

Fourth Quarter 2002 Groundwater Monitoring Report Former Glovatorium Facility

3815 Broadway
Oakland, California

December 3, 2002

Project 01-2511

Prepared for Smiland and Khachigian 601 West Fifth Street, 7th Floor Los Angeles, California 90071

Prepared by
SOMA Environmental Engineering, Inc.
2680 Bishop Drive, Suite 203
San Ramon, California 94583

Alameda County

DEC 0 9 2002

Environmental Health

Project: 01-2510

Mr. Scott Seery, CHMM Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Site Located at 3815 Broadway, Oakland, California

Former Glovatorium Facility

Dear Mr. Seery:

December 4, 2002

Enclosed for your review is a copy of SOMA's "Fourth Quarter 2002 Groundwater Monitoring Report" for the subject property.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 244-6600, if you have any questions or comments.

Sincerely,

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

Enclosure

cc: Mr. Stuart Depper, Clean Tech Machinery w/enclosure

Mr. Albert M. Cohen, Smiland & Khachigian w/enclosure

Ms. Betty Graham, Regional Water Quality Control Board w/enclosure

Dr. Bruce Page, Bruce W. Page Consulting w/enclosure

Certification

DEC 0 9 2002

Environmental Health
This report has been prepared by SOMA Environmental Engineering, Inc. for
Smiland & Khachigian, to comply with the Alameda County Department of
Environmental Health's requirements for the Fourth Quarter 2002 groundwater
monitoring event and to provide information necessary to defend claims brought

against the owners by Earl Thompson and Grace Johnson.

Mansour Sepehr, Ph.D., P.E.

Principal Hydrogeologist

Table of Contents

LIS	T OF TABLES	III
LIS	T OF FIGURES	IV
LIS'	T OF APPENDICES	v
1.0	INTRODUCTION	1
1.1	Site Description	2
1.2	Background	3
1.3	Site Geology and Hydrogeology	7
2.0	FIELD ACTIVITIES	9
2.1	Laboratory Analysis	11
3.0	RESULTS	11
3.1	Groundwater Flow Condition	12
3.2	Groundwater Quality	14
3.3	Bioattenuation Parameter Analysis Results	16
3.4	Other Parameters	20
4.0	CONCLUSIONS AND RECOMMENDATIONS	22
4.1	Conclusions	23
4.2	Recommendations	26
5.0	REFERENCES	27

List of Tables

Construction Data for Temporary Sampling Points and Monitoring Table 1: Wells Table 2: Groundwater Elevation Data October 22-23, 2002 Table 3: Historical Groundwater Elevation Data Historical Analytical Results and Field Measurements for Dissolved Table 4: Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples Analytical Results of Groundwater Samples Analyzed for Petroleum Table 5: Hydrocarbons, October 22-23, 2002 Table 6: Historical Analytical Results for Total Petroleum Hydrocarbons, BTEX, and MtBE in Groundwater Samples Table 7: Thickness of Free Product Table 8: Analytical Results of Groundwater Samples Analyzed for Volatile Organic Compounds, October 22-23, 2002 Historical Analytical Results for Volatile Organic Compounds in Table 9: Groundwater Samples Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Table 10: Parameters in Groundwater Samples

List of Figures

Figure 1:	Site Vicinity Map
Figure 2:	Map Showing the Location of Groundwater Monitoring Wells
Figure 3:	Groundwater Elevation Contour Map in Feet, October 22-23, 2002
Figure 4:	Contour Map of TPH-ss Concentrations in Groundwater, October 22-23, 2002
Figure 5:	Contour Map of TPH-g Concentrations in Groundwater, October 22-23, 2002
Figure 6:	Contour Map of MtBE Concentrations in Groundwater, October 22-23, 2002
Figure 7:	Contour Map of Tetrachloroethene Concentrations in Groundwater, October 22-23, 2002
Figure 8:	Contour Map of cis-1,2-Dichloroethene Concentrations in Groundwater, October 22-23, 2002
Figure 9:	Contour Map of Dissolved Oxygen Concentrations in Groundwater, October 22-23, 2002
Figure 10:	Contour Map of Nitrate Concentrations in Groundwater, October 22-23, 2002
Figure 11:	Contour Map of Sulfate Concentrations in Groundwater, October 22-23, 2002
Figure 12:	Contour Map of Ferrous Iron Concentrations in Groundwater, October 22- 23, 2002
Figure 13:	Contour Map of Methane Concentrations in Groundwater, October 22-23, 2002

List of Appendices

Appendix A: Field Notes, Field Measured Physical and Chemical Parameter

Appendix B: Chain of Custody Forms and Laboratory Reports

1.0 INTRODUCTION

This report has been prepared by SOMA Environmental Engineering, Inc. (SOMA) for the Law Offices of Smiland and Khachigian on behalf of their client, the owners of the former Glovatorium. The property, the former Glovatorium, is located at 3815 Broadway Avenue, Oakland, California (the "Site"), as illustrated in Figure 1. The Site is located in an area consisting primarily of commercial and residential uses.

This report summarizes the results of the Fourth Quarter 2002 groundwater monitoring event conducted at the Site on October 22 and 23, 2002 by SOMA, including the results of the laboratory analyses of the groundwater samples, which were analyzed for:

- Total petroleum hydrocarbons as gasoline (TPH-g), and as Stoddard solvents (TPH-ss) using EPA Method 8015;
- Volatile organic compounds (VOCs) using EPA Method 8260B;
- Benzene, toluene, ethylbenzene, total xylenes (collectively referred to as BTEX), and Methyl tertiary Butyl Ether (MtBE) using EPA Method 8021B.

In addition to the above laboratory analyses, the natural attenuation study which was initiated by Levine-Fricke Recon (LFR) in the Third Quarter of 2000 continued during this monitoring event. The objective of the natural attenuation study was to evaluate whether or not tetrachloroethene (PCE) and other VOCs found in the groundwater were biodegrading. Therefore, the groundwater samples collected during this monitoring event were analyzed for common electron acceptors and other geochemical indicators, and the results are described in this report.

These activities were performed in accordance with the general guidelines of the

Regional Water Quality Control Board (RWQCB) and the Alameda County Environmental Health Services (ACEHS).

This work is needed to determine the nature and extent of the environmental contamination, and thus whether contamination is affecting the neighboring Thompson property. This information is needed to defend against the claim Mr. Thompson brought against Glovatorium and the Deppers. This work may also provide data that could help determine when releases occurred, which is also significant in defending against the claims brought by a former owner of the property, Ms. Johnson.

1.1 Site Description

The Site is located between Manila Avenue and Broadway, near the intersection of 38th Street in Oakland, California. The ground surface at the Site is covered with concrete and asphalt and slopes gently southwest, with surface elevations ranging from approximately 78 to 84 feet above mean sea level (msl).

A 54-inch inside-diameter storm drain culvert passes under the property, from Manila Avenue on the west to 38th Street on the south (see Figure 2). The depth of the storm drain invert is approximately 8.5 feet under the sidewalk on the eastern side of Manila Avenue and approximately 13.2 feet below ground surface (bgs) at the far end, approximately 60 feet south of GW-4.

In addition to a storm drain system, a 10-inch diameter cast iron sanitary sewer conduit runs in a westerly direction from the on-site building and discharges into the sanitary sewer line, which runs north to south along Manila Avenue. The floor drain inside the building is less than 2 feet bgs. However, the depth of the sanitary sewer line inside the building gradually increases and then slopes more steeply downward near the western wall of the building, where it plunges

underneath the 54-inch storm drain (LFR, January 2001). Figure 2 shows the location of the storm drain and sanitary sewer system.

Reportedly, there were six underground storage tanks (USTs) at the Site. Two USTs were located under the sidewalk on 38th Street and four USTs were located inside the building. The volumes of the USTs have been variously reported as ranging from 800 gallons to 5,000 gallons. They reportedly contained Stoddard solvent, fuel oil and possibly waste oil. In August 1997, the six USTs were abandoned in-place by backfilling with either cement-sand slurry or pea gravel. In addition, there are four USTs owned by Earl Thompson, Sr., under the sidewalk on 38th Street, see Figure 2.

The surrounding properties are primarily commercial, businesses and residential housing. TOSCO Marketing Company (TOSCO) is located north and upgradient of the Site, at 40th Street and Broadway and contains a number of groundwater monitoring wells. Figure 2 shows the location of the main building, fuel tank areas, and the on-site and off-site groundwater monitoring wells. The groundwater monitoring wells are currently monitored on a quarterly basis. Past groundwater monitoring events have indicated the presence of VOCs and petroleum hydrocarbons in the groundwater beneath the Site. The source of the VOCs and Stoddard solvent is believed to be the former USTs, which were used to store Stoddard solvent and VOCs at the Site. There also has been testimony in the on-going litigation concerning the Site that there were releases from the piping on the washer system and from washing the floors with Stoddard solvent. This report includes both the results of the historical groundwater monitoring events and the results of the Fourth Quarter 2002 groundwater monitoring event.

1.2 Background

The following is a brief description of previous Site investigations conducted by

other environmental firms.

In August 1997, Geosolv, LLC (Geosolv) initiated the first soil and groundwater investigation at the Site. Geosolv drilled fourteen soil borings to the approximate depths of 10 to 24 feet bgs using the direct push method. Seven of the soil borings (B-2, B-3, B-7 through B-10 and B-13; see Figure 2) were converted into temporary groundwater monitoring wells where grab groundwater samples were collected. In September 1998, Geosolv conducted further soil and groundwater investigations by drilling twelve additional soil borings to the approximate depths of 19 to 25 feet bgs. All of the twelve soil borings were converted into temporary groundwater sampling points, and are labeled E-15 through E-26. After collecting grab groundwater samples from the temporary "E" sampling points, they were abandoned and grouted.

In July 1999, based on the request of the ACEHS, an investigation of potential groundwater preferential flow paths was initiated by LFR. LFR drilled ten soil borings (GW-1 through GW-8, GW-5A, and GW-6A) primarily along the 54-inch diameter storm drain and sanitary sewer systems to depths ranging from 8 to 20 feet bgs using a direct push drilling method. During drilling operations, soil samples were collected from various depth intervals. In August 1999, LFR collected grab groundwater samples from seven of the nine "GW" wells.

In January and April 2000, LFR conducted quarterly groundwater monitoring events at the Site. During the groundwater monitoring events, groundwater elevations were measured in the temporary sampling points installed by LFR and Geolsolv, and in off-site wells MW-8, MW-9 and MW-11 owned by TOSCO. Groundwater samples were collected from the temporary sampling points installed by LFR and from off-site well MW-11.

In July and August 2000, LFR installed four groundwater monitoring wells,

namely LFR-1 through LFR-4, and conducted the Third Quarter 2000 groundwater monitoring event. This was the first sampling event in which bioattenuation parameters were collected. The measured bioattenuation parameters included: dissolved oxygen (DO), nitrate (NO₃⁻), sulfate (SO₄⁻²) ferrous iron (Fe⁺²), total iron, methane, oxidation-reduction potential (ORP), alkalinity, chloride, carbon dioxide, nitrite, sulfide, ethene, and ethane. The bioattenuation parameters provided a baseline for these parameters and a means to compare their concentrations at locations within the apparent source area against surrounding up-gradient, down-gradient, and cross-gradient locations. During this monitoring event, groundwater elevations were measured and groundwater samples were collected from the newly installed groundwater monitoring wells (LFR-1 through LFR-4), from temporary sampling points installed by LFR and Geosolv, and from off-site monitoring wells MW-8, MW-9, and MW-11 owned by TOSCO. However, no groundwater samples were collected from MW-8 or MW-9.

In late October and early November 2000, LFR conducted the Fourth Quarter 2000 groundwater monitoring event, including another bioattenuation study. During the fourth quarter monitoring event, LFR sampled nine groundwater monitoring wells and temporary groundwater sampling points and measured groundwater elevations in nineteen groundwater monitoring wells and temporary sampling points (LFR, January 2001).

Well completion details for the LFR wells and the Geosolv sampling points are presented in Table 1.

In late January, LFR conducted the First Quarter 2001 groundwater monitoring event. However, SOMA prepared the First Quarter 2001 monitoring report (SOMA, May 2001). The results of the First Quarter 2001 groundwater monitoring event suggested the occurrence of strong anaerobic biodegradation

activities and dechlorination of PCE beneath the Site.

The Second Quarter 2001 groundwater monitoring event was conducted by SOMA on April 26 and 27, 2001 and reported on July 5, 2001. During this period certain bioattenuation data, which proved to be less useful, were not collected. The results of the Second Quarter 2001 monitoring event indicated a strong occurrence of the dechlorination process of PCE in the subsurface.

The Third Quarter 2001 groundwater monitoring event was conducted by SOMA on July 26 and 27, 2001. During this monitoring event ten groundwater monitoring wells were sampled and depths to groundwater were measured in 20 groundwater monitoring wells and temporary sampling points. To better evaluate the bioattenuation parameters including DO, SOMA recommended replacing the existing small diameter monitoring wells B-7 and B-10 with larger diameter wells as proposed in the SOMA's June 15, 2001 Workplan.

After receiving approval of the workplan on August 27, 2001, SOMA installed five groundwater monitoring wells, SOMA-1 through SOMA-5, at the Site on October 4, 11 and 12, 2001. During the installation of the groundwater monitoring wells, boreholes were continuously logged and soil samples were collected at 5-foot depth intervals. The objective of this investigation was to delineate the vertical extent of soil and groundwater contamination and install larger diameter monitoring wells at the suspected chemical source areas in order to collect more reliable bioattenuation parameters (i. e., DO) in the groundwater.

The Third Quarter 2001 groundwater monitoring event was conducted by SOMA on October 18 and 19, 2001. During this monitoring event eleven groundwater monitoring wells were sampled and depths to groundwater were measured in 20 groundwater monitoring wells and temporary sampling points.

The First Quarter 2002 groundwater monitoring event was conducted by SOMA on January 30 and 31, 2002. During this monitoring event eleven groundwater monitoring wells were sampled, depths to groundwater and free product were measured in 23 groundwater monitoring wells and temporary sampling points.

The Second Quarter 2002 groundwater monitoring event was conducted by SOMA on April 16 and 17, 2002. During this monitoring event 11 groundwater monitoring wells were sampled, depths to groundwater and free product were measured in 22 groundwater monitoring wells and temporary sampling points.

The Third Quarter 2002 groundwater monitoring event was conducted by SOMA on July 17 and 18, 2002. During this monitoring event, 11 groundwater monitoring wells were sampled, depths to groundwater and free product were measured in 23 wells and temporary sampling points.

1.3 Site Geology and Hydrogeology

The Site is located on the alluvial plain between the San Francisco Bay shoreline and the Oakland hills. Surface sediments in the Site's vicinity consist of Holocene alluvial deposits that are representative of an alluvial fan depositional environment. These deposits consist of brown, medium dense sand that fines upward to sandy or silty clay. The pattern of stream channel deposition results in a three-dimensional network of coarse-grained sediments interspersed with finer grained silts and clays. The individual units tend to be discontinuous lenses aligned parallel to the axis of the former stream flow direction (LFR, 2001).

According to LFR, sediments encountered in soil borings at the Site are typical of those encountered in an alluvial fan depositional environment. The sediments are predominantly fine-grained, consisting of clay, silty clay, sandy clay, gravelly clay and clayey silt. Discontinuous layers of coarse-grained sediments (clayey sand,

silty sand, and clayey gravel) generally also contain relatively high percentages of silt and clay, which tend to reduce their permeability. Based on previous investigations conducted by Geosolv and LFR, a relatively coarse-grained layer of silty sand, clayey sand, and clayey gravel was encountered in soil borings E-23, E-25, E-26, GW-2, GW-3, GW-7, and GW-8 at depths of approximately 4.5 to 14 feet bgs. A discontinuous layer of silty to clayey sand was encountered at depths of 17 to 21 bgs in borings B-11, E-23, E-25, GW-7 and GW-8.

Based on the October 2001 results of the field investigation conducted by SOMA, no major water-bearing zone at a deeper depth was encountered. However, as the lithological logs of the newly installed groundwater monitoring wells indicate, the water-bearing zone is composed of fine-grained, clayey silt sediments separated by very low permeability intervening clay layers, which in some locations are unsaturated. For instance, SOMA-5, which has been screened within a significantly thick clay layer beneath the first water-bearing zone from 21 to 26 feet bgs using the dual tubing method, was a dry well until the First Quarter 2002 sampling event. Due to the presence of unsaturated and low permeability intervening clay layers between the shallow and deep layers, there is a significant vertical downward gradient between the shallow and deep wells.

According to the results of historical groundwater monitoring activities, groundwater occurs at 4 to 14 feet bgs. Based on the current and previous groundwater monitoring reports, groundwater flows from the northeast to the southwest with an approximate groundwater flow gradient of 0.019 ft/ft to 0.035 ft/ft. The results of the slug tests indicated that the hydraulic conductivity of the saturated sediments ranges between 1.2 x 10⁻⁴ and 6.9 x 10⁻⁴ cm/sec, which is equivalent to 0.34 ft/day to 1.95 ft/day. Using the average groundwater flow gradient of 0.027 and aquifer porosity of 0.32, the groundwater flow velocity ranges between 10.5 and 60.1 ft/year.

2.0 FIELD ACTIVITIES

Field activities were conducted on October 22 and 23, 2002, during which 11 groundwater monitoring wells were sampled. Depth to water levels and product thickness were measured in 24 groundwater monitoring wells and temporary sampling points. Due to the presence of floating product in SOMA-4, this well was not sampled. Figure 2 shows the location of the groundwater monitoring wells and temporary sampling points. Appendix A includes SOMA's site-specific field activities for this groundwater monitoring event.

On October 22, 2002, SOMA's field crew measured the depths to groundwater in the monitoring wells and temporary groundwater sampling points from the top of the casings to the nearest 0.01 feet using an electrical sounder. The depth to groundwater and top of the casing elevation data at each groundwater monitoring well were used to calculate the groundwater elevation.

Prior to collecting samples, each well was purged using a battery operated 2-inch diameter pump (Model ES-60 DC). Groundwater parameters such as pH, temperature, electric conductivity (EC), DO, turbidity and ORP were measured in-situ using a Horiba, Model U-22 multi-parameter meter during the purging of the wells. The equipment was calibrated at the Site using standard solutions and procedures provided by the manufacturer.

The purging continued until the parameters for pH, temperature, EC, DO, turbidity, and ORP stabilized, or three casing volumes were purged. The groundwater samples were also tested on-site for nitrate, sulfate, total iron, ferrous iron and dissolved manganese concentrations once stabilization occurred.

Nitrate, sulfate, total iron, ferrous iron and dissolved manganese were measured colorimetrically using the Hach Colorimeter Model 890. The Hach Model 890 Colorimeter is a microprocessor-controlled photometer suitable for colorimetric testing in the laboratory or the field. The required reagents for each specific test were provided in AccuVac ampuls.

Nitrate was measured colorimetrically using Method 8039, the Cadmium Reduction Method. Cadmium metal in the Nitra Ver 5 Nitrate Reagent reduces nitrates present in the sample to nitrite; the nitrite ion reacts in an acidic medium with sulfanilic acid to form an intermediate diazonium salt, which couples with getistic acid to form an amber-colored product. The intensity of the color is proportional to the nitrate concentration in the sample.

Sulfate was measured colorimetrically using Method 8051 of Sulfa Ver 4 Method. Sulfate ions in the sample react with barium in the Sulfa Ver 4 Sulfate Reagent to form insoluble barium sulfate. The amount of turbidity formed is proportional to the sulfate concentration. The Sulfa Ver 4 also contains a stabilizing agent to hold the barium sulfate in suspension.

Ferrous iron was measured colorimetrically using Method 8146 (1,10-phenanthroline Method). The 1,10-phenathroline indicator in the ferrous iron reagent reacts with Fe⁺² in the sample to form an orange color. The intensity of the orange color is proportional to the iron concentration.

Total iron was measured colorimetrically using Method 8008. The FerroVer Iron Reagent reacts with all soluble and most insoluble forms of iron in the sample to produce soluble ferrous iron. This reacts with the 1,10-phenanthroline indicator in the reagent to form an orange color in proportion to the iron concentration.

Dissolved manganese was measured colorimetrically using Method 8034, the

Periodate Oxidation Method. Manganese in the sample is oxidized to the purple permanganate state by sodium periodate, after buffering the sample with citrate. The purple color that develops as a result of this reaction is directly proportional to the manganese concentration.

For sampling purposes, after purging, a disposable polyethylene bailer was used to collect sufficient samples from each monitoring well for laboratory analyses. The groundwater sample was transferred to four 40-mL VOA vials and preserved with hydrochloric acid. The vials were then sealed to prevent the development of air bubbles within the headspace. The VOA vials containing the samples were immediately placed on ice and maintained at 4°C in a cooler. A chain of custody (COC) form was written and placed with the samples in the cooler. SOMA's field crew delivered the samples to Curtis & Tompkins, Ltd. Laboratory in Berkeley, California on October 23, 2002. Samples for methane analysis were placed in a cooler and maintained at 9°C. These samples were sent to Microseeps Laboratory on October 23, 2002.

2.1 Laboratory Analysis

Curtis & Tompkins, Ltd., a state certified laboratory, analyzed the groundwater samples for TPH-g, TPH-ss, BTEX, MtBE, and VOCs. TPH-g and TPH-ss were prepared using EPA Method 5030B and measured using EPA Method 8015B(M). BTEX, MtBE, and VOCs were prepared using EPA Method 5030B and analyzed using EPA Method 8260B. Methane analysis of the groundwater samples were conducted by Microseeps Laboratory.

3.0 Results

This section describes the results of the Fourth Quarter 2002 groundwater monitoring event. It includes groundwater flow conditions, the status of

groundwater contamination, and the occurrence of bioattenuation in the subsurface.

3.1 Groundwater Flow Condition

Table 2 presents the calculated groundwater elevations at each well. Depths to water and the elevation at the top of the well casings were used to calculate groundwater elevations. As shown in Table 2, depths to groundwater ranged from 8.80 feet in B-2 to 22.07 feet in monitoring well SOMA-5. The corresponding groundwater elevations ranged from 59.43 feet in monitoring well SOMA-5 to 76.89 feet in MW-8. Table 3 shows the historical water level elevations at different groundwater monitoring wells. The groundwater elevations differs only slightly from measurements recorded during the Third Quarter 2002 monitoring event.

In evaluating the groundwater flow direction and gradient, water level data from all B wells, GW-4, SOMA-3, SOMA-5, SOMA-1 and SOMA-4 were not utilized for the following reasons:

- No accurate information about the construction details of the "B" wells installed by Geosolv is available, therefore water level data from these wells are questionable.
- 2. GW-4 was installed adjacent to the storm drain system in order to evaluate whether or not the storm drain system is leaking. This well was installed in the shallow formation, and may partially penetrate into the underlying water-bearing zone. Therefore, the water level elevation recorded inside GW-4 may not be representative of the underlying waterbearing zone.
- 3. SOMA-1, SOMA-3 and SOMA-5 have been completed in the deeper zone

and due to the strong vertical gradient, the water level elevation in the deeper zone is significantly lower than the shallow water-bearing zone.

4. Due to the presence of free product in SOMA-4 (6.98 feet on October 14, 2002), the recorded water level elevation in this well is not representative of the shallow water-bearing zone.

The water level elevation in SOMA-2 closely matches the water level elevation of the other groundwater monitoring well within the source area, therefore, it was used in drawing the water level elevation contour map.

As in the three previous monitoring events, groundwater was encountered in SOMA-5. However, the well could not be sampled due to insufficient groundwater volume. SOMA-5 has been completed within the intervening clay layers below the first water-bearing zone.

Figure 3 displays a contour map of groundwater elevations. As Figure 3 shows, during the recent monitoring event, the groundwater was found to flow from the northeast to southwest at an average gradient of 0.036 ft/ft. This is consistent with the findings of previous monitoring events. It should be noted that our knowledge of the groundwater flow direction does not extend beyond LFR-3, the most downgradient groundwater monitoring well.

The field measurements of some physical and chemical parameters of the groundwater samples are presented in detail in the field notes in Appendix A, and are summarized in Table 4, along with their historical values. Water temperatures ranged from 16.44°C in SOMA-3 to 20.81°C in MW-11. The variation in temperature may reflect the changes in air temperature during sampling. The temperature measurements allowed the field crew to make corrections to the pH, EC, and DO measurements. Measurements of pH ranged from 6.32 in LRF-3 to

7.02 in SOMA-3. The EC measurements ranged from 425 µS/cm in GW-3 to 1380 µS/cm in SOMA-2.

3.2 Groundwater Quality

Table 5 displays the results of the laboratory analyses for TPH-ss, TPH-g, MtBE and BTEX. As shown in Table 5, TPH-ss was detected underneath the Site in GW-3, GW-4, LFR-2, LFR-4, SOMA-2 and SOMA-3. Detectable TPH-ss levels ranged from 110 μ g/L in GW-3 and LFR-4 to 3,100 μ g/L in LFR-2. A contour map of TPH-ss concentrations in groundwater is shown in Figure 4. TPH-g was detected in eight of the eleven wells sampled. TPH-g levels in GW-2, MW-11 and LFR-3 were below the laboratory reporting limits. Detectable TPH-g concentrations ranged from 53 μ g/L in SOMA-3 to 5,000 μ g/L in LFR-2. LFR-2 was found to have both the highest TPH-g and TPH-ss concentrations. A contour map of TPH-g concentrations in groundwater is shown in Figure 5.

During this groundwater monitoring event, MtBE was detected in LFR-4, SOMA-1 and SOMA-2 at 8.0 $\mu g/L$, 140 $\mu g/L$ and 300 $\mu g/L$, respectively. MtBE concentrations in the other eight wells sampled were below the laboratory reporting limit. Figure 6 shows a contour map of MtBE concentrations below the Site.

In all the wells that were sampled, BTEX were not detected above the laboratory reporting limits. A contour map of benzene is not presented due to the non-detectable results underneath the Site.

Table 6 shows the historical analytical results for total petroleum hydrocarbons, MtBE and BTEX. Since the Third Quarter 2002 monitoring event, the following trends were observed: BTEX concentrations have remained non-detectable in all the wells, with the exception of benzene in LFR-4. The benzene concentration in LFR-4 has slightly decreased since the previous quarter. TPH-ss and TPH-g

concentrations have remained non-detectable in GW-2, MW-11, and LFR-3. TPH-ss and TPH-g concentrations have increased in GW-3, LFR-2 and SOMA-3, but the concentrations decreased in GW-4, LFR-1, LFR-4 and SOMA-2. MtBE concentrations have increased in LFR-4, SOMA-1 and SOMA-2 but remained non-detectable in all the other wells.

Floating product was reported in SOMA-4 during this monitoring event. Based on the results of a recent floating product investigation conducted by SOMA, the extent of free product is limited around SOMA-4 and B-8. On June 11, 2002, SOMA installed a passive skimmer inside SOMA-4 as an interim measure for removing free product from the groundwater. Since then SOMA has monitored the product thickness inside the surrounding monitoring wells B-2, B-3, B-8 and B-9. Table 7 shows the thickness of free product in SOMA-4 and it's surrounding monitoring wells. Based on the results of our observations, the thickness of the free product in SOMA-4 increased from 5.30 feet on October 13, 2002 to 6.98 feet on October 14, 2002. However, the same trend was not observed for the surrounding wells. Free product was not detected in B-2 and B-9. In B-3 and B-8, free product thickness decreased on October 8, 2002 but slightly increased the following week on October 14, 2002. This could be attributed to the groundwater elevations fluctuations and lack of rainfall events during the recent months. Based on a July 12 workplan, on October 1, 2002, SOMA drilled six hydropunches to delineate the extent of floating product around SOMA-4. SOMA's report dated November 19, 2002 presents the results of the latest free product investigation at the Site.

Table 8 shows the concentrations of VOCs in the groundwater during this monitoring event. PCE was detected in five of the eleven wells sampled. The detectable concentrations of PCE ranged from 8.4 μ g/L in monitoring well SOMA-1 to 200 μ g/L in GW-3. A contour map of PCE concentrations in the groundwater is shown in Figure 7. Trichloroethene (TCE) was detected in only two of the

eleven wells sampled. TCE levels were found to be 8.2 μ g/L in SOMA-2 and 24 μ g/L in LFR-1. A contour map of TCE is not presented due to insufficient contouring points. Cis-1,2-dichloroethene (cis-1,2-DCE) was detected in LFR-1, LFR-2, SOMA-1, SOMA-2 and SOMA-3 at concentrations of 6.7 μ g/L, 66 μ g/L, 41 μ g/L, 350 μ g/L and 5,900 μ g/L, respectively. Figure 8 shows a contour maps of cis-1,2-DCE in groundwater. 1,2-Dichloropropane was only detected in monitoring well SOMA-1 at a concentration of 7.0 μ g/L. Trans-1,2-Dichloroethene (trans-1,2-DCE), vinyl chloride and 1,1-dichloroethene were below the laboratory detection limits for all wells sampled.

Table 9 shows the historical concentration of VOCs in the groundwater. The following trends in VOC concentrations were observed since the Third Quarter 2002 monitoring event: VOCs remained below the detection limits in GW-4, MW-11, LFR-3 and LFR-4. PCE concentrations increased in GW-2, GW-3, SOMA-1 and SOMA-2, but decreased in LFR-1. TCE decreased in LFR-1 and SOMA-1, but remained non-detectable in all the other wells. Cis-1,2-DCE increased in LFR-2, SOMA-1 and SOMA-3, but decreased in SOMA-2.

3.3 Bioattenuation Parameter Analysis Results

This is the tenth quarterly groundwater monitoring event in which the natural attenuation parameters of groundwater were studied. The objective of the bioattenuation study is to evaluate whether intrinsic bioremediation processes are active at the Site. The results of this study indicated that PCE and other dissolved organic compounds are biodegrading beneath the Site.

Like the previous monitoring event, most of the bioattenuation parameters were measured in the field. Only dissolved methane was measured in the laboratory. In addition, DO was measured in-situ by the field crew. Based on Borden (1998) and Sepehr (1999), the ex-situ measurement of natural gases such as DO may

introduce oxygen into the groundwater sample and result in certain errors. Therefore, DO was measured in the field inside the casing without collecting a groundwater sample.

During the degradation process, the indigenous bacteria that exist in the subsurface consume electron acceptors such as DO. After the DO is consumed, anaerobic microorganisms typically use alternative electron acceptors in the following order of preference: nitrate, ferric iron, oxyhydroxide, sulfate, and finally, carbon dioxide. Evaluating the distribution of these electron acceptors can provide evidence of where and to what extent chlorinated and aliphatic hydrocarbon biodegradation is occurring. The by-products of the biodegradation processes are nitrite, ferrous iron, alkalinity, sulfide, methane, and carbon dioxide. For evaluation of the bioattenuation processes, groundwater samples were collected during the current groundwater monitoring event and analyzed for selected electron acceptors and the by-products of biodegradation activities, as described below.

Dissolved Oxygen. DO is the most favored electron acceptor used by microbes for the biodegradation of organic compounds. A concentration of DO less than 0.5 mg/L indicates anaerobic conditions. In our experience in-situ measurements of DO yield more realistic results than ex-situ (laboratory) measurements. Significant differences in DO concentrations using in-situ and ex-situ measurements (conducted by Microseep) during the First Quarter 2001 can be attributed to cross contamination by atmospheric air during ex-situ measurement (R. Borden, 1998, M. Sepehr 1999). Therefore, during the recent monitoring events, the DO measurements were conducted in-situ by SOMA's field crew only. DO levels ranged from 0 mg/L to 4.47 mg/L in MW-11. Figure 9 presents the DO concentration contour map in the groundwater using in-situ measurements.

This is the fifth monitoring event in which the new wells (SOMA-1 through SOMA-3) were used for DO measurements. Due to the presence of floating product, no measurements were made at SOMA-4. It should be noted that due to the limitation of the drilling equipment, SOMA-3 still is a ¾ inch diameter well which was installed in the deeper zone within the suspected chemical source area inside the building. Although DO was measured in SOMA-3, the results may not be representative of the subsurface condition due to the small diameter of this well. As the results of field measurements indicate the measured DO in LFR-1, LFR-2, LFR-4, SOMA-1, and SOMA-2 were non-detectable, which seems to be representative of an anaerobic condition within the chemical source area. Table 10 presents the current and historical DO concentrations in the groundwater. Since the previous monitoring event, DO levels have increased in GW-2, MW-11, LFR-3 and SOMA-2; decreased in GW-3, LFR-4 and SOMA-3; and remained unchanged in LFR-1, LFR-2 and SOMA-1.

Nitrate. After DO has been depleted, nitrate may be used as an electron acceptor for anaerobic biodegradation. Nitrate concentrations less than 1.0 mg/L may indicate that reductive dechlorination is occurring. During this monitoring event nitrate was not detected in LFR-1, LFR-3, LFR-4 and SOMA-1. Detectable nitrate concentrations ranged from 0.1 mg/L to 11.5 mg/L in GW-2. Figure 10 shows the nitrate concentration contour map using the field data. Nitrate has increased in GW-2, GW-3, LFR-2, SOMA-2 and SOMA-3, but decreased in MW-11, LFR-1, LFR-3 and SOMA-1 since the Third Quarter 2002 monitoring event.

Manganese. After DO and nitrate have been depleted, manganese may be used as an electron acceptor for anaerobic biodegradation, and therefore, increased dissolved manganese concentrations are indicative of reductive dechlorination. Manganese was not detected in GW-3 and MW-11: Detectable concentrations ranged from 0.4 mg/L in LFR-1 to 10.7 mg/L in LFR-2. Manganese concentrations have increased in LFR-1, LFR-3 and SOMA-1, but decreased in

LFR-2, LFR-4, SOMA-2 and SOMA-3 since the previous monitoring event.

Sulfate. After DO, nitrate, and manganese have been depleted, sulfate may be used as an electron acceptor for anaerobic biodegradation. This process is termed sulfate reduction, and results in the production of sulfide. Sulfate concentrations less than 20 mg/L are indicative of reductive dechlorination (EPA 1998). Sulfate was not detected in, LFR-2, and LFR-4. Detectable sulfate levels ranged from 4 mg/L in SOMA-1 to 69 mg/L in MW-11. Figure 11 shows a contour map of sulfate concentrations in the groundwater using the field data. Sulfate concentrations have increased in LFR-1 and SOMA-2, remained unchanged in LFR-2 and LFR-4, and decreased in all the other wells since the Third Quarter 2002.

Ferrous Iron. Increased ferrous iron accompanies anaerobic degradation. Ferric iron can be used as an electron acceptor during anaerobic biodegradation. During this process, ferric iron is reduced to ferrous iron, which may be soluble in water. Ferrous iron concentrations can thus be used as an indicator of anaerobic biodegradation. The highest ferrous iron concentrations were found in LFR-2 and SOMA-2 at 3.3 mg/L in each well. Ferrous iron levels ranged from 0 mg/L to 3.3 mg/L. A contour map of ferrous iron concentrations is shown in Figure 12. Ferrous iron concentrations have increased in GW-2 and LFR-1, decreased in GW-3, LFR-2 and SOMA-1 since the previous monitoring event.

Methane. The presence of methane in groundwater is indicative of strongly reduced conditions, and suggests reductive dechlorination by the process of methanogenesis. Methane concentrations ranged from 0.00065 mg/L in GW-3 to 4.7 mg/L in LFR-2. The higher concentrations of methane at the source area, SOMA-2 (2.2 mg/L), SOMA-3 (4.2 mg/L) and LFR-2, indicate conditions that are conducive to anaerobic biodegradation. A contour map of methane concentrations in the groundwater is shown in Figure 13. Methane

concentrations have decreased in all wells, except for SOMA-3, since the previous monitoring event.

