/<br>38/     |             |          | ES V     | O A            | HOLOUST     | RE         | MARKS                |
| LFR-1                           | 3/9/a                                | 12:50  | M                 | 0810                      | 420           | 入        | k/                  | F           | 又        | XX       |                | Le          | iolts      | 40                   |
| /                               | المر بهما                            |        |                   |                           |               |          | X                   | 不           |          |          |                | 7.          | 10 5       | 00.00                |
|                                 |                                      |        |                   |                           |               |          |                     |             |          |          |                | 1 40        | w. C . S . |                      |
|                                 |                                      |        |                   |                           |               | -        | De                  | N)G         | a        | alyza    | >              | .5 4        | andard     | - TAT                |
|                                 |                                      |        |                   |                           |               |          | 1004                |             | bm       |          |                |             |            |                      |
|                                 |                                      |        |                   |                           |               |          |                     | _           | SONI     |          |                |             |            |                      |
|                                 |                                      |        |                   |                           |               |          | aro<br>Clie         | ١.          | 10,11    | 1 — 1    | 10 >           |             |            |                      |
|                                 |                                      |        |                   |                           |               | <u>-</u> | TB                  |             | <i>w</i> |          | 1/50           |             |            |                      |
|                                 |                                      |        |                   |                           |               |          | 1-1-12              | ~e⊈         | - '''    | 9770     | # <del>-</del> |             |            |                      |
|                                 |                                      |        |                   |                           |               |          |                     |             |          |          |                |             |            |                      |
|                                 |                                      |        |                   |                           |               |          |                     |             | <u></u>  |          |                |             |            |                      |
|                                 |                                      | -      |                   |                           |               |          |                     |             |          |          |                |             |            |                      |
| t                               |                                      |        |                   |                           |               |          |                     |             |          |          |                |             |            |                      |
| RELINQUISHED BY:<br>Signature)  | Mile                                 | 2      | 8/2/0             | DITIME                    | 30            |          | IVED BY<br>Inature) | 7           |          | BJ       | 10             |             | B/q/o      | TIME<br>172          |
| RELINQUISHED BY:<br>(Signature) |                                      |        | DATE              | TIME                      |               |          | IVED BY             | <u>'</u> ': | ag       |          | , 4            |             | DATE       | TIME                 |
| RELINQUISHED BY:<br>(Signature) |                                      |        | DATE              | TIME                      |               |          | IVED BY<br>inature) | <u>'</u> :  |          |          |                |             | DATE       | TIME                 |
| METHOD OF SHIPMENT:             | (00)                                 | 14     | DATE              | TIME                      |               | LABC     | OMMEN               | ITS:        |          |          |                |             |            |                      |
|                                 | FRICKE-F                             |        |                   |                           |               | Analy    | tical La            | borato      | y:       |          |                |             |            |                      |
|                                 | well Stree<br>lle, Califor<br>2-4500 |        |                   |                           |               |          |                     | +           | $\top$   |          | Ber            | tel         | 24,        | A                    |
| Shinning Cony (Mhite) Lab Co    | ny (Valloy)                          | F      | ile Conv (Pink)   | Fiel                      | d Copy (f     | 2oldenr  | od)                 |             |          |          |                |             | 0000       | COCTEMP CDP 042008   |



| Entratario Marcine de mora de deseguación de deseguación de | Gasoline          | ∍ by GC/FID CA LU | JPT          |
|-------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------|
| Lab #:                                                                                          | 146981            | Location:         | Gloveatorium |
| Client:                                                                                         | LFR-Levine-Fricke | Prep:             | EPA 5030     |
| Project#:                                                                                       | STANDARD          | Analysis:         | EPA 8015M    |
| Field ID:                                                                                       | LFR-1             | Batch#:           | 57622        |
| Matrix:                                                                                         | Water             | Sampled:          | 08/09/00     |
| Units:                                                                                          | ug/L              | Received:         | 08/09/00     |
| Diln Fac:                                                                                       | 1.000             |                   |              |

Type:

SAMPLE

Analyzed: 08/12/00

Lab ID:

146981-001

| Analyte                 | Result    | RL |  |
|-------------------------|-----------|----|--|
| Gasoline C7-C12         | 1,200 Y Z | 50 |  |
| Stoddard Solvent C7-C12 | 530 Y Z   | 50 |  |

| Surrogate                | *REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 106  | 59-135 |  |
| Bromofluorobenzene (FID) | 115  | 60-140 |  |

Type:

BLANK

Analyzed:

08/11/00

Lab ID:

QC122562

|                         | Result | RL |
|-------------------------|--------|----|
| Gasoline C7-C12         | ND     | 50 |
| Stoddard Solvent C7-C12 | ND     | 50 |

| Surrogate            | i       | REC Limits |  |
|----------------------|---------|------------|--|
| Trifluorotoluene (FI |         | 01 59-135  |  |
| Bromofluorobenzene ( | FID) 10 | 00 60-140  |  |

Y = Sample exhibits fuel pattern which does not resemble standard

Z = Sample exhibits unknown single peak or peaks

ND = Not Detected

RL = Reporting Limit

Page 1 of 1

Sample Name: 146981-001,57622

FileName : G:\GC19\DATA\224X026.raw

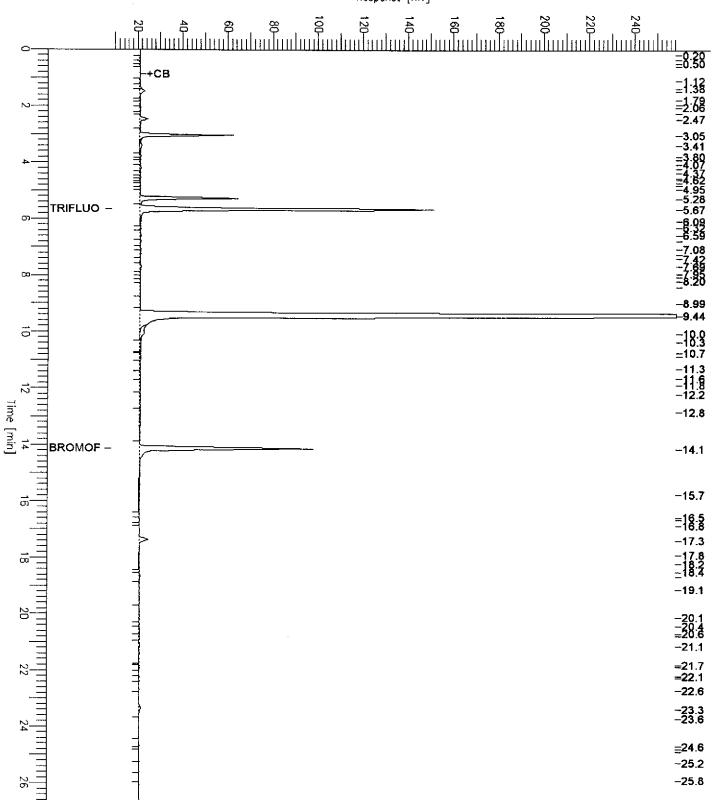
Method : TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min

Plot Offset: 8 mV

Page 1 of 1


Sample #: Date: 8/12/00 05:25 AM

Time of Injection: 8/12/00 04:58 AM

Low Point : 8.13 mV High Point : 258.13 mV

Plot Scale: 250.0 mV

#### Response [mV]

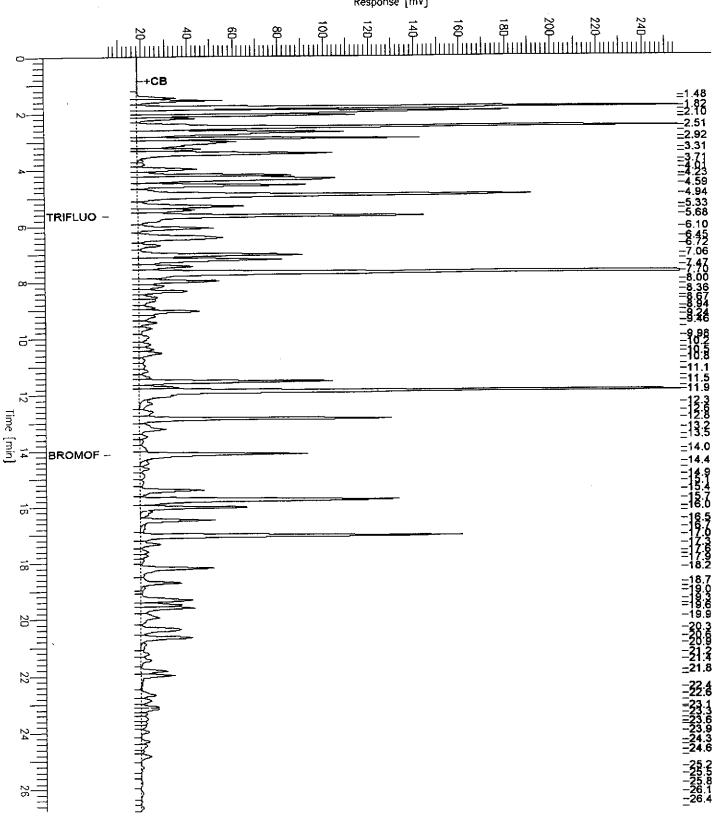


Sample Name : CCV/LCS,QC122560,57622,00WS9465,5/5000

: G:\GC19\DATA\224X003.raw FileName

: TVHBTXE Method Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 6 mV


Sample #: Date: 8/11/00 02:50 PM Page 1 of 1

Time of Injection: 8/11/00 02:23 PM

High Point : 255.65 mV

Low Point : 5.65 mV Plot Scale: 250.0 mV





## GC04 TVH 'J' Data File Rtx1FID

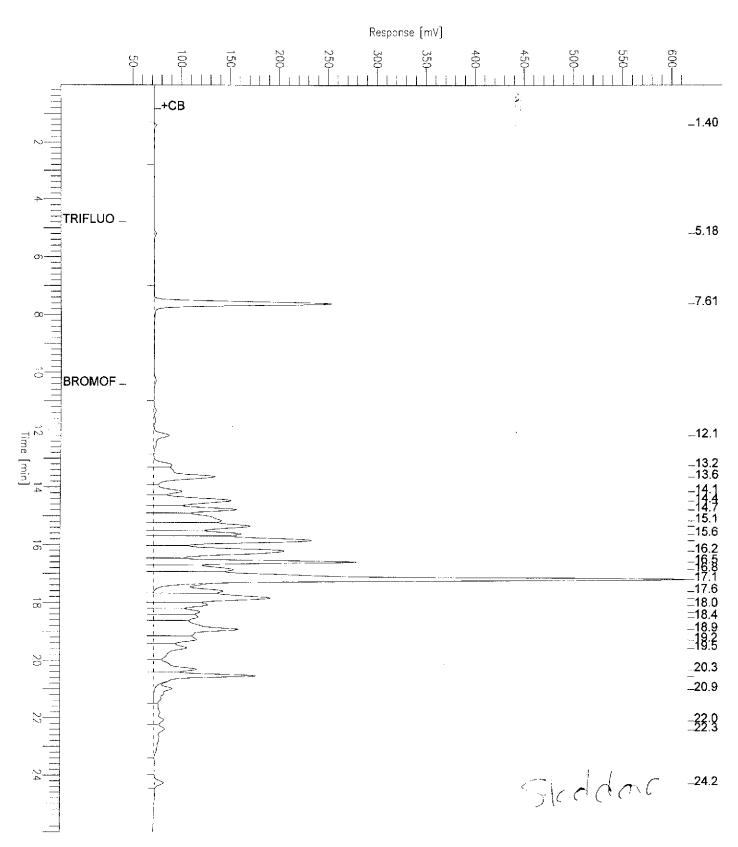
Sample Name : ccv,stod,57795,00ws9595,5/5000 FileName

: G:\GC04\DATA\231J003.RAW

: TVHBTXE.MTH Method Start Time : 0.01 min

End Time : 26.00 min Scale Factor: 0.0 Plot Offset: 43 mV

Sample #: stod


Date : 8/21/00 05:37 PM

Time of Injection: 8/18/00 08:25 PM

Low Point : 42.70 mV High Point : 616.35 mV

Page 1 of 1

Plot Scale: 573.7 mV





|           | Benzene, Toluer   | ne, Ethylbenzene, | Xylenes      |
|-----------|-------------------|-------------------|--------------|
| Lab #:    | 146981            | Location:         | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030     |
| Project#: | STANDARD          | Analysis:         | EPA 8021B    |
| Field ID: | LFR-1             | Batch#:           | 57622        |
| Matrix:   | Water             | Sampled:          | 08/09/00     |
| Units:    | ug/L              | Received:         | 08/09/00     |
| Diln Fac: | 1.000             |                   |              |

Type: Lab ID:

SAMPLE

146981-001

Analyzed: 08/12/00

| Analyte                           | Result | RI   | 00.00 |
|-----------------------------------|--------|------|-------|
| MTBE                              | 9.5    | 2.0  |       |
| Benzene                           | ND     | 0.50 |       |
| Toluene                           | ND     | 0.50 |       |
| Ethylbenzene                      | ND     | 0.50 |       |
| Ethylbenzene m,p-Xylenes o-Xylene | ND     | 0.50 |       |
| o-Xvlene                          | ND     | 0.50 |       |

|                          | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 103  | 56-142 |
| Bromofluorobenzene (PID) | 113  | 55-149 |

Type: Lab ID: BLANK

QC122562

Analyzed: 08/11/00

| Analyte                                 | Result | RL   | 80000 |
|-----------------------------------------|--------|------|-------|
| MTBE                                    | ND     | 2.0  | ,     |
| Benzene                                 | ND     | 0.50 |       |
| Toluene                                 | ND     | 0.50 |       |
| Ethylbenzene                            | ND     | 0.50 |       |
| Ethylbenzene<br>m,p-Xylenes<br>o-Xylene | ND     | 0.50 |       |
| o-Xylene                                | ND     | 0.50 |       |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 101  | 56-142 |
| Bromofluorobenzene (PID) | 102  | 55-149 |

ND = Not Detected RL = Reporting Limit

Page 1 of 1



|           |                   | GC/FID CA LUFT |              |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 146981            | Location:      | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030     |
| Project#: | STANDARD          | Analysis:      | EPA 8015M    |
| Type:     | LCS               | Diln Fac:      | 1.000        |
| Lab ID:   | QC122560          | Batch#:        | 57622        |
| Matrix:   | Water             | Analyzed:      | 08/11/00     |
| Units:    | ug/L              |                |              |

| Analyte         | Spiked |       | *REC | Limits |
|-----------------|--------|-------|------|--------|
| Gasoline C7-C12 | 2,000  | 2,101 | 105  | 73-121 |

| Surrogate                | %REC | Limits |      |
|--------------------------|------|--------|------|
| Trifluorotoluene (FID)   | 120  | 59-135 |      |
| Bromofluorobenzene (FID) | 121  | 60-140 | <br> |



|           | Benzene, Toluei   | ne, Ethylbenzene, | Xylenes      |
|-----------|-------------------|-------------------|--------------|
| Lab #:    | 146981            | Location:         | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030     |
| Project#: | STANDARD          | Analysis:         | EPA 8021B    |
| Type:     | LCS               | Diln Fac:         | 1.000        |
| Lab ID:   | QC122561          | Batch#:           | 57622        |
| Matrix:   | Water             | Analyzed:         | 08/11/00     |
| Units:    | ug/L              |                   |              |

| Analyte      | Spiked | Result | %REC | 2 Limits |
|--------------|--------|--------|------|----------|
| MTBE         | 20.00  | 19.90  | 99   | 51-125   |
| Benzene      | 20.00  | 17.18  | 86   | 67-117   |
| Toluene      | 20.00  | 17.08  | 85   | 69-117   |
| Ethylbenzene | 20.00  | 17.78  | 89   | 68-124   |
| m,p-Xylenes  | 40.00  | 37.80  | 95   | 70-125   |
| o-Xylene     | 20.00  | 18.00  | 90   | 65-129   |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 97   | 56-142 |
| Bromofluorobenzene (PID) | 103  | 55-149 |



Gasoline by GC/FID CA LUFT Gloveatorium Lab #: 146981 Location: Client: LFR-Levine-Fricke EPA 5030 Prep: Project#: STANDARD Analysis: EPA 8015M Field ID: ZZZZZZZZZ Diln Fac: 1.000 MSS Lab ID: 146998-001 Batch#: 57622 Matrix: 08/10/00 Water Sampled: Units: Received: 08/10/00 ug/L

Type: Lab ID: MS

QC122563

Analyzed:

08/11/00

| Analyte         | MSS Result | Spiked | Result | %REC | Limits |
|-----------------|------------|--------|--------|------|--------|
| Gasoline C7-C12 | 42.73      | 2,000  | 2,191  | 107  | 65-131 |

| Surrogate           | 1     | %REC | Limits |
|---------------------|-------|------|--------|
| Trifluorotoluene (F | ID)   | 135  | 59-135 |
| Bromofluorobenzene  | (FID) | 139  | 60-140 |

Type: Lab ID:

Gasoline C7-C12

MSD

QC122564

Analyzed:

2,224

08/12/00

109

65-131

20

Analyte Spiked Result %REC Limits RPD Lim

2,000

|                          | one organization |                                         |
|--------------------------|------------------|-----------------------------------------|
| Surrogate                | *REC             | Limits                                  |
|                          |                  |                                         |
| Trifluorotoluene (FID)   | 125              | 59-135                                  |
|                          |                  |                                         |
| Bromofluorobenzene (FID) | 138              | 60-140                                  |
|                          |                  | _ · · · _ · · · · · · · · · · · · · · · |



|           | Purgeable         | Halocarbons by | ic/MS        |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 146981            | Location:      | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030     |
| Project#: | STANDARD          | Analysis:      | EPA 8260B    |
| Field ID: | LFR-1             | Batch#:        | 57807        |
| Lab ID:   | 146981-001        | Sampled:       | 08/09/00     |
| Matrix:   | Water             | Received:      | 08/09/00     |
| Units:    | ug/L              | Analyzed:      | 08/20/00     |
| Diln Fac: | 16.67             | <u></u>        |              |

| Analyte                   | Result | RE  |   |
|---------------------------|--------|-----|---|
| Freon 12                  | ND     | 33  |   |
| Chloromethane             | ND     | 17  |   |
| Vinyl Chloride            | ND     | 8.3 |   |
| Bromomethane              | ND     | 17  |   |
| Chloroethane              | ND     | 17  | ļ |
| Trichlorofluoromethane    | ND     | 8.3 |   |
| Freon 113                 | ND     | 83  | } |
| 1,1-Dichloroethene        | ND     | 8.3 | ĺ |
| Methylene Chloride        | ND     | 83  |   |
| trans-1,2-Dichloroethene  | ND     | 8.3 | 1 |
| 1,1-Dichloroethane        | ND     | 8.3 | ì |
| cis-1,2-Dichloroethene    | 41     | 8.3 | : |
| Chloroform                | ND     | 8.3 |   |
| 1,1,1-Trichloroethane     | ND     | 8.3 |   |
| Carbon Tetrachloride      | ND     | 8.3 |   |
| 1,2-Dichloroethane        | ND     | 8.3 |   |
| Trichloroethene           | 64     | 8.3 |   |
| 1,2-Dichloropropane       | ND     | 8.3 |   |
| Bromodichloromethane      | ND     | 8.3 |   |
| cis-1,3-Dichloropropene   | ND     | 8.3 |   |
| trans-1,3-Dichloropropene | ND     | 8.3 |   |
| 1,1,2-Trichloroethane     | ND     | 8.3 |   |
| Tetrachloroethene         | 2,800  | 8.3 |   |
| Dibromochloromethane      | ND     | 8.3 |   |
| Chlorobenzene             | ND     | 8.3 |   |
| Bromoform                 | ND     | 8.3 |   |
| 1,1,2,2-Tetrachloroethane | ND     | 8.3 |   |
| 1,3-Dichlorobenzene       | ND     | 8.3 |   |
| 1,4-Dichlorobenzene       | ND     | 8.3 |   |
| 1,2-Dichlorobenzene       | ND     | 8.3 |   |

| Surrogate             | <b>IREC</b> | Limits |
|-----------------------|-------------|--------|
| 1,2-Dichloroethane-d4 | 122         | 78-123 |
| Toluene-d8            | 102         | 80-110 |
| Bromofluorobenzene    | 107         | 80~115 |

