

First Quarter 2001 Groundwater Monitoring Report Former Glovatorium Facility

3815 Broadway
Oakland, California

May 7, 2001

Project 01-2510

Prepared for
Smiland and Khachigian
601 West Fifth Street, 7th Floor
Los Angeles, California 90071-2004

Prepared by
SOMA Environmental Engineering, Inc.
2680 Bishop Drive, Suite 203
San Ramon, California 94583

Project: 01-2510

MAY 1 0 2001

May 8, 2001

Mr. Scott Seery, CHMM Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Site Located at 3815 Broadway, Oakland, California Former Glovatorium Facility

Dear Mr. Seery:

A copy of SOMA's "First Quarter 2001 Groundwater Monitoring Report" for the subject property is enclosed.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 244-6600, if you have any questions or comments.

Sincerely,

Mansour Sepeh, Ph.D., P.I. Principal Hydrogeologist

Enclosure

cc: Mr. Stuart Depper, Clean Tech Machinery

Mr. Albert M. Cohen, Smiland & Khachigian

Ms. Betty Graham, Regional Water Quality Control Board

Dr. Bruce Page, Bruce W. Page Consulting

Certification

This report has been prepared by SOMA Environmental Engineering, Inc. for Smiland & Khachigian, to comply with Alameda County Department Environmental Health's requirements for the First Quarter 2001 groundwater monitoring event.

Naser Pakrou, Ph.D.

Manager of Field Operations

Mansour Sepehr, Ph.D., P.E.

Principal Hydrogeologist

MAY 1 0 2007

Table of Contents

LIST	OF TABLES	3
LIST	OF FIGURES	3
LIST	OF APPENDICES	4
1.0	INTRODUCTION	5
1.1	Site Description	6
1.2	Background	7
1.3	Site Geology and Hydrogeology	9
2.0	FIELD ACTIVITIES	. 10
2.1	Laboratory Analysis	11
3.0	RESULTS	. 12
3.1	Groundwater Flow Condition	12
3.2	Groundwater Quality	13
3.3	Bioattenuation Parameter Analysis Results	15
4.0	CONCLUSIONS AND RECOMMENDATIONS	. 21
4.1	Conclusions	22
4.2	Recommendations	25
5.0	REFERENCES	. 27

List of Tables

Table 1: Construction Data for Temporary Sampling Points and Monitoring

Wells

Table 2: Groundwater Elevation Data During First Quarter 2001 Monitoring

Event

Table 3: Historical Groundwater Elevation at Different Wells

Table 4: Historical Analytical Results and Field Measurements for Dissolved

Anions, Cations, Gases, pH, Temperature, and Electrical

Conductivity in Groundwater Samples

Table 5: Analytical Results of Groundwater Samples Analyzed for Petroleum

Hydrocarbons

Table 6: Analytical Results of Groundwater Samples Analyzed for Volatile

Organic Compounds

Table 7: Historical Analytical Results for Total Petroleum Hydrocarbons,

BTEX and MtBE Analyses on Groundwater Samples

Table 8: Historical Analytical Results for Volatile Organic Compounds

Analyses on Groundwater Samples

Table 9: Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation

Parameters on Groundwater Samples

List of Figures

Figure 1: Site Location Map

Figure 2: Location of Groundwater Monitoring Wells

Figure 3: Groundwater Elevation Contour Map, January 29, 2001

Figure 4: TPH-g Concentration Contour Map in Groundwater, First Quarter 2001

Figure 5: TPH-ss Concentration Contour Map in Groundwater, First Quarter 2001

Figure 6: Cis-1,2-DCE Concentration Contour Map in Groundwater, First Quarter

2001

- Figure 7: Tetrachloroethene Concentration Contour Map in Groundwater, First Quarter 2001
- Figure 8: Trichloroethene Concentration Contour Map in Groundwater, First Quarter 2001
- Figure 9: Dissolved Oxygen Concentration Contour Map in Groundwater, First Quarter 2001
- Figure 10: Nitrate Concentration Contour Map in Groundwater, First Quarter 2001

 Figure 11: Sulfate Concentration Contour Map in Groundwater, First Quarter 2001

 Figure 12: Ferrous Iron Concentration Contour Map in Groundwater, First Quarter
- Figure 12: Ferrous Iron Concentration Contour Map in Groundwater, First Quarter 2001
- Figure 13: Methane Concentration Contour Map in Groundwater, First Quarter 2001

List of Appendices

- Appendix A: Site-Specific Field Operation Procedure Used by LFR During Groundwater Monitoring First Quarter 2001
- Appendix B: Field Notes, Laboratory Reports, Chain of Custody Forms, D.O.

 Correction Tables

1.0 INTRODUCTION

This report has been prepared by SOMA Environmental Engineering, Inc. (SOMA) for the Law Offices of Smiland and Khachigian on behalf of their client, the owners of the former Glovatorium. The site is the former Glovatorium property located at 3815 Broadway Avenue, Oakland, California (the "Site"), as shown in Figure 1. The Site is located in an area consisting primarily of commercial and residential uses.

This report summarizes the results of the first quarter 2001 groundwater monitoring event conducted on January 29 through February 1, 2001 by LFR Levine.Fricke (LFR) at the Site, including the results of the laboratory analysis of the groundwater samples, which were analyzed for:

- Total petroleum hydrocarbons as gasoline (TPH-g), and as Stoddard solvents (TPH-ss) using modified 8015
- Volatile organic compounds (VOCs) using EPA Method 8260B (with the listing of compounds from the 8010 analytical method)
- Benzene, toluene, ethylbenzene, total xylenes (collectively referred to as BTEX) and methyl tertiary butyl ether (MtBE) using EPA Method 8021B.

In addition to the above laboratory analysis, the natural attenuation study which was initiated by LFR in the third quarter of 2000 continued during this monitoring event. The objective of the natural attenuation study was to evaluate whether or not tetrachloroethylene (PCE) and other VOCs found in groundwater are biodegrading. Therefore, the groundwater samples collected during this monitoring event were analyzed for common electron acceptors and other geochemical indicators, and the results are described in this report.

These activities were performed in accordance with the general guidelines of the

Regional Water Quality Control Board (RWQCB) and the Alameda County Environmental Health Services (ACEHS).

This work is needed to determine the nature and extent of environmental contamination, and thus whether contamination is affecting the neighboring Thompson property. This information is needed to defend against the claim that Mr. Thompson brought against the Glovatorium and the Deppers. This work may also provide data that could help determine when releases occurred, which is also significant to defending against the claims brought by a former owner of the property, Ms. Johnson.

1.1 Site Description

The Site is located between Manila Avenue and Broadway, near the intersection of 38th Street in Oakland, California. The ground surface at the Site is covered with concrete and asphalt and slopes gently southwest, with surface elevations ranging from approximately 78 to 84 feet above mean sea level (msl).

A 54-inch inside-diameter storm drain culvert passes under the property, from Manila Avenue on the west to 38th Street on the South (see Figure 2). The depth of the storm drain invert is approximately 8.5 feet under the sidewalk on the eastern side of Manila Avenue and approximately 13.2 feet bgs at the far end approximately 60 feet south of GW-4.

In addition to a storm drain system, a 10-inch diameter cast iron sanitary sewer conduit runs in a westerly direction from the on-site building and discharges into the sanitary sewer line, which runs north to south along Manila Avenue. The floor drain inside the building is less than 2 feet bgs. However, the depth of the sanitary sewer line inside the building gradually increases and then slopes more steeply downward near the western wall of the building, where it plunges

underneath the 54-inch storm drain (LFR, January 2001).

Reportedly, there were six underground storage tanks (USTs) at the Site. Two USTs were located under the sidewalk on 38th Street and four USTs were located inside the building. The volumes of the USTs have been variously reported as ranging from 800 gallons up to 5,000 gallons. They reportedly contained Stoddard solvent, fuel oil and possibly waste oil. In August 1997, the six USTs were abandoned in-place by backfilling with either cement-sand slurry or pea gravel. In addition, there are three USTs owned by Earl Thompson, Sr., under the sidewalk on 38th Street, see Figure 2.

The surrounding properties are primarily commercial, businesses and residential housing. A TOSCO Marketing Company (TOSCO) site is located north and upgradient of the Site, at 40th Street and Broadway and contains a number of groundwater monitoring wells. Figure 2 shows the location of the main building, fuel tank areas, and the on-site and off-site groundwater monitoring wells. The groundwater monitoring wells are currently monitored on a quarterly basis. Past groundwater monitoring events have indicated the presence of VOCs and petroleum hydrocarbons in the groundwater beneath the Site. The source of VOCs and Stoddard Solvent is believed to be the former underground storage tanks (USTs), which were used to store Stoddard solvents and VOCs at the Site. The source of petroleum hydrocarbons in the groundwater is believed to be the upgradient TOSCO facility. This report includes both the results of historical groundwater monitoring events and the results of the first quarter 2001 groundwater monitoring events.

1.2 Background

The following is a brief description of previous site investigations conducted by different environmental firms:

In August 1997 Geosolv, LLC (Geosolv) initiated the first soil and groundwater

investigation at the Site. Geosolv drilled fourteen soil borings to approximate depths of 10 to 24 feet below ground surface (bgs) using the direct push method. Seven of the soil borings (B-2, B-3, B-7 through B-10 and B-13; see Figure 2) were converted into temporary groundwater monitoring wells where grab groundwater samples were collected. In September 1998, Geosolv conducted further soil and groundwater investigation by drilling twelve additional soil borings to an approximate depth of 19 to 25 feet bgs. All of the twelve soil borings were converted into temporary groundwater sampling points, and are labeled E-15 through E-26 in Figure 2. After collecting grab groundwater samples from the "E" temporary sampling points, they were abandoned and grouted.

In July 1999, based on the request of ACEHS, an investigation of potential groundwater preferential flow paths was initiated by LFR. LFR drilled ten soil borings (GW-1 through GW-8, GW-5A, and GW-6A) primarily along the 54-inch diameter storm drain and sanitary sewer systems to depths ranging from 8 to 20 feet bgs using a direct push drilling method. During drilling operations, soil samples were collected from various depth intervals. In August 1999, LFR collected grab groundwater samples from seven of nine "GW" wells.

In January and April 2000, LFR conducted quarterly groundwater monitoring at the Site. During the groundwater monitoring events, groundwater elevations were measured in the temporary sampling points installed by LFR and Geolsolv, and in off-site wells MW-8, MW-9 and MW-11 owned by TOSCO. Groundwater samples were collected from the temporary sampling points installed by LFR and from the off-site well MW-11.

In July and August 2000, LFR installed four groundwater monitoring wells, namely LFR-1 through LFR-4, and conducted the third quarter 2000 groundwater monitoring event. This was the first sampling event in which bioattenuation parameters were collected. The measured bioattenuation parameters included:

dissolved oxygen (DO), nitrate (NO₃-¹), sulfate (SO₄-²) ferrous iron (Fe^{+²}), total iron, methane, oxidation reduction potential (ORP), alkalinity, chloride, carbon dioxide, nitrite, sulfide, ethene, and ethane. The bioattenuation parameters provided a baseline for these parameters and a means to compare their concentrations at locations within the apparent source area against surrounding upgradient, down-gradient, and cross-gradient locations. During this monitoring event, groundwater elevations were measured and groundwater samples were taken from the newly installed groundwater monitoring wells LFR-1 through LFR-4, from the temporary sampling points installed by LFR and Geosolv, and from off-site monitoring wells MW-8, MW-9, and MW-11 owned by TOSCO. No groundwater sample was collected from MW-8 or MW-9.

In late October and early November 2000, LFR conducted the fourth quarter 2000 groundwater monitoring event, including another bioattenuation study. During the fourth quarter monitoring event, LFR sampled nine groundwater monitoring wells and temporary groundwater sampling points and measured groundwater elevations in nineteen groundwater monitoring wells and temporary sampling points (LFR, January 2001).

Well completion details for the LFR wells and the Geosolv sampling points are presented in Table 1.

1.3 Site Geology and Hydrogeology

The Site is located on the alluvial plain between the San Francisco Bay shoreline and the Oakland hills. Surface sediments in the Site vicinity consist of Holocene alluvial deposits that are representative of an alluvial fan depositional environment. These deposits consist of brown, medium dense sand that fines upward to sandy or silty clay. The pattern of stream channel deposition results in a three-dimensional network of coarse-grained sediments interspersed with finer grained silts and clays. The individual units tend to be discontinuous lenses

aligned parallel to the axis of the former stream flow direction (LFR, 2001).

According to LFR, sediments encountered in soil borings at the Site are typical of those encountered in an alluvial fan depositional environment. The sediments are predominantly fine-grained, consisting of clay, silty clay, sandy clay, gravelly clay and clayey silt. Discontinuous layers of coarse-grained sediments (clayey sand, silty sand, and clayey gravel) generally also contain relatively high percentages of silt and clay, which tend to reduce their permeability. Based on LFR (2001), during a previous investigation conducted by Geosolv and LFR, a relatively coarse-grained layer of silty sand, clayey sand, and clayey gravel was encountered in soil borings E-23, E-25, E-26, GW-2, GW-3, GW-7, and GW-8 at depth of approximately 4.5 to 14 feet bgs. A discontinuous layer of silty to clayey sand was encountered at depths of 17 to 21 bgs in borings B-11, E-23, E-25, GW-7 and GW-8.

According to the results of historical groundwater monitoring activities, groundwater occurs at 4 to 14 feet bgs. Based on the current and the previous groundwater monitoring reports, groundwater flows from northeast to the southwest with an approximate groundwater flow gradient of 0.019 ft/ft to 0.035 ft/ft. Assuming that the water-bearing zone consists of silty sand with an average hydraulic conductivity of 1 x 10⁻⁴ cm/sec and porosity of 0.35, it is estimated that the average groundwater flow velocity is approximately 0.022 ft/day (8 feet per year).

2.0 FIELD ACTIVITIES

Field activities were conducted by LFR from January 29 through February 1, 2001, during which ten groundwater monitoring wells were sampled and water levels were measured in 19 groundwater monitoring wells and temporary sampling points. Appendix A presents the site-specific field operation procedure used by LFR in conducting this groundwater monitoring event.

On January 29, 2001, LFR's field crew measured the depths to groundwater in the monitoring wells and temporary groundwater sampling points from the top of casings to the nearest 0.01 feet using an electrical sounder. The depth to groundwater and top of casing elevation data at each groundwater monitoring well were used to calculate the groundwater elevation.

Groundwater sampling was conducted from January 29, 2001 through February 1, 2001. During the groundwater sampling activities, certain biodegradation groundwater parameters such as dissolved oxygen, oxidation reduction potential (ORP), ferrous iron, total iron, nitrate, nitrite, sulfate and manganese were measured by the field crew. After collecting groundwater samples, the samples were placed in an ice chest and delivered to Curtis & Tompkins, Ltd. of Berkeley, California for routine analyses and to Microseeps Analytical Laboratories of Pittsburgh, Pennsylvania (Microseeps) for the bioattenutaion parameter analyses. Additionally, the field crew also measured certain groundwater parameters such as pH, temperature, electrical conductivity and turbidity in-situ during the groundwater monitoring event.

2.1 Laboratory Analysis

Curtis & Tompkins, Ltd. of Berkeley, California analyzed the groundwater samples. The measured constituents included TPH-g, TPH-ss, BTEX, MtBE and VOCs.

TPH-g and TPH-ss were measured using EPA Method 8015M. EPA Method 8021B was used to measure BTEX and MtBE. EPA Method 8260B was used to measure volatile organic compounds.

As discussed above, the groundwater constituents related to bio-degradation

activities were measured by Microseeps. The analyses conducted by Microseeps included alkalinity, chloride, ferrous iron, nitrate, nitrite, sulfate, sulfide, total iron, total manganese and dissolved manganese, and permanent gases such as carbon dioxide, hydrogen, methane, nitrogen and dissolved oxygen. As explained earlier, certain parameters such as dissolved oxygen, redox potential, turbidity, pH, nitrate, nitrite, ferrous iron, total iron and sulfate, and manganese were also analyzed in some selected wells in the field by LFR's field crew.

3.0 Results

This section describes the results of the first quarter 2001 groundwater monitoring event. This section includes groundwater flow conditions, the status of groundwater contamination, and the occurrence of bioattenuation in the subsurface.

3.1 Groundwater Flow Condition

Table 2 presents the measured groundwater elevations at different groundwater monitoring wells and temporary groundwater sampling points. At each location, depth to watertable and the elevation of the top of casing were used to calculate the watertable elevation relative to the assumed datum. Appendix B presents the field notes. Table 3 shows the historical water level elevations at different groundwater monitoring wells.

As Table 2 shows, the watertable elevations ranged from 66.96 feet to 78.14 feet above mean sea level. In evaluating the groundwater flow direction and gradient, water level data from GW-4, B-7 and B-9 were not utilized for the following reasons:

 No accurate information about the construction details of the "B" wells installed by Geosolve is available, therefore water level data from these wells are questionable; 2. GW-4 was installed adjacent to the storm drain system in order to evaluate whether or not the storm drain system is leaking. This well was installed in the shallow formation, and may partially penetrate into the underlying water-bearing zone. Therefore, the water level elevation recorded inside GW-4 may not be representative of the underlying water bearing zone.

Figure 3 displays the groundwater elevation contour map. As Figure 3 shows, during the recent monitoring event, the groundwater was found to flow from the northeast to southwest. This is consistent with the findings of the previous monitoring events conducted by LFR.

During the recent monitoring event, the water level elevations rose slightly (about 0.5 to 1.0 foot) since the previous monitoring event. The increase in watertable elevations can be attributed to the rainy season during the month of January.

The field measurements of some physical and chemical parameters of the groundwater samples are presented in detail in the field notes in Appendix A, and are summarized in Table 4, along with their historical values. Water temperatures ranged from 12.73 °C to 17.29°C. The variation in temperature may reflect the changes in air temperature during sampling. The temperature measurements allowed the field crew to make corrections to the pH, Electrical Conductivity (EC), and dissolved oxygen measurements. pH measurements ranged from 6.35 to 6.89 units. The EC measurements ranged from 0.479 to 1.424 mS/cm.

3.2 Groundwater Quality

The groundwater samples were analyzed for petroleum hydrocarbons and volatile organic compounds using EPA Method 8015M and 8021B. Table 5 displays the results of the laboratory analyses for TPH-ss, TPH-g, benzene,

toluene, ethylbenzene, and total xylenes. As Table-5 shows, TPH-g and TPH-ss were found at high concentrations beneath the Site. The maximum concentration of TPH-g and TPH-ss were found in B-7, which is located inside the former Glovatorium building. As Table 5 shows, TPH-g and TPH-ss were found in six of the ten groundwater monitoring wells sampled during this monitoring event. In comparison with the fourth quarter 2000 groundwater monitoring event, the concentrations of TPH-g and TPH-ss showed a significant reduction. Figures 4 and 5 show the concentration contour maps of TPH-g and TPH-ss in groundwater, respectively.

As was the case during previous groundwater monitoring events, minor concentrations of MtBE and BTEX were found at various groundwater monitoring wells. The reported concentrations of MtBE, however, are highly questionable since similar concentrations were detected in trip blank samples prepared during each sampling day (see Table-5). The maximum reported concentration of benzene during this monitoring event was $8.9~\mu g/L$ in well B-7. In the previous monitoring event, benzene was detected at $9.1~\mu g/L$ in B-7. The maximum concentrations of toluene, ethylbenzene and xylenes were detected in well B-7, with concentrations of 59, 9.7 and 87 $\mu g/L$, respectively.

Table 7 shows the historical TPH-ss, TPH-g, TPH-d, MtBE and BTEX concentrations measured at different groundwater monitoring wells and groundwater sampling points.

Table 6 shows the concentration of volatile organic compounds in groundwater during this monitoring event. As Table 6 shows, cis-1,2-dichloroethene (cis-1,2-DCE) was found most frequently. Cis-1,2-DCE was detected at a maximum concentration of 6,600 μ g/L in B-10, which represents a slight decrease in this well compared to the previous groundwater monitoring event. Cis-1,2-DCE is produced during the reductive dechlorination of tetrachloroethene (PCE). In

general, the reductive dechlorination process occurs by sequential dechlorination from PCE to trichloroethene (TCE) to DCE to vinyl chloride (VC). Bouwer (1994) reports that under the influence of biodegradation, cis-1,2-DCE is a more common intermediate than trans-1,2-DCE, and that 1,1-DCE is the least prevalent of the three DCE isomers when they are present as daughter products. Trans-1,2-DCE was found less frequently and at lower concentrations than cis-1,2-DCE. Cis-1,2-DCE was reported in eight out of ten groundwater monitoring wells, while trans-1,2-DCE was only detected in B-10 and B-7. Figure 6 shows the distribution of cis-1,2-DCE concentration in groundwater.

PCE and TCE were reported at relatively high concentrations and frequencies in the groundwater samples. PCE and TCE were detected in five out of ten groundwater monitoring wells. The maximum reported concentration of PCE and TCE were 2,100 and 1,600 μg/L, respectively, both in well B-10. This represents a slight decrease from the values reported during the previous groundwater monitoring event. Figures 7 and 8 show the distribution of PCE and TCE concentrations in groundwater.

VC was only detected in LFR-2, at a concentration of 1.6 μ g/L. During the previous groundwater monitoring event, VC was found at a concentration of 4.5 μ g/L in LFR-2. This may indicate that the reductive dechlorination process of PCE and TCE is strongly occurring beneath the Site. The strong occurrence of bioattenuation process in subsurface is further evident by depletion of the PCE and TCE in some of the source area wells which used to contain elevated levels of PCE. Table 8 shows the historical concentration of volatile organic compounds in groundwater.

3.3 Bioattenuation Parameter Analysis Results

This is the third time during groundwater quarterly monitoring events in which the

natural attenuation parameters of groundwater were studied. The objective of the bioattenuation study is to evaluate whether or not intrinsic bioremediation processes are active at the Site. The result of this study will reveal whether or not PCE and other dissolved organic compounds are biodegrading beneath the Site. During the degradation process, the indigenous bacteria that exist in the subsurface consume electron acceptors such as dissolved oxygen. After the dissolved oxygen is consumed, anaerobic microorganisms typically use alternative electron acceptors in the following order of preference: nitrate, ferric iron, oxyhydroxide, sulfate, and, finally, carbon dioxide. Evaluating the distribution of these electron acceptors can provide evidence of where and how chlorinated and aliphatic hydrocarbon biodegradation is occurring. The byproducts of biodegradation processes are ferrous iron, alkalinity, methane, and carbon dioxide. For evaluation of bioattenuation process, groundwater samples were collected during the first quarter 2001 groundwater monitoring event and analyzed for electron acceptors as well as the by-products of biodegradation activities, as described below:

Dissolved Oxygen. Dissolved oxygen (DO) is the most favored electron acceptor used by microbes for the biodegradation of organic compounds. A concentration of DO less than 0.5 mg/L indicates anaerobic conditions. It is our experience that down-hole measurements of DO (i.e., in-situ measurements) yield more realistic results than ex-situ (laboratory) measurements. Significant differences in DO concentrations using in-situ and ex-situ measurements (conducted by Microseep) can be attributed to cross contamination by atmospheric air during ex-situ measurement (R. Borden, 1998, M. Sepehr 1999). Therefore, the DO data gathered by LFR's field crew were used primarily in this report, in preference to the data from Microseep. Figure 9 presents the DO concentration contour map in groundwater using in-situ measurements. Figure 9 shows that the low DO concentration areas coincide with the higher levels of contamination in the groundwater. Table 9 presents the current and historical DO

concentrations in groundwater.

Nitrate. After DO has been depleted, nitrate may be used as an electron acceptor for anaerobic biodegradation. Nitrate concentrations less than 1.0 mg/L may indicate that reductive dechlorination is occurring. Nitrate concentrations less than 1.0 mg/L occurred near the apparent source area in B-7 and B-10, in the downgradient well LFR-2, and in well LFR-1, indicating conditions that are conducive to anaerobic biodegradation. High concentrations of nitrate were observed in upgradient monitoring well MW-11, which indicates a low likelihood of anaerobic biodegradation in this well. In contrast to the DO data, the laboratory analysis of nitrate is more reliable than the field-measured values. Figure 10 shows the nitrate concentration contour map using the laboratory data.

Manganese. After DO and nitrate have been depleted, manganese may be used as an electron acceptor for anaerobic biodegradation, and therefore, increased dissolved manganese concentrations are indicative of reductive dechlorination. Manganese concentrations ranged from 1.3 mg/L (B-10) to 8.9 mg/L (LFR-2) in the apparent source area indicating conditions that are conducive to anaerobic biodegradation. Manganese concentrations were reported to be less than 0.010 mg/L in upgradient well MW- 11, less than 0.010 mg/L in downgradient well LFR-3, and also less than 0.010 mg/L in the primary and split sample from well LFR-1.

Sulfate. After DO, nitrate, and manganese have been depleted, sulfate may be used as an electron acceptor for anaerobic biodegradation. This process is termed sulfate reduction, and results in the production of sulfide. Sulfate concentrations less than 20 mg/L are indicative of reductive dechlorination (EPA 1998). Sulfate concentrations were less than 2.0 mg/L in the apparent source area locations B-7 and B-10. Sulfate concentration around well MW-11 and LFR-3 were greater than 20 mg/L, suggesting aerobic conditions upgradient and further downgradient from the groundwater contaminant plume. Figure 11 shows a sulfate concentration contour map in groundwater using the laboratory's data.

Ferrous Iron. Increased ferrous iron accompanies anaerobic degradation. Ferric iron can be used as an electron acceptor during anaerobic biodegradation. During this process, ferric iron is reduced to ferrous iron, which may be soluble in water. Ferrous iron concentrations can thus be used as an indicator of anaerobic biodegradation.

The highest ferrous iron concentrations were in the apparent source area (the laboratory reported 15 mg/L in B-7). The minimum concentrations of ferrous iron were detected in MW-11 and LFR-3, where conditions are aerobic. Figure 12 shows a ferrous iron concentration contour map using the laboratory data. These results are very similar to the results from the fourth quarter 2000 groundwater monitoring event.

Methane. The presence of methane in groundwater is indicative of strongly reduced conditions, and suggests reductive dechlorination by the process of methanogenesis. Methane was detected in concentrations ranging from 0.0011 mg/L in LFR-1 to 13 mg/L in B-7. The higher concentration of methane at B-7 indicates conditions that are conducive to anaerobic biodegradation. Figure 13 shows a methane concentration contour map during the recent groundwater monitoring event, using the laboratory data. In general, these results are similar to the results from the fourth quarter 2000 groundwater monitoring event.

Oxygen Reduction Potential. The ORP of groundwater is a measure of electron activity, and is an indicator of the relative tendency of a solution to accept or transfer electrons. ORP may range from greater than 800 milliVolts (mV) to less than -400 mV, with lower values expected in areas where anaerobic processes are occurring. ORP measurements obtained in this sampling event ranged from +28 mV in B-7 to +383 mV in LFR-1. The highest values were found in downgradient locations (LFR-1 and LFR-3), and upgradient locations (MW-11). The lowest values were found in the apparent source area (B-7 and B-10). These results indicate that conditions in and near the apparent source area are

conducive to anaerobic biodegradation.

Hydrogen. Hydrogen concentrations are useful indicators of the terminal electron accepting processes (TEAPs) involved in reductive dechlorination. Groundwater samples for hydrogen analysis were collected using the bubble strip method, as described in EPA 1998. This is the second quarterly groundwater monitoring event during which hydrogen was sampled at selected groundwater monitoring wells.

Sampling and analysis for hydrogen were not conducted in the third quarter 2000 groundwater monitoring event because that event occurred approximately two weeks after installation of wells LFR-1 through LFR-4. Standard hydrogen sampling procedures suggest that at least 30 to 90 days should elapse after well installation before hydrogen sampling and analysis are conducted, because of the influence of ground disturbance and exposure of fresh mineral surfaces in the soil, which results in reaction of anaerobic groundwater with iron in the soil to produce hydrogen. This disturbance and exposure has been found to result in elevated hydrogen concentrations in the groundwater; however, these concentrations have been observed to dissipate over a period of about 90 days (Microseeps 2000).

Hydrogen concentrations ranged from 0.32 nanomoles (nM) in LFR-1 to 1.5 nM in well LFR-4. Due to the low variability of hydrogen levels from well to well, it is not clear whether the hydrogen data is useful for understanding the occurrence of bioattenuation beneath the Site.

Other Parameters

Alkalinity. Alkalinity is a general water quality parameter. Increases in alkalinity result from interaction between carbon dioxide (a product of several biodegradation processes) and aquifer minerals. The background alkalinity in the vicinity of the Site can be assumed to be approximately equal to the value of 330 mg/L in well MW-11, because this well is upgradient of the Site. However, the

alkalinity level in well LFR-1 (150 mg/L) was less than the alkalinity level in well MW-11. The remaining alkalinity concentrations were generally greater than 330 mg/L, with the maximum concentration of 720 mg/L detected in temporary sampling point B-7.

These results are very similar to the results from the fourth quarter 2000 groundwater monitoring event and are considered inconclusive regarding the occurrence of reductive dechlorination. Alkalinity results are included in Table 4.

Chloride. Chloride is the final product of the reduction of chlorinated solvents, and is also a general water quality parameter. The concentrations of chloride in wells LFR-4 (25 mg/L), LFR-2 (21 mg/L), and temporary sampling point B-7 (43 mg/L) were lower than those in well LFR-1 (76 mg/L), temporary sampling point B-10 (81 mg/L), and well MW- 11 (130 mg/L).

These results are very similar to the results from the fourth quarter 2000 groundwater monitoring event, with the exception of well LFR-3 (31 mg/L), which is slightly less than half of the concentration measured in the fourth quarter 2000 (66 mg/L). As was the case in the fourth quarter 2000 event, these results are inconclusive regarding the occurrence of reductive dechlorination. Chloride results are included in Table 4.

Carbon Dioxide. Carbon dioxide is a product of several biodegradation processes. Concentrations of carbon dioxide ranged from 28 mg/L (LFR-1) to 170 mg/L (B-7). These results are somewhat inconclusive regarding the occurrence of reductive dechlorination. Carbon dioxide results are included in Table 4.

Iron. Ferric iron may be used as an electron acceptor during anaerobic biodegradation. During this process, ferric iron is reduced to ferrous iron that may be soluble in water. Ferric iron concentrations may be obtained by subtracting ferrous iron concentrations from total iron concentrations. Total iron concentrations ranged from 0.0 mg/L (well LFR- 1 field result) to 17 mg/L (B-7

laboratory result). The highest concentrations were found in temporary sampling point B-7 (12 mg/L laboratory result), temporary sampling point B-10 (6.1 mg/L laboratory result), and well LFR-2 (4.6 mg/L laboratory result). These may be indicative of reductive dechlorination processes. Table 4 presents the results of total iron analyses, and Table 9 presents the results of the ferrous iron analyses.

Nitrite. Nitrate may reduce to nitrite during the process of anaerobic biodegradation. Nitrite concentrations ranged from less than 0.10 mg/L (MW-11 laboratory result) to 0.073 mg/L (B-10 field result). As was the case in the fourth quarter 2000 event, these results are inconclusive regarding the occurrence of reductive dechlorination. Nitrite results are included in Table 4.

Sulfide. When sulfate is used as an electron acceptor for anaerobic biodegradation, it is reduced to sulfide. Sulfide concentrations were generally less than 2 mg/L. As was the case in the fourth quarter 2000 groundwater monitoring event, these results are inconclusive. Sulfide results are included in Table 4.

pH, Temperature, and Conductivity. The pH of groundwater has an effect on the activity of microbial populations in groundwater, with optimal pH values ranging from 6 to 8 standard units for microbes capable of degrading PCE and other chlorinated aliphatic hydrocarbons. The groundwater temperature affects the metabolic activity of bacteria, and groundwater conductivity is directly related to the concentration of ions in solution. The pH, temperature, and conductivity values are included in Table 4.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of the work performed on January 29, 2001 through February 1, 2001 and the results of this work.

Groundwater samples were collected from monitoring wells LFR-1 through LFR-4, temporary sampling points B-7, B-10, GW-2 through GW-4, and from well

MW-11. The samples were analyzed for TPH-ss, TPH-g, MtBE, BTEX, and VOCs.

The PCE concentrations of 0.77 mg/L (primary sample result) and 0.83 mg/L (split sample result) detected in well LFR-1 are approximately less than one-third of the PCE concentration present in this well in August 2000 (2.8 mg/L).

This was the third time during quarterly monitoring events in which bioattenuation parameters were analyzed. Selected samples were analyzed for the following: DO, nitrate, manganese, sulfate, ferrous iron, methane, ORP, hydrogen, alkalinity, chloride, carbon dioxide, total iron, nitrite, and sulfide.

cis-1,2-DCE is one of the breakdown products of PCE. It was detected at concentrations up to 6.6 mg/L in temporary sampling point B-10 and its presence in groundwater indicates that reductive dechlorination is likely occurring.

Vinyl chloride was only detected in well LFR-2 at a concentration of 0.016 mg/L. The presence of vinyl chloride, a breakdown product of PCE, indicates reductive dechlorination is likely occurring. Benzene was not detected in GW-2, GW-3, GW-4, LFR-1, LFR-3, or MW- 11, but was detected in B-7, B- 10, LFR-2, and LFR-4 at concentrations up to 0.0089 mg/L (in B-7). The presence of MtBE in several on-site and off-site wells and sampling points is believed to be originated at the upgradient TOSCO site.

The maximum concentrations of the petroleum hydrocarbons were found in groundwater monitoring well B-7, as shown in Table-6. The maximum concentration of volatile organic compounds was found in B-10, as shown in Table 6.

4.1 Conclusions

Our conclusions, based on the data obtained by LFR during the first quarter 2001 groundwater monitoring event, are as follows:

The farthest downgradient well, LFR-3, did not contain VOCs or petroleum hydrocarbons at concentrations above their respective analytical detection limits, except MtBE at 3.6 µg/L, which is questionable due to its detection at similar levels in the field and trip blanks. (These compounds also have not been detected in LFR-3 since it was installed). These results indicate that these compounds have not reached the most downgradient monitoring well.

The data collected to date regarding the distribution of PCE and other VOCs in groundwater indicates that PCE has been degraded into some of its breakdown PCE typically degrades into TCE, then cis-1,2-DCE, trans-1,2-DCE (at much lower concentrations than cis-1,2-DCE), then to vinyl chloride, ethane and ethene and finally carbon dioxide, water, and chloride. This sequence of degradation would be anticipated where biological reductive dehalogenation of PCE is occurring. These breakdown products and relative concentrations are present at the Site. The presence of TCE in the apparent source area near temporary sampling point B-10 in January, August, and October/November 2000 as well as January/February 2001 indicates that PCE degradation is occurring. The presence of relatively high concentrations of cis-1,2-DCE in B-10 and in nearby B-7, and the relatively low concentrations of trans-1,2-DCE in these temporary sampling points is also indicative of biodegradation. Historical data from former temporary sampling point GW-8 indicates the presence of vinyl chloride between July 1999 and April 2000. Vinyl chloride was also detected in LFR-2 in the October/November 2000 and January/February 2001 sampling events.

The analysis of DO, nitrate, manganese, sulfate, ferrous iron, methane, ORP, and hydrogen indicates that conditions in the apparent source area are conducive to reductive dechlorination processes, because of their concentration distributions across the Site.

DO concentrations of less than approximately 0.5 mg/L in groundwater are

indicative of anaerobic biodegradation conditions. In general, results indicate that conditions in the apparent source area are anaerobic and conducive to anaerobic biodegradation processes, because the lowest DO concentrations occurred in the apparent source area (B-7 and B-10) and in wells LFR-2, GW-2 and LFR-4.

Relatively low concentrations of nitrate (e.g. less than 1.0 mg/L) are anticipated in locations where the oxygen has been depleted, because nitrate ion can be an effective electron acceptor in anaerobic biodegradation. Nitrate concentrations less than 1.0 mg/L occurred near the apparent source area in temporary sampling points B-7 and B-10, in the downgradient well LFR-2, and in well LFR-4, indicating conditions that are conducive to anaerobic biodegradation.

Increased dissolved manganese concentrations are indicative of reductive dechlorination condition. Manganese concentrations ranged from 1.3 mg/L (B-10) to 9.1 mg/L (LFR-2) in the apparent source area, indicating conditions that are conducive to anaerobic biodegradation.