Oxygen Reduction Potential. The ORP of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solution to accept or transfer electrons. ORP may range from greater than 800 mV to less than -400 mV, with lower values expected in areas where anaerobic processes are occurring. ORP measurements obtained in this sampling event ranged from -98 mV in SOMA-2 and SOMA-3 to +265 mV in LFR-1. High values were also found in down-gradient locations at SOMA-1, GW-2, GW-3 and LFR-3. The low values were found in the apparent source area (SOMA-2 and SOMA-3), the crossgradient well LFR-4 and the down-gradient well LFR-2. These results indicate that conditions in and near the apparent source area are conducive to anaerobic biodegradation.

3.4 Other Parameters

Alkalinity. Alkalinity is a general water quality parameter. High alkalinity levels are a result of interaction between carbon dioxide (a product of several biodegradation processes) and aquifer minerals. Due to the inconclusive nature of data collected during the previous groundwater monitoring events in connection with the bioattenuation process, no alkalinity data was collected during the current and previous groundwater monitoring events.

Chloride. Chloride is the final product of the reduction of chlorinated solvents, and also a general water quality parameter. Due to the inconclusive nature of data collected during the previous groundwater monitoring events in connection with the bioattenuation process, no chloride data was collected during the recent groundwater monitoring events.

Carbon Dioxide. Carbon dioxide is a product of several biodegradation processes. Due to the inconclusive nature of data collected during the previous groundwater monitoring events in connection with the bioattenuation process, no carbon dioxide data was collected during the recent groundwater monitoring events.

Iron. Ferric iron may be used as an electron acceptor during anaerobic biodegradation. During this process, ferric iron is reduced to ferrous iron that may be soluble in water. Ferric iron concentrations may be obtained by subtracting ferrous iron concentrations from total iron concentrations. Total iron concentrations ranged from 0 mg/L in GW-3 and MW-11 to 3.3 mg/L in LFR-2, SOMA-2, SOMA-3 and LFR-4. Table 4 presents the results of the total iron analysis, and Table 10 presents the results of the ferrous iron analysis.

Nitrite. Nitrate may reduce to nitrite during the process of anaerobic biodegradation. Nitrite concentrations were non-detectable in GW-3, LFR-1, LFR-3, LFR-4 and SOMA-2. Detectable nitrite concentrations ranged from 0.009 mg/L in SOMA-1 to 0.057 mg/L in LFR-2.

Sulfide. When sulfate is used as an electron acceptor for anaerobic biodegradation, it is reduced to sulfide. Due to the inconclusive nature of data collected during the previous groundwater monitoring events in connection with the bioattenuation process, sulfide data was not collected during the current groundwater monitoring event.

pH, Temperature, and Conductivity. The pH of groundwater has an effect on the activity of microbial populations in the groundwater, with optimal pH values ranging from 6 to 8 standard units for microbes capable of degrading PCE and other chlorinated aliphatic hydrocarbons. The groundwater temperature affects the metabolic activity of bacteria, and groundwater conductivity is directly related

to the concentration of ions in solution. The pH, temperature, and conductivity values are included in Table 4.

Appendix B includes the COC forms and laboratory reports for this, the Fourth Quarter 2002, groundwater monitoring event.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of the work performed on October 22 and 23, 2002 and the results of this work.

Groundwater samples and field measurements of physical and chemical parameters were collected from monitoring wells SOMA-1 through SOMA-3, LFR-1 through LFR-4, temporary sampling points GW-2, GW-3, GW-4, and from well MW-11. Measurements of pH, temperature, electric conductivity, turbidity, and bioattenuation parameters were collected in the field. The groundwater samples were analyzed for TPH-ss, TPH-g, MtBE, BTEX, and VOCs.

Groundwater elevations during this monitoring event were found to range from 59.43 feet to 76.89 feet. Groundwater flows from the northeast to southwest at an average gradient of 0.036 ft/ft. This is consistent with the findings of previous monitoring events.

TPH-ss was found in six of the eleven wells sampled. TPH-ss concentrations ranged from 110 μ g/L to 3,100 μ g/L. TPH-g was found in eight of the eleven wells. TPH-g concentrations were found to range from 53 μ g/L to 5,000 μ g/L. The maximum concentrations of TPH-ss and TPH-g were detected in LFR-2. MtBE was detected in only three wells. Detectable MtBE concentrations ranged from 8.0 μ g/L to 300 μ g/L. BTEX concentrations were not detected above the laboratory reporting limits for all wells.

Free product was detected in monitoring well SOMA-4 and in two of the surrounding wells. Based on the measurements taken in October 2002, free product thickness in SOMA-4 seems to be increasing since the previous monitoring event.

PCE was detected in five of the eleven wells and had a concentration range of 8.4 μ g/L to 200 μ g/L. The maximum level of PCE (200 μ g/L) was found in GW-3. TCE was detected in only two wells. The maximum concentration of TCE was 24 μ g/L in LFR-1. Cis-1,2-DCE was detected in five wells with a concentration range of 6.7 μ g/L to 5,900 μ g/L. Cis-1,2-DCE is one of the breakdown products of PCE, its presence in groundwater indicates that reductive dechlorination may be occurring underneath the Site. 1,2-Dichloropropane was only detected in monitoring well SOMA-1 at a concentration of 7.0 μ g/L. Trans-1,2-DCE, vinyl chloide, and 1,1-dichloroethene were below the laboratory detection limits for all wells.

This is the tenth quarterly groundwater monitoring event in which bioattenuation parameters were analyzed. Groundwater samples were analyzed for DO, nitrate, manganese, sulfate, total iron, ferrous iron, methane and ORP. Certain parameters such as chloride, carbon dioxide, hydrogen, alkalinity, and sulfide were not measured due to their inconclusive role in the bioattenuation processes at this Site.

4.1 Conclusions

Based on the data obtained during the Fourth Quarter 2002 groundwater monitoring event, our conclusions are as follows:

The furthest down-gradient well, LFR-3 and the furthest up gradient well, MW-11,

contained no detectable concentrations of VOCs, TPH-g, TPH-ss, MtBE and BTEX.

The data collected to date regarding the distribution of PCE and other VOCs in the groundwater indicate that PCE has been degraded into some of its breakdown products. PCE typically degrades into TCE, then cis-1,2-DCE and trans-1,2-DCE (at much lower concentrations than cis-1,2-DCE), then to vinyl chloride, ethane and ethene and finally carbon dioxide, water, and chloride. This sequence of degradation would be anticipated where the biological reductive dehalogenation of PCE is occurring. Some of these breakdown products and relative concentrations are present at the Site. The presence of TCE in the apparent source area wells LFR-1 and SOMA-2 during the current sampling event indicates that PCE degradation is occurring. The presence of relatively high concentrations of cis-1,2-DCE in SOMA-2 and SOMA-3 and its presence in other wells such as LFR-1 and LFR-2 is also indicative of biodegradation.

The results of DO, nitrate, manganese, sulfate, ferrous iron, methane, and ORP measurements indicate that conditions in the apparent source area are conducive to the reductive dechlorination processes.

DO concentrations of approximately less than 1.0 mg/L in the groundwater are indicative of anaerobic biodegradation conditions. During this groundwater monitoring event, anaerobic conditions were detected in SOMA-1 through SOMA-3 and LFR-1 through LFR-4. In the past several monitoring events, results indicated that conditions in the apparent source area were conducive to the anaerobic biodegradation processes. It appears that in-situ DO measurements in the newly installed monitoring wells SOMA-2 and SOMA-3 within the chemical source are more representative of actual anaerobic conditions in this area. This improvement over previous monitoring events was due to the replacement of B-7 and B-10 with the newly installed monitoring wells SOMA-2, and SOMA-3.

Relatively low concentrations of nitrate (e.g. less than 1.0 mg/L) are anticipated in locations where the oxygen has been depleted, because nitrate ions can be an effective electron acceptor in anaerobic biodegradation processes. Low concentrations of nitrate occurring near the apparent source area in monitoring wells LFR-1 through LFR-4, SOMA-1 and SOMA-3, indicate conditions that are conducive to anaerobic biodegradation.

Relatively low concentrations of sulfate (e.g. less than 20 mg/L) are anticipated in locations where the oxygen has been depleted, because sulfate ion can be used as an effective electron acceptor in the anaerobic biodegradation processes. Lower sulfate concentrations in LFR-2, LFR-4, SOMA-1, SOMA-2 and SOMA-3 indicate conditions that are conducive to anaerobic biodegradation.

The reducing conditions conducive to the dehalogenation of VOCs can also reduce iron to the soluble ferrous state. Therefore, a relatively high concentration of ferrous iron is anticipated in locations where biodegradation occurs. Higher ferrous iron concentrations in the apparent source area LFR-2, SOMA-2, SOMA-3 and LFR-4, indicate conditions that are conducive to anaerobic biodegradation.

A relatively high concentration of methane is anticipated in locations where biodegradation occurs because methane is indicative of strongly reducing conditions and suggests reductive dechlorination by the process of methanogenesis. Methane concentrations ranged from 0.00065 mg/L in GW-3 to 4.7 mg/L in LFR-2, the apparent source area well, indicating conditions that are conducive to anaerobic biodegradation.

The ORP of groundwater is a measurement of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. ORP may range from greater than 800 millivolts (mV) to less than -400 mV, with negative values expected in areas where anaerobic processes are occurring.

The lowest value (-98 mV) was found in and near the apparent source area (SOMA-2). These results indicate that conditions in and near the apparent source area are conducive to anaerobic biodegradation.

4.2 Recommendations

SOMA has begun implementing Phase II of the approved Workplan (dated June 15, 2001). Currently, SOMA is conducting groundwater flow and chemical transport modeling to simulate the future extent of chlorinated solvents and other chemicals beneath the Site. In order to define the Site's regulatory status, SOMA will develop the Site's conceptual model before conducting human health risk assessment. The results of this evaluation will determine the Site's regulatory status in terms of "Low Risk" or "High Risk." Based upon the outcome of this study, the most appropriate corrective action can be proposed to the ACEHS. Meanwhile SOMA will do the following:

- Conduct groundwater monitoring events on a quarterly basis;
- Continue removal of free product from SOMA-4 until to the extent practicable.

5.0 REFERENCES

- Borden, R.C., 1998. "Hand book of Bioremediation" Section 9 Natural Bioremediation of Hydrocarbon-Contaminated Ground Water, pp 177-199.
- EPA 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater, EPA/600/R-98/128. September.
- Helley, E.J., K.R. Lajoie, and D.B. Burke. 1972. Geologic Map of Late Cenozoic Deposits, Alameda County, California.
- LFR. 1999. Results of Utility Survey and Work Plan for Soil and Grab Groundwater Investigation. May 6.
- LFR. 2000a. Soil and Groundwater Investigation Report. March 20.
- LFR. 2000b. Work Plan for Installation of Groundwater Monitoring Wells, Former Glovatorium, 3815 Broadway, Oakland, California. June 14.
- LFR. 2000c. Groundwater Monitoring Report, Second Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California. July 7.
- LFR. 2000d. Groundwater Monitoring Report, Third Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California. November 2.
- LFR. 2001. Groundwater Monitoring Report, Fourth Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California. November 2.
- Microseeps. 2000. Monitored Natural Attenuation As a Remedial Alternative In Groundwater Contamination. Lecture at LFR Levine Fricke (LFR) Emeryville office by Robert J. Pirkle, Ph.D. of Microseeps. May 31.
- Sepehr, M., 1999. "Methanogenesis and Anaerobic Biodegradation of Petroleum Hydrocarbons in Soil and Groundwater" a Paper Presented in 4th IAA Annual Conference at Petrochemical, Energy and Environment, September 1999, New York.
- SOMA Environmental Engineering, Inc. 2001. First Quarter 2001 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, May 7, 2001.
- SOMA Environmental Engineering, Inc. 2001. Second Quarter 2001 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, May 7, 2001.

- SOMA Environmental Engineering, Inc. 2001. Third Quarter 2001 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, May 7, 2001.
- SOMA Environmental Engineering, Inc. 2001. Workplan to Conduct Additional Investigation at the Former Glovatorium Facility, 3815 Broadway, Oakland, California, June 15, 2001.
- SOMA Environmental Engineering, Inc. Fourth Quarter 2001 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, December 11, 2001.
- SOMA Environmental Engineering, Inc. First Quarter 2002 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, March 27, 2002.
- SOMA Environmental Engineering, Inc. Second Quarter 2002 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, May 16, 2002.
- SOMA Environmental Engineering, Inc. Third Quarter 2002 Groundwater Monitoring Report, Former Glovatorium Facility, 3815 Broadway, Oakland, California, September 10, 2002.
- U.S. Geological Survey. Quaternary Geology of Alameda Cty, and Parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, CA: A Digital Database. U.S. Dept of the Interior.

TABLES

Table 1
Construction Data for Temporary Sampling Points and Monitoring Wells
Former Glovatorium Site
3815 Broadway, Oakland, California

		Ground	Top of		T	Screen	
		Surface	Casing	Total	Screen	interval	
	Date	Elevation	Elevation	Depth	Interval	Elevation	
Location	installed	(feet)	(feet)	(feet)	Depth (feet)	(feet)	Notes
	l	<u> Lii </u>	ed by Geosc	1.	 	(110100
B-2	19-Aug-97		82.09	21	5 to 21	77.2 to 61.2	
B-3	19-Aug-97	82.6	82.57	18	5 to 18	77.6 to 64.6	1 1
B-7	20-Aug-97	1	76.96	17.5	5 to 17.5	72.3 to 59.8	'
B-8	20-Aug-97	82.06	81.82	24	9 to 24	73.1 to 58.1	
B-9	21-Aug-97	77.57	77.37	19.5	4.5 to 19.5	73.1 to 58.1	
B-10	21-Aug-97	81.65	81.5	19	4 to 9	77.7 to 62.7	
B-13	22-Aug-97		84.58	20	5 to 20	80.1 to 65.1	
	_	oints Install		20	0 10 20	00.7 10 00.7	
GW-1	16-Jul-99	80.24	79.94	8	3 to 8	77.2 to 72.2	
GW-2	16-Jul-99	79.44	79.14	20	10 to 20	69.4 to 59.4	
GW-3	15-Jul-99	78.48	77.92	20	10 to 20	68.5 to 58.5	
GW-4	16-Jul-99	82.55	82.37	12	7 to 12	75.6 to 70.6	
GW-5	15-Jul-99	81.31	81,01	13	8 to 13	73.3 to 68.3	
GW-6	15-Jul-99	81.91	81.65	13.5	7.5 to 13.5	74.4 to 68.4	2
GW-6A	16-Jul-99	81.93	81,61	15	5 to 15	76.9 to 66.9	
GW-7	15-Jul-99	81.3	NS	20	10 to 20	71.3 to 61.3	2
GW-8	16-Jul-99	80.28	80.1	20	10 to 20	70.3 to 60.3	2
Temporary	Sampling P	oints Install	ed by TOSC	ာ်:		•	
MW-8	uпknown	NS	87.44	unknown	unknown	unknown	
MW-9	unknown	NS	86.56	unknown	unknown	unknown	,
MW-11	unknown	NS	84.13	unknown	unknown	unknown	
Groundwat	er Monitorii	ng Wells ins	talled by LFR	:		:	
LFR-1	28-Jul-00	NS	79.97	19	9 to 19		
LFR-2	27-Jul-00	NS	81.89	19	9 to 19	:	
LFR-3	27-Jul-00	NS	77.96	22	12 to 22		
LFR-4	28-Jul-00		81.65	19	9 to 19		
Groundwat	er Monitorii	ng Wells ins	talled by SO	NA:	·		
SOMA-1	4-Oct-01	82.31	81.64	40	25 to 40	42.31 to 57.71	1
SOMA-2	11-Oct-01	81.62	81.39	20	10 to 20	61.62 to 71.62	
SOMA-3	11-Oct-01	81.65	81.42	30	21 to 26	60.65 to 71.51	
SOMA-4	12-Oct-01	81.51	81.09	20	10 to 20	61.51 to 71.51	
SOMA-5	12-Oct-01	61.68	81.5	26	21 to 26	55.68 to 60.68	

Notes:

NS = Not surveyed.

⁽¹⁾ Top of casing surveyed on south side on January 21, 2000, because the casing was broken.

⁽²⁾ GW-7 was abandoned on July 15, 1999, in accordance with LFR's workplan dated May 6, 1999. GW-6 and GW-8 were abandoned on July 26, 2000, in accordance with LFR's workplan dated June 14, 2000.

Table 2
Groundwater Elevation Data, October 22, 2002
3815 Broadway, Oakland, California

Monitoring Well	Top of Casing Elevation (feet)	Depth to Water (feet)	Water Elevation (feet)	Free Product (feet)
B-2	82.09	8.80	73.29	
B-3	82.57	9.51	73.06	0.69
B-7	76.96	. 8.98	67.98	0.05
B-8	81.82	10.39	71.43	0.69
B-9	77.37	9.27	68.10	
B-10	81.50	9.41	72.09	
B-13	84.58	dry	NC	
GW-1	79.94	dry	NC	
GW-2	79.14	11.22	67.92	
GW-3	77.92	10.14	67.78	
GW-4	82.37	10.67	71.70	
GW-5	81.01	12.34	68.67	
GW-6A	81.61	13.76	67.85	
MW-8	87.44	10.55	76.89	
MW-9	86.56	10.05	76.51	
MW-11	84.13	11.01	73.12	
LFR-1	79.97	9.97	70.00	
LFR-2	81.89	11.41	70.48	
LFR-3	77.96	11.83	66.13	
LFR-4	81.65	13.80	67.85	
SOMA-1	81.64	14.72	66.92	
SOMA-2	81.39	12.39	69.00	
SOMA-3	81.42	9.41	72.01	
SOMA-4	81.09	NM	NM	*
SOMA-5	. 81.50	22.07	59.43	

Notes:

dry: Monitoring wells GW-1 and B-13 were dry when measured during this monitoring event.

Trace amounts of free product were detected in temporary wells B-3, B-7 and B-8.

* SOMA-4 was not monitored due to the presence of free product.

NC: Not calculated. Groundwater elevation not calculated due to dryness of well.

NM: not measured during this monitoring event.

Table 3
Historical Groundwater Elevation Data
Former Glovatorium Site
3815 Broadway, Oakland, California

Date	B-2	B-3	B-7	B-8	B -9	B-10	B-13
22-Oct-02	73.29	73.06	67.98	71,43	68.10	72.09	NM
17-Jul-02	74.02	73.82	NM .	72.37	68.59	72.51	NM
16-Apr-02	75.16	75.34	69.41	73.54	69.38	73.21	NM
31-Jan-02	77.35 ^(FP)	77.16 ^(FP 0.5')	70.79	75.03 ^(FP 0.5')	70.43	74.14	77.53 ^{(FP 0.7})
18-Oct-01	73.26 ^(0.25'FP)	73.24 ^(1' FP)	67.89	69:51 ^(2.1*FP)	67.98	71.96	DRY
26-Jul-01	73.86	73.17	68.69	70.41	68.73	72.61	DRY
26-Apr-01	75.26	74	69.60	73.19	69.8	73.61	
29-Jan-01	74.63	75.06	69.11	74.23	69.33	73.2	
2-Nov-00							
31-Oct-00	l i						
30-Oct-00	74.34	74.84 ^(FP)	69.01	73.32	69.42	73.35	DRY
10-Aug-00							
9-Aug-00	73.9 ^(FP)	74.55 ^(FP)	68.61	72.8 ^(FP)	68.82	72.65	75.23
27-Apr-00	75.41 ^(FP)	75.86 ^(FP)	69.85 ^(FP)	74.14 ^(FP)	69.96	73.7	75.87
25-Jan-00	[
24-Jan-00	75.93 ^(FP)	75.83	69.66 ^(FP)	72.84	70.25 ^(FP)	74.15 ^(FP)	
21-Jan-00							76.32
20-Jan-00		•					
19-Jan-00	7.3.97 ^(FP)	73.22 ⁽²⁾	68.6 ^(FP)	71.81 ^(FP)	68.91 ^(FP)	73.02 ^(FP)	74.18
27-Aug-99							
18-Feb-98	78.16 ⁽¹⁾	78.04 ⁽¹⁾	71.57 ⁽¹⁾	76.64 ⁽¹⁾	71.44 ⁽¹⁾	75.13 ⁽¹⁾	78.51 ⁽¹⁾
26-Oct-97	72.66 ⁽¹⁾	73.64 ⁽¹⁾	68.09 ⁽¹⁾	71.11 ⁽¹⁾	68.39 ⁽¹⁾	72.26 ⁽¹⁾	73.02 ⁽¹⁾

Table 3
Historical Groundwater Elevation Data
Former Glovatorium Site
3815 Broadway, Oakland, California

Date	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6A	GW-8	MW-8	MW-9	MW-11
22-Oct-02	NM*	67.92	67.78	71.70	68.67	67.85	NM	76.89	76.51	73.12
17-Jul-02	NM*	68.61	67.78	72.6 5	68.76	67.95	NM	77.27	77.12	73.90
16-Apr-02	NM	69.76	68.14	74.11	68.68	68.07	NM	77.97	NM	74.98
31-Jan-02	-	.69.77	68.28	74.83	68.78	68.06		78.86	79.41	75.48
18-Oct-01	NM	67.91	67.67	74.22	68.41	67.81		76.81	76.46	7 2. 9 7
26-Jul-01	NM	68.55	67.84	73.85	68.77	68		77.4	77.03	73.73
26-Apr-01	NM	69.41	67.93	74.59	68.43	68.43				74.81
29-Jan-01	71.99	68.62	67.89	74.92	68.61	67.9		78.14	7 7.95	73.79
2-Nov-00								78.38	78.31	
31-Oct-00						,				
30-Oct-00		68.45	67.95	74.55	68.64	68.16				73.62
10-Aug-00								77.26	77.14	
9-Aug-00	DRY	69.11	66.54	DRY	68.71	67.88				74.12
27-Apr-00	DRY	70.59	68.16	73.97	68.7	68	71.34	79.15	77.25	75.35
25-Jan-00			-							73.48
24-Jan-00										
21-Jan-00		68.32		74.33					•	
20-Jan-00		*	67.93		68.61		70.42			
19-Jan-00	DRY	68.24	67.86	74,71	68.61	67.63	70.44			
27-Aug-99	DRY	68.46	67.66	NM .	68.71	67.71	70.6			
18-Feb-98										
26-Oct-97		·								

Table 3
Historical Groundwater Elevation Data
Former Glovatorium Site
3815 Broadway, Oakland, California

Date	LFR-1	LFR-2	LFR-3	LFR-4	SOMA-1	SOMA-2	SOMA-3	SOMA-4	SOMA-5
22-Oct-02	70.00	70.48	66.13	67.85	66.92	69.00	72.01	NM	59.43
17-Jul-02	70.18	70.98	67.67	68.33	67.62	72.40	69.64	NM	59.53
16-Apr-02	70.36	71.71	67.60	69.27	68.85	73.06	70.90	68.56	59.48
31-Jan-02	70.56	71.92	67.72	NM	69.36	73.98	71.46	69.79 ^(FP 2.5')	57.38
18-Oct-01	70.04	70.53	66.09	67.74	67.89	71.86	68.32	69.77	NM
26-Jul-01	70.16	70.92	66.56	68.33				1	
26-Apr-01	70.23	71.9	67.62	68.87					
29-Jan-01	70.44	72.04	66.96	67.92					
2-Nov-00							+		
31-Oct-00				68.14					
30-Oct-00	70.22	71.62	66.99						
10-Aug-00	,								
9-Aug-00	70.16	69.99	66.76	68.39					
27-Apr-00						1			-
25-Jan-00									
24-Jan-00							1		1
21-Jan-00									
20-Jan -00									
19-Jan-00									
27-Aug-99								İ	
18-Feb-98					,				
26-Oct-97				,					

Notes:

¹⁼ Survey elevation and water-level measurement taken at concrete surface. Elevations and water levels without a "1" were measured from top of casing.

²⁼ Top of the casing was re-surveyed because it was broken.

NM: not measured

FP= Floating product or sheen was observed.

^{*} Monitoring well GW-1 was dry

Table 4

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site 3815 Broadway, Oakland, California

Well ID	Date Sampled	Alkalinity	Chloride	Carbon Dioxide	Total Iron	Nitrite	Sulfide	Ethane	Ethene	pH Standard Unit	Temp. Celcius	Electrical Cond. (uS/cm)
Temporary	Sampling Pö	nts installe	d by Ceoso	ily, ELC :			1000		Talifa (Fra 10		
B-7	11-Aug-00	760	39	202				<0.0005	<0.0005	6.86	17.55	1279
B-7 field	11-Aug-00					-1	0.049					•
B-7	31-Oct-00	760	42	200	14.00	<0.1	<2.0					
B-7 field	31-Oct-00				17.22	-1	-1			6.16	16.05	1454
B-7	31-Jan-00	720	43	170	12.00	<0.1	. <2.0	:		-		
B-7 field	31-Jan-00							;		6.79	13. 9 0	1424
B-7	26-Apr-01			,	>3.3	0.243				- 6.59	16.30	1340
B-7	26-Jul-01		ı		15.30	0.024				6.39	15.97	1400
B-10 field	10-Aug-00					0.023	0.060					
B-10	31-Oct-00	500	76	120	6.60	<0.1	<2.0				ŕ	
B-10	31-Oct-00	ŀ			8.35	0.001	0.004			6.21	16.62	1051
B-10	31-Jan-01	480	81	72	6.10	<0.1	<2.0		:			_
B-10	31-Jan-01				1.44	0.073				6.81	14.66	1117
B-10	11-Jun-01				1.31					6.65	16.70	1090
B-10	26-Jul-01				6.50	0				6.38	1 6 .09	1160
B-10	10-Aug-01	520	74	145	6.00	<0.05	<0.04	<0.0005	0.00057	6.86	16.80	1130

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

				Carbon	Total			****		,рН	Temp.	Electrical
Well ID	Date	Alkalinity	Chloride	Dioxide	Iron	Nitrite	Sulfide	Ethane	Ethene	Standard	Celcius	Cond.
	Sampled									Unit		(uS/cm)
Temporary	Sampling Pol	ntsiinstalle	á by LFR									Control Services
GW-2	01-Nov-00									6.31	18.97	1218
GW-2	30-Jan-01		!	63				·				
GW-2 field	31-Jan-01				•			,		6.82	13.75	846
GW-2	26-Apr-01				0.02	,				6.80	19.50	874
GW-2	26-Jul-01				0.03	0.024				6.74	20.30	803
GW-2	19-Oct-01	NM	NM	NM	NM	NM	NM	NM	NM	6.84	21.30	786
GW-2	31-Jan-02	NM	NM	NM	1.05	0.013	NM	NM	NM	6.70	17.70	797
GW-2	16,17-Apr-02	NM	NM	NM	0.65	0.024	NM	NM	NM	6.38	17.00	707
GW-2	17,18-Jul-02	NM	NM	NM	1.39	0.000	NM	NM	NM	6.35	17.75	798
GW-2	23-Oct-02	NM	NM .	NM	0.12	0.036	NM	NM	NM	6.73	19.78	670
GW-3	11-Aug-00	340	25	54.3				<0.0005	<0.0005	7.05	21.43	860
GW-3 field	11-Aug-00					0.046	· -1					
GW-3 field	1-Nov-00	-		· •						6.52	18.83	967
GW-3	1-Feb-01			54					•	·		
GW-3 field	29-Jan-01									6.89	17.29	602
GW-3	11-Jun-01				0	0.700				5.68	16.20	673
GW-3	26-Jul-01				0.14	0.004				6.53	22.25	547
GW-3	19-Oct-01	NM	NM .	NM	0	NM	MM	NM	NM	6.84	22.56	590
GW-3	31-Jan-02	NM	NM	NM	0.14	0.014	NM	NM.	NM	6.70	18.40	593
GW-3	16,17-Арг-02	NM	NM	MM	0.001	0	NM	NM	NM	6.64	16.61	526
GW-3	17,18-Jul-02	NM	NM	NM	1.08	0.008	NM	NM	NM	6.32	17.10	545
GW-3	23-Oct-02	NM	NM	NM	0.00	0	NM	- NM	NM	6.36	19.80	425
GW-4	30-Jan-01									6.60	13.48	479
GW-4	26-Jul-01				2.00	0.035				6.45	19.44	827
GW-4	19-Oct-01	NM	NM:	NM	11.00	NM	NM	NM	NM	6.79	18.36	732
GW-4	31-Jan-02	NM	NM .	NM	12.70	0.010	NM	NM	NM	6.50	12.00	414
GW-4	16,17-Apr-02	NM	NM	NM	6.40	0.033	NM	NM	NM	6.34	13.98	467
GW-4	17,18-Jul-02	NM	NM	NM	>3.3	0.027	, NM	NM	NM	6.49	21.93	572
GW-4	23-Oct-02	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

				Carbon	Total					рН	Temp.	Electrical
Well ID	Date	Aikalinity	Chloride	Dioxide	Iron	Nitrite	Sulfide	Ethane	Ethene	Standard	Celcius	Cond.
	Sampled									Unit		(uS/cm)
Monitoring ⁱ	Wells Owned	ьу тобсо			1.528	e E					Park Control	
MW-11	10-Aug-00	360	110	216	0.13	<0.05	<0.04	<0.0005	<0.0005	6.47	21.00	1.089
MW-11 field	10-Aug-00					0.036	0.002					
MW-11	1-Nov-00	300	120	190	< 0.05	<0.1	<2.0					
MW-11 field	1-Nov-00				0.01	0.003	-1	·		5.83	20.13	1.264
MW-11	31-Jan-01	330	130	150	<0.05	<0.1	<2.0					
MW-11 field	31-Jan-01									6.35	13.67	1.098
MW-11	26-Apr-01				0.01			·		5.67	18.00	1210
MW-11	26-Jul-01				Ö	0.021				6.02	19.85	1120
MW-11	19-Oct-01	NM	NM	NM	0	NM ·	NM	NM	NM	6.41	21.25	130
MW-11	31-Jan-02	NM	NM	NM	0.05	0.036	NM	NM	NM	6.60	18.50	1090
MW-11	16,17-Арг-02	NM	NM	NM	0.00	0.000	NM	NM	NM	5.87	18.70	1150
MW-11	17,18-Jul-02	NM	NM	NM	0.00	0.021	NM	MM	NM	6.27	18.37	1180
MW-11	23-Oct-02	NM	NM	NM	0.00	0.036	NM	NM	NM	6.62	20.81	1220
Monitoring !	Wells Installe	d by LER						de de la companya de		100		
LFR-1	11-Aug-00	250	110					<0.0005	<0.0005	6.97	19.73	936
LFR-1 field	09-Aug-00			51.1	•	0.020	-1					•
LFR-1	30-Oct-00	240	100	25	<0.05	<0.1	<2					
LFR-1 field/sp	30-Oct-00				0.01/0.01	0.031/0.036	0.001/0.001		·	6.38	17.94	697
LFR-1-spl	30-Oct-00	220	100	40	<0.05	<0.1	· <2					
LFR-1	29-Jan-01	150	76	28	<0.05	<0.1	<2				·	
LFR-1 field	29-Jan-01				. 0	0.037	1			6.82	15.00	870
LFR-1 Dup	29-Jan-01	150	75	2 6	<0.05	<0.1	<2					•
LFR-1	26-Apr-01				0.004					5.76	16.80	980
LFR-1	26-Jul-01				0.05	0.008				6.48	19.38	77 2
LFR-1	26-Jul-01	NM	NM	NM	0.42	NM	NM	NM	NM	6.73	20.83	661
LFR-1	31-Jan-02	· NM	NM	NM	0.03	0.011	NM	NM	NM	6.50	.16.50	879
LFR-1	16,17-Apr-02	NM	NM	NM	0.75	0.023	NM	NM	NM .	5.88	16.37	1120
LFR-1	17,18-Jul-02	NM	NM	NM	0.22	0.006	NM	NM	NM	6.40	17.02	832
LFR-1	23-Oct-02	NM	NM	NM	0.30	0.000	NM	NM	NM	6.54	20.09	803

Table 4

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

W-11 1D	D.4	4.1		Carbon	Total					pН	Temp.	Electrical
Well ID	Date	Alkalinity	Chloride	Dioxide	Iron	Nitrite	Sulfide	Ethane	Ethene	Standard	Celcius	Cond.
	Sampled									Unit		(uS/cm)
LFR-2	11-Aug-00	590	33	174				<0.0005	0.0017	6.84	19.87	1088
LFR-2 field	11-Aug-00				2.95	-1	0.005					
LFR-2	02-Nov-00	550	40	180	6.20	<0.1	<2					
LFR-2 field	02-Nov-00	·	•		7.45	0.007	0.003			6.19	19.67	1306
LFR-2	30-Jan-01	480	21	130	4.60	<0.1	<2					
LFR-2 field	30-Jan-01				1.04	0.007				6.60	12.73	945
LFR-2	27-Apr-01				2.97			ı		5.64	16.40	921
LFR-2	26-Jul-01				4.60	0.011				6.31	18.66	970
LFR-2	18-Oct-01	NM	NM	NM	8.20	NM	NM	NM	NM	6.78 ·	19.56	109
LFR-2	31-Jan-02	NM	NM	NM	1.97	0.046	NM	NM	NM	6.5	16.60	644
LFR-2	16,17-Apr- 02	NM	MM	NM	7.60	0.063	NM	NM	NM	6.19	16.43	845
LFR-2	17,18-Jul-02	NM	NM	NM	8.80	0.000	NM	NM	NM	6.52	16.24	986
LFR-2	23-Oct-02	NM	NM	NM	3.30	0.057	NM	NM	NM .	6.84	18.09	812
LFR-3	10-Aug-00	310	85	162	<0.1	0.150	0.040	<0.0005	<0.0005	6.57	19.92	951
LFR-3 split	10-Aug-00	300	85	152			i	<0.0005	<0.0005			• • • • • • • • • • • • • • • • • • • •
LFR-3 field	10-Aug-00			1		0.058	-1			i		
LFR-3	01-Nov-00	350	66	160	<0.05	<0.1	<2			:		
LFR-3 field	01-Nov-00]		0.01	0.011	0.002		į	6.16	17.71	1164
LFR-3	30-Jan-01	250	31	71	<0.05	<0.1	<2	•	i			
LFR-3 field	30-Jan-01				0.03		. –			6.64	17.29	541
LFR-3	11-Jun-01		j	i	0.01					5.43	18.00	613
LFR-3	26-Jul-01		ļ		0.70	0.027				6.25	20.50	602
LFR-3	18-Oct-01	NM	NM	NM	0.12	NM	NM	NM	NM	6.50	21.39	645
LFR-3	31-Jan-02	NM	NM	NM	0.06	0.024	NM	NM	NM	6.30	19.10	566
LFR-3	16,17-Apr-02	NM	NM	NM	1.20	0.041	NM	NM	NM	5.78	18.68	566
LFR-3	17.18-Jul-02	NM	NM	NM	0.08	0.010	NM	NM	NM	6.17	18.42	585
LFR-3	23-Oct-02	NM	NM	NM	1.35	0.000	NM	NM	NM	6.32	20.65	457

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

Well ID	Date Sampled	Alkalinity	Chloride	Carbon Dioxide	Total Iron	Nitrite	Sulfide	Ethane	Ethene	pH Standard Unit	Temp. Celcius	Electrical Cond. (uS/cm)
LFR-4	11-Aug-00	630	71	161				<0.0005	<0.0005	6.90	20.11	1240
LFR-4 field		030	71	161	0.22	0.018	0.002	<0.0005	~0.000 5	0.90	20.11	1240
LFR-4	11-Aug-00 31-Oct-00	490	28	130	1.00	<0.1	0.002 <2					
LFR-4 field	31-Oct-00	480	20	130	0.67		0			604	40.44	200
B-10 FB	10-Aug-00				0.07	0.022	0	<0.0005	<0.0005	6.21	18.11	830
LFR-4	01-Feb-01	460	25	120	1.30	<0.1	<2	<0.0005	<0.0005			
LFR-4 field	01-Feb-01	400	25	120	1.43	0.017	-2			6.55	45.00	046
LFR-4	27-Apr-01			j	1.43	0.017				5.79	15.28	916
LFR-4	26-Jul-01				0.95	0					18.30	1060
LFR-4	16,17-Apr-02	NM	NM	NM	5.1	0.027	NM	· NM	NM	6.26 6.19	19.23	866
LFR-4	17,18-Jul-02	NM NM	NM	NM	>3.1 >3.3	0.027	NM	NM	NM	5.92	18.04	925
LFR-4	23-Oct-02	NM	NM	NM I	3.30	0.000	NM	NM.	NM	6.69	17.28 19.9 0	878
	Wells installe		· ·	ININ	3.30	an a	14141	LAIM	IVIVI			602
	· · · · · · · · · · · · · · · · · · ·				Late of the second	77/4-77/6/52	a de la companya de		4.4			Mary Mary 10
SOMA-1	19-Oct-01	NM	NM	NM	0.75	NM	NM	NM	NM	6.77	18.15	146
SOMA-1	31-Jan-02	NM	NM	NM	0	0	NM	NM'	NM	6.70	17.50	1160
SOMA-1	16,17-Apr-02	NM	NM	NM	0.17	0.032	NM	NM	NM	6.01	17.98	1280
SOMA-1	17,18-Jul-02	NM	NM	NM	0.11	0.013	NM	NM	NM	6.52	16.21	1270
SOMA-1	23-Oct-02	NM	NM	NM	0.24	0.009	NM	NM	NM	6.60	17.77	1270
SOMA-2	19-Oct-01	NM	NM	NM	44.00	NM	NM	NM	NM	6.87	16.93	122
SOMA-2	31-Jan-02	NM	NM	NM	10.50	0.344	NM	NM	NM	6.90	15.20	1140
SOMA-2	16,17-Apr-02	NM:	NM	NM	8.70	0.009	NM	NM	NM	6.30	15.25	1170
SOMA-2	17,18-Jul-02	NM	NM	NM	>3.3	0.000	NM	NM	NM	6.86	14.19	1170
SOMA-2	23-Oct-02	NM	NM	NM	3.30	0.000	NM	NM	NM	6.97	16.47	1380
SOMA-3	19-Oct-01	NM .	NM	NM	0.40	NM	· NM	NM	NM	6.91	17.09	158
SOMA-3	31-Jan-02	NM	NM	NM	0.78	0.375	NM	NM	NM	6.50	14.90	1320
SOMA-3	16,17-Apr-02	NM	NM	NM	1.03	0	NM:	NM	NM	6.23	15.83	1260
SOMA-3	17,18-Jul-02	NM	NM	NM	>3.3	0.000	NM	NM	NM	6.77	15.03	1290
SOMA-3	23-Oct-02	NM	NM	NM	3.30	0.031	NM	NM	NM	7.02	16.44	970
SOMA-4	Oct-19-01	NM	MM	NM	0.26	NM	NM	NM	NM	6.53	16.88	145
	23-Oct-02	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM Ì	NM

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Methane Gas, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site 3815 Broadway, Oakland, California

(Concentrations are in milligram per liter [mg/L] unless otherwise noted)

				Carbon	Total					рН	Temp.	Electrical
Well ID	Date	Alkalinity	Chloride	Dioxide	Iron	Nitrite	Sulfide	Ethane	Ethene	Standard	Celcius	Cond.
	Sampled									Unit		(uS/cm)

Notes

Samples with "field" in the well ID indicate that the results are from field measurements obtained using a Hach spectrometer or a Hydrolab Quanta flow-through instrument.

since April 2001, field measurements have been performed using a Hach Calorimeter NM= not measured

Table 5
Analytical Results of Groundwater Samples Analyzed for Petroleum Hydrocarbons
October 22-23, 2002

Former Glovatorium Site 3815 Broadway, Oakland, California

Well	Stoddard Solvent C7-C12 (ug/L)	Gasoline C7-C12 (ug/L)	MTBE ¹ (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)
GW-2	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0
GW-3	110 YZ	140 YZ	<7.1	<7.1	<7.1	<7.1	<7.1
GW-4	550	700 HY	<5.0	<5.0	<5.0	<5.0	<5.0
MW-11	<50	<50	<5.0	<5.0	<5.0.	<5.0	<5.0
LFR-1	<50	78 YZ	<5.0	<5.0	<5.0	<5.0	<5.0
LFR-2	3,100	5000 HY	<5.0	<5.0	<5.0	<5.0	<5.0
LFR-3	<50	<50	<5.0	<5.0	<5.0	<5.0	<5.0
LFR-4	110 Y	170	8.0	<5.0	<5.0	<5.0	<5.0
SOMA-1	<50	53	140	<5.0	<5.0	<5.0	<5.0
SOMA-2	370	600 HY	300.0	<7.1	· <7.1	<7.1	<7.1
SOMA-3	3,000	4700 HY	<170	<170	<170	<170	<170
SOMA-4	FP	FP	FP	FP	FP	FP	FP

<: not detected above the laboratory reporting limits

¹ MTBE confirmed by EPA 8260B.