ND = Not Detected

RL = Reporting Limit Page 1 of 1



|                                       | Purqeable                               | Halocarbons by G                  | ic/ms                                 |
|---------------------------------------|-----------------------------------------|-----------------------------------|---------------------------------------|
| Lab #:<br>Client:<br>Project#:        | 146981<br>LFR-Levine-Fricke<br>STANDARD | Location:<br>Prep:<br>Analysis:   | Gloveatorium<br>EPA 5030<br>EPA 8260B |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC123316<br>Water<br>ug/L      | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>57807<br>08/20/00            |

| Analyte                   | Result | RL  |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 2.0 |  |
| Chloromethane             | ND     | 1.0 |  |
| Vinyl Chloride            | ND     | 0.5 |  |
| Bromomethane              | ND     | 1.0 |  |
| Chloroethane              | ND     | 1.0 |  |
| Trichlorofluoromethane    | ND     | 0.5 |  |
| Freon 113                 | ND     | 5.0 |  |
| 1,1-Dichloroethene        | ND     | 0.5 |  |
| Methylene Chloride        | ND     | 5.0 |  |
| trans-1,2-Dichloroethene  | ND     | 0.5 |  |
| 1,1-Dichloroethane        | ND     | 0.5 |  |
| cis-1,2-Dichloroethene    | ND     | 0.5 |  |
| Chloroform                | ND     | 0.5 |  |
| 1,1,1-Trichloroethane     | ND     | 0.5 |  |
| Carbon Tetrachloride      | ND     | 0.5 |  |
| 1,2-Dichloroethane        | ND     | 0.5 |  |
| Trichloroethene           | ND     | 0.5 |  |
| 1,2-Dichloropropane       | ND     | 0.5 |  |
| Bromodichloromethane      | ND     | 0.5 |  |
| cis-1,3-Dichloropropene   | ND     | 0.5 |  |
| trans-1,3-Dichloropropene | ND     | 0.5 |  |
| 1,1,2-Trichloroethane     | ND     | 0.5 |  |
| Tetrachloroethene         | ND     | 0.5 |  |
| Dibromochloromethane      | ND     | 0.5 |  |
| Chlorobenzene             | ND     | 0.5 |  |
| Bromoform                 | ND     | 0.5 |  |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |  |
| 1,3-Dichlorobenzene       | ND     | 0.5 |  |
| 1,4-Dichlorobenzene       | ND     | 0.5 |  |
| 1,2-Dichlorobenzene       | ND     | 0.5 |  |

| Surrogate             | *REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 115  | 78-123 |  |
| Toluene-d8            | 102  | 80-110 |  |
| Bromofluorobenzene    | 107_ | 80-115 |  |

ND = Not Detected RL = Reporting Limit Page 1 of 1



|           | Purgeable         | Halocarbons by | ic/ms        |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 146981            | Location:      | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030     |
| Project#: | STANDARD          | Analysis:      | EPA 8260B    |
| Matrix:   | Water             | Batch#:        | 57807        |
| Units:    | ug/L              | Analyzed:      | 08/20/00     |
| Diln Fac: | 1.000             |                |              |

Type:

BS

Lab ID:

QC123307

| Analyte            | Spiked | Result | *REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 50.00  | 50.92  | 102  | 74-132 |
| Trichloroethene    | 50.00  | 54.73  | 109  | 80-119 |
| Chlorobenzene      | 50.00  | 51.39  | 103  | 80-117 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 108   | 78-123 |
| Toluene-d8            | 103   | 80-110 |
| Bromofluorobenzene    | 102   | 80-115 |

Type:

BSD

Lab ID:

QC123308

| Analyte            | Spiked | Result | 9REC | Limits | RPD | Lin |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 50.00  | 47.73  | 95   | 74-132 | 6   | 20  |
| Trichloroethene    | 50.00  | 50.56  | 101  | 80-119 | 8   | 20  |
| Chlorobenzene      | 50.00  | 49.22  | 98   | 80-117 | 4   | 20  |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 106  | 78-123 |
| Toluene-d8            | 102  | 80-110 |
| Bromofluorobenzene    | 102  | 80-115 |



|           |                   | Alkalinity |              |
|-----------|-------------------|------------|--------------|
| Lab #:    | 146981            | Location:  | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:      | METHOD       |
| Project#: | STANDARD          | Analysis:  | EPA 310.1    |
| Field ID: | LFR-1             | Batch#:    | 57698        |
| Matrix:   | Water             | Sampled:   | 08/09/00     |
| Units:    | mg/L              | Received:  | 08/09/00     |
| Diln Fac: | 1.000             | Analyzed:  | 08/15/00     |

Type: SAMPLE Lab ID: 146981-001

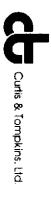
| Analyte                    | Result | RL  | 6015000000 |
|----------------------------|--------|-----|------------|
| Alkalinity, Bicarbonate    | 250    | 1.0 |            |
| Alkalinity, Carbonate      | ИD     | 1.0 |            |
| Alkalinity, Hydroxide      | ND     | 1.0 |            |
| Alkalinity, Total as CaCO3 | 250    | 1.0 |            |

Type: BLANK Lab ID: QC122830

| Analyte                    | Result | RL. |
|----------------------------|--------|-----|
| Alkalinity, Bicarbonate    | ND     | 1.0 |
| Alkalinity, Carbonate      | ND     | 1.0 |
| Alkalinity, Hydroxide      | ND     | 1.0 |
| Alkalinity, Total as CaCO3 | ND     | 1.0 |

ND = Not Detected
RL = Reporting Limit
Page 1 of 1




|           | Alk                        | alinity   |              |
|-----------|----------------------------|-----------|--------------|
| Lab #:    | 146981                     | Location: | Gloveatorium |
| Client:   | LFR-Levine-Fricke          | Prep:     | METHOD       |
| Project#: | STANDARD                   | Analysis: | EPA 310.1    |
| Analyte:  | Alkalinity, Total as CaCO3 | Units:    | mg/L         |
| Type:     | LCS                        | Diln Fac: | 1.000        |
| Lab ID:   | QC122831                   | Batch#:   | 57698        |
| Matrix:   | Water                      | Analyzed: | 08/15/00     |

| Spiked | Result | %RE | C Limits | 90000 |
|--------|--------|-----|----------|-------|
| 200.0  | 187.8  | 94  | 80-110   |       |

|             |                            | Alkalinity |              |
|-------------|----------------------------|------------|--------------|
| Lab #:      | 146981                     | Location:  | Gloveatorium |
| Client:     | LFR-Levine-Fricke          | Prep:      | METHOD       |
| Project#:   | STANDARD                   | Analysis:  | EPA 310.1    |
| Analyte:    | Alkalinity, Total as CaCO3 | Diln Fac:  | 1.000        |
| Field ID:   | LFR-1                      | Batch#:    | 57698        |
| MSS Lab ID: | 146981-001                 | Sampled:   | 08/09/00     |
| Matrix:     | Water                      | Received:  | 08/09/00     |
| Units:      | mg/L                       | Analyzed:  | 08/15/00     |

| Type | Lab ID   | MSS Result | Spiked | Result | %RE( | . Limits |     | Cim |
|------|----------|------------|--------|--------|------|----------|-----|-----|
| MS   | QC122832 | 247.3      | 200.0  | 439.7  | 96   | 69-112   |     |     |
| MSD  | QC122833 |            | 200.0  | 437.4  | 95   | 69-112   | 1 : | 20  |

RPD= Relative Percent Difference Page 1 of 1





|           | Ch1               | oride     |              |
|-----------|-------------------|-----------|--------------|
| Lab #:    | 146981            | Location: | Gloveatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD       |
| Project#: | STANDARD          | Analysis: | EPA 300.0    |
| Analyte:  | Chloride          | Batch#:   | 57621        |
| Field ID: | LFR-1             | Sampled:  | 08/09/00     |
| Matrix:   | Water             | Received: | 08/09/00     |
| Units:    | mg/L              | Analyzed: | 08/11/00     |

| Type Lab ID       | Regn 1+ | RL Diln Fac |
|-------------------|---------|-------------|
| SAMPLE 146981-001 | 110     | 2.0 10.00   |
| BLANK QC122555    | ND      | 0.20 1.000  |

ND = Not Detected RL = Reporting Limit Page 1 of 1



|             |                   | Chloride  |              |
|-------------|-------------------|-----------|--------------|
| Lab #:      | 146981            | Location: | Gloveatorium |
| Client:     | LFR-Levine-Fricke | Prep:     | METHOD       |
| Project#:   | STANDARD          | Analysis: | EPA 300.0    |
| Analyte:    | Chloride          | Batch#:   | 57621        |
| Field ID:   | ZZZZZZZZZZ        | Sampled:  | 08/10/00     |
| MSS Lab ID: | 146991-001        | Received: | 08/10/00     |
| Matrix:     | Water             | Analyzed: | 08/11/00     |
| Units:      | mg/L              | <u>-</u>  |              |

| Туре | Lab ID   | MSS Result     | Spiked | Result | %REC | Limits | RPD | Lim | Diln Fac |
|------|----------|----------------|--------|--------|------|--------|-----|-----|----------|
| BS   | QC122556 | · <del>-</del> | 10.00  | 9.970  | 100  | 90-110 |     |     | 1.000    |
| BSD  | QC122557 |                | 10.00  | 10.00  | 100  | 90-110 | 0   | 20  | 1.000    |
| MS   | QC122558 | 85.49          | 50.00  | 136.4  | 102  | 80-120 |     |     | 10.00    |
| MSD  | QC122559 |                | 50.00  | 137.4  | 104  | 80-120 | l   | 20  | 10.00    |



## Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

#### ANALYTICAL REPORT

Prepared for:

LFR-Levine-Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 06-SEP-00 Lab Job Number: 146991

Project ID: 6895.00.030 Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

peraxions Manage:

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of



Laboratory Numbers: 146991 Client: LFR-Levine-Fricke Project #: 6895.00.030 Location: Glovatorium

COC#: 2205

Sampled Date: 08/10/00 Received Date: 08/10/00

### **CASE NARRATIVE**

This hardcopy data package contains sample and QC results for five water samples and a trip blank, which were received from the site referenced above on August 10, 2000. The samples were received intact. All data were faxed to Julie Sharp on August 29,2000.

#### TVH/BTXE:

No analytical problems were encountered.

### VOCs (EPA 8260):

No analytical problems were encountered.

### Metals (EPA 6010B):

No analytical problems were encountered.

### General Chemistry:

No analytical problems were encountered.

#### RSK Method 175:

Performance Analytical Inc. in Simi Valley performed the analysis. Please see the Performance Analytical case narrative. No analytical problems were encountered



Gasoline by GC/FID CA LUFT Glovatorium Lab #: 146991 Location: LFR-Levine-Fricke Client: EPA 5030 Prep: EPA 8015M Project#: 6895.00.030 Analysis: 08/10/00 Sampled: Matrix: Water 08/10/00 Units: ug/L Received: Batch#: 57622 Analyzed: 08/11/00

Field ID:

LFR-3

Lab ID:

146991-001

Type:

SAMPLE

Diln Fac:

1.000

| Analyte                 | Result | RL |
|-------------------------|--------|----|
| Gasoline C7-C12         | ND     | 50 |
| Stoddard Solvent C7-C12 | ND     | 50 |

|   | Surrogate                | %REC | Limits |
|---|--------------------------|------|--------|
| Γ | Trifluorotoluene (FID)   | 109  | 59-135 |
|   | Bromofluorobenzene (FID) | 111  | 60-140 |

Field ID:

LFR-103

Lab ID:

146991-002

Type:

SAMPLE

Diln Fac:

1.000

| Analyte                 | Result | RL |
|-------------------------|--------|----|
| Gasoline C7-C12         | ND     | 50 |
| Stoddard Solvent C7-C12 | ND     | 50 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 111  | 59-135 |
| Bromofluorobenzene (FID) | 112  | 60-140 |

Field ID:

MW-11

Lab ID:

146991-003

Type:

SAMPLE

Diln Fac:

1.000

| Analyte                 | Result | RL |
|-------------------------|--------|----|
| Gasoline C7-C12         | ND     | 50 |
| Stoddard Solvent C7-C12 | ND     | 50 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 108  | 59-135 |
| Bromofluorobenzene (FID) | 111  | 60-140 |

Y = Sample exhibits fuel pattern which does not resemble standard

ND = Not Detected

RL = Reporting Limit

Page 1 of 2



|           | Gasoline          | ∍ by GC/FID CA LU | PT          |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146991            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:         | EPA 8015M   |
| Matrix:   | Water             | Sampled:          | 08/10/00    |
| Units:    | ug/L              | Received:         | 08/10/00    |
| Batch#:   | 57622             | Analyzed:         | 08/11/00    |

Field ID: Type:

B-10-FB

SAMPLE

Lab ID:

146991-004

Diln Fac: 1.000

| Analyte                 | Result | RL |
|-------------------------|--------|----|
| Gasoline C7-C12         | ND     | 50 |
| Stoddard Solvent C7-C12 | ND     | 50 |

| Surrogate                | %REC | Limits |      |
|--------------------------|------|--------|------|
| Trifluorotoluene (FID)   | 106  | 59-135 | *    |
| Bromofluorobenzene (FID) | 110  | 60-140 | <br> |

Field ID: B-10 Туре:

SAMPLE

Lab ID:

146991-005

Diln Fac: 10.00

| Analyte                 | Result  | RL  |  |
|-------------------------|---------|-----|--|
| Gasoline C7-C12         | 6,100 Y | 500 |  |
| Stoddard Solvent C7-C12 | 2,800 Y | 500 |  |

| Surrogate                | OR AS | Limits |
|--------------------------|-------|--------|
| Trifluorotoluene (FID)   | 108   | 59-135 |
| Bromofluorobenzene (FID) | 118   | 60-140 |

BLANK

Diln Fac: 1.000

<sub>/P</sub>e: Lab ID:

QC122562

| Analyte                 | Result | <b>RL</b> 50 |
|-------------------------|--------|--------------|
| Gasoline C7-C12         | ND     | 50           |
| Stoddard Solvent C7-C12 | ND     | 50           |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 101  | 59-135 |  |
| Bromofluorobenzene (FID) | 100  | 60-140 |  |

Y = Sample exhibits fuel pattern which does not resemble standard

ND = Not Detected

RL = Reporting Limit

Page 2 of 2

Sample Name : 146991-005,57622

FileName : G:\GC19\DATA\224X011.raw

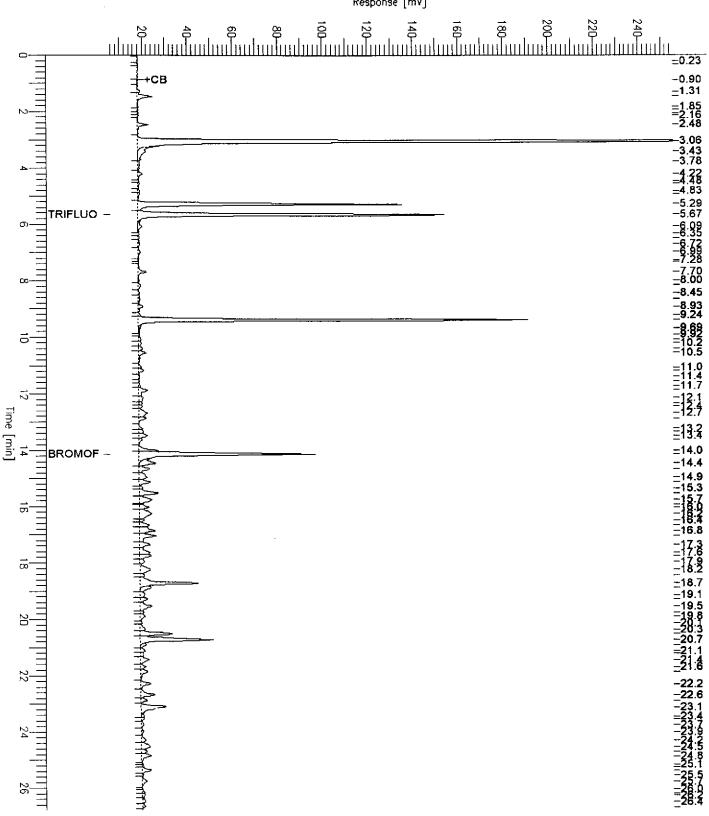
Method : TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26,80 min Plot Offset: 6 mV

Sample #:

Page 1 of 1


Date: 8/11/00 08:32 PM

Time of Injection: 8/11/00 08:05 PM

High Point : 255.50 mV Low Point : 5.50 mV

Plot Scale: 250.0 mV





Sample Name : CCV/LCS, QC122560, 57622, 00WS9465, 5/5000

: G:\GC19\DATA\224X003.raw FileName

Method Start Time : 0.00 min

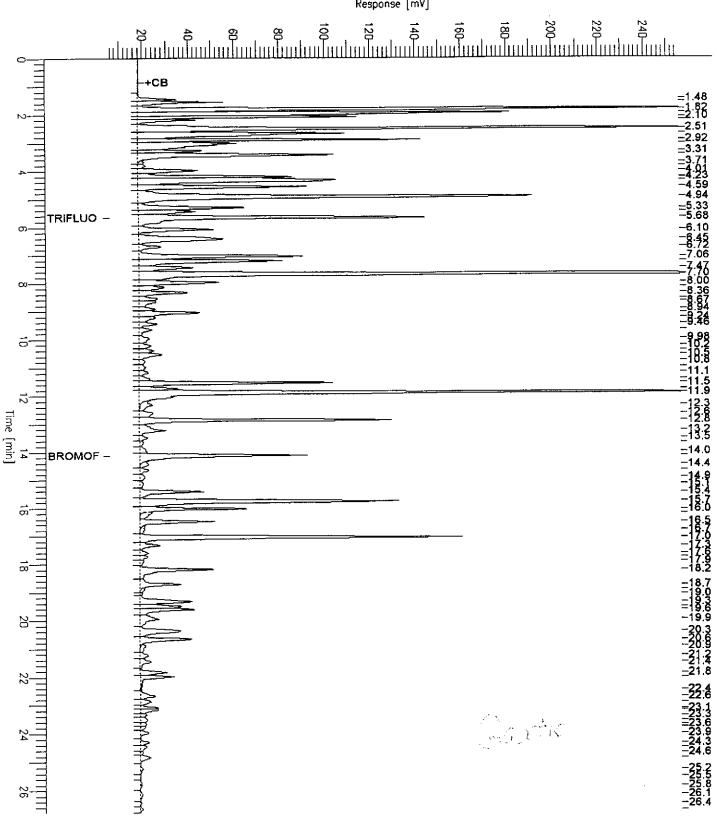
: TVHBTXE End Time : 26.80 min

Plot Offset: 6 mV

Scale Factor: -1.0

Page 1 of 1

Sample #: Date: 8/11/00 02:50 PM


Time of Injection: 8/11/00 02:23 PM

Low Point : 5.65 mV

Plot Scale: 250.0 mV

High Point : 255.65 mV





Sample Name : CCV, 97WS4980, 40466 FileName

: G:\GC19\DATA\113X030.raw

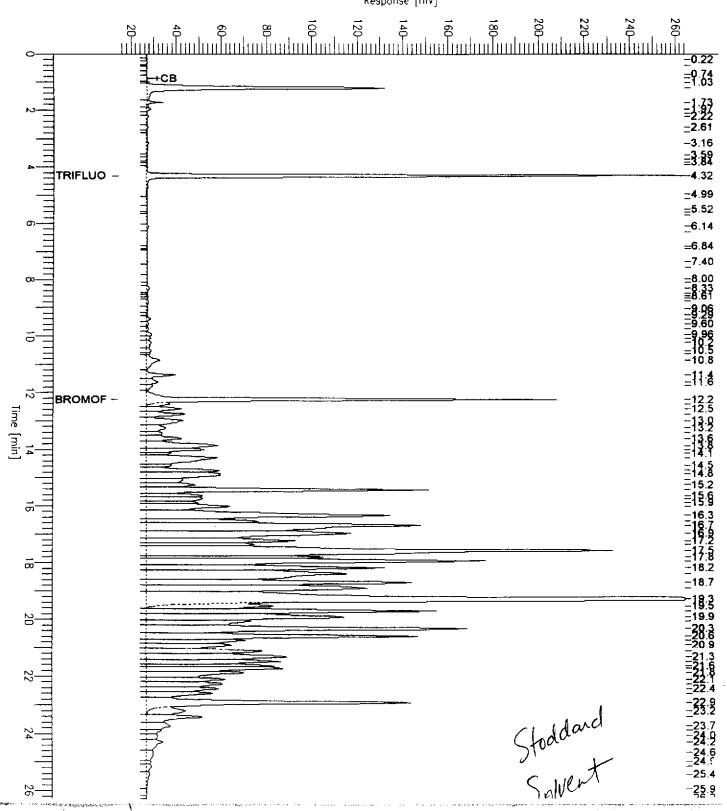
: TVHBTXE Method

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 14 mV

Sample #: STODD

Page 1 of 1


Date: 4/24/98 08:16 PM

Time of Injection: 4/24/98 07:49 PM

Low Point : 14.15 mV Plot Scale: 250.0 mV

High Point : 264.15 mV







|                                |                                            | ne, Ethylbenzene,                  | Xylenes                                      |
|--------------------------------|--------------------------------------------|------------------------------------|----------------------------------------------|
| Lab #:<br>Client:<br>Project#: | 146991<br>LFR-Levine-Fricke<br>6895.00.030 | Location:<br>Prep:<br>Analysis:    | Glovatorium<br>EPA 5030<br>EPA 8021B         |
| Matrix:<br>Units:<br>Batch#:   | Water<br>ug/L<br>57622                     | Sampled:<br>Received:<br>Analyzed: | 08/10/00<br>08/10/00<br>08/10/00<br>08/11/00 |