Relatively low concentrations of sulfate (e.g. less than 20 mg/L) are anticipated in locations where the oxygen has been depleted, because sulfate ion can be used as an effective electron acceptor in anaerobic biodegradation. Sulfate concentrations were less than 1.0 mg/L in the apparent source area locations (B-7, B-10), indicating conditions that are conducive to anaerobic biodegradation.

The reducing conditions conducive to dehalogenation of VOCs can also reduce iron to the soluble ferrous state. Therefore, a relatively high concentration of ferrous iron is anticipated in locations where biodegradation occurs. The highest ferrous iron concentrations were in the apparent source area (B-7 and B-10) and in the slightly downgradient location LFR-2, indicating conditions that are conducive to anaerobic biodegradation.

A relatively high concentration of methane is anticipated in locations where biodegradation occurs because methane is indicative of strongly reducing conditions and suggests reductive dechlorination by the process of methanogenesis. Methane concentrations ranged from 2.4 mg/L to 13 mg/L in the apparent source area (B-10 and B-7), indicating conditions that are conducive to anaerobic biodegradation.

The ORP of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. ORP may range from greater than 800 milliVolts (mV) to less than -400 mV, with negative values expected in areas where anaerobic processes are occurring. The lowest concentrations were found in and near the apparent source area (B-7, B-10, and LFR-2). These results indicate that conditions in and near the apparent source area are conducive to anaerobic biodegradation.

4.2 Recommendations

SOMA's recommendations for future work at the Site are as follows:

- Continue implementing the sampling and analysis plan for the routine parameters and natural bioattenuation parameters established through discussion with representatives of ACEHS and the RWQCB.
- Continue quarterly groundwater monitoring in the four wells, LFR-1 through LFR-4, installed in July 2000, in the upgradient well MW- 11, and in selected previously installed temporary sampling points. Groundwater levels will be measured in LFR-1 through LFR-4, MW-8, MW-9, and MW-11, and in temporary sampling points.
- 3. The evaluation of the following parameters is recommended in order to characterize biodegradation at the Site:
 - In-Situ dissolved oxygen measurement;
 - No laboratory measurements of dissolved oxygen, hydrogen, nitrogen, or carbon dioxide are needed;
 - · Groundwater samples should be analyzed both in field and in the

laboratory for ferrous iron, total iron, nitrate, sulfate, total manganese and dissolved manganese.

- Continue to evaluate PCE and potential breakdown product concentrations on-site using mass flux calculations. Develop site conceptual model.
- Conduct Risk Based Corrective Action (RBCA) in order to identify human health risk and groundwater clean up levels.
- 6. Conduct fate and transport modeling using the results of the bioattenuation study in order to identify whether monitored natural attenuation (MNA) will be sufficient to achieve the groundwater remediation goals recommended in the RBCA within a reasonable time frame. Use the model to assess plume stability, the progress of reductive dechlorination, and any potential migration issues.

5.0 References

- Borden, R.C., 1998 "Hand book of Bioremediation" Section 9 Natural Bioremediation of Hydrocarbon-Contaminated Ground Water, pp 177-199.
- EPA 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater, EPA/600/R-98/128. September.
- Helley, E.J., K.R. Lajoie, and D.B. Burke. 1972. Geologic Map of Late Cenozoic Deposits, Alameda County, California.
- LFR. 1999. Results of Utility Survey and Work Plan for Soil and Grab Groundwater Investigation. May 6.
- LFR. 2000a. Soil and Groundwater Investigation Report. March 20.
- LFR. 2000b, Work Plan for Installation of Groundwater Monitoring Wells, Former Glovatorium, 3815 Broadway, Oakland, California. June 14.
- LFR. 2000c. Groundwater Monitoring Report, Second Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California. July 7.
- LFR. 2000d. Groundwater Monitoring Report, Third Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California. November 2.
- LFR. 2001. Groundwater Monitoring Report, Forth Quarter 2000, Former Glovatorium, 3815 Broadway, Oakland, California. November 2.
- Microseeps. 2000. Monitored Natural Attenuation As a Remedial Alternative In Groundwater Contamination. Lecture at LFR Levine Fricke (LFR) Emeryville office by Robert J. Pirkle, Ph.D. of Microseeps. May 3 1.
- Sepehr, M., 1999 "Methanogenesis and Anaerobic Biodegradation of Petroleum Hydrocarbons in Soil and Groundwater" a Paper Presented in 4th IAA Annual Conference at Petrochemical, Energy and Environment, September 1999, New York.
- U.S. Geological Survey. Quaternary Geology of Alameda County, and Parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, California: A Digital Database. U.S. Department of the Interior.

TABLES

Table 1

Construction Data for Temporary Sampling Points and Monitoring Wells

Former Glovatorium Site

3815 Broadway, Oakland, California

Location	Date	Ground Surface	Top of Casing	Total	Screen	Screen		
	Installed	Elevation (ft)	Elevation (ft)	Depth (ft)	Interval	Interval	Notes	
					Depth (ft)	Elevation (ft)		
Temporary	Temporary Sampling Points Installed by Geosolv, LLC:							
B-2	19-Aug-97	82.2	82.09	21	5 to 21	77.2 to 61.2		
B-3	19-Aug-97	82.6	82.57	18	5 to 18	77.6 to 64.6	(1)	
B-7	20-Aug-97	77.33	76.96	17.5	5 to 17.5	72.3 to 59.8		
B-8	20-Aug-97	82.06	81.82	24	9 to 24	73.1 to 58.1		
B-9	21-Aug-97	77.57	77.37	19.5	4.5 to 19.5	73.1 to 58.1		
B-10	21-Aug-97	81.65	81.5	19	4 to 9	77.7 to 62.7		
B-113	22-Aug-97	85.12	84.58	20	5 to 20	80.1 to 65.1		
Temporary	Sampling	Points installed by	y LFR:					
Gw-1	16-Jul-99	80.24	79.94	8	3 to 8	77.2 to 72.2		
GW-2	16-Jul-99	79.44	79.14	20	10 to 20	69.4 to 59.4		
GW-3	15-Jul-99	78.48	77.92	20	10 to 20	68.5 to 58.5		
GW-4	16-Jul-99	82.55	82.37	12	7 to 12	75.6 to 70.6		
GW-5	15-Jul-99	81.31	81.01	13	8 to 13	73.3 to 68.3		
GW-6	15-Jul-99	81.91	81.65	13.5	7.5 to 13.5	74.4 to 68.4	(2)	
GW-6A	16-Jul-99	81.93	81.61	15	5 to 15	76.9 to 66.9		
GW-7	15-Jul-99	81.3	NS	20	10 to 20	71.3 to 61.3	(2)	
GW-8	16-Jul-99	80.28	80.1	20	10 to 20	70.3 to 60.3	(2)	
Temporary	/ Sampling	Points Installed by	y TOSCO:	_				
MW-8	unknown	NS	87.44	unknown	unknown	unknown		
MW-9	unknown	NS	86.56	unknown	unknown	unknown		
MW-11	unknown	NS	84.13	unknown	unknown	unknown		
Groundwater Monitoring Wells Installed by LFR:								
LFR-1	28-Jul-00	NS	79.97	19	9 to 19			
LFR-2	27-Jul-00	NS	81.8 9	19	9 to 19			
LFR-3	27-Jul-00	NS	77.96	22	12 to 22			
LFR-4	28-Jul-00		81.65	19	9 to 19			

Notes:

NS = Not surveyed.

⁽¹⁾ Top of casing surveyed on south side on January 21, 2000, because the casing was broken.

⁽²⁾ GW-7 was abandoned on July 15, 1999, in accordance with LFR's workplan dated May 6, 1999. GW-6 and GW-8 were abandoned on July 26, 2000, in accordance with LFR's workplan dated June 14, 2000.

Table 2
Groundwater Elevation Data, First Quarter 2001
Groundwater Monitoring Event

Former Glovatorium Site 3815 Broadway, Oakland, California

Well Name	Date	Casing Elev.	DTW	GW Elev.
		(ft.)	(ft.)	(ft.)
B-2	1/29/01	82.09	7.46	74.63
B-3	1/29/01	82.57	7.51	75.06
B-7	1/29/01	76.96	7.85	69.11
B-8	1/29/01	81.82	7.59	74.23
B-9	1/29/01	77.37	8.04	69.33
B-10	1/29/01	81.5	8.3	73.2
GW-1	1/29/01	79.94	7.95	71.99
GW-2	1/29/01	79.14	10.52	68.62
GW-3	1/29/01	77.92	10.03	67.89
GW-4	1/29/01	82.37	7.45	74.92
GW-5	1/29/01	81.01	12.4	68.61
GW-6A	1/29/01	81.61	13.71	67.9
LFR-1	1/29/01	79.97	9.53	70.44
LFR-2	1/29/01	81.89	9.85	72.04
LFR-3	1/29/01	77.96	11	66.96
LFR-4	1/29/01	81.65	13.73	67.92
MW-8	1/29/01	87.44	9.3	78.14
MW-9	1/29/01	86.56	8.61	77.95
MW-11	1/29/01	84.21	10.42	73.79

Table 3
Historical Groundwater Elevations at Different Wells
Former Glovatorium Site

3815 Broadway, Oakland, California

Well Name	Date	Top of Casing	Depth to	Groundwater	Notes
	Measured	Elevation (ft)	Water (ft.)	Elevation (ft.)	INOTES
Temporary Sa	ampling Points	Installed by Geo	solv. LLC:	1	
B-2	29-Jan-01	82.09	7.46	74.63	ľ
	30-Oct-00		7.75	74.34	
	9-Aug-00		8.19	73.9	Р
	27-Apr-00		6.68	75.41	P
	24-Jan-00		6.16	75.93	P
	19-Jan-00	82.09	8.12	73.97	P
	18-Feb-98		4.04	78.16	1
	26-Oct-97		9.54	72.66	1
B-3	29-Jan-01	82.57	7.51	75.06	•
	30-Oct-00		7.73	74.84	Р
	9-Aug-00		8.02	74.55	Р
	27-Apr-00		6.71	75.86	Р
	24-Jan-00		6.74	75.83	•
	19-Jan-00	82.57	9.35	73.22	2
	18-Feb-98		4.53	78.04	1
	26-Oct-97		8.93	73.64	1
3-7	29-Jan-01	76.96	7.85	69.11	•
•	30-Oct-00		7.95	69.01	
•	9-Aug-00		8.35	68.61	
	27-Apr-00		7.11	69,85	Р
	24-Jan-00		7.3	69.66	P
	19-Jan-00	76.96	8.36	68.6	P
	18-Feb-98		5.76	71.57	1
	26-Oct-97	77.33	9.24	68.09	1
3-8	29-Jan-01	81.82	7.59	74,23	•
Ī	30-Oct-00	l	8.5	73.32	
	9-Aug-00	ŀ	9.02	72.8	P
	27-Apr-00		7.68	74.14	Р
}	24-Jan-00		8.98	72.84	P
	19-Jan-00	81.82	10.01	71.81	P
	18-Feb-98		5.42	76.4	1
	26-Oct-97	82.06	10.95	71.11	1
3-9	29-Jan-01	77.37	8.04	69.33	•
	30-Oct-00		7.95	69.42	
	9-Aug-00		8.55	68.82	
	27-Apr-00	1	7.41	69.96	
	24-Jan-00		7.12	70.25	Р
	19-Jan-00	77.37	8.46	68.91	P
	18-Feb-98		6.13	71.24	1
	26-Oct-97	77.57	9.18	68.39	1
I-10	29-Jan-01	81.5	8.3	73.2	•
	30-Oct-00		8.15	73.35	

Table 3
Historical Groundwater Elevations at Different Wells
Former Glovatorium Site
3815 Broadway, Oakland, California

Well Name	Date Measured	Top of Casing Elevation (ft)	Depth to Water (ft.)	Groundwater Elevation (ft.)	Notes
	9-Aug-00		8.85	72.65	
	27-Apr-00		7.8	73.7	
	24-Jan-00		7.35	74.15	₽
	19-Jan-00	81.5	8.48	73.02	P
	18-Feb-98	81.65	6.52	75.13	1
	26-Oct-97		9.39	72.26	1
B-13	30-Oct-00	84.58	DRY	DRY	
	9-Aug-00		9.35	75.23	
	27-Apr-00		8.71	75.87	
	24-Jan-00		8.26	76.32	
	19-Jan-00	84.58	10.4	74.18	
	18-Feb-98		6.61	77.97	1
	26-Oct-97	85.12	12.1	73.02	1
Temporary Sa	mpling Points	installed by LFR			
GW-1	29-Jan-01	79.94	7.95	71.99	
	9-Aug-00		DRY	DRY	
	27-Apr-00		DRY	DRY	
	19-Jan-00		DRY	DRY	·
	27-Aug-99	79.94	DRY	DRY	
GW-2	29-Jan-01	79.14	10.52	68.62	
	30-Oct-00		10.69	68.45	
	9-Aug-00		10.03	69.11	
	27-Apr-00		8.55	70.59	
	21-Jan-00		10.82	68.32	
	19-Jan-00		10.9	68.24	
	27-Aug-99	79.14	10.68	68.46	
GW-3	29-Jan-01	77.92	10.03	67.89	
	30-Oct-00		9.97	67.95	
	9-Aug-00		11.38	66.54	
	27-Apr-00		9.76	68.16	
	21-Jan-00		9.99	67.93	
	19-Jan-00		10.06	67.86	
	27-Aug-99	77.92	10.26	67.66	
GW-4	29-Jan-01	82.37	7.45	74.92	
	30-Oct-00		7.82	74.55	
	9-Aug-00		DRY	DRY	
	27-Apr-00		8.4	73.97	<u>, </u>
	21-Jan-00		8.04	74.33	·
	19-Jan-00		7.66	74.71	
	27-Aug-99	82.37	NM	NM	į
GW-5	29-Jan-01	81.01	12.4	68.61	İ
	30-Oct-00		12.37	68.64	

Table 3 Historical Groundwater Elevations at Different Wells Former Glovatorium Site 3815 Broadway, Oakland, California

			T		
Well Name	Date	Top of Casing	Depth to	Groundwater	Notes
	Measured	Elevation (ft)	Water (ft.)	Elevation (ft.)	1
	9-Aug-00		12.3	68.71	
İ	27-Apr-00		12.31	68.7	
1	20-Jan-00		12.4	68:61]
	19-Jan-00	81.01	12.4	68.61	•
İ	27-Aug-99	81.01	12.3	68,71	
GW-6A	29-Jan-01	81.61	13.71	67.9	
	30-Oct-00		13.45	68.16	
	9-Aug-00		13.73	67.88	
	27-Apr-00	!	13.61	68	
	19-Jan-00		13.98	67.63	
	27-Aug-99		13.9	67.71	
GW-8	27-Apr-00	80.1	8.76	71.34	
	20-Jan-00		9.68	70.42	
,	19-Jan-00		9.66	70.44	
	27-Aug-99	80.1	9.5	70.6	
Monitoring W	ells Owned by	TOSCO:		'	
MW-8	29-Jan-01	87.44	9.3	78.14	
	2-Nov-00		9.06	78.38	
	10-Aug-00		10.18	77.26	
	27-Apr-00	87.44	8.29	79.15	
MVV-9	29-Jan-01	86.56	8.61	77.95	:
	2-Nov-00		8.25	78.31	
	10-Aug-00		9.42	77.14	
	27-Apr-00	86.56	9.31	77.25	
MW-11	29-Jan-01	84.21	10.42	73.79	
	Oct-30-00		10.59	73.62	
	9-Aug-00		10.09	74.12	
	27-Apr-00		8.86	75.35	
	25-Jan-00	84.21	10.73	73.48	
Monitoring We		y LFR;	•	•	
LFR-1	29-Jan-01	79.97	9.53	70.44	
·	30-Oct-00		9.75	70.22	
	9-Aug-00		9.81	70.16	
LFR-2	29-Jan-01	81.89	9.85	72.04	
	30-Oct-00		10.27	71.62	
	9-Aug-00		11.9	69.99	
LFR-3	29-Jan-01	77.96	11	66.96	
`	30-Oct-00		10.97	66.99	
	9-Aug-00	ļ	11.2	66.76	
LFR-4	29-Jan-01	81.65	13.73	67.92	
	30-Oct-00	Ì	13.51	68.14	
	9-Aug-00		13.26	68.39	

Table 3

Historical Groundwater Elevations at Different Wells

Former Glovatorium Site 3815 Broadway, Oakland, California

Well Name Date Top of Casin Measured Elevation (ft)	Depth to Water (ft.)	Groundwater Elevation (ft.)	Notes
---	-------------------------	--------------------------------	-------

Notes:

1= Survey elevation and water-level measurement taken at concrete surface. Elevations and water levels without a "1" in Notes Column were measired from top of casing.

2= Top of the casing was re-surveyed because it was broken.

NM ≈ not measured

P= Floating product or sheen was observed.

Table 4
Historical Analytical Results and Field Measurements for
Dissolved Anions, Cations, Gases, pH, Temperature, and Electrical Conductivity
in Groundwater Samples

Former Glovatorium Site 3815 Broadway, Oakland, California

(Concentrations are in milligram per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Alkalinity	Cloride	Carbon Dioxide	Iron	Nitrite	Sulfide	Ethane	Ethene	pH Standard Unit	Temp. Celcius	Electrica Cond. (mS/cm)
B-7	11-Aug-00		39	202				<0.0005	<0.0005	6.86	17.55	1.279
B-7 field	11-Aug-00					(1)	0.049					''
B-7 B-7 field	31-Oct-00	760	42	200	14	<0.1	<2.0		1	[]		
6-7 nera B-7	31-Oct-00		4.5		17.22	(1)	(1)			6.16	16.05	1.454
B-7 B-7 field	31-Jan-00	720	43	170	12	<0.1	<2.0]	1-100	1.104
B-7 field B-10	31-Jan-00						ļ	1		6.79	13.9	1.424
B-10 field	10-Aug-01	520	74	145	6	<0.05	<0.04	<0.0005	0.00057	6.86	16.8	1.13
B-10 lield	10-Aug-00 31-Oct-00	500				0.023	0.06					11.0
B-10 field	31-Oct-00	500	76	120	6.6	<0.1	<2.0			! i		
B-10 lieig	31-Uct-00 31-Jan-01	480			8.35	0.001	0.004			6.21	16.62	1.051
B-10 field	31-Jan-01	480	81	72	6.1	<0.1	<2.0				. –	
GW-2	1-Nov-00		Ī		1.44	0.073	٠			6.81	14.66	1.117
GW-2	30-Jan-01	j		[•			6.31	18.97	1.218
GW-2 field	31-Jan-01	ļ		63			i.					
GW-3	11-Aug-00	340	25	-40	·			l i		6.82	13.75	0.846
GW-3 field	11-Aug-00	340	25	54.3				<0.0005	<0.0005	7.05	21.43	0.86
GW-3 field	1-Nov-00					0.046	(1)					
GW-3	1-Feb-01	i		54]		6.52	18.83	0.967
GW-3 field	29-Jan-01	ł	[54				ĺ			ļ	
GW-4	30-Jan-01		į					}		6.89	17.29	0.602
MW-11	10-Aug-00	360	110	216	040					6.6	13.48	0.479
MW-11field	10-Aug-00	550	'''	210	0.13	<0.05	<0.04	<0.0005	<0.0005	6.47	21	1.089
MW-11	1-Nov-00	300	120	190	-0 0E	0.036	0.002		ł			
MW-11field	1-Nov-00	000	120	130	<0.05	<0.1	<2.0		İ			
MW-11	31-Jan-01	330	130	150	0.01	0.003	(1)			5.83	20.13	1.264
MW-11field	31-Jan-01	330	130	130	<0.05	<0.1	<2.0		}			
									1	6.35	13.67	1.098

Table 4
Historical Analytical Results and Field Measurements for
Dissolved Anions, Cations, Gases, pH, Temperature, and Electrical Conductivity
in Groundwater Samples

Former Glovatorium Site
3815 Broadway, Oakland, California

(Concentrations are in milligram per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Alkalinity	Cloride	Carbon Dioxide	iron	Nitrite	Sulfide	Ethane	Ethene	pH Standard Unit	Temp. Celcius	Electrica Cond. (mS/cm)
LFR-1	11-Aug-00	250	110					<0.0005	<0.0005	6.97	19.73	0.936
LFR-1 field	9-Aug-00		i	51.1	{	0.02	(1)	1		[]	10.,0	0.500
LFR-1	30-Oct-00	240	100	25	<0.05	<0.1	<2			[]		
FR-1 field/s	30-Oct-00				0.01/0.01	0.031/0.036	0.001/0.001	1]	6.38	17.94	0.697
LFR-1-spl	30-Oct-00	220	100	40	<0.05	<0.1	<2		1	[17.07	0.031
LFR-1	29-Jan-01	150	76	28	<0.05	<0.1	<2	ĺ	ļ			
LFR-1 field	29-Jan-01				0	0.037			ĺ	6.82	15	0.87
LFR-1 Dup	29-Jan-01	150	75	26	<0.05	<0.1	<2		[1,5	,0	0.07
LFR-2	11-Aug-00	590	33	174		i		<0.0005	0.0017	6.8	19.87	1.088
LFR-2 field	11-Aug-00				2.95	(1)	0.005				10.07	1.000
LFR-2	2-Nov-00	550	40	180	6.2	<0.1	<2				ļ	
LFR-2 field	2-Nov-00				7.45	0.007	0.003			6.19	19.67	1,306
LFR-2	30-Jan-01	480	21	130	4.6	<0.1	<2				10,07	1,500
LFR-2 field	30-Jan-01				1.04	0.007		*		6.6	12.73	0.945
LFR-3	10-Aug-00	310	85	162	<0.1	0.15	0.04	<0.0005	<0.0005	6.57	19.92	0.951
LFR-3 split	10-Aug-00	300	85	152				<0.0005	<0.0005	3.5.	10.02	0.931
LFR-3 field	10-Aug-00					0.058	(1)				j	
LFR-3	1-Nov-00	350	66	160	<0.05	<0.1	<2					
LFR-3 field	1-Nov-00		ł	İ	0.01	0.011	0.002			6.16	17.71	1.164
LFR-3	30-Jan-01	250	31	71	<0.05	<0.1	<2			3		1.104
LFR-3 field	30-Jan-01	l			0.03		ļ			6.64	17.29	0.541
	11-Aug-00	630	71	161	İ			<0.0005	<0.0005	6.9	20.11	1.24
	11-Aug-00			j	0.22	0.018	0.002	•			_0,11	1.47
LFR-4	31-Oct-00	490	28	130	1	<0.1	<2]		
LFR-4 field	31-Oct-00				0.67	0.022	0			6.21	18.11	0,83
B-10 FB	10-Aug-00	1	- 1	Ì	-	ŧ]	<0.0005	<0.0005	J.E.,	10.11	0,03
LFR-4	1-Feb-01	460	25	120	1.3	<0.1	<2		3.000	1		i

Table 4

Historical Analytical Results and Field Measurements for Dissolved Anions, Cations, Gases, pH, Temperature, and Electrical Conductivity in Groundwater Samples

Former Glovatorium Site

3815 Broadway, Oakland, California

(Concentrations are in milligram per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Alkalinity	Cloride	Carbon Dioxide	Iron	Nitrite	Sulfide	Ethane	Ethene	pH Standard Unit	Temp. Celcius	Electrical Cond. (mS/cm)
LFR-4 field	1-Feb-01				1.43	0.017				6.55	15.28	0.916

Notes

Samples with "field" in the weil ID indicate that theresults are from field measurements obtained using a Hach spectrometer or a Hydrolab Quanta flow-through instrument.

(1) Sample concentration was too dilute to be reproducibly measured using the Hach spectrometer.

Table 5

Anayltical Results of Groundwater Samples Analyzed for Petroleum Hydrocarbons
Former Glovatorium Site
3815 Broadway, Oakland, California

Sample ID	Date	Stoddard Solvent C7-C12 (μg/L)	Gasoline C7- C12 (μg/L)	MtBE (μg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl benzene (µg/L)	Total Xylenes (µg/L)
B-10	1/31/01	2,400	3,600	ND	3.1	10	0.76	19.7
B-7	1/31/01	5,300	7,900	10	8.9	59	9.7	87
GW-2	2/1/01	ND	ND	ND	ND	ND	ND	ND
GW-3	2/1/01	ND	ND	2.3	ND	ND	ND	ND
GW-4	1/30/01	390	580	ND	NĐ	ND	ND	1.6
LFR-1	1/29/01	210	310	3.3	ND	ND	ND	ND
LFR-101	1/29/01	210	310	3.9	ND	ND	ND	ND
LFR-2	1/30/01	360	540	3.4	0.57	ND	ND	4.1
LFR-3	1/30/01	ND .	ND	3.6	ND	ND	ND	ND
LFR-4	2/1/01	160	220	9.7	3.3	ND	ND	ND
LFR-4 FB	2/1/01	NA	NA NA	ND	ND	ND	ND	ND
MW-11	1/31/01	ND	ND	8.7	ND	ND	ND	ND
TB-012901	1/29/01	NA	NA NA	2.5	ND	ND	ND	ND
TB-013001	1/30/01	NA	NA	3.8	NĐ	ND	ND	ND
TB-0131D1	1/31/01	NA	NA NA	3.3	ND	ND	ND	ND
TB-020101	2/1/01	NA	NA	5.1	NĐ	ND	ND	ND

Table 6

Anayltical Results of Groundwater Samples Analyzed for Volatile Organic Compounds

Former Glovatorium Site

3815 Broadway, Oakland, California

		1,1,1-	1,1,2,2-	1,1,2-	1,1-	1,1-	1,2-	1,2-	1,2-	1,3-	1,4-	Bromo
		Trichloro	Tetrachloro	Trichloro	Dichloro	Dichloro	Dichloro	Dichloro	Dichloro	Dichloro	Dichloro	dichloro
Sample ID	Date	ethane	ethane	ethane	ethane	ethene	benzene	ethane	propane	benzene	benzene	methane
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μ g/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
B-10	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-7	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GW-2	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GW-3	2/ 1 /01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GW-4	1/30/01	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND
LFR-1	1/29/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-101	1/29/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-2	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-3	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-4	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-4 FB	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-11	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-012901	1/29/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-013001	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-0131D1	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-020101	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 6

Anayltical Results of Groundwater Samples Analyzed for Volatile Organic Compounds
at the Former Glovatorium Site
3815 Broadway, Oakland, California

Sample ID	Date	Bromoform (μg/L)	Bromo methane (μg/L)	Carboπ Tetra chloride (μg/L)	Chloro benzene (µg/L)	Chloro ethane (µg/L)	Chloroform (μg/L)	Chloro methane (µg/L)	cis-1,2- Dichloro ethene (μg/L)	cis-1,3- Dichloro propene (μg/L)	Dibromo chloro methane (μg/L)
B-10	1/31/01	ND	ND	ND	ND	ND	ND	ND	6,600	ND :	ND
B-7	1/31/01	ND	ND	ND	ND	ND	ND	ND	920	ND	ND
GW-2	2/1/01	ND	ND	ND	ND	ND	ND	ND	2.8	ND	ND
GW-3	2/1/01	NĐ	ND	ND	ND	ND	ND	ND	1.1	ND	ND
GW-4	1/30/01	ND	ND	ND	ND	ND	ND	ND	2.4	ND	ND
LFR-1	1/29/01	ND	ND	ND	ND	ND	ND	ND	7.3	ND	ND
LFR-101	1/29/01	ND	NĐ	ND	ND	ND	ND	ND	7.4	ND	ND
LFR-2	1/30/01	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND
LFR-3	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-4	2/1/01	ND	ND	ND	ND	ND	ND	ND	0.6	ND	ND
LFR-4 FB	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-11	1/31/01	ND	ND	ND ·	ND	ND	ND	ND	ND	ND	ND
TB-012901	1/29/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-013001	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-0131D1	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-020101	2/1/01	ND	ND	ND	· ND	ND	ND	ND	ND	ND	ND

Table 6
Anayltical Results of Groundwater Samples Analyzed for Volatile Organic Compounds
at the Former Glovatorium Site
3815 Broadway, Oakland, California

Sample ID	Date	Freon 113 (μg/L)	Freon 12 (μg/L)	Methylene Chloride (μg/L)	Tetra chloro ethene (μg/L)	trans-1,2- Dichloro ethene (μg/L)	trans-1,3- Dichloro propene (μg/L)	Trichloro ethene (μg/L)	Trichloro fluoro methane (μg/L)	Vinyl Chloride (μg/L)
B-10	1/31/01	ND	ND	ND	2,100	44	ND	1,600	ND	ND
B-7	1/31/01	ND	ND	ND	ND	4.8	ND	ND	ND	ND
GW-2	2/1/01	ND	ND	ND	7.7	ND	ND	0.6	ND	ND
GW-3	2/1/01	ND	ND	ND	46	ND	ND	0.6	ND	ND
GW-4	1/30/01	ND	ND	ND	'ND	ND	ND	ND	ND	ND
LFR-1	1/29/01	ND	ND	ND	770	ND	ND	26	ND	ND
LFR-101	1/29/01	ND	ND	ND	830	ND	ND	31	ND	ND
LFR-2	1/30/01	ND	ND	NÐ	ND	ND	ND	ND	ND .	1.6
LFR-3	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-4	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
LFR-4 FB	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-11	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-012901	1/29/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-013001	1/30/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-0131D1	1/31/01	ND	ND	ND	ND	ND	ND	ND	ND	ND
TB-020101	2/1/01	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 7 Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX, and MtBE Analyses on Groundwater Samples

Former Glovatorium Site

3815 Boadway, Oakland, California

All results are expressed in milligram per liter (mg/L)

		Sreened	TPH,	TPH,	TPH,	TPH,		I	T	Ethyl	1
Location	Date	Interval	Ext.	Purgable	Ext.	Purgable	MtBE	Benzene	Toluene	benzene	Xylenes
	Sampled	Depth (ft)	Stoddard	Stoddard	Diesel	Gasoline					
Temporary	Sampling Po	ints Install	ed by Geos	olv, LLC:		*	· · · · · · · · · · · · · · · · · · ·				
B-2	24-Jan-00	5 to 21	NA	20 J	NA	31 YJ	< 0.05	<0.013	<0.013	0.11 C	0.22 C
B-3	24-Jan-00	5 to 18	NA	4.9 J	NA	8.8 YJ	<0.01	0.0048	<0.0025	<0.0025	0.0714
B-7	24-Jan-00	5 to 17.5	NA	19	NA	30 J	<0.05	< 0.013	0.062	<0.013	0.207
b-7	11-Aug-00		NA .	3.7 J	NA	6.8 YHJ	0.02	0.0077 J	0.047 J	0.007 J	0.065 CJ
B-7	31-Oct-00		NA	62 J	NA	98 YHJ	0.01 J	0.0091 J	0.061 J	<0.0005	0.237 J
B-7	Jan-31-01	-	NA	5.3	NA	7.9	0.01	0.0089	0.059	0.0097	0.087
B-8	24-Jan-00	9 to 24	NA	11 J	NA	19 YJ	<0.01	<0.0025	<0.0025	<0.0025	0.17 C
B-9	24-Jan-00	4.5 to 19.5	NA	1 YJ	NA	1.8 YHJ	<0.002	<0.0005	<0.0005	0.01 C	0.0089 C
B-10	24-Jan-00	4 to 19	NA	2.4 Y	NA	4.2	0.014 c	0.0072	0.027	0.025 C	0.032
B-10	10-Aug-00		NA	2.8 Y	NA	6.1 Y	0.16	0.0073	0.012	<0.005	0.0241
B-10	31-Oct-00		NA	2.2 YZ	NA	3.5 Z	<0.002	0.0038	0.011	<0.0005	0.0182
B-10	Jan-31-01		NA	2.4 Z	NA	3.6 HYZ	<0.002	0.0031	0.01	0.00076 c	0.0197
B-13	24-Jan-00	5 to 20	NA	1.7 J	NA	3 YJ	<0.01	<0.0025	< 0.0025	<0.0025	0.02
Temporary S	Sampling Po	ints Installe	d by LFR:	'		•				1 3.0320	0.02
GW-2	19-Jul-99	10 to 20	NA	<0.05	NA	<0.05	0.0025	<0.0005	0.00071	<0.0005	0.00074
GW-2	20-Jan-00		NA .	0.15	NA	0.25 Y	0.0044	<0.0005	<0.0005	0.00097 C	0.0013
GW-2	28-Apr-00		NA	<0.05	NA	0.095 YZ	<0.0021	<0.0005	<0.0005	<0.0005	<0.0005
GW-2	2-Nov-00	i	NA	<0.05	NA	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-2	1-Feb-01		NA	<0.05	NA	ND	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-3	19-Jul-99	10 to 20	NA	0.07 Z	NA	0.1 Z	<0.002	<0.0005	<0.0005	<0.0005	0.00064
GW-3	20-Jan-00	l	NA	0.15	NA	0.26 Y	<0.002	<0.0005	< 0.0005	<0.0005	0.0013 C
GW-3	27-Apr-00		NA	0.2 YZ	NA	0.38 YZ	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Split	27-Apr-00	10 to 20	NA	0.3 Z	ŅΑ	0.57 YZ	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-3	11-Aug-00		NA	<0.05	NA	0.077 YZ	<0.002	<0.0005	<0.0005	<0.0005	0.00051
GW-3	2-Nov-00		NA	<0.05	NA	0.05 YZ	0.0026	<0.0005	<0.0005	<0.0005	<0.0005
GW-3	1-Feb-01		NA	<.05	NA	<0.05	<.002	<.0005	<.0005	<.0005	<.0005

Table 7 Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX, and MtBE Analyses on Groundwater Samples

Former Glovatorium Site

3815 Boadway, Oakland, California
All results are expressed in milligram per liter (mg/L)

		Sreened	TPH,	TPH,	TPH,	TPH,		i		Ethyl	
Location	Date	Interval	Ext.	Purgable	Ext.	Purgable	MtBE	Benzene	Toluene	benzene	Xylenes
	Sampled	Depth (ft)	Stoddard	Stoddard	Diesel	Gasoline					
GW-4	21-Jul-99	7 to 12	NA	6.8 J	NA	10 YHJ	0.0022	<0.0005	<0.0005	<0.0005	0.0029 J
GW-4	20-Jan-00		NA	0.97 J	NA	1.6 YJ	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Split	.20-Jan-00		NA	0.85 J	NA .	1.5 YJ	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
GW-4	27-Apr-00		NA	0.31	NA	0.6 Y	<0.002	<0.0005	<0.0005	<0.0005	0.0027
GW-5	27-Aug-99	8 to 13	NA	<0.05	NA	<0.05	<0.001	<0.001	<0.001	<0.001	<0.001
GW-5	20-Jan-00		NA	<0.05	NA	0.057 Y	0.0007	<0.0005	<0.0005	<0.0005	<0.0005
GW-5	27-Apr-00		NA	0.05 Y	NA	0.096 Y	< 0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-6A	27-Aug-99	9 to 15	NA	<0.05	NA	0.054 Y	0.0089	<0.0005	<0.0005	<0.0005	<0.0005
Split	27-Aug-99		NA	<0.05	NA	0.057 Y	0.0087	<0.0005	<0.0005	<0.0005	<0.0005
GW-6A	25-Jan-00		NA	<0.05	NA	<0.05	0.0022	<0.0005	<0.0005	<0.0005	<0.0005
GW-6A	27-Apr-00		NA	<0.05	NA	0.087 Y	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
GW-7	15-Jul-99	10 to 20	0.697 BJ	NA	1.79 AJ	NA	< 0.0025	0.05 J	<0.0005	0.000727	0.00313 J
Split	15-Jul-99		1.42 BJ	NA	3.1 AJ	NA	NA	NA .	NA	NA	NA
GW-7	15-Jul-99		NA	NA	NA	NA	NA	0.0567 J	<0.002	<0.002	<0.002
Split	15-Jul-99		NA	NA	NA	NA	NA	0.0755 J	<0.002	<0.002	<0.002
GW-8	19-Jul-99	10 to 20	NA	<0.05	NA	<0.05	0.0078	<0.0005	0.00064	<0.0005	0.00151
GW-8	20-Jan-00		NA	0.19	NA	0.33 Y	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Split	20-Jan-00	10 to 20	NA	0.2	NA	0.37 Y	<0.002	0.00058	<0.0005	<0.0005	<0.0005
GW-8	28-Apr-00		NA	0.064 YZ	NA	0.12 YZ	0.013	<0.0005	<0.0005	<0.0005	<0.0005
Monitoring V	Vells Owned	by TOSCO	:				'	•	•	•	
MW-11	25-Jan-00	Unknown	NA	<0.05	NA	<0.05	0.009	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	28-Apr-00		NA	<0.05	NA	<0.05	<0.0087	< 0.0005	<0.0005	<0.0005	<0.0005
MW-11	10-Aug-00		NA	<0.05	NA	<0.05	0.011	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	1-Nov-00		NA	<0.05	NA	<0.05	0,0068	<0.0005	<0.0005	<0.0005	<0.0005
MW-11	์ 31-Jan-01	'	NA	' <.05	NA		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Monitoring V	Vells Installe	ed by LFR:							· •		'
LFR-1	9-Aug-00	9 to 19	NA	0.53	NA	1.2	0.0095	<0.0005	<0.0005	<0.0005	<0.0005

Table 7
Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX, and MtBE Analyses on Groundwater Samples

Former Glovatorium Site 3815 Boadway, Oakland, California

All results are expressed in milligram per liter (mg/L)

Location	Date	Sreened Interval	TPH, Ext.	TPH, Purgable	TPH, Ext.	TPH, Purgable	MtBE	Benzene	Toluene	Ethyl	Yesters
	Sampled		Stoddard	Stoddard	Diesel	Gasoline	Milbe	Delizelle	Toluelle	benzene	Xylenes
LFR-1	30-Oct-00		NA	0.24 YZ	NA	0.37 YZ	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
LFR-1	29-Jan-01		NA	0.21 YZ	NA	0.31 YZ	0.0033	<0.0005	<0.0005	<0.0005	<0.0005
Split	30-Oct-00		NA	0.24 YZ	NA	0.37 YZ	0.0043	<0.0005	<0.0005	<0.0005	<0.0005
LFR-2	11-Aug-00	9 to 19	NA	0.59	NA	1.1 YH	0.0022	0.0018	<0.0005	<0.0005	0.0013 C
LFR-2	2-Nov-00		NA	0.38	NA	0.7 YH	0,003	0.0035	0.0011	0.0042	0.01184 C
LFR-2	30-Jan-01		NA	0.36	NA	0.54 HY	0.0034	0.00057	<0.0005	<0.0005	<0.0005
LFR-3	10-Aug-00	12 to 22	NA	<0.05	NA	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Split	10-Aug-00		NA	<0.05	NA	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
LFR-3	1-Nov-00		NA	<0.05	NA	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
LFR-3	30-Jan-01		NA	<.05	NA	<.05	0.0036	<0.0005	<0.0005	<0.0005	<0.0005
LFR-4	11-Aug-00	9 to 19	NA	0.22 Y	NA	0.41 Y	0.0051	0.011	<0.0005	<0.0005	0.00162 C
LFR-4	31-Oct-00		NA	0.17 Y	NA	0.27	0.0065	0.00084	<0.0005	<0.0005	<0.0005
LFR-4	1-Feb-01		NA	0.16Y	NA	0.22	0.0097	0.0033	<0.0005	<0.0005	<0.0005
Blanks	•	•	•					'			1 101000
Trip Blank	1-Feb-01	1	NA	<.05	NA	<.05	0.0051	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	31-Jan-01		NA	<.05	NA	<.05	0.0033	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	29-Jan-01		NA	<.05	NA	<.05	0.0025	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	30-Jan-01		NA	<.05	NA	<.05	0.0038	<0.0005	<0.0005	<0.0005	<0.0005
Field Blank	· 1-Feb-01		NA	NA	NA ·	NA	<.002	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	19-Jul-99		NA	<0.05	NA	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	20-Jan-00		NA	<0.05	NA	<0.05	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	27-Apr-00		NA	<0.05	NA	<0.05	0.0024	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	30-Oct-00		NA	NA	NA	<0.05	0.0024	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	31-Oct-00		NA	NA	NA	NA	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	1-Nov-00		NA	NA	NA	NA	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Trip Blank	2-Nov-00		NA	NA	NA	NA NA	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Field Blank	27-Apr-00		NA	<0.05	NA	<0.05	<0.002	<0.0005	0.00054	<0.0005	<0.0005

Table 7

Historical Analytical Results for Total Petroleum Hydrocarbon, BTEX, and MtBE Analyses on Groundwater Samples

Former Glovatorium Site

3815 Boadway, Oakland, California

All results are expressed in milligram per liter (mg/L)

Location	Date Sampled	Sreened Interval Depth (ft)	TPH, Ext. Stoddard	TPH, Purgable Stoddard	TPH, Ext. Diesel	TPH, Purgable Gasoline	MtBE	Benzene	Toluene	Ethyl benzene	Xylenes
Field Blank	10-Aug-00		NA	<0.05	NA	<0.05	<0.002	<0.0005	<0.0005	<0.0005	<0.0005
Field Blank	1-Nov-00		NA	NA	NA	NA	<0.002	<0.0005	<0.0005	<0.0005	<0.0005

Notes:

A = Chromotogram pattern: unidentified hydrocarbons C9-C24

B = Chromotogram pattern: unidentified hydrocarbons C9-C13

C = Presence of this compound confirmed by second column, however, the confirmation concentration different from reported results by more than a factor of two.