Heavier hydrocarbons contributed to the quantitation.

Sample exhibits fuel pattern which does not resemble standard.

Z Sample exhibits unknown single peak or peaks.

FP: Free product was observed in the well Soma 4, and no analysis was performed on sample.

Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX and MtBE

in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

		TPH,	ТРН,				Ethyi	Total
Lecation	Date Sampled	Purgable Stoddard	Purgable Gasoline	MtBE	Benzene	Toluene	benzene	Xylenes
สลิเมื่อตัวสังใจ - 2 พระกับเกิด	metrice metrice					A CONTRACTOR		
B-2	24-Jan-00	20 ,	31 ^{YJ}	<0.05	<0.013	<0.013	0.11 ^C	0.22 ^C
B-3	24-Jan-00	4.9 J	8.8 YJ	<0.01	0.0048	<0.0025	<0.0025	0.0714
B-7	27-Jul-01	2.5	5.2 ^{HY}	0.0057	0.0070	0.051	0.0023	0.0740
B-7	31-Jan-01	5.3	7.9	0.0057	0.0070	0.059	0.0097	0.0740
B-7	26-Apr-01	4.5	8.9 ^H	0.0069	0.0110	0.071	0.077 °	0.2080
B-7	31-Oct-00	62	98 ^{YHJ}	0.0003	0.0091 J	0.061 ^J	<0.0005	0.237 ^J
B-7	11-Aug-00	3.7 ^J	6.8 YHJ	0.0200	0.0037	0.001 0.047 ^J	0.0005	0.065 ^{CJ}
B-7	24-Jan-00	19	30 1	<0.05	<0.013	0.047	<0.007	0.2070
B-8	24-Jan-00	11 ,	19 ^{YJ}	<0.03	<0.013	<0.0025	<0.0025	0.2070
B-9		1 YJ	1.8 YHJ				0.0025	0.0089°
	24-Jan-00			<0.002	<0.0005	<0.0005		
B-10	27-Jul-01	1,7	3.6 ^H	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
B-10	31-Jan-01	2.4 2	3.6 HYZ	<0.002	0.0031	0.010	0.00076 °	0.0197
B-10	26-Apr-01	2.4 2	4.7 ²	0.0025	0.0041	0.013	ND	0.0290 -
B-10	31-Oct-00	2.2 ^{YZ}	3.5 ²	<0.002	0.0038	0.011	<0.0005	0.0182
B-10	10-Aug-00	2.8 ^Y	6.1 ^Y	0.1600	0.0073	0.012	<0.005	0.0241
B-10	24-Jan-00	2.4 ^Y	4.2	0.0140 °	0.0072	0.027	0.025 ^c	0.0320
B-13	24-Jan-00	1.7	3 ^{YJ}	<0.01	<0.0025	<0.0025	<0.0025	0.0200
	តែញ ប៉ែ ខែបាននេះត្រូវគ្នា(
GW-2	19-Jul-99	<0.05	<0.05	0.0025	<0.0005	0.00071	<0.0005	0.00074
GW-2	20-Jan-00	0.15	0.25 ^Y	0.0044	<0.0005	<0.0005	0.00097 ^c	0.0013
GW-2	28-Apr-00	<0.05	0.095 ^{YZ}	<0.0021	<0.0005	<0.0005	<0.0005	<0.0005
GW-2	2-Nov-00	<0.05	<0.05	<0.0020	<0.0005	<0.0005	<0.0005	<0.0005
GW-2	1-Feb-01	<0.05	ND	<0.0020	<0.0005	<0.0005	<0.0005	<0.0005
GW-2 GW-2	27-Apr-01	<0.05	0.086 YZ	0.0022	<0.0005	0.0240	<0.0005	<0.0005
GW-2	27-Jul-01 19-Oct-01	<0.05 <0.05	<0.05 <0.05	<0.0005 <0.0050	<0.0005 <0.0050	<0.0005 <0.0050	<0.0005 <0.0050	<0.0005 <0.0050
GW2	31-Jan-02	<0.05	<0.050	<0.0050 b	<0.0050 b	<0.0050 b	<0.0050 b	<0.0050 b
GW-2	16,17-Apr-02	<0.05	<0.05	<0.0020	<0.0005	<0.0005	<0.0005	<0.0005
GW-2	17,18-Jul-02	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005
GW-2	22-Oct-02	<0.050	<0.050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
	Transcore (India)	WILE SHEAT OF	Jan Opers			Constitution of		orat est a la
GW-3	19-Jul-99	0.070 ²	0.100 ^Z	<0.0020	<0.0005	<0.0005	<0.0005	0.00064
GW-3	20-Jan-00	0.150	0.260 ^Y	<0.0020	<0.0005	<0.0005	<0.0005	0.00130 ^C
GW-3	27-Apr-00	0.200 ^{YZ}	0.380 ^{YŽ}	<0.0020	<0.0005	<0.0005	<0.0005	<0.00050
Split	27-Apr-00	.0.300 ²	0.570 ^{YZ}	<0.0020	<0.0005	<0.0005	<0.0005	<0.00050
GW-3	11-Aug-00	<0.050	0.077 ^{Y2}	<0.0020	<0.0005	<0.0005	<0.0005	0.00051
GW-3	2-Nov-00	<0.050	0.050 ^{YZ}	0.0026	<0.0005	<0.0005	<0.0005	<0.00050
GW-3	1-Feb-01	<0.050	<0.050	<.0020	<.0005	<0.0005	<0.0005	<0.00050
GW-3	27-Apr-01	<0.050	0.062 ^{YZ}	0.0056	<0.0005	<0.0005	<0.0005	<0.00050
GW-3	27-Jul-01	<0.050	<0.050	0.0008	<0.0005	<0.0005	<0.0005	<0.00050
GW-3	19-Oct-01	0.054	0.11	<0.0100	<0.0100	<0.0100	<0.0100	<0.02000
GW-3	31-Jan-02	<0.050	0.070 ^{YZ}	<0.0050 b	<0.0050 b	<0.0050 ^b	<0.0050 b	<0.00500 ^b
GW-3	16,17-Apr-02	<0.050	0.055 ^{YZ}	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-3	17,18-Jul-02	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.005
GW-3	22,23-Oct-02	0,110 YZ	0.140 YZ	<0.0071	<0.0071	<0.0071	<0.0071	<0.0071

Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX and MtBE in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

Location	Date	TPH, Purgable	TPH, Purgable	MtBE	Benzene	Toluene	Ethyl benzene	Total Xylenes
-	Sampled	Stoddard	Gasoline					
de de la company					1/02 F3 18			
GW-4	21-Jul-99	6.80 ^J	10 ^{YHJ}	0.0022	<0.0005	<0.0005	<0.0005	0.0029 ^J
GW-4	20-Jan-00	0.97 ^J	1.60 YJ	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Split	20-Jan-00	0.85 ^J	1.50 YJ	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
- GW-4	27-Apr-00	0,31	0.60 ^Y	<0.0020	<0.0005	<0.0005	<0.0005	0.0027
GW-4	30-Jan-01	0.39	0.58 ^{HY}	<0.0020	<0.0005	<0.0005	<0.0005	<0.0005
GW-4	27-Jul-01	0.42	0.86 HY	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
GW-4	19-Oct-01	0.83	1.60	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
GW-4	31-Jan-02	0.92	1.70 ^{HY}	<0.0050 b	<0.0050 b	<0.0050 ^b	<0.0050 b	<0.0050 b
GW-4	16,17-Apr-02	0.40	0.67 ^{HY}	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-4	17,18-Jul-02	0.97	1.7 HY	<0.005	<0.005	<0.005	<0.005	<0.005
GW-4	22,23-Oct-02	0.550	0.700 HY	<0.005	<0.005	<0.005	<0.005	<0.005
		in Mariana	PORTER AND		21072 023	100	AR STOR	
GW-5	27-Aug-99	<0.05	<0.05	<0.001	<0.001	<0.001	<0.001	<0.001
GW-5	20-Jan-00	<0.05	0.057 ^Y	0.0007	<0.0005	<0.0005	<0.0005	<0.0005
GW-5	27-Apr-00	0.05 ^Y	0.096 ^Y	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-6A	27-Aug-99	<0.05	0.054 ^Y	0.0089	<0.0005	<0.0005	<0.0005	<0.0005
Split	27-Aug-99	<0.05	0.057 ^Y	0.0087	<0.0005	<0.0005	<0.0005	<0.0005
GW-6A	25-Jan-00	<0.05	<0,05	0.0022	<0.0005	<0.0005	<0.0005	<0.0005
GW-6A	27-Apr-00	<0.05	0.087 ^Y	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-7	15-Jul-99	NA	NA	<0.0025	0.05	<0.0005	0.000727	0.00313 ^J
Split	15-Jul-99	NA	NA NA	NA	NA .	NΑ	NÄ	NA
GW-7	15-Jul-99	NA.	NA ·	NA .	0.0567 ^J	<0.002	<0.002	<0.002
Split	15-Jul- 99	NA	NA	NA	0.0755 ^J	<0.002	<0.002	<0.002
GW-8	19-Jul-9 9	<0.05	<0.05	0.0078	<0.0005	0.00064	<0.0005	0.00151
GW-8	· 20-Jan-00	0.19	0.33 ^Y	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Split	20-Jan-00	0.20	0.37 ^Y	<0.002	0.00058	<0.0005	<0.0005	<0.0005
GW-8	28-Apr-00	0.064 ^{YZ}	0.12 ^{YZ}	0.013	<0.0005	<0.0005	<0.0005	<0.0005
	्राजातावर			* * * * * * * * * * * * * * * * * * * *		BOR FEET		
MW-11	25-Jan-00	< 0.050	<0.05	0.0090	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	28-Apr-00	<0.050	<0.05	<0.0087	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	10-Aug-00	<0.050	<0.05	0.0110	<0.0005	<0.0005	<0.0005	<0.0005
MW-11 MW-11	1-Nov-00	<0.050	<0.05	0.0068	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	31-Jan-01	< 0.050	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	Jul-27-01 Oct-19-01	<0.050 <0.050	0.10 ^{HY}	0.0010	<0.0005	<0.0005	<0.0005	0.0007
MW-11	Jan-31-02	<0.050	<0.05 0.071 ^Y	<0.0050	<0.0050	<0.005	<0.005	<0.010
MW-11	Apr-16-17-02	<0.050 <0.050	0.071 · <0.050	<0.0050 b <0.0020	<0.0050 ^b <0.0005	<0.005 b <0.0005	<0.005 b <0.0005	<0.005 ^b <0.0005
MW-11	17,18-Jul-02	<0.050 <0.05	<0.05	<0.0020	<0.0005	<0.0005	<0.005	<0.005
MW-11	22,23-Oct-02	<0.050	<0.050	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005	<0.005

Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX and MtBE

in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

	f	TPH,	TPH,	ŀ		T	Ethyl	Total
Location	Date	Purgable	Purgable	MtBE	Benzene	Toluene	benzene	Xylenes
1	Sampled	Stoddard	Gasoline		=====================================			1,,,,,,,,,
Maniloring wall	is transminutely trace							antinia asa
LFR-1	9-Aug-00	0.53	1.2	0.0095	<0.0005	<0.0005	<0.0005	<0.0005
LFR-1	30-Oct-00	0.24 ^{YZ}	0.37 YZ	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Split	30-Oct-00	0.24 ^{Y2}	0.37 YZ	0.0043	<0.0005	<0.0005	<0.0005	<0.0005
LFR-1	29-Jan-01	0.21 ^{YZ}	0.31 ^{YZ}	0.0033	<0.0005	<0.0005	<0.0005	<0.0005
LFR-1	Арг-26-01	0.092	0.18 ^{YZ}	0.0044	<0.0005	0.002	<0.0005	<0.0005
LFR-1	Jul-27-01	0.086	0.18 ^{YZ}	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013
LFR-1	Oct-18-01	0.19	0.38	<0.031	<0.031	<0.031	<0.031	<0.062
LFR-1	Jan-31-02	0.15 ^{YZ}	0.27 ^{YZ}	<0.013 ^b	<0.013 b	<0.013 *	<0.013 b	<0.013 b
LFR-1	Apr-16-17-02	0.10 ^{YZ}	0.17 ^{YZ}	< 0.013	<0.0005	<0.0005	<0.0005	<0.0005
LFR-1	17,18-Jul-02	0.084 ^{YZ}	0.14 ^{Y Z}	<0.013	<0.013	<0.013	<0.013	<0.013
LFR-1	22,23-Oct-02	<0.050	0.078 YZ	<0.005	<0.005	<0.005	<0.005	<0.005
			A PROPERTY OF	v Mrd (E. C.)	A STATE OF THE STATE OF	ALTERNA		K& 2.3%
LFR-2	11-Aug-00	0.59	1.10 ^{YH}	0.0022	0.0018	<0.0005	<0.0005	0.0013 ^C
LFR-2	2-Nov-00	0.38	0.70 ^{YH}	0.003	0.0035	0.0011	0.0042	0.01184 ^c
LFR-2	30-Jan-01	0.36	0.54 ^{HY}	0.0034	0.00057	<0.0005	<0.0005	<0.000Ś
LFR-2	Apr-27-01	0.33	0.66 ^{HY}	<0.002	<0.0005	0.0013	<0.0005	<0.0005
LFR-2-2	Apr-27-01	0.36	0.72 ^{HY}	<0.002	0.00059	0.0019	<0.0005	0.013
LFR-2	Jul-27-01	0.33	0.76 HY	<0.0005	0.0013	<0.0005	<0.0005	0.0006
LFR-2	Oct-18-01	0.73	1.50	< 0.0071	<0.0071	<0.0071	<0.0071	<0.0142
LFR-2	Jan-31-02	0.76	1.40 ^{HY}	<0.005 b	<0.005 b	<0.005 b	<0.005 b	<0.005 ^b
LFR-2	Apr-16-17-02	1.10	1.90 ^{HY}	<0.002	<0.0005	<0.0005	<0.0005	0.019 ^c
LFR-2	17,18-Jul-02	0.97	1.7 HY					
LFR-2				<0.005	<0.005	<0.005	<0.005	<0.005
LFR-Z	22,23-Oct-02	3.10	5.000 HY	<0.005	<0.005	<0.005	<0.005	<0.005
160.0					a de la companya de	orion son	d goden de	resource de la
LFR-3 Split	10-Aug-00	<0.05	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
LFR-3	10-Aug-00 1-Nov-00	<0.05 <0.05	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
LFR-3	30-Jan-01	<0.05	<0.05 <0.05	<0.002 0.0036	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005
LFR-3	Apr-27-01	<0.05	<0.05	0.0024	<0.0005	0.0054	<0.0005	<0.0005
LFR-3	Jul-27-01	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
LFR-3	Oct-18-01	<0.05	<0.05	<0.005	<0.005	<0.005	<0.005	<0.01
LFR-3	Jan-31-02	<0.05	0.067 ^Y	<0.005 b	<0.005 b	<0.005 b	<0.005 ^b	<0.005 b
LFR-3	Apr-16-17-02	<0.05	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
LFR-3	17,18-Jul-02	<0.05	<0.0 5	<0.005	<0.005	<0.005	<0.005	<0.005
LFR-3	22,23-Oct-02	<0.050	<0.050	<0.005	<0.005	<0.005	<0.005	<0.005
			and the second			Charles of Britishing Section		
LFR-4	11-Aug-00	0.22 ^Ŷ	0.41 ^Y	0.0051	0.01100	<0.0005	<0.0005	0.00162 ^C
LFR-4	31-Oct-00	0.17 Y	0.27	0.0065	0.00084	<0.0005	<0.0005	<0.0005
LFR-4	1-Feb-01	0.16 ^Y	0.22	0.0097	0.00330	<0.0005	<0.0005	<0.0005
LFR-4	Apr-27-01	0.22 ^Y	0.44	0.0058	0.02700	0.0036	<0.0005	<0.0005
LFR-4	Jul-27-01	0.091 ^Y	0.19	0.011	0.00090	<0.0005	<0.0005	<0.0005
LFR-4	Jan-31-02	NA V	NA NA	NA	NA	NA	NA	NA
LFR-4	Apr-16-17-02	0.40 ^Y	0.67	< 0.005	0.05300	<0.0005	<0.0005	<0.0005
LFR-4	17,18-Jul-02	0.21 ^Y	0.36 ^Y	0.0075	0.007	<0.005	<0.005	<0.005
LFR-4	22,23-Oct-02	0.110 Y	0.17	0.0080	<0.005	<0.005	<0.005	<0.005

Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX and MtBE

in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

All results are expressed in milligrams per liter (mg/L)

Location	Date	TPH, Purgable	TPH, Purgable	MtBE	Benzene	Toluene	Ethyl benzene	Total Xylenes
	Sampled	Stoddard	Gasoline					
100000	s to scott de la proposición de la constanción de la constanción de la constanción de la constanción de la cons							
SOMA-1	Oct-19-01	0.22	0.440	0.034	<0.0050	<0.0050	<0.0050	<0.0100
SOMA-1	Jan-31-02	0.058	0.100 HY	0.110 b	<0.0050 b	<0.0050 b	<0.0050 b	<0.0050 ^b
SOMA-1	Apr-16-17-02	<0.050	0.052 Y	0.120	0:0008	<0.0005	<0.0005	<0.0005
SOMA-1	Jul-17-18-02	< 0.05	<0.05	0.120	<0.005	<0.005	<0.005	<0.005
SOMA-1	Oct-22,23-02	<0.050	0.053	0.140	<0.005	<0.005	<0.005	<0.005
72897887784					对对视频 在		1.77	500
SOMA-2	Oct-19-01	1.4	2.8	<0.250	<0.2500	<0.250	<0.250	<0.500
SOMA-2	Jan-31-02	1.3	2.4 HY	<0.071 b	<0.0710 b	<0.071 b	<0.071 b	<0.071 ^b
SOMA-2	Apr-16-17-02	1.3 ^L	2.2 ^H	< 0.130	0.0067	0.046	0.012	0.044
SOMA-2	17,18-Jul-02	2.6	4.4 HY	< 0.063	< 0.063	< 0.063	<0.063	<0.063
SOMA-2	22,23-Oct-02	0.370	0.600 HY	0.3	<0.0071	<0.0071	<0.0071	<0.0071
OF A SECURITY			对了,但是他们 对对性		Protection in	iar vy		
SOMA-3	Oct-19-01	0.420	0.83	0.65	<0.02500	<0.02500	<0.0250	<0.0500
SOMA-3	Jan-31-02	0.230	0.41 ^{HY}	0.31 b	<0.01300 b	<0.01300 ^b	<0.0130 b	<0.0130 b
SOMA-3	Apr-16-17-02	0.610	1.00 HY	0.42	0.00078	0.00068	<0.0005	<0.0005
SOMA-3	17,18-Jul-02	0.41	0.69 ^{H Y}	0.38	<0.017	<0.017	<0.017	<0.017
SOMA-3	22,23-Oct-02	3.00	4.700 HY	<0.170	<0.170	<0.170	<0.170	<0.170
to the part of the			30.00	*****	20,000			
SOMA-4	Oct-19-01	2.5	5	0.63	<0.13	<0.13	<0.13	<0.26
SOMA-4	Jan-31-02	.FP	FP	FP	F₽	FP	FP	FP
SOMA-4	. Apr-16-17-02	FP	FP	FP	F₽	F₽	FP	FP
SOMA-4	17,18-Jul-02	FP	FP	FP	FΡ	FP	FP	FP
SOMA-4	22,23-Oct-02	FP	FP .	FP	FP	FP	FP	FP

Notes

^b Analysis was carried out npast the hold date, no analytical problems were encountered

Presence of this compound confirmed by second column, however, the confirmation concentration different from reported results by more than a factor of two.

Heavier hydrocarbons than the standard are present in the sample.

J Result is estimated.

^L Lighter hydrocarbons contributed to the quantitation

Y Sample exhibits fuel pattern which does not resemble standard.

^Z Sample exhibits unknown single peak or peaks.

FP: Free product detected in SOMA 4.

NA = Not analyzed, LFR-4 was not analzed during the Second Quarter 2002 due to the well being inaccessible.

TPH, purge = Total petroleum hydrocarbons (purgeable)

Groundwater samples collected from the temporary sampling points are considered grab samples, therefore, the results should be considered estimates of groundwater quality.

Table 7
Thickness of Free Product
at the Former Glovatorium Site
3815 Broadway, Oakland, California

Well	Thickness of Free Product (ft)							
Location	10/3/02	10/8/02	10/14/02					
SOMA-4	5.30	6.36	6.98					
B-2	0	0	0					
B-3	0.35	0.24	0.27					
B-8	0.76	D.60	0.61					
B -9	0	0	0					

Table 8

Analytical Results of Groundwater Samples Analyzed for Volatile Organic Compounds
October 22-23, 2002

Former Glovatorium Site 3815 Broadway, Oakland, California

Sample ID	Tetrachloro ethene (ug/L)	Trichloro ethene (ug/L)	cis-1,2- Dichloro ethene (ug/L)	trans-1,2- Dichloro ethene (ug/L)	Vinyl Chloride (ug/L)	1,2-Dichloro propane (ug/L)	1,1-Dichloro ethene (ug/L)
GW-2	27	<5.0	<5.0	<5.0	<10	<5.0	<5.0
GW-3	200	<7.1	<7.1	<7.1	<14	<7.1	<7.1
GW-4	<5.0	<5.0	<5.0	<5.0	<10	< 5.0	<5.0
MW-11	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0
LFR-1	180	24	6.7	<5.0	<10	<5.0	<5.0
LFR-2	<5.0	<5.0	66	<5.0	<10	<5.0	<5.0
LFR-3	<5.0	<5.0	<5.0	<5.0	<10	< 5.0	<5.0
LFR-4	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0
SOMA-1	8.4	<5.0	41	<5.0	<10	7 .	<5.0
SOMA-2	17	8.2	-350	<7.1	<14	<7.1	<7.1
SOMA-3	<170	<170	5900	<170	<330	<170	<170
SOMA-4	FP	FP	FP	FP	FP	<u>FP</u>	FP

FP: Free Product observed in well SOMA-4

< : not detected above laboratory reporting limits</p>

Historical Analytical Results For Volatile Organic Compound Analyses in **Groundwater Samples**

at the Former Glovatorium Site 3815 Broadway, Oakland, California

Location	Date	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	1.2-DCP
	Sampled			DCE	DCE .	Chloride	.,
Hemiporary Sa	inding Roms i	Sale Ubvice:	isolva BLC	.t	4.7		
B-2	24-Jan-00	<0.0013	<0.0013	0.27	0.0014	< 0.0013	< 0.0013
B-3	24-Jan-00	< 0.0020	< 0.002	0.61	< 0.002	< 0.002	< 0.002
B-7	27-Jul-01	0.0098	0.017	0.86	0.005	<0.0031	<0.0031
B-7	27-Apr-01	< 0.0031	<0.0031	1.1	0.0069	<0.0031	<0.0031
B-7	31-Jaπ-01	< 0.0042	< 0.0042	0.92	0.0048	< 0.0042	< 0.0042
B-7	31-Oct-00	< 0.0042	< 0.0042	0.91	0.0042	< 0.0042	< 0.0042
B-7	11-Aug-00	< 0.0031	< 0.0031	0.86	0.0048	< 0.0031	< 0.0031
B-7	24-Jan-00	< 0.0036	< 0.0036	0.92	0.0043	< 0.0036	< 0.0036
B-8	24-Jan-00	< 0.0005	< 0.0005	0.035	< 0.0005	< 0.0005	< 0.0005
B-9	24-Jan-00	< 0.0005	0.0006	0.0032	< 0.0005	< 0.0005	< 0.0005
B-10	27-Jul-01	1.7000	1.4	7.3	0.043	<0.025	<0.025
B-10	27-Jul-01	0.8700	0.81	6.6	0.041	<0.025	<0.025
B-10	31-Jan-01	2.1000	1.6	6.6	0.044	< 0.025	< 0.025
B-10	31-Oct-00	2.4000	1.9	7.1	0.061	< 0.025	< 0.025
B-10	10-Aug-00	2.9000	1.6	6.5	0.05	< 0.025	< 0.025
B-10	24-Jan-00	1,2000	2.4	14	0.09	< 0.063	< 0.063
B-13	24-Jan-00	0.0200	0.029	0.13	0.0049	< 0.0005	< 0.0005
	nod m: indep	islalled by LEF		第一个图像	et parket	建设设施 标识	
GW-2	99-luL-91	0,0140	0.0014	< 0.0005	< 0.0005	< 0.0005	< 0.0005
GW-2	20-Jan-00	0.1300	0.0190	0.0055	< 0.0005	< 0.0005	< 0.0005
GW-2	28-Apr-00	0.1200	0.0160	0.0033	< 0.0005	< 0.0005	< 0.0005
GW-2	2-Nov-00	0.0078	0.0008	0.0032	< 0.0005	< 0.0005	< 0.0005
GW-2	1-Feb-01	0.0077	0.0006	0.0028	< 0.0095	< 0.0005	< 0.0005
GW-2	27-Apr-01	0.0096	0.0018	0.0024	<0.0005	<0.0005	<0.0005
GW-2	27-Jul-01	0.0330	0.0043	0.0024	<0.0005	<0.0005	<0.0005
GW-2	19-Oct-01	0.0190	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050
GW-2	31-Jan-02	0.0092 b	<0.0050 b	· <0.0050 b	<0.0050 b	<0.0100 b	<0.0050 b
GW-2	16,17-Apr-02	0.0140	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050
GW-2 GW-2	17-18-Jul-02	0.014	<0.005	<0.005	<0.005	<0.01	<0.005
	22,23-Oct-02	0.027	<0.005	<0.005	<0.005	<0.010	<0.005
GW-3	19-Jul-99	0.2200			(C) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A		0.0040
GW-3	20-Jan-00	0.2200	<0.001	< 0.0010	< 0.0010	< 0.0010	< 0.0010
GW-3	27-Apr-00	0.3500	0.0010 0.0023	0.0200 0.0056	< 0.0005 < 0.0005	< 0.0005 < 0.0005	< 0.0005 < 0.0005
Split	27-Apr-00 27-Apr-00	0.3300	0.0023	0.0036	< 0.0003	< 0.0003	< 0.0003
GW-3	11-Aug-00	0.2700	0.0019	0.0023	< 0.0005	< 0.0005	< 0.0015
GW-3	2-Nov-00	0.0590	0.0028	0.0024	< 0.0005	< 0.0005	< 0.0005
GW-3	1-Feb-01	0.0460	0.0006	0.0024	< 0.0005	< 0.0005	< 0.0005
GW-3	27-Apr-01	0.0790	0.0007	0.0015	<0.0005	<0.0005	<0.0005
GW-3	27-Jul-01	0.0900	0.0009	< 0.0005	<0.0005	<0.0005	<0.0005
GW-3	19-Oct-01	0.1800	<0.0100	<0.0100	<0.0100	<0.0200	<0.0100
GW-3	31-Jan-02	0.0960 b	<0.0050 b	<0.0050 b	<0.0050 b	<0.0100 b	<0.0050 b
GW-3	16,17-Apr-02	0.1600	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050
GW-3	17,18-Jul-02	0.086	<0.005	<0.005	<0.005	<0.01	<0.005
GW-3	22,23-Oct-02	0.200	<0.0071	< 0.0071	<0.0071	<0.014	<0.0071
				3.3071		IT	

Historical Analytical Results For Volatile Organic Compound Analyses in Groundwater Samples

at the Former Glovatorium Site 3815 Broadway, Oakland, California

Location	Date	PCE	TCE	cis-1,2-	trans-1,2-	· Vinyl	1,2-DCP
Location	Sampled	FOL	IGE	DCE	DCE	Chloride	1,2-001
	oampieu			DOL	DOL	Omoride	
CVI 4	40 1 100		0.0005	# 904#F			0.004
GW-4	19-Jul-99	< 0.0005	< 0.0005	0.0035	· < 0.0005	< 0.0005	0.0017
GW-4	20-Jan-00	0.0008	< 0.0005	0.0036	< 0.0005	< 0.0005	0.0015
Split	20-Jan-00	0.0006	< 0.0005	0.0044	< 0.0005	< 0.0005	0.0021
GW-4	27-Apr-00	0.0017	< 0.0005	0.0010	< 0.0005	< 0.0005	0.0006
GW-4	30-Jan-01	< 0.0005	< 0.0005	0.0024	< 0.0005	< 0.0005	0.0014
GW-4	27-Jul-01	< 0.0005	< 0.0005	0.0030	< 0.0005	0.0006	0.0019
. GW-4	19-Oct-01	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050
GW-4	31-Jan-02	<0.0050 b	<0.0050 b	<0.0050 b	<0.0050 b	<0.0100 ⁶	<0.0050 b
GW-4	16,17-Apr-02	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050
GŴ-4	17,18-Jul-02	<0.005	<0.005	<0.005	<0.005	<0.01	<0.005
GW-4	22,23-Oct-02	<0.005	<0.005	<0.005	<0.005	<0.010	<0.005
			rainer in the				
GW-5	27-Aug-99	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
GW-5	20-Jan-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
GW-5	27-Арг-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
GW-6A	27-Aug-99	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Split	27-Aug-99	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
GW-6A	25-Jan-00 ⁻	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
GW-6A	27-Apr-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
GW-7	15-Jul- 99	< 0.0005	< 0.0005	0.00358	< 0.0005	< 0.0005	0.000632
GW-7	15-Jul-99	< 0.0020	< 0.0020	0.00398	< 0.0020	< 0.0020	< 0.0020
Split	15-Jul-99	< 0.0020	< 0.0020	0.00383	< 0.0020	< 0.0020	< 0.0020
GW-8	19-Jul-99	0.0240	0.0150	0.0038	0.0017	0.0012	< 0.0005
GW-8	20-Jan-00	0.1500	0.1900	0.0530	0.0120	0.0045	< 0.0007
Solit	,20-Jan-00	0.1500	0.1800	0.0520	0.0110	0.0046	< 0.0005
GW-8	28-Арг-00	0.1200	0.1100	0.0290	0.0053	0.0023	< 0.0005
Meniteringiwe	Alsowned by TC	SCO:		海南南北州	***		1900 PM
. MW-11	25-Jan-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-11	28-Apr-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-11	10-Aug-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-11	1-Nov-00	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-11	31-Jan-01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-11	27-Apr-01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
MW-11	27-Jul-01	0.0017	0.0010	0.0062	< 0.0005	< 0.0005	< 0.0005
MW-11	19-Oct-01	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050
MW-11	31-Jan-02	<0.0050 b	<0.0050 b	<0.0050 b	<0.0050 b	<0.0100 ^b	<0.0050 b
MW-11.	16,17-Apr-02	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
MW-11	17,18-Jul-02	<0.005	<0.005	< 0.005	<0:005	<0.01	<0.005
MW-11	22,23-Oct-02	<0.005	<0.005	<0.005	<0.005	<0.010	<0.005