Field ID: Type:

LFR-3 SAMPLE

Lab ID: 146991-001 Diln Fac: 1.000

|                             | Result | RLi  |
|-----------------------------|--------|------|
| MTBE                        | ND     | 2.0  |
| Benzene                     | ND     | 0.50 |
| Toluene                     | ND     | 0.50 |
| Ethylbenzene                | ND     | 0.50 |
| Ethylbenzene<br>m,p-Xylenes | ND     | 0.50 |
| o-Xylene                    | ND     | 0.50 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 109  | 56-142 |
| Bromoflyorobenzene (PID) | 113  | 55-149 |

Field ID: Type:

LFR-103 SAMPLE

146991-002 1.000

Lab ID: Diln Fac:

| Analyte      | Result | RL   |
|--------------|--------|------|
| MTBE         | ND     | 2.0  |
| Benzene      | ND     | 0.50 |
| Toluene      | ND     | 0.50 |
| Ethylbenzene | ND     | 0.50 |
| m,p-Xylenes  | ND     | 0,50 |
| o-Xylene     | ND     | 0.50 |

| Surrogate                | %REC        | Limits         |
|--------------------------|-------------|----------------|
| Trifluorotoluene (PID)   | 111         | 56-142         |
| Bromofluorobenzene (PID) | <u>1</u> 16 | <u>55</u> -149 |

Field ID: Type:

MW-11 SAMPLE

Lab ID: 146991-003 Diln Fac: 1.000

| Analyte      | Result | RL   |  |
|--------------|--------|------|--|
| MTBE         | 11     | 2.0  |  |
| Benzene      | ND     | 0.50 |  |
| Toluene      | ND     | 0.50 |  |
| Ethylbenzene | ND     | 0.50 |  |
| m,p-Xylenes  | ND     | 0.50 |  |
| o-Xvlene     | ND     | 0.50 |  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 109  | 56-142 |
| Bromofluorobenzene (PID) | 114  | 55-149 |

ND = Not Detected RL = Reporting Limit Page 1 of 2



|           | Benzene, Toluer   | ne, Ethylbenzene, | Xylenes     |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146991            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:         | EPA 8021B   |
| Matrix:   | Water             | Sampled:          | 08/10/00    |
| Units:    | uq/L              | Received:         | 08/10/00    |
| Batch#:   | 57622             | Analyzed:         | 08/11/00    |

Field ID: Type:

Lab ID: 146991-004 Diln Fac: 1.000

B-10-FB SAMPLE

| lnalvte      | Result | RL:  |   |
|--------------|--------|------|---|
| MTBE         | ND     | 2.0  |   |
| Benzene      | ND     | 0.50 | 1 |
| Toluene      | ND     | 0.50 | 1 |
| Ethylbenzene | ND     | 0.50 | - |
| m,p-Xylenes  | ND     | 0.50 | Į |
| o-Xvlene     | ND     | 0.50 |   |

| Surrogate                | %RE( | ' Limits |   |
|--------------------------|------|----------|---|
| Trifluorotoluene (PID)   | 107  | 56-142   | • |
| Bromofluorobenzene (PID) | 111  | 55-149   |   |

Field ID: Type:

B-10 SAMPLE

Lab ID: Diln Fac:

146991-005 10.00

| Analyte      | Result | RL  |  |
|--------------|--------|-----|--|
| MTBE         | 160    | 20  |  |
| Benzene      | 7.3    | 5.0 |  |
| Toluene      | 12     | 5.0 |  |
| Ethylbenzene | ИD     | 5.0 |  |
| m,p-Xylenes  | 15     | 5.0 |  |
| o-Xylene     | 9.1    | 5.0 |  |

| AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA  | 0000000 TOTAL |          |
|-----------------------------------------|---------------|----------|
| Surrogate                               | *RE(          | 2 Limits |
| (575)                                   | 4 4 4         |          |
| Trifluorotoluene (PID)                  | 111           | 56-142   |
| 1 ===================================== |               | IL TIL   |
| Bromofluorobenzene (PID)                | 114           | 55-149   |

Type: Lab ID:

BLANK QC122562

Diln Fac: 1.000

| Analyte                 | Result | RL     |
|-------------------------|--------|--------|
| MTBE                    | ND     | 2.0    |
| Benzene                 | ND     | 0.50   |
| Toluene                 | ND     | 0.50   |
| Ethylbenzene            | ND     | 0.50   |
| m,p-Xylenes             | ND     | 0 - 50 |
| m,p-Xylenes<br>o-Xylene | ND     | 0.50   |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 101  | 56-142 |  |
| Bromofluorobenzene (PID) | 102  | 55-149 |  |

ND = Not Detected RL = Reporting Limit Page 2 of 2



|           | Gasoline          | ∍ by GC/FID CA LU | JPT         |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146991            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:         | EPA 8015M   |
| Type:     | LCS               | Diln Fac:         | 1.000       |
| Lab ID:   | QC122560          | Batch#:           | 57622       |
| Matrix:   | Water             | Analyzed:         | 08/11/00    |
| Units:    | ug/L              | _                 |             |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 2,000  | 2,101  | 105  | 73-121 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 120  | 59-135 |
| Bromofluorobenzene (FID) | 121  | 60-140 |



|           | Benzene, Toluer   | ne, Ethylbenzene, | Xylenes     |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 146991            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:         | EPA 8021B   |
| Туре:     | LCS               | Diln Fac:         | 1.000 .     |
| Lab ID:   | QC122561          | Batch#:           | 57622       |
| Matrix:   | Water             | Analyzed:         | 08/11/00    |
| Units:    | ug/L              |                   |             |

| Analyte      | Spiked | Result | %RE( | ! Limits |
|--------------|--------|--------|------|----------|
| MTBE         | 20.00  | 19.90  | 99   | 51-125   |
| Benzene      | 20.00  | 17.18  | 86   | 67-117   |
| Toluene      | 20.00  | 17.08  | 85   | 69-117   |
| Ethylbenzene | 20.00  | 17.78  | 89   | 68-124   |
| m,p-Xylenes  | 40.00  | 37.80  | 95   | 70-125   |
| o-Xylene     | 20.00  | 18.00  | 90   | 65-129   |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 97   | 56-142 |
| Bromofluorobenzene (PID) | 103  | 55-149 |



|             | GEOULTHE          | e by GC/FID CA Li | JFT.        |
|-------------|-------------------|-------------------|-------------|
| Lab #:      | 146991            | Location:         | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#:   | 6895.00.030       | Analysis:         | EPA 8015M   |
| Field ID:   | ZZZZZZZZZ         | Diln Fac:         | 1.000       |
| MSS Lab ID: | 146998-001        | Batch#:           | 57622       |
| Matrix:     | Water             | Sampled:          | 08/10/00    |
| Units:      | ug/L              | Received:         | 08/10/00    |

Type: Lab ID:

MS

QC122563

Analyzed: 08/11/00

| Analyte         | MSS Result | Spiked | Result | %REC | Limits |
|-----------------|------------|--------|--------|------|--------|
| Gasoline C7-C12 | 42.73      | 2,000  | 2,191  | 107  | 65-131 |

| Surrogat           | Le      | %REC | Limits | 1 |
|--------------------|---------|------|--------|---|
| Trifluorotoluene   | (FID)   | 135  | 59-135 |   |
| Bromofluorobenzene | e (FID) | 139  | 60-140 | ĺ |

Type:

MSD

Analyzed: 08/12/00

Lab ID: QC122564

| Analyte         | Spiked | Result | %REC | Limite | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 2,000  | 2,224  | 109  | 65-131 | 1   | 20  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 125  | 59-135 |
| Bromofluorobenzene (FID) | 138  | 60-140 |



|           | Purgeable         | Halocarbons by 6 | IC/ <b>M</b> 8 |
|-----------|-------------------|------------------|----------------|
| Lab #:    | 146991            | Location:        | Glovatorium    |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030       |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B      |
| Field ID: | LFR-3             | Batch#:          | 57872          |
| Lab ID:   | 146991-001        | Sampled:         | 08/10/00       |
| Matrix:   | Water             | Received:        | 08/10/00       |
| Units:    | ug/L              | Analyzed:        | 08/23/00       |
| Diln Fac: | 1.000             | -2               | , ,            |

| Analyte                   | Result | RL: |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 2.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | 9REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 109  | 78-123 |
| Toluene-d8            | 99   | 80-110 |
| Bromofluorobenzene    | 103  | 80-115 |

RL = Reporting Limit
Page 1 of 1



|           | Purgeable         | Halocarbons by 6 | C/MS        |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | LFR-103           | Batch#:          | 57872       |
| Lab ID:   | 146991-002        | Sampled:         | 08/10/00    |
| Matrix:   | Water             | Received:        | 08/10/00    |
| Units:    | ug/L              | Analyzed:        | 08/23/00    |
| Diln Fac: | 1.000             | •                |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 2.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | 9REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 110  | 78-123 |  |
| Toluene-d8            | 98   | 80-110 |  |
| Bromofluorobenzene    | 102  | 80-115 |  |

RL = Reporting Limit
Page 1 of 1



|           | Purgeable         | Halocarbons by G | ec/ms       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | MW-11             | Batch#:          | 57872       |
| Lab ID:   | 146991-003        | Sampled:         | 08/10/00    |
| Matrix:   | Water             | Received:        | 08/10/00    |
| Units:    | ug/L              | Analyzed:        | 08/23/00    |
| Diln Fac: | 1.000             |                  |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 2.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ИD     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogete             | <b>YREC</b> | Limits |
|-----------------------|-------------|--------|
| 1,2-Dichloroethane-d4 | 110         | 78-123 |
| Toluene-d8            | 99          | 80-110 |
| Bromofluorobenzene    | 103         | 80-115 |



|           | Purqeable         | Halocarbons by | IC/MS       |
|-----------|-------------------|----------------|-------------|
| Lab #:    | 146991            | Location:      | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#: | 6895,00.030       | Analysis:      | EPA 8260B   |
| Field ID: | B-10-FB           | Batch#:        | 57872       |
| Lab ID:   | 146991-004        | Sampled:       | 08/10/00    |
| Matrix:   | Water             | Received:      | 08/10/00    |
| Units:    | ug/L              | Analyzed:      | 08/23/00    |
| Diln Fac: | 1.000             | -              |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 2.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | 8.8    | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             |     | Limits |
|-----------------------|-----|--------|
| 1,2-Dichloroethane-d4 | 107 | 78-123 |
| Toluene-d8            | 97  | 80-110 |
| Bromofluorobenzene    | 100 | 80-115 |



|           | Durgashla         | Halocarbons by ( | sorue.      |
|-----------|-------------------|------------------|-------------|
|           |                   |                  |             |
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | B-10              | Batch#:          | 57904       |
| Lab ID:   | 146991-005        | Sampled:         | 08/10/00    |
| Matrix:   | Water             | Received:        | 08/10/00    |
| Units:    | ug/L              | Analyzed:        | 08/24/00    |
| Diln Fac: | 50.00             | •                | • •         |

| Analyte                   | Result | RL: |  |
|---------------------------|--------|-----|--|
| Freon 12                  | ND     | 100 |  |
| Chloromethane             | ND     | 50  |  |
| Vinyl Chloride            | ND     | 25  |  |
| Bromomethane              | ND     | 100 |  |
| Chloroethane              | ND     | 50  |  |
| Trichlorofluoromethane    | ND     | 25  |  |
| Freon 113                 | ND     | 250 |  |
| 1,1-Dichloroethene        | ND     | 25  |  |
| Methylene Chloride        | ND     | 250 |  |
| trans-1,2-Dichloroethene  | 50     | 25  |  |
| 1,1-Dichloroethane        | ND     | 25  |  |
| cis-1,2-Dichloroethene    | 6,500  | 25  |  |
| Chloroform                | ND     | 25  |  |
| 1,1,1-Trichloroethane     | ND     | 25  |  |
| Carbon Tetrachloride      | ND     | 25  |  |
| 1,2-Dichloroethane        | ND     | 25  |  |
| Trichloroethene           | 1,600  | 25  |  |
| 1,2-Dichloropropane       | ND     | 25  |  |
| Bromodichloromethane      | ND     | 25  |  |
| cis-1,3-Dichloropropene   | ND     | 25  |  |
| trans-1,3-Dichloropropene | ND     | 25  |  |
| 1,1,2-Trichloroethane     | ND     | 25  |  |
| Tetrachloroethene         | 2,900  | 25  |  |
| Dibromochloromethane      | ND     | 25  |  |
| Chlorobenzene             | ND     | 25  |  |
| Bromoform                 | ND     | 25  |  |
| 1,1,2,2-Tetrachloroethane | ND     | 25  |  |
| 1,3-Dichlorobenzene       | ND     | 25  |  |
| 1,4-Dichlorobenzene       | ND     | 25  |  |
| 1,2-Dichlorobenzene       | ND     | 25  |  |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 107  | 78-123 |
| Toluene-d8            | 99   | 80-110 |
| Bromofluorobenzene    | 102  | 80-115 |
|                       |      |        |

RL = Reporting Limit Page 1 of 1



|           | ¥                 |                  |             |
|-----------|-------------------|------------------|-------------|
|           | Purquabis         | Halocarbons by 6 | ic/ns       |
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | TRIP BLANK        | Batch#:          | 57836       |
| Lab ID:   | 146991-006        | Sampled:         | 08/10/00    |
| Matrix:   | Water             | Received:        | 08/10/00    |
| Units:    | ug/L              | Analyzed:        | 08/22/00    |
| Diln Fac: | 1.000             | -                |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 2.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | 1REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 110  | 78-123 |
| Toluene-d8            | 101  | 80-110 |
| Bromofluorobenzene    | 98   | 80-115 |

RL = Reporting Limit

Page 1 of 1



|           | Purgeable         | Halocarbons by | ЭС/ <b>м</b> я |
|-----------|-------------------|----------------|----------------|
| Lab #:    | 146991            | Location:      | Glovatorium    |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030       |
| Project#: | 6895.00.030       | Analysis:      | EPA 8260B      |
| Type:     | BLANK             | Diln Fac:      | 1.000          |
| Lab ID:   | QC123415          | Batch#:        | 57836          |
| Matrix:   | Water             | Analyzed:      | 08/22/00       |
| Units:    | ug/L              | -              | ·              |

| Analyte                   | Result | RL . |
|---------------------------|--------|------|
| Freon 12                  | ND     | 2.0  |
| Chloromethane             | ND     | 1.0  |
| Vinyl Chloride            | ND     | 0.5  |
| Bromomethane              | ND     | 2.0  |
| Chloroethane              | ND     | 1.0  |
| Trichlorofluoromethane    | ND     | 0.5  |
| Freon 113                 | ND     | 5.0  |
| 1,1-Dichloroethene        | ND     | 0.5  |
| Methylene Chloride        | ND     | 5.0  |
| trans-1,2-Dichloroethene  | ND     | 0.5  |
| 1,1-Dichloroethane        | ND     | 0.5  |
| cis-1,2-Dichloroethene    | ND     | 0.5  |
| Chloroform                | ND     | 0.5  |
| 1,1,1-Trichloroethane     | ND     | 0.5  |
| Carbon Tetrachloride      | ND     | 0.5  |
| 1,2-Dichloroethane        | ND     | 0.5  |
| Trichloroethene           | ND     | 0.5  |
| 1,2-Dichloropropane       | ND     | 0.5  |
| Bromodichloromethane      | ND     | 0.5  |
| cis-1,3-Dichloropropene   | ND     | 0.5  |
| trans-1,3-Dichloropropene | ND     | 0.5  |
| 1,1,2-Trichloroethane     | ND     | 0.5  |
| Tetrachloroethene         | ND     | 0.5  |
| Dibromochloromethane      | ND     | 0.5  |
| Chlorobenzene             | ND     | 0.5  |
| Bromoform                 | ND     | 0.5  |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5  |
| 1,3-Dichlorobenzene       | ND     | 0.5  |
| 1,4-Dichlorobenzene       | ND     | 0.5  |
| 1,2-Dichlorobenzene       | ND     | 0.5  |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 105  | 78-123 |
| Toluene-d8            | 100  | 80-110 |
| Bromofluorobenzene    | 98   | 80-115 |

RL = Reporting Limit

Page 1 of 1



|           | Purgeable         | Halocarbons by 6 | SC/M8       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Type:     | BLANK             | Diln Fac:        | 1.000       |
| Lab ID:   | QC123539          | Batch#:          | 57872       |
| Matrix:   | Water             | Analyzed:        | 08/23/00    |
| Units:    | ug/L              | •                |             |

| Analyte                   | Result     | RL. |
|---------------------------|------------|-----|
| Freon 12                  | ND         | 2.0 |
| Chloromethane             | ND         | 1.0 |
| Vinyl Chloride            | ND         | 0.5 |
| Bromomethane              | ND         | 2.0 |
| Chloroethane              | ND         | 1.0 |
| Trichlorofluoromethane    | ND         | 0.5 |
| Freon 113                 | ND         | 5.0 |
| 1,1-Dichloroethene        | <b>N</b> D | 0.5 |
| Methylene Chloride        | ND         | 5.0 |
| trans-1,2-Dichloroethene  | ND         | 0.5 |
| 1,1-Dichloroethane        | ND         | 0.5 |
| cis-1,2-Dichloroethene    | ND         | 0.5 |
| Chloroform                | ND         | 0.5 |
| 1,1,1-Trichloroethane     | ND         | 0.5 |
| Carbon Tetrachloride      | ND         | 0.5 |
| 1,2-Dichloroethane        | ND         | 0.5 |
| Trichloroethene           | ND         | 0.5 |
| 1,2-Dichloropropane       | ND         | 0.5 |
| Bromodichloromethane      | ND         | 0.5 |
| cis-1,3-Dichloropropene   | ND         | 0.5 |
| trans-1,3-Dichloropropene | ND         | 0.5 |
| 1,1,2-Trichloroethane     | ND         | 0.5 |
| Tetrachloroethene         | ND         | 0.5 |
| Dibromochloromethane      | ND         | 0.5 |
| Chlorobenzene             | ND         | 0.5 |
| Bromoform                 | ND         | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND         | 0.5 |
| 1,3-Dichlorobenzene       | ND         | 0.5 |
| 1,4-Dichlorobenzene       | ND         | 0.5 |
| 1,2-Dichlorobenzene       | ND         | 0.5 |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 106  | 78-123 |
| Toluene-d8            | 100  | 80-110 |
| Bromofluorobenzene    | 100  | 80-115 |



|           | Purgeable         | Halocarbons by | ic/ <b>n</b> s |
|-----------|-------------------|----------------|----------------|
| Lab #:    | 146991            | Location:      | Glovatorium    |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030       |
| Project#: | 6895.00.030       | Analysis:      | EPA 8260B      |
| Type:     | BLANK             | Diln Fac:      | 1.000          |
| Lab ID:   | QC123660          | Batch#:        | 57904          |
| Matrix:   | Water             | Analyzed:      | 08/24/00       |
| Units:    | ug/L              | _              |                |

| Analyte                   | Result | RL . |
|---------------------------|--------|------|
| Freon 12                  | ND     | 2.0  |
| Chloromethane             | ND     | 1.0  |
| Vinyl Chloride            | ND     | 0.5  |
| Bromomethane              | ND     | 2.0  |
| Chloroethane              | ND     | 1.0  |
| Trichlorofluoromethane    | ND     | 0.5  |
| Freon 113                 | ND     | 5.0  |
| 1,1-Dichloroethene        | ND     | 0.5  |
| Methylene Chloride        | ND     | 5.0  |
| trans-1,2-Dichloroethene  | ND     | 0.5  |
| 1,1-Dichloroethane        | ND     | 0.5  |
| cis-1,2-Dichloroethene    | ND     | 0.5  |
| Chloroform                | ND     | 0.5  |
| 1,1,1-Trichloroethane     | ND     | 0.5  |
| Carbon Tetrachloride      | ND     | 0.5  |
| 1,2-Dichloroethane        | ND     | 0.5  |
| Trichloroethene           | ND     | 0.5  |
| 1,2-Dichloropropane       | ND     | 0.5  |
| Bromodichloromethane      | ND     | 0.5  |
| cis-1,3-Dichloropropene   | ND     | 0.5  |
| trans-1,3-Dichloropropene | ND     | 0.5  |
| 1,1,2-Trichloroethane     | ND     | 0.5  |
| Tetrachloroethene         | ND     | 0.5  |
| Dibromochloromethane      | ND     | 0.5  |
| Chlorobenzene             | ND     | 0.5  |
| Bromoform                 | ND     | 0.5  |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5  |
| 1,3-Dichlorobenzene       | ND     | 0.5  |
| 1,4-Dichlorobenzene       | ND     | 0.5  |
| 1,2-Dichlorobenzene       | ND     | 0.5  |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 107   | 78-123 |
| Toluene-d8            | 103   | 80-110 |
| Bromofluorobenzene    | 102   | 80-115 |