J = Result is estimated.

Y = Sample exhibits fuel pattern which does not resemble standard.

H = Heavier hydrocarbons than the standard are present in the sample.

Z = Sample exhibits unknown single peak or peaks.

NA = Not analyzed

TPH, ext. = Total petroleum htdrocarbons (extractable)

TPH, purge = Total petroleum htdrocarbons (purgeable)

Groundwater samples collected from the temporary sampling points are considered grab samples, therefore, the results should be considered estimates of groundwater quality.

Table 8
Historical Analytical Results For Volatile Organic Compound (VOC) Analyses on Groundwater Samples

at the Former Glovatorium Site 3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/L)

Location	Date Sampled	Screened Interval (ft-bgs)	Acetone	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride	1,2-Dichloro propane	Notes
Temporary	Sampling	Points Installed I	y Geosolv	, LLC:					· · · · · · · · · · · · · · · · · · ·	
B-2	24-Jan-00	5 to 21	NA	<0.0013	<0.0013	0.27	0.0014	< 0.0013	< 0.0013	
B-3	24-Jan-00	5 to 18	NA	< 0.002	< 0.002	0.61	< 0.002	< 0.002	< 0.002	
B-7	24-Jan-00	5 to 17.5	NA	< 0.0036	< 0.0036	0.92	0.0043	< 0.0036	< 0.0036	
B-7	11-Aug-00		NA	< 0.0031	< 0.0031	0.86	0.0048	< 0.0031	< 0.0031	
B-7	31-Oct-00		NA :	< 0.0042	< 0.0042	0.91	0.0042	< 0.0042	< 0.0042	
B-7	31-Jan-01		NA	< 0.0042	< 0.0042	0.92	0.0048	< 0.0042	< 0.0042	
B-8	24-Jan-00	9 to 24	NA	< 0.0005	< 0.0005	0.035	< 0.0005	< 0.0005	< 0.0005	
B-9	24-Jan-00	4.5 to 19.5	NA	< 0.0005	0.0006	0.0032	< 0.0005	< 0.0005	< 0.0005	
B-10	24-Jan-00	4 to 19	NA	1.2	2.4	14	0.09	< 0.063	< 0.063	
B-10	10-Aug-00		NA	2.9	1.6	6.5	0.05	< 0.025	< 0.025	
B-10	31-Oct-00		NA	2.4	1.9	7.1	0.061	< 0.025	< 0.025	
B-10	31-Jan-01		NA	2.1	1.6	6.6	0.044	< 0.025	< 0.025	
B-13	24-Jan-00	5 to 20	NA	0.02	0.029	0.13	0.0049	< 0.0005	< 0.0005	
Temporary	Sampling	Points Installed b	y LFR:	•			•		•	
GW-2	19-Jul-99	10 to 20	NA	0.014	0.0014	< 0.0005	< 0.0005	< 0.0005	< 0.0005 l	
GW-2	20-Jan-00		NA	0.13	0.019	0.0055	< 0.0005	< 0.0005	< 0.0005	
GW-2	28-Apr-00		NA	0.12	0.016	0.0033	< 0.0005	< 0.0005	< 0.0005	
GW-2	2-Nov-00		NA	0.0078	0.0008	0.0032	< 0.0005	< 0.0005	< 0.0005	
GW-2	1-Feb-01		NA	0.0077	0.0006	0.0028	< 0.0005	< 0.0005	< 0.0005	
GW-3	19-Jul-99	10 to 20	NA	0.22	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
GW-3	20-Jan-00	10 to 20	NA	0.055	0.001	0.02	< 0.0005	< 0.0005	< 0.0005	
GW-3	27-Apr-00		NA	0.35	0.0023	0.0056	< 0.0005	< 0.0005	< 0.0005	
Split	27-Apr-00		NA	0.27	0.0015	0.0023	< 0.0013	< 0.0013	< 0.0013	
GW-3	11-Aug-00	•	NA	0.068	0.0028	0.012	< 0.0005	< 0.0005	< 0.0005	
GW-3	2-Nov-00		NA	0.059	0.0008	0.0024	< 0.0005	< 0.0005	< 0.0005	
GW-3	1-Feb-01		NA	0.046	0,0006	0.0011	< 0.0005	< 0.0005	< 0.0005	

Table 8
Historical Analytical Results For Volatile Organic Compound (VOC) Analyses on Groundwater Samples

at the Former Glovatorium Site 3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/L)

Location	Date	Screened	Acetone	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	1,2-Dichloro	Notes
	Sampled	Interval (ft-bgs)				DCE	DCE	Chloride	propane	
GW-4	19-Jul-99	7 to 12	NA	< 0.0005	< 0.0005	0.0035	< 0.0005	< 0.0005	0.0017	
GW-4	20-Jan-00		< 0.01	0.0008	< 0.0005	0.0036	< 0.0005	< 0.0005	0.0015	(1)
Split	20-Jan-00		< 0.01	0.0006	< 0.0005	0.0044	< 0.0005	< 0.0005	0.0021	(2)
GW-4	27-Арг-00		NA	0.0017	< 0.0005	0.001	< 0.0005	< 0.0005	0.0006	• • •
GW-4	30-Jan-01		NA	< 0.0005	< 0.0005	0.0024	< 0.0005	< 0.0005	0.0014	
GW-5	27-Aug-99	8 to 13	0.24	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
GW-5	20-Jan-00		< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
GW-5	27-Apr-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
GW-6A	27-Aug-99	5 to 15	0.19	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Split	27-Aug-99		0.11	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
GW-6A	25-Jan-00		< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
GW-6A	27-Apr-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
GW-7	15-Jul-99	10 to 20	NA	< 0.0005	< 0.0005	0.00358	< 0.0005	< 0.0005	0.000632	
GW-7	15-Jul-99		NA	< 0.002	< 0.002	0.00398	< 0.002	< 0.002	< 0.002	(3)
Split	15-Jul-99	10 to 20	NA	< 0.002	< 0.002	0.00383	< 0.002	< 0.002	< 0.002	(4)
GW-8	19-Jul-99	10 to 20	NA	0.024	0.015	0.0038	0.0017	0.0012	< 0.0005	()
GW-8	20-Jan-00		NA	0.15	0.19	0.053	0.012	0.0045	< 0.0007	
Split	20-Jan-00		NA	0.15	0.18	0.052	0.011	0.0046	< 0.0005	
GW-8	28-Apr-00		NA	0.12	0.11	0.029	0.0053	0.0023	< 0.0005	
Monitoring	wells own	ed by TOSCO:	•	•		'	•			
MW-11	25-Jan-00	Unknown	< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
MW-11	28-Apr-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	(5)
MW-11	10-Aug-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	1-7
MW-11	1-Nov-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
MW-11	31-Jan-01		NA	< 0.0005		< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Monitoring		liled by LFR:			-	1 3.3.2.3.9	· [
LFR-1	9-Aug-00	9 to 19	NA	2.8	0.064	0.041	< 0.0083	< 0.0083	< 0.0083	

Table 8
Historical Analytical Results For Volatile Organic Compound (VOC) Analyses on Groundwater Samples

at the Former Glovatorium Site 3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/L)

Location	Date	Screened	Acetone	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	1,2-Dichloro	Notes
	Sampled	Interval (ft-bgs)				DCE	DCE	Chloride	ргорапе	
LFR-1	30-Oct-00		NA	0.82	0.034	0.01	< 0.0031	< 0.0031	< 0.0031	
Split	30-Oct-00		NA	0.87	0.035	0.014	< 0.0031	< 0.0031	< 0.0031	
LFR-1	29-Jan-01		NA	0.77	0.026	0.0073	<0.0025	<0.0025	<0.0025	
LFR-2	11-Aug-00	9 to 19	NA	< 0.0005	< 0.0005	0.035	< 0.0005	0.0045	< 0.0005	
LFR-2	2-Nov-00		NA	< 0.0005	< 0.0005	0.13	0.001	0.015	0.0006	
LFR-2	:		NA	<0.0005	<0.0005	0.0056	<0.0005	0.0016	<0.0005	
LFR-3	10-Aug-00	12 to 22	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Split	10-Aug-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
LFR-3	1-Nov-00	12 to 22	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
LFR-3	30-Jan-01		NA	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
LFR-4	11-Aug-00	9 to 19	NA	< 0.0005	< 0.0005	0.0012	< 0.0005	< 0.0005	< 0.0005	
LFR-4	31-Oct-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Blanks										
Trip Blank	19-Jul-99		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank	20-Jan-00		< 0.01	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
	27-Apr-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank	10-Aug-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank	30-Oct-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank	31-Oct-00		NA NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank	1-Nov-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank			NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
	27-Apr-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Field Blank	10-Aug-00		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	(6)
Field Blank	1-Nov-00	1	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
Trip Blank	30-Jan-01		NA	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Trip Blank	29-Jan-01		NA	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	
Trip Blank	31-Jan-01	<u>'</u>	NA	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	

Table 8

Historical Analytical Results For Volatile Organic Compound (VOC) Analyses on Groundwater Samples

at the Former Glovatorium Site 3815 Broadway, Oakland, California

All results expressed in milligrams per liter (mg/L)

Location	Date Sampled	Screened Interval (ft-bgs)	Acetone	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Vinyl Chloride	1,2-Dichloro	Notes
Trip Blank	1-Feb-01		NA	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	

Notes:

- (1) = 1,2,4- Trimethylbenzene was detected at 0.0034 mg/L; 1,3,5-trimethylbenzene was detected at 0.0009 mg/L; isopropylbenzene was detected at 0.0055 mg/L; n-butylbenzene was detected at 0.0041 mg/L; para-isopropyl toluene was detected at 0.0009 mg/L; propylbenzene was detected at 0.0094 mg/L; sec-butylbenzene was detected at 0.017 mg/L; tert-butylbenzene was detected at 0.0027 mg/L; 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, para-isopropyl toluene, and n-butylbenzene results are estimated due to FD RPD > 50%.
- (2) = 1,2,4-Trimethylbenzene was detected at 0.0083 mg/L; 1,3,5-trimethylbenzene was detected at 0.0022 mg/L; isopropylbenzene was detected at 0.0078 mg/L; n-butylbenzene was detected at 0.0067 mg/L; para-isopropyl toluene was detected at 0.0021 mg/L; propylbenzene was detected at 0.014 mg/L; sec-butylbenzene was detected at 0.024 mg/L; tert-butylbenzene was detected at 0.0034 mg/L; 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, para-isopropyl toluene, and n-butylbenzene results are estimated due to FD RPD > 50%.
- (3) = tert-Butylbenzene was detected at 0.00307 mg/L. Results are estimated because EPA-recommended hold time was exceeded.
- (4) = sec-Butylbenzene was detected at 0.00206 mg/L; tert-butylbenzene was detected at 0.0031 mg/L; carbon tetrachloride was detected at 0.00786 mg/L. Results are estimated because EPA-recommended hold time was exceeded.
- (5) = 1,3-Dichlorobenzene was detected at 0.0005 mg/L.
- (6) = Chloroform was detected at 0.0088 mg/L.

ft bgs = Feet below ground surface

NA = Not analyzed

mg/L = milligrams per liter

cis-1,2-DCE = cis-1,2-dichloroethene

trans-1,2-DCE = trans-1,2-dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

Groundwater samples collected from the temporary sampling points are considered grab sample; therefore the results should be considered estimates of groundwater quality.

Table 9
Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Parameters on Groundwater Samples
at the Former Glovatorium Site
3815 Broadway, Oakland, California

(concentrations in milligrams per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Dissolved Oxygen	Manganese (dissolved)	Nitrate	Sulfate	Ferrous Iron (Fe + 2)		ORP (milliVolts)	Hydrogen (nano- Moles)
B-7	11-Aug-00						11	193	
B-7-field	11-Aug-00	0.63		(1)	3	1			
B-7	31-Oct-00	0.62	2.6	< 0.10	< 1.0	11	2.4		(3)
B-7-field	31-Oct-00	0.25		0.4	(1)	15.85		-62.5	
B-7	1-Feb-01	0.78	2.2	0.78	<1.0	15	13		
B-7-field	31-Jan-01	0.48						28	
B-8 field	31-Jan-01	0.45						58	
B-10	10-Aug-00			< 0.05	< 0.05	5.7	10	213	
B-10-field	10-Aug-00	0.44		(1)	(2)				
B-10	31-Oct-00	2.4	1.4	< 0.10	< 1.0	5.9	6.7		0.81
B-10-field	31-Oct-00	0.44		G	0	7.6		-22.2	
B-10	31-Jan-01	6.4	1.3	< 0.10	<2.0	7.7	24		1.3
B-10-field	31-Jan-01	0.46						64	
GW-2-field	1-Nov-00	2.32						77	
GW-2	1-Feb-01	3.8					0.041		
GW-2-field		0.58						159	
GW-3	11-Aug-00						< 0.0005	395	
GW-3-field	11-Aug-00	0.72		1	46				
GW-3	1-Nov-00	<u> </u>							
GW-3-field		7.76						81	
GW-3	29-Jan-01	8.8					0.012		
GW-3-field	1-Feb-01	8.99						235	
GW-4-field	30-Jan-01	0.83						67	
MW-11	10-Aug-00			2.8	63	< 0.1	< 0.0005	476	
MW-11-field	10-Aug-00	2.52		4.1	67			1	

Table 9
Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Parameters on Groundwater Samples at the Former Glovatorium Site 3815 Broadway, Oakland, California

(concentrations in milligrams per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Dissolved Oxygen	Manganese (dissolved)	Nitrate	Sulfate	Ferrous Iron (Fe + 2)	Methane	ORP (milliVolts)	Hydrogen (nano- Moles)
MW-11	1-Nov-00	4.1	< 0.010	15	90	< 0.1	0.00004		130
MW-11-field	1-Nov-00	4.01		3.3	73	0		87.4	
MW-11	31-Jan-01	6.3	< 0.010	15	94	< 1.0	0.00005		1.1
MW-11-field	1-Nov-00	3.97		27.3	74	0		319	
LFR-1	9-Aug-00							462	
	11-Aug-00						0.0096		
LFR-1-field	9-Aug-00	3.63		5.5	30				1.5
LFR-1	30-Oct-00	2.7	0.03	39	42	< 1.0	0.00038		
.FR-1-field/spli	30-Oct-00	2.95		10.3/10.0	29/29	0.01/0.01		77.4	1
LFR-1 split	30-Oct-00	3.4	0.03	40	43	< 1.0	0.00069		
LFR-1	29-Jan-01	5.1	<0.01	<0.10	51	<1.0	0.00012		0.43
LFR-1-field	29-Jan-01	3.78	0		36	0		383	
LFR-1 Dup	29-Jan-01	4.6	<0.01	<0.10	50	<1.0	0.000011		0.32
LFR-2	11-Aug-00						6.6	270	
LFR-2-field	11-Aug-00	0.48		1.5	(1)	2.7			1200
LFR-2	2-Nov-00	2.2	8.8	0.33	5.4	5.3	8.5		
LFR-2-field	2-Nov-00	0.47		0.5	(1)	6.05		-23.7	1
LFR-2	30-Jan-01	4.4	8.9	1	8.3	4.6	4.6		1.1
LFR-2-field	30-Jan-01	0.61	10.7	2.9		1.02		210	
LFR-3	10-Aug-00			2.4	64	< 0.1	0.00051	464	
LFR-3 split	10-Aug-00	<u> </u>]]				< 0.0005	
LFR-3-field	10-Aug-00	1.3	1	2.4	64				850
LFR-3	1-Nov-00	4.7	0.022	8.8	74	< 1.0	0.00028		
LFR-3-field	1-Nov-00	0.58		1.8	57	0		75.2	
LFR-3	31-Jan-01	4.1	<0.01	1.2	58	< 1.0	0.00038		

Table 9
Historical In-Situ and Ex-Situ Analyses Results for Bioattenuation Parameters on Groundwater Samples at the Former Glovatorium Site 3815 Broadway, Oakland, California

(concentrations in milligrams per liter [mg/L] unless otherwise noted)

Well ID	Date Sampled	Dissolved Oxygen	Manganese (dissolved)	Nitrate	Sulfate	Ferrous Iron (Fe + 2)	Methane	ORP (milliVolts)	Hydrogen (nano- Moles)
LFR-3-field	30-Jan-01	1.75		0.023	44	0		195	
LFR-4	11-Aug-00						0.062	402	
LFR-4-field	11-Aug-00	1.13		0.7	1	0.14			1.1
LFR-4	31-Oct-00	1.9	2.2	< 0.10	2.9	1.1	3.2		
LFR-4-field	31-Oct-00	0.64		1		0.61		-80	
LFR-4	1-Feb-01	3.2	2.8	1.5	2.8	1.8	2.2		1.5
LFR-4-field	1-Feb-01	0.55	4.5	8	0	1.5		59	

Notes:

Samples with "field" in the well number indicate that the results are from field measurements obtained using a Hach spectrophotometer or a Hydrolab Quanta flow-through instrument.

- (1) Sample concentration was too dilute to be reproducibly measured using the Hach spectrophotometer.
- (2) Field measurement was not recorded.

FIGURES

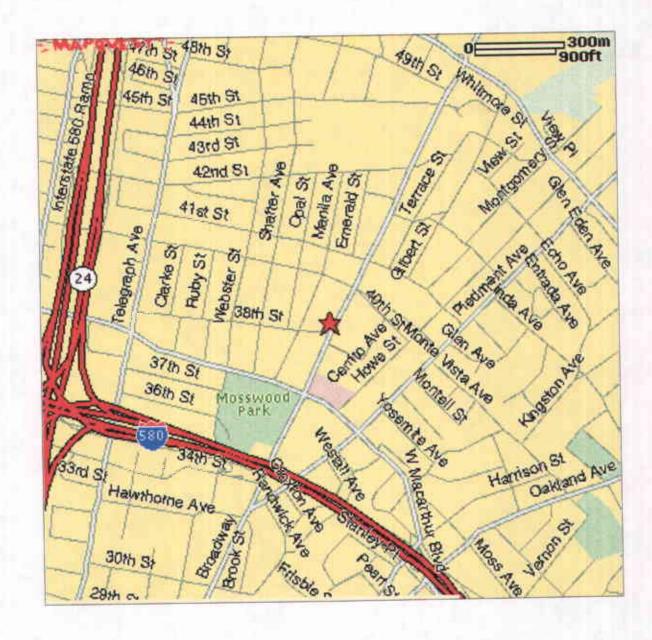
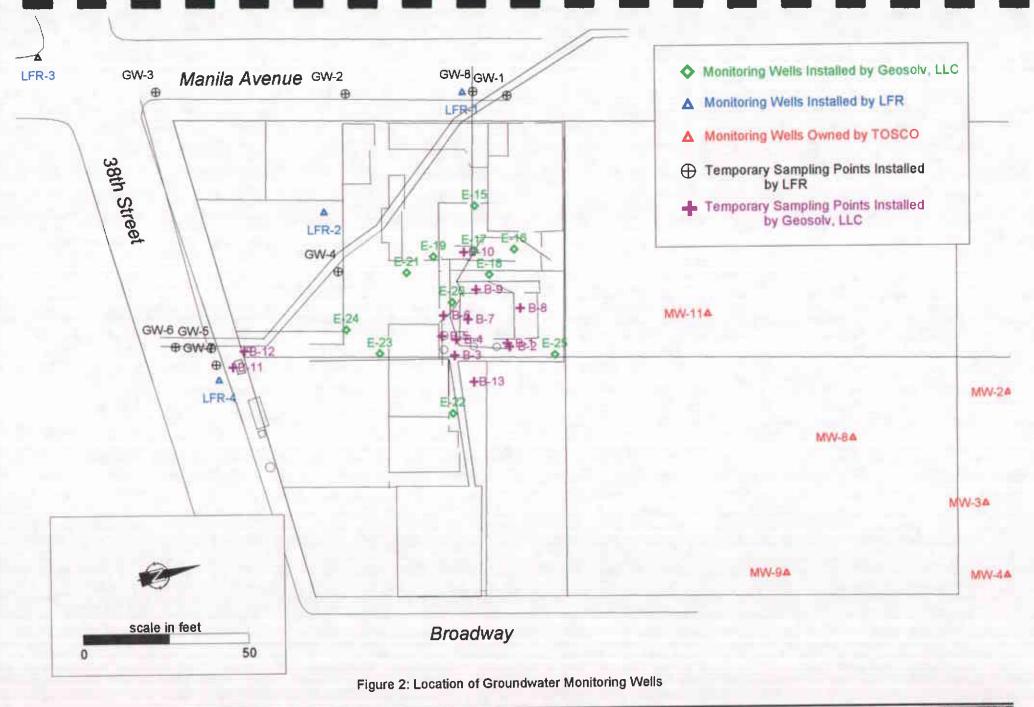
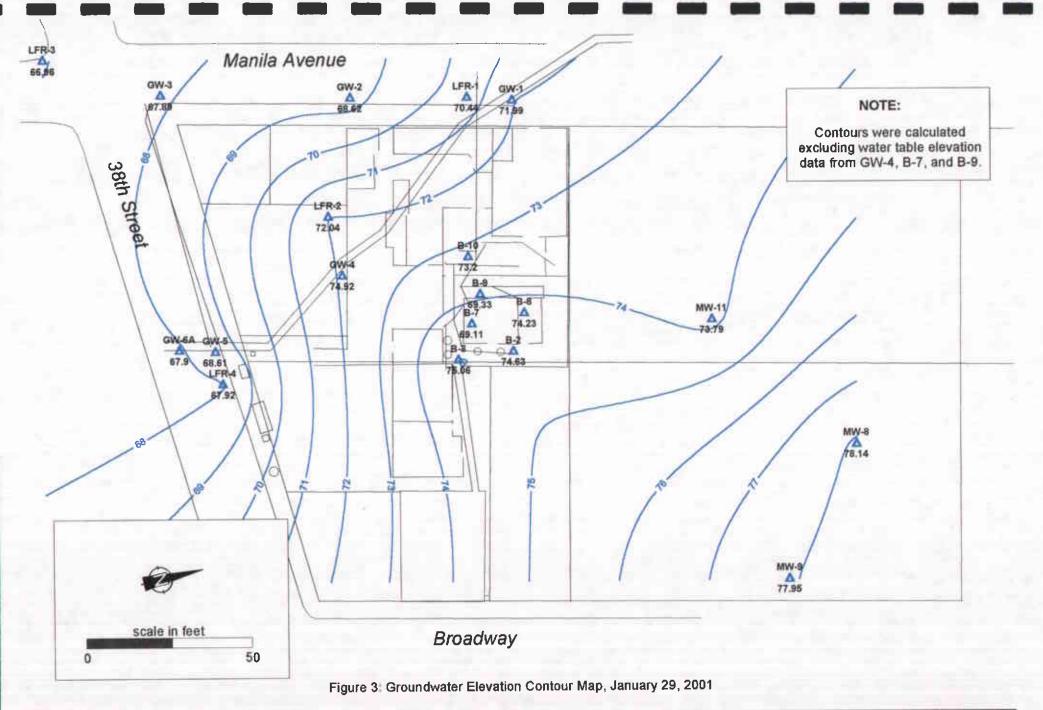




Figure 1: Site Location Map

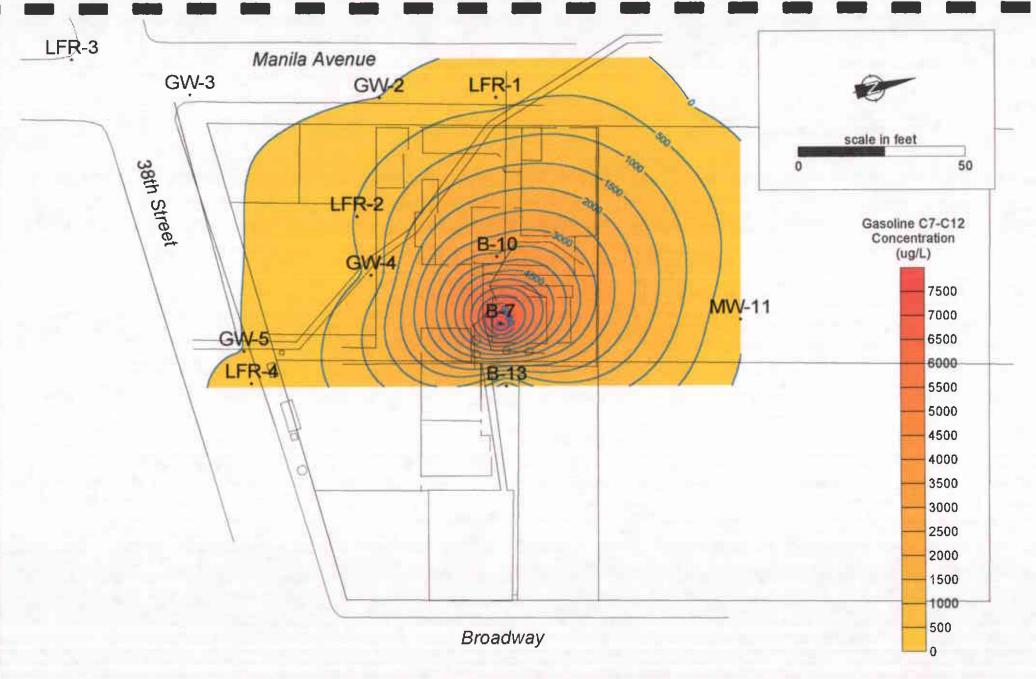


Figure 4: TPH-g Concentration Contour Map in Groundwater, First Quarter, 2001

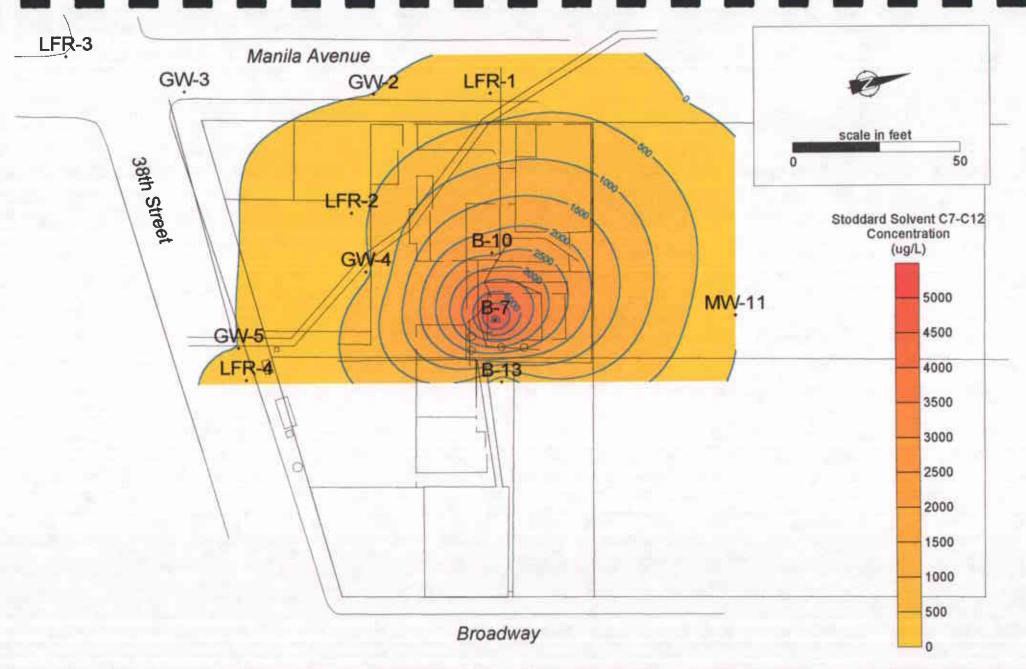


Figure 5: TPH-ss Concentration Contour Map in Groundwater, First Quarter, 2001

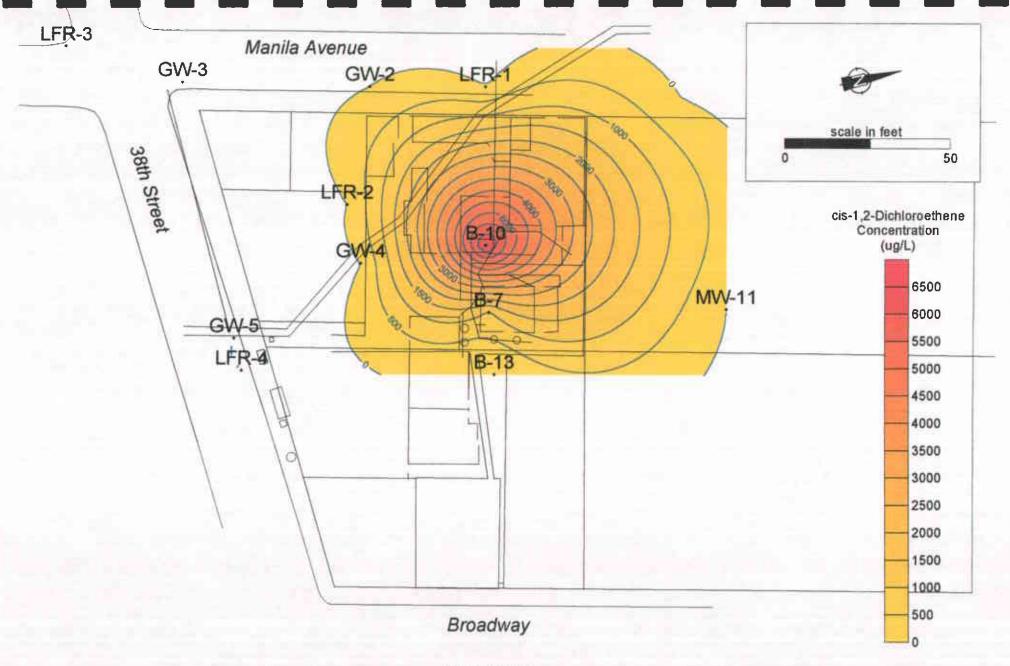


Figure 6: Cis-1,2-DCE Concentration Contour Map in Groundwater, First Quarter, 2001

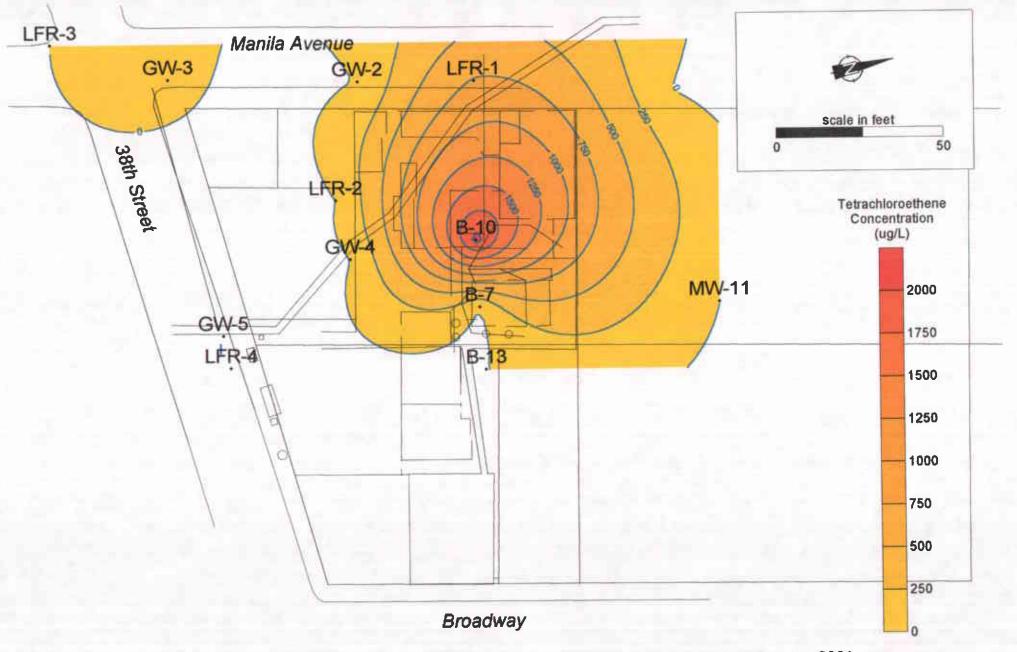


Figure 7: Tetrachloroethene Concentration Contour Map in Groundwater, First Quarter, 2001