Historical Analytical Results For Volatile Organic Compound Analyses in **Groundwater Samples**

at the Former Glovatorium Site

3815 Broadway, Oakland, California

LFR-1 26-4 LFR-1 29-A LFR-1 30-C Spllt 30-C LFR-1 29-J LFR-1 26-4 LFR-1 27-C	npled 2.8	0 0.064 2 0.034	0.0410 0.0100	trans-1,2- DCE < 0.0083	Vinyl Chloride	1,2-DCP
LFR-1 9-A LFR-1 30-C Split 30-C LFR-1 29-J LFR-1 26-A LFR-1 27-C	ug-00 2.8 Oct-00 0.8 Oct-00 0.8	0 0.064 2 0.034		< 0.0083	- 0.0000	
LFR-1 9-A LFR-1 30-C Split 30-C LFR-1 29-J LFR-1 26-A LFR-1 27-C	ug-00 2.8 Oct-00 0.8 Oct-00 0.8	0 0.064 2 0.034		< 0.0083	- 0.0000	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA
Split 30-0 LFR-1 29-J LFR-1 26-4 LFR-1 27-	Oct-00 0.8	0.034			< 0.0083	< 0.0083
LFR-1 29-J LFR-1 26-/ LFR-1 27-			I VALION	< 0.0031	< 0.0031	< 0.0031
LFR-1 26- <i>f</i> LFR-1 27-	an-01- 0.7	7 0.035	0.0140	< 0.0031	< 0.0031	< 0.0031
LFR-1 27-		7 0.026	0.0073	<0.0025	<0.0025	<0.0025
1	Apr-01 0.4	4 0.013	0.0050	< 0.0013	< 0.0013	<0.0013
1	Jul-01 0.3	8 0.031	0.0098	< 0.0013	< 0.0013	<0.0013
LFR-1 18-0	Oct-01 0.7		< 0.0310	< 0.0310	<0.0630	<0.0310
LFR-1 31-J	an-02 0.37	7 0.035 b	<0.0130 b	<0.0130 b	<0.0250 b	<0.0130 b
	-Apr-02 0.3	1 -1	<0.0130	<0.0130	<0.0250	<0.0130
LFR-1 17,18	-Jul-02 0,3	1	< 0.013	<0.013	<0.025	<0.013
LFR-1 22,23	-Oct-02 0.1		0.0067	<0.005	<0.010	<0.005
LFR-2 11-A	ug-00 < 0.00	005 < 0.0005	0.0350	< 0.0005	0.0045	< 0.0005
LFR-2 2-N	ov-00 < 0.00		1	0.0010	0.0150	0.0006
LFR-2 29-J	an-01 <0.00	005 <0.0005		<0.0005	0.0016	<0.0005
LFR-2 27-A	vpr-01 0.00	07 <0.0005		<0.0005	0.0013	<0.0005
LFR-2 27-	lul-01 0.00	14 0.0007	0.0190	<0.0005	<0.0005	<0.0005
LFR-2 18-0	Oct-01 <0.00	71 - <0.0071	0.1600	<0.0071	<0.0140	<0.0071
LFR-2-2 27-A	pr-01 0.00	07 <0.0005	0.0065	<0.0005	0.0019	<0.0005
LFR-2 31-J	an-02 <0.00	50 b <0.0050 l	0.0069	<0.0050 b	<0.0100 b	<0.0050 b
LFR-2 16,17-	-Apr-02 <0.00	050 <0.0050		<0.0050	<0.0100	<0.0050
LFR-2 17,18	-Jul-02 <0.0	05 <0.005	0.012	< 0.005	<0.01	<0.005
LFR-2 22,23-	Oct-02 <0.0	05 <0.005	0.066	<0.005	<0.010	<0.005
	NAME OF STREET			(25) Mar 1984		
	ug-00 < 0.00	005 < 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
i i	ug-00 < 0.00	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
I I	ov-00 < 0.00	0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
B I	an-01 <0.00	005 <0.0005	<0.0005	<0.0005	<0.0005	<0.0005
	pr-01 0.00		<0.0005	<0.0005	<0.0005	<0.0005
	ul-01 0.002		<0.0005	<0.0005	<0.0005	<0.0005
	oct-01 <0.00		<0.0050	<0.0050	<0.0100	<0.0050
	an-02 <0.00	1	1	<0.0050 b	<0.0100 b	<0.0050 b
	Apr-02 <0.00		<0.0050	<0.0050	<0.0100	<0.0050
	-Jul-02 <0.00		<0.005	<0.005	<0.01	<0.005
Constitution of the Consti	Oct-02 <0.00		<0.005	<0.005	<0.010	<0.005
				T-1		
	ug-00 < 0.00			< 0.0005	< 0.0005	< 0.0005
	oct-00 < 0.00			< 0.0005	< 0.0005	< 0.0005
1	an-01 <0.00		0.0006	<0.0005	< 0.0005	< 0.0005
ľ l	pr-01 <0.00		0.0016	<0.0005	<0.0005	<0.0005
	ul-01 0.000		0.0021	<0.0005	<0.0005	<0.0005
	Apr-02 <0.00	1	<0.0050	<0.0050	<0.0100	<0.0050
1	-Jul-02 <0.00 Oct-02 <0.00		<0.005	<0.005	<0.01	<0.005
22,23-	Oct-02 <0.00	05 <0.005	<0.005	<0.005	<0.010	<0.005

Table 9

Historical Analytical Results For Volatile Organic Compound Analyses in Groundwater Samples

at the Former Glovatorium Site > 3815 Broadway, Oakland, California

Location	Date	PCE	TCE	cis-1.2-	trans-1,2-	Vinyl	1,2-DCP
200011011	Sampled	. 02	10	DCE	DCE	Chloride	1,2-001
FT JOS OFFI				DOL	DOL	Cinonde	
	ilsinsi alier by:	A STATE OF THE STA	E in the second			San San Mark	And the state of the
SOMA-1	19-Oct-01	<0.0050	<0.0050	0.0140	<0.0050	<0.0100	<0.0050
SOMA-1	31-Jan-02	0.0056 b	<0.0050 °	0.0070 b	<0.0050 b	<0.0100 b	0.0057 6
SOMA-1	16,17-Apr-02	0.0059	<0.0050	0.0066	<0.0050	<0.0100	<0.0050
SOMA-1	17,18-Jul-02	<0.005	<0.005	0.016	<0.005	<0.01	<0.005
SOMA-1	22,23-Oct-02	0.0084	<0.005	0.041	<0.005	<0.010	0.007
			7. Se 46. S		209.56		
SOMA-2	19-Oct-01	1.400	0.350	5.0	< 0.250	<0.500	<0.250
SOMA-2	31-Jan-02	<0.071	<0.071°	1.81	<0.071	<0.140 b	<0.071 b
SOMA-2	16,17-Apr-02	<0.130	<0.130	2.9	<0.130	<0.250	<0.130
SOMA-2	17,18-Jul-02	<0.063	<0.063	1.6	<0.063	<0.13	<0.063
SOMA-2	22,23-Oct-02	0.017	0.0082	0.35	<0.0071	<0.014	<0.0071
7.00			SPECIFICAL SPECIFICATION OF THE PARTY OF THE		21.0	10.75	Wells State
SOMA-3	19-Oct-01	0.042	0.057	0.44	<0.025	<0.050	<0,025
SOMA-3	31-Jan-02	0.018 b	0.023 b	0.38 ^b	<0.013 b	<0.025 b	<0.013 b
SOMA-3	16,17-Apr-02	0.025	0.018	0.36	<0.017	<0.033	<0.017
SOMA-3	17,18-Jul-02	0.027	<0.017	0.44	<0.017	<0.033	<0.017
SOMA-3	22,23-Oct-02	<0.170	<0.170	5.9	<0.170	<0.330	<0.170
		gradient de de la company		P**/P*###			
SOMA-4	19-Oct-01	<0.13	<0.13	2.6	<0.13	<0.25	<0.13
SQMA-4	31-Jan-02	FP	FΡ	FP	* FP	FP	· FP
SOMA-4	16,17-Apr-02	FP	FP.	FP	FP	FP	FP
SOMA-4	17,18-Jul-02	FP	FP	FP	FP	FP	FP
SOMA-4	22,23-Oct-02	FP	FP	FP	FP	FP	FP

 $^{^{\}rm b}$ analysis was carried out past hold date, no analytical problems were encountered FP: Not Analyzed due to Free Product

Historical In-Situ and Ex-Situ Analyses Results for Bloattenuation Parameters

in Groundwater Samples

at the Former Glovatorium Site

3815 Broadway, Oakland, California

Well ID	Date Sampled	Dissolved Oxygen	Manganese (dissolved)	Nitrate	Sulfate	Ferrous Iron (Fe + 2)	Methane*	ORP (milliVoits)	Hydrogen (nano- Moles)
B-7	11-Aug-00					, , ,	11.0	193.00	, , , , , , , , , , , , , , , , , , , ,
B-7-field	11-Aug-00	0.63	1	-1.0	3	1			
B-7	31-Oct-00	0.62	2.6	< 0.10	< 1.0	11.000	2.4		-3
B-7-field	31-Oct-00	0.25		0.40	-1	15.850		-62.50	_
B-7	1-Feb-01	0.78	2.2	0.78	<1.0	15.000	13.0		
B-7-field	31-Jan-01	0.48	j l		,			28.00	
B-7 Field	26-Apr-01	0.60	1.7	2.50	5	>3.3	7.6	-28.00	-
B-7 Field	26-Jul-01	1.98	7.3	0	8	11.600	7.0	-40.00	
B-8 field	31-Jan-01	0.45				·		58.00	
B-10	10-Aug-00			< 0.05	< 0.05	5.700	. 10.0	213.00	
B-10-field	10-Aug-00	0.44		-1.0	-2	5.7.55	^	-:-:	•
B-10	31-Oct-00	2.40	1.4	< 0.10	< 1.0	5.900	6.7		0.81
B-10-field	31-Oct-00	0.44]	0	0	7.600		-22.20	
B-10	31-Jan-01	6.40	1.3	< 0.10	<2.0	7.700	24.0		1.3
B-10-field	31-Jan-01	0.46	'''					64.00	
B-10 Field	11-Jun-01	0.90	o	. 0	0	1.250	3.9	-8.00	NM
B-10 Field	26-Jun-01	1.87	1.3	ο.	3	6.200	5.6	-22.00	
GW-2-field	1-Nov-00	2.32						77.00	•
GW-2	1-Feb-01	3.80	•			İ	0.04100	,	
GW-2-field	1-Feb-01	0.58						159.00	
GW-2	26-Apr-01	4.00	1,0	7.10	36	0.015	0.00022	152.00	NM
GW-2	26-Jul-01	1.93	0	3.90	60	0.000	0.01600	233.00	
GW-2 field	Not En. Sample						0.00091	·	
GW-2	31-Jan-02	2.80	0	0.80	45	0.360	0.00690	179.00	NM
GW-2	16,17-Apr-02	1.76	0	4.70	70	0.090	0.00029	198.00	•
GW-2	17,18-Jul-02	1.39	0.6	0.00	69	0.00	0.00210	161.00	
GW-2	22,23-Oct-02	3,86	0.60	11.50	40.00	0.07	0.00073	166.00	
GW-3	11-Aug-00						< 0.0005	395.00	
GW-3-field	11-Aug-00	0.72		1.00	46				
GW-3	1-Nov-00				- :			1	
GW-3-field		7.76			. :	١.		81.00	
GW-3	29-Jan-01	8.80					0.01200		
GW-3-field	1-Feb-01	8.99	!					235.00	
GW-3	27-Apr-01	2.90	. 0 .	0.70	30	0.000	0.01500	212.00	NM
GW-3	26-Jul-01	2.48	0	2.40	52	0.120	0.00830	214.00	
GW-3 field	18-Oct-01	3.76	0	5.20	4.9	0.000	0.00410	131.00	NM
GW-3	31-Jan-02	3.70	0.2	1.30	52	0.000	0.00810	163.00	•
GW-3	16,17-Apr-02	7.55	0.0	4.20	59	0.000	0.00064	133.00	•
GW-3	17,18-Jul-02	3.50	0.0	0.00	47	0.220	0.01000	155.00	
GW-3	22,23-Oct-02	2.19	0.0	1.60	33	0.000	0.00065	178.00	
GW-4-field	30-Jan-01	0.83						67.00	
GW-4-field	26-Jul-01	2.59	0.2	10.50	25	1.290	0.0028	-3,00	
GW-4-field	18-Oct-01	1.00	0.1	0.00	0	4.800	4.8	-84.00	NM
GW-4	31-Jan-02	0.90	8.0	0.00	0.0	8.000	3.5	-91.00	
GW-4	16,17-Apr-02	0.41	0.1	5.20	0.0	5.700	4.7	-2,10	
GW-4	17,18-Jul-02	2.38	3.0	0.00	0.0	>3.3	4.6	-68.00	
GW-4	22,23-Oct-02	NM	NM	NM	NM	NM	0.3	NM	

Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Parameters

in Groundwater Samples

at the Former Glovatorium Site

3815 Broadway, Oakland, California

Well ID	Date Sampled	Dissolved	Manganese	Nitrate	Sulfate	Ferrous Iron	Methane*	ORP	Hydrogen (nano-
,	.	Oxygen	(dissolved)			(Fe + 2)		(milliVolts)	Moles)
MW-11	10-Aug-00			2.8	63	< 0.1	< 0.0005	476	
MW-11-field	10-Aug-00	2.52		4.1	67				
MW-11	1-Nov-00	4.10	< 0.010	15	90	< 0.1	0.00004		130
MW-11-field	1-Nov-00	4.01		3.3	73	0		87.4	-
MW-11	31-Jan-01	6.30	< 0.010	15	94	< 1.0	0.00005		1.1
MW-11-field	1-Nov-00	3.97	•	27.3	74	0.		319	
MW-11 Field	26-Apr-01	7.40	0	6.8	52	0	0.0014	229	NM
MW-11 Field	26-Jul-01	1.85	0	5.2	77	0	0.0049	233	•
MW-11 Field	18-Oct-01	5.58	0	10.1	NM	0	0.0066	155	NM
MW-11	31-Jan-02	4.90	0 '	2.8	79	0.0	0.0077	218	
MW-11	16,17-Apr-02	3.18	0	2.8	88	0.0	0.0092	242	
MW-11	17,18-Jul-02	2.82	lol	4.1	79	0.0	0.0088	357	•
MW-11	22,23-Oct-02	4.47	0	3.7	69	0.0	0.0025	118	
LFR-1	9-Aug-00				,			462	
	11-Aug-00	!					0.0096		
LFR-1-field	9-Aug-00	3.63		5.5	30				1.5
LFR-1	30-Oct-00	2.70	0.03	39	42	< 1.0	0.00038		
FR-1-field/sp	30-Oct-00	2.95	0.00	10.3/10.0	29/29	0.01/0.01		77.4	1
LFR-1 split	30-Oct-00	3.40	0.03	40	43	< 1.0	0.00069		
LFR-1	29-Jan-01	5,10	<0.01	<0.10	51	<1.0	0.00012		0.43
LFR-1-field	29-Jan-01	3.78	0		36	0		383	
LFR-1 Dup	29-Jan-01	4.60	<0.01	<0.10	50	<1.0	0.000011		0.32
LFR-1	26-Apr-01	3.20	0.02	12.9	. 16	0	0.0003	224	NM .
LFR-1	26-Jul-01	1.07	ō	- 8	25	0.01	0.0084	238	
LFR-1 filed	18-Oct-01	1.03	0	6.9	24	0.18	0.0054	119	NM
LFR-1	31-Jan-02	1.80	0.30	5.50	31	0.00	0.0062	163	
LFR-1	16,17-Apr-02	1.68	0.30	1.50	38	0.39	0.003	240	
LFR-1	17.18-Jul-02	0.00	0.00	6.1	3.0	0.07	0.0047	209	
LFR-1	22,23-Oct-02	0.00	0.40	0.0	23.0	0.15	0.00081	265	•
LFR-2	11-Aug-00						6.6	270	·
LFR-2-field	11-Aug-00	0.48		1.5	-1	2.7			1200
LFR-2	2-Nov-00	2.20	8.80	0.33	5.4	5.3	8.5		•
LFR-2-field	2-Nov-00	0.47		0.5	-1	6.05		-23.7	
LFR-2	30-Jan-01	4.40	8.90	1	8.3	4.6	4.6		1.1
LFR-2-field	30-Jan-01	0.61	10.70	2.9		1.02		210	
LFR-2	27-Арг-01	1.40	0.40	1.6	1	2.66	14	9	NM .
LFR-2	26-Jul-01	0.55	0.20	0	0	4.5	10	-20	
LFR-2 field	18-Oct-01	0.43	0	0	0	6.5	11	-75	NM
LFR-2	31-Jan-02	1.00	0.0	2.60	19	1.81	11	-14	
LFR-2	16,17-Apr-02	0.00	0.0	1.70	0	7.20	16	-5.7	
LFR-2	17,18-Jul-02	0.00	13.9	0.00	ő	7.20	9.6	-64	
LFR-2	22,23-Oct-02	0.00	10.7	0.50	ō	3.30	4.7	-82	

Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Parameters in Groundwater Samples

at the Former Glovatorium Site

3815 Broadway, Oakland, California

Well ID	Date Sampled	Dissolved Oxygen	Manganese (dissolved)	Nitrate	Sulfate	Ferrous Iron (Fe + 2)	Methane*	ORP (milliVolts)	Hydrogen (nano- Moles)
LFR-3	10-Aug-00	,	-	2.4	64	< 0.1	0.00051	464	• :
LFR-3 split	10-Aug-00							< 0.0005	
LFR-3-field	10-Aug-00	1.30		2.4	64			l	850
LFR-3	1-Nov-00	4.70	0.022	8.8	74	< 1.0	0.00028	i	
LFR-3-field	1-Nov-00	0.58		1.8	57	0		75.2	
LFR-3	31-Jan-01	4.10	<0.01	1.2	58	< 1.0	0.00038	•	
LFR-3-field	30-Jan-01	1.75		0.023	44	0		195	
LFR-3 Field	11-Jun-01	1.00	0	8.0	28	0	0.0086	201	NM
LFR-3 Field	26-Jul-01	1.29	0.40	0	51	0.6	0.0035	228	
LFR-3 Field	18-Oct-01	0.54	- 0	8.0	30	0.11	0.0093	139	NM
LFR-3	31-Jan-02	0.80	0.40	2.60	32	0.00	0.0072	212	
LFR-3	16,17-Apr-02	0.19	0.40	0.0	55	0.79	0,0096	228	
LFR-3	17,18-Jul-02	0.00	0.20	1.7	42	0.00	0.0068	166	
LFR-3	22,23-Oct-02	0.11	0.50	0.0	36	0.00	0.0035	186	
LFR-4	11-Aug-00					1	0.062	402	
LFR-4-field	11-Aug-00	1.13		0.7	1.0	0.14			1.1
LFR-4	31-Oct-00	1.90	2.2	< 0.10	2.9	1.10	3.20	!	
LFR-4-field	31-Oct-00	0.64		1.0	,	0.61		-80	
LFR-4	1-Feb-01	3.20	2.8	1.5	2.8	1.80	2.20		1.5
LFR-4-field	1-Feb-01	0.55	4.5	8.0	0.0	1.50		59	
LFR-4 Field	27-Apr-01	5.60	0.0	1.7	0.0	1.37	7.00	14	NM
LFR-4 Field	26-Jul-01	1.65	0.0	0.0	0.0	0.84	1.20	18	
LFR-4	16,17-Apr-02	0.00	1.0	2.6	6.0	4.80	12.00	-4	
LFR-4	17,18-Jul-02	0.79	6.8	0.0	0.0	>3.3	2.80	3	
LFR-4	22,23-Oct-02	0.00	4.0	0.0	0.0	2.55	1.30	-63	* •

Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Parameters

in Groundwater Samples

at the Former Glovatorium Site

3815 Broadway, Oakland, California

(concentrations in milligrams per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Dissolved Oxygen	Manganese (dissolved)	Nitrate	Sulfate	Ferrous Iron (Fe + 2)	Methane*	ORP (milliVolts)	Hydrogen (nano- Moles)
SOMA-1	18-Oct-01	4.19	0.3	0.2	33.0	0.52	0.120	151	NM
SOMA-1	31-Jan-02	0.40	0.0	0.0	18.0	0.00	0.580	141	NM
SOMA-1	16,17-Apr-02	0.00	0.0	0.6	31.0	0.10	0.820	213	
SOMA-1	17,18-Jul-02	0.00	0.0	1.8	28.0	0.05	0.440	149	
SOMA-1	22,23-Oct-02	0.00	0.7	0.0	4.0	0.00	0.680	131	
SOMA-2	18-Oct-01	.0.57	0.0	0,4	0.0	40.00	6.60	-89	NM
SOMA-2	31-Jan-02	0.70	3.8	8.0	0.0	9.00	13.00	103	NM
SOMA-2	16,17-Apr-02	0.00	0.5	0.1	0,0	7.40	14.00	-69	
SOMA-2	17,18-Jul-02	0.00	5.7	0.0	0.0	>3.3	9.40	-87	*
SOMA-2	22,23-Oct-02	0.35	1.7	2.8	15.0	3.30	2.20	-98	
SOMA-3	18-Oct-01	1.32	0.0	0.0	33.0	0.22	1.00	2	NM
SOMA-3	31-Jan-02	1.00	22.0	. 2.0	54.0	0.62	0.460	-71	NM
SOMA-3	16,17-Apr-02	2.60	0.0	0.6	42.0	0.77	0.410	29	
SOMA-3	17,18-Jul-02	0.97	10.9	0.0	23.0	>3.3	0.940	-51	
SOMA-3	22,23-Oct-02	0.30	2.7	0.1	7.0	3.26	4.200	-98	
SOMA-4	18-Oct-01	0.83	4.0	22.0	17.0	0.22	1.20	88	NM
SOMA-5	Dry	NM	NM	NM	. NW	NM	NM	NM	NM

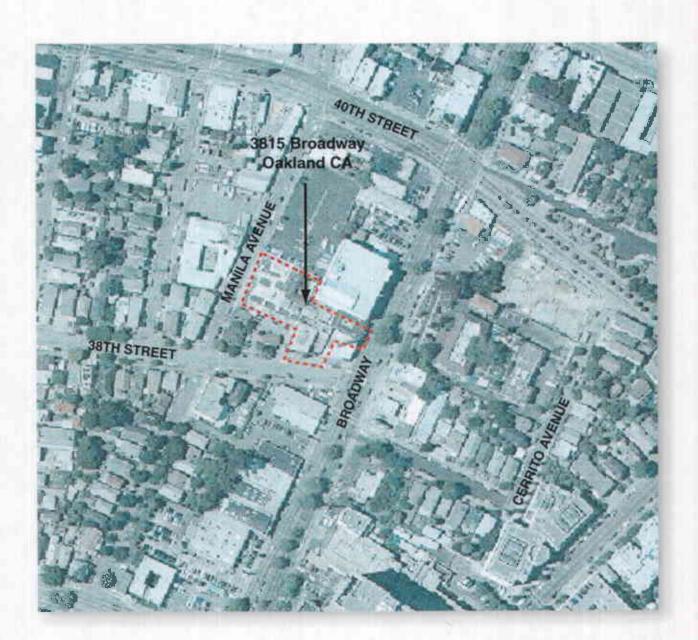
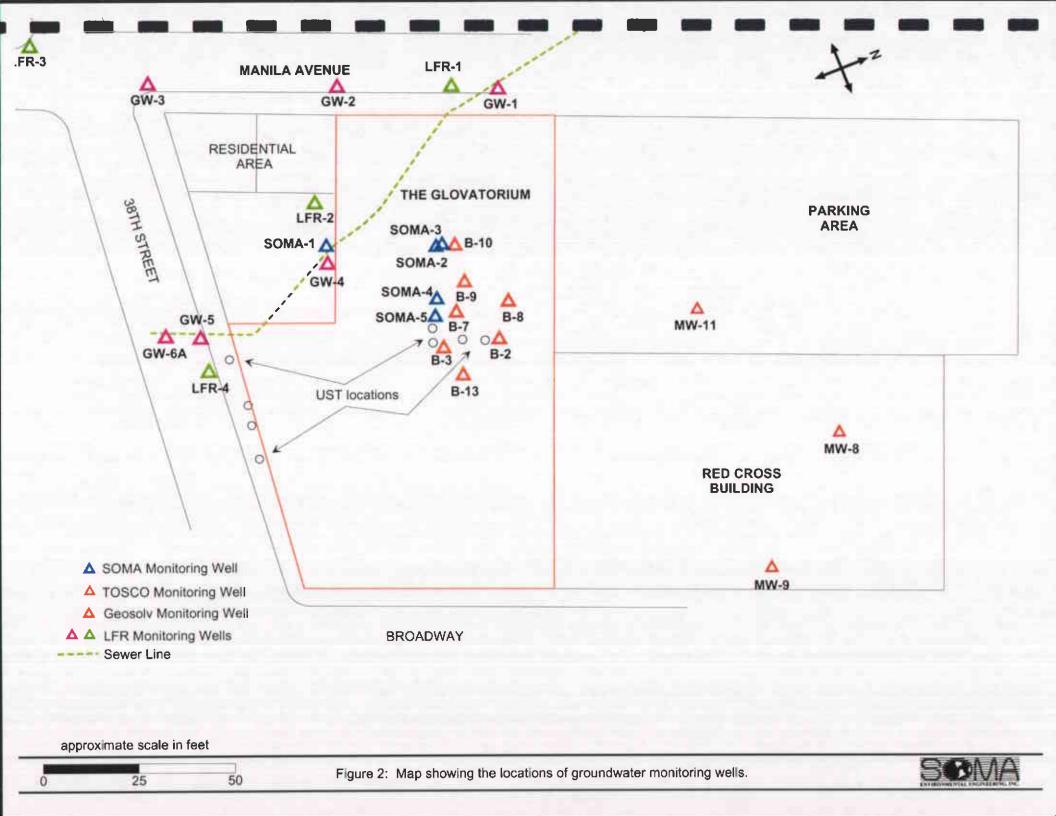
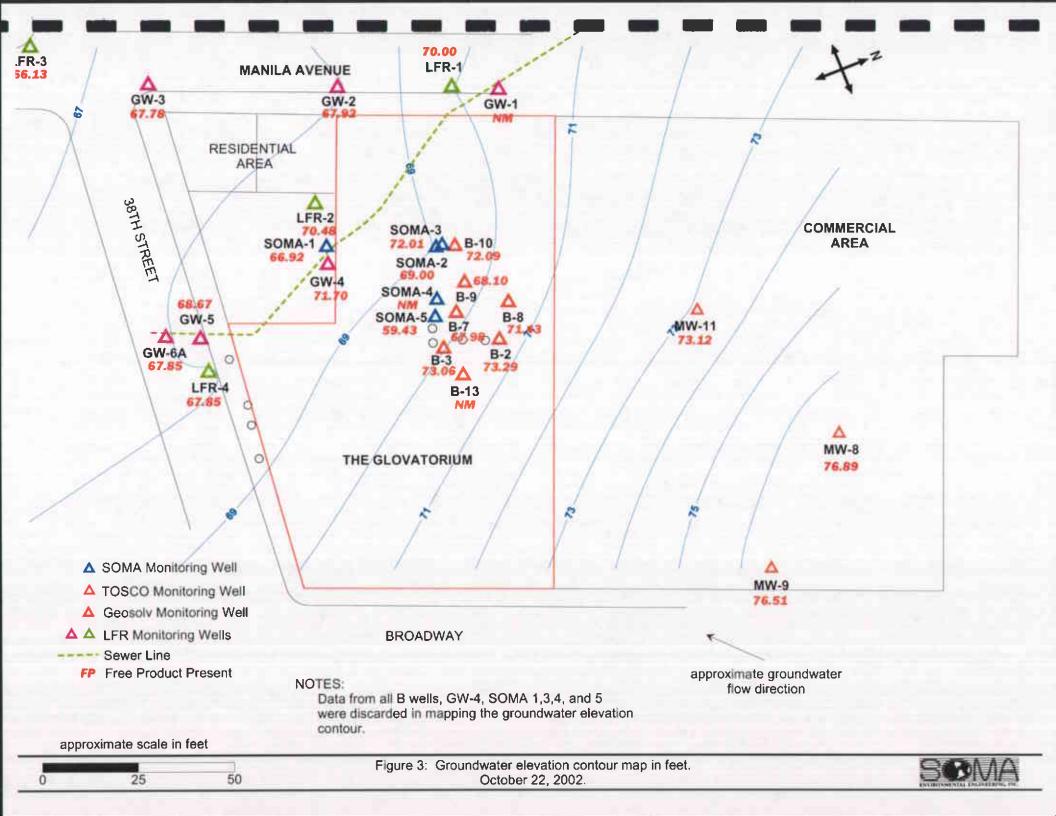
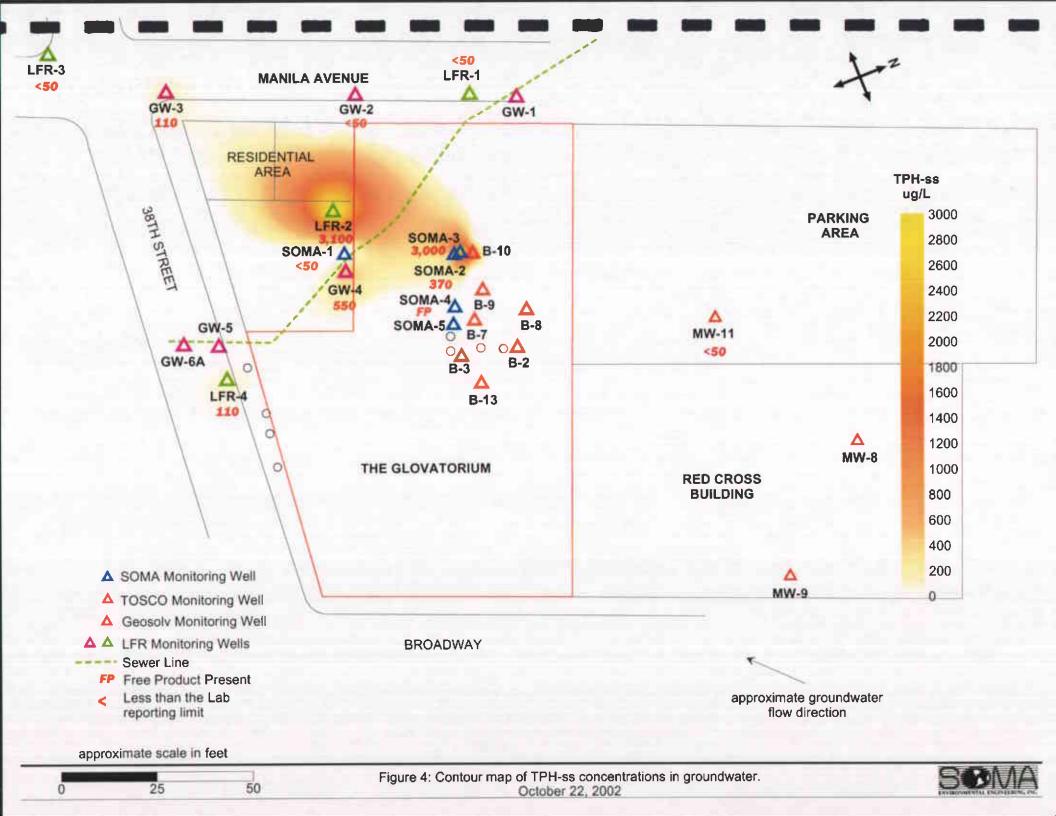
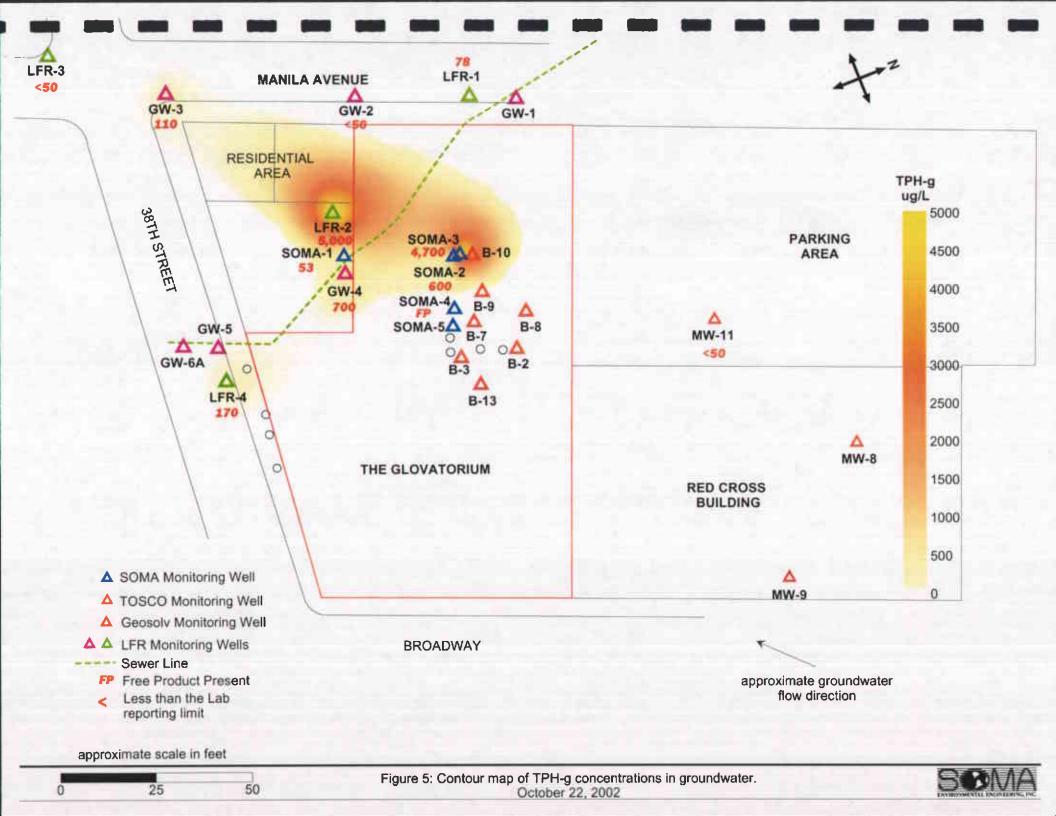
Notes

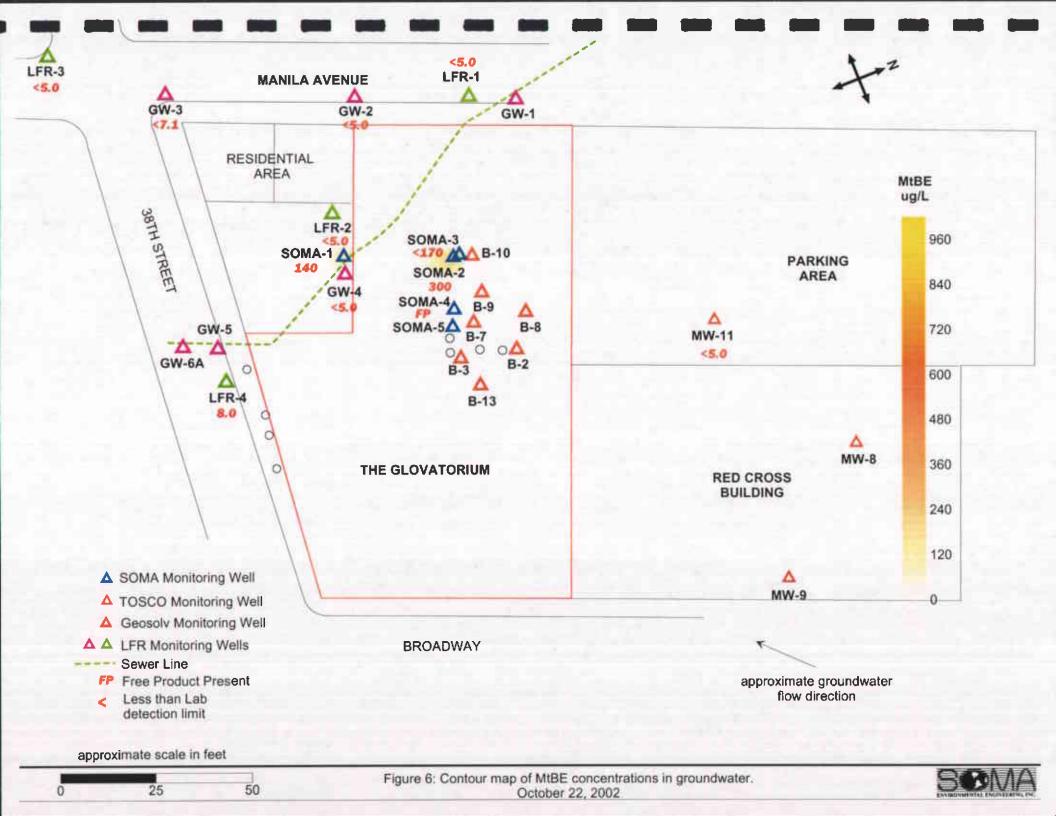
Samples with "field" in the well number indicate that the results are from field measurements obtained using a Hach spectrophotometer or a Hydrolab Quanta flow-through instrument.