RL = Reporting Limit
Page 1 of 1



|           | Purgeable         | Halocarbons by | IC/NB       |
|-----------|-------------------|----------------|-------------|
| Lab #:    | 146991            | Location:      | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:      | EPA 8260B   |
| Type:     | BLANK             | Diln Fac:      | 1.000       |
| Lab ID:   | QC123661          | Batch#:        | 57904       |
| Matrix:   | Water             | Analyzed:      | 08/24/00    |
| Units:    | ug/L              | -              | ·           |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 2.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 108   | 78-123 |
| Toluene-d8            | 97    | 80-110 |
| Bromofluorobenzene    | 101   | 80-115 |



|           |                   | Halocarbons by G | сукв        |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Matrix:   | Water             | Batch#:          | 57836       |
| Units:    | ug/L              | Analyzed:        | 08/22/00    |
| Diln Fac: | 1.000             | <del>-</del>     | •           |

Type:

BS

Lab ID: QC123413

| Analyte            | Spiked | Result | <b>&amp;RBC</b> | Limits |
|--------------------|--------|--------|-----------------|--------|
| 1,1-Dichloroethene | 50.00  | 50.88  | 102             | 74-132 |
| Trichloroethene    | 50.00  | 54.92  | 110             | 80-119 |
| Chlorobenzene      | 50.00  | 55.69  | 111             | 80-117 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 106   | 78-123 |
| Toluene-d8            | 100   | 80-110 |
| Bromofluorobenzene    | 95    | 80-115 |

Type:

BSD

Lab ID: QC123414

| Analyte            | Spiked | Result | FREC | Limits | RPI | ) Lim |
|--------------------|--------|--------|------|--------|-----|-------|
| 1,1-Dichloroethene | 50.00  | 49.14  | 98   | 74-132 | 3   | 20    |
| Trichloroethene    | 50.00  | 53.88  | 108  | 80~119 | 2   | 20    |
| Chlorobenzene      | 50.00  | 54.23  | 108  | 80-117 | 3   | 20    |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 106  | 78-123 |
| Toluene-d8            | 100  | 80-110 |
| Bromofluorobenzene    | 94   | 80-115 |



|           | Purgeable         | <b>Hal</b> ocarbons by G | ic/ms       |
|-----------|-------------------|--------------------------|-------------|
| Lab #:    | 146991            | Location:                | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:                    | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:                | EPA 8260B   |
| Matrix:   | Water             | Batch#:                  | 57872       |
| Units:    | ug/L              | Analyzed:                | 08/23/00    |
| Diln Fac: | 1.000             | <u>-</u>                 |             |

Type:

BS

Lab ID: QC123536

| Analyte            | Spiked | Result | 1 REC | Limits |
|--------------------|--------|--------|-------|--------|
| 1,1-Dichloroethene | 50.00  | 50.93  | 102   | 74-132 |
| Trichloroethene    | 50.00  | 52.15  | 104   | 80-119 |
| Chlorobenzene      | 50.00  | 51.40  | 103   | 80-117 |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 107  | 78-123 |
| Toluene-d8            | 101  | 80-110 |
| Bromofluorobenzene    | 101  | 80-115 |

Type:

BSD

Lab ID:

QC123537

| Analyte            | Spiked | Result | FREC | Limits | RPI | ) Lim |
|--------------------|--------|--------|------|--------|-----|-------|
| 1,1-Dichloroethene | 50.00  | 48.43  | 97   | 74-132 | 5   | 20    |
| Trichloroethene    | 50.00  | 50.23  | 100  | 80-119 | 4   | 20    |
| Chlorobenzene      | 50.00  | 49.46  | 99   | 80-117 | 4   | 20    |

| Surrogate             | 4REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 104  | 78-123 |
| Toluene-d8            | 100  | 80-110 |
| Bromofluorobenzene    | 99   | 80-115 |



|           | Purgeable         | Halocarbons by G | ic/ms       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 146991            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Type:     | LCS               | Diln Fac:        | 1.000       |
| Lab ID:   | QC123659          | Batch#:          | 57904       |
| Matrix:   | Water             | Analyzed:        | 08/24/00    |
| Units:    | ug/L              |                  |             |

| Analyte            | Spiked | Result | *REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 50.00  | 49.44  | 99   | 74-132 |
| Trichloroethene    | 50.00  | 50.23  | 100  | 80-119 |
| Chlorobenzene      | 50.00  | 50.07  | 100  | 80-117 |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 105  | 78-123 |
| Toluene-d8            | 100  | 80-110 |
| Bromofluorobenzene    | 100  | 80-115 |



|             | Purgeable         | Halocarbons by ( | IC/MS       |
|-------------|-------------------|------------------|-------------|
| Lab #:      | 146001            |                  |             |
|             | 146991            | Location:        | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#:   | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID:   | ZZZZZZZZZZ        | Batch#:          | 57904       |
| MSS Lab ID: | 147089-004        | Sampled:         | 08/15/00    |
| Matrix:     | Water             | Received:        | 08/15/00    |
| Units:      | ug/L              | Analyzed:        | 08/25/00    |
| Diln Fac:   | 1.000             |                  | ,,          |

Type:

MS

Lab ID: QC123662

| Analyte            | M85 Result | Spiked | Result | <b>REC</b> | Limits |
|--------------------|------------|--------|--------|------------|--------|
| 1,1-Dichloroethene | <0.5000    | 50.00  | 44.74  | 89         | 70-132 |
| Trichloroethene    | <0.5000    | 50.00  | 50.04  | 100        | 62-137 |
| Chlorobenzene      | <0.5000    | 50.00  | 50.38  | 101        | 80-117 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 111   | 78-123 |
| Toluene-d8            | 102   | 80-110 |
| Bromofluorobenzene    | 99    | 80-115 |

Type:

MSD

Lab ID: QC123663

| Analyte            | Spiked | Result | %RE( | Limits | RPE | Lin |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 50.00  | 46.05  | 92   | 70-132 | 3   | 20  |
| Trichloroethene    | 50.00  | 48.35  | 97   | 62-137 | 3   | 20  |
| Chlorobenzene      | 50.00  | 49.49  | 99   | 80-117 | 2   | 20  |

| Surrogate             | *REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 109  | 78-123 |  |
| Toluene-d8            | 98   | 80-110 |  |
| Bromofluorobenzene    | 99   | 80-115 |  |



|           |                   | Iron      |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 146991            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | EPA 3010    |
| Project#: | 6895.00.030       | Analysis: | EPA 6010B   |
| Analyte:  | Iron              | Sampled:  | 08/10/00    |
| Matrix:   | Water             | Received: | 08/10/00    |
| Units:    | ug/L              | Prepared: | 08/10/00    |
| Diln Fac: | 1.000             | Analyzed: | 08/11/00    |
| Batch#:   | 57619             |           |             |

| Field II | ) Туре | Lab ID     | Result | RL  |
|----------|--------|------------|--------|-----|
| LFR-3    | SAMPLE | 146991-001 | ND     | 100 |
| MW-11    | SAMPLE | 146991-003 | 130    | 100 |
| B-10     | SAMPLE | 146991-005 | 6,000  | 100 |
|          | BLANK  | QC122543   | ND     | 100 |



|             |                   | Iron      |             |
|-------------|-------------------|-----------|-------------|
| Lab #:      | 146991            | Location: | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:     | EPA 3010    |
| Project#:   | 6895.00.030       | Analysis: | EPA 6010B   |
| Analyte:    | Iron              | Batch#:   | 57619       |
| Field ID:   | LFR-3             | Sampled:  | 08/10/00    |
| MSS Lab ID: | 146991-001        | Received: | 08/10/00    |
| Matrix:     | Water             | Prepared: | 08/10/00    |
| Units:      | ug/L              | Analyzed: | 08/11/00    |
| Diln Fac:   | 1.000             | <u> </u>  |             |

| Туре   | Lab ID   | MSS Result | Spiked | Result | RL  | %REC | Limits | RPD | Lim |
|--------|----------|------------|--------|--------|-----|------|--------|-----|-----|
| BS     | QC122544 | ***        | 1,000  | 1,035  |     | 104  | 70-128 |     |     |
| BSD    | QC122545 |            | 1,000  | 952.2  |     | 95   | 70-128 | 8   | 25  |
| SDUP   | QC122546 | <100.0     |        | ND     | 100 |      |        | NC  | 26  |
| SSPIKE | QC122547 | ND         | 1,000  | 960.8  |     | 96   | 58-136 |     |     |

NC = Not Calculated

ND = Not Detected

RL = Reporting Limit

RPD= Relative Percent Difference

Page 1 of 1



|           | Ferro               | us Iron (Fe+2) |             |
|-----------|---------------------|----------------|-------------|
| Lab #:    | 146991              | Location:      | Glovatorium |
| Client:   | LFR-Levine-Fricke   | Analysis:      | FE+2        |
| Project#: | 6895.00.030         |                |             |
| Analyte:  | Ferrous Iron (Fe+2) | Sampled:       | 08/10/00    |
| Matrix:   | Water               | Received:      | 08/10/00    |
| Units:    | mg/L                | Analyzed:      | 08/11/00    |
| Batch#:   | 57626               |                |             |

| Field ID | Type Lab ID       | Result | RL   | Diln Fac |
|----------|-------------------|--------|------|----------|
| LFR-3    | SAMPLE 146991-001 | ND     | 0.10 | 1.000    |
| MW-11    | SAMPLE 146991-003 | ND     | 0.10 | 1.000    |
| B-10     | SAMPLE 146991-005 | 5.7    | 1.0  | 10.00    |
|          | BLANK QC122575    | ND     | 0.10 | 1.000    |

|             |                     | Ferrous Iron (Fe+2) |             |
|-------------|---------------------|---------------------|-------------|
| Lab #:      | 146991              | Location:           | Glovatorium |
| Client:     | LFR-Levine-Fricke   | Analysis:           | FE+2        |
| Project#:   | 6895.00.030         | 1010170101          |             |
| Analyte:    | Ferrous Iron (Fe+2) | Diln Fac:           | 1.000       |
| Field ID:   | LFR-3               | Batch#:             | 57626       |
| MSS Lab ID: | 146991-001          | Sampled:            | 08/10/00    |
| Matrix:     | Water               | Received:           | 08/10/00    |
| Units:      | mg/L                | Analyzed:           | 08/11/00    |

| Type | Lab ID M | SS Result | Spiked | Result | %REC | Limits | RPD                                       | Lim |
|------|----------|-----------|--------|--------|------|--------|-------------------------------------------|-----|
| MS   | QC122576 | <0.1000   | 0.8000 | 0.8280 | 104  | 65-134 | 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |     |
| MSD  | QC122577 |           | 0.8000 | 0.7560 | 95   | 65-134 | 3                                         | 20  |
| LCS  | QC122578 |           | 0.8000 | 0.7780 | 97   | 80-110 |                                           |     |

 $\begin{array}{lll} \mbox{RPD= Relative Percent Difference} \\ \mbox{Page 1 of 1} \end{array}$ 



|           |                   | nia v meneración con como apartarias como lo debito con la como con constituido de la constituida del constituida de la constituida de la constituida del constituida de la co |             |
|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Lab #:    | 146991            | Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | METHOD      |
| Project#: | 6895.00.030       | Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 310.1   |
| Matrix:   | Water             | Sampled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 08/10/00    |
| Units:    | mg/L              | Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08/10/00    |
| Diln Fac: | 1.000             | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08/15/00    |
| Batch#:   | 57698             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

Field ID:

LFR-3

Lab ID: 146991-001

Type:

SAMPLE

| Analyte                    | Result | RL  | 3 1 5<br>8 80 0 |
|----------------------------|--------|-----|-----------------|
| Alkalinity, Bicarbonate    | 310    | 1.0 |                 |
| Alkalinity, Carbonate      | ND     | 1.0 |                 |
| Alkalinity, Hydroxide      | ND     | 1.0 |                 |
| Alkalinity, Total as CaCO3 | 310    | 1.0 |                 |

Field ID: LFR-103 Type:

SAMPLE

Lab ID: 146991-002

| Analyte                    | Result | RL  |   |
|----------------------------|--------|-----|---|
| Alkalinity, Bicarbonate    | 300    | 1.0 |   |
| Alkalinity, Carbonate      | ND     | 1.0 | • |
| Alkalinity, Hydroxide      | ИD     | 1.0 |   |
| Alkalinity, Total as CaCO3 | 300    | 1.0 |   |

Field ID:

Type:

MW-11

SAMPLE

Lab ID: 146991-003

| Analyte                    | Result | RL  |
|----------------------------|--------|-----|
| Alkalinity, Bicarbonate    | 360    | 1.0 |
| Alkalinity, Carbonate      | ND     | 1.0 |
| Alkalinity, Hydroxide      | ND     | 1.0 |
| Alkalinity, Total as CaCO3 | 360    | 1.0 |



|           |                   | Alkalinity |             |
|-----------|-------------------|------------|-------------|
| Lab #:    | 146991            | Location:  | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:      | METHOD      |
| Project#: | 6895.00.030       | Analysis:  | EPA 310.1   |
| Matrix:   | Water             | Sampled:   | 08/10/00    |
| Units:    | mg/L              | Received:  | 08/10/00    |
| Diln Fac: | 1.000             | Analyzed:  | 08/15/00    |
| Batch#:   | 57698             | -          | 1           |

Field ID:

B-10-FB

Lab ID: 146991-004

Type:

SAMPLE

| Analyte                    | Result | RLi |  |
|----------------------------|--------|-----|--|
| Alkalinity, Bicarbonate    | 1.1    | 1,0 |  |
| Alkalinity, Carbonate      | ND     | 1.0 |  |
| Alkalinity, Hydroxide      | ND     | 1.0 |  |
| Alkalinity, Total as CaCO3 | 1.1    | 1.0 |  |

Field ID: B-10

Lab ID: 146991-005

Type:

SAMPLE

Analyte Result RL Alkalinity, Bicarbonate 520 1.0 Alkalinity, Carbonate Alkalinity, Hydroxide ND1.0 ND 1.0

520

Type:

BLANK

Alkalinity, Total as CaCO3

Lab ID:

QC122830

1.0

| Analyte                    | Result | RL. |
|----------------------------|--------|-----|
| Alkalinity, Bicarbonate    | ND     | 1.0 |
| Alkalinity, Carbonate      | ND     | 1.0 |
| Alkalinity, Hydroxide      | ND     | 1.0 |
| Alkalinity, Total as CaCO3 | ND     | 1.0 |

ND = Not Detected RL = Reporting Limit

Page 2 of 2



|           |                            | alinity   |               |
|-----------|----------------------------|-----------|---------------|
| Lab #:    | 146991                     | Location: | Glovatorium   |
| Client:   | LFR-Levine-Fricke          | Prep:     | METHOD        |
| Project#: | 6895.00.030                | Analysis: | EPA 310.1     |
| Analyte:  | Alkalinity, Total as CaCO3 | Units:    | mg/L          |
| Type:     | LCS                        | Diln Fac: | 1.000         |
| Lab ID:   | QC122831                   | Batch#:   | 5769 <b>8</b> |
| Matrix:   | Water                      | Analyzed: | 08/15/00      |

| Spiked | Result | %RE | C Limits |  |
|--------|--------|-----|----------|--|
| 200.0  | 187.8  | 94  | 80-110   |  |

|             |                            | Alkalinity |             |
|-------------|----------------------------|------------|-------------|
| Lab #:      | 146991                     | Location:  | Glovatorium |
| Client:     | LFR-Levine-Fricke          | Prep:      | METHOD      |
| Project#:   | 6895.00.030                | Analysis:  | EPA 310.1   |
| Analyte:    | Alkalinity, Total as CaCO3 | Diln Fac:  | 1.000       |
| Field ID:   | ZZZZZZZZZZ                 | Batch#:    | 57698       |
| MSS Lab ID: | 146981-001                 | Sampled:   | 08/09/00    |
| Matrix:     | Water                      | Received:  | 08/09/00    |
| Units:      | mg/L                       | Analyzed:  | 08/15/00    |

| Туре   | Lab ID MS | S Result | Spiked | Result | %REC | Limits | RPD Lim | 1 |
|--------|-----------|----------|--------|--------|------|--------|---------|---|
| 1410 Å | C122832   | 247.3    | 200.0  | 439.7  | 96   | 69-112 |         |   |
|        | C122833   |          | 200.0  | 437.4  | 95   | 69-112 | 1 20    |   |