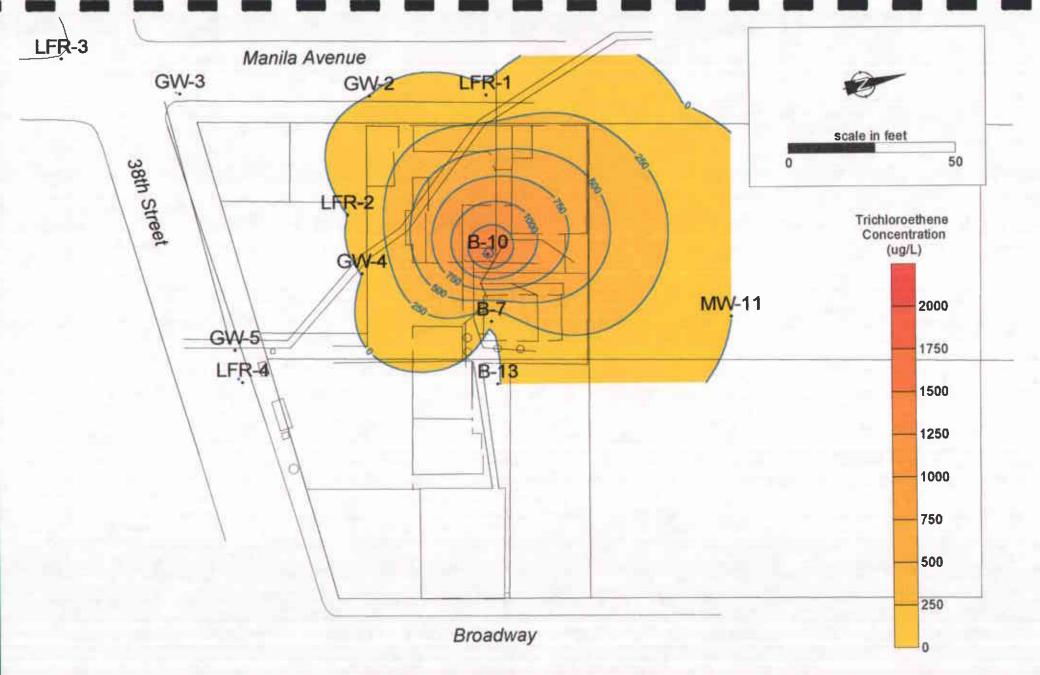


Figure 8: Trichloroethene Concentration Contour Map in Groundwater, First Quarter, 2001

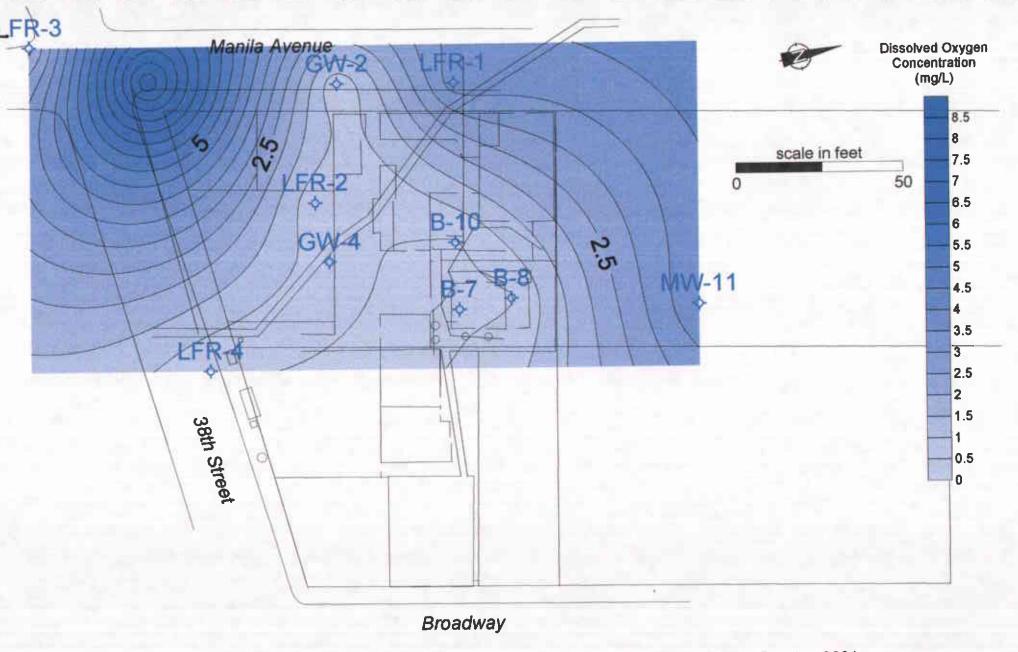


Figure 9: Dissolved Oxygen Concentration Contour Map in Groundwater, First Quarter, 2001

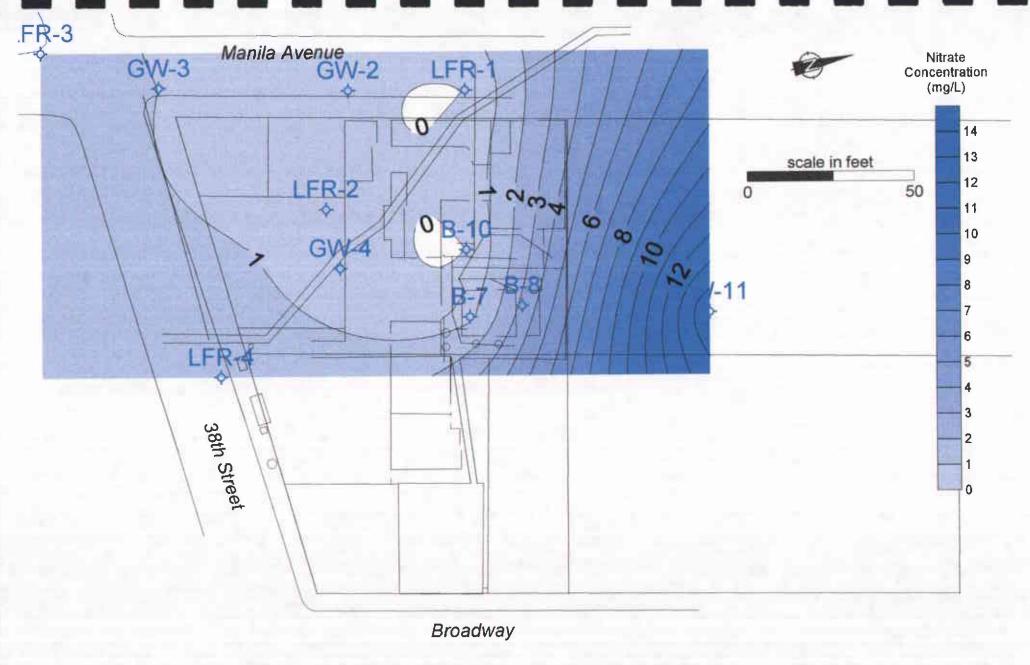


Figure 10: Nitrate Concentration Contour Map in Groundwater, First Quarter, 2001

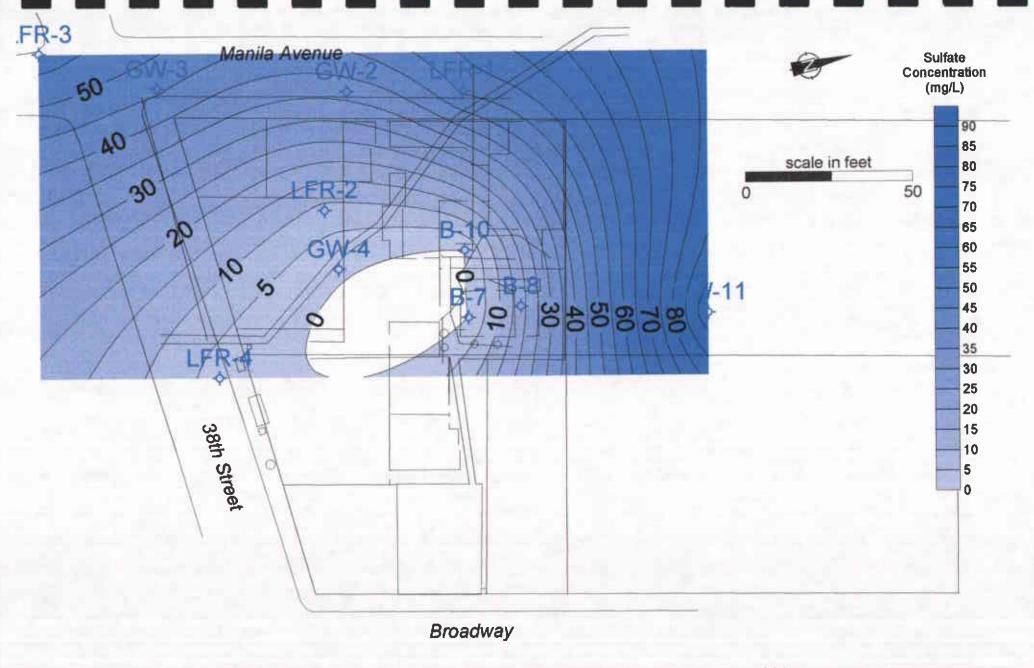


Figure 11: Sulfate Concentration Contour Map in Groundwater, First Quarter, 2001

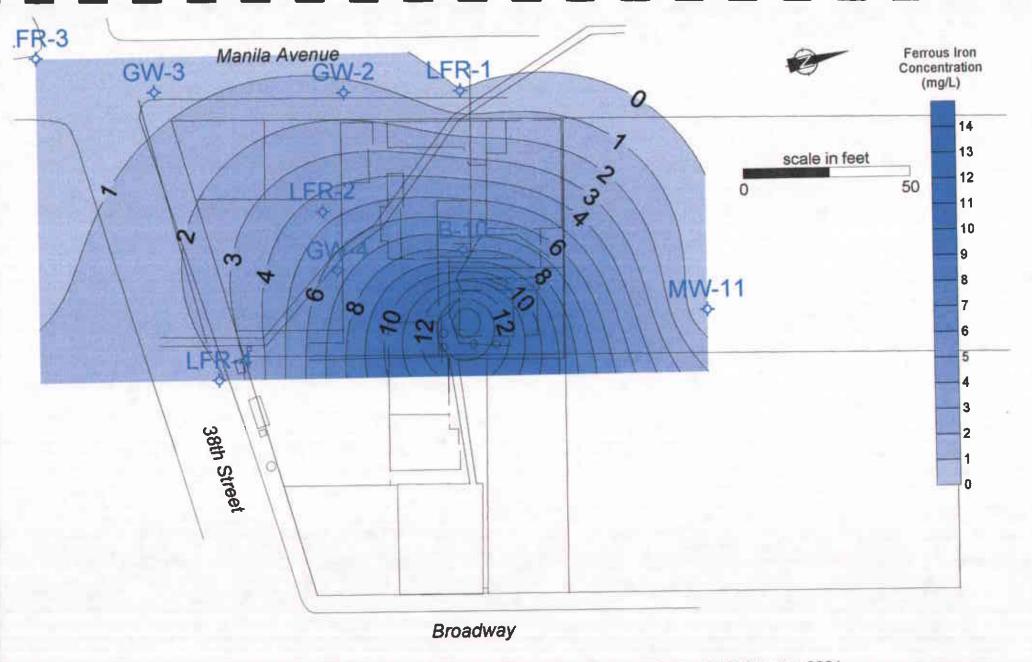


Figure 12: Ferrous Iron Concentration Contour Map in Groundwater, First Quarter, 2001

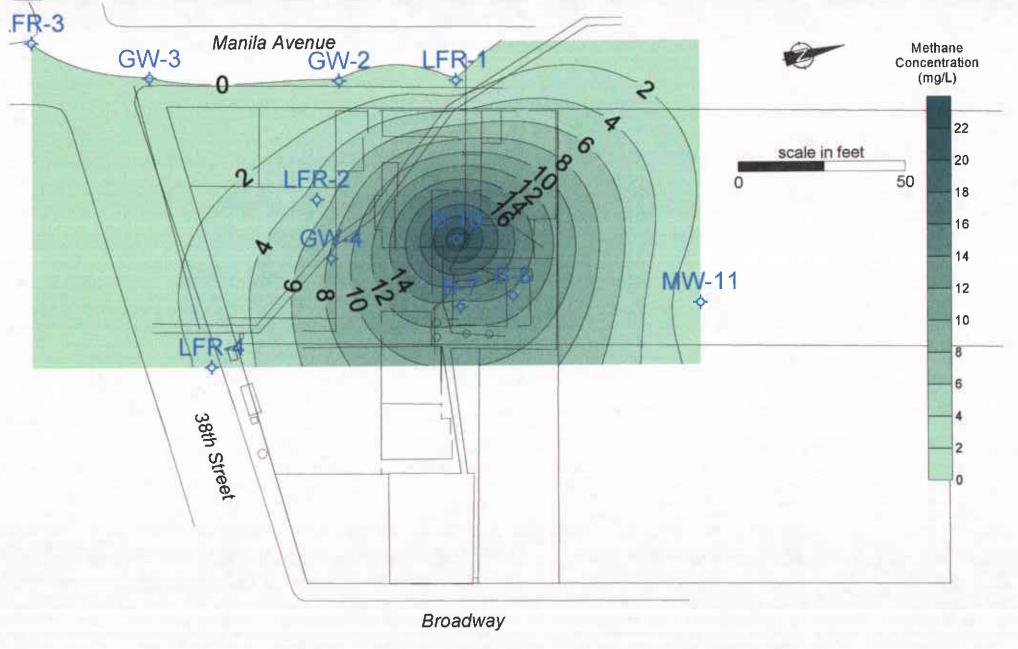


Figure 13: Methane Concentration Contour Map in Groundwater, First Quarter, 2001

APPENDIX A

Site-Specific Field Operation Procedure Used by LFR

During the First Quarter 2001

Groundwater Monitoring Event

INTRODUCTION

Field activities were performed under the direct supervision of a California-registered geologist and/or a registered engineer. Before use, all downhole equipment used for groundwater sampling was new or decontaminated by washing with high-pressure, hot water (steam cleaned) and/or a solution of laboratory-grade detergent and tap water, followed by rinsing with tap water. Water generated from decontaminating the sampling equipment, and development and purge water were stored at the Site in 55-gallon drums pending selection of an appropriate disposal alternative.

GROUNDWATER PURGING AND SAMPLING

To optimize representative sample collection, monitoring wells and temporary sampling points were purged using a low-flow peristaltic pump (i.e., the "low-flow" or "micro-purge" technique) before sampling. The wells and temporary sampling points were micro-purged to minimize cascading of the groundwater down the casing during purging, whenever possible. The pump intake hose was typically located in approximately the middle of the screened interval in the wells and temporary sampling points in which the screen interval was known. The wells and temporary sampling points were purged at a rate that maintained approximately 90% of the water column.

Measurements of depth to groundwater, pH, temperature, conductivity, ORP, DO, and turbidity were read and recorded approximately every 5 minutes. (Samples were collected from wells and temporary sampling points that produced water. The temporary sampling points GW-2 and GW-3 did not produce enough water for all of the bioattenuation parameter analyses.) When these parameters had stabilized to within the approximate respective amounts listed; pH (+/- 0. 1 standard units), conductivity (+ /- 3 %), ORP (+ /- 10 mV), DO (+ /- 10 %), and turbidity (+ /- 10 %) for three successive readings, samples were

collected from the discharge tube to be used for the bioattenuation parameter indicator tests. (The reading taken just before sampling is the reading presented in Tables 5 and A-1.)

Groundwater samples were collected using a peristaltic pump with new polyethylene and PVC tubing. The groundwater samples were pumped directly through the tubing into laboratory-supplied, 40-milliliter (ml) volatile organic analysis (VOA) vials with Teflon septa and/or laboratory-supplied plastic bottles. The VOA vials were filled to eliminate headspace after the vials were sealed. Samples for the analysis of metals were filtered through a new QED' 0.45-micron water filter before filling the sampling bottles.

The VOA vials and plastic bottles were capped, labeled, and placed in a chilled cooler for transport to the analytical laboratory under standard chain-of-custody protocol. Laboratory-prepared trip blanks were placed in the coolers with the samples to check for possible contamination of the samples during shipment. Duplicate and field blank (equipment rinse) samples were also submitted for analysis. These field QC samples were collected and analyzed in addition to the QA/QC procedures that are part of the standard program followed by certified laboratories.

Hydrogen sampling was conducted using the bubble strip method, so named because during the sampling process, a bubble strips hydrogen out of the water. Sampling was conducted per Microseep's instructions. The principle is to continuously pump groundwater through a gas-sampling cell containing an air bubble, so that hydrogen can partition between the gas and liquid phases until the concentration of hydrogen in the bubble comes into equilibrium with the concentration of hydrogen in the groundwater. The concentration in groundwater is calculated using the Ideal Gas Law and Henry's Law.

After the well or temporary sampling point was appropriately purged, the outlet of

the peristaltic pump was connected to the inlet tubing of the cell, and the cell discharge was affixed beneath the purge water to create a sealed system in which air could not infiltrate back into the sampling cell. The cell was clamped to a ring stand to secure it during the sampling process. The equilibrium time needed for the hydrogen stripping process was determined based on the flow rate calculated during micropurging, using a table provided by Microseeps in its instructions. The typical flow rate was approximately 0.1 liter/minute, with corresponding sampling time of approximately 30 minutes. The cell assembly was inverted, then ambient air was injected into the cell. Groundwater was then pumped through the cell for approximately 30 minutes, after which the cell was turned to its upright position. A sample of gas was then withdrawn from the cell and injected into a sample vial.

The sample vial was sent to Microseeps, who analyzed the bubble for hydrogen. Results of the hydrogen testing are presented in Table A-1.

GROUNDWATER LEVEL MEASUREMENT

Groundwater levels were measured in temporary sampling points or monitoring wells B-2, B-3, B-7, B-8, B-9, B-10, B-13, GW-2, GW-3, GW-4, GW-5, GW-6A, MW-8, MW-9, MW11, and LFR-1 through LFR-4. The groundwater levels were measured to approximately the nearest 0.01-foot using an electric water-level probe graduated in 0.01-foot increments. Floating product was observed in B-3. Groundwater level data and elevations are summarized in Table 2.

GROUNDWATER FIELD SCREENING

The following parameters-iron, ferrous iron, sulfide, sulfate, nitrite and nitrate nitrogen-were screened in the field using a Hach ISO 9001 Certified spectrophotometer. Each parameter has a corresponding wavelength, which was entered into the spectrophotometer before the testing began. Testing was

conducted per the manufacturer's specifications. Typically, as samples were collected, a portion of the sample was poured into a clean 150-ml beaker. An AcuVac™ ampul containing a reagent corresponding to the parameter being measured was then placed at the bottom of the beaker and the tip broken off under the groundwater sample, allowing the groundwater to enter the ampul with minimal air contact. The sample would then react with the reagent to form a color in proportion to the parameter's concentration. After the sample had reacted with the reagent, the ampul was placed into the spectrophotometer, and the concentration was measured and recorded. Dilutions were performed as necessary, and correction factors were applied per manufacturer's specifications. Results of the field parameter testing are presented in Table 5 and Table A-1.

The pH, temperature, conductivity, ORP, and DO were measured using a Hydrolab Quanta™ flow-through instrument which measured each parameter from sensors housed in the flow-through cell. Turbidity measurements were recorded using a LaMotte™ Model 2008 turbidity meter.

APPENDIX B

FIELD NOTES, LABORATORY REPORTS,
CHAIN OF CUSTODY FORMS

LEVINE FRICKE RECON

WAIEK-LEVEL INFAGUREINFINIO

Plojeef Name: 1 January Project No.: 43 75 20 - 322

Florid Personnel: 1/4 20 1/4 20 - 322

General Observations: 346479

WELL NO,	WELL	DEFIN TO WATE	er measurements	WATER	REMARKS
	ELEVATION	1	2	ELEVATION	(UNITS - FEET)
h-5R-1		9-53	9.53		9:07 No Product
and		7.95	7.95		9:09 propodust
cua		19.52	10.52		9:12 rd product
30-3		10.03	10.03		19:14 NO product
64-3		11.00	11.00		9:16 No product
W-8A		13.71	13-71		19:19 NO Product
16-5		12:40	12-40		9:21 wapradeet
PA-4			_		covered Trenett PI
					unje1 1-eb 17
6-4		7.45	7.45 9-85	Total Annual Control of the Control	9:24 NO Product
14-4 18-2		8.85	9-85	-hours and the second	19:26 Odor (PRETED)
- 1			-		No product
W-11		10.42	10.42	- Intravella Linear Company	9:32 ru product
14-8					CAR LAIRENT TO
46 g		T —		Marin Commission	acces (bis does)
13-10		8.30	8.70	-	9:45 No product
3-10		804	8.04		9:49 NU Placet
9-7		7.85	7.85		9:51 No product
3-2		7.46	7.46		19:52 reproduct
3-8		7.59	7.59		9:54/0.3 product
13-3		7-51	7.51		9:56 V 2 Product
8-13		dry	dry t.9'		10:00 B71TD
			1 .		
16-9 16-8		8.61	9.30	Lt.	1498
nu-B		8.61	9.30	plate	1414
		San vers summer o	1		
FR-4		13,73			
8	10 to	Sorce 7	44ing down	40 60	Q. 2 /- T,
	but un	ble to go	of zollast	145+ 7.	port w this large pro
		with dep	# 9	3 mix o	and know
			29' 45		
	17-2	Marie south	Art die dy	ter the 91	
	,				
Δ					
1			18.	The same statement of the same statement of	The state of the s

waterlevelmsr27oct89

10 6 B" wells is 0.68"

LEVINE-FRICKE CONSULTING BEGINNETS AND INTO CONSULTING

Project #:	6895.00.032	Date: 1	3¢ 101	Well #:	B-7	
Project Name:	Glovatorium	Sample ID:	B-7		,	
Location:	Oakland, CA	Blank:		Dup:		5 1
Sampling Plan:	JCS	DTW:	7.72	Inlet:	BoHom	
3-30	·		52200537			

Field Staff: MXD, MWD Purge Method: Peristaltic Pump w/ New tubing

Analysis: Microsweeps & Curtis and Tompkins Laboratory: Dissolved H2: 1 Septum Vial Delivery: Courier 2 Unpres VOAs 1 Poly w/ Zn(C₂H₃O₂)₂+NAOH Dissolved Perm Gases: Sulfide: unpres poly L Alk, Cl-, Sulfate: 1 HCI Pres Poly Ferrous Iron: Total Iron, 1 HNO3 pres Poly Manganese: Cation&Anion w/ Nitrate & 8260 (8010 List) & 1 unpres poly and 1 H₂SO₄ poly

260 (8010 List) & Cation&Anion W/ Nitrate & 1 unpres poly and 1 H₂SO₄ poly Nitrite: TPHg &TPHss:

TIME	WTQ	VOLUME	TEMP (C)	COND (ms/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	pH	COMMENTS
tabilization If 3 su	ocessive para	meters are wi	ithin	+\-3%	+\-10%	+\- 10 mv	+\-10%	(+/- 0.1)	
1033	7.72	D							starting
1045	NA	0.1	13.66	1.462	0.55	108	>700	6.77	Could
1050	Pase	0.2	13.68	1.468	0.47	92	NA	6.77	clear
1055	Tit.	0.3	13.75	1.445	0.50	59	muz/silf	6.76	clear
1100	innew	0.4	13.91	1.409	0.56	36	in Plow	6.81	dear
165	w/	0.5	13.87	1.412	0.50	30	celli consing bod	6.00	clear
1110	Tuse	0.6	13.90	1.424	0.48	28	read	6.79	clear -s
1119	- 0	0.75						W B	OSF DWTF
126		Restor	f and	try toget	additional	1955	mole		on 4451e to
1230		well	Dewas		ost mough H	D to F	ill the i	restof	CTT VOAS

the bottles. More to B-8 per JCS

Project #: 6895.00.032

Well #: B-

TIME Stabilization if 3 su	DTW ccessive para	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0,1)	COMMENTS
								ā
				+:				
				11 - 7 - 18				i M

HAC ANALYTE	H KIT RESU RESULT	LTS FOR WE		AT SAMPL		(ALL F	RESULTS IN mg/L) COMMENTS
Ferrous Iron (Filtered)		NA	NA	NA	NA	we	11 Dewaters
Total Iron (Filtered)		NA	, NA	NA	NA	insuf	Ficent Hao to HACH Kit.
Nitrate				NA	NA		to 13-8
Nitrite		NO ₂ -		NaNO ₂			
Sulfate		NA	NA	NA	NA		
Manganese	11						

TPHg &TPHss:

Date: 1\ 3(\01 Well #: 6895.00.032 Project #: Sample ID: Glovatorium **Project Name:** Dup: Blank: Location: Oakland, CA Botton DTW: Inlet: JCS Sampling Plan: Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff: Analysis: Microsweeps & Curtis and Tompkins Laboratory: Dissolved H2: 1 Septum Vial Delivery: Courier 2 Unpres VOAs Dissolved Perm Gases: 1 Poly w/ Zn(C2H3O2)2+NAOH Sulfide: unpres poly L Alk, Cl-, Sulfate: 1 HCI Pres Poly Ferrous Iron: Total Iron, 1 HNO₃ pres Poly Manganese: Cation&Anion w/ Nitrate & 8260 (8010 List) & 1 unpres poly and 1 H₂SO₄ poly 6 VOAs w/ HCI Nitrite: MTBE& BTEX &

Stabilization if 3 successive parameters are within $+1.3\%$ $+1.10\%$ $+1.1$	pH	COMMENTS
1247 1255 0 - 1247 1264 0.1 14.79 1.124 0.49 123 >200 1252 1218 0.2 14.75 1.118 0.61 119 7200	(+/- 0.1)	1 -1
1247 Probey 0.1 14.79 1.124 0.49 123 >200 1252 121 101 0.2 14.75 1.118 0.61 119 7200		Start Purg
1252 111 0.2 14.75 1.118 0.61 119 7200	6.84	cloudy
11/100	6.84	1)/
1257 1480 0.3 14.85 1.117 0.62 99 7200	6.84	11
1302 1' 0.4 15.30 1.128 0.51 78 7200	6.79 .	1'
1307 1 0.9 15.38 1.147 0.49 bb 7200	6.79	11
1312 11 0.6 15.59 1.099 0.45 58 7200	6.80	211
1317 mm		Product

Micropurge Water Quality Parameters

B-10 Well #: Date: 1\ 39 \01 6895,00.032 Project #: -10 Sample ID: Glovatorium Project Name: Dup: Blank: Oakland, CA Location: Bottom Inlet: DTW: JCS Sampling Plan:

Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff:

Analysis: Microsweeps & Curtis and Tompkins Laboratory:

Dissolved H₂: 1 Septum Vial Delivery:

Courier

2 Unpres VOAs Dissolved Perm Gases: 1 Polý w/ Zn(C2H3O2)2+NAOH Sulfide:

4 unpres poly L-Alk, CI-, Sulfate: 1 HCI Pres Poly Ferrous Iron:

2 x 1 HNO₃ pres Poly Total Iron,

Manganese:

Cation&Anion w/ Nitrate & 1 unpres poly and 1 H₂SO₄ poly 8260 (8010 List) & 6 VOAs w/ HCI Nitrite: MTBE& BTEX &

TPHg &TPHss:

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv)	Turbidity (NTU) +1-10%	pH (+/- 0.1)	COMMENTS
Stabilization if 3 su	8.25	O O							stert
0940		0.	14,13	1.174	0.72	166	>200	6.83	Cloudy solve
0945	Scope	0.2	14.16	1147	0.62	153	7200	6.82	1,/
0950	won't.	0.3	14.27	1.139	0.53	134	>200	6.82	
0955	Fitw	0.4	14.43	1.135	0.54	123	>200	6.8)	11
1000	11	0.5	14.45	1.134	0.53	110	7 200	6.81	11
1005	. 11	0.6	14.43	1.130	2.54	102	7200	6.81	17
	11	0.7	14.53	1.126	0.50	92	7200	6.81	1/
1010	11	0.8	14.51	1./27	0.51	86	7200	6-81	(1
1015	"	0.9	14.64	1.126	0.49	80	7200	6.81	"

Project #: 6895.00.032

Well #: 13-10

TIME	DTW	VOLUME		COND (ms/cm) +1-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
1025	NA	1.0	14.66	1.123	0.48	73	7200	6.81	Cloudy solve
1030	Proper went	1.1	14.66	1.121	0.46	69	7200	6.81	17
1035	art, hour	1.2	14-66	1-117	0.46	64	7200	6.81	11
1038						3 150			Stert Ha
1108									Sanple
-,,									451
			<u> </u>						

		/			HARH		
HAC ANALYTE	RESULT	FOR WE		AT SAMPLI		(ALL F	COMMENTS
Ferrous Iron (Filtered)	83. S.	NA	NA	NA	NA	10th	
Total Iron (Filtered)	1.44	NA	NA	NA	NA	to low	smple to
Nitrate	-0.6	NOZ		NA Duith corr	NA ection fact	×	
Nitrite	0.015	NO ₂ -	0.049	NaNO ₂	0.073		
Sulfate	3	NA	NA	NA	NA	43	
Manganese	1.5	MarDy	3.3	KM On	4.4		

6W-2 Date: 1\30 \01 Well #: 6895.00.032 Project #: Sample ID: 660-2 Glovatorium **Project Name:** Dup: Blank: Oakland, CA Location: DTW: Inlet: JCS Sampling Plan: Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff:

Analysis: Microsweeps & Curtis and Tompkins Laboratory: Dissolved H2: 1 Septum Vial Courier Delivery: 2 Unpres VOAs Dissolved Perm Gases: 1 Poly w/ Zn(C2H3O2)2+NAOH Sulfide: unpres poly L Alk, CI-, Sulfate: 1 HCI Pres Poly Ferrous Iron: Total Iron, 1 HNO3 pres Poly Manganese: Cation&Anion w/ Nitrate &

8260 (8010 List) & Cation&Anion w/ Nitrate & 1 unpres poly and 1 H₂SO₄ poly

MTBE& BTEX & Nitrite:

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	рН	COMMENTS
Stabilization if 3 suc	cessive parar	neters are w	thin	+1-3%	+\-10%	+\- 10 mv	+\-10%	(+/- 0.1)	121
1/27	11.57	0					2		Start
11:31	13.87	.1	13.90	0.774	1.41	148	2.19	6.90	clear
1137	14.80	0.2	13.63	0.781	1.20	155	3.21	6.90	Clear LISH
lly2	16.41	0.3	13.25	0.783	0.90	157	2.05	6.89	clear
1147	17.48	0.4	13.88	0.316	6.65	158	1.82	6.89 .	New
ilso	Inlet	0.45	13-75	0.846	0.58	159	1.63	(,82	Stop DUTP
31/01 1341	15.39	0.45		les	fort P	4190			
1345		0.5		5	HOP D	AWA-	TER		
15.5					0				

2/1/01

Project #: 6895.00.032

Well #: Gw-2

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm)	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
1055	14.28		6.39	1.033	4.60	204	1.09	6.78	Sample
103 3	11.50		134						DWTK
									6 VOAS
-									
					8				
			2						

HAC ANALYTE	CH KIT RESUL RESULT	TS FOR WE		AT SAMPLE FORI		(ALL RES	COMMENTS
Ferrous Iron (Filtered)		NA	NA	NA ,	NA NA	ol	0
Total Iron (Filtered)		NA	IMSU	Spice +	H2O to	Sempl	
Nitrate	LI.	/		NA	NA		(a
Nitrite		NO ₂ -		NaNO ₂			
Sulfate Manganese		NA	NA	NA	NA		

6895.00.032 Project #:

Date: 1\ 27 \01

Well #:

GW-3

Project Name:

Glovatorium

Sample ID: Blank:

Dup:

Sampling Plan:

JCS

0.0 Inlet: DTW:

well bewaters (at Bottom

Field Staff:

Laboratory:

Location:

MXD, MWD

Oakland, CA

Purge Method: Peristaltic Pump w/ New tubing

Microsweeps & Curtis and Tompkins

Analysis: Dissolved Hz.

Delivery: Courier

Dissolved Perm Gases:

2 Unpres VOAs

1 Geptum Via Al

Sulfide: Alk, Cl-, Sulfate:

1 Poly w/ Zn(C₂H₃O₂)₂+NAOH

1 unpres poly L

Ferrous Iron:

Nitrite:

1 HCI Pres Poly

Total Iron,

HNO₃ pres Poly

Manganese:

Mary State 6 VOAs w/ HCI

Cation&Anion w/ Nitrate &

1 unpres poly and 1 H2SO4 poly

MTBE& BTEX & TPHg &TPHss:

8260 (8010 List) &

TIME Stabilization if 3 suc	DTW cessive para	VOLUME	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
1330	6.03	The state of the s						7.7.1	startpunge
1340	60.41	0.25	17.42	0.587	3.41	213	4.37	6.64	Clea
1345	18.38	.50	17.50	0.685	2.50	201	3.12	6.78	clea
	thet-	0.7	18.00	0.751	3.11	200	3.16	6.84	Clear-sta
1245/1.30	14.47	דמ	wom	1130/01					DOOL
1400	14.24	0.7							restertage
1405	1650	0.8	17.03	0.630	5.7	227	3.56	690	Clear
1410	19.31	1.0	17.29	0.603	6.31	235	5.51	6.39	
fuil	11-								Stop Durk
V31 1323	16.00	10		Resta	It pu	Be.			' '
1/21 1379		12		<	TAP	Tru	DATK	-12	

2/1/01

Project #: 6895.00.032

Well#: 6w-3

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
1035	15.62		16.72	0.9100	8.99	210	0.79	6.63	sample vocs
									DWTK.
			-					H	
						1			

HACI ANALYTE	H KIT RESUL RESULT	TS FOR WE		3 AT SAMPLE		(ALL RES	ULTS IN mg/L) COMMENTS
Ferrous Iron (Filtered)		NA	NA	NA	NA		
Total Iron (Filtered)		NA	NA	NA NA	NA		
Nitrate		Zn	عهجرو	NA NA	NA		34
Nitrite		NO ₂ -		NaNO ₂			
Sulfate		NA	NA	NA	NA		×
Manganese							

Date: 1\30 \01 Well #: Project #: 6895.00.032 Sample ID: GW-**Project Name:** Glovatorium Dup: Blank: Oakland, CA Location: 11.SFT Inlet: DTW: JCS Sampling Plan: Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff: Analysis: Microsweeps & Curtis and Tompkins Laboratory: Dissolved H₂: 1 Septum V Delivery: Courier 2 Uppres VOAs 1 Poly w/ Zn(\$\sqrt{\text{P}}\text{H}_3\text{O}_2\text{)}_2+NAOH Dissolved Perm Gases: Sulfide: 1 unpres poly L Alk, Cl-, Sulfate: 1 HC/Pres Poly Ferrous Iron: Total Iron, 1 HNO3 fres Poly Manganese: Cation&Anion w/ Nitrate & 1 unpres poly and 1 H2SO4 poly 8260 (8010 List) & 6 VOAs w/ HCI Nitrite: MTBE& BTEX & TPHg &TPHss: Turbidity pН COMMENTS (NTU) ORP (mv) DO (mg/L) COND (ms/cm) VOLUME TEMP (C) TIME DTW (+1-0.1)+1-10% +\- 10 mv +1-10% +1-3% Stabilization if 3 successive parameters are within Ster 7.49 0 1018 6.00.447 6.66 2.29 173 Clear 70 13.75 023 0.448 clear 28 .03 0.2 13.02 028 0.461 28 .00 0.470 9 00 039 0.431 9 044 6 6 160 0.82 10.491 .2 6.60 8-29 13.48 0

MW-11

Micropurge Water Quality Parameters

Date: 1\ 3(\\01 Well #: 6895,00.032 Project #: Sample ID: Mw-II Glovatorium **Project Name:** Dup: Blank: Location: Oakland, CA OFT OSS BOHOM 10.37 Inlet: JCS Sampling Plan: Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff: Analysis: Microsweeps & Curtis and Tompkins Laboratory: Septum Vial Dissolved H2: Delivery: Courier 2 Unpres VOAs Dissolved Perm Gases: 1 Poly w/ Zn(C2H3O2)2+NAOH Sulfide: 1 unpres poly L Con Alk, CI-, Sulfate: 1 HCI Pres Poly Ferrous Iron: Total Iron, LF1 HNO3 pres Poly Manganese: Cation&Anion w/ Nitrate & 1 unpres poly and 1 H2SO4 poly 8260 (8010 List) & 6 VOAs w/ HCI Nitrite: MTBE& BTEX & TPHg &TPHss:

TIME Stabilization if 3 suc	DTW	VOLUME	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +>10%	ORP (mv) +\- 10 mv	(NTU) +\-10%	pH (+/- 0.1)	COMMENTS
	10-37	٥							start
0730	(0.91	0.1	15.39	1.101	4.93	337	0.76	4.36	clear
0735	11.04	0.7	14.94	1-097	4-24	315	0-92	6.35	clear
0740	11.27	0.3	14.74		4.28	308	0.89	6.35	clear
0745	11.43	0.4	13-76	(.099	4.07	316	0.68	6.35	clear
0750	11.42		13.62		4.06	319	6.65	6.34	clear
6755	11.45	0.6	13.67	10.00	3.97	319	0.66	6.35	clear
	[1]	0.0	15.0.	1.0 10					stert Ha
0800									Sample
<i>№</i> 30									

Project #: 6895.00.032

Well #: 190-11

TIME tabilization if 3 suc	DTW cessive par		TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
			Ta.						
		0.							