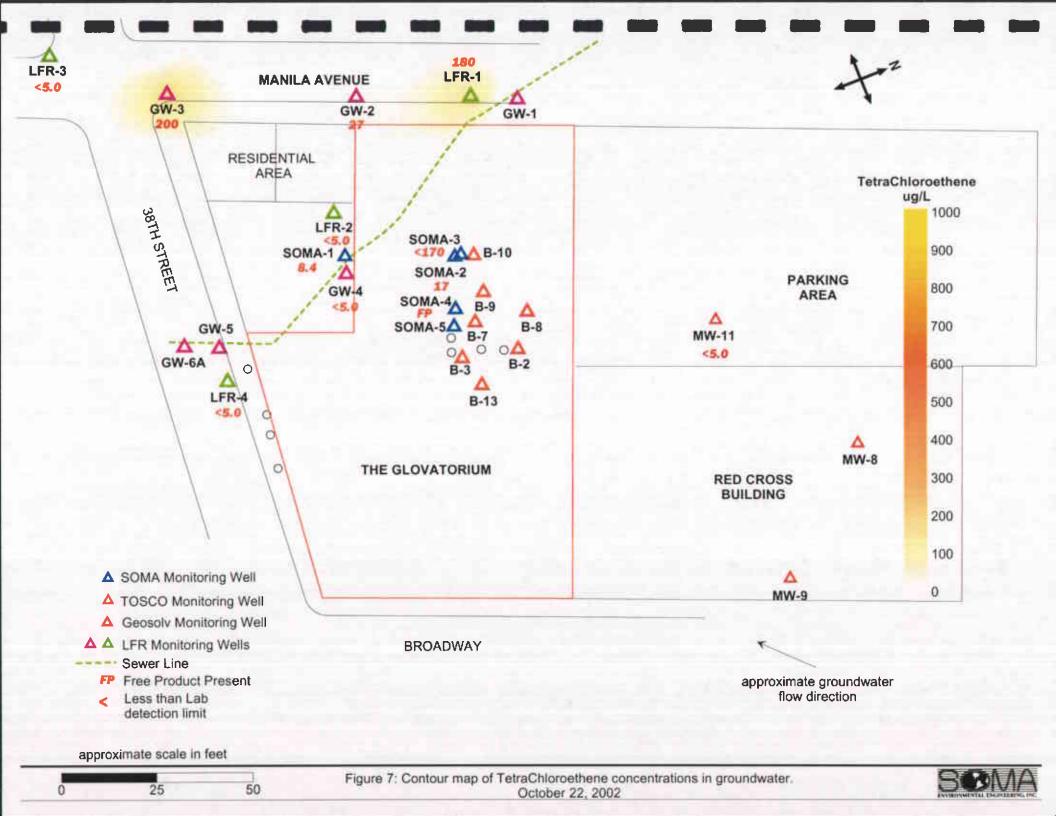
since April 2001, field measurements have been obtained by a Hach Calorimeter

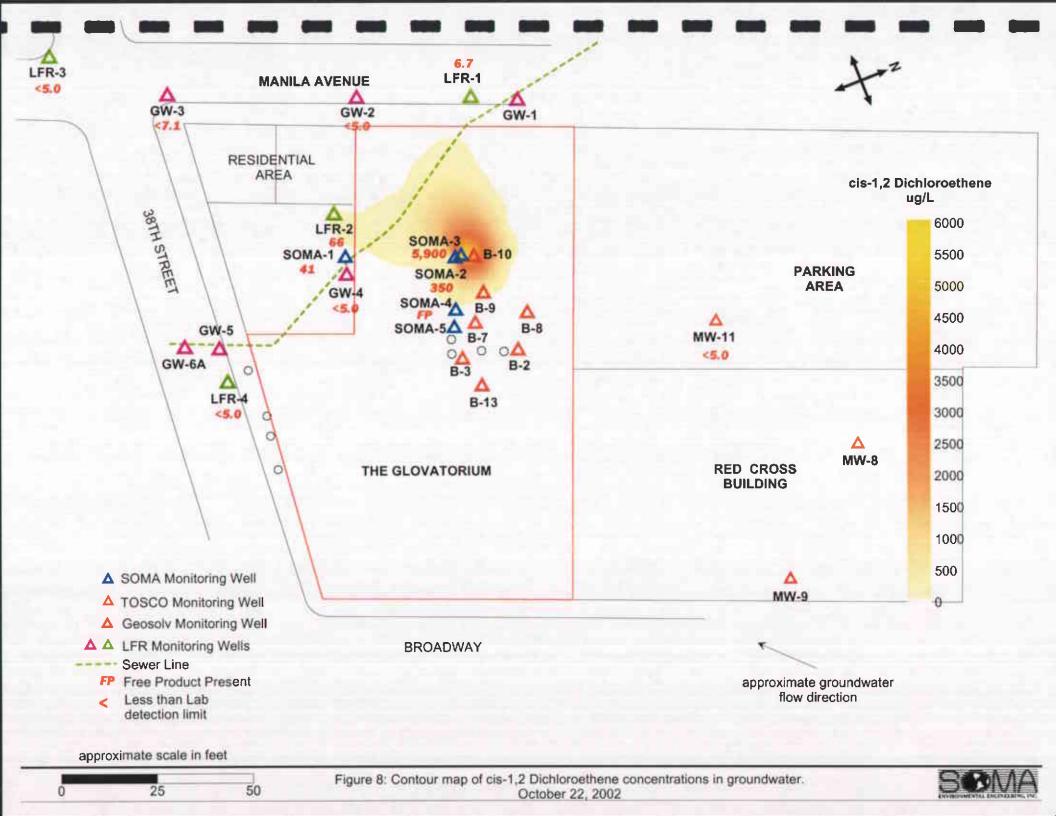
- *) Methane was measured by Microseep Laboratory.
- (1) Sample concentration was too dilute to be reproducibly measured using the Hach spectrophotometer.
- (2) Field measurement was not recorded.

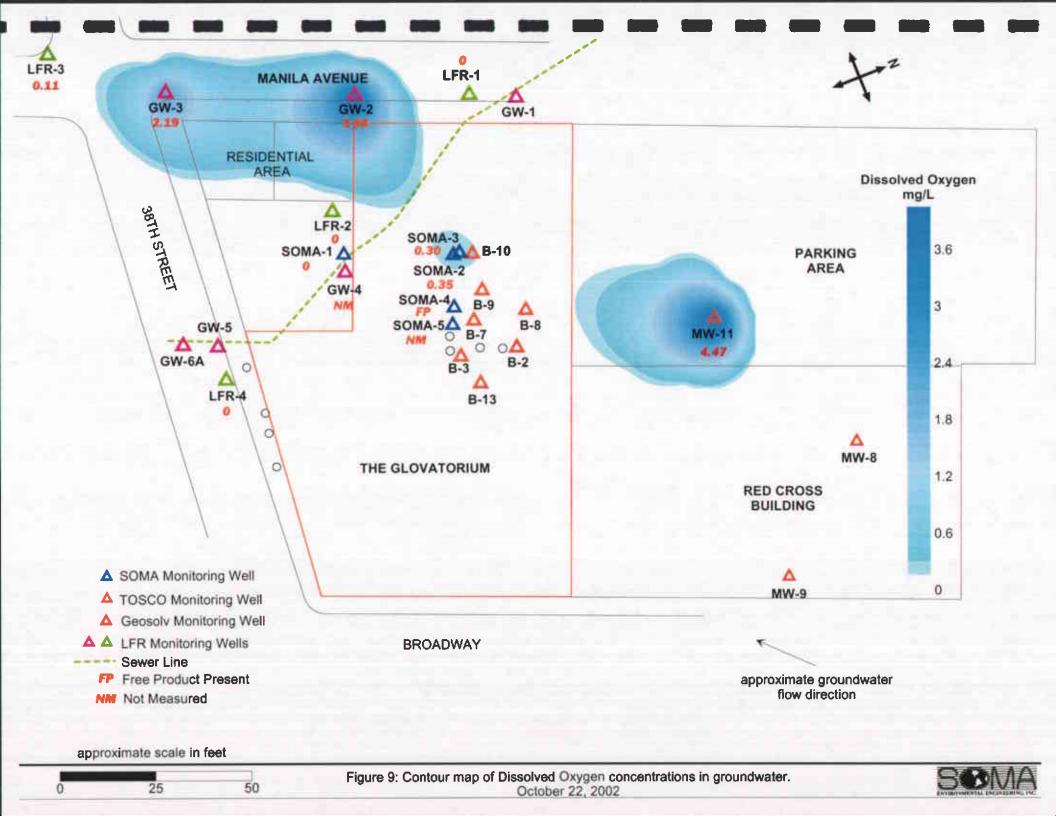
FIGURES

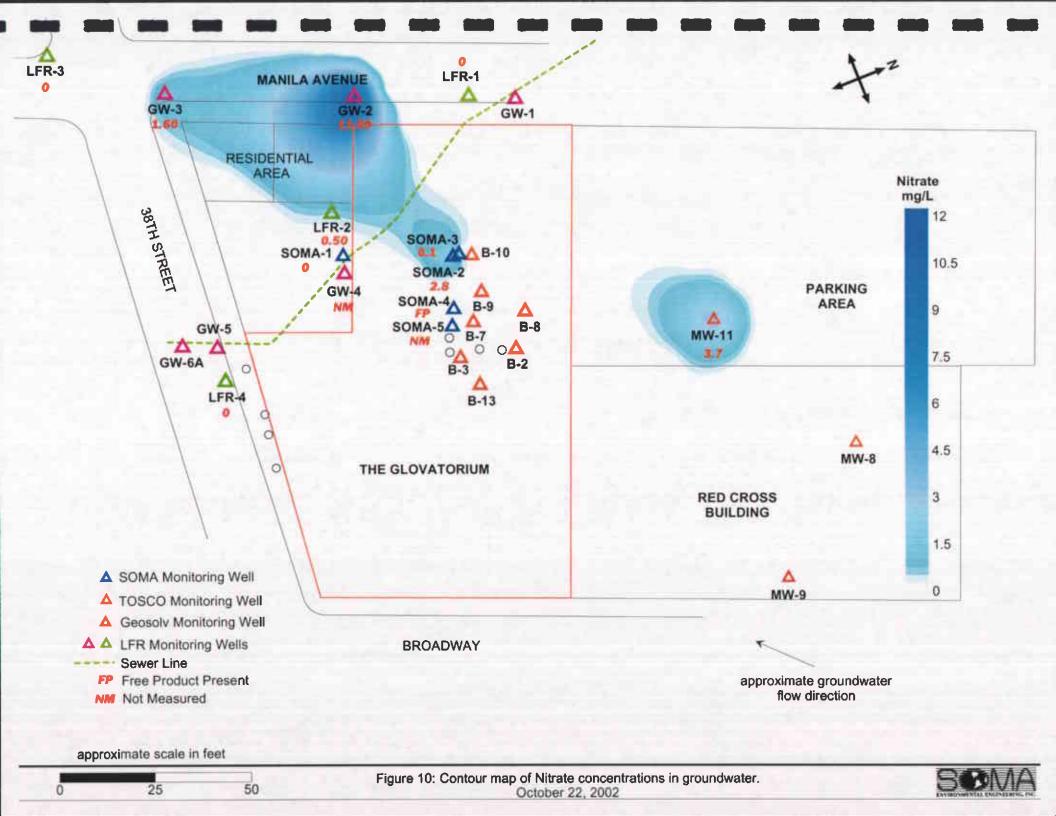






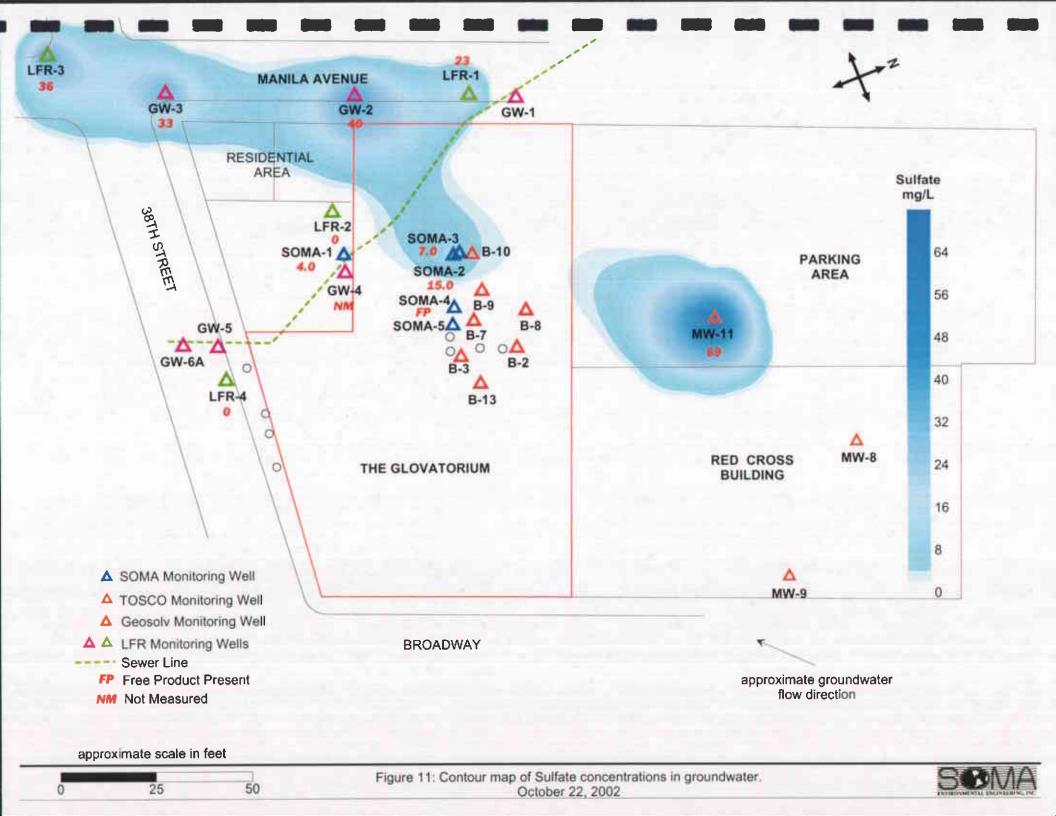

Figure 1: Site vicinity map.

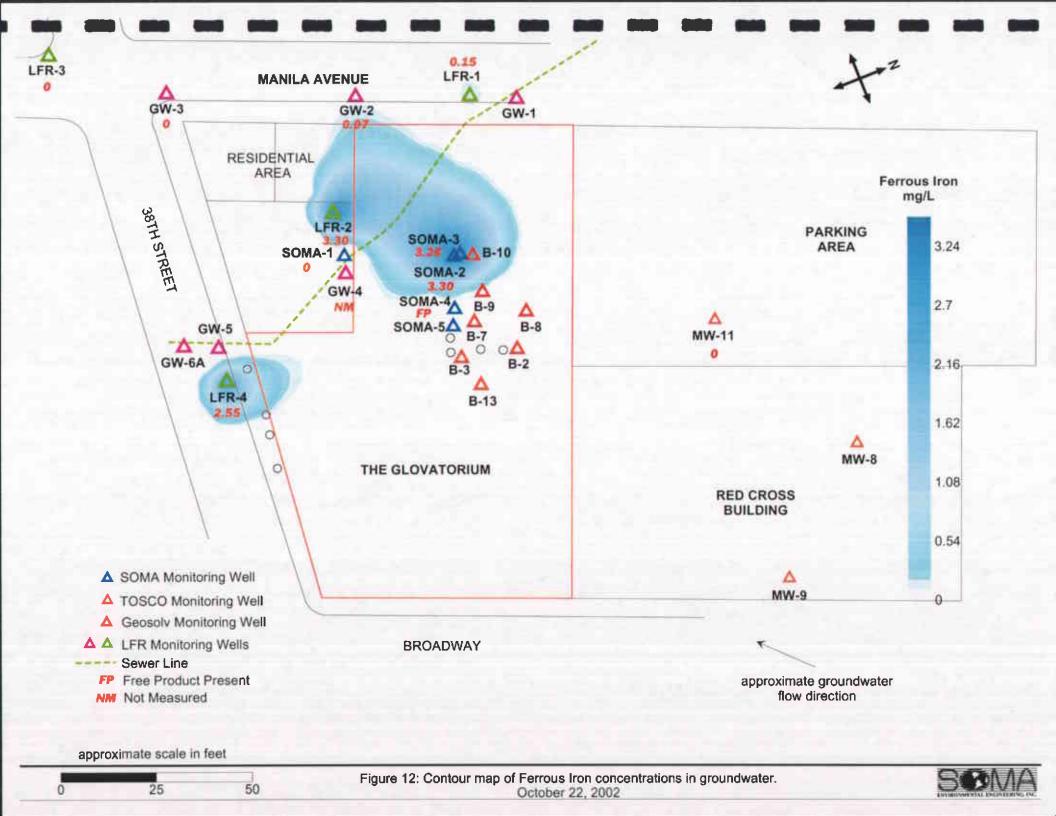


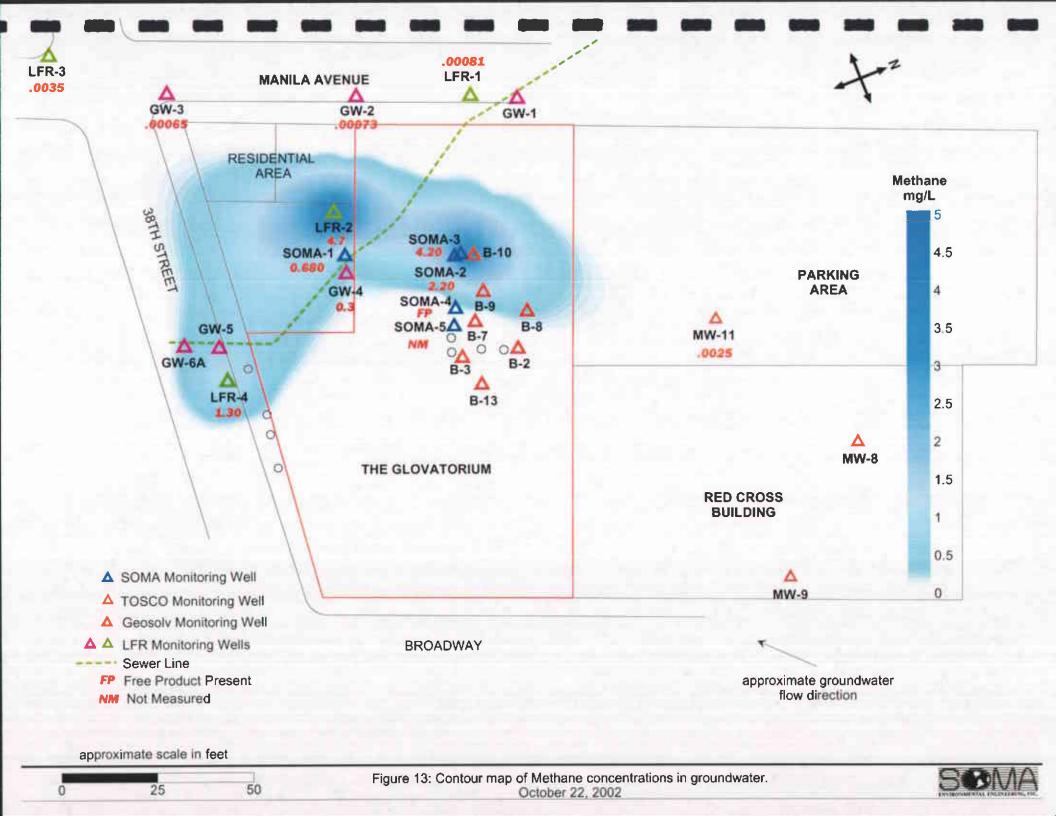












APPENDIX A

Field Notes, Field Measured Physical and Chemical Parameter Values

	Project #: Project Name:	2511 Glovatorium	_Address:		15 Broadway akland, CA	Date: Samp	•		2/02-10/23/02 & 10/24/ nin Bet-Yonan
Well/Sample ID: GW-2 Dup: Blank: Purge Volume: Well Diameter:	TOC Elevation: Well Depth: DTW: Water Table Elev.: Height of Water:	20 ft 11-22 ft 67-92 ft	Purge: _Sample: _Odor: _Sheen: _Color:	r-1	Pump Pump No No No No No Pump Baller Baller Yes Yes Yes	Describe			
Laboratory:				-					
Delivery:		4		-					
Analysis/preservative: Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂), + NAOH	Disolved H ₂ :		1 Septum	Vial		Aik, Ci-, Sulfate:	1 unpreserved poly L
Sunde. Total Iron, Manganese:	1 HNO ₃ preserved po		Dissolved Perm	Gases:	•	erved VOAs			
8260 (8010 list) & MtBE &	, , , , , o , p , o o o , , o o p ,		Cation & Anion		trite: 1 Unpres.	Poly and 1 H	2SO4 Poly		
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Ferrous Iron:		1 HCl Pre				
TIME O IW	VOLUME	sizasin EMP ((C))	ngolvier flevand) (1010)(1111) (1010)		nvo ilure inv	SIDIRTY ((ARTS)	р н 740-194	FGOMMENTS
Sidbilization if 3 streessive parati	O-1	19-12	0-93	5-37	MO-12-3-1-1-1	2	140	6-77	
3:58	0.3	19.43	0.702	4.29	16	9	610	6-71	
3:59	0.5	19-69	0.670	4.02	167	7 :	29.7	6.72	
4:00	0.7	19.78	0.676	3.86	166		14.4	6-73	
SAMPLED @	4:02 p.m.								
		· · · · · · · · · · · · · · · · · · ·							

AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	0.07	0-12	11-50	0.036	40	0-6
						<u> </u>
Dilution:						
Comments:				. <u></u>		

	Project #:	2511	Address:	2	815 Bro	adway		Date:	10/2	2/02-10/23/02 B.10/2
	Project Name:	Glovatorium			Oaklan	d, CA		Sampler:	Raп	nin Bet-Yonan
										Fony Perini
Well/Sample ID: GW-3	TOC ELEVATION 2	77.92 A	Purge:		Pump		Bailer		•	
Oup:	Well Depth:	20 fl	_ Sample:		Pump		Bailer		•	
Blank:	DTW:	10-14 ft	Odor:		No		Yes	Describe		<u> </u>
orge Volume:	Water Table Elev.:	67-78 ft	Sheen:		No		Yes	Describe		. ,
Well Diameter:	Helght of Water:	4.86 ft	Color:		No		Yes	Describe:		А
aboratory:				 	·					
Pelivery:	·			_						
Analysis/preservative:		•		•				•		
ulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂)) ₂ + NAOH	Disolved H ₂ :			1 Septum	Vial		Alk, Cl-, Sulfate:	1 unpreserved poly L
otal Iron, Manganese:	1 HNO ₃ preserved po	ply	Dissolved Perm	Gases:	;	2 Unprese	erved V	OAs		
3260 (8010 list) & MtBE &			Cation & Anion	w/ Nitrate &	Nitrite:	1 Unpres.	Poly a	nd 1 H2SO4 Poly		
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL	·	Ferrous Iron:			1 HCl Pre	s. Poly			
TIME DIW	Z ZOLUME S	CONEMP(CE)	General Grand) Dio (m			No. of the last of the last	TUREIDITY (NITU)	L September 1	. Lagonments:
tabilization if 3 successive parai	meters within:		Professional Control		T				### 0 19# F	
2:59 pm	0.25	19.42	0.476	2.7		161		42.8	6.58	
3:00	0.3	19.60	0.446	2.0		169		34.7	6-52	
3:0	0.4	19-79	0.416	2-1		175		19.1	6.43	
3:02	0.8	19.80	0.425	2-1	9		8	45-5	6.36	<u> </u>
-				-						
SAMPLED @	3 = 15 p-m.									
	1		1	1	ł				1	i

Result -	Fërrous Iron		Nitrate	Salitite	Sulfate" - 3	Dissolved Manganese					
	Ø	Ø	1.60	Ø	33	Ø					
Dilution:											
Comments:											
	(Results in mg/L)										

	Project #:	2511	Address:	2815 Broadway	Date:	10/22/02-10/23/02 & 10/24/0
	Project Name:	Glovatorium	- -	Oakland, CA	Sampler:	Ramin Bet-Yonan
Well/Sample ID: GW-4 Dup: Blank: Purge Volume: Well Diameter: Laboratory: Delivery:	Tox Elevation: Well Depth: DTW: Water Table Elev.: Height of Water:	12 ft	Purge: _Sample: _Odor: _Sheen: _Color:	Pump Pu	Yes Describe:	Tony Perini FIELD MEASUREMENT.
Analysis/preservative: Sulfide: Total Iron, Manganese: 8260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss:	1 Poly w/ Zn(C ₂ H ₃ O, 1 HNO ₃ preserved p		Disolved H ₂ : Dissolved Perm of Cation & Anion was Ferrous Iron:	1 Septun Gases: 2 Unpres // Nitrate & Nitrite: 1 Unpres 1 HCl Pri	erved VOAs Poly and 1 H2SO4 Poly	Alk, CI-, Sulfate: 1 unpreserved poly L
TIME DTW Stabilization in 3 successive pers 9 = 43 cum	VOLUME :		00ND(ES/an)			pha comments 4/201900. recidings.
SAMPLED						
Resultu Ferióus de	jir z z zofaklich:	Nitrate	Nitigites	aDisso Mang 4。	anese	
Dilution: Comments:		<u> </u>				

(Results in mg/L)

	Project #: 25	1 Address:	281	5 Broadway	Date:	10/2	2/02-10/23/02
	Project Name: Glovat	orium	Oa	kland, CA	Sampler:	Ram	nin Bet-Yonan
	·						ony Perini
Well/Sample ID: GW-5	_	Purge:			Bailer		
Dup:	Well Depth:	Sample:		•	Bailer		
Blank:	DTW: <u>12-3</u>	4 ff Odor:		No 🗆	Yes Describe:		
Purge Volume:	Water Table Elev.:	Sheen:	. 0	No 🗆	Yes Describe:		*
Well Diameter:	_ Height of Water:	Color:		No 🗆	Yes Describe:	:	, ·
		<u> </u>			· · · · · · · · · · · · · · · · · · ·		
Laboratory:				ULD NOT	COLLECT ENOU	IGH SAMPL	E
Delivery:					FIELD MEASURE	MENT OR	
Analysis/preservative:	•			STING.		_	
Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂) ₂ + NAOH	Disolved H ₂		1 Septum V		Alk, Ci-, Sulfate:	1 unpreserved poly L
Total Iron, Manganese:	1 HNO ₃ preserved poly	Dissolved P		2 Unpreser			
8260 (8010 list) & MtBE &		Cation & An	ion w/ Nitrate & Nitr		oly and 1 H2SO4 Poly		·
BTEX & TPH-g & TPH-ss:	6.VOAs w/ HCL	Ferrous Iron	n:	1 HCl Pres.	Poly		
TIME		THE RESERVE OF THE PARTY OF THE		公司等的企业的基础。1000年407年407年	v a jukalding (nas)	CHECK THE PROPERTY OF THE PROP	
Stabilization: it sisuccessive; paran	deters within state.	1.1.2.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1		64 - 67 - 41 U O	Veril 25 5 (£)10% (32)	100 100 100 100 100 100 100 100 100 100	
			·				
·							
	,						
				1			
				<u> </u>	· · · · · · · · · · · · · · · · · · ·		
			<i>n</i>				
							· · · · · · · · · · · · · · · · · · ·
				1	•	<u> </u>	
				AL Pissoly	ed a.a.		
Ferrous ron	Total Fron Nitr	ite" Nitrite	Sulfate	Mangani	Se		
			<u> </u>		·		
				\			
Dilution:							
Comments:	<u> </u>	.]		<u>L</u>			
	(Results in a	ng/L)					

.

	Project #:	2511	_Address:		15 Broad		Date:		22/02-10/23/02 & 10/24/0
	Project Name:	Glovatorium	_		Dakland, C	A	Sampler:		min Bet-Yonan
Dup: Well I Blank: DTW: Purge Volume: Water Well Diameter: Heigh	TOC Elevation: Well Depth: DTW: Water Table Elev.: Helght of Water:	: Sa 11-0\ ft Oc e Elev.: Sh			Pump Pump No No	Bailer Bailer Yes Yes	Describe:		Tony Perini
aboratory:				_					
Delivery:				-					·]
Analysis/preservative:									
Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂)	2 + NAOH	Disolved H ₂ :		1 S	eptum Vial		Alk, CI-, Sulfate	: 1 unpreserved poly L
Total Iron, Manganese:	1 HNO ₃ preserved po	ply	Dissolved Perm	Gases:	2 U	npreserved \	/OAs		
3260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Cation & Anion v	w/ Nitrate & N		inpres. Poly a ICI Pres. Poly	and 1 H2SO4 Poly		
ETIME DTW	VOLUME	TEMP (°C).	Goldell Sam	75 56 (mg/	i) e	elrez(mivi) : :/e/:/0.miv	-TIURBIDITY (NTU) E (10%	HQ C	COMMENTS
1:13 pm	1.5	20.90	1-12	6-19	ACCESSESSES AND ACCESSES	87	-7-0	7 - 34	CONTRACTOR OF STREET, MANAGEMENT AND STREET, S
1:14	2.5	21.31	1-19	8-4		96	-8.ଚ	6.72	
1:15	3-0	20-70	1.24	5.25		109	-5. 5	6.65	
1:16	4.0	20-81	1.22	4.47		118	-8-2	6.62	,
SAMPLED @	1:17 p.m.								
				 			1		

Resill	Tenous lion	e Toul Iron	Nitrate	. Nitrite	Sulfate	Dissolve Mangane
	Ø	D.	3-7	0.036	69	88
Dilution:			· ·			
Comments:						<u></u>

	Project #:	2511	Address:	:	2815 Broa	adway	D	ate: .	10/2	2/02-10/23/02 &	10/
	Project Name:	Glovatorium			Oakland	l, CA	S	ampler:	Ramin Bet-Yonan		
	- •		_							Tony Perini	
Well/Sample ID: LFR-1	TOC Elevation:	79.97 Ft	Purge:		Pump		Baiter				
Dup:	Well Depth:	<u> 19 ft</u>	Sample:		Pump		Bailer				
Biank:	DTW:	9.97 ft	Odor:		No		Yes	Describe	·		
Purge Volume:	Water Table Elev.:	70.00 A	Sheen:	. 🗆	No		Yes	Describe	·	·	
Well Diameter:	Height of Water:	9.03 ft	Color:		No.	D	Yes	Describe			
aboratory:										· · · · · · · · · · · · · · · · · · ·	-
Delivery:		,		_							
Analysis/preservative:		•								÷	ļ
Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂) _z + NAOH	Disolved H ₂ :			Septum			Alk, CI-, Sulfate:	1 unpreserved poly!	L
Fotal Iron, Manganese:	1 HNO ₃ preserved p	oly _	Dissolved Perm				erved VO				
8260 (8010 list) & MtBE &			Cation & Anion v	w/ Nitrate &	Nitrite: 1	Unpres	. Poly and	1 H2SO4 Poly			
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL	·	Ferrous Iron:		1	I HCI Pre	es. Poly				
		/						A Marie Land Library Control of Control			ar v God
ADTWA	VOLUME :	FEMP(PC)	⊢√GONE (ES/em)	: DO:(n	g(L)			URBIDDY (NTU		. * GOMMENTS	
tabilization if a successive bare	meters within a 10 at		=	The state of the s				2 5 F/2 (10% AV	,		
4:56 pm.	<u>0-8</u>	19-51	1-37	5.2		<u> 311</u>		42-1	6.61	<u> </u>	
4=57 pm	1-5	20-14	0-602	1-18		29.		30-1	6-68	<u> </u>	
4:58 pm	3.0	20-24	0-529	1.2		286		41-2	6.67		
5:00 pm	4.0	20.16	0-644	Ø		27		10.3	6.60	<u> </u>	
5:02 pm	6.5	20.09	0.803	20		<u> 26</u> .	5	<u>57.3</u>	6.54		
				<u> </u>							
			<u> </u>						· · · · · · · · · · · · · · · · · · ·		
SAMPLED @ 5	5:04 pm							· .			
				<u> </u>							
	1	1		1					I .	i .	