RPD= Relative Percent Difference Page 1 of 1





|           |                   | Sulfide   |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 146991            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#: | 6895.00.030       | Analysis: | EPA 376.2   |
| Analyte:  | Sulfide           | Batch#:   | 57731       |
| Matrix:   | Water             | Sampled:  | 08/10/00    |
| Units:    | mg/L              | Received: | 08/10/00    |
| Diln Fac: | 1.000             | Analyzed: | 08/16/00    |

| Field ID | Туре   | Lab ID     | Resul | t RL  |
|----------|--------|------------|-------|-------|
| LFR-3    | SAMPLE | 146991-001 | ND    | 0.040 |
| MW-11    | SAMPLE | 146991-003 | ND    | 0.040 |
| B-10     | SAMPLE | 146991-005 | ND    | 0.040 |
|          | BLANK  | QC122963   | ND    | 0.040 |



|           |                   | Sulfide   |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 146991            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#: | 6895.00.030       | Analysis: | EPA 376.2   |
| Analyte:  | Sulfide           | Units:    | mg/L        |
| Type:     | LCS               | Diln Fac: | 1.000       |
| Lab ID:   | QC122964          | Batch#:   | 57731       |
| Matrix:   | Water             | Analyzed: | 08/16/00    |

| Spiked R | esult  | %REC | 2 Limits |
|----------|--------|------|----------|
| 0.6000   | 0.6440 | 107  | 80-118   |



|           |                   | Chloride  |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 146991            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#: | 6895.00.030       | Analysis: | EPA 300.0   |
| Analyte:  | Chloride          | Sampled:  | 08/10/00    |
| Matrix:   | Water             | Received: | 08/10/00    |
| Units:    | ${\sf mg/L}$      | Analyzed: | 08/11/00    |
| Batch#:   | 57621             |           |             |

| Field ID | Type Lab II     | ) Result | RL Diln Fac |     |
|----------|-----------------|----------|-------------|-----|
| LFR-3    | SAMPLE 146991-0 | 001 85   | 2.0 10.00   |     |
| LFR-103  | SAMPLE 146991-0 | 002 85   | 2.0 10.00   |     |
| MW-11    | SAMPLE 146991-0 | 003 110  | 2.0 10.00   |     |
| B-10-FB  | SAMPLE 146991-0 | 004 ND   | 0.20 1.000  |     |
| B-10     | SAMPLE 146991-0 | 005 74   | 2.0 10.00   | *** |
|          | BLANK QC122555  | 5 ND     | 0.20 1.000  |     |



|           | Nitrite           | Nitrogen  |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 146991            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#: | 6895.00.030       | Analysis: | EPA 300.0   |
| Analyte:  | Nitrogen, Nitrite | Batch#:   | 57621       |
| Matrix:   | Water             | Sampled:  | 08/10/00    |
| Units:    | mg/L              | Received: | 08/10/00    |
| Diln Fac: | 1.000             | Analyzed: | 08/11/00    |

| Field ID | Type Lab ID       | Res | ult  | RI   |
|----------|-------------------|-----|------|------|
| LFR-3    | SAMPLE 146991-001 |     | 0.15 | 0.05 |
| MW-11    | SAMPLE 146991-003 | ND  |      | 0.05 |
| B-10     | SAMPLE 146991-005 | ND  |      | 0.05 |
|          | BLANK QC122555    | ND  |      | 0.05 |



|           |                   | trate Nitrogen  |             |
|-----------|-------------------|-----------------|-------------|
| Lab #:    | 146991            | Location:       | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:           | METHOD      |
| Project#: | 6895.00.030       | Analysis:       | EPA 300.0   |
| Analyte:  | Nitrogen, Nitrate | Batch#:         | 57621       |
| Matrix:   | Water             | ${	t Sampled:}$ | 08/10/00    |
| Units:    | mg/L              | Received:       | 08/10/00    |
| Diln Fac: | 1.000             | Analyzed:       | 08/11/00    |

| Field ID | Туре   | Lab ID     | Result | RL   |
|----------|--------|------------|--------|------|
| LFR-3    | SAMPLE | 146991-001 | 2.4    | 0.05 |
| MW-11    | SAMPLE | 146991-003 | 2.8    | 0.05 |
| B-10     | SAMPLE | 146991-005 | ND     | 0.05 |
|          | BLANK  | QC122555   | ND     | 0.05 |



|           |                   | Sulfate   |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 146991            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#: | 6895.00.030       | Analysis: | EPA 300.0   |
| Analyte:  | Sulfate           | Sampled:  | 08/10/00    |
| Matrix:   | Water             | Received: | 08/10/00    |
| Units:    | mg/L              | Analyzed: | 08/11/00    |
| Batch#:   | 57621             |           |             |

| Field I | ) Type | Lab ID     | Result | RL   | Diln Fac |
|---------|--------|------------|--------|------|----------|
| LFR-3   | SAMPLE | 146991-001 | 64     | 5.0  | 10.00    |
| MW-11   | SAMPLE | 146991-003 | 63     | 5.0  | 10.00    |
| B-10    | SAMPLE | 146991-005 | ND     | 0.50 | 1.000    |
|         | BLANK  | QC122555   | ND     | 0.50 | 1.000    |



|             |                   | Chloride  |             |
|-------------|-------------------|-----------|-------------|
| Lab #:      | 146991            | Location: | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#:   | 6895.00.030       | Analysis: | EPA_300.0   |
| Analyte:    | Chloride          | Batch#:   | 57621       |
| Field ID:   | LFR-3             | Sampled:  | 08/10/00    |
| MSS Lab ID: | 146991-001        | Received: | 08/10/00    |
| Matrix:     | Water             | Analyzed: | 08/11/00    |
| Units:      | mg/L              | <u> </u>  |             |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim | Diln Fac |
|------|----------|------------|--------|--------|------|--------|-----|-----|----------|
| BS   | QC122556 |            | 10.00  | 9.970  | 100  | 90-110 |     |     | 1.000    |
| BSD  | QC122557 |            | 10.00  | 10.00  | 100  | 90-110 | 0   | 20  | 1.000    |
| MS   | QC122558 | 85.49      | 50.00  | 136.4  | 102  | 80-120 |     |     | 10.00    |
| MSD  | QC122559 |            | 50.00  | 137.4  | 104  | 80-120 | 1   | 20  | 10.00    |



|             |                   | trite Nitrogen |             |
|-------------|-------------------|----------------|-------------|
| Lab #:      | 146991            | Location:      | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:          | METHOD      |
| Project#:   | 6895.00.030       | Analysis:      | EPA 300.0   |
| Analyte:    | Nitrogen, Nitrite | Batch#:        | 57621       |
| Field ID:   | LFR-3             | Sampled:       | 08/10/00    |
| MSS Lab ID: | 146991-001        | Received:      | 08/10/00    |
| Matrix:     | Water             | Analyzed:      | 08/11/00    |
| Units:      | mg/L              | <del>-</del>   |             |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim | Diln Fa | ac . |
|------|----------|------------|--------|--------|------|--------|-----|-----|---------|------|
| BS   | QC122556 |            | 2.000  | 2.040  | 102  | 90-110 |     |     | 1.000   |      |
| BSD  | QC122557 |            | 2.000  | 2.020  | 101  | 90-110 | 1   | 20  | 1.000   |      |
| MS   | QC122558 | 0.1508     | 10.00  | 10.07  | 99   | 80-120 |     |     | 10.00   | ļ    |
| MSD  | QC122559 |            | 10.00  | 10.03  | 99   | 80-120 | 0   | 20  | 10.00   |      |



|             | eu la caracteria caracteria con action a caracteria con con a construcción action de construcción de contrator | trate Nitrogen |             |
|-------------|----------------------------------------------------------------------------------------------------------------|----------------|-------------|
| Lab #:      | 146991                                                                                                         | Location:      | Glovatorium |
| Client:     | LFR-Levine-Fricke                                                                                              | Prep:          | METHOD      |
| Project#:   | 6895.00.030                                                                                                    | Analysis:      | EPA 300.0   |
| Analyte:    | Nitrogen, Nitrate                                                                                              | Batch#:        | 57621       |
| Field ID:   | LFR-3                                                                                                          | Sampled:       | 08/10/00    |
| MSS Lab ID: | 146991-001                                                                                                     | Received:      | 08/10/00    |
| Matrix:     | Water                                                                                                          | Analyzed:      | 08/11/00    |
| Units:      | mg/L                                                                                                           |                |             |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim | Diln Fac |
|------|----------|------------|--------|--------|------|--------|-----|-----|----------|
| BS   | QC122556 |            | 2.000  | 1.990  | 99   | 90-110 |     |     | 1.000    |
| BSD  | QC122557 |            | 2.000  | 1.990  | 100  | 90-110 | 0   | 20  | 1.000    |
| MS   | QC122558 | 2.361      | 10.00  | 12.20  | 98   | 80-120 |     |     | 10.00    |
| MSD  | QC122559 |            | 10.00  | 12.24  | 99   | 80-120 | 0   | 20  | 10.00    |



|             |                   | Sulfate   |             |
|-------------|-------------------|-----------|-------------|
| Lab #:      | 146991            | Location: | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#:   | 6895.00.030       | Analysis: | EPA 300.0   |
| Analyte:    | Sulfate           | Batch#:   | 57621       |
| Field ID:   | LFR-3             | Sampled:  | 08/10/00    |
| MSS Lab ID: | 146991-001        | Received: | 08/10/00    |
| Matrix:     | Water             | Analyzed: | 08/11/00    |
| Units:      | mg/L              | •         |             |

| Туре | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim | Diln Fac |
|------|----------|------------|--------|--------|------|--------|-----|-----|----------|
| BS   | QC122556 |            | 20.00  | 20.37  | 102  | 90-110 |     |     | 1.000    |
| BSD  | QC122557 |            | 20.00  | 20.38  | 102  | 90-110 | 0   | 20  | 1.000    |
| MS   | QC122558 | 63.89      | 100.0  | 166.2  | 102  | 80-120 |     |     | 10.00    |
| MSD  | QC122559 |            | 100.0  | 165.8  | 102  | 80-120 | ٥   | 20  | 10.00    |



## Performance Analytical Inc.

Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company

## LABORATORY REPORT

| C | lient. |  |
|---|--------|--|

CURTIS & TOMPKINS, LTD.

Date of Report:

08/30/00

Address:

2323 Fifth Street

Date Received:

08/15/00

Berkeley, CA 94710

PAI Project No:

P2002052

Contact:

Ms. Tracy Babiar

Purchase Order:

Verbal

Client Project ID: #146991

Five (5) Liquid Samples labeled:

"LFR-3"

"LFR-103"

"MW-11"

"B-10-FB"

"B-10"

The samples were received at the laboratory under chain of custody on August 15, 2000. The samples were received intact. The dates of analyses are indicated on the attached data sheets.

## Carbon Dioxide Analysis

The samples were analyzed for Carbon dioxide according to modified RSK Method 175 using a gas chromatograph equipped with a thermal conductivity detector (TCD).

## Methane, Ethene and Ethane Analysis

The samples were also analyzed for Methane, Ethene and Ethane according to modified RSK Method 175 using a gas chromatograph equipped with a flame ionization detector (FID).

The results of analyses are given in the attached data summary sheets.

Reviewed and Approved:

Ku-Jih Chen

Principal Chemist

Reviewed and Approved:

John Yokoyama Senior Chemist



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### RESULTS OF CARBON DIOXIDE ANALYSIS PAGE 1 OF 1

Client: Curtis & Tompkins, Ltd.

Client Project ID: 146991 PAI Project ID: P2002052

Test Code: GC/TCD

Instrument ID: HP5890A/TCD #10

Analyst: Joana Ciurash

Matrix: Liquid

Date Sampled:

8/10/00

Date Received: Date Analyzed:

8/15/00 8/17/00

Volume(s) Analyzed:

0.10 ml

|                  |               |      | Carbon Dioxide |                 |  |  |  |
|------------------|---------------|------|----------------|-----------------|--|--|--|
| Client Sample ID | PAI Sample ID | D.F. |                | μg/L            |  |  |  |
|                  |               |      | Result         | Reporting Limit |  |  |  |
| LFR-3            | P2002052-001  | 1.00 | 162,000        | 100             |  |  |  |
| LFR-103          | P2002052-002  | 1.00 | 152,000        | 100             |  |  |  |
| MW-11            | P2002052-003  | 1.00 | 216,000        | 100             |  |  |  |
| B-10-FB          | P2002052-004  | 1.00 | ND             | 100             |  |  |  |
| B-10-FB          | P2002052-004B | 1.00 | ND             | 100             |  |  |  |
| B-10             | P2002052-005  | 1.00 | 145,000        | 100             |  |  |  |
| Method Blank     | P000817-MB    | 1.00 | ND             | 100             |  |  |  |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: LFR-3 PAI Sample ID : P2002052-001

Test Code: GC/FID Date Sampled: 8/10/00 Instrument: HP5890A/FID #10 Date Received: 8/15/00

Analyst: Joana Ciurash Date Analyzed: 8/17/00 Matrix : Liquid Volume(s) Analyzed: 0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | 0.51   | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: 26 Date: 619100



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: LFR-103 PAI Sample ID : P2002052-002

Test Code: GC/FID

Date Sampled: 8/10/00

Instrument: HP5890A/FID #10

Date Received: 8/15/00

Analyst: Joana Ciurash

Date Analyzed: 8/17/00

Matrix: Liquid

Volume(s) Analyzed:

0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RU Date: Slag(00

02052SVG.RD1- Sample (2)



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### RESULTS OF ANALYSIS

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: MW-11 PAI Sample ID : P2002052-003

Test Code: GC/FID

Date Sampled: 8/10/00

Instrument: HP5890A/FID #10

Analyst: Joana Ciurash

Date Received: 8/15/00 Date Analyzed: 8/17/00

Matrix: Liquid

Volume(s) Analyzed:

0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RG Date: 3/14/00



Air Quality Laboratory A Division of Columbia Analytical Services. Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: B-10-FB PAI Sample ID : P2002052-004

Test Code: GC/FID Instrument: HP5890A/FID #10

Analyst: Joana Ciurash

Matrix: Liquid

Date Sampled: 8/10/00

Date Received: 8/15/00 Date Analyzed: 8/17/00 Volume(s) Analyzed:

 $0.10 \, ml$ 

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RG



Air Quality Laboratory A Division of Columbia Analytical Services. Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: B-10-FB

PAI Sample ID : P2002052-004B

Test Code: GC/FID Date Sampled: 8/10/00 Instrument: HP5890A/FID #10 Date Received: 8/15/00 Analyst: Joana Ciurash Date Analyzed: 8/17/00 Matrix: Liquid 0.10 ml Volume(s) Analyzed:

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: B-10

PAI Sample ID : P2002052-005

Test Code: GC/FID

Date Sampled:

8/10/00

Instrument: HP5890A/FID #10

Date Received:

8/15/00 8/17/00

. Analyst: Joana Ciurash Matrix: Liquid

Date Analyzed:

0.10 ml

Volume(s) Analyzed:

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | 10,000 | 0.50      |
| 74-85-1 | Ethene   | 0.57   | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RG Date: 8/29/00

02052SVG.RD1- Sample (5)

2005 Park Center Drive, State D. Simi Valley, California 93065 • Phone (805) 526-7461 • Fax (805) 526-7261



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: Method Blank PAI Sample ID: P000817-MB

Test Code: GC/FID

Instrument: HP5890A/FID #10

Analyst: Joana Ciurash Matrix: Liquid

Date Sampled:

Date Received:

NA NA

Date Analyzed: 8/17/00

Volume(s) Analyzed:

 $0.10 \, ml$ 

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RG Date: 8 29 (00)

02052SVG.RD1- MBlank

Curtis & Tompkins, Ltd.
Analytical Laboratories, Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510)486-0900 ph
(510)486-0532 fx

Project Number: 146991

Subcontract Lab:

Performance Analytical 2665 Park Center Drive Suite D Simi Valley, CA 93065 (805) 526-7161

Please send report to: Tracy Babjan

Turnaround Time: 5tandord

P2000052

Report Level: II

| Sample ID | Date Sampled Matrix | Analysis | C&T Lab #  |
|-----------|---------------------|----------|------------|
| LFR-3     | 10-AUG-00   Water   | RSK-175  | 146991-001 |
| LFR-103   | 10-AUG-00  Water    | RSK-175  | 146991-002 |
| MW-11     | 10-AUG-00  Water    | RSK-175  | 146991-003 |
| B-10-FB   | 10-AUG-00  Water    | RSK-175  | 146991-004 |
| B-10      | 10-AUG-00  Water    | RSK-175  | 146991-005 |

\*\*\*Please report using Sample ID instead of C&T Lab #.

| Notes:         | RELIN      | QUISHED BY:  |         | RECEIVED BY: | 10-lan (n 0) |
|----------------|------------|--------------|---------|--------------|--------------|
| O2, methane    | Gen Geneth | 8-14-00 Date | Time    | haron Walone | Date/Time    |
| Othano, ethane |            | Date/        | <u></u> | lemp=21°C    | Date/Time    |
| grnand, kindle | L'         |              |         |              |              |
|                |            |              |         |              |              |

Signature on this form constitutes a firm Purchase Order for the services requested above.

# 141699/

## **CHAIN OF CUSTODY / ANALYSES REQUEST FORM**

|                                              |          |                      |                                                                     |                           |                |               |                                       |                                       |            | _       |          |             |         |              |               |              |                   |
|----------------------------------------------|----------|----------------------|---------------------------------------------------------------------|---------------------------|----------------|---------------|---------------------------------------|---------------------------------------|------------|---------|----------|-------------|---------|--------------|---------------|--------------|-------------------|
| Project No.:                                 | 239      | 5,00                 | 0.030                                                               |                           | Project L      | ocation:      | OG                                    | Kla                                   | √g.        | CA      | }        | Date:       | 8/      | 10/08        | ) Se          | rial No.     | :                 |
| Project Name:                                | _        | _                    | <u>പ്പെ</u>                                                         |                           | Field Log      |               |                                       | NXS                                   | •          | 7       |          |             | w-n-n-v |              | l             | <b>1</b> 5   | 2205              |
| Sampler (Signat                              |          |                      | den                                                                 | 425                       |                |               | /:                                    | ኝ<br>ገ                                | <b>3</b> . | AN      | ALYSE    | s <b>"v</b> |         |              | Ş             | mplers:      | cus.              |
|                                              | , 2      | · ·                  | SAMPLES                                                             |                           |                |               | 1 24                                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 700        |         | Sel Park | 37          | /       | ///          | <del></del>   |              |                   |
| SAMPLE NO.                                   | DATE     | TIME                 | LAB SAMPLE<br>NO.                                                   | NO. OF<br>CON-<br>TAINERS | SAMPLE<br>TYPE | \$            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12, 25,<br>18, 25,                    | 20.2       |         | 35° 41   | S ever      | ord (   | AUSH         | RI            | EMARK        | S                 |
| LFR-3<br>LFR-103<br>MW-11                    | 8 Apples | 0910<br>0915<br>1150 |                                                                     | 13                        | Hao            | XXX           | X                                     | X.                                    | X          | XXXX    | X        |             | :       | TPHS         | TEX,          | MTB<br>Solve | E,                |
| B-10-FB                                      |          | 1 <b>330</b><br>1545 |                                                                     | 13                        |                | X             | X                                     | X                                     | ×          | X<br>X  | X<br>X   |             |         | _            | derd.         |              |                   |
| Trip Olenk                                   |          |                      |                                                                     |                           |                |               |                                       |                                       |            |         | X        |             |         | Res<br>5 hac | ultes.        | んび           | stre              |
| PR 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 1        |                      |                                                                     |                           |                |               |                                       | -                                     |            |         |          |             |         | LFR-3        | , mw<br>field | -11, a<br>Fi | nd B 10<br>Itered |
|                                              |          |                      |                                                                     |                           |                |               |                                       |                                       |            |         |          |             |         |              |               |              |                   |
|                                              | N        |                      |                                                                     |                           | d              |               |                                       |                                       |            |         |          |             |         |              |               |              |                   |
| RELINQUISHED I<br>(Signature)                | BY: Male | /                    |                                                                     | DAT<br><b>2</b>           | Ida            | IO 2          | 5                                     | RECEIV<br>(Signa                      |            |         | hli      | Au          | <u></u> |              | DATE<br>8/10  | 1001         | 6Z5               |
| RELINQUISHED (<br>(Signature)                | BY:      | di .                 | har                                                                 | DAT                       |                | TIME<br>16 53 |                                       | RECEIV<br>(Signa                      |            |         | (        | 1700        | ده , نگ | i            | DATE          | ,            | TIME 17. 37       |
| RELINQUISHED (Signature)                     | вү: 🖊    | - •                  |                                                                     | DAT                       | re             | TIME          |                                       | RECEIV<br>(Signa                      |            | ,       | 0        |             | /       |              | DATE          |              | TIME              |
| METHOD OF SHI                                | PMENT:   | Ŋ                    | copie 3                                                             | DAT                       | ΓE             | TIME          |                                       | LAB CO                                | MMENT      | S:      |          |             |         |              |               |              |                   |
| Sample Collecto                              |          | LEVINE               | •FRICKE•RECOI<br>well Street, 12th<br>lle, California 94<br>22-4500 | Floor                     |                |               |                                       | Analytic                              | cal Lab    | oratory | :        | B           | er'     | lce l        | 64            |              |                   |

Shipping Copy (White)

Lab Copy (Yellow)

File Copy (Pink)

Field Copy (Goldenrod)

COC CDR 101596RYI.



# Curtis & Tompkins, Ltd., Analytical Laboratories. Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

#### ANALYTICAL REPORT

Prepared for:

LFR-Levine-Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 06-SEP-00 Lab Job Number: 147064 Project ID: 6895.00.030

roject ID: 6895.00.030 Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of 42



Laboratory Numbers: 147064 Client: LFR-Levine-Fricke Project #: 6895.00.030

Location: Glovatorium

COC#: 7580

Sampled Date: **08/11/00** Received Date: **08/14/00** 

#### **CASE NARRATIVE**

This hardcopy data package contains sample and QC results for seven water samples and a trip blank, which were received from the site referenced above on August 14, 2000. The samples were received intact. All data were faxed to Julie Sharp on August 28, 2000.