HAC	H KIT RESUL	TS FOR WE	LL MW-	AT SAMP	LETIME 4830	(ALL RES	ULTS IN mg/L)
ANALYTE	RESULT	FOR			RM 2	Dilution	COMMENTS
Ferrous Iron (Filtered)	v. 50	NA	NA	NA	NA .		
Total Iron (Filtered)	0.01	NA	NA	NA	NA		
Nitrate Pur	3.9	B. J.	21.5	NA	NA		9
Nitrite	6.04	NO ₂ -	0.047	NaNO ₂	0-071		
Sulfate	74	NA	NA	NA	NA		
Manganese	0.0						

Date: 1\ 29 \01 Well #: 6895.00.032 Project #: Sample ID: LFE-**Project Name:** Glovatorium Dup: Blank: Oakland, CA Location: Inlet: DTW: JCS Sampling Plan: Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff: Analysis: Microsweeps & Curtis and Tompkins Laboratory: 1 Septum Vial -Dissolved Ho:

Delivery: Courier 2 Unpres VOAs-Dissolved Perm Gases: 1 Poly w/ Zn(C2H3O2)2+NAOH 1 Sulfide: 25 1 unpres poly L Alk, Cl-, Sulfate: HCI Pres Poly -Ferrous Iron: Total Iron, 27 1 HNO3 pres Poly Manganese: Cation&Anion w/ Nitrate & 1 unpres poly and 1 H₂SO₄ poly 8260 (8010 List) & 6 VOAs w/ HCI -Nitrite: MTBE& BTEX & TPHg &TPHss:

TIME Stabilization if 3 st	DTW	VOLUME	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +>10%	ORP (mv)	(NTU) +\-10%	pH (+/- 0.1)	COMMENTS
loi5	9.53	0				1		-	startfuge
1025	9.86		14.0	0.908	3.66	392	219	6.56	clear
1030	9.91	0.2	14.40	0.905	3.63	390	214	6.58	Clear
1035	9.95	0.3	14.69	0.894	3.66	388	2.09	6.59	clear
1040	10.00	04	14.48	0.386	3.70	386	1.49	6-60.	Clear
1045	10.03	0.5	1485	0.997	3.67	385	1.41	6.61	Clear
1050	10.09	0.0	15.00	0.8.70	3.78	383	1.35	6.62	clear-set
1100	10 -1		,	1 1	per for	30 mir			perk.
1130									Sample Ha
1133	1031	Resta	of a	rge For	DUP				

Turbidity

Project #: 6895.00.032

Well #: 4-1

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm)	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
1201	pare pare								sample line
									Mc.H
	1 10								
		11-							completesa
1250	0.60	4.5							OFF
	1		0						

	KIT RESUL				E TIME 1205	(ALL RES	ULTS IN mg/L) COMMENTS
ANALYTE	RESULT	FOR	VI I	FU	KW Z	- Districts	OOMPLEASE
Ferrous Iron (Filtered)	0.0	NA	NA	NA	NA		
Total Iron (Filtered)	0.0	NA	NA	NA	NA		
Nitrate Color	فو ۱.کا کامرانصوب	Cole 7 14	40,00	NA	NA		*
Nitrite	0.000	NO ₂ -	0.005	NaNO ₂	0.037		
Sulfate	360	NA	NA	NA	NA		
Manganese (X	0-0	May	0.1	KMAQU	0.0		1

LFR Levine Fricke

Micropurge Water Quality Parameters

Project #:	6895.00.032		1\ 30 \01	_Well #:	LFR-2	
Project Name:	Glovatorium	Sample ID:	UFR-2	-	- 1100	a
Location:	Oakland, CA	Blank:	- 0 -	_Dup: _	161	
Sampling Plan:	JCS	DTW:		_Inlet: _		
Field Staff:	MXD, MWD	Purge Method:	Peristaltic Pump v	w/ New tubing		
Laboratory:	Microsweeps & Curtis and Tompkins		2	Analysis:	23 - 25 - 2001 - 20	
Delivery:	Courier		_	Dissolved H ₂ :	1 Septum Vial	
Sulfide	1 Poly w/ Zn(C ₂ H ₃ O ₂) ₂ +NA	ОН	Dissolved	Perm Gases:	2 Unpres VOAs	
Alk, Cl-, Sulfate	1 unpres poly L			Ferrous Iron:	1 HCI Pres Poly	
Total Iron Manganese	111103 5100 1 0.9					
8260 (8010 List) { MTBE& BTEX { TPHa &TPHs	o voas willor	5	Cation&Ani	on w/ Nitrate & Nitrite:	1 unpres poly and 1 H ₂ SO ₄ poly	

TIME	WTG	VOLUME	TEMP (C)	COND (ms/cm)	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
abilization if 3 su	9.85	imeters are w	ithin	7.5379	101				start
0815	10.24	0.1	14.79	0.927	(.00	269	14.96	6.63	Slight blue to
0870	10.39	0.25	14.03	0.950	0.65	249	6.28	6.63	" slow doe
0825	10.51	0.30	12.65	0.959	0.67	228	5.46	6.60	sl. tobid ti
0830		4.0	12.68	0.952	0.65	216	5.18	6.60.	12.1
0835	10.61	0.5	12.73	0.945	0.61	210	5.02	60.60	Se true
0843		0.7							start the pe
0915						<u> </u>			sample
									-

Project #: 6895.00.032

Well#: UFL-2

TIME	DTW	VOLUME		COND (ms/cm)	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +\-10%	pH (+/- 0.1)	COMMENTS
bilization if 3 suc	cessive para	illeters are w	iomi						
		7							
									=

HAC	нкт	RESUL	TS FOR WE	LL UFE-		LE TIME OBUO	
Ferrous Iron (Filtered)	RES O	NET OF	FOR NA	M 1 NA	NA FO	RM 2 NA	Dilution COMMENTS YOUL DI to bom Sample
Total Iron (Filtered)	101	0,	NA	NA	NA	NA	compande
Nitrate Nitrate	07	1	q.O. reins	29 4	NA	NA	Has already been suctored in
Nitrite	0.6)(x	NO ₂ -	D-004	NaNO ₂	0.007	Drp: 0.001, 0004, 0.007
Sulfate	0	-1	NA	NA	NA	NA	
Manganese	3.7	3,6	Most	81 11	> MWOOA	107 173	<u>' </u>

Date: 1\ 30\01 Well #: 6895.00.032 Project #: Sample ID: Glovatorium **Project Name:** Dup: Blank: Oakland, CA Location: 18' 10.63 Inlet: DTW: JCS Sampling Plan: Purge Method: Peristaltic Pump w/ New tubing MXD, MWD Field Staff: Analysis: Microsweeps & Curtis and Tompkins Laboratory: Dissolved H2: Septum Vial Delivery: Courier 2 Unpres VOAs Dissolved Perm Gases: 1 Poly w/ Zn(C₂H₃O₂)₂+NAOH Sulfide: unpres poly L Alk, Cl-, Sulfate: 1 HCI Pres Poly Ferrous Iron: Total Iron, HNO₃ pres Poly Manganese: Cation&Anion w/ Nitrate & 1 unpres poly and 1 H₂SO₄ poly 8260 (8010 List) & 6 VOAs w/ HCI Nitrite: MTBE& BTEX & TPHg &TPHss:

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	(NTU) +\-10%	pH (+/- 0.1)	COMMENTS
1204	10.63								stert
1209	11.19	0.1	17.70	m. 574	1.93	180	7200	6.71	cloudy will
1214	11.23	6.0	17.50	0.539	1.93	186	NA	clear 6.60	a mule in flow t
1219	(1.27	0,3	17.65	0.539	1.38	190	NA cle	6.66	cellwill affa
1224	11.30	0.4	17-39	0.539	1.78	193	clear	6.63	
1229	11.25	0.5	17.29	0.541	1.75	195	clear	6.64	
1232									Start Ha
1305									sample
1345	11.40	(moles	e sand	14				
1747	W. V.		1		. ,			k!	

Project #: 6895.00.032

Page 2 of 2
Well #: 4-3

TIME	DTW		TEMP (C)	COND (ms/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	pH	COMMENTS
bilization if 3 suc	cessive par	ameters are w	rithin	+\-3%	+\-10%	+\- 10 mv	+\10%	(+/- 0.1)	
		-				1			
0.7									
			-						
						-			
	b								

HA(ANALYTE	CH KIT RESUL	TS FOR WE		-3 ATSAMPLI		(ALL RES	ULTS IN mg/L) COMMENTS
Ferrous Iron (Filtered)	0.00	NA	NA	NA	ŅA		
Total Iron (Filtered)	0.03	NA	NA	NA	NA		2
Nitrate	-1.9	Correct Factor	-8.6	NA	NA		·
Nitrite	0.005	NO ₂ -	0.015	NaNO ₂	0.023		
Sulfate	44	NA	NA	NA	NA		
Manganese	0./	MAOUT	0.2	KMnou	- 0.3		

Project #:

6895.00.032

Date:4\ \ \01

Well #:

LFR-4

Project Name:

Glovatorium

Sample ID: LFR-4FB

Location: Sampling Plan:

JCS

DTW: 13.73

Dup:

13 FT

Field Staff:

MXD, MWD

Oakland, CA

Purge Method: Peristaltic Pump w/ New tubing

Laboratory:

Microsweeps & Curtis and Tompkins

Analysis:

Dissolved H₂:

1 Septum Vial

Delivery:

Courier

25 75

2 Unpres VOAs

Sulfide:

1 Poly w/ Zn(C₂H₃O₂)₂+NAOH

Dissolved Perm Gases:

2 Uliples VOAs

Alk, Cl-, Sulfate:

4 unpres poly L

Ferrous Iron:

1 HCI Pres Poly

Total Iron,

2 y + HNO3 pres Poly

Manganese:

8260 (8010 List) & MTBE& BTEX & TPHg &TPHss:

9 7 6 VOAs w/ HCI

Cation&Anion w/ Nitrate &

litrito:

1 unpres poly and 1 H₂SO₄ poly

TIME	DTW	VOLUME	TEMP (C)	COND (ms/cm)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	рН	COMMENTS
Stabilization if 3 st	ocessive para	meters are v	vithin	+\-3%	+\-10%	+\- 10 mv	+\-10%	(+/- 0.1)	
0840	13.73	0							FB+ start
0845	13.77	0.1	15.30	0.970	1.06	49	10.13	6.50	clear
0850	13.83	0.3	15.46	0.965	0.83	45	2.41	6.50	clear
0855	13.91	0.3	15.48	0.965	0.70	45	1.07	6.50	10
1777	13.96	0.4	15.31	0.963	0.66	46	0.79	6.50.	••
0900		0.5	15.01	0.946	0.61	51	0.74	6.54	.,
0905	14.04	0.6	14.95	0.930	0.57	57	0.76	6.53	. 10.
0910	14.11				0.55	59	0.72		class
0915	14.16	0.7	15.28	0.916	0.30	37	0.70	6.55	clear
0918									Start Ha P
0950									Sample

Project #: 6895.00.032

Page 2 of 2
Well #: LFR-4

TIME	DTW		TEMP (C)	COND (ms/cm) +\-3%	DO (mg/L) +\-10%	ORP (mv) +\- 10 mv	Turbidity (NTU) +>10%	pH (+/- 0.1)	COMMENTS
020	15.21	33 gak	, —					- Comp Sur	lete
111								Sur	Ply
									#
					-				

HAC	CH KIT RESUL	TS FOR WE	ILL LPF		Total Control		SULTS IN mg/L)
ANALYTE	RESULT	FOR	M 1	FOR	RM 2	Dilution	COMMENTS
Ferrous Iron (Filtered)	1.50	NA	NA	NA	NA		
Total Iron (Filtered)	1.43	NA	NA	NA	NA		
Nitrate	1.8	Naz	8.0	NA	NA		4
Nitrite	0.003	NO ₂ -	0.0[]	NaNO ₂	0.01.7		
Sulfate	0	NA	NA	NA	NA		
Manganese	1.6	MaOu	3.4	KMNOY	4.5		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 13-FEB-01 Lab Job Number: 149980

> Project ID: 6895.00.032 Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manage

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of $\mathcal{A}/$

Laboratory Numbers: 149980 Client: LFR-Levine Fricke Project #: 6895.00.032

Location: Glovatorium

COC#: 7860

Sampled Date: 01/29/01 Received Date: 01/29/01

CASE NARRATIVE

This hardcopy data package contains sample and QC results for three water samples, which were received from the site referenced above on January 29, 2001. The samples were received cold and intact. All data was faxed to Julie Sharp on February 05, 2001.

TVH/BTXE:

No analytical problems were encountered.

VOCs (EPA 8260):

No analytical problems were encountered.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

Project No.: (R95	. OO. O	32		Projec	t Location	-lead		A		Date:	129/	2/	Serial	
Project Name:	مكمدن	<u>~</u>		Field 1	Logbook I	W XD	7		Sa	imple Event Name	<u> </u>		N ₀	7860
Sampler (Signature):	alel	10	a						AI	NALYSES	,	,		mplers:
	SAMPL	E INF	ORMATI	ON (Print Clearly	/)			/ 3	200	/ >		/_/_		
SAMPLE NO.		DATE	TIME	LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMPI TYPE		433%	10 S	NALYSES		id dist	REMA	ARKS
7 TB-01290	21	VIAPOI	030		i	HAD	X	X				\bot B		+ MTBE
1 LI-K-1		+	130		6	1	*	X	×			<u>אל</u>	nethed	8031
1 LFR-101	<u>.</u>	+	1003		6				Z			*	FOC Sto	d deck
hmited say	mple													Gasolin
					1								1 1 -	
		+										<u> </u>	ndord T	<u>^</u>
		_										Bes	its to J	rulie sha
														· · · · · · -
		+			-									
•		1												
RELINQUISHED BY: (Signature)				DATE	TIME	00	RECE! (Sign	IVED BY	ben	.Smill			ATE 1-27-01	TIME 中: 00
RELINQUISHED BY: (Signature)	2 , , ,			DATE	TIME	=	1.1	IVED BY nature)	:				DATE	TIME
RELINQUISHED BY: (Signature)				DATE	TIME	=		IVED BY nature)	:			Ī	DATE	TIME
METHOD OF SHIPMENT:				DATE	TIME	E	LAB C	OMMEN	TS:			······································		
Sample Collector:	LEVINE-FR 1900 Powel Emeryville, (510) 652-4	l Stree Califor	t, 12th F	loor 98-1827		110		tical La	borator	y: + T				

Shipping Copy (White)

Lab Copy (Yellow)

File Copy (Pink)

Field Copy (Goldenrod)

9999\COCTEMP.CDR 042998

SOP Volume:

Effective Date:

Filename: F:\qc\forms\cooler.wpd

Client Services

Section:

1.1.2

Page:

1 of 1

Revision:

10-May-99

Filename:

1 Number 3 of 3 F:\QC\Forms\QC\Cooler.wpd

COOLER RECEIPT CHECKLIST

Rev. 1, 4/95

1. Dia 1	reliminary Exate Opened:_ id cooler com YES, enter cooler custody sow many and fere custody pere	Date Recentarion Pharman Pharm	ase By (print): ping slip (air d airbill nur e of cooler? and intact a intact when at properly (ers in the ap custody par the top of th used? Samp	ANDREA rbill, etc.)? mber: Seal date: at the date a received? ink, signed. propriate p pers? his form. ples should Temperate	nd time of a etc.)?	Seal name:_arrival?	YES YES YES	NO NO NO NO NO
1. Dia 1.	ate Opened:_ id cooler com YES, enter cooler custody sow many and fere custody point of the c	ne with a shipp arrier name and eals on outside where? eals unbroken apers dry and apers filled out e custody paper ntifiable from roject name at a sufficient ice well.	By (print):_ ping slip (air d airbill nur e of cooler? and intact a intact when it properly (ers in the ap custody pay the top of the used? Samp	rbill, etc.)? mber:Seal date: at the date a received? ink, signed. propriate p pers? his form. ples shouldTemperate	nd time of a , etc.)?be 2-6 degreure:	Seal name:_ urrival?	YES YES YES	NO NO NO NO NO
1. Di If 2. Wo 3. Wo 4. Wo 5. Wo 6. Di 7. Wa If Y 8. If r Ty Dat 1. De: 2. Di 3. We 4. Di 5. We 5. Wo	id cooler com YES, enter con Yere custody sow many and Yere custody profere custody profere custody profere custody profered ideas project ide	ne with a shipp arrier name and eals on outside where? eals unbroken papers dry and papers filled oute custody paper ntifiable from roject name at a sufficient ice	and intact a intact when the properly (ers in the ap custody parthe top of thused? Samp	rbill, etc.)? mber:Seal date: at the date a received? ink, signed. propriate p pers? his form. ples shouldTemperate	nd time of a , etc.)?be 2-6 degreure:	Seal name:_ urrival?	YES YES YES	NO NO NO NO NO
2. Work Hotel 1. Des 2. Dic 3. We 4. Dic 5. We 5	YES, enter content of the content of the custody some custody processed of the custody processed	arrier name and eals on outside where? eals unbroken apers dry and apers filled oute custody paperntifiable from roject name at a sufficient ice	d airbill nure of cooler? and intact a intact when t properly (ers in the ap custody pay the top of thused? Samp	mber: Seal date: at the date a received? ink, signed. propriate p pers? his form. oles should Temperate	nd time of a , etc.)? lace? be 2-6 degre	Seal name:_ urrival?	YES . YES . YES	NO NO NO NO NO
2. Wo Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	Yere custody sow many and Yere custody pere	eals on outside where? eals unbroken papers dry and papers filled oute custody paper ntifiable from roject name at a sufficient ice	and intact a intact when it properly (ers in the ap custody pay the top of thused? Samp	Seal date: at the date a received? ink, signed. propriate p pers? his form. oles should Temperati	nd time of a etc.)?lace?be 2-6 degreure:	Seal name:_ rrival?	YES WES	NO NO NO NO NO
3. We 4. We 5. We 6. Die 7. We 1f Y 8. If r Tyj Dai 1. De: 2. Die 3. We 4. Die 5. We	ere custody s ere custody p ere custody p d you sign th as project ide YES, enter pr required, was rpe of ice:	eals unbroken apers dry and apers filled ou e custody paper ntifiable from oject name at a sufficient ice	and intact a intact when it properly (ers in the ap custody par the top of the used? Samp	at the date a received?ink, signed propriate propriate propers?his form. ples should Temperati	nd time of a , etc.)?lace?be 2-6 degreure:	ees C.	YES OF OF OF	NO NO NO
3. We 4. We 5. We 6. Die 7. We 1f Y 8. If r Tyj Dai 1. De: 2. Die 3. We 4. Die 5. We	ere custody s ere custody p ere custody p d you sign th as project ide YES, enter pr required, was rpe of ice:	eals unbroken apers dry and apers filled ou e custody paper ntifiable from oject name at a sufficient ice	and intact a intact when it properly (ers in the ap custody par the top of the used? Samp	at the date a received?ink, signed propriate propriate propers?his form. ples should Temperati	nd time of a , etc.)?lace?be 2-6 degreure:	ees C.	YES OF OF OF	NO NO NO
5. We 6. Die 7. Wa 1f Y 8. If r Ty B. Lo Dat 1. De: 2. Die 3. We 4. Die 5. We	ere custody p d you sign th as project ide YES, enter pr required, was rpe of ice:	apers filled ou e custody pape intifiable from roject name at a sufficient ice	at properly (ers in the ap custody par the top of the used? Samp	ink, signed. propriate p. pers? his form. ples should Temperati	, etc.)?	ees C		NO NO
6. Die 7. Wa 1f Y 8. If r Tyj B. Log Dai 1. De: 2. Die 3. We 4. Die 5. We	d you sign the as project ide YES, enter project required, was the of ice:	e custody pape ntifiable from roject name at sufficient ice	ers in the ap custody pap the top of the used? Samp	pers?his form. ples should Temperati	be 2-6 degreure:	ees C	. (E) . (E)	NO NO
7. Wa If Y 8. If r Tyj B. Log Dat 1. Det 2. Dic 3. We 4. Dic 5. We	as project ide YES, enter prequired, was	ntifiable from roject name at sufficient ice	custody par the top of th used? Samp	pers?his form. ples should Temperati	be 2-6 degreure:	ees C	. (15)	NO
8. If Y 8. If r Tyj B. Log Dat 1. De: 2. Dic 3. We 4. Dic 5. We	YES, enter prequired, was	roject name at a sufficient ice a	the top of thused? Samp	his form. oles should _ Temperati	be 2-6 degre ure:	ees C		
8. If r Tyj B. Log Dat 1. Des 2. Dic 3. We 4. Dic 5. We	required, was	sufficient ice	used? Samp	oles should _ Temperati	ure: حم	ill	Œ\$	NO
B. Log Dat 1. Det 2. Dic 3. We 4. Dic 5. We	pe of ice:	wet	 	_ Temperati	ure: حم	ill	CD S	NO
B. Log Dat 1. Det 2. Dic 3. We 4. Dic 5. We				_		//	1	
Dai 1. Des 2. Dio 3. We 4. Dio 5. We	gin Phase te Logged In scribe type of	: 24/1/0/ I	By (print):_	ANDRE	, /		1	_
 We Dic We 	d all hottles a	i packing in co	ooler:	ussed	0A	ne		
 We Did We 		rrive unbroken	17	3)			KES	NO
4. Did 5. We	ere labels in g	good condition	and comple	ete (ID, date	e, time, sign	ature, etc.)?	P	NO
5. W e		s agree with cu						
		te containers u						
		eservatives ado						
		mount of sam						
		bsent in VOA						
9. W a	as the client c	ontacted conc	eming this	sample deli	very?	***************************************	YES	NO
If Y	YES, give de	tails below.						
Wł	ho was called	l?		By whom	?	Date	e:	
Additional	l Comments:							
								-
								•
						<u> </u>		
· 				<u> </u>				

7	65.000	e by GC/FID CA LU)FT
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8015M
Matrix:	Water	Sampled:	01/29/01
Units:	${ m ug/L}$	Received:	01/29/01
Diln Fac:	1.000	Analyzed:	01/31/01
Batch#:	61184		

Field ID:

LFR-1

Lab ID: 149980-002

уре:

SAMPLE

Analyte	Result	RL	
Gasoline C7-C12	310 Y Z	50	
Stoddard Solvent C7-C12	210 Y Z	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	111	59-135
Bromofluorobenzene (FİD)	107	60-140

id ID:

LFR-101

Lab ID:

149980-003

Type:

SAMPLE

Gasoline C7-C12 310 Y Z 50 Stoddard Solvent C7-C12 210 Y Z 50	Analyte	Result	RL	
OCOCIAL COLVENT COLL	Gasoline C7-C12	310 Y Z	50	İ
	Stoddard Solvent C7-C12	210 Y Z	50	

Surrogate	% RE C	Limits
Trifluorotoluene (FID)	111	59-135
Bromofluorobenzene (FID)	101	60-140

Type:

BLANK

Lab ID: QC136326

Analyte	Result	RL	1
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	108	59-135	
Bromofluorobenzene (FID)	102	60-140	

Y= Sample exhibits fuel pattern which does not resemble standard

 $\ensuremath{\text{Z}_{\mathbb{Z}_{i}}}\xspace \text{Sample exhibits unknown single peak or peaks}$

Not Detected

Reporting Limit

Page 1 of 1

GC19 TVH 'X' Data File (FID)

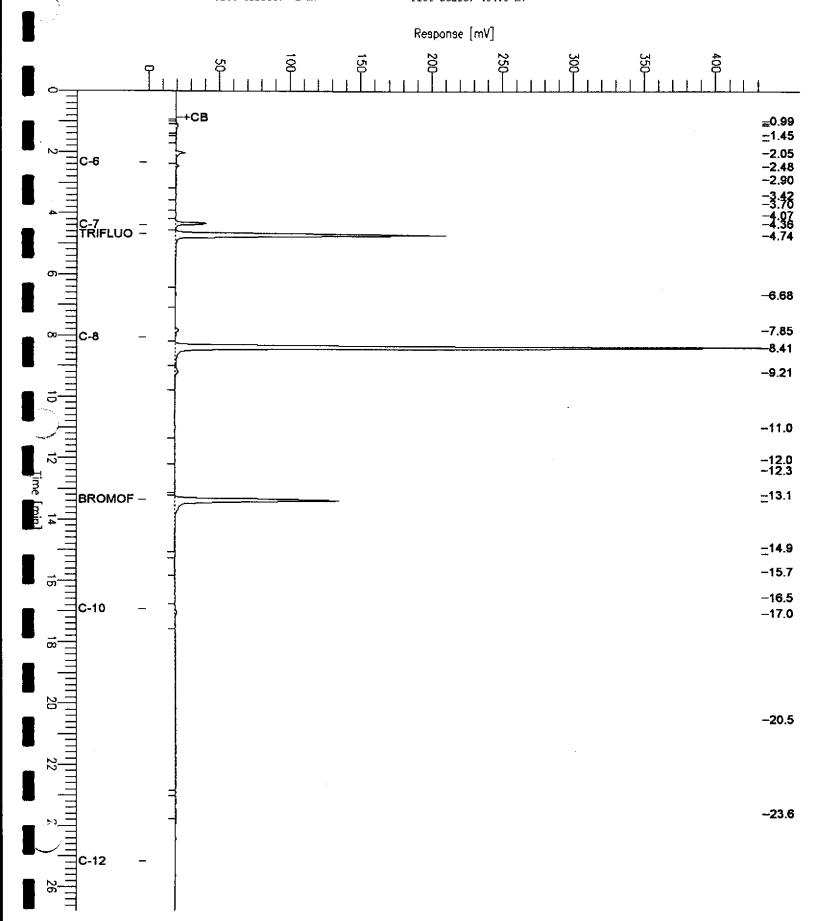
Sample Name : 149980-002,61184

: G:\GC19\DATA\031X008.raw TileName

lethod : TVHBTXE

tart Time : 0.00 min ~e Factor: 1.0

End Time : 26.80 min Plot Offset: -2 mV


Sample #: C1

Page 1 of 1 Date: 1/31/01 06:47 PM

Time of Injection: 1/31/01 06:20 PM

Low Point : -1.62 mV High Point : 433.23 mV

Plot Scale: 434.8 mV

GC19 TVH 'X' Data File (FID)

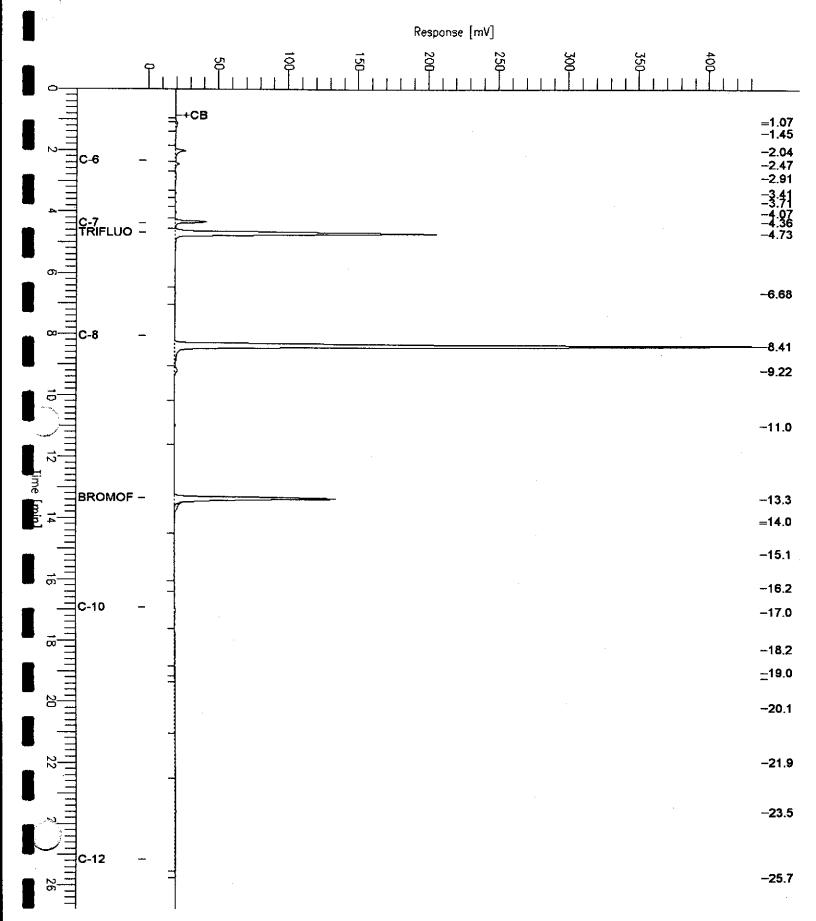
Sample Name : 149980-003,61184

: G:\GC19\DATA\031X009.raw TileName

Tethod : TVHBTXE

tart Time : 0.00 min 🛰 Factor: 1.0

End Time : 26.80 min


Plot Offset: -2 mV

Page 1 of 1

Sample #: C1 Date: 1/31/01 07:26 PM Time of Injection: 1/31/01 06:59 PM

Low Point : -1.72 mV High Point: 437.19 mV

Plot Scale: 438.9 mV

GC19 TVH 'X' Data File (FID)

ample Name : CCV/LCS, QC136323, 61184, 01WS0395, 5/5000

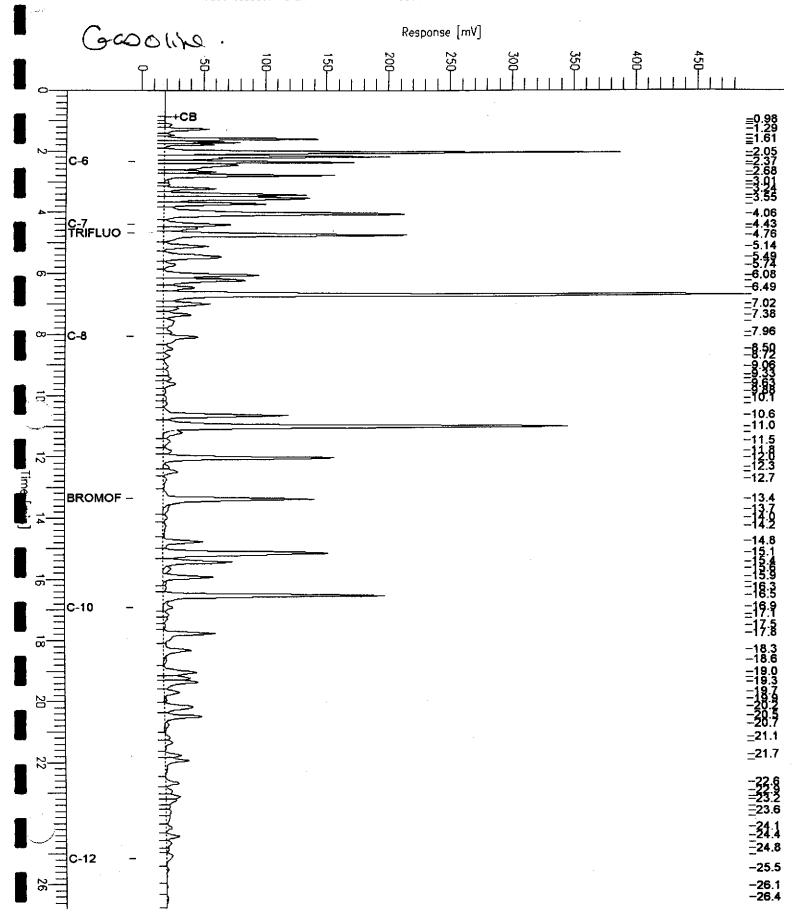
: G:\GC19\DATA\031X003.raw

: TVHBTXE Time : 0.00 min Factor: 1.0

End Time : 26.80 min

Plot Offset: -5 mV

Sample #:


Page 1 of 1

Date : 1/31/01 03:33 PM

Time of Injection: 1/31/01 03:06 PM

High Point: 489.78 mV

Low Point: -4.99 mV Plot Scale: 494.8 mV

Chromatogram

Page 1 of 1 Sample Name: CCV,STODD,61100,00WS9595,5/5000 Sample #: MBTEX leName : G:\GC05\DATA\027G005.raw Date: 1/27/01 10:56 PM thod : TVHBTXE Time of Injection: 1/27/01 10:25 PM Low Point : 7.28 mV High Point : 136.27 mV Star Time : 0.00 min End Time : 31.00 min Plot Scale: 129.0 mV Factor: Plot Offset: 7 mV Stoddard Response [mV] -+CB 0.90 3.13 _3.90 C-7 TRIFLUO _ 6.64 -11.34 -11.80 _12.51 13.23 .14.73 15.81 __16.56 ___17.11 17.80 18.17 18.59 BROMOF _ 19.03 19.43 ₋19.85 C-10 20.2 29686 21.29 21.63 21.0 -22.24 ---22.66 23.25 23.54 23.95 ___24.53 25.15 25.49 25.99 26.73 ..27.19 30.44 30.91

	Benzene, Tolue	ne, Ethylbenzene,	Xylenes
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Sampled:	01/29/01
Units:	ug/L	Received:	01/29/01
Diln Fac:	1.000	Analyzed:	01/31/01
Batch#:	61184	*	•

Field ID:

TB-012901

Lab ID: 149980-001

Гуре:

SAMPLE

Analyte	Result	RL	
MTBE	2.5	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
<u> </u>	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene :	ND	0.50	

Surrogate	% R F (7 Limits	
fluorotoluene (PID)	103	56-142	
mofluorobenzene (PID)	100	55-149	

Field ID:

LFR-1

Type:

SAMPLE

Lab ID: 149980-002

Analyte	Result	RL
MTBE	3.3	2.0
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes o-Xylene	ND	0.50
o-Xylene	ND	0.50

Trifluorotoluene (PID) 102 56-142 Bromofluorobenzene (PID) 105 55-149	Surrogate	% RE C	Limits
Bromofluorobenzene (PID) 105 55-149	Trifluorotoluene (PID)	102	56-142
	Bromofluorobenzene (PID)	105	55-149

Not Detected Reporting Limit Page 1 of 2

	Benzene, Toluer	e Trhulbengere	Yylenes
	Denzeney torder	ie, Benyibenzene,	Aylengo
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Sampled:	01/29/01
Units:	ug/L	Received:	01/29/01
Diln Fac:	1.000	Analyzed:	01/31/01
Batch#:	61184	-	

Field ID: LFR-101

Lab ID: 149980-003

Гуре:

SAMPLE

Analyta	Result	RL	
imary co	Result	ХL	
MTBE	3.9	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits		
fluorotoluene (PID)	102	56-142		
⊸∽omofluorobenzene (PID)	103	55-149		·

Type:

BLANK

Lab ID: QC136326

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surroga	ite	%REC	Limits	
Trifluorotoluene	(PID)	102	56-142	
Bromofluorobenzer	ne (PID)	98	55-149	·

Not Detected REPORTING Limit
Page 2 of 2

Gasoline by GC/FID CA LUFT Lab #: 149980 Location: Glovatorium Client: LFR Levine Fricke Prep: EPA 5030 Project#: 6895.00.032 EPA 8015M Analysis: Type: LCS Diln Fac: 1.000 Lab ID: QC136323 Batch#: 61184 Matrix: 01/31/01 Water Analyzed: Units: ug/L

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,990	100	73-121

Surrogate	%REC	Limits
Trifluorotoluene (FID)	124	59-135
Bromofluorobenzene (FID)	121	60-140

	Benzene, Toluer	ne, Ethylbenzene,	
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	61184
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000		

Гуре:

BS

Lab ID:

QC136324

Analyte	Spiked	Result	%RBC	Limits
MTBE	20.00	22.30	112	51-125
Benzene	20.00	19.49	97	67-117
Toluene	20.00	18.55	93	69-117
Ethylbenzene	20.00	18.71	94	68-124
m,p-Xylenes	40.00	40.27	101	70-125
o-Xylene	20.00	19.12	96	65-129

Surrogate	%R	EC Limits	
Trifluorotoluene (PID) 104	56-142	
Bromofluorobenzene (P	ID) 103	55-149	

Evpe:

BSD

Lab ID:

QC136325

Analyte	Spiked	Result	%RBC	Limits	RPD	Lim
MTBE	20.00	21.49	107	51-125	4	20
Benzene	20.00	19.12	96	67-117	2	20
Toluene	20.00	18.12	91	69-117	2	20
Ethylbenzene	20.00	18.46	92	68-124	1	20
m,p-Xylenes	40.00	39.78	99	70-125	1	20
m,p-Xylenes o-Xylene	20.00	18.87	94	65-129	1	20

	Surrogate	%REC	Limits
7	Trifluorotoluene (PID)	103	56-142
	Bromofluorobenzene (PID)	101	55-149

	Gasoline	e by GC/FID CA LU	JFT
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analvsis:	EPA_8015M
Field ID:	222222222	Batch#:	61184
MSS Lab ID:	150006-001	Sampled:	01/30/01
Matrix:	Water	Received:	01/30/01
Units:	ug/L	Analyzed:	02/01/01
Diln Fac:	1.000	-	

MS.