Result	Ferrous Iron	Total non	Nitrate	Avitaie	Sulfate	Dissolveda Manganese		
DG 1899 A 1000 Salara a 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A 1997 A	0 · /5	0-30	Ø	Ø	23	0-4		
Dilution:								
Comments:					•	<u> </u>		
(Results in mg/L)								

							4.3				
	Project #:	2511	Address:		2815 Broa	idway	-	Date:		22/02-10/23/02 🞉	10/2
	Project Name:	Glovatorium			Oakland	CA		Sampler:		min Bet-Yonan	
/ EO . a		e i		_					<u> </u>	Tony Perini	
Well/Sample ID: LFR - 2	_ TOC Elevation (81.89 H	Purge:		Pump 1		Bailer				
Dup:		<u>19 ft</u>	Sample:		Pump	. 📮	Bailer		•		
3lank:	DTW:	11.41 ft	Odor:		No		Yes	Describe	·		
Purge Volume:	 Water Table Elev.:	70-48 Ft	Sheen:		No		Yes	Describe			
Nell Diameter:	Height of Water:		Color:		No		Yes	Describe	·		
.aboratory:											
Delivery:			` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	_							
Analysis/preservative:		,	•							v	
ulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂	2) ₂ + NAOH	Disolved H ₂ :		, 1	Septun	n Vial		Alk, CI-, Sulfate	: 1 unpreservéd po	oly L
otal fron, Manganese:	1 HNO ₃ preserved p	ooly	Dissolved Perm	Gases:	2	Unpres	erved V	/OAs		-	
260 (8010 list) & MtBE &		, v	Cation & Anion	w/ Nitrate 8	Nitrite: 1	Unpres	. Poly a	nd 1 H2SO4 Poly			
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Ferrous Iron:		1	HCI Pre	es. Poly		-		l
i ime	Voleum≘ s-	E WEND (SG)	GONE (ASTAIN), Older	[g/[=]	ORĐI	mÝ) Á	TURBIOHDY (NILU	a pH	CONNEN	S
tabilization if 3 successive para	meters within		in part of 300 and	i api	974	7110	mV	e kwajowa i			
11:23 am	1	17.83	0.964	6-5	8	- 7	4	6.0	7.24		
11:25	3	18-30	0.835	Ø		-7	8	6.6	6.87		
il: 26	4	18.09	0.8/2	Ø		<u>-8</u>	2	1.6	6-84		
11:27	DRIED										
SAMPLED @	11:30 am		a .							· .	
				1.							
						-		1		I	

Result	Ferrous Iron	Total from	Nitrate 5	Nitrite	9 Sunate	Dissolved Mandanese					
Department of the Control of the Con	3-30	3.30	0-50	0-057	Ø	10-7					
Dilution:											
Comments:	<u> </u>			<u> </u>	<u> </u>	·					
-	(Results in mg/L)										

	Project #: Project Name:	2511 Glovatorium	Address:		Broadway and, CA	Date: Sampler:			2-10/23/02 & 10/24/0 Bet-Yonan
Well/Sample ID: LFR - 3 Dup: Blank: Purge Volume: Well Diameter:	TOC Elevation: Well Depth: DTW: Water Table Elev.: Height of Water:	77.96 ft 22 ft 11-83 ft 66-13 ft 10-17 ft	Purge:Sample:Odor:Sheen:Color:	Pur Pur D N	р 🗆 в о 🗓	Yes De	escribe: escribe:		y Perini
Laboratory:			· · · · · · · · · · · · · · · · · · ·			·			·
Delivery:		<u> </u>				•	,		
Analysis/preservative:	4.5-1	1 MACH	Dischard I.I.		1 Septum Vi	اهٔ	Alle C	1 Culfata 1	unpreserved poly L
Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₃		Disolved H ₂ : Dissolved Perm (Gonos:	2 Unpreserv		Air, O	r, Sunate.	unpreserved pory L .
Total Iron, Manganese:	1 HNO ₃ preserved p	loiy			•		D.L.		
3260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Cation & Anion:w Ferrous Iron:	/ Nitrate & Nitrite	1 HCl Pres.	-	Poly		
DTW:	AND THE RESIDENCE OF THE PARTY	TEMP (EC)	CONE (Elen)			n eigereigine Gebeure		pHi Loci96	. COMMENTS
1:32 pm	0.5	20.03	4.89	6.71	/87	999	5-	27	
1:33	2.5	21.23	0.402	2.67	187	314		-5	
		21.03	0-431	1.28	190	513	6	15	
	4	44,00	- 0						
1:35	5.5	20-79	0.440	0.62	189	999		-24	
1:35						999 999	6		

				•				•	
	l de la company					Dissolved			•
Result	Ferrous fron	Total Iron	Servicate, as an	NITTHE STATE	Sulfate (S	- Manganese	•		
-	Ø	1-35	Ø	Ø	36	0.5			
							•		
Dilution:				1					
				 		· · · · · · · · · · · · · · · · · · ·			
Comments:				<u></u>	İ		`		
			(Results in mg/L)						•

- V		Project #:	2511	_Address:	2815 Br	oadway	Date:		22/02-10/23/02 & 10/24/0
		Project Name:	Glovatorium	_	Oaklar	nd, CA	Sampler:		nin Bet-Yonan
Well/Sample ID: Dup: Blank: Purge Volume: Well Diameter:	LFR-4	TOC Elevation: _ Well Depth: _ DTW: _ Water Table Elev.: _ Height of Water:	13-88 PF	Purge: Sample: Odor: Sheen: Color:	Pump Pump No	Bailer Yes	Describe: Describe:		Tony Perini
Laboratory:									
Delivery:					_		•		
Analysis/preserva Sulfide:	ative:	1 Poly w/ Zn(C ₂ H ₃ O ₂) ₂ + NAOH	Disolved H ₂ :		1 Septum Vial		Alk, Ci-, Sulfate	: 1 unpreserved poly L
Total Iron, Mangar	nese:	1 HNO ₃ preserved po	oly	Dissolved Perm	Gases:	2 Unpreserved \	/OAs	•	
8260 (8010 list) & BTEX & TPH-		6 VOAs w/ HCL		Cation & Anion Ferrous Iron:	w/ Nitrate & Nitrite:	1 Unpres. Poly a 1 HCl Pres. Poly			
A DESCRIPTION OF THE PROPERTY		r VOLUME. meters/within	AFTEMP((G)	. Ciolvio (i ∺/an)	- (6 RP)(i nY)	TORBIDITY (NEU)	(2) 20 向月 (2) 21 - 0 : 1%	GOMMENTS
8:47	Control of the second of the second of	o.5	19.90	0.612	4.43	-32	6.9	6.86	
8:48		1.5	20.04	0-541	0.31	<u>-3i</u>	-2-1	6-72	
8:50		2.5	19.90	0-602	Ø	_63_	-1-2	6.69	
		5.0	DRIED	<u> </u>					
					<u> </u>			ļ	
SAMPL	ED @	8:55 c-r	<u>n</u>			-			
ļ <u>.</u>				 					
	<u> </u>			<u> </u>				-	

. .

	∉Eërrous-iron	er of liron	Ninette (V	Niirte	Sulfate e	Manganese
	Z.55	3-30	_ ಲ	Ø	Ø	4.0
Dilution:						
Comments:			(Results in mg/L)		14	

	Project #: Project Name:	2511 Glovatorium	_Address:	2815 Bro Oaklan		Date: Sampler:	Ran	2/02-10/23/02 & 10/24/o
Well/Sample ID: 50MA - Dup: Blank: Purge Volume: Well Diameter:	TOC Elevation: Well Depth: DTW: Water Table Elev.: Height of Water:	66-92 H	Purge: Sample: Odor: Sheen: Color:	Pump Pump No No No	Bailer Bailer Yes Yes Yes	Describe: Describe:		Tony Perini
Laboratory:					-		 	
Delivery:		·	<u></u>	-				
Analysis/preservative:		,	500 1 141		40 4 154		All or O It-	4
Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂)		Disolved H ₂ :		1 Septum Vial		AIK, CI-, Suirate:	1 unpreserved poly L
Total Iron, Manganese:	1 HNO ₃ preserved po	ly _	Dissolved Perm		2 Unpreserved V			
8260 (8010 list) & MtBE &			Cation & Anion v	w/ Nitrate & Nitrite:	• •	-		
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Ferrous Iron:		1 HCl Pres. Poly		ė	
ті МЕ Stabilization f3successive/patam	AVOLUME:	TEMP[(°G)		pie/(me/L)		ти́выту(и́ти́). -16%	- pH - 47/0 1966	GOMMENTS.
10:29 am	1	17.63	1-27	6.13	113	999	6 95	
10:3]	3	17-68	1-28	Ø	122	646	6-63	
10:33	6.5	17-68	1-27	Ø	127	463	6.61	
i0:35	8	17-70	1.27	Ø	129	449	6.60	
10:37	10	17-73	1.27	gi	131	448	6.60	
10:39	12	17.77	1.27	8	131	999	6.60	
10.01								
SAMPLED @ 10:	49 a.m							
	1		.1	1				

Result	Ferrous Iron	Totalsion	Nitrate	Nitite	Sulfate	e le solvec Manganèse
200 P.C. (111)	Ø	0-24	<i>9</i> 6-	0.009	4.0	0.7
Dilution:					·	
Comments:						<u> </u>
			(Results in mg/L)			

	Project #:	2511	_Address:	2815 Bro	oadway	Date:	10/2	2/02-10/23/02 & 10/2
	Project Name:	Glovatorium		Oaklan	d, CA	Sampler:		in Bet-Yonan
Well/Sample ID: SOMA -2 Dup: Blank: Purge Volume: Well Diameter:	70C Elevation : Well Depth: DTW: Water Table Elev.: Height of Water:	20.00 ff 12.39 ft 69.00 ft	Purge:Sample:Odor:Sheen:Coior:	☐ Pump☐ No☐ No☐ No	Bailer Bailer Yes Yes			ony Perini
aboratory:				.		-		
nalysis/preservative:							-	
ulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂);	+ NAOH	Disolved H ₂ :		1 Septum Vial	•	Alk, CI-, Sulfate:	1 unpreserved poly L
otal Iron, Manganese:	1 HNO ₃ preserved po	у "	Dissolved Perm	Gases:	2 Unpreserved V	OAs		
260 (8010 list) & MtBE &		·	Cation & Anion V	w/ Nitrate & Nitrițe:	1 Unpres. Pöly a	nd 1 H2SO4 Poly		
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Ferrous Iron:		1 HCl Pres. Poly		÷	
TIME DTW tabilization if 3 successive para	eVolume	ETEMP(20)	Golffortsian) O	DE (mg/L)		Truciniojnoj (kjela) Tropa	pHillipHill	GOMMENTS 12
3:09 pm	T 0-1	16-42	1.53	4.80	- 76	573	7.03	and the control of th
3:11	0.2	16.46	1.41	<i>S</i> ⊗′	-87	227	6.89	
3:12	0-3	16 44	1-37	Ø	-99	207	6-93	* · · ·
3:13	0.4	16-44	1.36	Ø	-102	299	6.98	
3:15	0.5	16.47	1.38	0.35	-98	274	6.97	· -
SAMPLED (a_3:16 p.m.							
<u> </u>	-				<u> </u>			1
				 				

Result .	Pettoffallour	្នាល់ដៅក្រហ្វៈ 🤻	Nitrate	Nitrie	Sulfate 30	#PDissolved Manganese
2 Sold State of State	3.30	3.30	2-8	Ø	15	1.7
Difution:	·					
Comments:						
			(Results in mg/L)			

	Project #: Project Name:	2511 Glovatorium		Oakia	nd, CA	s	iampler:	and the second s	2/02-10/23/02 & / 0/2 nin Bet-Yonan
	Project Name.	GIOVALGITOTI	_	Oliva	114, 071				ony Perini
Well/Sample ID: SOMA -3 Dup: Blank: Purge Volume: Well Diameter:	Mell Depth: DTW: Water Table Elev.: Height of Water:	9-41 A 72-01 ft	_Sample:	D Pump D No		Bailer Bailer Yes Yes Yes	Describe Describe	:: ::	
aboratory:									
Delivery:									•
malysis/preservative:			* 4				•	Alle OL O Kata	4
		1							
	1 Poly w/ Zn(C ₂ H ₃ O ₂)		Disolved H ₂ :		1 Septum		\ B &	Alk, CF, Sulfate:	1 unpreserved poly L
	1 Poly w/ Zn(C ₂ H ₃ O ₂) 1 HNO ₃ preserved po		Dissolved Perm		2 Unprese	erved VC		Alk, CF, Suirate:	i unpreserved poly L
outfide: otal Iron, Manganese: 260 (8010 list) & MtBE &	1 HNO ₃ preserved po		Dissolved Perm Cation & Anion v	Gases: v/ Nitrate & Nitrite	2 Unpresent 1 Unpresent	erved VC Poly and		Alk, CF, Sulfate:	i unpreserved poly L
otal Iron, Manganese:			Dissolved Perm		2 Unprese	erved VC Poly and		Alk, CF, Sulfate:	i unpreserved poly L
otal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss:	1 HNO ₃ preserved po 6 VOAs w/ HCL		Dissolved Perm Cation & Anion v	v/ Nitrate & Nitrite	2 Unprese 1 Unpres. 1 HCI Pre	Poly and s. Poly	d 1 H2SO4 Poly	Alk, CF, Sulfate:) pH; r	
otal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss: TIME DIW tabilization if 3 successive para	1 HNO ₃ preserved po 6 VOAs w/ HCL VOLUME meters within (2)	oly	Dissolved Perm Cation & Anion v Ferrous Iron:	v/ Nitrate & Nitrite	2 Unpress 1 Unpress 1 HCI Pre	Poly and s. Poly	d 1 H2SO4 Poly		
ptal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss: TIME DTW tabilization #3 successive para	1 HNO ₃ preserved po 6 VOAs w/ HCL	ieMP(/c) 16-/2	Dissolved Perm Cation & Anion v Ferrous Iron: GOND (LS/cm)	v/ Nitrate & Nitrite VPO (mg/4) 24/ 1696	2 Unprese 1 Unpres. 1 HCI Pre . ORP1	Poly and s. Poly a	d 1 H2SO4 Poly)	
ptal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss: TIME DESCRIPTION abilization if 3 successive para 2:11 pm 2:12	1 HNO ₃ preserved po 6 VOAs w/ HCL VOIGUME meters w/ttling	oly	Dissolved Perm Cation & Anion v Ferrous Iron: GeNer(*Siciri)	v/ Nitrate & Nitrite	2 Unprese 1 Unpres. 1 HCI Pre GRP7(+74.10)	Poly and s. Poly a	d 1 H2SO4 Poly nurbjette (Nice 12 10% +) = #2.pH;	
otal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss: TIME DIW tabilization #3 successive para 2: pm 2: 2:	1 HNO ₃ preserved po	16-/2 /6-36	Dissolved Perm Cation & Anion v Ferrous Iron: GOND (Estain) 9-52 8-30	v/ Nitrate & Nitrite 100 (mg/L) 2 40% 8 - 91 8 - 96	2 Unprese 1 Unpres. 1 HCI Pre ORP(5/2 10) 	Proved VC Poly and S. Poly MV) B 5 2	1 H2SO4 Poly HURBIDITA (NITE 295 198 100 271)	
ptal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss: TIME DESCRIPTION abilization if 3 successive para 2:11 pm 2:12	1 HNO ₃ preserved po	/ AEMR(PS) /6-/2 /6-36 /6-40	Dissolved Perm Cation & Anion v Ferrous Iron: GOND (#S/cm) 9-52 8-30 0-949	# Nitrate & Nitrite ### (mg/4) ###################################	2 Unprese 1 Unpres. 1 HCl Pre ORP/(Poly and s. Poly a	1 H2SO4 Poly IURBJOHS (NET 1 10% 295 198 700	7-40 7-06 7-01	
otal Iron, Manganese: 260 (8010 list) & MtBE & BTEX & TPH-g & TPH-ss: STIME DITW tabilization in structure para 2:11 pm 2:12 2:13 2:15	1 HNO ₃ preserved po	16-/2 /6-36 /6-40 /6-37	Dissolved Perm Cation & Anion v Ferrous Iron: GeND (**Sign) 9-52 8-30 0-949 0-942	v/ Nitrate & Nitrite ***PID***(mg/l4)** ****-10% ***-91 ***-96 ***-8-97 ***-96	2 Unprese 1 Unpres. 1 HCI Pre ORPI +/2:10 	Poly and s. Poly a	1 H2SO4 Poly HURBIDITA (NITE 295 198 100 271) # ph; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	

Result	Ferrous Iron	r Totalilron	Nitrate 3	. 7 Nitro	Sulfate	Mangaries
COSTO DE LA COSTO DEL COSTO DE LA COSTO DE LA COSTO DEL COSTO DE LA COSTO DEL COSTO DE LA COSTO DE LA COSTO DE LA COSTO DE LA COSTO DE LA COSTO DEL COSTO DE LA COSTO DEL COSTO DE LA COSTO DELA COSTO DE LA COSTO DE LA COSTO DE LA COSTO DE LA COSTO	3-26	3.30	0.1	0-031	7	2.7
Dilution:						
Comments:						

Well/Sample ID: SOMA - 5 Dup: Blank: Purge Volume:	Project Name: Well Depth: DTW: Water Table Elev.: Height of Water:	Glovatorium	Purge: Sample: Odor:		Oakland Pump Pump	Ē	Sam _l Bailer	oler:		nin Bet-Yonan Tony Perini
Dup:	Well Depth: DTW: Water Table Elev.:		Sample: Odor:		_		Bailer		-	ony Perini
Dup:	Well Depth: DTW: Water Table Elev.:		Sample: Odor:		_		Bailer			
Blank:	DTW: Water Table Elev.:		 Odor:	_	Pump					
	_ _Water Table Elev.:		_		rump		Bailer			,
Purge Volume:	_	· · · · · · · · · · · · · · · · · · ·			No		Yes	Describe:		
<u> </u>	_Height of Water:		Sheen:		No		Yes	Describe:		
Well Diameter:			_Color:		No		Yes	Describe:		
Laboratory:									. · · · · · · · · · · · · · · · · · · ·	
Delivery:				_						
Analysis/preservative:		. •							•	
Sulfide:	1 Poly w/ Zn(C ₂ H ₃ O ₂)		Disolved H ₂ :			i Septum			Alk, Cl-, Sulfate:	1 unpreserved poly L
Total Iron, Manganese:	1 HNO ₃ preserved po	oly _	Dissolved Perm				erved VOAs			
8260 (8010 list) & MtBE &			Cation & Anion v	w/ Nitrate &			-	2SO4 Poly		
BTEX & TPH-g & TPH-ss:	6 VOAs w/ HCL		Ferrous Iron:		•	1 HCI Pre	s. Poly			
//s time at _otw	VOEUME	SEEMP (CC)	(GOND his/en)	i a sa sa sa sa sa sa sa sa sa sa sa sa s		abb/			e d phi	เรื่องพที่สูงกร
Stabilization in 3 successive param	2017年2月17日 - 1917年 1917年	的是一种,我们们的自己的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		THE RESERVE OF THE PROPERTY OF THE PARTY OF	THE RESERVE OF THE PARTY OF THE					
	- A Company of the State of the			NEWSCHOOL STREET	e de maria d		TOWN THE RESIDENCE OF STREET	WANTED STATE OF THE PERSON AND ADDRESS OF TH		
	· · · · · · · · · · · · · · · · · · ·							······································		
									-	
	7	\ /		 		<u>:</u> _				
,		Y				<u></u>		778.0.		
				\						
		<u> </u>		ļ		•-				
				 						
:										
	•			' <u></u>	· · · · · ·		·		l	
Result Ferrous iron	; [rotal Iron :-	Nirate	Ninte -	Salis		#ebissol •Mangal				
	A Control of the Cont									
							•			•
Dilution:				<u> </u>		••				•
Comments:					-+	<u></u>				
Comments.	.1 .	(Results in mg/L)	4	<u> </u>						
	· · · · · · · · · · · · · · · · · · ·	f- cannot it makely	· · · · · · · · · · · · · · · · · · ·					•		
		.*								

Result	Ferrous Iron	* Total Iron	Nibal		SANIFIES :	Sulfate =	Maiuanes
Dilution:				·			<u> </u>
Comments:		,					
			(Results in mg	/L)	-		

APPENDIX B

Chain of Custody Forms

and

Laboratory Reports

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

SOMA Environmental Engineering Inc. 2680 Bishop Dr. Suite 203 San Ramon, CA 94583

Date: 04-NOV-02 Lab Job Number: 161425 Project ID: 2511

Location: 3815 Broadway, Oakland CA

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Openations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 60

Laboratory Number:

161425

Client:

SOMA Environmental Engineering Inc.

Project Name:

3815 Broadway, Oakland

Project #:

2511

Receipt Date:

10/23/02

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for eleven water samples received from the above referenced project on October 23rd, 2002. The samples were received cold and intact.

Total Volatile Hydrocarbons (EPA 8015B(M)):

A high recovery of bromofluorobenzene was observed for sample LFR-2 due to coelution with this sample matrix.

No other analytical problems were encountered.

Purgeable Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY FORM Page ______ **Analyses** 8015 **Curtis & Tompkins, Ltd.** LOGIN# 161425 **Analytical Laboratory Since 1878** 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone Sampler: Ramin Bet-Yonan Tony Perini (510)486-0532 Fax Mansour Sepehr/Tony Sepehr Report To: 802 **Project No:** 2511 Project Name: 3815 Broadway, Oalubird, Company: SOMA ENVIRONMENTAL 925) Z44-6600 Telephone: Project P.O.: MTBI (925) 244-6601 Standard **Turnaround Time:** Fax: Preservative Matrix 90 BTEX, Soil Water Waste Sampling # of HCL HCL CENTRIPE STATE ST HOL N Laboratory **Field Notes** 00 Sample ID. Date Number Time 10/22/02, 41/20M GW-2 10/22/02, 3:15,00 GW-3 10/23/02, 9:430 G W-4 10/23/0Z, 1:17, MW-IL 10/22/02,5:04. 0 LFR-I LFR-2 10/23/02, 11:000m **+** 0 LFR-3 10/22/02 1:45 Œ Ø 10/23/07 8:55a LFR-4 10/23/02/10:49 SOMA-1 0 10/23/02,3:16 -10Ω SOMA-2 -11 10/23/02, 2:19 00 SOMA-3 Œ RECEIVED BY: **RELINQUISHED BY:** Notes: KI On Ice Received 10/23/02 1755AM 10/23/02 /5:59 Rumin Bet-Yanan Cold Ambient Intact Mategante DATE/TIME DATE/TIME DATE/TIME DATE/TIME **Preservation Correct?** ☑ Yes ☐ No ☐ N/A

Signature

DATE/TIME

DATE/TIME

Total Volatile Hydrocarbons Lab #: 161425 Location: 3815 Broadway, Oakland CA Client: Prep: SOMA Environmental Engineering Inc. EPA 5030B

Project#: 2511 8015B(M) <u> Analysis:</u> Water Matrix: Received: 10/23/02 Units: uq/L

1.000

Field ID: GW-2 Batch#: 76365 SAMPLE Type: 10/22/02 Sampled: Lab ID: 161425-001 Analyzed: 10/26/02 Diln Fac:

Analyte Result RL Gasoline C7-C12 ND 50 Stoddard Solvent C7-C12 50 ND

Surrogate %REC Limits Trifluorotoluene (FID) 102 68-145 Bromofluorobenzene (FID) 66-143

Field ID: GW-3 76365 Batch#: Type: Lab ID: 10/22/02 10/26/02 SAMPLE Sampled: Analyzed: 161425-002

Diln Fac: 1.000 Analyte Result

Gasoline C7-C12 140 Y Z 50 Stoddard Solvent C7-C12 110 Y Z 50

Surrogate Limits REC Trifluorotoluene (FID) 102 68-145 Bromofluorobenzene (FID) 107 66-143

Field ID: GW-4 76365 Batch#: SAMPLE Sampled: 10/23/02 ype: ab ID: 161425-003 Analyzed: 10/26/02 iln Fac: 1.000

Analyte Result RL Gasoline C7-C12 700 H Y 50 Stoddard Solvent C7-C12 550 50

Surrogate %REC Trifluorotoluene (FID) 103 68-145 Bromofluorobenzene (FID) 140 66-143

*= Value outside of QC limits; see narrative

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits fuel pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

b= See narrative ND= Not Detected

RL= Reporting Limit LR= Response exceeds instrument's linear range

age 1 of 5

Sample #: d1

Date: 10/26/02 07:16 PM

Page 1 of 1

mple Name : 161425-002,76365,+stodd

: G:\GC05\DATA\299G011.raw

: TVHBTXE Time of Injection: 10/26/02 06:51 PM Start Time : 0.00 min End Time : 25.00 min Low Point : 2.79 mV High Point : 312.63 mV Scale Factor: 1.0 Plot Offset: 3 mV Plot Scale: 309.8 mV GW-3 Response [mV] C-6 -2.59 <u>-3:48</u> C-7 -3.97 -4.33 -4.67 TRIFLUO -5.29 =6:**4**8 -6.87 C-8 ⊢7.65 ⊢8.00 **‡-8**.73 9.12 <u>-8:33</u> -10.30 -11.12 -11.45 ≻11.69 -12.80 13.47 -13.89 -14.16 BROMOF --14.48 ∬–15.02 C-10 -15.35 -16.18 -16.58 -16.98 -17.56 -17.87 -18,33 =18:67 -19.29 -21.59 -21.85 -22.20 C-12 -23.45 -23.78 -24.10 --24.40 -24.82

mple Name : 161425-003,76365,+stodd Page 1 of 1 Sample #: c1 : G:\GC05\DATA\299G012.raw Date: 10/26/02 07:49 PM : TVHBTXE Time of Injection: 10/26/02 07:24 PM Start Time : 0.00 min End Time : 25.00 min Low Point : 3.60 mV High Point : 294.09 mV cale Factor: 1.0 Plot Offset: 4 mV Plot Scale: 290.5 mV GW-4 Response [mV] 0.67 -0.88 C-6 -3.15C-7 -3.96 -4.33 -4.66 TRIFLUO ~ -5.286.41 -7.00-7.50 -7.78 -8.13 C-8 -9.26-9.80 -10.28-11.15 -11.43 -11.86 -12.22-12.9514.13 BROMOF -14.48 >-14.76 C-10 -15.65 -16.20^{5.97} >-16.59 -16.94 -17.44 -17.88 -18.33 ----18.65 19.16 19.71 -<u>20.07</u> -20.35 -20.82 -21.22 -21.59 -21.93 -22.19 C-12 >-22.66 -22.98 -23.25 -23.73 -23.73

24.79

Total Volatile Hydrocarbons

3815 Broadway, Oakland CA Lab #: 161425 Location:

Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: 2511 8015B(M) Analysis:

Matrix: Water 10/23/02 Received:

<u>Units:</u> uq/L

Field ID:

MW-11 SAMPLE

ype: .ab ID: Diln Fac:

161425-004

1.000

Batch#:

76365

Sampled:

10/23/02

Analyzed: 10/26/02

Analyte Result RL Gasoline C7-C12 ИD 50 Stoddard Solvent C7-C12 50 ND

Surrogate %REC Limits Trifluorotoluene (FID) 101 68-145 Bromofluorobenzene (FID) 66-143 108

ield ID:

LFR-1

Type:

SAMPLE 161425-005

Sampled: Analyzed:

Batch#:

10/22/02 10/30/02

Lab ID: Diln Fac:

1.000

Analyte	Resul	ŧ		RL				
Gasoline C7-C12	78	Y	Z	50				
Stoddard Solvent C7-C12	ND			50	·	 		

%RBC Limits Surrogate Trifluorotoluene (FID) 97 68-145 Bromofluorobenzene (FID) 66-143

Field ID:

LFR-2

ype: ab ID: SAMPLE 161425-006 Batch#:

76404

Sampled: Analyzed: 10/23/02 10/30/02

iln Fac: 1.000

Analyte Result 50

Gasoline C7-C12 5,000 H Y Stoddard Solvent C7-C12 3,100 50

%REC Limits Surrogate Trifluorotoluene (FID) 99 68-145

Bromofluorobenzene (FID) 260 * >LR b 66-143

*= Value outside of QC limits; see narrative

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

b= See narrative

ND= Not Detected

RL= Reporting Limit

LR= Response exceeds instrument's linear range age 2 of 5

20.1

GC19 TVH 'X' Data File (FID)

Sample #: c1

Page 1 of 1

mple Name : 161425-005,76404,tvh+stod

: g:\gc19\data\302x030.raw Date: 10/30/02 11:38 AM ethod : TVHBTXE Time of Injection: 10/30/02 07:34 AM Start Time : 0.00 min High Point : 96.08 mV End Time : 26.80 min Low Point : 9.85 mV Scale Factor: 1.0 Plot Offset: 10 mV Plot Scale: 86.2 mV est a mentalistic articles designed at LFA-1 Response [mV] +CB <u>-</u>1.18 -2.23_2.76 -4.60-5.22-7.50 -7.79 TRIFLUO --10.5-11.7-14.1BROMOF -C-10 -17.5-18.6-21.0

GC19 TVH 'X' Data File (FID)

Cample Name : 161425-006,76404,tvh+stod

leName : g:\gc19\data\302x031.raw

ethod : TVHBTXE

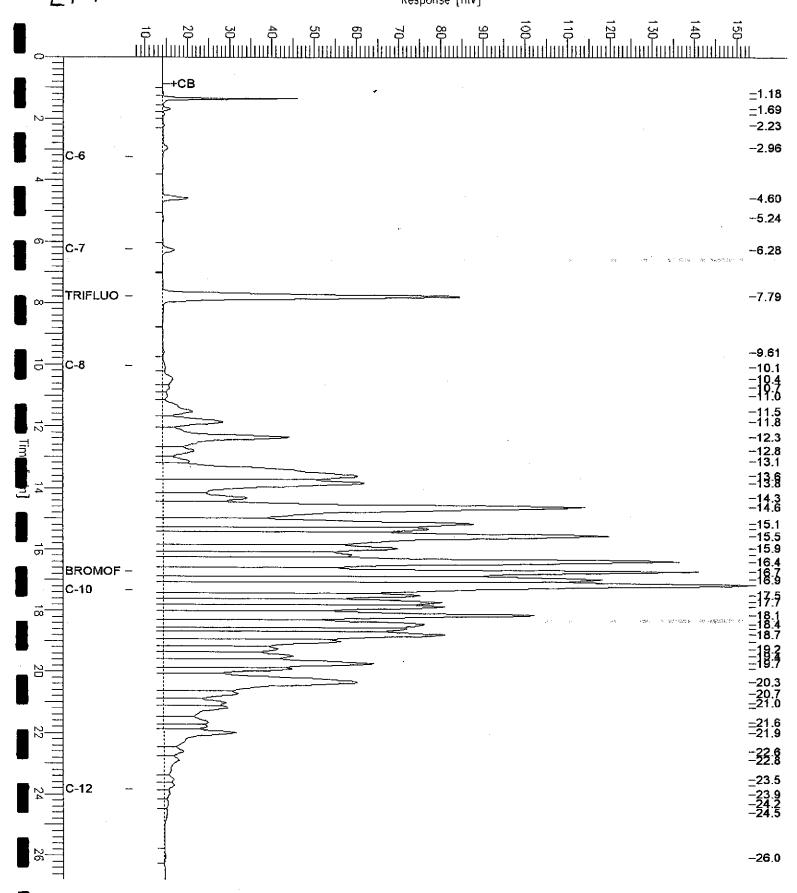
Start Time : 0.00 min Scale Factor: 1.0 End Time : 26.80 min

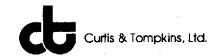
Plot Offset: 7 mV

Sample #: cl

Date: 10/30/02 11:38 AM

Time of Injection: 10/30/02 08:12 AM


7 mV High Point : 153.07 mV


Page 1 of 1

Low Point: 7.07 mV Plot Scale: 146.0 mV

Response [mV]

76404

Total Volatile Hydrocarbons

Lab #: 161425 Location: 3815 Broadway, Oakland CA

Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B Project#: 2511 Analysis: 8015B(M)

Matrix: Water Received: 10/23/02
Units: uq/L

-

Field ID: LFR-3 Batch#: 76365

Type: SAMPLE Sampled: 10/22/02

Lab ID: 161425-007 Analyzed: 10/27/02

Diln Fac: 1.000

Analyte Result RL Gasoline C7-C12 ND 50 Stoddard Solvent C7-C12 ND 50

 Surrogate
 %REC Limits

 Trifluorotoluene (FID)
 102 68-145

 Bromofluorobenzene (FID)
 110 66-143

Field ID: LFR-4 Batch#: Type: SAMPLE Sampled:

Type: SAMPLE Sampled: 10/23/02 Lab ID: 161425-008 Analyzed: 10/29/02 Diln Fac: 1.000

 Analyte
 Result
 RL

 Gasoline C7-C12
 170 .
 50

 Stoddard Solvent C7-C12
 110 Y
 50

Surrogate REC Limits

Trifluorotoluene (FID) 100 68-145

Bromofluorobenzene (FID) 103 66-143

Field ID: SOMA-1 Batch#: 76365
Type: SAMPLE Sampled: 10/23/02

 Analyzed:
 10/27/02

 Pain Fac:
 1.000

 Analyte
 Result
 RL

 Gasoline C7-C12
 53
 50

 Stoddard Solvent C7-C12
 ND
 50

Surrogate %REC Limits
Trifluorotoluene (FID) 104 68-145
Bromofluorobenzene (FID) 110 66-143

*= Value outside of QC limits; see narrative

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits fuel pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

b= See narrative
ND= Not Detected

RL= Reporting Limit

LR= Response exceeds instrument's linear range

age 3 of 5

GC19 TVH 'X' Data File (FID)

imple Name : 161425-008,76404,tvh+stodd

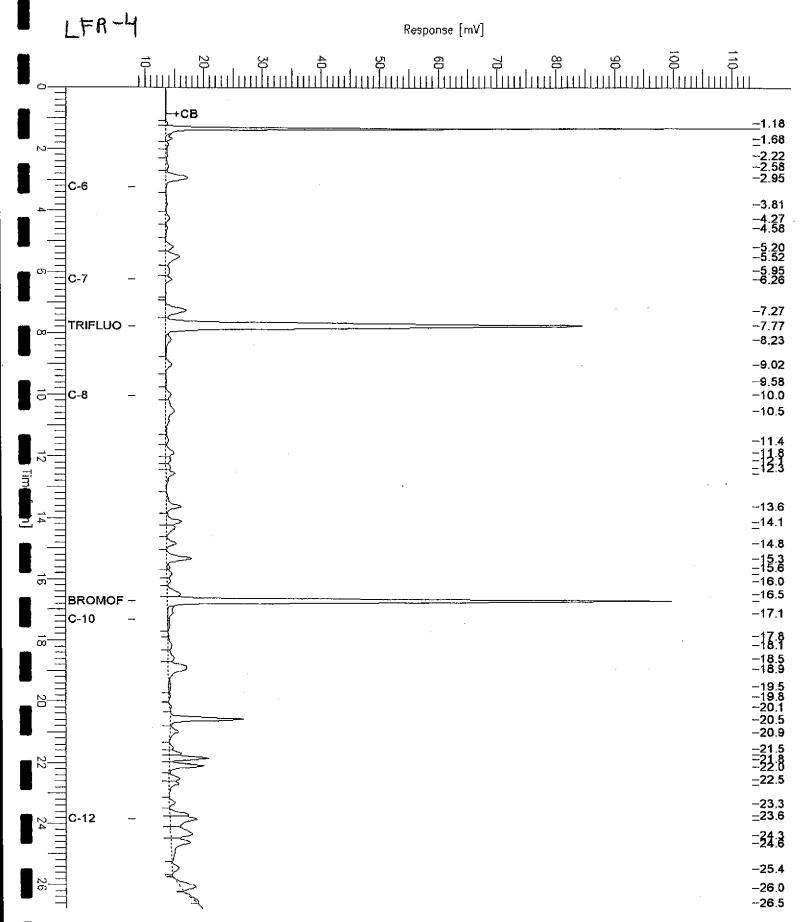
: g:\gc19\data\302x015.raw

: TVHBTXE Start Time : 0.00 min

End Time : 26.80 min

Scale Factor: 1.0 Plot Offset: 8 mV Date: 10/30/02 11:36 AM

Page 1 of 1


Time of Injection: 10/29/02 10:07 PM

Low Point : 8.36 mV

High Point: 113.59 mV

Plot Scale: 105.2 mV

Sample #: al hs

Sample #: d1

Date: 10/27/02 01:57 AM

Page 1 of 1

mple Name : 161425-009,76365,+stod

: G;\GC05\DATA\299G023.raw

-24.81

Time of Injection: 10/27/02 01:32 AM
Low Point: -7.73 mV High Point : TVHBTXE Start Time : 0.00 min End Time : 25.00 min High Point : 551.88 mV Scale Factor: 1.0 Plot Offset: -8 mV Plot Scale: 559.6 mV SOMA-1 Response [mV] 550 200 250 -0.89----1.82 C-6 -2.16 =25% -3.15C-7 -3.97 -4.36 -4.66 TRIFLUO --5.29 -5.90 -6.47 -6.81 C-8 **=8:47** }−9.12 -9.55 -9.92 -10.30 -10.93 -10.93 -12.21 -13:95 -13:49 -13:52 -14.16 **BROMOF** 14.49 -15.28 C-10 -16.62 -17.01 -17.36 18.34 18.66 18.88 19.36 -19.93 -20:38 -21.00 -21.03 -21.59 -21.94 -22.23 -22.59 -23.33