#### TVH/BTXE:

High bromofluorobenzene surrogate recovery was observed for sample B-7 (CT# 147064-006), due to hydrocarbons coeluting with the surrogate peak. No analytical problems were encountered.

#### VOCs (EPA 8260):

No analytical problems were encountered.

## General Chemistry:

No analytical problems were encountered.

#### RSK Method 175:

Performance Analytical Inc. in Simi Valley performed the analysis. Please see the Performance Analytical case narrative. No analytical problems were encountered



|           | Gasoline          | by GC/FID CA LU | PT          |
|-----------|-------------------|-----------------|-------------|
| Lab #:    | 147064            | Location:       | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:           | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:       | EPA 8015M   |
| Matrix:   | Water             | Sampled:        | 08/11/00    |
| Units:    | ug/L              | Received:       | 08/14/00    |
| Diln Fac: | 1.000             | Analyzed:       | 08/16/00    |
| Batch#:   | 57721             | <u> </u>        |             |

Field ID:

LFR-4

Lab ID: 147064-003

Type:

SAMPLE

| Analyte                 | Result | RL |  |
|-------------------------|--------|----|--|
| Gasoline C7-C12         | 410 Y  | 50 |  |
| Stoddard Solvent C7-C12 | 220 Y  | 50 |  |

| Surrogate                | *REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 109  | 59-135 |
| Bromofluorobenzene (FID) | 107  | 60-140 |

Field ID:

LFR-2

Lab ID: 147064-005

Type:

SAMPLE

|              | Analyt | .е     | Res | sult |    |                                                | RL |  |
|--------------|--------|--------|-----|------|----|------------------------------------------------|----|--|
| Gasoline C7  | -C12   |        | 1,1 | 100  | ΗΥ | <u>.                                      </u> | 50 |  |
| Stoddard Sol | lvent  | C7-C12 | ` 5 | 590  |    |                                                | 50 |  |

| Surrogate                | *REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 104  | 59-135 |
| Bromofluorobenzene (FID) | 113  | 60-140 |

Field ID:

Type:

B-7 SAMPLE

Lab ID: 147064-006

| Analyte                 | Result    | A)-144 |  |
|-------------------------|-----------|--------|--|
| Gasoline C7-C12         | 6,800 H Y | 50     |  |
| Stoddard Solvent C7-C12 | 3,700     | 50     |  |

| Surrogate                       | RREC Limits        |  |
|---------------------------------|--------------------|--|
| Trifluorotoluene (FID)          | 103 59-135         |  |
| <u>Bromofluorobenzene</u> (FID) | 234 * >LR b 60-140 |  |

Field ID: Type:

GW-3 SAMPLE

Lab ID: 147064-007

| Analy            | .e Re     | sult   | RI |  |
|------------------|-----------|--------|----|--|
| Gasoline C7-C12  |           | 77 Y Z | 50 |  |
| Stoddard Solvent | C7-C12 ND |        | 50 |  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 114  | 59-135 |
| Bromofluorobenzene (FID) | 114  | 60-140 |

\* = Value outside of QC limits; see narrative
H = Heavier hydrocarbons contributed to the quantitation
Y = Sample exhibits fuel pattern which does not resemble standard
Z = Sample exhibits unknown single peak or peaks
b = See narrative
ND = Not Detected

RL = Reporting Limit >LR= Response exceeds instrument's linear range Page 1 of 2

Sample Name : 147064-003,57721

FileName : G:\GC19\DATA\229X011.raw

Method : TVHBTXE

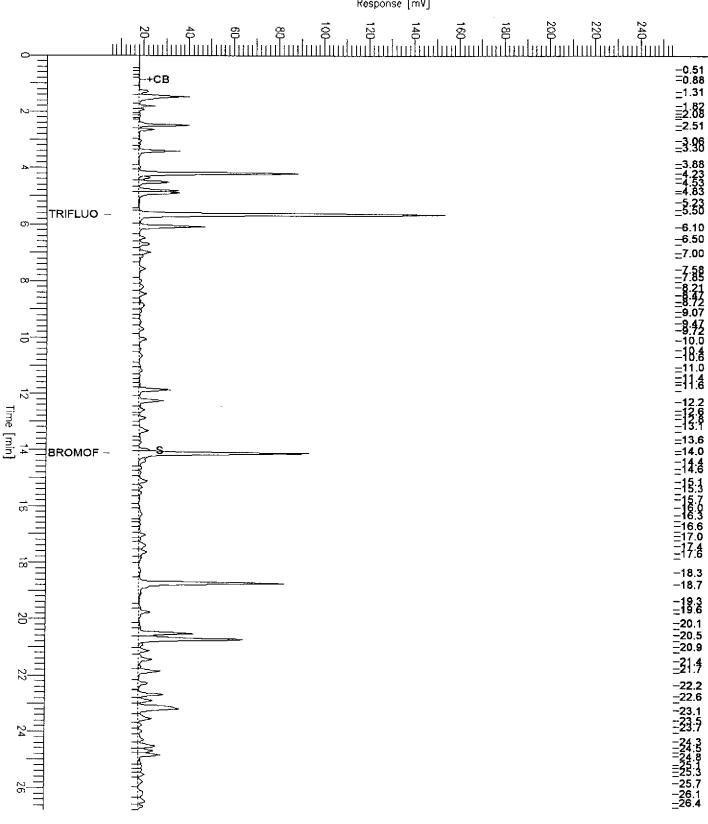
Start Time : 0.00 min

Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 5 mV

Sample #:

Page 1 of 1


Date: 8/17/00 12:03 PM

Time of Injection: 8/16/00 05:34 PM

High Point : 255.37 mV

Low Point : 5.37 mV Plot Scale: 250.0 mV





Sample Name: 147064-005,57721

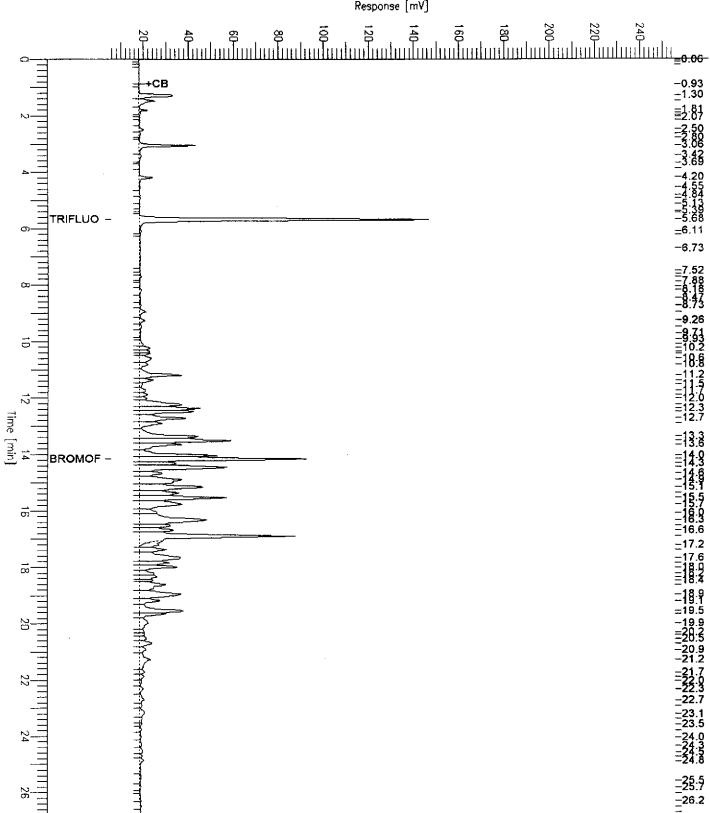
FileName : G:\GC19\DATA\229X012.raw

: TVHBTXE Method Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 5 mV

Sample #:

Date: 8/16/00 06:37 PM


Time of Injection: 8/16/00 06:10 PM

High Point : 255.40 mV

Page 1 of 1

Low Point : 5.40 mV Plot Scale: 250.0 mV





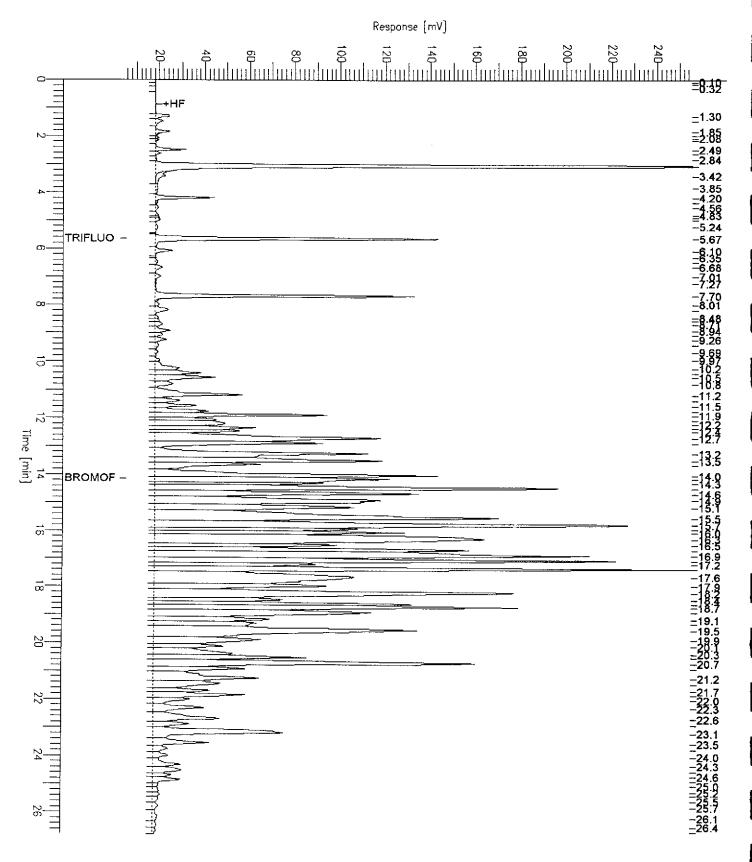
Sample Name: 147064-006,57721

FileName : G:\GC19\DATA\229X013.raw

Method : TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min Plot Offset: 5 mV


Sample #:

Page 1 of 1

Date: 8/17/00 12:03 PM

Time of Injection: 8/16/00 06:45 PM

Low Point : 5.39 mV High Point: 255,39 mV



Sample Name: 147064-007,57721

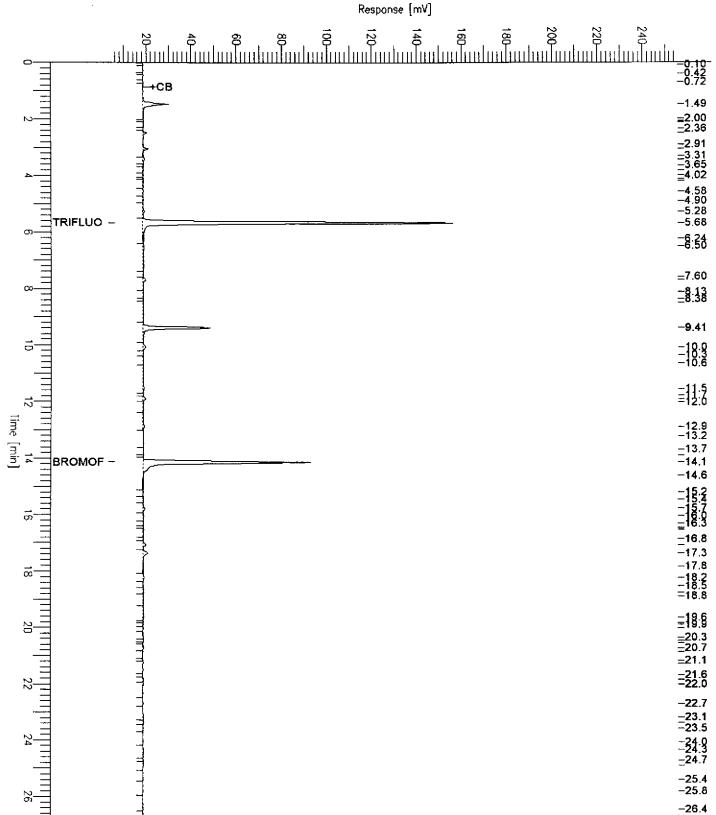
FileName : G:\GC19\DATA\229X018.raw

Method : TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min

Plot Offset: 6 mV


Sample #:

Page 1 of 1

Date: 8/16/00 10:11 PM

Time of Injection: 8/16/00 09:44 PM

Low Point : 5.76 mV High Point : 255.76 mV



Sample Name : CCV/LCS, QC122923, 57721, 00WS9465, 5/5000

FileName : G:\GC19\DATA\229X004.raw

Method

Scale Factor: -1.0

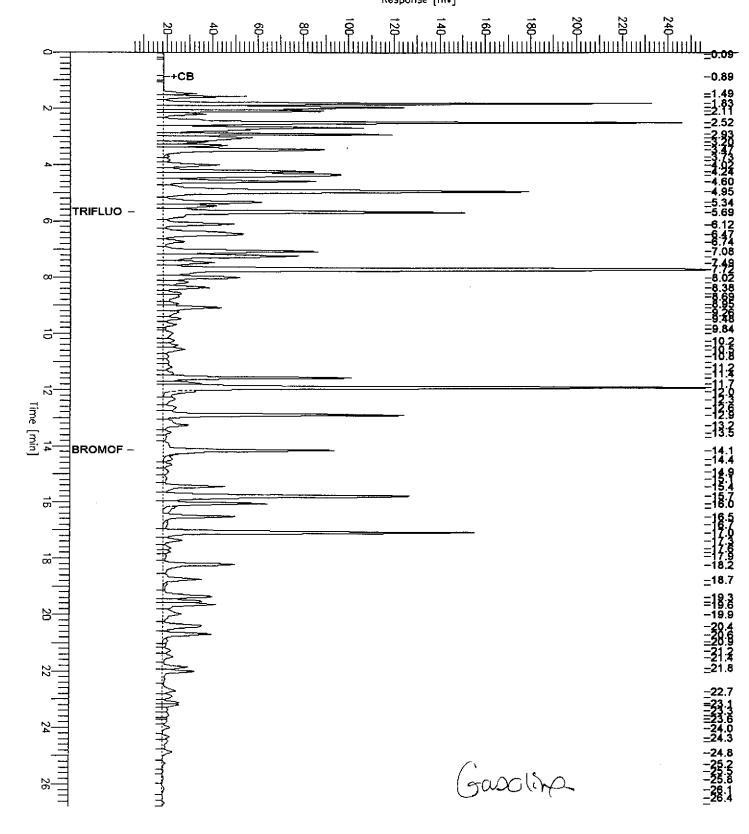
: TVHBTXE

Start Time : 0.00 min End Time : 26.80 min

Plot Offset: 6 mV

Sample #:

Page 1 of 1


Date: 8/16/00 01:36 PM

Time of Injection: 8/16/00 01:09 PM

Low Point : 5.78 mV

High Point : 255.78 mV





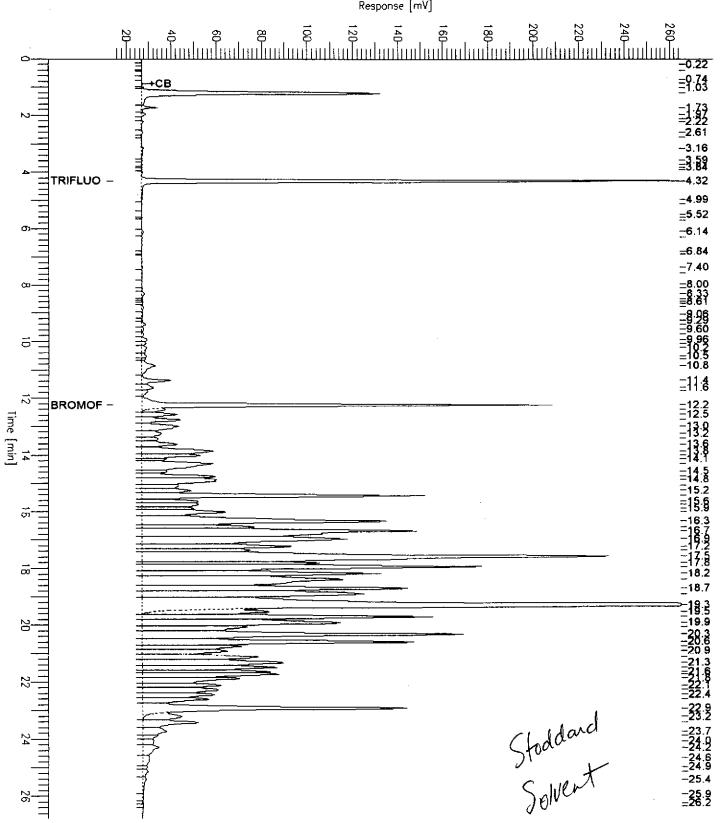
Sample Name : CCV, 97WS4980, 40466

: G:\GC19\DATA\113X030.raw FileName Method : TVHBTXE

Start Time : 0.00 min Scale Factor: -1.0

End Time : 26.80 min

Plot Offset: 14 mV


Page 1 of 1 Sample #: STODD

Date: 4/24/98 08:16 PM

Time of Injection: 4/24/98 07:49 PM

Low Point : 14.15 mV High Point : 264.15 mV







|           | Gasoline          | by GC/FID CA LU | PT          |
|-----------|-------------------|-----------------|-------------|
| Lab #:    | 147064            | Location:       | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:           | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:       | EPA 8015M   |
| Matrix:   | Water             | Sampled:        | 08/11/00    |
| Units:    | ug/L              | Received:       | 08/14/00    |
| Diln Fac: | 1.000             | Analyzed:       | 08/16/00    |
| Batch#:   | 57721             | <u> </u>        |             |

Type:

BLANK

Lab ID:

QC122925

| Analyte                 | Result | RL |  |
|-------------------------|--------|----|--|
| Gasoline C7-C12         | ND     | 50 |  |
| Stoddard Solvent C7-C12 | . ND   | 50 |  |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 101  | 59-135 |  |
| Bromofluorobenzene (FID) | 100  | 60-140 |  |

\* = Value outside of QC limits; see narrative
H = Heavier hydrocarbons contributed to the quantitation
Y = Sample exhibits fuel pattern which does not resemble standard
Z = Sample exhibits unknown single peak or peaks
b = See narrative
ND = Not Detected
RL = Reporting Limit

RL = Reporting Limit >LR= Response exceeds instrument's linear range Page 2 of 2



|           | Gasoline          | ∍ by GC/FID CA LU | JPT         |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 147064            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:         | EPA 8015M   |
| Type:     | LCS               | Diln Fac:         | 1.000       |
| Lab ID:   | QC122923          | Batch#:           | 57721       |
| Matrix:   | Water             | Analyzed:         | 08/16/00    |
| Units:    | ug/L              | _                 |             |

| Analyte         | Spiked | Result | %REC | to the same and the second and the second se |
|-----------------|--------|--------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gasoline C7-C12 | 2,000  | 2,018  | 101  | 73-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 123  | 59-135 |
| Bromofluorobenzene (FID) | 127  | 60-140 |



|             | Gasoline          | B by GC/FID CA LU | JFT         |
|-------------|-------------------|-------------------|-------------|
| Lab #:      | 147064            | Location:         | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#:   | 6895.00.030       | Analysis:         | EPA 8015M   |
| Field ID:   | ZZZZZZZZZZ        | Batch#:           | 57721       |
| MSS Lab ID: | 147023-001        | Sampled:          | 08/10/00    |
| Matrix:     | Water             | Received:         | 08/10/00    |
| Units:      | ug/L              | Analyzed:         | 08/17/00    |
| Diln Fac:   | 1.000             | -                 |             |

Type: MS

Lab ID: QC122926

| Analyte         | MSS Result | Spiked | Result | %REC | Limits |
|-----------------|------------|--------|--------|------|--------|
| Gasoline C7-C12 | 30.48      | 2,000  | 2,161  | 107  | 65-131 |

| Bromofluorobenzene  | (FID) 1 | 40 €   | 60-140 |
|---------------------|---------|--------|--------|
| Trifluorotoluene (F | FID) 1: | 29 5   | 59-135 |
| Surrogate           | 2       | &REC I | Limits |

Type:

MSD

Lab ID: QC122927

| Analyte         | Spiked | Result | %REC | Limits | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 2,000  | 1,969  | 97   | 65-131 | 9   | 20  |

|                          | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 125  | 59-135 |
| Bromofluorobenzene (FID) | 137  | 60-140 |



|           | Benzene, Toluer   | ie, Ethylbenzene, | Xylenes     |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 147064            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analys <u>is:</u> | EPA 8021B   |
| Matrix:   | Water             | Batch#:           | 57721       |
| Units:    | ug/L              | Sampled:          | 08/11/00    |
| Diln Fac: | 1.000             | Received:         | 08/14/00    |

Field ID: Type:

LFR-4 SAMPLE Lab ID: Analyzed:

147064-003 08/17/00

| Analyte                 | Result | RL   |  |
|-------------------------|--------|------|--|
| MTBE                    | 5.1    | 2.0  |  |
| Benzene                 | 11     | 0.50 |  |
| Toluene                 | ND     | 0.50 |  |
| Ethylbenzene            | ND     | 0.50 |  |
| m,p-Xylenes<br>o-Xylene | 1.1 C  | 0.50 |  |
| o-Xylene                | 0.52 C | 0.50 |  |

| Surrogate                | %RBC | Limite |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 109  | 56-142 |  |
| Bromofluorobenzene (PID) | 115  | 55-149 |  |

Field ID: Type:

LFR-2 SAMPLE Lab ID: Analyzed:

147064-005 08/17/00

| Analyte      | Result | RL   |  |
|--------------|--------|------|--|
| MTBE         | 2.2    | 2.0  |  |
| Benzene      | 1.8    | 0.50 |  |
| Toluene      | ND     | 0.50 |  |
| Ethylbenzene | ND     | 0.50 |  |
| m,p-Xylenes  | ND     | 0.50 |  |
| o-Xylene     | 1,3 C  | 0.50 |  |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 105  | 56-142 |
| Bromofluorobenzene (PID) | 114  | 55-149 |

Field ID: Type:

B-7 SAMPLE Lab ID: Analyzed:

147064-006 08/17/00

| Analyte                 | Result | RL   |   |
|-------------------------|--------|------|---|
| MTBE                    | 20     | 2.0  |   |
| Benzene                 | 7.7    | 0.50 |   |
| Toluene                 | 47     | 0.50 |   |
| Ethylbenzene            | 7.0    | 0.50 | Ì |
|                         | 35     | 0.50 |   |
| m,p-Xylenes<br>o-Xylene | 30 C   | 0.50 |   |

| Surrogate                | %REC  | Limits |
|--------------------------|-------|--------|
| Trifluorotoluene (PID)   | 109   | 56-142 |
| Bromofluorobenzene (PID) | 178 * | 55-149 |

\* = Value outside of QC limits; see narrative
C = Presence confirmed, but confirmation concentration differed by more than a factor of two
b = See narrative

ND = Not Detected
RL = Reporting Limit
Page 1 of 2



|           | Benzene, Toluer   | ie, Ethylbenzene, | Xylenes     |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 147064            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895,00.030       | Analysis:         | EPA 8021B   |
| Matrix:   | Water             | Batch#:           | 57721       |
| Units:    | ug/L              | Sampled:          | 08/11/00    |
| Diln Fac: | 1.000             | Received:         | 08/14/00    |

Field ID: Type:

GW-3 SAMPLE

Lab ID: Analyzed:

147064-007 08/16/00

| Analyte      | Result |      |                                         |
|--------------|--------|------|-----------------------------------------|
| MTBE         | ND     | 2.0  | *************************************** |
| Benzene      | ND     | 0.50 |                                         |
| Toluene      | ND     | 0.50 |                                         |
| Ethylbenzene | ND     | 0.50 |                                         |
| m,p-Xylenes  | 0.51   | 0.50 |                                         |
| o-Xylene     | ND     | 0.50 |                                         |

Surrogate
Trifluorotoluene (PID) REC Limits 112 115 56-142 55-149 Bromofluorobenzene (PID)

Type: Lab ID:

BLANK QC122925 Analyzed:

08/16/00

| Axalyte         | Result   | RH   |
|-----------------|----------|------|
| MTBE            | ND       | 2.0  |
| Benzene         | ND       | 0.50 |
| Toluene         | ND       | 0.50 |
| Ethylbenzene    | ND       | 0.50 |
| m,p-Xylenes     | ND       | 0.50 |
| <u>o-Xylene</u> | <u> </u> | 0.50 |

| Surrogate                | *REC | Limite |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (PID)   | 100  | 56-142 |  |
| Bromofluorobenzene (PID) | 99   | 55-149 |  |

\* = Value outside of QC limits; see narrative
2 = Presence confirmed, but confirmation concentration differed by fore than a factor of two

5 = See narrative
ND = Not Detected
RL = Reporting Limit
Page 2 of 2



|           |                   | ne, Ethylbenzene, | Xylenes     |
|-----------|-------------------|-------------------|-------------|
| Lab #:    | 147064            | Location:         | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:             | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:         | EPA 8021B   |
| Type:     | LCS               | Diln Fac:         | 1.000       |
| Lab ID:   | QC122924          | Batch#:           | 57721       |
| Matrix:   | Water             | Analyzed:         | 08/16/00    |
| Units:    | ug/L              | <u>*</u>          |             |

| Analyte      | Spiked | Result | %RE | C Limits |
|--------------|--------|--------|-----|----------|
| MTBE         | 20.00  | 18.36  | 92  | 51~125   |
| Benzene      | 20.00  | 16.49  | 82  | 67-117   |
| Toluene      | 20.00  | 16.58  | 83  | 69-117   |
| Ethylbenzene | 20.00  | 17.13  | 86  | 68-124   |
| m,p-Xylenes  | 40.00  | 36.52  | 91  | 70-125   |
| o-Xylene     | 20.00  | 17.27  | 86  | 65-129   |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (PID)   | 99   | 56-142 |
| Bromofluorobenzene (PID) | 101  | 55-149 |



|           | Purgeable         | Halocarbons by 6 | 3C/MB       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 147064            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | TB-2              | Batch#:          | 57881       |
| Lab ID:   | 147064-001        | Sampled:         | 08/11/00    |
| Matrix:   | Water             | Received:        | 08/14/00    |
| Units:    | ug/L              | Analyzed:        | 08/23/00    |
| Diln Fac: | 1.000             | -                | •           |

| Analyte                   | Result | RL. |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Bromofluorobenzene    | 99   | 80-115 |
|-----------------------|------|--------|
| Toluene-d8            | 101  | 80-110 |
| 1,2-Dichloroethane-d4 | 107  | 78-123 |
| Surrogate             | ŧrec | Limits |

ND = Not Detected RL = Reporting Limit

Page 1 of 1



|           | Purgeable         | Halocarbons by 6 | GC/M8       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 147064            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | LFR-4             | Batch#:          | 57881       |
| Lab ID:   | 147064-003        | Sampled:         | 08/11/00    |
| Matrix:   | Water             | Received:        | 08/14/00    |
| Units:    | ug/L              | Analyzed:        | 08/23/00    |
| Diln Fac: | 1.000             | •                |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | 1.2    | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 108   | 78-123 |
| Toluene-d8            | 100   | 80-110 |
| Bromofluorobenzene    | 96    | 80-115 |

ND = Not Detected RL = Reporting Limit
Page 1 of 1



|           | Purgeable         | Malocarbons by G | IC/MS       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 147064            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | LFR-2             | Batch#:          | 57881       |
| Lab ID:   | 147064-005        | Sampled:         | 08/11/00    |
| Matrix:   | Water             | Received:        | 08/14/00    |
| Units:    | ug/L              | Analyzed:        | 08/23/00    |
| Diln Fac: | 1.000             |                  | 00,20,00    |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | 4.5    | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | 35     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

|                       |       | · · · · · · · · · · · · · · · · · · · |
|-----------------------|-------|---------------------------------------|
| Bromofluorobenzene    | 98    | 80-115                                |
| Toluene-d8            | 100   | 80-110                                |
| 1,2-Dichloroethane-d4 | 109   | 78-123                                |
| Surrogate             | \$REC | Limits                                |

ND = Not Detected RL = Reporting Limit
Page 1 of 1



|               | Purgeable         | Halocarbons by | IC/NB       |
|---------------|-------------------|----------------|-------------|
| Lab <b>#:</b> | 147064            | Location:      | Glovatorium |
| Client:       | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#:     | 6895.00.030       | Analysis:      | EPA 8260B   |
| Field ID:     | B-7               | Batch#:        | 57905       |
| Lab ID:       | 147064-006        | Sampled:       | 08/11/00    |
| Matrix:       | Water             | Received:      | 08/14/00    |
| Units:        | ug/L              | Analyzed:      | 08/24/00    |
| Diln Fac:     | 6.250             | •              |             |

| Anslyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 6.3 |
| Chloromethane             | ND     | 6.3 |
| Vinyl Chloride            | ND     | 3.1 |
| Bromomethane              | ND     | 13  |
| Chloroethane              | ND     | 6.3 |
| Trichlorofluoromethane    | ND     | 3.1 |
| Freon 113                 | ND     | 31  |
| 1,1-Dichloroethene        | ND     | 3.1 |
| Methylene Chloride        | ND     | 31  |
| trans-1,2-Dichloroethene  | 4.8    | 3.1 |
| 1,1-Dichloroethane        | ND     | 3.1 |
| cis-1,2-Dichloroethene    | 860    | 3.1 |
| Chloroform                | ND     | 3.1 |
| 1,1,1-Trichloroethane     | ND     | 3.1 |
| Carbon Tetrachloride      | ND     | 3.1 |
| 1,2-Dichloroethane        | ND     | 3.1 |
| Trichloroethene           | ND     | 3.1 |
| 1,2-Dichloropropane       | ND     | 3.1 |
| Bromodichloromethane      | ND     | 3.1 |
| cis-1,3-Dichloropropene   | ND     | 3.1 |
| trans-1,3-Dichloropropene | ND     | 3.1 |
| 1,1,2-Trichloroethane     | ND     | 3.1 |
| Tetrachloroethene         | ND     | 3.1 |
| Dibromochloromethane      | ND     | 3.1 |
| Chlorobenzene             | ND     | 3.1 |
| Bromoform                 | ND     | 3.1 |
| 1,1,2,2-Tetrachloroethane | ND     | 3.1 |
| 1,3-Dichlorobenzene       | ND     | 3.1 |
| 1,4-Dichlorobenzene       | ND     | 3.1 |
| 1,2-Dichlorobenzene       | ND     | 3.1 |

| Surrogate             | irec | Lisits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 109  | 78-123 |
| Toluene-d8            | 101  | 80-110 |
| Bromofluorobenzene    | 93   | 80-115 |

ND = Not Detected

RL = Reporting Limit
Page 1 of 1



|           | Purgeable         | Halocarbons by G | IC/MS       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 147064            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Field ID: | GW-3              | Batch#:          | 57905       |
| Lab ID:   | 147064-007        | Sampled:         | 08/11/00    |
| Matrix:   | Water             | Received:        | 08/14/00    |
| Units:    | ug/L              | Analyzed:        | 08/24/00    |
| Diln Fac: | 1.000             | -                |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | 12     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | 2.8    | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | 68     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | *REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 108  | 78-123 |  |
| Toluene-d8            | 101  | 80-110 |  |
| Bromofluorobenzene    | 97   | 80-115 |  |

ND = Not Detected

RL = Reporting Limit
Page 1 of 1



|           | Purgesble         | Halocarbons by 6 | кс/мв                                 |
|-----------|-------------------|------------------|---------------------------------------|
| Lab #:    | 147064            | Location:        | Glovatorium                           |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030                              |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B                             |
| Type:     | BLANK             | Diln Fac:        | 1.000                                 |
| Lab ID:   | QC123577          | Batch#:          | 57881                                 |
| Matrix:   | Water             | Analyzed:        | 08/23/00                              |
| Units:    | ug/L              | -                | · · · · · · · · · · · · · · · · · · · |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | UREC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 80   | 78-123 |
| Toluene-d8            | 101  | 80-110 |
| Bromofluorobenzene    | 94   | 80-115 |

ND = Not Detected

RL = Reporting Limit Page 1 of 1



|           | Purgeable         | Halocarbons by | IC/NS       |
|-----------|-------------------|----------------|-------------|
| Lab #:    | 147064            | Location:      | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#: | 6895.00,030       | Analysis:      | EPA 8260B   |
| Type:     | BLANK             | Diln Fac:      | 1.000       |
| Lab ID:   | QC123665          | Batch#:        | 57905       |
| Matrix:   | Water             | Analyzed:      | 08/24/00    |
| Units:    | ug/L              | •              | • •         |

| Analyte                   | Result | RL. |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | 1 REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 109   | 78-123 |
| Toluene-d8            | 99    | 80-110 |
| Bromofluorobenzene    | 96    | 80-115 |

ND = Not Detected RL = Reporting Limit Page 1 of 1



|           | Purgeable         | Halocarbons by 6 | ic/us       |
|-----------|-------------------|------------------|-------------|
| Lab #:    | 147064            | Location:        | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:            | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:        | EPA 8260B   |
| Type:     | BLANK             | Diln Fac:        | 1.000       |
| Lab ID:   | QC123666          | Batch#:          | 57905       |
| Matrix:   | Water             | Analyzed:        | 08/24/00    |
| Units:    | ug/L              | -                |             |

| Analyte                   | Result | RL  |
|---------------------------|--------|-----|
| Freon 12                  | ND     | 1.0 |
| Chloromethane             | ND     | 1.0 |
| Vinyl Chloride            | ND     | 0.5 |
| Bromomethane              | ND     | 2.0 |
| Chloroethane              | ND     | 1.0 |
| Trichlorofluoromethane    | ND     | 0.5 |
| Freon 113                 | ND     | 5.0 |
| 1,1-Dichloroethene        | ND     | 0.5 |
| Methylene Chloride        | ND     | 5.0 |
| trans-1,2-Dichloroethene  | ND     | 0.5 |
| 1,1-Dichloroethane        | ND     | 0.5 |
| cis-1,2-Dichloroethene    | ND     | 0.5 |
| Chloroform                | ND     | 0.5 |
| 1,1,1-Trichloroethane     | ND     | 0.5 |
| Carbon Tetrachloride      | ND     | 0.5 |
| 1,2-Dichloroethane        | ND     | 0.5 |
| Trichloroethene           | ND     | 0.5 |
| 1,2-Dichloropropane       | ND     | 0.5 |
| Bromodichloromethane      | ND     | 0.5 |
| cis-1,3-Dichloropropene   | ND     | 0.5 |
| trans-1,3-Dichloropropene | ND     | 0.5 |
| 1,1,2-Trichloroethane     | ND     | 0.5 |
| Tetrachloroethene         | ND     | 0.5 |
| Dibromochloromethane      | ND     | 0.5 |
| Chlorobenzene             | ND     | 0.5 |
| Bromoform                 | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane | ND     | 0.5 |
| 1,3-Dichlorobenzene       | ND     | 0.5 |
| 1,4-Dichlorobenzene       | ND     | 0.5 |
| 1,2-Dichlorobenzene       | ND     | 0.5 |

| Surrogate             | <b>VREC</b> | Limits |
|-----------------------|-------------|--------|
| 1,2-Dichloroethane-d4 | 105         | 78-123 |
| Toluene-d8            | 102         | 80-110 |
| Bromofluorobenzene    | 98          | 80-115 |

ND = Not Detected RL = Reporting Limit
Page 1 of 1



|                                | Purqeable                                  | Halocarbons by                  | HC/MB                                |
|--------------------------------|--------------------------------------------|---------------------------------|--------------------------------------|
| Lab #:<br>Client:<br>Project#: | 147064<br>LFR-Levine-Fricke<br>6895.00.030 | Location:<br>Prep:<br>Analysis: | Glovatorium<br>EPA 5030<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                     | Batch#:<br>Analyzed:            | 57881<br>08/23/00                    |

Type:

BS

Lab ID:

QC123575

| Analyte            | Spiked | Result | *REC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 50.00  | 51.36  | 103  | 74-132 |
| Trichloroethene    | 50.00  | 55.57  | 111  | 80-119 |
| Chlorobenzene      | 50.00  | 54.12  | 108  | 80-117 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 105   | 78-123 |
| Toluene-d8            | 99    | 80-110 |
| Bromofluorobenzene    | 95    | 80-115 |

Type:

BSD

Lab ID:

QC123576

| Analyte            | Spiked | Result | • • • • • • • • • • • • • • • • • • • | Limita | (1.5) | 88 W.C |
|--------------------|--------|--------|---------------------------------------|--------|-------|--------|
| 1,1-Dichloroethene | 50.00  | 49.55  | 99                                    | 74-132 | 4     | 20     |
| Trichloroethene    | 50.00  | 53.89  | 108                                   | 80-119 | 3     | 20     |
| Chlorobenzene      | 50.00  | 54.01  | 108                                   | 80-117 | 0     | 20     |

| 1                     |      |          |
|-----------------------|------|----------|
| Bromofluorobenzene    | 95   | 80-115   |
| Toluene-d8            | 100  | 80-110   |
| 1,2-Dichloroethane-d4 | 104  | 78-123   |
| Surrogate             | SREC | C Limits |



|           | Purgeable         | Halocarbons by | GC/MB       |
|-----------|-------------------|----------------|-------------|
| Lab #:    | 147064            | Location:      | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#: | 6895.00.030       | Analysis:      | EPA 8260B   |
| Type:     | LCS               | Diln Fac:      | 1.000       |
| Lab ID:   | QC123664          | Batch#:        | 57905       |
| Matrix:   | Water             | Analyzed:      | 08/24/00    |
| Units:    | ug/L              |                |             |

| Analyte            | Spiked | Result | RREC | Limits |
|--------------------|--------|--------|------|--------|
| 1,1-Dichloroethene | 50.00  | 50.68  | 101  | 74-132 |
| Trichloroethene    | 50.00  | 57.26  | 115  | 80-119 |
| Chlorobenzene      | 50.00  | 55.09  | 110  | 80-117 |

| Surrogate             | \$REC | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 106   | 78-123 |
| Toluene-d8            | 101   | 80-110 |
| Bromofluorobenzene    | 94    | 80-115 |



|             | Purgeable         | Halocarbons by | ic/ne       |
|-------------|-------------------|----------------|-------------|
| Lab #:      | 147064            | Location:      | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:          | EPA 5030    |
| Project#:   | 6895.00.030       | Analysis:      | EPA 8260B   |
| Field ID:   | ZZZZZZZZZZ        | Batch#:        | 57905       |
| MSS Lab ID: | 147111-001        | Sampled:       | 08/15/00    |
| Matrix:     | Water             | Received:      | 08/17/00    |
| Units:      | uġ/L              | Analyzed:      | 08/24/00    |
| Diln Fac:   | 1.000             |                |             |

Type:

MS

Lab ID:

QC123667

| Analyte            | MSS Result | Spikeđ | Result | <b>AREC</b> | Limits |
|--------------------|------------|--------|--------|-------------|--------|
| 1,1-Dichloroethene | <0.5000    | 50.00  | 50.36  | 101         | 70-132 |
| Trichloroethene    | <0.5000    | 50.00  | 55.30  | 111         | 62-137 |
| Chlorobenzene      | <0.5000    | 50.00  | 55.14  | 110         | 80-117 |

| Surrogate             | <b>SREC</b> | Limits |
|-----------------------|-------------|--------|
| 1,2-Dichloroethane-d4 | 106         | 78-123 |
| Toluene-d8            | 99          | 80-110 |
| Bromofluorobenzene    | 96          | 80-115 |

Type:

MSD

Lab ID:

QC123668

| Analyte            | Spiked | Result | 1REC | Limits | RPL | Lie |
|--------------------|--------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 50.00  | 48.87  | 98   | 70-132 | 3   | 20  |
| Trichloroethene    | 50.00  | 54.87  | 110  | 62-137 | 1   | 20  |
| Chlorobenzene      | 50.00  | 55.09  | 110  | 80-117 | 0   | 20  |

| Surrogate             | 8REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 106  | 78-123 |
| Toluene-d8            | 103  | 80-110 |
| Bromofluorobenzene    | 94   | 80-115 |



| \$100 000 000 000 000 000 000 000 000 000 |                   | Alkalinity |             |
|-------------------------------------------|-------------------|------------|-------------|
| Lab #:                                    | 147064            | Location:  | Glovatorium |
| Client:                                   | LFR-Levine-Fricke | Prep:      | METHOD      |
| Project#:                                 | 6895.00.030       | Analysis:  | EPA 310,1   |
| Matrix:                                   | Water             | Sampled:   | 08/11/00    |
| Units:                                    | mg/L              | Received:  | 08/14/00    |
| Diln Fac:                                 | 1.000             | Analyzed:  | 08/21/00    |
| Batch#:                                   | 57825             |            |             |