Lab ID: QC136327

Analyte	MSS Re	sult	Spiked	Result	%RE	C Limits
Gasoline C7-C12	2,2	239	2,000	3,884	82	65-131
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	126	59-135		<u></u>		
Bromofluorobenzene (FID)	136	60-140				

MSD

Lab ID:

QC136328

Analyte	Spiked	Result	%R E (C Limits	RPD	Lin
Gasoline C7-C12		3,853	81		1	20
Gasoline C/-Cl2	2,000	3,853	0.1	03-131		

Surrogate	%REC	Limits
Trifluorotoluene (FID) Bromofluorobenzene (FID)	125	59-135
Bromofluorobenzene (FID)	138	60-140

	Purgeable	Halocarbons by 6	IC/MB
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	TB-012901	Batch#:	61148
Lab ID:	149980-001	Sampled:	01/29/01
Matrix:	Water	Received:	01/29/01
Units:	ug/L	Analyzed:	01/30/01
Diln Fac:	1.000	-	

Analyte	Rosult	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	BREC	Lisits
1,2-Dichloroethane-d4	110	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	100	80-115

2.52			aa iya
	hnidespre	Halocarbons by 0	ic/ns
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	LFR-1	Batch#:	61169
Lab ID:	149980-002	Sampled:	01/29/01
Matrix:	Water	Received:	01/29/01
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	5.000	-	

Analyte	Result	977
Freon 12	ND ND	RL 5.0
Chloromethane		
	ND	5.0
Vinyl Chloride Bromomethane	ND	2.5
	ND	10
Chloroethane	ND	5.0
Trichlorofluoromethane	ND	2.5
Freon 113	ND	25
1,1-Dichloroethene	ND	2.5
Methylene Chloride	ND	25
trans-1,2-Dichloroethene	ND	2.5
1,1-Dichloroethane	ND	2.5
cis-1,2-Dichloroethene	7.3	2.5
loroform	ND	2.5
1,1-Trichloroethane	ND	2.5
Carbon Tetrachloride	ND	2.5
1,2-Dichloroethane	ND	2.5
Trichloroethene	26	2.5
1,2-Dichloropropane	ND	2.5
Bromodichloromethane	ND	2.5
cis-1,3-Dichloropropene	ND	2.5
trans-1,3-Dichloropropene	ND	2.5
1,1,2-Trichloroethane	ND	2.5
Tetrachloroethene	770	2.5
Dibromochloromethane	ND	2.5
Chlorobenzene	ND	2.5
Bromoform	ND	2.5
1,1,2,2-Tetrachloroethane	ND	2.5
1,3-Dichlorobenzene	ND	2.5
1,4-Dichlorobenzene	ND	2.5
1,2-Dichlorobenzene	ND	2.5

	Surrogate	**************************************	Limite	
	1,2-Dichloroethane-d4	113	78-123	
	Toluene-d8	101	80-110	
_	Bromofluorobenzene	103	80-115	

	Purgeable	Halocarbons by	сумв	
Lab #:	149980	Location:	Glovatorium	
Client:	LFR Levine Fricke	Prep:	EPA 5030	
Project#:	6895.00.032	Analysis:	EPA 8260B	
Field ID:	LFR-101	Batch#:	61148	
Lab ID:	149980-003	Sampled:	01/29/01	
Matrix:	Water	Received:	01/29/01	
Units:	ug/L	Analyzed:	01/30/01	
Diln Fac:	6.250			

Auslyte	Result	RT.
Freon 12	ND	6.3
Chloromethane	ND	6.3
Vinyl Chloride	ND	3.1
Bromomethane	ND	13
Chloroethane	ND	6.3
Trichlorofluoromethane	ND	3.1
Freon 113	ND	31
1,1-Dichloroethene	ND	3.1
Methylene Chloride	ND	31
trans-1,2-Dichloroethene	ND	3.1
1,1-Dichloroethane	ND	3.1
cis-1,2-Dichloroethene	7.4	3.1
loroform	ND	3.1
1,1-Trichloroethane	ND	3.1
Carbon Tetrachloride	ND	3.1
1,2-Dichloroethane	ND	3.1
Trichloroethene	31	3.1
1,2-Dichloropropane	ND	3.1
Bromodichloromethane	ND	3.1
cis-1,3-Dichloropropene	ND	3.1
trans-1,3-Dichloropropene	ND	3.1
1,1,2-Trichloroethane	ND	3.1
Tetrachloroethene	830	3.1
Dibromochloromethane	ND	3.1
Chlorobenzene	ND	3.1
Bromoform	ND	3.1
1,1,2,2-Tetrachloroethane	ND	3.1
1,3-Dichlorobenzene	ND	3.1
1,4-Dichlorobenzene	ND	3.1
1,2-Dichlorobenzene	ND	3.1

Surrogate	BREC	Limits	
1,2-Dichloroethane-d4	112	78-123	
Toluene-d8	100	80-110	
Bromofluorobenzene	101	80-115	

	Purqeable	Halocarbons by G	IC/X8
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136179	Batch#:	61148
Matrix:	Water	Analyzed:	01/30/01
Units:	ug/L		

Analyte	Result	RL .
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
arbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ИD	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	Treate	Lisits
1,2-Dichloroethane-d4	110	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	100	80-115

	Purgesbie	Halocarbons by 6	IC/NB
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136267	Batch#:	61169
Matrix:	Water	Analyzed:	01/31/01
Units:	ug/L		

Analyta	Result	Rt.
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113		5.0
	ND	0.5
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	· · - · - · - · - · - · · - ·
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
drbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	SARC	Linits	
1,2-Dichloroethane-d4	114	78-123	
Toluene-d8	102	80-110	
Bromofluorobenzene	103	80-115	

	Purgeable	Halocarbons by 6	ic/ms
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	61148
Units:	ug/L	Analyzed:	01/30/01
Diln Fac:	1.000	-	

BS

Lab ID:

QC136177

Analyte	Spiked	Result	1REC	Limits
1,1-Dichloroethene	50.00	53.48	107	74-132
Trichloroethene	50.00	49.59	99	80119
Chlorobenzene	50.00	50.26	101	80-117

Surrogate %REC Limits						
1,2-Dichloroethane-d4	105	78-123				
Toluene-d8	100	80-110				
Bromofluorobenzene	102	80-115				

BSD

Lab ID: QC136178

Anslyte	Spiked	Result) REC	Limite	(;;)·	
1,1-Dichloroethene	50.00	50.64	101	74-132	5	20
Trichloroethene	50.00	50.5 5	101	80-119	2	20
Chlorobenzene	50.00	49.73	99	80-117	1	20

•			
			Limits
ı	oursolute.		SIMILE
n í	1,2-Dichloroethane-d4	109	78-123
	1/L-Dichiolocchane-d4	103	70-123
	Toluene-d8	101	80-110
B۱	TOTACHE GO	101	00 110
- 1	Bromofluorobenzene	102	80-115
ı	DIOMOIIGOLODOME	102	00 113

	Purgesbie	Halocarbons by G	с/жв
Lab #:	149980	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	61169
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000	· · · · · · · · · · · · · · · · · · ·	

Type:

BS

Lab ID:

QC136265

Analyte	Spiked	Result	1 REC	Liefts
1,1-Dichloroethene	50.00	54.86	110	74-132
Trichloroethene	50.00	49.93	100	80-119
Chlorobenzene	50.00	49.64	99	80-117

Surrogate	FREC	Lisits
1,2-Dichloroethane-d4	112	78-123
Toluene-d8	101	80-110
Bromofluorobenzene	104	80-115

*_⊅*e:

BSD

Lab ID:

QC136266

Analyte	Spiked	Result) REC	Limits	(12)	10.0
1,1-Dichloroethene	50.00	51.47	103	74-132	6	20
Trichloroethene	50.00	49.56	99	80-119	1	20
Chlorobenzene	50.00	48.70	97	80-117	2	20

_			
	Surrogate	4987	: Limits
	1,2-Dichloroethane-d4	113	78-123
	ļ "		11 171
ш	Toluene-d8	102	80-110
•		100	00.11
	Bromofluorobenzene	102	80-115

LAR DATA QUALITY	ASSURA E/QUALITY CONTROL WORL	KSHEET
PROJ# 10895 00 SEC# 032 LABORATORY 032 SAMPLE DATE(S) 1/29/01 EXTRACTION DATE(S)	And the second of the second o	OPEAN COL
TTEM	STANDARD	STANDARD MET?
	MAX HOLDING TIME	₽ N
HOLDING TIME	DETECTION LIMIT	TO THE REPORT OF THE PARTY OF T
FIELD BLANK RESULTS	DETECTION LIMIT	YNY
TRIP BLANK RESULTS METHOD BLANK RESULTS	DETECTION LIMIT	(Y) N
METHOD SPIKE RECOVERY RANGE	ACCEPTABLE RANGE	
METHOD SPIKE RECOVER TRUNCE	ACCEPTABLE RANGE	
SURROGATE RECOVERY RANGE	ACCEPTABLE RANGE	
MATRIX SPIKE RECOVERY RANGE	ACCEPTABLE RANGE	
MATRIX SPIKE RPD RANGE	ACCEPTABLE RANGE	N N
LCS SPIKE RECOVERY RANGE	ACCEPTABLE RANGE	
LCS SPIKE RPD RANGE	ACCEPTABLE RANGE	Y-N
FIELD DUPLICATE RPD	ACCEPTABLE RANGE	(X) N
ELEVATED DETECTION LIMIT COC MATCHES LAB DATA		N N
NOTES:		
CORRECTIVE ACTION SUGGESTED: (1) MTBE delected in TB-0120 as ND at repeated values Concentration detected in	01 at 2.5 ug L. Plag MTBE (F.C. LAC-) @ 8.3 ug L. S. Geld Samples were, "Use than	results in LFR-1 & LFR-101 3.3 U >> <3.3). 1 5x conc. directed in Tie.
	Date (Project Manager)	
Worksheet prepared by: Date 120 Reviewed by: Project Manager must also initial QA/QC space on table. After review, return copy of initialed worksheet to laboratory data coordin if you have sudditional questions, please ask LFR laboratory manager for a		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 14-FEB-01

Lab Job Number: 150080

Project ID: 6895.00.032 Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manage

Reviewed by:

perations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of <u>20</u>

Laboratory Numbers: 150080 Client: LFR-Levine Fricke Project #: 6895.00.032

Location: Glovatorium

COC#: 7899

Sampled Date: 02/01/01 Received Date: 02/01/01

CASE NARRATIVE

This hardcopy data package contains sample and QC results for five water samples, which were received from the site referenced above on February 01, 2001. The samples were received cold and intact. All data was faxed to Julie Sharp on February 09, 2001.

VOCs (EPA 8260):

No analytical problems were encountered.

Project No.: / QQ < _ ^c). B3	2	Projec	ct Locatio	n: 🔷	علال	Cod	CA		Date:	1/1/	าไ	Serial	
Project Name: 6 OVarto		_	Field	Logbook (No.:D	<u>-4</u>		Sa	ample E	vent Nam	" Q 1	<u> </u>	No	7899
Sampler (Signature):		- N	25			,		AI	NALYSE	S	SE		s My	amplers: か、MuzD
SAN	APLE INF	ORMATI	ON (Print Clearly	y)			/ ;	3 0	3/10	9	9		//	2,112
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMP TYPI	LE			100 E	SCA MIN		HOLONS	REI	MARKS
TB-020101	2/161	ශ්රිත		I	Ho	K			X			\Z \	kerdar	STAT
LFR-4 FB		0840		Ģ	-1	X			X			- 0		1 1
LFR-4		2820		ع ا		X	*	入	X			 Y 6	<u> </u>	to Jule
GW-3		1035		4		++							sharf	<u> </u>
GW-2		1055		ے ک		19	N		N/		-		·	
								-				 - -		
		 -		<u> </u>			<u></u>					 		
		 												
	_				 							-		
		 		<u> </u>	+			!						
	- - - - - - 	,					-	1	:					
RELINQUISHED BY: (Signature)	0/0		DATE 2/1/0	TIME			IVED B'	r: 1	A.	T'	intr		DATE OI	TIME TO 6
RELINQUISHED BY: (Signature)	ew	<u></u>	DATE	TIMI	E		IVED (1		- }			DATE	TIME
RELINQUISHED BY: (Signature)			DATE	ТІМІ	E		IVED B' inature)	Y:					DATE	TIME
METHOD OF SHIPMENT:	166	2	DATE	TIMI	E	LAB	COMME	NTS:						
Sample Collector: LEVINE 1900 Po	FRICKE• well Stree lle, Califo	RECON et, 12th F	loor 08-1827			Analy	/tical La	aborator	у: (7+	7			

Shipping Copy (White)

Lab Copy (Yellow)

File Copy (Pink)

Field Copy (Goldenrod)

9999\COCTEMP.CDR 042998

SOP Volume:

Client Services

Section:

1.1.2

Page:

l of l

Effective Date:

10-May-99

Revision:

10-May-99 1 Number 3 of 3

Filename:

Filename: F:\qc\forms\cooler.wpd

F:\QC\Forms\QC\Cooler.wpd

Rev. 1, 4/95

COOLER RECEIPT CHECKLIST

Log	gin#: 150086 Date Received: 211/01 Number of Coolers:
Clie	ent: LFR Project: Gluviterium
A.	Preliminary Examination Phase
	Preliminary Examination Phase Date Opened: 21 101 By (print): June 1 Branched (sign)
1.	Did cooler come with a shipping slip (airbill, etc.)?
	If YES, enter carrier name and airbill number:
2.	Were custody seals on outside of cooler?YES NO
	How many and where? Seal date: Seal name:
3.	Were custody seals unbroken and intact at the date and time of arrival? YES NO
4.	Were custody papers dry and intact when received?
5.	Were custody papers filled out properly (ink, signed, etc.)?
6.	Did you sign the custody papers in the appropriate place?
7.	Was project identifiable from custody papers?
	If YES, enter project name at the top of this form.
8.	If required, was sufficient ice used? Samples should be 2-6 degrees C
	Type of ice: Welice Temperature: Chille!
B. 1.	Login Phase Date Logged In: 2/2/01 By (print): HWDEW (sign) Describe type of packing in cooler: Zir/66/7
2.	Did all bottles arrive unbroken?
3.	Were labels in good condition and complete (ID, date, time, signature, etc.)? NO
4.	Did bottle labels agree with custody papers?
5.	Were appropriate containers used for the tests indicated?
6.	Were correct preservatives added to samples?
7.	Was sufficient amount of sample sent for tests indicated?
8.	Were bubbles absent in VOA samples? If NO, list sample Ids below
9.	Was the client contacted concerning this sample delivery? YES NO
	If YES, give details below.
	Who was called? By whom? Date:
Addi	tional Comments:

Gasoline by GC/FID CA LUFT es de la comprendica de la comprendición de la comprendición de la comprendición de la comprendición de la comp Glovatorium 150080 Location: Prep: Analysis: Sampled: LFR Levine Fricke 6895.00.032 Client: EPA 5030 EPA 8015M Project#: Matrix: Water 02/01/01 02/02/01 Received: Units: ug/L 1.000 Diln Fac: Analyzed: 02/07/01 Batch#: <u>61362</u>

Field ID: Type: LFR-4

SAMPLE

Lab ID:

150080-003

	Result	RL	
Gasoline C7-C12	220	50	
Stoddard Solvent C7-C12	160 Y	50	

Surrogate %REC Limits
Trifluorotoluene (FID) 114 59-135
Bromofluorobenzene (FID) 133 60-140

Field ID:

lype:

GW-3

SAMPLE

Lab ID:

150080-004

Analyte	Result	RL	
Gasoline C7-C12	ND $+$	50	
Stoddard Solvent C7-C12	ND ND	<u> 50</u>	

Surrogate	%REC	Limits	
fluorotoluene (FID)	109	59-135	· · · · · · · · · · · · · · · · · · ·
⇒mofluorobenzene (FID)	123	60-140	

Field ID:

Type:

GW-2 SAMPLE Lab ID:

150080-005

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	113	59-135	
Bromofluorobenzene (FID)	122	60-140	

Ivpe:

BLANK

Lab ID:

QC136974

Analyte	Result	RL	
Gasoline C7-C12) ID	50	
Stoddard Solvent C7-C12	ND	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	124	59-135	
Bromofluorobenzene (FID)	116	60-140	

Sample exhibits fuel pattern which does not resemble standard Not Detected RES Reporting Limit Page 1 of 1

Chromatogram

Sample Name: 150080-003,61362,TVH/STODD ONLY Sample #: B1 Page 1 of 1 ileName : G:\GC05\DATA\038G006.raw Date : 2/8/01 11:09 AM thod : TVHBTXE Time : 0.00 min ethod Time of Injection: 2/7/01 09:06 PM End Time : 31.00 min High Point : 57.20 mV Low Point : 10.49 mV Plot Offset: 10 mV Factor: 1.0 Plot Scale: 46.7 mV Response [mV] 50 HR16^{0.90} 1.88 _2.11 ⊒C-6 3.11 34.24 __4.93 C-7 _6.05 TRIFLUO _ 6.66 8.08 C-8 9.63 10.47 _11.83 .12.97 -14.28 _14,97 15.33 16.03 _16.84 18.55 BROMOF _ 19.04 C-10 21.22 22.02 >-22.37 23.67 _25.02 25.81 26.72 27.09 27.50 28.18 28.45 29.35

Chromatogram

Sample Name : CCV/LCS,QC136975,61362,01WS0395,5/5000

: G:\GC05\DATA\038G003.raw

: TVHBTXE ethod

tart Time : 0.00 min Factor: 1.0

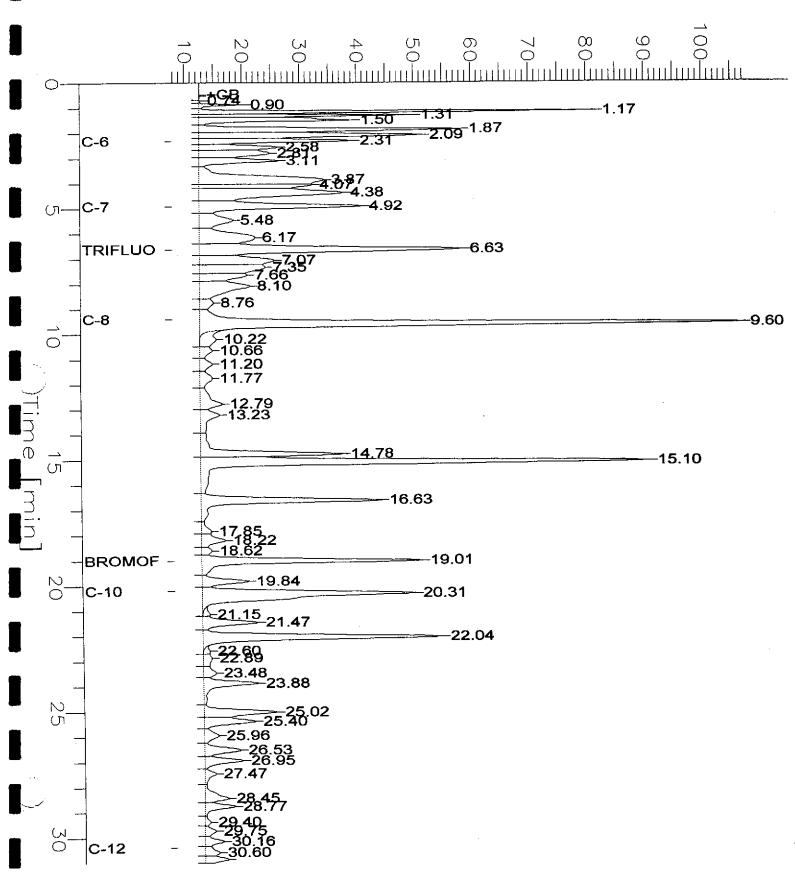
End Time : 31.00 min

Plot Offset: 8 mV

Sample #: GAS

Date: 2/8/01 03:49 PM

Time of Injection: 2/7/01 06:55 PM


Low Point : 7.83 mV

High Point: 107.02 mV

Page 1 of 1

Plot Scale: 99.2 mV

GC19 TVH 'X' Data File (FID)

ple Name : CCV, STODD, 61209, 00WS9595, 5/5000

: G:\GC19\DATA\032X004.raw

: TVHBTXE : 0.00 min Time

End Time : 26.80 min

Plot Offset: -8 mV

Sample #: STODD

Date: 2/1/01 04:02 PM

Time of Injection: 2/1/01 03:35 PM

Low Point : -7.90 mV High Point : 526.29 mV

Page 1 of 1

Plot Scale: 534.2 mV

		Benzene, Toluene, Et	hylbenzene, Xy	rlenes
	Lab #:	150080	Location:	Glovatorium
	Client:	LFR Levine Fricke	Prep:	EPA 5030
_	Project#:	6895.00.032	Analysi <u>s: </u>	EPA 8021B
	Matrix:	Water	Sampled:	02/01/01
	Units:	ug/L	Received:	C2/ O2/ O1
₹	Diln Fac:	1.000	Analyzed:	02/05/01
L	Batch#:	61298		

Field ID:

TB-020101 SAMPLE

Type:

Dab ID: 150080-001

A	nalyte	Result	RL	
MTBE		5.1	2.0	
Benzene	NI)	0.50	
🖶 Toluene	NI)	0.50	
Ethylbenzene	NE)	0.50	
m,p-Xylenes	NE)	0.50	
o-Xylene	ME)	0.50	

Surrogate	%REC	
Trifluorotoluene (PID)	108	56-142
Bromofluorobenzene (PID)	107	55-149

rield ID:

LFR-4 FB SAMPLE

Lab ID: 150080-002

Type:

Analyte	Result	RL	
**************************************	ND	2.0	
. Azene	ND	0.50	
ੀਰੀuene	ND	0.50	
m Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes	ND	0.50	
₩o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	112	56-142	
Bromofluorobenzene (PID)	112	55 - 149	

ield ID:

LFR-4 SAMPLE

уре:

Lab ID: 150080-003

Analyte	Result	RL	
MTBE	9.7	2.0	
Benzene	3.3	0.5C	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND ND	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	112	56-142	
Bromofluorobenzene (PID)	112	55-149	

\ \	Benzene, Toluer	ne, Ethylbenzene,	Xylenes
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analvsis:	EPA 8021B
Matrix:	water	Sampled:	62/01/01
Units:	ug/L	Received:	02/02/01
Diln Fac:	1.000	Analyzed:	02/05/01
Batch#:	61298		

Field ID: Type:

GW-3 SAMPLE

Lab ID:

150080-004

	Analyte	Result	RL	
7	MTBE	2.3	2.0	
	Benzene	ND	0.50	
	Toluene stnyrbenzene m,p-Xylenes	MD	0.50	
	stnyrbenzene	1,110	0.5ს	
	m,p-Xylenes	ND	0.50	
L	o-Xylene	MD	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	112	56-142	
Bromofluorobenzene (PID)	111	55-149	

Field ID: Type:

GW-2 SAMPLE

Lab ID:

150080-005

Analyte		Result RL
ੌ3E	ИD	2.0
	ND	0.50
Toluene	ND	0.50
i Ethylbenzene	ND	0.50
tethylbenzene m,p-Xylenes	ND	0.50
o-Xylene	ND	0,50

Surrogate	%REC	Limits
Trifluorotoluene (PID)	777	56 140
Trifluorotoluene (PID)		56-142
Promofluorobenzene (DID)	110	EE 149

BLANK

Lab ID:

QC136746

Analyte	Result	RL	
MIBE	::0	2.0	
Benzene	ND	0.50	
Toluene	MD	0.50	
T Ethvlbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ŊD	0.50	

Surrogate	%RE	C Limits	
Trifluorotoluene (PID)	107	56-142	
Bromofluorobenzene (PID)	104	55-149 _	·

		by GC/FID CA LU	PT
Lab #:	150080	Location;	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8015M
Type:	ECS	Dilm Fac:	2.000
Lab ID:	QC136975	Batch#:	61362
Matrix:	Water	Analyzed:	02/07/01
Units:	ug/L		

Analyte	Spiked	Result	%R E (! Limits	
Gasoline C7-C12	2,000	1,834	92	73-121	
				•	

Surrogat	:e	%REC	Limits
Trifluorotoluene ((FID)	122	59-135
Bromofluorobenzene	(FID)	129	60-140

	Benzene, Toluer	ne, Ethylbenzene,	Xylenes
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	61298
Units:	ug/L	Analyzed:	02/05/01
Diln Fac:	1.000		

BS

Lab ID: QC136744

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.25	96	51-125
Benzene	20.00	18.76	94	67-117
Toluene	20.00	17.87	89	69-117
Ethylbenzene	20.00	19.40	97	68-124
m,p-Xylenes	40.00	40.41	101	70-125
o-Xylene	20.00	19.63	98	65-129

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	107	56-142	
Bromofluorobenzene (PID)	105	55-149	<u> </u>

BSD

Lab ID:

QC136745

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	19.19	96	51-125	0	20
Benzene	20.00	18.95	95	67-117	1	20
Toluene	20.00	18.15	91	69-117	2	20
Ethylbenzene	20.00	19.09	95	68-124	2	20
m,p-Xylenes	40.00	40.55	1.01	70-125	0	20
o-Xylene	20.00	19.55	98	65-129	0	20

Surrogate	%REC	Limits
Trifluorotoluene (PID)	108	56-142
Bromofluorobenzene (PID)	105	55-149

	Gasoline	by GC/FID CA LT	JFT
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8015M
Field ID:	22 2322222	Batch#:	€1362
MSS Lab ID:	150143-001	Sampled:	02/06/01
Matrix:	Water	Received:	02/ 06/0 1
Units:	${ t ug/L}$	Analyzed:	02/08/01
Diln Fac:	1.000		

MS

Lab ID: QC136976

Analyte	MSS R	esult	Spiked	Result	%RE(2 Limits
Gasoline C7-C12	er van de de de de de de de de de de de de de	97.5	2,000	2,387	89	65-131
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	124	59-135				
Bromofluorobenzene (FID)	133	60-140		.		

MSD

Analyte

Lab ID:

Spiked Result %REC Limits RPD Lim

QC136977

Surrogat	e %REC						
Gasoline C7-C12		2,000	2,438	92	65-131	2 20)

Surrogate	%REC	Limits
Trifluorotoluene (FID)	123	59-135
Bromofluorobenzene (FID)	130	60-140

	Purqeable	Halocarbons by	ic/ns
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	TB-020101	Batch#:	61274
Lab ID:	150080-001	Sampled:	02/01/01
Matrix:	Water	Received:	02/02/01
Units:	ug/L	Analyzed:	02/04/01
Diln Fac:	1.000		, ,

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	112	78-123
Toluene-d8	101	80-110
Bromofluorobenzene	99	80-115

	Purgeable	Halocarbons by G	IC/NB
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	LFR-4 FB	Batch#:	61274
Lab ID:	150080-002	Sampled:	02/01/01
Matrix:	Water	Received:	02/02/01
Units:	ug/L	Analyzed:	02/04/01
Diln Fac:	1.000	-	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

	Surrogate	\$REC	Lieite	
	1,2-Dichloroethane-d4	112	78-123	
_	Toluene-d8	100	80-110	
_	Bromofluorobenzene	101	80-115	·

	Purgeable	Halocarbons by	ec/ne
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	LFR-4	Batch#:	61274
Lab ID:	150080-003	Sampled:	02/01/01
Matrix:	Water	Received:	02/02/01
Units:	ug/L	Analyzed:	02/04/01
Diln Fac:	1.000	-	•

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichlorcethane	ND	0.5
cis-1,2-Dichloroethene	0.6	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	FREC	Limits
1,2-Dichloroethane-d4	114	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	98	80-115

	Purgeable	Halocarbons by (ic/ks
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	GW-3	Batch#:	61274
Lab ID:	150080-004	Sampled:	02/01/01
Matrix:	Water	Received:	02/02/01
Units:	ug/L	Analyzed:	02/04/01
Diln Fac:	1.000	_	

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND ,	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	1.1	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	0.6	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	46	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	FREC	Limits
1,2-Dichloroethane-d4	114	78-123
Toluene-d8	99	80-110
Bromofluorobenzene	101	80-115

	Purgeable	Halocarbons by G	GC/MS
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	GW-2	Batch#:	61274
Lab ID:	150080-005	Sampled:	02/01/01
Matrix:	Water	Received:	02/02/01
Units:	ug/L	Analyzed:	02/04/01
Diln Fac:	1.000	-	, .

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	2.8	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	0.6	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	7.7	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	118	78-123
Toluene-d8	99	80-110
Bromofluorobenzene	100	80-115

	Purgeable	Halocarbons by G	ec/ms
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136673	Batch #:	61274
Matrix:	Water	Analyzed:	02/04/01
Units:	ug/L		

Analyte		
Freon 12	Result	RL 1.0
Chloromethane	ND	1.0
	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND .	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	DM	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
rbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	\$REC	Limits
1,2-Dichloroethane-d4	107	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	98	80-115

	Purgemble	Halocarbons by 9	sc/ks
Lab #:	150080	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	61274
Units:	ug/L	Analyzed:	02/04/01
Diln Fac:	1.000	_	

Type:

BS

Lab ID:

QC136671

	Analyta	Spiked	Result	\$REC	Limits
П	1,1-Dichloroethene	50.00	55.55	111	74-132
Ì	Trichloroethene	50.00	50.09	100	80-11 9
ıl	Chlorobenzene	50.00	47.93	96	80-117

Surrogate	FREC	Limits
1,2-Dichloroethane-d4	111	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	99	80-115

_⁄e:

BSD

Lab ID:

QC136672

Apalyte	Spiked	Result	9 REC	Limits	(RP)	77,14
1,1-Dichloroethene	50.00	54.15	108	74-132	3	20
Trichloroethene	50.00	49.16	98	80-11 9	2	20
Chlorobenzene	50.00	47.99	96	80-117	0	20

Surrogate	9 REC	Limits
1,2-Dichloroethane-d4	110	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	98	80-115

PROJ# 6895. 00 SEC# 032 LABORATORY CAT SAMPLE DATE(S) 2) 1 01 EXTRACTION DATE(S)	JRANCE/QUALITY CONTROL WORK METHOD <u>8260, 8021,</u> ANALYSIS DATE(S)	
TTEM HOLDING TIME FIELD BLANK RESULTS	STANDARD MAX HOLDING TIME DETECTION LIMIT	STANDARD MET? Y N Y N Y N Y N CI
TRIP BLANK RESULTS METHOD BLANK RESULTS METHOD SPIKE RECOVERY RANGE METHOD SPIKE RPD RANGE SURROGATE RECOVERY RANGE MATRIX SPIKE RECOVERY RANGE MATRIX SPIKE RPD RANGE	DETECTION LIMIT DETECTION LIMIT ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE	
LCS SPIKE RECOVERY RANGE LCS SPIKE RPD RANGE FIELD DUPLICATE RPD ELEVATED DETECTION LIMIT COC MATCHES LAB DATA	ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE	N N N N N N N N N N N N N N N N N N N
NOTES: CORRECTIVE ACTION SUGGESTED:		
CORRECTIVE ACTION SUGGESTED: (1) MTBE WAS detected in TO-02010] (1) MTBE WAS detected in TO-02010] (2) MTBE CONCENTRATING DEED	at G. WIL. Plas MIBE with in field sumple was v	YEARITS IN LER-4 and GW-3 85 man 5x canc defended in
Worksheet prepared by: 1967 Date 1919 O Reviewed by: 1966 Manager must also initial QA/QC space on table. After review, return copy of initialed worksheet to laboratory data coordinator for it you have additional questions, please ask LFR laboratory manager for assistance.	Date (Project Manager) filing.	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 14-FEB-01

Lab Job Number: 150037

Project ID: 6895.00.032 Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manage

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of 3

Laboratory Numbers: 150037 Client: LFR-Levine Fricke Project #: 6895.00.032

Location: Glovatorium

COC#: 7881

Sampled Date: 01/31/01 Received Date: 01/31/01

CASE NARRATIVE

This hardcopy data package contains sample and QC results for four water samples, which were received from the site referenced above on January 3, 2001. The samples were received cold and intact. All data was faxed to Julie Sharp on February 07, 2001.

TVH/BTXE:

High Bromofluorobenzene surrogate recoveries were observed for samples B-10 (CT# 150037-003) and B-7 (CT# 150037-004) due to hydrocarbons coeluting with the surrogate peaks. No other analytical problems were encountered.