Total Volatile Hydrocarbons

Lab #: 161425 Location: 3815 Broadway, Oakland CA

EPA 5030B 8015B(M) Client: SOMA Environmental Engineering Inc. Prep: Project#: 2511 <u>Analysis</u>

Matrix: Water 10/23/02 Received: Units: ug/L

Field ID: ype:

SOMA-2 SAMPLE 161425-010

ab ID: Diln Fac: 1.000

Batch#: Sampled: Analyzed: 76404 10/23/02 10/30/02

Analyte Result Gasoline C7-C12 600 H Y 50 Stoddard Solvent C7-C12 50 370

Surrogate %REC Limits Trifluorotoluene (FID) 68-145 107 Bromofluorobenzene (FID) 66-143

rield ID: Type:

SOMA-3 SAMPLE 161425-011 Batch#: Sampled: Analyzed:

76496 10/23/02 11/01/02

Lab ID: Diln Fac:

20.00

Analyte Result RL Gasoline C7-C12 4,700 H Y 1,000

Stoddard Solvent C7-C12 000 1,000 Surrogate
Trifluorotoluene (FID) AREC Limits

102 68-145 Bromofluorobenzene (FID) 107 66-143

Type:

ab ID: iln Fac: BLANK

Batch#:

76365 10/26/02

QC194018 1.000

Analyzed:

Analyte Result RLGasoline C7-C12 ND 50 Stoddard Solvent C7-C12 ND 50

Surrogate %REC Limits Trifluorotoluene (FID) 101 68-145 Bromofluorobenzene (FID) <u> 105</u> 66-143

*= Value outside of QC limits; see narrative

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits fuel pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

b= See narrative ND= Not Detected

RL= Reporting Limit

LR= Response exceeds instrument's linear range

Page 4 of 5

GC19 TVH 'X' Data File (FID)

ample Name : 161425-010,76404,tvh+stodd

: g:\gc19\data\302x021.raw

ethod : TVHBTXE

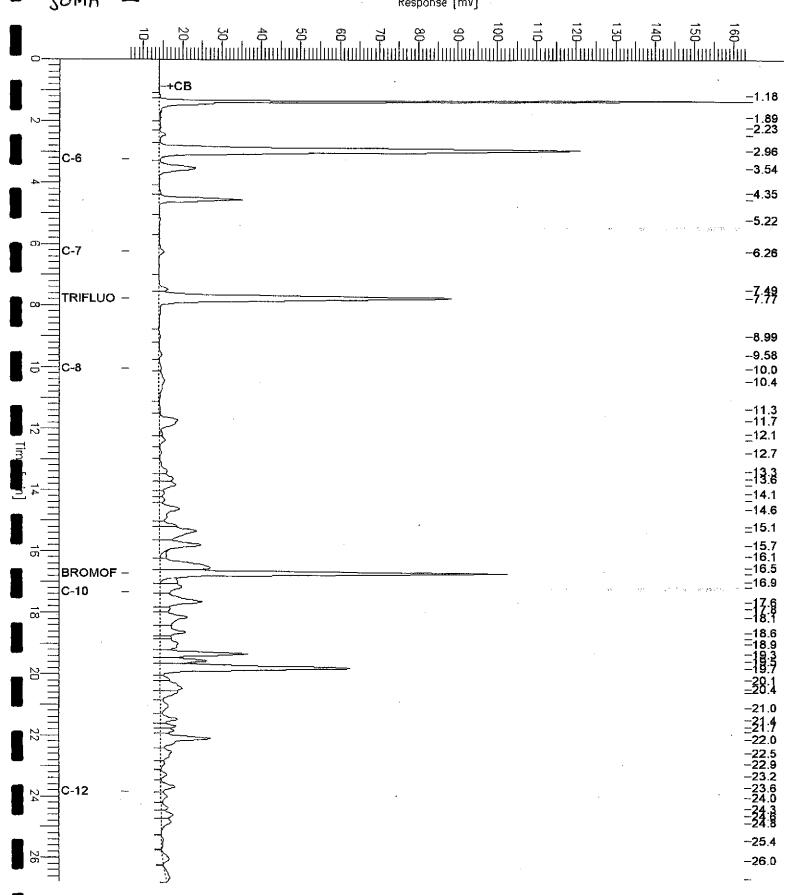
Start Time : 0.00 min End Time : 26.80 min

Scale Factor: 1.0 Plot Offset: 6 mV Sample #: d7

Date: 10/30/02 11:37 AM

Time of Injection: 10/30/02 01:54 AM

Low Point : 6.49 mV


High Point: 163.20 mV

Page 1 of 1

Plot Scale: 156.7 mV

Response [mV]

GC07 TVH 'A' Data File RTX 502

mple Name: 161425-011,76496,tvh+stodd Page 1 of 1 Sample #: c1HS Date : 11/1/02 10:26 AM : G:\GC07\DATA\304A013.raw leName thod Time of Injection: 11/1/02 01:57 AM : TYHBTXE Low Point: 13.58 mV Plot Scale: 102.9 mV Start Time : 0.00 min End Time : 26.00 min High Point : 116.46 mV Scale Factor: 1.0 Plot Offset: 14 mV SOMA-3 Response [mV] <u>-9:82</u> -2.63C-6 HR. -3.90-4.53C-7 -5.52-6.74 -7.03TRIFLUO -NOW PRESENT MAY 45 25 CHILL C-8 -9.47-10.9-11.5-11.9<u>_</u>12.8 <u>-</u>13.3 -13.8 -14.1 <u>=</u>14.5 -14.9 -15.5**BROMOF** ---15.9 -16.3 -16.6 C-10 -17.2-17.8-18.1-18.6-18.9-20.1C-12

Page 1 of 1

ple Name : ccv/lcs,qc194019,76365,02ws1664,2.5/5000

24 9ñ

Sample #: Date: 10/26/02 03:22 PM : G:\GC05\DATA\299G004.raw eName Method : TVHBTXE Time of Injection: 10/26/02 02:57 PM Start Time : 0.00 min End Time : 25.00 min Low Point : -20.56 mV High Point: 760.90 mV Smale Factor: 1.0 Plot Scale: 781.5 mV Plot Offset: -21 mV Gas Standard Response [mV] -0.89 -1.12 -1.37^{22} 1.66 2.60 2.60 C-6 >-3.19 >--3.53 >-3.97 4.39 4.88 TRIFLUO --5.305.67 5.92 -6.43 6.99 C-8 -7.64-8,10 -8,42 -8.80 -9.27 -9.97 -10.30 -18:88 <u>>−11.47</u> 12.30 _12.80 13.12 BROMOF -14.49 15.04 C-10 ___15.37 15₁₈8₁₉ _____16.59 17.18 17.54 -17.88-18.38 → 18.65 -19.30 20.35 -20.70 -21.00 -21.24 22.20 22.56

Sample #:

Date: 10/26/02 02:15 PM

Page 1 of 1

nple Name : ccv,stodd,76365,02ws1767,5/5000

: G:\GC05\DATA\299G002.raw

leName

Time of Injection: 10/26/02 01:50 PM thod : TVHBTXE Low Point : -30.80 mV High Point: 969.12 mV Start Time : 0.00 min End Time : 25.00 min Plot Offset: -31 mV Scale Factor: Plot Scale: 999.9 mV Stoddard Standard Response [mV] 0.88-2:33 -3.173:34 C-7 -4.35 -4.67 ∃TRIFLUO − -5.30-6.08 -6.47 -6.38 -6.97 C-8 -7:64 -8.16 -8.46 -8.91 -9.30 -9.96 -10.29 <u>-11.16</u> -11.43 -12.22-12.77-13.16 -13.83 >—14.15 BROMOF --14.49 14.79 15.03 --15.28 ≓C-10 -15.61 15.99 -16.27 **−16.68** >-17.01 -17.47 -17.82>-18.34 ____18.88 =19.34 -19,84 ≻-20.18 =20.63 -21.22 -21.84**≻22.23** C-12 -22.69 -23.01 -23.47 -23:88 -24.41

GC19 TVH 'X' Data File (FID)

imple Name : ccv/bs,qc194157,76404,02ws1751,2.5/5000

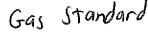
leName : g:\gc19\data\302x003.raw

ethod : TVHBTXE

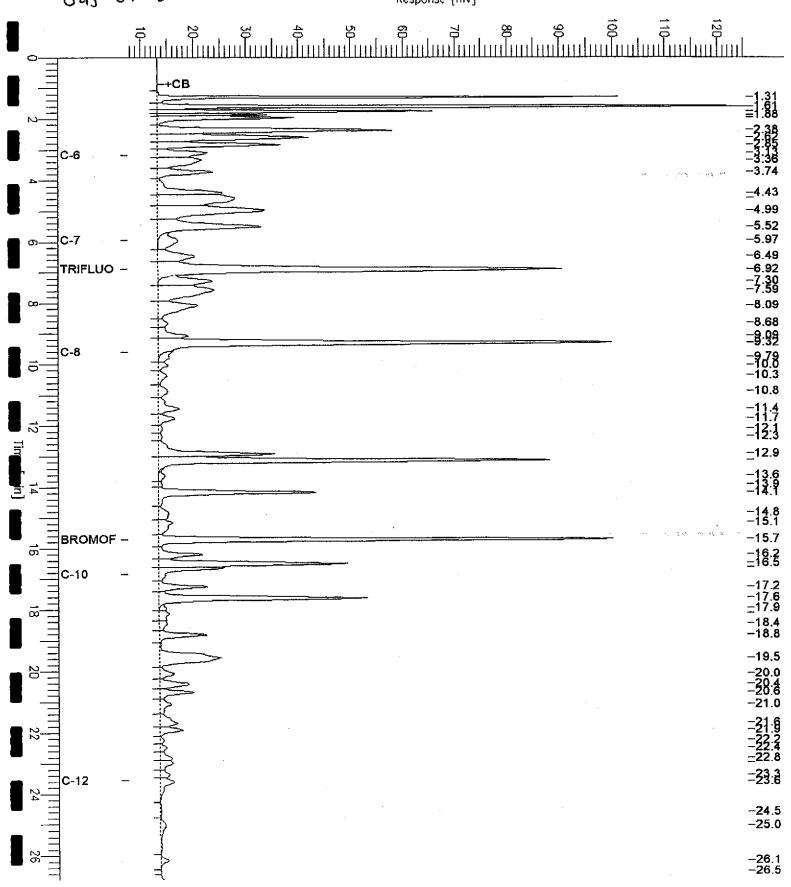
Start Time : 0.00 min Scale Factor: 1.0 End Time : 26.80 min

Plot Offset: 8 mV

Sample #:


Page 1 of 1

Date: 10/30/02 01:17 PM


Time of Injection: 10/29/02 12:19 PM Low Point: 7.58 mV High Point

High Point : 125.69 mV

Plot Scale: 118.1 mV

Response [mV]

GC19 TVH 'X' Data File (FID)

ample Name : ccv, stoddard, 76404, 02ws1767, 5/5000

: G:\GC19\DATA\302X002.raw

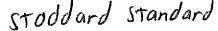
ethod : TVHBTXE

Start Time : 0.00 min Scale Factor: 1.0

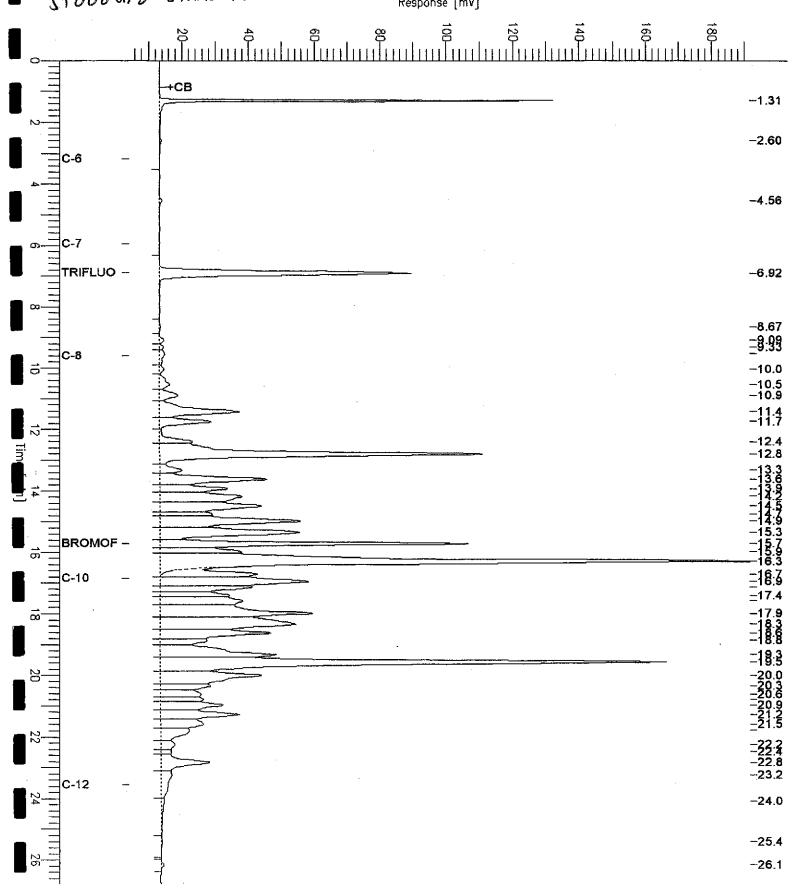
End Time : 26.80 min

Plot Offset: 4 mV

Sample #:


Page 1 of 1

Date: 10/29/02 12:11 PM


Time of Injection: 10/29/02 11:44 AM

High Point: 191.41 mV

Low Point : 4.26 mV Plot Scale: 187.2 mV

Response [mV]

GC07 TVH 'A' Data File RTX 502

ple Name : lcs,qc194473,76496,02ws1751,5/5000 Page 1 of 1 Sample #: Date: 11/1/02 07:54 AM : G:\GC07\DATA\304A002.raw Time of Injection: 10/31/02 07:42 PM : TVHBTXE Low Point : 2.75 mV High Point : 277.69 mV Start Time : 0.00 min End Time : 26.00 min Plot Scale: 274.9 mV ale Factor: 1.0 Plot Offset: 3 mV Gas Standard Response [mV] C-6 -3.64_4.39 -4.96 -5.53C-7 -6.03TRIFLUO --8.24-8.80-9.27C-8 -10.5-11.0 -13.8-14.3-15.0 -15.3 **BROMOF** ~ -15.9C-10 -17.4 -17.8 -18.1 -18.6 -18.9 <u>-19.6</u> -20.2 -20.5 -20.8 -21.2-21.8 _22.3 C-12

-25.6

GC07 TVH 'A' Data File RTX 502

ple Name : ccv, stodd, 76496, 02ws1767, 5/5000 Page 1 of 1 Sample #: : G:\GC07\DATA\304A003.raw Date: 11/1/02 07:54 AM : TVHBTXE Time of Injection: 10/31/02 08:16 PM Start Time : 0.00 min End Time : 26.00 min High Point: 251.63 mV Low Point : 4.61 mV Scale Factor: Plot Offset: 5 mV Plot Scale: 247.0 mV Studdard Standard Response [mV] -+CB --0.81 --1:88 C-6 -4.53C-7 TRIFLUO --7.03-8.80C-8 <u>-</u>9.26 _9*0*.2 -10.7 -11.0 -13.0**BROMOF** -C-10 16.5 -16.8 _17.6 -18.1-19.4 -19.7 -20.1C-12 -24.4-24.9

Total Volatile Hydrocarbons Lab #: 161425 Location: 3815 Broadway, Oakland CA Client: SOMA Environmental Engineering Inc. EPA 5030B Prep: Project#: <u>Analysis:</u> 8015B(M) 10/23/02 Matrix: Water Received: <u> Units:</u>

ab ID:

BLANK QC194156 Batch#: Analyzed: 76404 10/29/02

Diln Fac:

1.000

Analyte Result RL Gasoline C7-C12 ND 50 Stoddard Solvent C7-C12 ND 50

%REC Limits 104 68-145 Suprogate Trifluorotoluene (FID) 104 Bromofluorobenzene (FID) 105 66-143

ype: ab ID: BLANK QC194472 Batch#:

76496 10/31/02

· Analyzed: Diln Fac: 1.000 Apalyte Result RL

Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	
Cumpanita			

Surrogate	%RI	EC Limits	
Trifluorotoluene (FID)	99	68-145	
Bromofluorobenzene (FID)	92	66-143	

*= Value outside of QC limits; see narrative H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits fuel pattern which does not resemble standard

Z= Sample exhibits unknown single peak or peaks

b= See narrative ND= Not Detected

RL= Reporting Limit

LR= Response exceeds instrument's linear range age 5 of 5

Total Volatile Hydrocarbons 3815 Broadway, Oakland CA 161425 Location: Lab #: EPA 5030B Client: SOMA Environmental Engineering Inc. Prep: 8015B(M) Project#: 2511 Analysis: LCS Diln Fac: 1.000 Type: 76365 Batch#: Lab ID: QC194019 10/26/02 Matrix: Water Analyzed: Units: ug/L

Analyte	Spiked		%REC	Limits
Gasoline C7-C12	1,000	1,029	103	79-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	116	68-145
_Bromofluorobenzene (FID)	108	66-143

Total Volatile Hydrocarbons 3815 Broadway, Oakland CA Lab #: 161425 Location: EPA 5030B Client: SOMA Environmental Engineering Inc. Prep: Project#: 2511 Analysis: 8015B(M) Type: BS Diln Fac: 1.000 Lab ID: QC194157 Batch#: 76404 10/29/02 Matrix: Analyzed: Water Units: ug/L

Analyte	Spiked	Result	%RE	C Limits
Gasoline C7-C12	1,000	940.4	94	79-120

Surrogate	%RE(2 Limits	
Trifluorotoluene (FID)	115	68-145	
_Bromofluorobenzene (FID)	104	66-143	

Total Volatile Hydrocarbons 3815 Broadway, Oakland CA Lab #: 161425 Location: EPA 5030B Client: SOMA Environmental Engineering Inc. Prep: 8015B(M) Project#: 2511 Analysis: 1.000 Type: BSD Diln Fac: 76404 Lab ID: QC194342 Batch#: Matrix: Water Analyzed: 10/30/02 Units: ug/L

Analyte	Spiked	Result	%REC	Limits R	
Gasoline C7-C12	2,000	1,794	90	79-120 5	20

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	103	68-145	:
Bromofluorobenzene (FID)	84	66-143	

Total Volatile Hydrocarbons Lab #: 161425 Location: 3815 Broadway, Oakland CA Client: SOMA Environmental Engineering Inc. Prep: EPA 5030B 8015B(M) Project#: 2511 Analysis: Type: LCS Diln Fac: 1.000 Lab ID: QC194473 Batch#: 76496 Matrix: Analyzed: 10/31/02 Water Units: ug/L

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	2,058	103	79-120

ł	Surrogate	%	REC Limit	5
Ī	Trifluorotoluene (FI	D) 11	4 68-14	5
1	Bromofluorobenzene ((FID) 96	66-14	3

			Total Vol	Latil	e Hydrocarbons			
Lab #:	16142	:5			Location:	3815 Broadway,	Oakland	CA
Client:	SOMA	Environmental	Engineering	Inc.	Prep:	EPA 5030B		
Project#:	2511		_		Analysis:	8015B(M)		
Field ID:		GW-2			Batch#:	76365		
MSS Lab ID);	161425-001			Sampled:	10/22/02		
Matrix:		Water			Received:	10/23/02		
Units:		ug/L			Analyzed:	10/26/02		,
Diln Fac:		1.000						

ype:

MS

Lab ID:

QC194020

Analyte	MSS Result	Spiked	Result	%R	EC Limits
Gasoline C7-C12	48.23	2,000	1,973	96	67-120

Surrogate	%REC		
Trifluorotoluene (FID)	129	68-145	
Bromofluorobenzene (FID)	115	66-143	

ype:

MSD

Lab ID:

QC194021

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,963	96	67-120	1	20

Surrogate	%RE	C Limits
Trifluorotoluene (FID)	129	68-145
Bromofluorobenzene (FID)	117	66-143

		Total Volat	tile Hydrocarbons	
Lab #: 16	1425		Location:	3815 Broadway, Oakland CA
Client: SO	MA Environmental	Engineering In	ıc. Prep:	EPA 5030B
Project#: 25	11		Analysis:	8015B(M)
Field ID:	ZZZZZZZZZZ		Batch#:	76496
MSS Lab ID:	161525-001		Sampled:	10/29/02
Matrix:	Water		Received:	10/29/02
Units:	ug/L		Analyzed:	11/01/02
Diln Fac:	1.000		······	

ype:

MS

Lab ID:

QC194475

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	<17.00	2,000	2,009	100	67-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	112	68-145
Bromofluorobenzene (FID)	102	66-143

rype:

MSD

Lab ID:

QC194476

Analyte	Spiked	Keantc	TRAC	HIBLLS	KED	Let III
Gasoline C7-C12	2,000	2,007	100	67-120	0	20
"						•

Surrogate	%REC	Limits
Trifluorotoluene (FID)	111	68-145
Bromofluorobenzene (FID)	100	66-143

		Purgeable Org	anics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	GW-2		Batch#:	76306
Lab ID:	161425-001		Sampled:	10/22/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000		•	•

Xxxxxx		
Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND .	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	NT D	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10 .
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	27	5.0

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS	
Lab #:	161405			
	161425		Location:	3815 Broadway, Oakland CA
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	GW-2		Batch#:	76306
Lab ID:	161425-001		Sampled:	10/22/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000	·		• •

Analyte	Result	PI	88800
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	ļ
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	ļ
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	ı
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	NĐ	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	ı
1,2,4-Trimethylbenzene	ИD	5.0	ı
sec-Butylbenzene	ND	5.0	
_para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	- 1
1,4-Dichlorobenzene	ND	5.0	- 1
n-Butylbenzene	ND	5.0	ŀ
1,2-Dichlorobenzene	ND	5.0	- !
1,2-Dibromo-3-Chloropropane	ND	5.0	l
1,2,4-Trichlorobenzene	ND	5.0	- [
Hexachlorobutadiene	ND	5.0	\mid
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-121
1,2-Dichloroethane-d4	102	77-130
Toluene-d8	97	80-120
Bromofluorobenzene	100	80-120

			Purgeable	e Org	anics by GC/MS		
Lab #:	16142	25			Location:	3815 Broadway,	Oakland CA
		Environmental	Engineering	Inc.	Prep:	EPA 5030B	
Project#:	2511				Analysis:	EPA 8260B	
Field ID:		GW-3			Batch#:	76306	
Lab ID:		161425-002			Sampled:	10/22/02	
Matrix:		Water			Received:	10/23/02	
Units:		ug/L			Analyzed:	10/24/02	
Diln Fac:		1.429	·		*		

Analyte Result RL Freon 12 ND 14 Chloromethane ND 14 Vinyl Chloride ND 14 Bromomethane ND 14	
Chloromethane ND 14 Vinyl Chloride ND 14 Bromomethane ND 14	
Vinyl Chloride ND 14 Bromomethane ND 14	
Bromomethane ND 14	
Chloroethane ND 14	
Trichlorofluoromethane ND 7.1	
Acetone ND 29	
Freon 113 ND 7.1	
1,1-Dichloroethene ND 7.1	
Methylene Chloride ND 29	
Carbon Disulfide ND 7.1	
MTBE ND 7.1	
trans-1,2-Dichloroethene ND 7.1	
Vinyl Acetate ND 71	
1,1-Dichloroethane ND 7.1	
2-Butanone ND 14	
Cis-1,2-Dichloroethene ND 7.1	
2,2-Dichloropropane ND 7.1	
Chloroform ND 7.1	
Bromochloromethane ND 14	
1,1,1-Trichloroethane ND 7.1	
ND 7.1	
Carbon Tetrachloride ND 7.1	
1,2-Dichloroethane ND 7.1	
Benzene ND 7.1	•
Frichloroethene ND 7.1	
1,2-Dichloropropane ND 7.1	
Bromodichloromethane ND 7.1	
Dibromomethane ND 7.1	
Methyl-2-Pentanone ND 14	
cis-1,3-Dichloropropene ND 7.1	
Toluene ND 7.1	
rans-1,3-Dichloropropene ND 7.1	
1,1,2-Trichloroethane ND 7.1	
2-Hexanone ND 14	į
.,3-Dichloropropane ND 7.1	,
Tetrachloroethene 200 7.1	

⁼ Not Detected = Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS		
Lab #:	161425		Location:	3815 Broadway,	Oakland CA
Client: Project#:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
	2511		Analysis:	EPA 8260B	
Field ID:	GW-3		Batch#:	76306	
Lab ID:	161425-002		Sampled:	10/22/02	
Matrix:	Water		Received:	10/23/02	
Units:	ug/L		Analyzed:	10/24/02	
Diln Fac:	1.429				

Analyte	Result	PL
Dibromochloromethane	ND	7.1
1,2-Dibromoethane	ND	7.1
Chlorobenzene	ND	7.1
1,1,1,2-Tetrachloroethane	ND	7.1
Ethylbenzene	ND	7.1
m,p-Xylenes	ND	7.1
o-Xylene	ND	7.1
Styrene	ND	7.1
Bromoform	ND	7.1
Isopropylbenzene	ND	7.1
1,1,2,2-Tetrachloroethane	ND	7.1
1,2,3-Trichloropropane	ND	7.1
Propylbenzene	ND	7.1
Bromobenzene	ИD	7.1
1,3,5-Trimethylbenzene	ND	7.1
2-Chlorotoluene	ND	7.1
4-Chlorotoluene	ND	7.1
tert-Butylbenzene	ND	7.1
1,2,4-Trimethylbenzene	ND	7.1
sec-Butylbenzene	ИD	7.1
para-Isopropyl Toluene	ND	7.1
1,3-Dichlorobenzene	ND	7.1
1,4-Dichlorobenzene	ND	7.1
n-Butylbenzene	ND	7.1
1,2~Dichlorobenzene	ND	7.1
1,2-Dibromo-3-Chloropropane	ND	7.1
1,2,4-Trichlorobenzene	ND	7.1
Hexachlorobutadiene	ND	7.1
Naphthalene	ND	7.1
1,2,3-Trichlorobenzene	ND	7.1

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-121
1,2-Dichloroethane-d4	99	77-130
Toluene-d8	100	80-120
Bromofluorobenzene	98	80-120

		Purgeable Urg	anics by GC/MS			
Lab #:	161425		Location:	3815 Broadway,	Oakland	CA
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B		
Project#:	2511		Analysis:	EPA 8260B		
Field ID:	GW-4		Batch#:	76306		
Lab ID:	161425-003		Sampled:	10/23/02		
Matrix:	Water		Received:	10/23/02		
Units:	ug/L		Analyzed:	10/24/02		
Diln Fac:	1.000					

Analyte	Result	RL
Freon 12	ND	10
Chloromethane	ND	10
Vinyl Chloride	ND	10
Bromomethane	ND	10
Chloroethane	ND	10
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5,0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	10
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
		J

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	ganics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511	_ _	Analysis:	EPA 8260B
Field ID:	GW-4	· · · · · · · · · · · · · · · · · · ·	Batch#:	76306
Lab ID:	161425-003		Sampled:	10/23/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000			•

Analyte	Result	RF
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND .	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-121
1,2-Dichloroethane-d4	100	77-130
_Toluene-d8	101	80-120
Bromofluorobenzene	99	80-120

		Purgeable Org	anics by GC,	/MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	MW-11		Batch#:	76306
Lab ID:	161425-004		Sampled:	10/23/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000		-	·

Analyte	Result		
Freon 12	ND	10	-
Chloromethane	ИD	10	
♥Vinyl Chloride	ИD	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	M D	5.0	
1,1-Dichloroethene	ND .	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
_2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
frichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	ļ
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
-4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Coluene	ND	5.0	
rans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
-2-Hexanone	ND	10	
.,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

D= Not Detected = Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS		
Lab #:	161425		Location:	3815 Broadway,	Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:		·	Analysis:	EPA 8260B	
Field ID:	MW-11		Batch#:	76306	
Lab ID:	161425-004		Sampled:	10/23/02	İ
Matrix:	Water		Received:	10/23/02	
Units:	ug/L		Analyzed:	10/24/02	
Diln Fac:	1.000		•		

Analyte	Result	RL
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
To-Xylene	ИD	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ИD	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-121
1,2-Dichloroethane-d4	97	77-130
_Toluene-d8	99	80-120
Bromofluorobenzene	101	80-120

D= Not Detected = Reporting Limit Page 2 of 2

		Purgeable Org	anics by GC	/MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511	•	Analysis:	EPA 8260B
Field ID:	LFR-1	· · · · · · · · · · · · · · · · · · ·	Batch#:	76306
Lab ID:	161425-005		Sampled:	10/22/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000		_	

Analyte	Result	RL	
Freon 12	ND	10	•
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	N D	5.0	
Acetone	ND	20	
Freon 113	N D	5.0	
1,1-Dichloroethene	ИD	5.0	
Methylene Chloride	ND	20	·
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	i
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	6.7	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ИD	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	24	5.0	
1,2-Dichloropropane	ИD	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Foluene	ND	5.0	i
trans-1,3-Dichloropropene	ND	5.0	į
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	·
Tetrachloroethene	180	5.0	

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	ganics by GC/	MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511	·	Analysis:	EPA 8260B
Field ID:	LFR-1	· · · · · · · · · · · · · · · · · · ·	Batch#:	76306
Lab ID:	161425-005		Sampled:	10/22/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000		-	

Analyte	Result	RL
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
TChlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Tisopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	M D	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
_para-Isopropyl Toluene	ИD	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrugate	%REC	Limits
Dibromofluoromethane	106	80-121
1,2-Dichloroethane-d4	99	77-130
Toluene-d8	96	80-120
Bromofluorobenzene	100	80-120

D= Not Detected L= Reporting Limit Page 2 of 2

		Purgeable Org	manics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	. Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	LFR-2		Batch#:	76306
Lab ID:	161425-006		Sampled:	10/23/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000		_	

Freon 12			
Chloromethane	Analyte	Result	RI ₄
Vinyl Chloride			
Promomethane		ND	10
Chloroethane		ND	10
Trichlorofluoromethane	Bromomethane	ND	10
Acetone Freon 113 ND Freon 113 ND Freon 113 ND Freon 113 ND Freon 113 ND Freon 113 ND Freon 113 ND Freon 113 ND Freon 113 ND So Methylene Chloride ND Carbon Disulfide ND So MTBE ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,1-Dichloroethene ND Frans-1,1-Dichloroethene ND Frans-1,2-Dichloroethene ND Frans-1,3-Dichloropropene		ND	10
Freon 113	Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	Acetone	ND	20
Methylene Chloride ND 5.0 Carbon Disulfide ND 5.0 MTBE ND 5.0 trans-1,2-Dichloroethene ND 5.0 Vinyl Acetate ND 5.0 1,1-Dichloroethane ND 5.0 2-Butanone ND 10 cis-1,2-Dichloroethene 66 5.0 2,2-Dichloropropane ND 5.0 Bromochloromethane ND 5.0 Rromochloropropene ND 5.0 1,1-Trichloropropene ND 5.0 2,2-Dichloropropene ND 5.0 1,2-Dichloropropene ND 5.0 2,2-Dichloropropane ND 5.0 Benzene ND 5.0 Trichloropropane ND 5.0 Bromodichloromethane ND 5.0 1,2-Dichloropropene ND 5.0 Bromodichloromethane ND 5.0 4-Methyl-2-Pentanone ND 5.0 cis-1,3-Dichloropropene <td></td> <td>ND</td> <td>5.0</td>		ND	5.0
Carbon Disulfide ND 5.0 MTBE ND 5.0 trans-1,2-Dichloroethene ND 5.0 Vinyl Acetate ND 50 1,1-Dichloroethane ND 5.0 2-Butanone ND 10 cis-1,2-Dichloroethene 66 5.0 2,2-Dichloropropane ND 5.0 Chloroform ND 5.0 Bromochloromethane ND 5.0 Bromochloromethane ND 5.0 1,1-Trichloroethane ND 5.0 Carbon Tetrachloride ND 5.0 Laminomethane ND 5.0 Enzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Promodichloropropene ND 5.0 4-Methyl-2-Pentanone ND 5.0 Toluene ND 5.0 Toluene ND 5.0	1,1-Dichloroethene	ND	5.0
MTBE	Methylene Chloride	ND	20
trans-1,2-Dichloroethene ND 5.0 Vinyl Acetate ND 50 1,1-Dichloroethane ND 5.0 2-Butanone ND 10 cis-1,2-Dichloroethene 66 5.0 2,2-Dichloropropane ND 5.0 Chloroform ND 5.0 Bromochloromethane ND 10 1,1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 1,2-Dichloropropene ND 5.0 Benzene ND 5.0 Trichloroethane ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloropropene ND 5.0 Toluene ND 5.0 Toluene ND 5.0 Trans-1,3-Dichloropropene ND 5.0 Trans-1,2-Trichloroethane ND 5.0 Toluene ND <td>Carbon Disulfide</td> <td>ND</td> <td>5.0</td>	Carbon Disulfide	ND	5.0
Vinyl Acetate ND 50 1,1-Dichloroethane ND 5.0 2-Butanone ND 10 cis-1,2-Dichloroethane 66 5.0 2,2-Dichloropropane ND 5.0 Chloroform ND 5.0 Bromochloromethane ND 10 1,1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 4-Methyl-2-Pentanone ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 Trichloroethane ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0	MTBE	ND	5.0
1,1-Dichloroethane ND 5.0 2-Butanone ND 10 cis-1,2-Dichloroethene 66 5.0 2,2-Dichloropropane ND 5.0 Chloroform ND 5.0 Bromochloromethane ND 10 1,1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 Carbon Tetrachloride ND 5.0 L,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethane ND 5.0 Trichloropropane ND 5.0 Bromodichloromethane ND 5.0 Bromodichloromethane ND 5.0 Bromodichloromethane ND 5.0 Bromomethane ND 5.0 Cis-1,3-Dichloropropane ND 5.0 Trichloropropane ND 5.0 Trichloroethane ND 5.0 Trichloromethane ND 5.0 Trichloromomethane ND 5.0 Trichloromomethane ND 5.0 Trichloropropane ND 5.0	trans-1,2-Dichloroethene	ND	5.0
2-Butanone	Vinyl Acetate	ND	50
cis-1,2-Dichloroethene 66 5.0 2,2-Dichloropropane ND 5.0 Chloroform ND 5.0 Bromochloromethane ND 10 1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 5.0 Toluene ND 5.0 Trans-1,3-Dichloropropene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 5.0 1,3-Dichloropropane ND 5.0	1,1-Dichloroethane	ND	5.0
2,2-Dichloropropane ND 5.0 Chloroform ND 5.0 Bromochloromethane ND 10 1,1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 5.0 Toluene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 5.0 1,3-Dichloropropane ND 5.0	2-Butanone	ND	10
Chloroform ND 5.0 Bromochloromethane ND 10 1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 5.0 1,3-Dichloropropane ND 5.0	cis-1,2-Dichloroethene	66	5.0
Bromochloromethane ND 10 1,1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 5.0 1,3-Dichloropropane ND 5.0	2,2-Dichloropropane	ND	5.0
1,1,1-Trichloroethane ND 5.0 1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 5.0 1,3-Dichloropropane ND 5.0	Chloroform	ND	5.0
1,1-Dichloropropene ND 5.0 Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	Bromochloromethane	ND	10
Carbon Tetrachloride ND 5.0 1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 5.0 10 1,3-Dichloropropane ND 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1,1,1-Trichloroethane	ND	5.0
1,2-Dichloroethane ND 5.0 Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	1,1-Dichloropropene	ND	5.0
Benzene ND 5.0 Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	Carbon Tetrachloride	ND	5.0
Trichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	1,2-Dichloroethane	ND	5.0
1,2-Dichloropropane ND 5.0 Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 trans-1,3-Dichloropropene ND 5.0 2-Hexanone ND 5.0 1,3-Dichloropropane ND 5.0	Benzene	ND	5.0
Bromodichloromethane ND 5.0 Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	Trichloroethene	ND	5.0
Dibromomethane ND 5.0 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	1,2-Dichloropropane	ND	5.0
4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 5.0 Toluene ND 5.0 trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	Bromodichloromethane	ND	5.0
cis-1,3-DichloropropeneND5.0TolueneND5.0trans-1,3-DichloropropeneND5.01,1,2-TrichloroethaneND5.02-HexanoneND101,3-DichloropropaneND5.0	Dibromomethane	ND	5.0
cis-1,3-DichloropropeneND5.0TolueneND5.0trans-1,3-DichloropropeneND5.01,1,2-TrichloroethaneND5.02-HexanoneND101,3-DichloropropaneND5.0	4-Methyl-2-Pentanone	ND	10
trans-1,3-Dichloropropene ND 5.0 1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	cis-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane ND 5.0 2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	Toluene	ND	5.0
2-Hexanone ND 10 1,3-Dichloropropane ND 5.0	trans-1,3-Dichloropropene	ND	
1,3-Dichloropropane ND 5.0	1,1,2-Trichloroethane	ND	5.0
	2-Hexanone	ND	
Tetrachloroethene ND 5.0	1,3-Dichloropropane	ND	5.0
	Tetrachloroethene	ND	5.0