Field ID:

LFR-4 SAMPLE Lab ID:

147064-003

Type: Analyte Result Alkalinity, Bicarbonate Alkalinity, Carbonate Alkalinity, Hydroxide Alkalinity, Total as CaCO3 1.0 630 ND

1.0 ND 630 1.0

Field ID:

LFR-2 SAMPLE

Lab ID:

147064-005

Type:

| Analyte                    | Result | RL  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
|----------------------------|--------|-----|---------------------------------------------------------------------------------------------|
| Alkalinity, Bicarbonate    | 590    | 1.0 |                                                                                             |
| Alkalinity, Carbonate      | ND     | 1.0 |                                                                                             |
| Alkalinity, Hydroxide      | ND     | 1.0 |                                                                                             |
| Alkalinity, Total as CaCO3 | 590    | 1.0 |                                                                                             |

Field ID: Type:

B-7 SAMPLE Lab ID:

147064-006

Result Analyte 1.0 1.0 1.0 1.0 Alkalinity, Bicarbonate 760 Alkalinity, Carbonate
Alkalinity, Hydroxide
Alkalinity, Total as CaCO3 ND ND 760

Field ID:

Туре :

GW-3 SAMPLE

Lab ID:

147064-007

| 00000000000000000000000000000000000000 | Analyte             | Result | RL  | 23.000.000 |
|----------------------------------------|---------------------|--------|-----|------------|
| Alkalin:                               | ity, Bicarbonate    | 340    | 1.0 |            |
| Alkalin                                | ity, Carbonate      | ND     | 1.0 |            |
| Alkalin:                               | ity, Hydroxide      | ND     | 1.0 |            |
| Alkalin:                               | ity, Total as CaCO3 | 340    | 1.0 |            |

Type:

BLANK

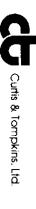
Lab ID:

QC123374

| Anal            | yte      | Result | RL  |
|-----------------|----------|--------|-----|
|                 | arbonate | ND     | 1.0 |
| Alkalinity, Car | bonate   | ND     | 1.0 |
| Alkalinity, Hyd | roxide   | ND     | 1.0 |
| Alkalinity, Tot |          | ND     | 1.0 |

ND = Not Detected RL = Reporting Limit Page 1 of 1




|           | Alk                        | alinity   |             |
|-----------|----------------------------|-----------|-------------|
| Lab #:    | 147064                     | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke          | Prep:     | METHOD      |
| Project#: | 6895.00.030                | Analysis: | EPA 310.1   |
| Analyte:  | Alkalinity, Total as CaCO3 | Units:    | mg/L        |
| Type:     | LCS                        | Diln Fac: | 1.000       |
| Lab ID:   | QC123375                   | Batch#:   | 57825       |
| Matrix:   | Water                      | Analyzed: | 08/21/00    |

| Spiked | Result | %RE( | l Limits |  |
|--------|--------|------|----------|--|
| 200.0  | 192.4  | 96   | 80-110   |  |

|             |                            | Alkalinity |             |
|-------------|----------------------------|------------|-------------|
| Lab #:      | 147064                     | Location:  | Glovatorium |
| Client:     | LFR-Levine-Fricke          | Prep:      | METHOD      |
| Project#:   | 6895.00.030                | Analysis:  | EPA 310.1   |
| Analyte:    | Alkalinity, Total as CaCO3 | Diln Fac:  | 1.000       |
| Field ID:   | GW-3                       | Batch#:    | 57825       |
| MSS Lab ID: | 147064-007                 | Sampled:   | 08/11/00    |
| Matrix:     | Water                      | Received:  | 08/14/00    |
| Units:      | mg/L                       | Analyzed:  | 08/21/00    |

| Тур | ∍ Lab ID | MSS Result | Spiked | Result | %REC | : Limits RP | D Lim |
|-----|----------|------------|--------|--------|------|-------------|-------|
| MS  | QC123376 | 341.2      | 200.0  | 526.7  | 93   | 69-112      |       |
| MSD | QC123377 |            | 200.0  | 538.2  | 98   | 69-112 2    | 20    |

RPD= Relative Percent Difference Page 1 of 1





|           |                   | Chloride  |             |
|-----------|-------------------|-----------|-------------|
| Lab #:    | 147064            | Location: | Glovatorium |
| Client:   | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#: | 6895.00.030       | Analysis: | EPA 300.0   |
| Analyte:  | Chloride          | Sampled:  | 08/11/00    |
| Matrix:   | Water             | Received: | 08/14/00    |
| Units:    | mg/L              | Analyzed: | 08/17/00    |
| Batch#:   | 57757             | <u> </u>  |             |

| Field ID | Type   | Lab ID     | Re | sult | RL   | Diln Fac |  |
|----------|--------|------------|----|------|------|----------|--|
| LFR-4    | SAMPLE | 147064-003 |    | 71   | 4.0  | 20.00    |  |
| LFR-2    | SAMPLE | 147064-005 |    | 33   | 4.0  | 20.00    |  |
| B-7      | SAMPLE | 147064-006 |    | 39   | 4.0  | 20.00    |  |
| GW-3     | SAMPLE | 147064-007 |    | 25   | 4.0  | 20.00    |  |
|          | BLANK  | QC123062   | ND |      | 0.20 | 1.000    |  |



|             |                   | Chloride  |             |
|-------------|-------------------|-----------|-------------|
| Lab #:      | 147064            | Location: | Glovatorium |
| Client:     | LFR-Levine-Fricke | Prep:     | METHOD      |
| Project#:   | 6895.00.030       | Analysis: | EPA 300.0   |
| Analyte:    | Chloride          | Batch#:   | 57757       |
| Field ID:   | ZZZZZZZZZZ        | Sampled:  | 08/16/00    |
| MSS Lab ID: | 147094-001        | Received: | 08/16/00    |
| Matrix:     | Water             | Analyzed: | 08/17/00    |
| Units:      | mg/L              |           |             |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim | Diln Fac |
|------|----------|------------|--------|--------|------|--------|-----|-----|----------|
| BS   | QC123063 |            | 10.00  | 9.610  | 96   | 90-110 |     |     | 1.000    |
| BSD  | QC123064 |            | 10.00  | 9.550  | 95   | 90-110 | 1   | 20  | 1.000    |
| MS   | QC123065 | 19.16      | 50.00  | 67.98  | 98   | 80-120 |     |     | 10.00    |
| MSD  | QC123066 |            | 50.00  | 68.34  | 98   | 80-120 | 1   | 20  | 10.00    |



Air Quality Laboratory
A Division of Columbia Analytical Services, Inc.
An Employee Owned Company

#### LABORATORY REPORT

| $C_{1}$ | ŀ | ent: |
|---------|---|------|
|         | и | en i |

CURTIS & TOMPKINS, LTD.

Date of Report:

09/01/00

Address:

2323 Fifth Street

Date Received:

08/16/00

Berkeley, CA 94710

PAI Project No:

P2002063

Contact:

Ms. Tracy Babjar

Purchase Order:

Verbal

Client Project ID: #147064

Five (5) Liquid Samples labeled:

"LFR-1"

"LFR-4"

"LFR-2"

"B-7"

"GW-3"

The samples were received at the laboratory under chain of custody on August 16, 2000. The samples were received intact. The dates of analyses are indicated on the attached data sheets.

#### Carbon Dioxide Analysis

The samples were analyzed for Carbon dioxide according to modified RSK Method 175 using a gas chromatograph equipped with a thermal conductivity detector (TCD).

#### Methane, Ethene and Ethane Analysis

The samples were also analyzed for Methane, Ethene and Ethane according to modified RSK Method 175 using a gas chromatograph equipped with a flame ionization detector (FID).

The results of analyses are given in the attached data summary sheets.

Reviewed and Approved:

Ku-Jih Chen

Principal Chemist

Reviewed and Approved:

John Yokoyama

Senior Chemist



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

### RESULTS OF CARBON DIOXIDE ANALYSIS PAGE 1 OF 1

Client: Curtis & Tompkins, Ltd.

Client Project ID: 147064 PAI Project ID: P2002063

Test Code: GC/TCD

Date Sampled:

8/11/00

Instrument ID: HP5890A/TCD #10

Date Received:

8/16/00 8/22/00

Analyst: Joana Ciurash

Date Analyzed:

0.10 ml

Matrix: Liquid

Volume(s) Analyzed:

| Client Sample ID | PAI Sample ID | D.F. |         | on Dioxide<br>μg/L |
|------------------|---------------|------|---------|--------------------|
|                  |               |      | Result  | Reporting Limit    |
| LFR-1            | P2002063-001  | 1.00 | 51,100  | 100                |
| LFR-4            | P2002063-002  | 1.00 | 161,000 | 100                |
| LFR-2            | P2002063-003  | 1.00 | 174,000 | 100                |
| B-7              | P2002063-004  | 1.00 | 202,000 | 100                |
| GW-3             | P2002063-005  | 1.00 | 54,300  | 100                |
| GW-3             | P2002063-005B | 1.00 | 52,800  | 100                |
| Method Blank     | P000822-MB    | 1.00 | ND      | 100                |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

 Verified By:
 \$\mathcal{L}\$ (\$\sigma\$ Date:

 2665 Park Center Drive, State D. Sino Valley, California 93065 • Phone (805) 536-7461• Fax (805) 526-7270



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: LFR-1

PAI Sample ID : P2002063-001

Test Code: GC/FID

Date Sampled:

8/11/00

Instrument: HP5890A/FID #10

Date Received :

8/16/00

Analyst: Joana Ciurash

Date Analyzed:

8/22/00

Matrix: Liquid

Volume(s) Analyzed:

0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | 9.6    | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RC- Date: \$130100



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID: LFR-4

PAI Sample ID : P2002063-002

Test Code: GC/FID

Instrument: HP5890A/FID #10

Analyst: Joana Ciurash

Matrix: Liquid

Date Sampled:

Date Received:

Date Analyzed: Volume(s) Analyzed:

8/22/00

0.10 ml

8/11/00

8/16/00

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | µg/L      |
| 74-82-8 | Methane  | 62     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

02063SVG.RD1- Sample (2)



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client

: Curtis & Tompkins, Ltd.

Client Sample ID : LFR-2

PAI Sample ID : P2002063-003

Test Code: GC/FID

Date Sampled:

8/11/00

Instrument: HP5890A/FID #10

Date Received:

8/16/00

Analyst: Joana Ciurash

Date Analyzed:

8/22/00

Matrix: Liquid

Volume(s) Analyzed:

0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | 6,600  | 0.50      |
| 74-85-1 | Ethene   | 1.7    | 0,50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RG Date: 8/20/00



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client : Curtis & Tompkins, Ltd.

Client Sample ID:

PAI Sample ID: P2002063-004

Test Code: GC/FID

Instrument: HP5890A/FID #10 Analyst: Joana Ciurash

Matrix: Liquid

Date Sampled: Date Received:

> Date Analyzed: Volume(s) Analyzed:

8/22/00

8/11/00

8/16/00

0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | 11,000 | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client

: Curtis & Tompkins, Ltd.

Client Sample ID: GW-3

PAI Sample ID : P2002063-005

Test Code: GC/FID

Date Sampled:

8/11/00

Instrument: HP5890A/FID #10

Date Received:

8/16/00

Analyst: Joana Ciurash

Date Analyzed:

8/22/00

Matrix: Liquid

Volume(s) Analyzed:

0.10 ml

D.F. = 1.00

|         |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

02063SVG.RDJ - Sample (5)

Verified By: 12 G Date: 8 30 100



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client

: Curtis & Tompkins, Ltd.

Client Sample ID: GW-3

PAI Sample ID : P2002063-005B

Test Code: GC/FID

Instrument: HP5890A/FID #10

Matrix: Liquid

Analyst: Joana Ciurash

Date Sampled:

Date Received:

Date Analyzed:

Volume(s) Analyzed:

8/22/00 0.10 ml

8/11/00

8/16/00

D.F. = 1.00

|         | <u> </u> | RESULT | REPORTING |
|---------|----------|--------|-----------|
| CAS#    | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By: RG \_\_\_\_\_\_ Date: 8|30|00

02063SVG.RD1- Sample (6)



Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

#### **RESULTS OF ANALYSIS**

PAGE 1 OF 1

Client

: Curtis & Tompkins, Ltd.

Client Sample ID: Method Blank

PAI Sample ID: P000822-MB

Test Code: GC/FID

Date Sampled:

NA

Instrument: HP5890A/FID #10

Date Received:

NA

Analyst: Joana Ciurash

Date Analyzed:

8/22/00

Matrix: Liquid

Volume(s) Analyzed:

 $0.10 \, \text{ml}$ 

D.F. = 1.00

| CAS#    |          | RESULT | REPORTING |
|---------|----------|--------|-----------|
|         | COMPOUND |        | LIMIT     |
|         |          | μg/L   | μg/L      |
| 74-82-8 | Methane  | ND     | 0.50      |
| 74-85-1 | Ethene   | ND     | 0.50      |
| 74-84-0 | Ethane   | ND     | 0.50      |

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

02063SVG.R.D1- MBlank

Curtis & Tompkins, Ltd.
Analytical Laboratories, Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510)486-0900 ph
(510)486-0532 fx

Project Number: 147064

P2002063

Subcontract Lab:

Performance Analytical 2665 Park Center Drive Suite D Simi Valley, CA 93065 (805) 526-7161

Please send report to: Tracy Babjar

Turnaround Time: Dve 8/2

Report Level: II

| Sample ID | Date Sampled Matrix | Analysis | C&T Lab #  |
|-----------|---------------------|----------|------------|
| LFR-1     | 11-AUG-00  Water    | RSK-175  | 147064-002 |
| LFR-4     | 11-AUG-00  Water    | RSK-175  | 147064-003 |
| LFR-2     | 11-AUG-00  Water    | RSK-175  | 147064-005 |
| B-7       | 11-AUG-00  Water    | RSK-175  | 147064-006 |
| GW-3      | 11-AUG-00  Water    | RSK-175  | 147064-007 |

\*\*\*Please report using Sample ID instead of C&T Lab #.

| Notes: | RELINQUISHED BY: REC             | CEIVED BY: 8/16/00 0940 |
|--------|----------------------------------|-------------------------|
|        | Bar Suith 8-15-0Bate/Time Sharon | Malone Date/Time        |
|        | Date/Time                        | Date/Time               |
| <br>   |                                  |                         |
|        |                                  | 1                       |

Signature on this form constitutes a firm Purchase Order for the services requested above.

Please Test for CO, methane, ethane, ethene

# **CHAIN OF CUSTODY / ANALYSES REQUEST FORM**

| Project No.: / QQC 000                                                 |                                | <del></del>         | Projec            | t Loc       | ation        | n:          |             | ١              |            |            | Date           | :               |                |          | <u> </u> |               |           |
|------------------------------------------------------------------------|--------------------------------|---------------------|-------------------|-------------|--------------|-------------|-------------|----------------|------------|------------|----------------|-----------------|----------------|----------|----------|---------------|-----------|
| Project Name:                                                          |                                | 50                  |                   | <del></del> |              | <u> </u>    | <u>K_(c</u> | مکہ            | CA         |            |                | ් ජි            | 11/            | 0        | Se       | erial         |           |
| 1 Glovatori                                                            | mc                             |                     | Field I           |             | ook 1<br>2 X | VQ.:        | >           | ·              | ٥          | ampie i    |                | ~ ~ ~           | 7/5            | 7.       |          | $N_{0}$       | 7580      |
| Sampler (Signature):                                                   |                                | 121                 |                   |             |              |             |             |                | / A        | NALYS      | ES             | 3               | 29.45          |          | •        | /             | mplers:   |
| SAMP                                                                   | LE INE                         | ORMATIO             | ON (Print Clearly | ı)          |              |             |             | <del>-/4</del> | 17         | <b>V</b> / |                | .₹ <sup>3</sup> | ₹ <u>`</u>     | <u> </u> |          | MXI           | 0         |
|                                                                        |                                |                     |                   | NO.         | OF.          |             |             | <b>√</b> ₹``   | 7 ×        | 10 P       |                | X000            | 1. 1           | 4/0/2    | /        |               |           |
| SAMPLE NO.                                                             | DATE                           | TIME                | LAB SAMPLE<br>NO. | cc          |              | SAMP        | # 4         |                | 8 4 X      | MALYS      | ZŽÝ            | B K             | 8° (S)         | 400 gy   |          | REM           | ARKS      |
| TB-2                                                                   | 8/11/2                         | 0310                |                   | 2           | )            | 17,0        |             |                |            |            | X              |                 |                | CT       | BU)      | ART           | TAT       |
| LFR-1                                                                  |                                | 0315                |                   | 3           | •            | $\perp$     |             | X              | イ          |            |                |                 |                |          |          | · · · ·       |           |
| LFR-4                                                                  |                                | 0940                |                   | 10          | }            |             | X           | X              | X          | X          | X              | X               |                |          | 45       | to i          | ulie Shar |
| LFR-104                                                                |                                | 0945                |                   | 10          | >            |             | X           | X              | X          | X          | X              | ×               | X              |          |          | <del> J</del> | <u> </u>  |
| LFR-2                                                                  |                                | 1240                |                   | 10          | )            |             | X           | X              | X          | X          | X              | X               |                | #        | Pleas    | e inc         | lide      |
| B-7                                                                    | 1                              | 1619                |                   | 10          | ١            |             | X           | X              | Χ          | X          | X              | 又               |                |          |          | BIE           |           |
| GW-3                                                                   |                                | 1740                |                   | ט           |              |             | X           | X              | Х          | 1          | X              | X               |                |          |          |               | 4515      |
|                                                                        |                                |                     |                   |             |              |             |             |                |            |            |                | , -             |                |          |          |               | +         |
| /                                                                      |                                |                     |                   |             |              |             |             |                |            |            |                |                 |                |          |          |               |           |
|                                                                        |                                |                     |                   |             |              |             |             |                |            |            |                |                 |                |          |          | •             |           |
|                                                                        |                                |                     |                   |             |              |             |             |                |            |            |                |                 |                |          |          |               |           |
|                                                                        |                                |                     |                   |             |              |             |             |                |            |            |                |                 |                |          |          |               |           |
| V.D                                                                    | V                              |                     |                   |             |              | 12          |             |                | 10         |            |                |                 |                |          |          |               |           |
| RELINOUISHED BY:<br>(೬.gnature)                                        |                                | ,                   | DATE/             |             | TIME         |             |             | IVED BY        |            | Th         |                |                 | - <del>1</del> | ~        | DATE     | 1             | TIME      |
|                                                                        |                                |                     | 8/14/2            |             | 10:          | 30          |             | nature)        | JW.        | V          | <u>~ &amp;</u> |                 |                |          | 3/16     | tlau          | 10,30     |
| RELINQUISHED BY: (Signature)                                           |                                |                     | DATE              | -           | ГІМЕ         |             |             | IVED BY        | r: 0x-^    | V -        |                |                 |                |          | DATE     |               | TIME      |
| RELINQUISHED BY:<br>(Signature)                                        |                                | ··                  | DATE              | -           | ПМЕ          |             |             | IVED BY        | <i>(</i> : | -          |                |                 | ~*             |          | DATE     |               | TIME      |
| METHOD OF SHIPMENT:                                                    |                                | ple/                | DATE +            | 1.          | ГІМЕ         | <del></del> | LAB C       | OMMEN          | NTS:       |            |                |                 |                |          |          |               |           |
| Sample Collector: LEVINE•FR<br>1900 Powe<br>Emeryville,<br>(510) 652-4 | ICKE•F<br>I Street<br>Califorr | RECON<br>, 12th Flo | oor cooler        |             |              |             | Analy       | tical La       | borator    | y:<br>-    | ſ              | ηος             | ida            | 1 mc     | rni      | ng<br>- UF    | >         |

Shipping Copy (White)

Lab Copy (Yellow)

File Copy (Pink)

Field Copy (Goldenrod)

2 (08/ers 9999\coctemp.cdr 042998