VOCs (EPA 8260):

No analytical problems were encountered.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

Project No.:	395.00.0	つてみ	Proje	ct Location	n: (C	Sak	lan	کر د	A	Date:	1/31	101	Serial	
Project Name:	ovatori	الهن	Field	Logbook I	NO.: NYD		-	-/	ample E	vent Name	} 		No	7881
Sampler (Signature):	all					.		الإيج	NALYSE	E\$				implers: 1XD, Mwi)
	SAMPLE IN	ORMATI	ON (Print Clearly	/)			1000	3 5/0	5 4	7/	$\overline{}$	7//	7	.
SAMPLE NO.			LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMPI	E 03		5/3/ 5/3/2		ES 2	/ /3	dy kist	REM	IARKS
TB-01310	1 1/3/	dass			Hoo	×	X					SIN	JARDU	TAT
mw-11		ශ්රීත		9	-1-	X	义		\	<u>.</u>				
B-10		llog		6		X	X	X						Julie
B-7		1110		6		X	X	X				Sho	<u> </u>	
						<u> </u>				·			_	· · ·
				<u> </u>										
			·											
	d_			<u> </u>	سه	<u> </u>								
RELINQUISHED BY: (Signature)	Pelle		DATE 1/31/0	TIME		(Sig	IVED BY nature)	1	le rec	Lund	L	DA //	31/01	TIME / 1/2
RELINQUISHED BY: (Signature)	-(DATE	TIME			IVED BY Inature)		8			Ď.	TE	TIME
RELINQUISHED BY: (Signature)			DATE	TIME			IVED BY nature)	' :				DA	ATE	TIME
METHOD OF SHI: MENT:	COURI	ER	DATE	TIME		LAB	OMMEN	ITS:						
Sample Collector:	LEVINE•FRICKE- 1900 Powell Stre- Emeryville, Califo (510) 652-4500	et, 12th F				Analy	rtical La	borator	y:	-				

Shipping Copy (White)

Lab Copy (Yellow)

File Copy (Pink)

Field Copy (Goldenrod)

9999\COCTEMP.CDR 042998

rec'd cold

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Effective Date:

10-May-99

Revision:

1 Number 3 of 3

Filename:

F:\QC\Forms\QC\Cooler.wpd

COOLER RECEIPT CHECKLIST

Logi	n#: Date Received: 1/3/10/ Number of Coolers nt: 1 FP: Project: Cloretorium	_{s:} (
Clier	nt: 1 FP: Project: Clubatarium	· · · · · · · · · · · · · · · · · · ·								
VV.										
A.	Preliminary Examination Phase	_								
	Preliminary Examination Phase Date Opened:									
1.	Did cooler come with a shipping slip (airbill, etc.)?	YES (NO)								
	If YES, enter carrier name and airbill number:									
2.	Were custody seals on outside of cooler?	YES NO								
	How many and where? Seal date: Seal name	ıe:								
3.	Were custody seals unbroken and intact at the date and time of arrival?	YES NO								
4.	Were custody papers dry and intact when received?	YES NO								
5.	Were custody papers filled out properly (ink, signed, etc.)?	YES NO								
6.	Did you sign the custody papers in the appropriate place?	TE S, NO								
7. `	Was project identifiable from custody papers?	KE& NO								
	If YES, enter project name at the top of this form.									
8.	If required, was sufficient ice used? Samples should be 2-6 degrees C	(YES NO								
	Type of ice: Wer re Temperature: Chille									
		1								
В.	Login Phase	<i>'</i>								
	Date Logged In: 31/1/00 By (print): ANDREW (sign)									
1.	Describe type of packing in cooler: Zir / Lulo									
2.	Did all bottles arrive unbroken?	XES NO								
3.	Were labels in good condition and complete (ID, date, time, signature, etc.									
4.	Did bottle labels agree with custody papers?									
5.	Were appropriate containers used for the tests indicated?	KEN NU								
6.	Were correct preservatives added to samples?	XES NO								
7.	Was sufficient amount of sample sent for tests indicated?									
8.	Were bubbles absent in VOA samples? If NO, list sample Ids below									
9.	Was the client contacted concerning this sample delivery?	YES NO								
	If YES, give details below.	T S.								
	Who was called? By whom?	Date:								
Additi	ional Comments:									
		-,								
Filenam	ne: F:\qc\forms\cooler.wpd	Rev. 1, 4/95								

Gasoline by GC/FID CA LUFT 150037 Location: Glovatorium Client: LFR Levine Fricke 6895.00.032 EPA 5030 Prep: EPA 8015M 01/31/01 Analysis: Project#: Matrix: Sampled: Water ug/L 01/31/01 Units: Received: 1.000 02/01/01 Diln Fac: Analyzed: Batch#: 61209

Field ID:

MW-11

Type:

SAMPLE

Lab ID:

150037-002

Analyte	Result	RL.	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ИD	50	

Surrogate %REC Limits Trifluorotoluene (FID) 112 59-135 Bromofluorobenzene (FID) 106 60-140

Field ID: B-10

Lab ID:

150037-003

Type:

SAMPLE

Analyte	Result	RL
Gasoline C7-C12	3,600 H Y Z	50
Stoddard Solvent C7-C12	2,400 Z	50

%REC Limits Surrogate (fluorotoluene (FID) 114 59-135 147 <u>ómofluorobenzene (FID)</u> 60-140

Field ID:

Type:

B-7 SAMPLE Lab ID:

150037-004

Analyte	Result	RL	
Gasoline C7-C12	7,900 H Y	50	
Stoddard Solvent C7-C12	5,300	50	

	Surroga	te	%REC	Limits	
I	rifluorotoluene	(FID)	111	59-135	
■ E	romofluor <u>obenzen</u>	e (FID)	147 *	60-140	

BLANK

Lab ID:

QC136414

Analyte	Result	RL	
Gasoline C7-C12	11D	50	
Stoddard Solvent C7-C12	HD	50	
Surrogate	%REC Limits		
Trifluorotoluene (FID)	110 59-135		
Bromofluorobenzene (FID)	105 60-140		

*= Value outside of QC limits; see narrative
H= Heavier hydrocarbons contributed to the quantitation
Y= Sample exhibits fuel pattern which does not resemble standard
Sample exhibits unknown single peak or peaks

/Not Detected

Reporting Limit Page 1 of 1

GC19 TVH 'X' Data File (FID)

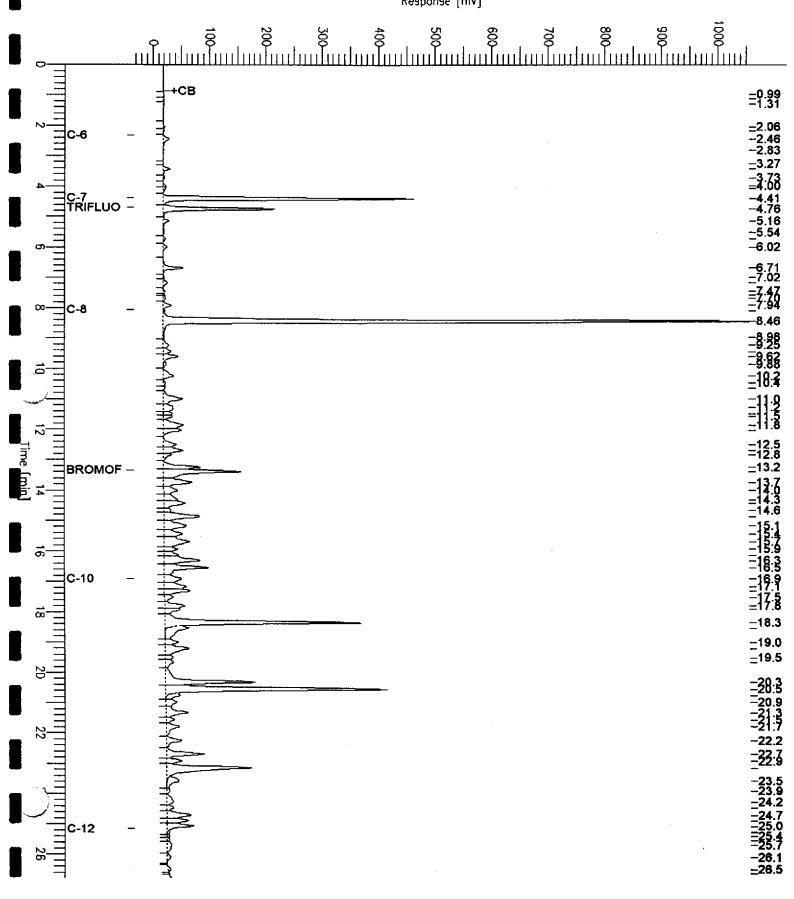
Sample Name : 150037-003,61209,+MTBE/STODD

: G:\GC19\DATA\032X009.raw TileName

lethod : TVHBTXE

Start Time : 0.00 min Factor: 1.0

End Time : 26.80 min Plot Offset: -34 mV


Sample **#**: A1 Date : 2/1/01 07:16 PM

Time of Injection: 2/1/01 06:49 PM

Low Point: -33.65 mV Plot Scale: 1088.9 mV High Point: 1055.28 mV

Page 1 of 1

Sample Name: 150037-004,61209,+MTBE/STODD

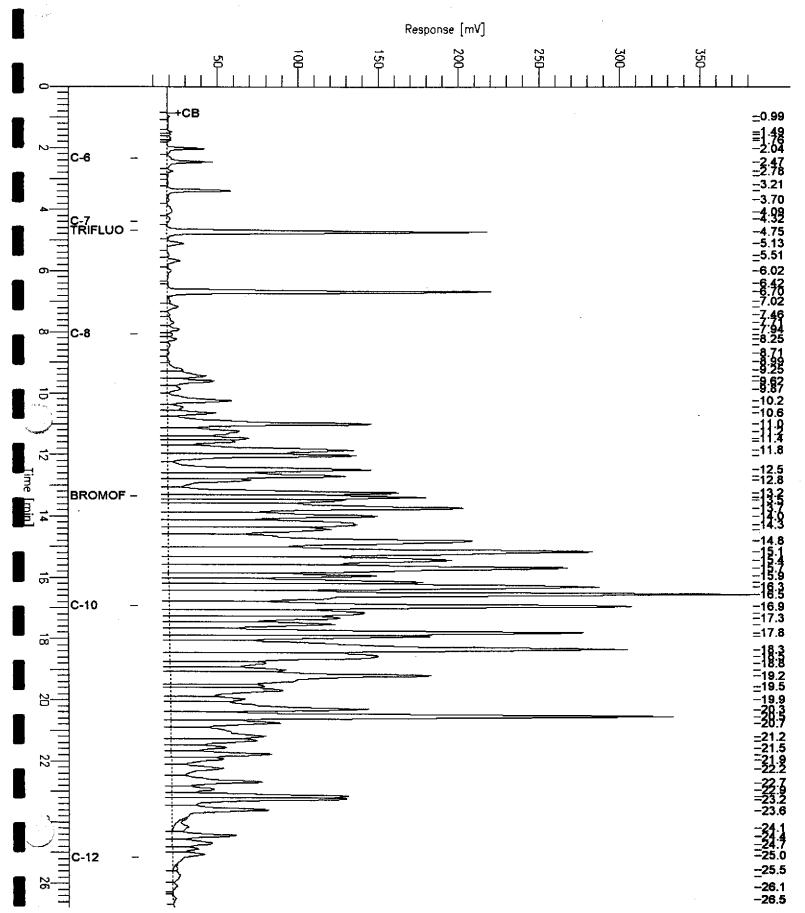
: G:\GC19\DATA\032X011.raw FileName

: TVHBTXE

Start Time : 0.00 min Factor: 1.0

End Time : 26.80 min

Plot Offset: 0 mV


Sample #: Al Date : 2/1/01 08:33 PM

Time of Injection: 2/1/01 08:06 PM

Low Point : 0.46 mV High Point : 382.95 mV

Page 1 of 1

Plot Scale: 382.5 mV

Sample Name : CCV/LCS,QC136415,61209,01WS0395,5/5000

: G:\GC19\DATA\032X002.raw

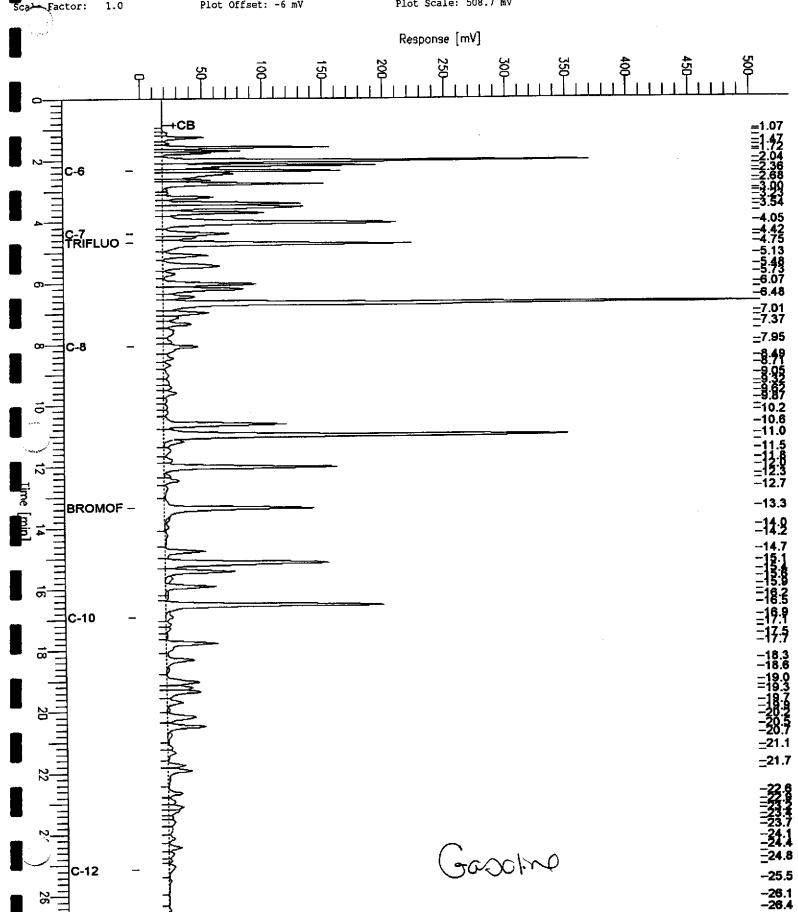
: TVHBTXE ethod

art Time : 0.00 min 1.0

End Time : 26.80 min Plot Offset: -6 mV

Sample #: GAS

Page 1 of 1


Date: 2/1/01 02:45 PM

Time of Injection: 2/1/01 02:18 PM

Low Point : -6.09 mV

High Point: 502.59 mV

Plot Scale: 508.7 mV

Sample Name : CCV, STODD, 61209, 00WS9595, 5/5000

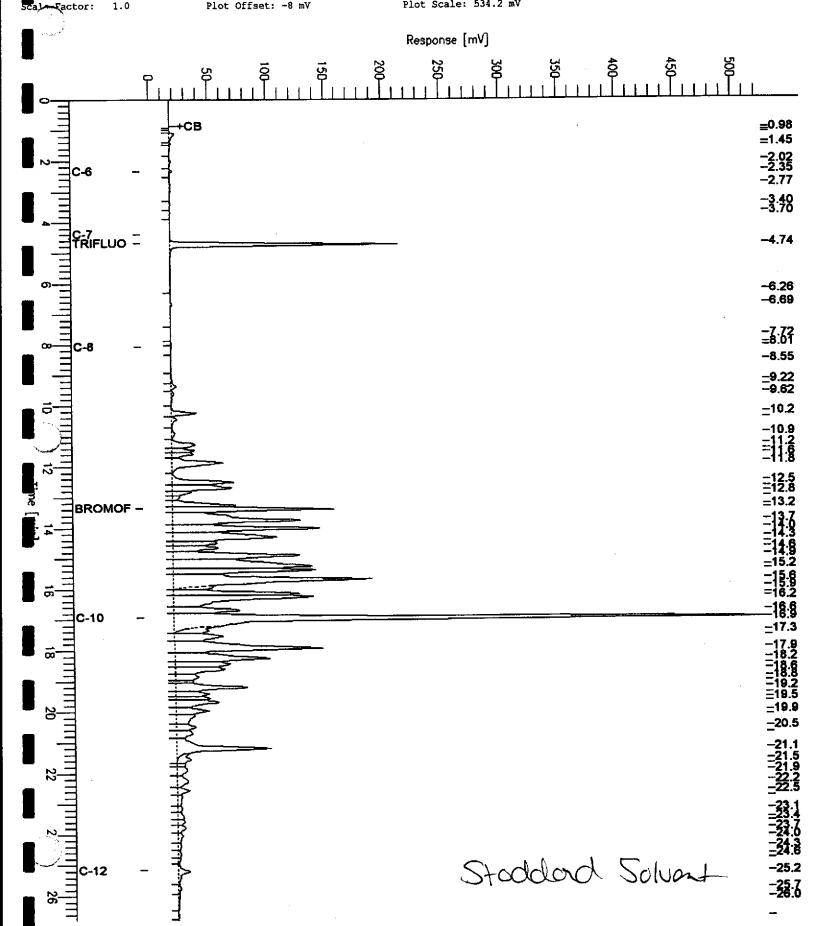
<u>leName</u> : G:\GC19\DATA\032X004.raw

: TVHBTXE thod

ert Time : 0.00 min

End Time : 26.80 min Plot Offset: -8 mV

Sample #: STODD


Page 1 of 1

Date: 2/1/01 04:02 PM

Time of Injection: 2/1/01 03:35 PM

High Point : 526.29 mV Low Point : -7.90 mV

Plot Scale: 534.2 mV

Benzene, Toluene, Ethylbenzene, Xylenes Lab #: 150037 Location: Glovatorium LFR Levine Fricke 6895.00.032 EPA 5030 Client: Prep: EPA 8021B 01/31/01 Project#: <u> Analysis:</u> Matrix: Sampled: Water ug/L 01/31/01 Units: Received: Diln Fac: 1.000

'ield ID:

TB-0131D1 SAMPLE

Type: Lab ID:

150037-001

Batch#:

61298

02/05/01 Analyzed:

			000000000000000000000000000000000000000
Analyte	Result	RL	
MTBE	3.3	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	· ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	108	56-142	
Bromofluorobenzene (PID)	107	<u> 55-149</u>	

ield ID:

MW-11 SAMPLE

Type: Lab ID:

150037-002

Batch#: Analyzed:

61209 02/01/01

Analyte Result 2.0 δĒ 8.7 0.50 Benzene NDND 0.50 Toluene 0.50 Ethylbenzene ND0.50 m,p-Xylenes ND0.50 ND o-Xylene

Т	Surrogate	%RE(Limits	
	Trifluorotoluene (PID)	106	56-142	
П	Bromofluorobenzene (PID)	104	55-149	

Field ID: Type: Lab ID:

B-10

SAMPLE 150037-003 Batch#:

61209

Analyzed: 02/01/01

RL Analyte Result MTBE ND 2.0 0.50 3.1 Benzene Toluene 10 0.50 0.76 C 0.50 Ethylbenzene m,p-Xylenes o-Xylene 12 0.50 0.50

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	114	56-142	
Bromofluorobenzene (PID)	128	<u> 55-149</u>	

*= Value outside of QC limits; see narrative Not Detected Reporting Limit Page 1 of 2

Benzene, Toluene, Ethylbenzene, Xylenes Lab #: 150037 Glovatorium Location: LFR Levine Fricke 6895.00.032 Client: Prep: EPA 5030 EPA 8021B 01/31/01 01/31/01 Project#: Analysis: Matrix: Water Sampled: Units: ug/L Received: Diln Fac: 1.000

Field ID: Type:

B-7

lab ID:

SAMPLE

150037-004

Batch#:

Analyzed:

61209

02/01/01

Analyte	Result	RL	
MTBE	10	2.0	
Benzene	8.9	0.50	
Toluene	59	0.50	
Ethylbenzene	9.7	0.50	
m,p-Xylenes	48	0.50	
o-Xylene	39	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	107	56-142	
Bromofluorobenzene (PID)	156 *	55-149	

Cype: Lab ID: BLANK QC136414 Batch#:

61209

Analyzed: 02/01/01

	Analyt	e Result	RL	
	`3E	ND	2.0	
<u> </u>	jazene	ND	0.5 0	
770	luene	ND	0.50	
Et	hylbenzene	ND	0.50	
m,	p-Xylenes	ND	0.50	1
	Xylene	ND	0.50	

Surroqate	%REC	Limits	
Trifluorotoluene (PID)	105	56-142	
Bromofluorobenzene (PID)	104	55-149	

ab ID:

BLANK QC136746 Batch#:

Analyzed:

61298 02/05/01

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC Limits
	07 56-142
IIIII dolocorache (FID)	V
Bromofluorobenzene (PID) 1	64 55 346
Bromofluorobenzene (PID) 1	.04 55-149
DIGINOTIACION CHILDREN (LID)	<u> </u>

^{*=} Value outside of QC limits; see narrative
 Presence confirmed, but confirmation concentration differed by more than a factor of two Not Detected Reporting Limit Page 2 of 2

	Gasoline	by GC/FID CA LU	IFT
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA_8015M
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC136415	Batch#:	61209
Matrix:	Water	Analyzed:	02/01/01
Units:	ug/L		

Analyte	Spiked	Result	%REC	
Gasoline C7-C12	2,000	1,985	99	73-121

Surroga	te	%REC	Limits
Trifluorotoluene	(FID)	128	59-135
Bromofluorobenzen	e (FID)	127	60-140

	Benzene, Toluene, E	thylbenzene, X	ylenes
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	61209
Units:	ug/L	Analyzed:	02/01/01
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC136416

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	22.98	115	51-125
Benzene	20.00	20.09	100	67-117
Toluene	20.00	19.30	96	69-117
Ethylbenzene	20.00	19.18	96	68-124
m,p-Xylenes	40.00	41.28	103	70-125
o-Xylene	20.00	19.69	98	65-129

Surrogate	%RBC	Limits	
Trifluorotoluene (PID)	105	56-142	
Bromofluorobenzene (PID)	104	55-149	

Type:

BSD

Lab ID:

Analyte	Spiked	Result	%R BC	Limits	RPD	Lim
MTBE	20.00	23.22	116	51-125	1	20
Benzene	20.00	20.02	100	67-117	0	20
Toluene	20.00	19.29	96	69-117	0	20
Ethylbenzene	20.00	19.23	96	68-124	0	20
	40.00	41.44	104	70-125	0	20
m,p-Xylenes o-Xylene	20.00	19.82	99	65-129	1	20

٠,	Surrogate	%REC	Limits	
_	Trifluorotoluene (PID)	106	56-142	
_	Bromofluorobenzene (PID)	106	55-149	
		•		

	Benzene, Toluer		Xylenes
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	61298
Units:	ug/L	Analyzed:	02/05/01
Diln Fac:	1.000		

ВЗ

Lab Ib: ÇC136744

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	19.25	96	51-125
Benzene	20.00	18.76	94	67-117
Toluene	20.00	17.87	89	69-117
Ethylbenzene	20.00	19.40	97	68-124
m,p-Xylenes	40.00	40.41	101	70-125
o-Xylene	20.00	19.63	98	65-129

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	107	56-142	
Bromofluorobenzene (PID)	105	55-149	

BSD

Lab ID:

Analyte	Spiked	Result	%R E C	Limits	RPD	Lim
MTBE	20.00	19.19	96	51-125	0	20
Benzene	20.00	18.95	95	67-117	1	20
Toluene	20.00	18.15	91	69-117	2	20
Ethylbenzene	20.00	19.09	95	68-124	2	20
m,p-Xylenes	40.00	40.55	101	70-125	0	20
o-Xylene	20.00	19.58	98	65-129	0	20

Surrogate	%REC	Limits
Trifluorotoluene (PID)	108	56-142
Bromofluorobenzene (PID)	105	55-149

\ \(\frac{1}{2} \)	Gagoline	e by GC/FID CA LU	TETT
	Judy 1111	s by de/rib en de	
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8015M
Field ID:	MW-11	Batch#:	61209
MSS Lab ID:	150037-002	Sampled:	01/31/01
Matrix:	Water	Received:	01/31/01
Units:	ug/L	Analyzed:	02/01/01
Diln Fac:	1.000		

Туре:

MS

Lab ID:

QC136418

Analyte	MSS Result	Spiked	Result	%RE	C Limits
Gasoline C7-C12	<33.00	2,000	1,913	96	65-131
Surrogate	%REC Limits				

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	125	59-135	
Bromofluorobenzene (FID)	123	60-140	

MSD

Lab ID:

Analyte	Spiked	Result	%REC	Limits	RPL	Lim
Gasoline C7-C12	2,000	1,949	97	65-131	2	20
	, , , , , , , , , , , , , , , , , , , ,					

_	Surrogate	%REC	Limits
	Trifluorotoluene (FID)	123	59-135
	Bromofluorobenzene (FID)	122	60-140

	Purgeable Halo	carbons by GC/I	MS
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	TB-0131D1	Batch#:	61241
Lab ID:	150037-001	Sampled:	01/31/01
Matrix:	Water	Received:	01/31/01
Units:	ug/L	Analyzed:	02/02/01
Diln Fac:	1.000		

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
rbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	100	78-123
Toluene-d8	99	80-110
Bromofluorobenzene	101	80-115

Not Detected
Reporting Limit
Page 1 of 1

	Purgeable	Halocarbons by 6	GC/MS
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	MW-11	Batch#:	61241
Lab ID:	150037-002	Sampled:	01/31/01
Matrix:	Water	Received:	01/31/01
Units:	ug/L	Analyzed:	02/02/01
Diln Fac:	1.000	-	

	<u> </u>	
Analyte	Result	RL 1.0
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
arbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ИD	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	103	78-123	ļ
Toluene-d8	100	80-110	
Bromofluorobenzene	101	80-115	

Not Detected Reporting Limit Page 1 of 1

ľ	Purgeable	Halocarbons by (GC/MS
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	B-10	Batch#:	61241
Lab ID:	150037-003	Sampled:	01/31/01
Matrix:	Water	Received:	01/31/01
Units:	ug/L	Analyzed:	02/02/01
Diln Fac:	50.00		

Analyte	Result	RL	
Freon 12	ND	50	
Chloromethane	ND	50	
Vinyl Chloride	ND	25	
Bromomethane	ND	100	
Chloroethane	ND	50	
Trichlorofluoromethane	ND	25	
Freon 113	ND	250	
1,1-Dichloroethene	ND	25	
Methylene Chloride	ND	250	
trans-1,2-Dichloroethene	44	25	
1,1-Dichloroethane	ND	25	
cis-1,2-Dichloroethene	6,600	25	
Chloroform	ND	25	
1,1-Trichloroethane	ND	25	
arbon Tetrachloride	ND	25	
1,2-Dichloroethane	ND	25	
Trichloroethene	1,600	25	
1,2-Dichloropropane	ND	25	
Bromodichloromethane	ND	25	
cis-1,3-Dichloropropene	ND	25	
trans-1,3-Dichloropropene	ND	25	
1,1,2-Trichloroethane	ND	25	
Tetrachloroethene	2,100	25	
Dibromochloromethane	ND	25	
Chlorobenzene	ND	25	
Bromoform	ND	25	
1,1,2,2-Tetrachloroethane	ND	25	
1,3-Dichlorobenzene	ИD	25	
1,4-Dichlorobenzene	ND	25	
1,2-Dichlorobenzene	ND	25	

	Surrogate	%REC	Limits
	1,2-Dichloroethane-d4	99	78-123
	Toluene-d8	101	80-110
٦	Bromofluorobenzene	103	80-115

Not Detected
Reporting Limit
rage 1 of 1

	Purgeable	Halocarbons by 6	ec/ks
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	B-7	Batch#:	61241
Lab ID:	150037-004	Sampled:	01/31/01
Matrix:	Water	Received:	01/31/01
Units:	ug/L	Analyzed:	02/02/01
Diln Fac:	8.333	•	•

Auslyte	Result	RL	
Freon 12	ND	8.3	
Chloromethane	ND	8.3	İ
Vinyl Chloride	ND	4.2	1
Bromomethane	ND	17	
Chloroethane	ND	8.3	
Trichlorofluoromethane	ND	4.2	ı
Freon 113	ND	42	1
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	42	
trans-1,2-Dichloroethene	4.8	4.2	
1,1-Dichloroethane	ND	4.2	
cis-1,2-Dichloroethene	920	4.2	
loroform	ND	4.2	
1,1-Trichloroethane	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	ı
cis-1,3-Dichloropropene	ND	4.2	
trans-1,3-Dichloropropene	ND `	4.2	ļ
1,1,2-Trichloroethane	ND	4.2	
Tetrachloroethene	ND	4.2	ļ
Dibromochloromethane	ND	4.2	
Chlorobenzene	ND	4.2	
Bromoform	ND	4.2	
1,1,2,2-Tetrachloroethane	ND	4.2	
1,3-Dichlorobenzene	ND	4.2	İ
1,4-Dichlorobenzene	ND	4.2	Į
1,2-Dichlorobenzene	ND	4.2]

Surrogata)rec	Limits
1,2-Dichloroethane-d4	101	78-123
Toluene-d8	99	80-110
Bromofluorobenzene	99	80-115

Not Detected
Reporting Limit
Page 1 of 1

	Purgeable	Halocarbons by G	C/MS
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136546	Batch#:	61241
Matrix:	Water	Analyzed:	02/02/01
Units:	ug/L		

Analyte	Result	RL
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
rbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	• RBC	Limits
1,2-Dichloroethane-d4	98	78-123
Toluene-d8	99	80-110
Bromofluorobenzene	102	80-115

	Purgeable	Halocarbons by 6	е/ж
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136547	Batch #:	61241
Matrix:	Water	Analyzed:	02/02/01
Units:	ug/L		

Analyte	Result	RL
Freon 12	ND	1,0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
rbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

	Surrogate		C Limits
	1,2-Dichloroethane-d4	98	78-123
	Toluene-d8	99	80-110
_	Bromofluorobenzene	101	80-115

Not Detected
Reporting Limit
Page 1 of 1

	Purgeable	Halocarbons by 6	BC/KB
Lab #:	150037	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	61241
Units:	ug/L	Analyzed:	02/02/01
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC136544

Analyte	Spiked	Result	SREC	Limits
1,1-Dichloroethene	50.00	45.96	92	74-132
Trichloroethene	50.00	46.58	93	80-119
Chlorobenzene	50.00	50.39	101	80-117

Surrogate	*REC	Limits
1,2-Dichloroethane-d4	100	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	98	80-115

_ øe

BSD

Lab ID:

healy:a	Spiked	Result	\$RBI	Limita	R 220	77.5
1,1-Dichloroethene	50.00	44.53	89	74-132	3	20
Trichloroethene	50.00	45.77	92	80-119	2	20
Chlorobenzene	50.00	48.78	98	80-117	3	20

Surrogate	SREC	Limits	
1,2-Dichloroethane-d4	99	78-123	
Toluene-d8	99	80-110	1
Bromofluorobenzene	98	80-115	

		QUALITY CONTROL WORKSHEET

ROJ# (& 95 . 00 SEC# 032 LABORATORY C T	METHOD EPASOIS, 8200 LAB ID# 150037 ANALYSIS DATE(S) PROJECT MANAGER <u>#CS</u>		
TTEM	STANDARD	STANDARD MET?	
	MAX HOLDING TIME	N (X)	
HOLDING TIME	DETECTION LIMIT	- 	
FIELD BLANK RESULTS	DETECTION LIMIT	T Y O	
TRIP BLANK RESULTS	DETECTION LIMIT	* * C & C & C & C & C & C & C & C & C &	
METHOD BLANK RESULTS	ACCEPTABLE RANGE	M 🐼 N	
METHOD SPIKE RECOVERY RANGE	ACCEPTABLE RANGE	<u> </u>	
METHOD SPIKE RPD RANGE	ACCEPTABLE RANGE	Y (N) L2	
SURROGATE RECOVERY RANGE	ACCEPTABLE RANGE	Ø N	
MATRIX SPIKE RECOVERY RANGE		A A N	
MATRIX SPIKE RPD RANGE LCS SPIKE RECOVERY RANGE	ACCEPTABLE RANGE	<u> </u>	
LCS SPIKE RPD RANGE	ACCEPTABLE RANGE		
FIELD DUPLICATE RPD	ACCEPTABLE RANGE		
ELEVATED DETECTION LIMIT			
COC MATCHES LAB DATA			
		SANTA ANTONY OLE PER LESSON AND LA	
NOTES:			
Ly and Allupa in Uo	on at 3.3 vall. Flag utibe vessults concentration auticipal in field sample	reach matter Ann. 1965 - The Control of the Control	
	1DE B-10 9 6-7 Q8 (Brimated dul 10 Martin Sample 18-7 Q8 (Shime Date (Project Manager)	ited U due to high	
Date 3 1901 Reviewed by: Project Manager must also mind QA/QC space on table. She review, return copy of initialed worksheet to laboratory data coordinator for the laboratory data coordinator for the laboratory manager for assistance.	raing		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

LFR Levine Fricke 1900 Powell Street 12th Floor Emeryville, CA 94608

Date: 15-FEB-01

Lab Job Number: 150007

Project ID: 6895.00.032 Location: Glovatorium

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manage

Reviewed by:

Operations Manager

This package may be reproduced only in its entiredy

CA ELAP # 1459

Page 1 of

Laboratory Numbers: 150007 Client: LFR-Levine Fricke Project #: 6895.00.032

Location: Glovatorium

COC#: 7861

Sampled Date: 01/30/01 Received Date: 01/30/01

CASE NARRATIVE

This hardcopy data package contains sample and QC results for four water samples, which were received from the site referenced above on January 30, 2001. The samples were received cold and intact. All data was faxed to Julie Sharp on February 06, 2001.

TVH/BTXE:

No analytical problems were encountered.

VOCs (EPA 8260):

No analytical problems were encountered.

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

Project No.:	75.00.	03	み	t Locatio	tla	nd,	CA			Date	1/3	0/0(Serial	
Project Name: Gla	ia torium		Field	Logbook 17	Mo	-4		S	ample (Event N. Q. /				Nº	7861
Sampler (Signature):	led 2	-2	hat					.s∂^	NALYS	ES					mplers:) / mぃ()
	SAMPLE INF	ORMAT	ON (Print Clearly	<i>(</i>)			/ ^	5	1. 2	/	<i>J</i> .5		77.		
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMP TYP	LE NO	2000 A	\$3%		33%	50×32	/*/	NAST	REM	ARKS
TB-013001	1/30/0	c83 0	150007-1	į	1420	×	×	X					Ster	derd T	AT
LFR-2	1	915	-2	6	1	X	×	X	X	X					7 17 117
(SW -4		1055		6				Ĺ				_	fes	ults t	0
LFR-3		1305	~4	6									54	ie Sha	-0
			<u> </u>												T
1															
1															
		4			d	16	d	م	الع	0					
RELINQUISHED BY:	_ ///	1	DATE	TIME		RECE	IVED BY nature)	7	. 1	3/	2 /			ATE	TIME
(Signature)	Me		1/30/0		3 0			16	<u> </u>	((ر)				70/61	21 4 6
RELINQUISHED BY: (Signature)			DATE '	TIME			IVED BY nature)	: '⁄	, 				D	ATE	TIME
RELINQUISHED BY: (Signature)			DATE	TIME			IVED BY nature)	:					D	ATE	TIME
METHOD OF SHIPMENT:	(Och)	E12	DATE	TIME		LAB	OMMEN	TS:					· · · · · · · · · · · · · · · · · · ·		
·	LEVINE•FRICKE•I 1900 Powell Stree Emeryville, Califor (510) 652-4500	t, 12th F				Analy	rtical Lai	borator	y: (

SOP Volume:

Client Services

Section:

1.1.2

Page:

1 of 1

Effective Date: 10-May-99

Revision:

1 Number 3 of 3

Filename:

Filename: F:\qc\forms\cooler.wpd

F:\QC\Forms\QC\Cooler.wpd

COOLER RECEIPT CHECKLIST

Curtis & Tompkins, Ltd.

Rev. 1, 4/95

Logii	n#: \5007 Date Received: \[\langle 30/01 \] Number of Coolers: \[\frac{2}{2} \]
Clien	A CP I I to Add to A Part I all the Add to Add to Add to Add to A Part I all the Add to Add to Add to Add to Add to Add to Add
A.	Preliminary Examination Phase
	Date Opened:
1.	Did cooler come with a shipping slip (airbill, etc.)?
	If YES, enter carrier name and airbill number:
2.	Were custody seals on outside of cooler? YES NO
	How many and where? Seal date: Seal name:
3.	Were custody seals unbroken and intact at the date and time of arrival? YES NO
4.	Were custody papers dry and intact when received?
5.	Were custody papers filled out properly (ink, signed, etc.)?
6.	Did you sign the custody papers in the appropriate place?
7 . `	Was project identifiable from custody papers?
	If YES, enter project name at the top of this form.
8.	If required, was sufficient ice used? Samples should be 2-6 degrees CYES NO
	Type of ice: WeT ice Blue ice Temperature: Chillel
В.	Date Logged In: 300 By (print):) which (sign) Describe type of packing in cooler: Buttle writ 2 : placed F-ounter
	Date Logged In: 1/ 10/11 By (print): (sign)
1.	Describe type of packing in cooler: Rullie writ / 2 i plucky / F-uumie/ Did all bottles arrive unbroken?
2.	272 662 001000
3.	Were labels in good condition and complete (ID, date, time, signature, etc.)? (ES NO
4.	Did bottle labels agree with custody papers?
5.	Were appropriate containers used for the tests indicated?
6. -	Were correct preservatives added to samples? YES NO
7.	Was sufficient amount of sample sent for tests indicated?
8.	Were bubbles absent in VOA samples? If NO, list sample Ids below
9.	Was the client contacted concerning this sample delivery?
	If YES, give details below. Who was called? By whom? Date:
	Who was called? By whom? Date:
نه:د. ه	ional Comments:
Addit	ional Comments.