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS		
Lab #:	161425		Location:	3815 Broadway,	Oakland CA
:lient:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	2511		Analysis:	EPA 8260B	
Field ID:	LFR-2		Batch#:	76306	
ab ID:	161425-006		Sampled:	10/23/02	
latrix:	Water		Received:	10/23/02	
Units:	ug/L		Analyzed:	10/24/02	
Piln Fac:	1.000		-		

Analyte	Result	RL
Dibromochloromethane	ND	5.0
,2-Dibromoethane	ND	5.0
T hlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
thylbenzene	ND	5.0
,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
romoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
,2,3-Trichloropropane	ND	5.0
ropylbenzene	ND	5.0
Bromobenzene	ND	5.0
,3,5-Trimethylbenzene	ND	5.0
-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
_tert-Butylbenzene	ND	5.0
,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
,3-Dichlorobenzene	ND	5.0
,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
💼,2-Dichlorobenzene	ND	5.0
,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
aphthalene	ND ·	5.0
4,2,3-Trichlorobenzene	ND	5.0

Surrogata	%REC	Limits
ibromofluoromethane	103	80-121
1,2-Dichloroethane-d4	100	77-130
T oluene-d8	100	80-120
romofluorobenzene	104	80-120

		Purgeable Org	anics by GC/MS		
Lab #:	161425		Location:	3815 Broadway,	Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	· ·
Project#:	2511		Analysis:	EPA 8260B	
Field ID:	LFR-3		Batch#:	76306	
Lab ID:	161425-007		Sampled:	10/22/02	
Matrix:	Water		Received:	10/23/02	
Units:	ug/L		Analyzed:	10/24/02	
Diln Fac:	1.000			<u>.</u>	

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	. 10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Frichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	•
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
,1-Dichloropropene	ND ·	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Frichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	. ND	5.0	
Dibromomethane	ND	5.0	
-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Coluene	ND	5.0	
rans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
_2-Hexanone	ND	10	
.,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

⁼ Not Detected = Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS	I
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	LFR-3		Batch#:	76306
Lab ID:	161425-007		Sampled:	10/22/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/24/02
Diln Fac:	1.000		_	

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
LStyrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	N D	5.0	
Bromobenzene	ИD	5.0	
1,3,5-Trimethylbenzene	ND .	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ИD	.5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ИD	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	·
1,2,3-Trichlorobenzene	ND	5.0	

Surregate Surregate	%REC	Limits	
Dibromofluoromethane	107	80-121	
1,2-Dichloroethane-d4	102	77-130	
Toluene-d8	101	80-120	
Bromofluorobenzene	101	80-120	

			Purgeable	e Org	anics by GC/MS		
Lab #:	16142	25			Location:	3815 Broadway,	Oakland CA
		Environmental	Engineering	Inc.	Prep:	EPA 5030B	
Project#:	2511				Analysis:	EPA 8260B	
Field ID:		LFR-4			Batch#:	76306	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lab ID:		161425-008			Sampled:	10/23/02	
Matrix:		Water			Received:	10/23/02	
Units:		ug/L			Analyzed:	10/24/02	•
Diln Fac:		1.000					

Analyte			
Freon 12	Result	RL 10	
Chloromethane	ND ND	10	
Vinyl Chloride			
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	10	•
Acetone	ND	5.0	
Freon 113	ND	20	•
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	5.0	
Carbon Disulfide	ND	20	
_	ND	5.0	
MTBE	8.0	5.0	
trans-1,2-Dichloroethene	ND -	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	, ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Prichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	•
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Foluene	NĐ	5.0	
rans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
.,3-Dichloropropane	ND	5.0	
-retrachloroethene	ND	5.0	

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS		
Lab #:	161425		Location:	3815 Broadway,	Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	2511		Analysis:	EPA 8260B	
Field ID:	LFR-4		Batch#:	76306	
Lab ID:	161425-008		Sampled:	10/23/02	
Matrix:	Water		Received:	10/23/02	
Units:	ug/L		Analyzed:	10/24/02	
Diln Fac:	1.000		-	,	

Analyte	Result	RL
Dibromochloromethane	N D .	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
l,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
l,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
l,3-Dichlorobenzene	ND	5.0
.,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
-1,2-Dichlorobenzene	ND	5.0
l,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

romofluorobenzene	100	80-120
Toluene-d8	99	80-120
1,2-Dichloroethane-d4	102	77-130
Dibromofluoromethane	108	80-121
Surrogate	%RBC	Limits

P = Not Detected R = Reporting Limit Page 2 of 2

			Purgeable On	ganics by GC/MS	
Lab #:	16142	25		Location:	3815 Broadway, Oakland CA
Client:	SOMA	Environmental	Engineering Inc	. Prep:	EPA 5030B
Project#:	2511			Analysis:	EPA 8260B
Field ID:		SOMA-1		Batch#:	76306
Lab ID:		161425-009		Sampled:	10/23/02
Matrix:		Water		Received:	10/23/02
Units:		ug/L		Analyzed:	10/24/02
Diln Fac:		1.000			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	•
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	140	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	41	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	7.0	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Folueñe	ND .	5.0	
trans-1,3-Dichloropropene	ND	5.0	·
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	•
Tetrachloroethene	8.4	5.0	

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	enics by GC/MS	1	
Lab #:	161425		Location:	3815 Broadway,	Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	2511		Analysis:	EPA 8260B	
Field ID:	SOMA-1		Batch#:	76306	
Lab ID:	161425-009		Sampled:	10/23/02	
Matrix:	Water		Received:	10/23/02	•
Units:	ug/L		Analyzed:	10/24/02	•
Diln Fac:	1.000				

Analyte	Result	RL:
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
P Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
_para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-121
1,2-Dichloroethane-d4	99	77-130
Toluene-d8	100	80-120
Bromofluorobenzene	102	80-120

		Purgeable Org	anics by GC	!/MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	SOMA-2		Sampled:	10/23/02
Lab ID:	161425-010		Received:	10/23/02
Matrix:	Water		Analyzed:	10/25/02
Units:	ug/L			

Analyte	Result	RL	Diln Fa	c Batch#
Freon 12	ND	14	1.429	76306
Chloromethane	ND	14	1.429	76306
Vinyl Chloride	ND	14	1.429	76306
Bromomethane	ND	14	1.429	76306
Chloroethane	ND	14	1.429	76306
Trichlorofluoromethane	ND	7.1	1.429	76306
Acetone	ND	29	1.429	76306
Freon 113	ND	7.1	1.429	76306
1,1-Dichloroethene	ND	7.1	1.429	76306
Methylene Chloride	ND	29	1.429	76306
Carbon Disulfide	ND	7.1	1.429	76306
MTBE	300	13	2.500	76348
trans-1,2-Dichloroethene	ND	7.1	1.429	76306
Vinyl Acetate	ND	71	1.429	76306
1,1-Dichloroethane	ND	7.1	1.429	76306
2-Butanone	ND	14	1.429	76306
cis-1,2-Dichloroethene	350	13	2.500	76348
2,2-Dichloropropane	ND	7.1	1.429	76306
Chloroform	ND	7.1	1.429	76306
Bromochloromethane	ND	14	1.429	76306
1,1,1-Trichloroethane	ND	7.1	1.429	76306
1,1-Dichloropropene	ND	7.1	1.429	76306
Carbon Tetrachloride	ND	7.1	1.429	76306
1,2-Dichloroethane	ND	7.1	1.429	76306
Benzene	ND .	7.1	1.429	76306
Trichloroethene	8.2	7.1	1.429	76306
1,2-Dichloropropane	ND	7.1	1.429	76306
Bromodichloromethane	ND	7.1	1.429	76306
Dibromomethane	ND	7.1	1.429	76306
4-Methyl-2-Pentanone	ND	14	1.429	76306
cis-1,3-Dichloropropene	ND	7.1	1.429	76306
Toluene	ИD	7.1	1.429	76306
trans-1,3-Dichloropropene	ND	7.1	1.429	76306
1,1,2-Trichloroethane	ND	7.1	1.429	76306
2-Hexanone	ND	14	1.429	76306
1,3-Dichloropropane	ND	7.1	1.429	76306
Tetrachloroethene	17	7.1	1.429	76306
Dibromochloromethane	ND	7.1	1.429	76306

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/	EMY
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	SOMA-2		Sampled:	10/23/02
Lab ID:	161425-010		Received:	10/23/02
Matrix:	Water		Analyzed:	10/25/02
Units:	ug/L			

Analyte			Diln Fa	c Batch#
1,2-Dibromoethane	Result ND	RL 7.1	1.429	76306
Chlorobenzene	ND ND	7.1 7.1	1.429	76306
1,1,1,2-Tetrachloroethane	ND ND	7.1	1.429	76306 76306
Ethylbenzene	ND	7.1		76306
m,p-Xylenes		7.1	1.429 1.429	76306
	ND		· · · · · ·	
o-Xylene	ND	7.1	1.429	76306
Styrene	ND	7.1	1.429	76306
Bromoform	ND	7.1	1.429	76306
Isopropylbenzene	ND	7.1	1.429	76306
1,1,2,2-Tetrachloroethane	ND	7.1	1.429	76306
1,2,3-Trichloropropane	ND	7.1	1.429	76306
Propylbenzene	ND	7.1	1.429	76306
Bromobenzene	ND	7.1	1.429	76306
1,3,5-Trimethylbenzene	ND	7.1	1.429	76306
2-Chlorotoluene	ND	7.1	1.429	76306
4-Chlorotoluene	ND	7.1	1.429	76306
tert-Butylbenzene	ND	7.1	1.429	76306
1,2,4-Trimethylbenzene	ND .	7.1	1.429	76306
sec-Butylbenzene	ND	7.1	1.429	76306
para-Isopropyl Toluene	11	7.1	1.429	76306
1,3-Dichlorobenzene	ND	7.1	1.429	76306
1,4-Dichlorobenzene	ND	7.1	1.429	76306
n-Butylbenzene	NÐ	7.1	1.429	76306
1,2-Dichlorobenzene	ЙD	7.1	1.429	76306
1,2-Dibromo-3-Chloropropane	ND	7.1	1.429	76306
1,2,4-Trichlorobenzene	ND	7.1	1.429	76306
Hexachlorobutadiene	ND	7.1	1.429	76306
Naphthalene	ND	7.1	1.429	76306
1,2,3-Trichlorobenzene	ND	7.1	1.429	76306

Surrogate	HREC	Limits	Diln	Fac Batch#	
Dibromofluoromethane	109	80-121	1.429	76306	
1,2-Dichloroethane-d4	105	77-130	1.429	76306	
Toluene-d8	104	80-120	1.429	76306	
Bromofluorobenzene	101	80-120	1.429	76306	

		Purgeable Org	anics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	SOMA-3		Batch#:	76306
Lab ID:	161425-011		Sampled:	10/23/02
Matrix:	Water		Received:	10/23/02
Tunits:	\mathtt{ug}/\mathtt{L}		Analyzed:	10/25/02
Diln Fac:	33.33			

Analyte	Result	RL	
Freon 12	ND	330	
Chloromethane	ND	330	
Vinyl Chloride	ND	330	
Bromomethane	ND	330	
Chloroethane	ND	330	
Trichlorofluoromethane	ND	170	
Acetone	ND	670	
Freon 113	ND	170	
1,1-Dichloroethene	ND	170	
Methylene Chloride	ND .	670	,
Carbon Disulfide	ND	170	
MTBE	ND	170	
trans-1,2-Dichloroethene	ND	170	
Vinyl Acetate	ND	1,700	
1,1-Dichloroethane	ND	170	
2-Butanone	ND	330	
cis-1,2-Dichloroethene	5,900	170	
2,2-Dichloropropane	ND	170	
Chloroform	ND	170	
Bromochloromethane	ND	330	
1,1,1-Trichloroethane	ND	170	
1,1-Dichloropropene	ND	170	
Carbon Tetrachloride	ND	170	
1,2-Dichloroethane	ND	170	
Benzene	ND	170	
${ t Frichloroethene}$	ND	170	
1,2-Dichloropropane	ND	170	
Bromodichloromethane	ND	170	
Dibromomethane	ND	170	
1-Methyl-2-Pentanone	ND	330	
cis-1,3-Dichloropropene	ND	170	
Foluene	ND	170	
trans-1,3-Dichloropropene	ND	170	
1,1,2-Trichloroethane	ND	170	
2-Hexanone	ND	330	
1,3-Dichloropropane	ND	170	
Tetrachloroethene	ND	170	

		Purgeable Org	anics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Field ID:	SOMA-3		Batch#:	76306
Lab ID:	161425-011		Sampled:	10/23/02
Matrix:	Water		Received:	10/23/02
Units:	ug/L		Analyzed:	10/25/02
Diln Fac:	33.33			

Analyte	Result	RL
Dibromochloromethane	ND	170
1,2-Dibromoethane	ND	170
Chlorobenzene	ND .	170
1,1,1,2-Tetrachloroethane	ND	170
Ethylbenzene	ND	170
m,p-Xylenes	ND	170
o-Xylene	ND	170
Styrene	ND	170
Bromoform	ND	170
Isopropylbenzene	ND	170
1,1,2,2-Tetrachloroethane	ND	170
1,2,3-Trichloropropane	ND	170
Propylbenzene	ND	170
Bromobenzene	ND	1.70
1,3,5-Trimethylbenzene	ND	170
2-Chlorotoluene	ND	170
4-Chlorotoluene	ND	170
tert-Butylbenzene	ND	170
L,2,4-Trimethylbenzene	ND	170
sec-Butylbenzene	ND	170
para-Isopropyl Toluene	ND	170
1,3-Dichlorobenzene	ND	170
l,4-Dichlorobenzene	ND	170
n-Butylbenzene	ND	170
1,2-Dichlorobenzene	ND	170
,2-Dibromo-3-Chloropropane	ND	170
1,2,4-Trichlorobenzene	ND	170
Hexachlorobutadiene	ND	170
Vaphthalene	ND	170
1,2,3-Trichlorobenzene	ND	170

Surrogate	*REC	Limits
Dibromofluoromethane	107	80-121
1,2-Dichloroethane-d4	99	77-130
_Toluene-d8	97	80-120
romofluorobenzene	101	80-120

		Purgeable Org	anics by GC	/MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC193799		Batch#:	76306
Matrix:	Water		Analyzed:	10/24/02
Units:	ug/L			

Analyte	Result	RL	***
Freon 12	ND	10	*******
_Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
1-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
retrachloroethene	ND	5.0	
Dibromochloromethane	ND	5.0	

D= Not Detected L= Reporting Limit Page 1 of 2

		Purgeable Org	anics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental E	Ingineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC193799		Batch#:	76306
Matrix:	Water		Analyzed:	10/24/02
Units:	ug/L			

Analyte	Result	RL
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
b-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
, 2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-121
.,2-Dichloroethane-d4	104	77-130
Foluene-d8	97	80-120
Bromofluorobenzene	101	80-120

P= Not Detected L= Reporting Limit Page 2 of 2

	Purge	able Organics by GC/	MS
Lab #:	161425	Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental Enginee	ring Inc. Prep:	EPA 5030B
Project#:	2511	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC193800	Batch#:	76306
Matrix:	Water	Analyzed:	10/24/02
Units:	ug/L		

•			*****************
Analyte	Result	RL	
Freon 12	ND 	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Frichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
l-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
rans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	
Dibromochloromethane	ND	5.0	
DIDIOMOCHIOLOMECUANE	ND	5.0	

D= Not Detected L= Reporting Limit Page 1 of 2

	Purgeable Or	ganics by GC,	/MS
Lab #:	161425	Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	2511	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC193800	Batch#:	76306
Matrix:	Water	Analyzed:	10/24/02
Units:	ug/L	-	

Analyte	Result	XL.
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
_sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
n-Butylbenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogate	*REC	Limits
Dibromofluoromethane	101	80-121
1,2-Dichloroethane-d4	101	77-130
Foluene-d8	99	80-120
Bromofluorobenzene	100	80-120

		Purgeable Org	anics by GC/MS	
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC193956		Batch#:	76348
Matrix:	Water		Analyzed:	10/25/02
Units:	ug/L			

Analyte	_		
Freon 12	Result	RL 10	
_Chloromethane	ND		
	ND	10	
Vinyl Chloride Bromomethane	ND	10	
	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
rans-1,2-Dichloroethene	ND .	. 5.0	
Vinyl Acetate	ND	50	•
1,1-Dichloroethane	ND	5.0	
-Butanone	ND	10	
is-1,2-Dichloroethene	ND	5.0	-
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
3romochloromethane	ND	10	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
arbon Tetrachloride	ND	5.0	
.,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
.,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
-Methyl-2-Pentanone	ND	10	
eis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
rans-1,3-Dichloropropene	ND	5.0	
,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
'etrachloroethene	ND	5.0	
Dibromochloromethane	ND	5.0	
promocurationecuane	MD	5.0	

Not Detected
Reporting Limit
Page 1 of 2

		Purgeable Org	anics by GC	:/MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC193956		Batch#:	76348
Matrix:	Water		Analyzed:	10/25/02
Units:	ug/L		-	

Analyte	Result	RL
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
Bromobenzene	ND	5.0
1,3,5-Trimethylbenzene	ND	5.0
2-Chlorotoluene	ND	5.0
4-Chlorotoluene	ND	5.0
tert-Butylbenzene	ND	5.0
1,2,4-Trimethylbenzene	ND	5.0
sec-Butylbenzene	ND	5.0
para-Isopropyl Toluene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1-Butylbenzene	ND	5.0
l,2-Dichlorobenzene	ND	5.0
1,2-Dibromo-3-Chloropropane	ND	5.0
1,2,4-Trichlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Naphthalene	ND	5.0
1,2,3-Trichlorobenzene	ND	5.0

Surrogata	%REC	Limits			
Dibromofluoromethane	109	80-121			
, 2-Dichloroethane-d4	107	77-130			
Coluene-d8	99	80-120		1	4
Bromofluorobenzene	105	80-120			

P= Not Detected
R= Reporting Limit
Page 2 of 2

	Pur	geable Organics by GC/	MS
Lab #:	161425	Location:	3815 Broadway, Oakland CA
Client:	SOMA Environmental Engin	eering Inc. Prep:	EPA 5030B
Project#:	2511	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC193798	Batch#:	76306
Matrix:	Water	Analyzed:	10/24/02

Analyte	Spiked	Result	*REC	Limite
1,1-Dichloroethene	50.00	47.71	95	71-131
Benzene	50.00	45.33	91	76-120
Trichloroethene	50.00	52.80	106	78-120
Toluene	50.00	43.74	87	79-120
Chlorobenzene	50.00	47.34	95	80-120

ug/L

Units:

Surrogate	*REC	! Limits
Dibromofluoromethane	101	80-121
1,2-Dichloroethane-d4	97	77-130
Foluene-d8	100	80-120
Bromofluorobenzene	100	80-120

		Purgeable Org	anics by GC	/MS
Lab #:	161425		Location:	3815 Broadway, Oakland CA
	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B
Project#:	2511		Analysis:	EPA 8260B
Type:	LCS		Diln Fac:	1.000
Lab ID:	QC193955		Batch#:	76348
Matrix:	Water		Analyzed:	10/25/02
Units:	ug/L		-	

Analyte	Spiked	Result	*REC	Limits	
1,1-Dichloroethene	50.00	42.60	85	71-131	
Benzene	50.00	48.07	96	76-120	
Trichloroethene	50.00	54.06	108	78-120	
Toluene	50.00	47.27	95	79-120	
Chlorobenzene	50.00	48.08	96	80-120	

Surrogate	*REC	Limits
Dibromofluoromethane	106	80-121
1,2-Dichloroethane-d4	105	77-130
Toluene-d8	101	80-120
Bromofluorobenzene	99	80~120

			Purgeable	e Org	anics by GC/MS		
				_			
Lab #:	16142	25			Location:	3815 Broadway,	Oakland CA
Client:	SOMA	Environmental	Engineering	Inc.	Prep:	EPA 5030B	
Project#:	2511				Analysis:	EPA 8260B	
Field ID:		ZZZZZZZZZ			Batch#:	76306	
MSS Lab II):	161404-003			Sampled:	10/21/02	
Matrix:		Water			Received:	10/22/02	
Units:		ug/L			Analyzed:	10/24/02	
Diln Fac:		1.000			-		

ype:

MS

Lab ID:

QC193801

Analyte	MSS Result	Spiked	Result	4REC	Limits
1,1-Dichloroethene	<0.2500	50.00	49.04	98	71-134
Benzene	<0.2800	50.00	45.16	90	79-120
Trichloroethene	<0.2500	50.00	54.17	108	47-141
Toluene	<0.2200	50.00	45.62	91	75-120
Chlorobenzene	<0.2200	50.00	49.01	98	80-120

Surrogate	%REC	' Limits
Dibromofluoromethane	103	80-121
1,2-Dichloroethane-d4	101	77-130
Toluene-d8	101	80-120
Bromofluorobenzene	102	80-120

ype:

MSD

Lab ID:

QC193802

Analyte	Spiked	Result	%REC	Limits	RPI	Lim
l,1-Dichloroethene	50.00	47.90	96	71-134	2	20
Benzene	50.00	46.07	92	79-120	2	20
Trichloroethene	50.00	52.32	105	47-141	3	20
Toluene	50.00	45.00	90	75-120	1	20
Chlorobenzene	50.00	45.88	92	80-120	7	20

Surrogate	%REC	Limits	
Dibromofluoromethane	103	80-121	
1,2-Dichloroethane-d4	100	77-130	ı
Toluene-d8	101	80-120	
Bromofluorobenzene	99	80-120	

			Purgeable	e Org	anics by GC/MS			
Lab #: 1	6142	5			Location:	3815 Broadway,	Oakland	CA
Client: S	OMA	Environmental	Engineering	Inc.	Prep:	EPA 5030B		
Project#: 2	511				Analysis:	EPA 8260B		
Field ID:		ZZZZZZZZZ			Batch#:	76348		
MSS Lab ID:		161454-007			Sampled:	10/23/02		
Matrix:		Water			Received:	10/24/02		
Units:		ug/L			Analyzed:	10/25/02		
Diln Fac:		1.000			-			

ype:

MS

Lab ID:

QC193958

Chlorobenzene	<0.2200	50.00	47.45	95	80-120
Toluene	<0.2200	50.00	44.34	89	75-120
Trichloroethene	<0.2500	50.00	52.89	106	47-141
Benzene	<0.2800	50.00	45.54	91	79-120
1,1-Dichloroethene	<0.2500	50.00	49.59	99	71-134
Analyte	MSS Result	Spiked	Result	%RBC	Limits

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-121
, 2-Dichloroethane-d4	102	77-130
Toluene-d8	100	80-120
Bromofluorobenzene	102	80-120

/pe:

MSD

Lab ID:

QC193959

Analyte	Spiked	Result	%REC	Limits	R(P)B	Lin
.,1-Dichloroethene	50.00	51.37	103	71-134	4	20
Benzene	50.00	48.19	96	79-120	6	20
Trichloroethene	50.00	54.99	110	47-141	4	20
Toluene	50.00	45.57	91	75-120	3	20
Chlorobenzene	50.00	47.76	96	80-120	1	20

Dibromofluoromethane 111 80-121 1,2-Dichloroethane-d4 106 77-130 Toluene-d8 97 80-120 Browofluorobenzene 103 80-120	Surragate	%REC	Limits
Toluene-d8 97 80-120	Dibromofluoromethane	111	80-121
	1,2-Dichloroethane-d4	106	77-130
kromofluorobenzene 103 80-120	Toluene-d8	97	80-120
100 00 120	romofluorobenzene	103	80-120

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Page 1 of 12

Order #: P0210462 Report Date: 11/06/02

Client Proj Name: Oakland CA 2511

Client Proj #: Oakland CA 2511

Sample Identification

Lab Sample # Client Sample ID 0210462-01 GW-2 0210462-02 GW-3 P0210462-03 GW-4 P0210462-04 MW-11 0210462-05 LFR-1 0210462-06 LFR-2 P0210462-07 LFR-3 0210462-08 LFR-4 0210462-09 SOMA-1 ⁵0210462-10 SOMA-2

SOMA-3

P0210462-11

pproved By:

OTES:Sample GW-4 was crossed off the client COC; however, the sample vials were received. These samples were received at C and should all be analyzed per client instructions.

	-	
ate: 10-24-02	Receive	er: Rwelsh Time of Receipt: <u>0945</u>
llents SOMA Env.	Numbe	r Samples out of Conformance: 10
eason for Non-Conformance:		
Samples revd. past holding time	→	Parameters
Broken Bottles	· →	Description
Incorrect containers	→	Description
••		
		•
·	•	
Incorrect preservative	→	Description
Sample ID different from COC	>	Description
•	·	
Labels missing or unreadable	→	Description
	·	· · · · · · · · · · · · · · · · · · ·
Analysis not written on COC	\rightarrow	Description
•		
Sample received not on COC	→	Description
Sample on COC not received	→	Description
Hold time not observed internally	→	Description_
C 4 1	,	of the second second second second
analysis 1°C no		éturien 2 and le Samples require methane
	in Ca	ossed of car but pample vials were
vacerned.		

TOTAL P. 01

P0210462

CHAIN - OF - CUSTODY PECOPD

o. Address : oj. Managez;	268	A Envil	p Dr	, Swhe	203,	San Ru	mon CA	<u>ч</u> с. <u>.</u> 945.83	100	7	elen Leg	esu	Pare	ः व्य सीध	Tony Peri	ni
oj. Location: aj. Number:		Dalland											L (50	POIES 10 :	Some	s aha
one # :) 244-	660	Fax	4: (92	5) 24.	4 - 660	ī								
ropby's signet	lite (·	; _		Methon					Cook I	如關鍵	初光
以 自己是 第		Displace	ner Brig	Deli	Tens	Comp	G NUMBER	ट एक्ट ्रिक्ट स	Σ				1725)		9	
-W-Z		Sample			4.0200		Oreb	Cora.	 	+					Perspires.	भगकाम् इंडिजी
+W-3				10/22/3	3:15m		 	╂──		┪						
GW4				10/3/	que A			1		+						
MW-1)					1:17				₹	-						
FR-I					5:04 0~			† <u>-</u>		╁						
PR-2				10/23/2	11:30 -		*	-	\	╼╋╼╌╅	╼╂╌┧					
FR-3				10/22/02	1:45 au		*	 	à	╍┼╌╌╁	+ 1					
FR-4				10/23/2	8:55 am		 	1	$\langle \cdot \rangle$	╌┼╌╌╁		╼╂┷┨				
1-AMC					10:40			1		+ +					·	
MA-2				10/23/02			$+ \leftarrow$	†		╅						
oma-3				10/23/02			$+ \diamondsuit$	-	<u> </u>	╁╌╁						
				, ,	E-11 p-			1	7	┪╌┼		╌╂╼┦				
residend by: RA	MIN BE	T-YOUAN C	CINDSING :	MOČ	^	Date :	Time :	Reserved by	· ·	<u></u>		Comp				
equiated by :	- 444				135	1923/00	5: 25/11	Ru	L					~ .	Duc:	Time
			onemy :			Deta :	Tire :	Received by	:			Comp	101500 p	<u> </u>	Date:	094
points by :		C	euchtuit:	:		Duie ;	Tine :	Resired by	:			Comp				<u> </u>
				: Actoriper								Conga	my s		Dete :)) war

Page 2 of 12

P0210462 Order #:

11/06/02 Report Date:

Lab Sample #:

Client Proj Name:

Oakland CA 2511

Client Proj #:

Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

Matrix

Sampled Date/Time

Received

P0210462-01

GW-2

Water

22 Oct 02 16:02

24 Oct 02

GVV-2	vvaler		22 '	OCI. 02 16.02	24 OCI	. 02
nalyte(s)	Result	PQL	Units	Method #	Analyst	Analysis Date
<u>RiskAnalysis</u>						
ater ethane	0.73	0.015	ug/L	AM20GAX	pd	11/4/02

Page 3 of 12

P0210462 Order #:

11/06/02 Report Date:

Client Proj Name: Oakland CA 2511 Client Proj #: Oakland CA 2511

Lab Sample #:

P0210462-02

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive Suite 203

San Ramon, CA 94583

Sample Description

Matrix

Sampled Date/Time

Received

Water

22 Oct. 02 15:15

24 Oct. 02

GVV-3	water		22 \	001, 02 10.15	2+ 001: 02	
nalyte(s)	Result	PQL	Units	Method #	Anaiyst	Analysis Date
RiskAnalysis						
ater ethane	0.65	0.015	ug/L	AM20GAX	pđ	11/4/02

Page 4 of 12

P0210462 Order #:

Report Date: 11/06/02

Lab Sample #:

Client Proj Name:

Oakland CA 2511

Client Proj #:

Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

Matrix

Sampled Date/Time

Received

P0210462-03

GW-4

Water

23 Oct. 02 9:43

24 Oct. 02

<u> </u>	vvale:		20	OQL 02 0.40	24 001. 02		
nalyte(s)	Result	PQL	Units	Method #	Analyst Analysis Date		
RiskAnalysis							
ater							
ethane	. 300	0.015	ug/L	AM20GAX	pd 1	1/4/02	

Page 5 of 12

Order #: P0210462

Lab Sample #:

Report Date: 11/06/02

Client Proj Name:

Oakland CA 2511

Client Proj #:

Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive Suite 203

San Ramon, CA 94583

Sample Description

<u>Matrix</u>

Sampled Date/Time

Received

P0210462-04

<u>M</u> W-11	Water		23 (OCI. 02 13:17	24 Oct. 02		
nalyte(s)	Result	PQL	Units	Method #	Analyst	Analysis Date	
RiskAnalysis				 -			
ater ethane	2.5	0.015	ug/L	AM20GAX	pd	11/4/02	

Page 6 of 12

Order #: P0210462

Report Date: 11/06/02

Client Proj Name:

Oakland CA 2511

Client Proj #:

Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

<u>Matrix</u>

Sampled Date/Time

Lab Sample #:

Received

P0210462-05

Mater

22 Oct 02 17:04

24 Oct 02

LFR-1	vvater		22 (Oct. 02 17:04	24 Oct. 02		
nalyte(s)	Result	PQL	Units	Method #	Analysi	Analysis [Date
RiskAnalysis							
ater ethane	0.81	0.015	ug/L	AM20GAX	pd	11/4/02	

Page 7 of 12

Order #: P0210462

Report Date: 11/06/02

Client Proj Name: Client Proj #:

Oakland CA 2511 Oakland CA 2511

Client Name: Soma Environmental Engineering

Lab Sample #:

P0210462-06

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

<u>Matrix</u>

Sampled Date/Time

Received

LFR-2	Water		23 (Oct. 02 11:30	24 Oc	t. 02
nalyte(s)	Result	PQL	Units	Method #	Analyst	Analysis Date
RiskAnalysis						
ater ethane	4700	0.015	ug/L	AM20GAX	pd	11/4/02

Page 8 of 12

P0210462 Order #:

Report Date: 11/06/02

Lab Sample #:

Client Proj Name: Client Proj #:

Oakland CA 2511 Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

ample Description

<u>Matrix</u>

Sampled Date/Time

Received

P0210462-07

FR-3

Water

22 Oct 02 13:45

EFIX-5	water		22 (JCI, UZ 13:45	24 Oct. 02		
nalyte(s)	Result	PQL	Units	Method #	Analyst Analysis Da		
RiskAnalysis							
ater ethane	3.5	0.015	ug/L	AM20GAX	pd	11/4/02	

Page 9 of 12

P0210462 Order #:

Report Date: 11/06/02

· Client Proj Name:

Oakland CA 2511

Client Proj #:

Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

<u>Matrix</u>

Sampled Date/Time

Lab Sample #:

Received

P0210462-08

1 FR-4

Water

23 Oct 02 8:55

24 Oct 02

■ IX***	water		23	OCI. 02 8.55	24 00	JI. UZ	
nalyte(s)	Result	PQL	Units	Method #	Analys	t Analysis Date	
RiskAnalysis					-		
ater		0.04#		A \$ 100 CO A \$ 7	.,	4.4 (# (0.0	
ethane	1300	0.015	ug/L	AM20GAX	յլ	11/5/02	

Page 10 of 12

Order #: P0210462

Lab Sample #:

Report Date: 11/06/02

Client Proj Name: Oakland CA 2511

Client Proj #: Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

<u>Matrix</u>

Sampled Date/Time

Received

P0210462-09

Water

23 Oct. 02 10:49

24 Oct. 02

SOMA-1 halyte(s) Result **PQL** Units Method # Analyst Analysis Date **RiskAnalysis** ater ethane 680 0.015 ug/L AM20GAX jl. 11/5/02

Page 11 of 12

Order #: P0210462

11/06/02 Report Date:

Client Proj Name: Client Proj #:

Oakland CA 2511 Oakland CA 2511

Client Name: Soma Environmental Engineering

Lab Sample #:

P0210462-10

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

sample Description

<u>Matrix</u>

Sampled Date/Time

Received

23 Oct 02 15:16

SOMA-2	vvater		23 (JCI, 02 15:16	24 OC	1. 02
nalyte(s)	Result	PQL	Units	Method #	Analysi	Analysis Date
<u>RiskAnalysis</u>						
ater ethane	2200	0.015	ug/L	AM20GAX	jl	11/5/02

Page 12 of 12

Order #: P0210462

Lab Sample #:

Report Date: 11/06/02

Client Proj Name: Client Proj #:

Oakland CA 2511 Oakland CA 2511

Client Name: Soma Environmental Engineering

Contact: Mansour Sepher Address: 2680 Bishop Drive

Suite 203

San Ramon, CA 94583

Sample Description

<u>Matrix</u>

Sampled Date/Time

Received

P0210462-11

SOMA-3

Water

23 Oct. 02 14:19

24 Oct. 02

SONIA-3	water		23 (JCI. UZ 14.19	24 O	A. 02
nalyte(s)	Result	PQL	Units	Method #	Analys	t Analysis Date
RiskAnalysis						
ater ethane	4200	0.015	ug/L	AM20GAX	jl	11/5/02