Gasoline by GC/FID CA LUFT Lab #: Glovatorium 150007 Location: Prep: Client: LFR Levine Fricke EPA 5030 Project#: 6895.00.032 Anal∵sis: EPA 8015M Water Batch#: 61184 Matrix: 01/30/01 Sampled: Units: ug/L 01/30/01 Diln Fac: 1.000 Received:

Field ID: Type:

LFR-2

SAMPLE

Lab ID: Analyzed: 150007-002 02/01/01

Result Analyte Gasoline C7-Cl2 50 540 H Y Stoddard Solvent 360 50

Surrogate %REC Limits Trifluorotoluene (FID) 111 59-135 Bromofluorobenzene (FID) 114 60-140

ield ID:

GW-4

Lab ID:

150007-003

SAMPLE Analyzed: 02/01/01 Type:

Result RL Analyte Gasoline C7-C12 50 580 H Y 50 Stoddard Solvent 390

Surrogate Limits %REC 110 59-135 Frifluorotoluene (FID) 125 omofluorobenzene (FID) 60-140

ield ID: Гуре:

LFR-3 SAMPLE Lab ID:

150007-004

Analyzed:

02/01/01

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Stoddard Solvent C7-C12	ND	50	
			

%REC Limits Surrogate Trifluorotoluene (FID) 111 59-135 Bromofluorobenzene (FID) 106 60-140

lype: Lab ID:

BLANK QC136326 Analyzed:

01/31/01

Analyte	Resu	u t	3 5 91	
Gasoline C7-C12	ND		50	
Stoddard Solvent C7-C12	ND		50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	108	59-135	
Bromofluorobenzene (FID)	102	60-140	

H= Heavier hydrocarbons contributed to the quantitation Sample exhibits fuel pattern which does not resemble standard Not Detected Reporting Limit Page 1 of 1

Sample Name : 150007-002,61184

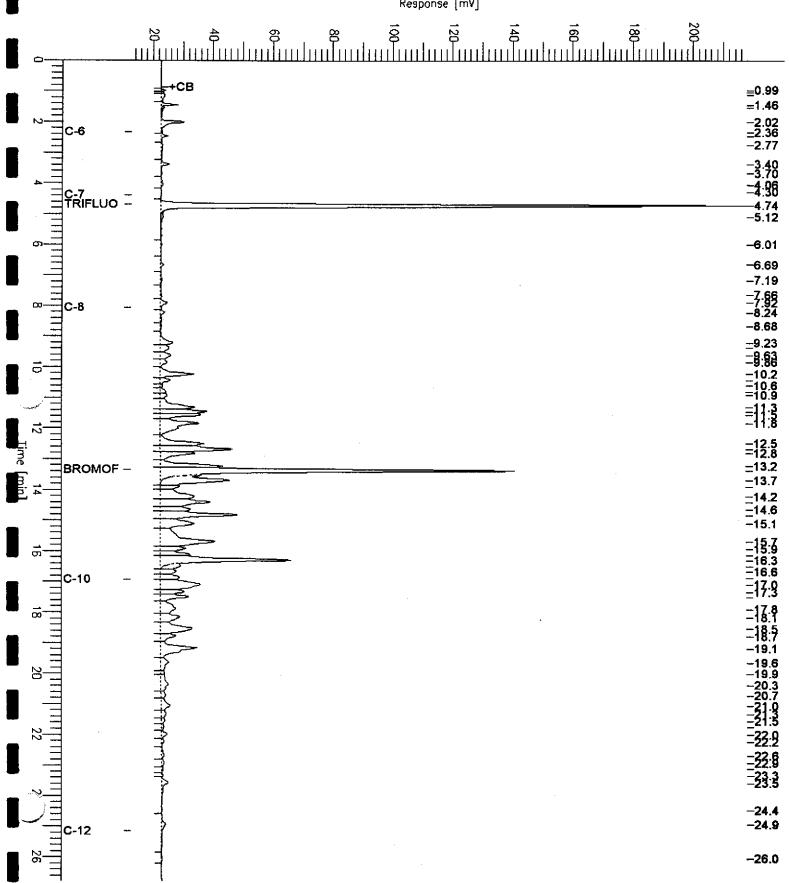
FileName : G:\GC19\DATA\031X017.raw

: TVHBTXE

Start Time : 0.00 min

End Time : 26.80 min ► Factor: 1.0 Plot Offset: 13 mV

Sample #: B1


Page 1 of 1

Date: 2/1/01 12:55 AM Time of Injection: 2/1/01 12:28 AM

High Point : 217.82 mV Low Point : 12.80 mV

Plot Scale: 205.0 mV

Sample Name: 150007-003,61184

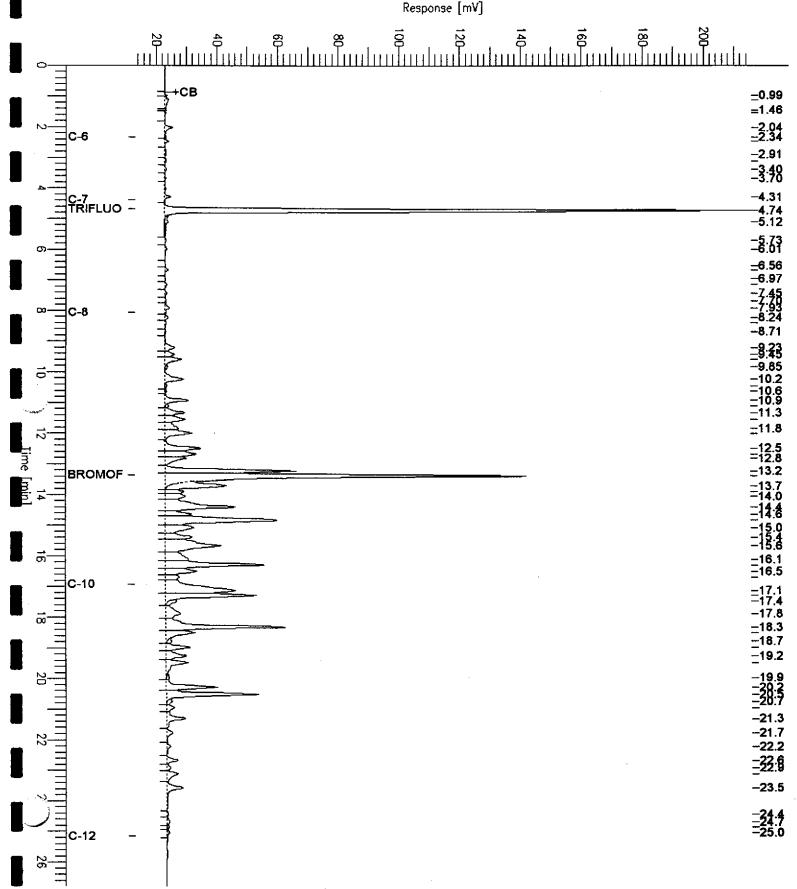
: G:\GC19\DATA\031X018.raw FileName

1ethod : TVHBTXE

Start Time : 0.00 min End Time : 26.80 min Factor: 1.0 Plot Offset: 13 mV

Sample #: B1

Page 1 of 1


Date: 2/1/01 01:33 AM

Time of Injection: 2/1/01 01:06 AM

Low Point : 13.17 mV High Point : 215.89 mV

Plot Scale: 202.7 mV

Sample Name : CCV/LCS,QC136323,61184,01WS0395,5/5000

FileName : G:\GC19\DATA\031X003.raw

Method : TVHBTXE

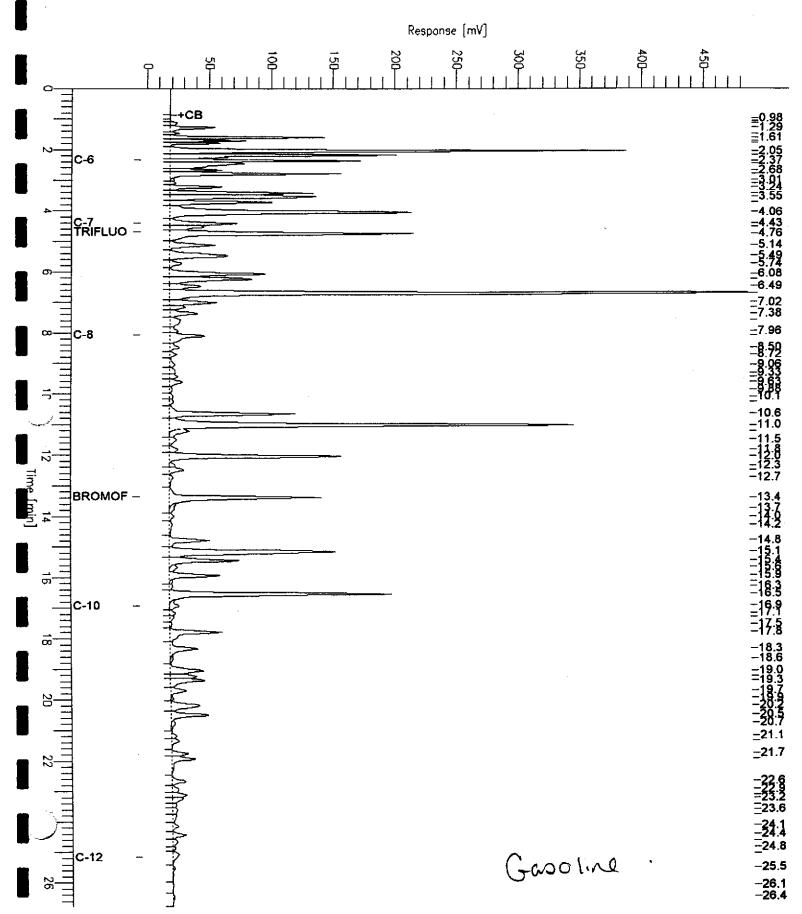
~t Time : 0.00 min Plot Offset: -5 mV

Factor: 1.0

End Time : 26.80 min

Sample #:

Page 1 of 1


Date : 1/31/01 03:33 PM

Time of Injection: 1/31/01 03:06 PM

Low Point : -4.99 mV

High Point: 489.78 mV

Plot Scale: 494.8 mV

Sample Name : CCV, STODDARD MID, 61184, 00WS9595, 5/5000

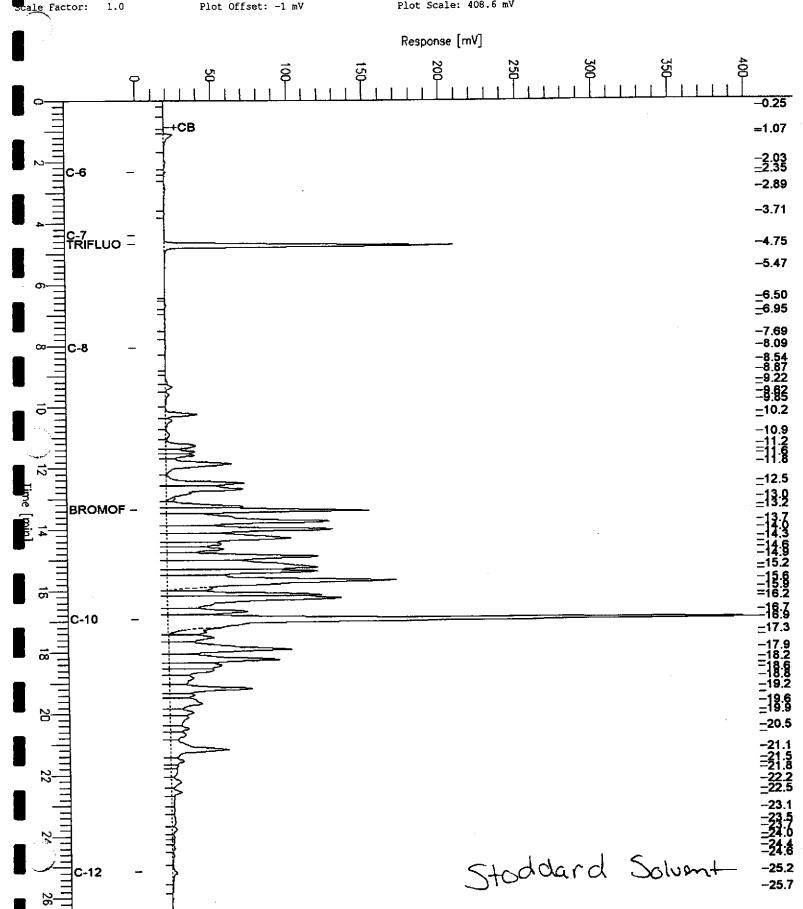
FileName : G:\GC19\DATA\031X002.raw

thod : TVHBTXE

art Time : 0.00 min

End Time : 26.80 min Plot Offset: -1 mV

Sample #:


Page 1 of 1

Date: 1/31/01 02:54 PM

Time of Injection: 1/31/01 02:27 PM Low Point: -0.88 mV

High Point: 407.75 mV

Plot Scale: 408.6 mV

[Benzene, Toluene, E	thylbenzene, X	ylenes
	Lab #:	150007	Location:	Glovatorium
-	Client:	LFR Levine Fricke	Prep:	EPA 5030
J	Project#:	6895.00.032	Analysis:	EPA 8021B
и	Matrix:	Water	Batch#:	61184
	Units:	ug/L	Sampled:	01/30/01
٦	Diln Fac:	1.000	Received:	01/30/01

Field ID: TB-013001 Type: SAMPLE Type:

Lab ID: 150007-001 Analyzed: 01/31/01

Analyte	Result	RL	
MTBE	3.8	2.0	
7 Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ИD	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND_	0.50	

Surrogate	*REC	Limits
Trifluorotoluene (PID)	104	56-142
Bromofluorobenzene (PID)	104	55-149

rield ID: LFR-2 rype: SAMPLE

Lab ID: 150007-002 Analyzed: 02/01/01

Analyte	Result	RL	
MTBE	3.4	2.0	
nzene	0.57	0.50	
uene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	4.1	0.50	

_					 	 	
F	Surrogate	9	REC	Limits			
┵	Trifluorotoluene (PII) 1(5 !	56-142			
	Bromofluorobenzene (F	PID) 10	16 5	55-149	 	 	
						 	

Field ID:

GW-4 SAMPLE

Lab ID: 150007-003 Analyzed: 02/01/01

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	1
Ethylbenzene	ED	0.50	- 1
m,p-Xylenes	ND	0.50	- 1
o-Xvlene	1,6	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	105	56-142	
Bromofluorobenzene (PID)	108	55-149	

Not Detected Reporting Limit Page 1 of 2

	Benzene, Toluer	ne, Ethylbenzene,	Xylenes
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
_ Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	61184
Units:	ug/L	Sampled:	01/30/01
TDiln Fac:	1.000	Received:	01/30/01

Field ID: LFR-3 Type: SAMPLE Type:

Lab ID: 150007-004 Analyzed: 02/01/01

Analyte	Result	RL	
MTBE	3.6	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
■ Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	104	56-142	
Bromofluorobenzene (PID)	104	55-149 _	

Type: BLANK Lab ID: QC136326

Analyzed: 01/31/01

MTBE	ND	2.0	
izene	ND	0.50	
.uene	ND	0.50	
Ethylbenzene	ND	0.50	
n,p-Xvlenes	ИD	0.50	
o-Xvlene	ND	0.50	

Surrogate	%RE	C Limits	
Trifluorotoluene (PID)	102	56-142	
Bromofluorobenzene (PID)	98	55-149	

Gasoline by GC/FID CA LUFT

Lab #: 150007 Location: Glovatorium Client: LFR Levine Fricke Prep: EPA 5030 Project#: 6895.00.032 Analysis: EPA 8015M

 Type:
 LCS
 Diln Fac:
 1.000

 Lab ID:
 QC136323
 Batch#:
 61184

 Matrix:
 Water
 Analyzed:
 01/31/01

Units: ug/L

Analyte	Spiked	Result	%REC	Limits	
Gasoline C7-C12	2,000	1,990	100	73-121	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	124	59-135
Bromofluorobenzene (FID)	121	60-140

	Benzene, Toluer	ne, Ethylbenzene,	Xylenes
Lab #:	150007	Location:	Glovatorium
Client: Project#:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	61184
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000		

BS

Lab ID: QC136324

Analyte	Spiked	Result	%REC	Limits
MTBE	20.00	22.30	112	51-125
Benzene	20.00	19.49	97	67-117
Toluene	20.00	18.55	93	69-117
Ethylbenzene	20.00	18.71	94	68-124
Toluene Ethylbenzene m,p-Xylenes	40.00	40.27	101	70-125
o-Xylene	20.00	19.12	96	65-129

Surrogate	%RBC	Limits	
Trifluorotoluene (PID)	104	56-142	
Bromofluorobenzene (PID)	103	55-149	

BSD

Lab ID: QC136325

Analyte	Spiked	Result	%REC	Limits	RPL	Lim
MTBE	20.00	21.49	107	51-125	4	20
Benzene	20.00	19.12	96	67-117	2	20
Toluene	20.00	18.12	91	69-117	2	20
Ethylbenzene	20.00	18.46	92	68-124	1	20
m,p-Xylenes	40.00	39.78	99	70-125	1	20
m,p-Xylenes o-Xylene	20.00	18.87	94	65-129	1	20

Surrogate	%REC	Limits
Trifluorotoluene (PID)	103	56-142
Bromofluorobenzene (PID)	101	55~149

	Gasoline b	The second of th	г
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8015M
Field ID:	ZZZZZZZZZZ	Batch#:	61184
MSS Lab ID:	150006-001	Sampled:	01/30/01
Matrix:	Water	Received:	01/30/01
Units:	${ m ug/L}$	Analyzed:	02/01/01
Diln Fac:	1.000		

MS

Lab ID: QC136327

Analyte	MSS R	esult	Spi k ed	Result	%RE(2 Limits
Gasoline C7-C12	2,	239 _	2,000	3,884	82	1د1-65
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	126	59-135				
Bromofluorobenzene (FID)	136	60-140				

MSD

Lab ID:

Analyte	Spiked	Result	*KEC	Limics	RPU	79-731
Gasoline C7-C12	2,000	3,853	81	65-131	1	20

Surrogate		%REC L:	imits	
Trifluorotoluene (F	ID) 1	25 59	9-135	
Bromofluorobenzene	(FID) 1	38 60	0-140	

	Purgeable	Ralocarbons by G	IC/NB
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	TB-013001	Batch#:	61169
Lab ID:	150007-001	Sampled:	01/30/01
Matrix:	Water	Received:	01/30/01
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000	·	

Analyte	Result	RL .
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	trec	Links	
1,2-Dichloroethane-d4	114	78-123	
Toluene-d8	101	80-110	
Bromofluorobenzene	101	80-115	

Not Detected Rue Reporting Limit Page 1 of 1

	Purceable	Halocarbons by	C/MB
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	LFR-2	Batch#:	61169
Lab ID:	150007-002	Sampled:	01/30/01
Matrix:	Water	Received:	01/30/01
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000		

Analyte	Result	RĹ
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	1.6	0.5
Bromomethane	ND 1.0	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND ND	5.0
1,1-Dichloroethene	ND	0.5
_ ·		5.0
Methylene Chloride	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	
cis-1,2-Dichloroethene	5.6	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	FREC	Talmi Ca	
1,2-Dichloroethane-d4	117	78-123	
Toluene-d8	100	80-110	
Bromofluorobenzene	102	80-115	

Not Detected Rr= Reporting Limit Page 1 of 1

	Purgeable	Halocarbons by C	ec/ks
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	GW-4	Batch#:	61169
Lab ID:	150007-003	Sampled:	01/30/01
Matrix:	Water	Received:	01/30/01
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000		

5		
Analyte	Result	RL .
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	2.4	0.5
loroform	ND	0.5
1,1-Trichloroethane	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	1.4	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ИD	0.5
trans-1,3-Dichloropropene	ИD	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surroyate BREC Limits					
1,2-Dichloroethane-d4	116	78-123			
Toluene-d8	100	80-110			
Bromofluorobenzene	103	80-115			

Not Detected ke Reporting Limit Page 1 of 1

	Purqeable	Halocarbons by G	ю/жа
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Field ID:	LFR-3	Batch#:	61169
Lab ID:	150007-004	Sampled:	01/30/01
Matrix:	Water	Received:	01/30/01
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000		

Analyte	Result	RG
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
loroform	ND	0.5
1.1-Trichloroethane	ИD	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate PREC Limits				
1,2-Dichloroethane-d4	118	78-123		
Toluene-d8	101	80-110		
Bromofluorobenzene	104	80-115		

Not Detected

Ru= Reporting Limit

Page 1 of 1

	Purgeable	Halocarbons by 6	IC/M8
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136267	Batch#:	61169
Matrix:	Water	Analyzed:	01/31/01
Units:	ug/L		

Analyte	Result	X L	
Freon 12	ND	1.0	7
Chloromethane	ND	1.0	1
Vinyl Chloride	ND	0.5	
Bromomethane	ND	2.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	0.5	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	5.0	
trans-1,2-Dichloroethene	ND	0.5	
1,1-Dichloroethane	ND	0.5	
cis-1,2-Dichloroethene	ND	0.5	
Chloroform	ND	0.5	
1,1-Trichloroethane	ND	0.5	
rbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	1
cis-1,3-Dichloropropene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	-
1,1,2-Trichloroethane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	1
Chlorobenzene	ND	0.5	1
Bromoform	ND	0.5	1
1,1,2,2-Tetrachloroethane	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	1
1,4-Dichlorobenzene	ND	0.5	-
1,2-Dichlorobenzene	ND	0.5	

	Surrogate	9,735	C Limits
	1,2-Dichloroethane-d4	114	78-123
	Toluene-d8	102	80-110
_	Bromofluorobenzene	103	80-115

Not Detected Ru≠ Reporting Limit Page 1 of 1

	Purgeable	Halocarbons by G	кс/жв
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC136348	Batch#:	61169
Matrix:	Water	Analyzed:	01/31/01
Units:	ug/L		

Analyte	Result	RI.
Freon 12	ND	1.0
Chloromethane	ND	1.0
Vinyl Chloride	ND	0.5
Bromomethane	ND	2.0
Chloroethane	ND	1.0
Trichlorofluoromethane	ND	0.5
Freon 113	ND	5.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	5.0
trans-1,2-Dichloroethene	ND	0.5
1,1-Dichloroethane	ND	0.5
cis-1,2-Dichloroethene	ND	0.5
Chloroform	ND	0.5
1,1-Trichloroethane	ND	0.5
rbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
Chlorobenzene	ND	0.5
Bromoform	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5

Surrogate	\$RBC	Limits
1,2-Dichloroethane-d4	114	78-123
Toluene-d8	103	80-110
 Bromofluorobenzene	103	80-115

	Purgeable	Halocarbons by G	с/нв
Lab #:	150007	Location:	Glovatorium
Client:	LFR Levine Fricke	Prep:	EPA 5030
Project#:	6895.00.032	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	61169
Units:	ug/L	Analyzed:	01/31/01
Diln Fac:	1.000		·

Type:

BS

Lab ID:

QC136265

Asslyts	Spiked	Result	REC	Limits
1,1-Dichloroethene	50.00	54.86	110	74-132
Trichloroethene	50.00	49.93	100	80-119
Chlorobenzene	50.00	49.64	99	80-117

Surrogate	¥RBC	Limits
1,2-Dichloroethane-d4	112	78-123
Toluene-d8	101	80-110
Bromofluorobenzene	104	80-115

وبطن

BSD

Lab ID:

QC136266

Analyte	Spiked	Result	\$REC	. Dimite	RPI	N. K.
1,1-Dichloroethene	50.00	51.47	103	74-132	6	20
Trichloroethene	50.00	49.56	99	80-119	1	20
Chlorobenzene	50.00	48.70	97	80-117	2	20

1,2-Dichloroethane-d4 113 78-123	Surrogate	1 REC	Limita	
Toluene-d8 102 80-110		113		
102 00 110	Toluene-d8	102	80-110	
Bromofluorobenzene 102 80-115	Bromofluorobenzene	102	80-115	

PROJ#_(089500SEC#_032LABORATORY_C&T SAMPLE DATE(S)_//30/8/_EXTRACTION DATE(S)	METHOD APA 82100, 8021 ANALYSIS DATE(S)	LAB ID# 150007- PROJECT MANAGER 308
TEM	STANDARD MAX HOLDING TIME	STANDARD MET
HOLDING TIME FIELD BLANK RESULTS IRIP BLANK RESULTS METHOD BLANK RESULTS METHOD SPIKE RECOVERY RANGE	DETECTION LIMIT DETECTION LIMIT DETECTION LIMIT ACCEPTABLE RANGE	Y C
METHOD SPIKE RPD RANGE SURROGATE RECOVERY RANGE MATRIX SPIKE RECOVERY RANGE	ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE	
MATRIX SPIKE RPD RANGE LCS SPIKE RECOVERY RANGE LCS SPIKE RPD RANGE FIELD DUPLICATE RPD ELEVATED DETECTION LIMIT COC MATCHES LAB DATA	ACCEPTABLE RANGE ACCEPTABLE RANGE ACCEPTABLE RANGE	
NOTES:		
CORRECTIVE ACTION SUGGESTED: (1) MIBS WAS DESCRETED IN TO-OU LEGAT 11 MC-3 US UD: US LEGAT 1285 HAR 5X CONC.	2001 at 38 ug L. Floor Wi The concentrations details Reflected in 78.	HE YEXHIS IN SAMPLE ICAN HELD SAMPLES AN

(Project Manager)

Violisher prepared by:

Date 2/3/1/ Reviewed by:

Project Manager must also initial UA/OC space on table.

The feview, retarn copy of initialed worksheet to laboratory data coordinator for Thing.

Serve additional questions, please ask LFR laboratory manager for assistance.

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Page: Page 1 of 3

Page 1 of 3 P0101280

Order #: Report Date:

02/07/01

Client Proj Name:

Glovetorium

Client Proj #:

6895.00.032

Emeryville, CA 94608

Sample Identification

ab Sample # Client Sample ID

P0101280-01

LFR-1

101280-02

LFR-101

Page 2 of 3

Order #: Report Date: P0101280 02/07/01

Client Proj Name: Client Proj #: Glovetorium 6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description

<u>Matrix</u>

Sampled Date/Time

Lab Sample #:

Received

P0101280-01

30 Jan. 01

LFR-1	Water	29 Ja	an. 01 11:30	30 Jan. 01		
Analyte(s)	Result	PQL	Units	Method #		
WetChem		·				
Vater						
Alkalinity as CaCO3	150	4.0	mg/L	310.1		
Chloride	76	1.0	mg/L	9056		
Ferrous Iron	< 1.0	1.0	mg/L	SM3500Fe		
Nitrate	76	0.10	mg/L	9056		
Nitrite	< 0.10	0.10	mg/L			
Bulfate	51	1.0	mg/L			
Bulfide	< 2.0	2.0	mg/L	376.1		
<u>Metals</u>			-			
Water						
ron	<0.050	0.050	mg/L	6010B		
Manganese	<0.010	0.010	mg/L			
Manganese-dissolved	<0.010	0.010	mg/L			
<u>RiskAnalysis</u>						
Vapor						
Carbon dioxide	28	0.60	mg/L	AM20GAX		
Hydrogen	0.43	0.030	nM			
Methane	1.2	0.02	ug/L			
Nitrogen	14	0.40	mg/L			
Dxygen	5.1	0.15	mg/L			

Page 3 of 3 P0101280

Report Date:

02/07/01

Client Proj Name:

Glovetorium

Client Proj #:

6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street Suite 1200 Emeryville, CA 94608

Sample Description

<u>Matrix</u>

Sampled Date/Time 29 Jan. 01 12:05

Lab Sample #:

Received 30 Jan. 01

P0101280-02

FR-101 Water

Analyte(s)	Result	PQL	Units	Method #
WetChem				
Vater				
Alkalinity as CaCO3	150	4.0	mg/L	310.1
Chloride	75	1.0	mg/L	9056
Ferrous Iron	< 1.0	1.0	mg/L	SM3500Fe
Nitrate	76	0.10	mg/L	9056
Nitrite	< 0.10	0.10	mg/L	
Sulfate	50	1.0	mg/L	
Sulfide	< 2.0	2.0	mg/L	376.1
<u>Metals</u>				
ron	< 0.050	0.050	mg/L	6010B
Manganese	<0.010	0.010	mg/L	
Manganese-dissolved	<0.010	0.010	mg/L	
<u>RiskAnalysis</u>				
Vapor				
Carbon dioxide	26	0.60	mg/ L	AM20GAX
Hydrogen	0.32	0.030	nM	
Methane	1.1	0.02	ug/L	
Nitrogen	. 16	0.40	mg/L	
Dxygen	4.6	0.15	mg/L	

\$1012 W

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

· · · · · · · · · · · · · · · · · · ·											<u> </u>						
Project No.: 6895 . 60 . 6	30)	Projec	Location	n: laklan	4.0	A			Dat	te:	129	101	Se	rial		
Project Name: O(OUatoria	رسر		*Field I	ogbook i	No.:	-1		S	ample	Event		· · · · · ·		1	T 0	785	9
Sampler (Signature):	7/	3						/ μ	NALYS	ES	۰,۰	*	×			mplers: /X/) //I W	
SAM	PLE INFO	ORMATIC	ON (Print Clearly	·)				72	%	705		.00		//		: 	
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMPLE TYPE	14	18.0	5000	33.7	- 19 x	A CONTO	*/	holg si	3 H	REM	ARKS	
		10mg	•		1420								54	ander	T 3	AT	
TR-012901	Valo			1		X							Re	Sults		Julies	She
LFR-1		1130		Î			×	X	<u>×</u>	У							
LFR-101		1205		9			***************************************	1	1				X.	16 = C	44,	(O) N	<u>م ر د</u>
						4										<u>plés ve</u>	
				·									t:	Hered	- in 1	the sie	<u>U</u>
g type the state of the state o			a region	4	77.7	er-	-	energy .				. 3	*			otrite	
													41	& Alk	-, ch	luride, m	149
						1							30	fate,			

N. A. Marie													N	eed :	bata	Packa.	se.
			7												•	· · · · · · · · · · · · · · · · · · ·	
	0				0		W,	V	1	I V			,				
RELINQUISHED BY: (Signature)	To T	edex	DATE 1/29/0	/ 15	00		IVED B	TATO	Shil	N	'λλ			DATE	101	TIME	
RELINQUISHED BY: (Signature)			DATE	ŤIME			IVED B	// V · ·			J. 1			DATE	1 1	TIME	
RELINQUISHED BY: (Signature)			DATE	TIME			IVED BY	/ :						DATE		TIME	
METHOD OF SHIPMENT:	9EX		DATE	TIME		LAB C	OMMEN	NTS:						T to the second of the second			
Sample Collector: LEVINE-F 1900 Pow Emeryville (510) 652	ell Stree	t, 12th Fl		1		Analy	tical La	borato		20	see	RS	<u> </u>	·			

Client Name: Levine Fricke

Contact:

Julie Sharp

Address:

b Sample # Client Sample ID

LFR-2

LFR-3

01293-01

P0101293-02

1900 Powell Street

Suite 1200

Emeryville, CA 94608

Page:

Page 1 of 3

Order #:

P0101293

Report Date:

02/07/01

Client Proj Name: Client Proj #:

Glovetorium

6895.00.032

Sample Identification

Order#:

Page 2 of 3 P0101293

Report Date: Client Proj Name:

02/07/01 Glovetorium

Client Proj#:

6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description R-2

Matrix

Sampled Date/Time

Lab Sample #:

Received

P0101293-01

Water

30 Jan. 01 9:15 31 Jan. 01

11-2	vvale:	50 0	ian. 01 9.13	JI Jan. UI	
nalyte(s)	Result	PQL	Units	Method #	
<u>etChem</u>			· · · · · · · · · · · · · · · · · · ·		
ater					
Alkalinity as CaCO3	480	4.0	mg/L	310.1	
`hloride	21	1.0	mg/L	9056	
errous Iron	4.6	1.0	mg/L	SM3500Fe	
litrate	1.0	0.10	mg/L	9056	
Litrite	< 0.10	0.10	mg/L		
ulfate	8.3	1.0	mg/L		
ulfide	< 2.0	2.0	mg/L	376.1	
<u>letals</u>	,				
ater			•		
n	4.6	0.050	mg/L	6010B	
/langanese	9.1	0.010	mg/L		
anganese-dissolved	8.9	0.010	mg/L		
skAnalysis		*			
apor			•		
arbon dioxide	130	0.60	mg/L	AM20GAX	
/drogen	1.1	0.030	nM		
Methane	4600	0.02	ug/L		
<u>lit</u> rogen	11	0.40	mg/L		
kygen	4.4	0.15	mg/L	4	

Page 3 of 3

Order #:

P0101293 02/07/01

Report Date: Client Proj Name:

Glovetorium

Client Proj #:

6895.00.032

Client Name: Levine Fricke

Lab Sample #:

P0101293-02

Contact: Julie Sharp

Address: 1900 Powell Street Suite 1200

Emeryville, CA 94608

Sample Description FR-3

<u>Matrix</u>

Sampled Date/Time

Received

Water

31 Jan. 01 30 Jan. 01 13:05

****	riator	CO Carr.	01 10.55	
Analyte(s)	Result	PQL	Units	Method #
etChem				
ater			,	
Alkalinity as CaCO3	250	4.0	mg/L	310.1
hloride	31	1.0	mg/L	9056
errous Iron	< 1.0	1.0	mg/L	SM3500Fe
litrate	1.2	0.10	mg/L	9056
<u>li</u> trite	< 0.10	0.10	mg/L	
ulfate	58	1.0	mg/L	•
ulfide	< 2.0	2.0	mg/L	376.1
<u>letals</u>		$(x_i, x_i) \in \mathcal{F}_{i_i}$		
ater				
bn .	< 0.050	0.050	mg/L	6010B
/anganese	<0.010	0.010	mg/L	
anganese-dissolved	<0.010	0.010	mg/L	
skAnalysis			_	
apor				•
arbon dioxide	71	0.60	mg/L	AM20GAX
/drogen	0.57	0.030	nM	
Methane	0.38	0.02	ug/L	
l itrogen	16	0.40	mg/L	
kygen	4.1	0.15	mg/L	•

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street Suite 1200

Emeryville, CA 94608

Page:

Page 1 of 4

Order #:

P0102008

Report Date:

02/14/01

Client Proj Name: Client Proj #:

Glovetorium

6895.00.032

Sample Identification

ab Sample # Client Sample ID

P0102008-01 MW-11 0102008-02 B-10 0102008-03 B-7

Page 2 of 4 P0102008

Report Date: Client Proj Name:

02/14/01 Glovetorium

Client Proj #:

6895.00.032

Client Name: Levine Fricke

Lab Sample #:

P0102008-01

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description

-MW-11

Matrix Water Sampled Date/Time

Received

31 Jan. 01 8:30

	riaio.	-		
Analyte(s)	Result	PQL	Units	Method #
WetChem	· · · · · · · · · · · · · · · · · · ·			
Vater				
Alkalinity as CaCO3	330	4.0	mg/L	310.1
Chloride	130	1.0	mg/L	9056
errous Iron	< 1.0	1.0	mg/L	SM3500Fe
Nitrate	15	0.10	mg/L	9056
Nitrite	< 0.10	0.10	mg/L	
s ulfate	94	1.0	mg/L	
Sulfide	< 2.0	2.0	mg/L	376.1
<u>Metals</u>			•	
ron	< 0.050	0.050	mg/L	6010B
Manganese	< 0.010	0.010	mg/L	
Manganese-dissolved	< 0.010	0.010	mg/L	
RiskAnalysis				
/apor				
Carbon dioxide	150	0.60	mg/L	AM20GAX
Hydrogen	1.1	0.030	nM	
Methane	0.05	0.02	ug/L	
Nitrogen	14	0.40	mg/L	
p xygen	6.3	0.15	mg/L	

Page 3 of 4 P0102008

Report Date: Client Proj Name:

02/14/01 Glovetorium

Client Proj #:

6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description

<u>Matrix</u> Water

Sampled Date/Time

Lab Sample #:

Received

P0102008-02

B-10	Water	31 Ja	n. 01 11:08	01 Feb. 01
Analyte(s)	Result	PQL	Units	Method #
WetChem				
Vater				
Alkalinity as CaCO3	480	4.0	mg/L	310.1
Chloride	81	1.0	mg/ L	9056
Ferrous Iron	7. 7	1.0	mg/L	SM3500Fe
Nitrate	0.16	0.10	mg/L	9056
Nitrite	< 0.10	0.10	mg/L	
Sulfate	< 1.0	1.0	mg/L	
Sulfide	< 2.0	2.0	mg/L	376.1
Metals .		e e a		
Water			•	
iron	6.1	0.050	mg/L	6010B
Manganese	1.3	0.010	mg/L	
Manganese-dissolved	1.3	0.010	mg/L	
<u>RiskAnalysis</u>				
Vapor				
Carbon dioxide	72	0.60	mg/L	AM20GAX
Hydrogen	1.3	0.030	nM	
Methane	2400	0.02	ug/L	
Nitrogen	13	0.40	mg/L	
Oxygen	6.4	0.15	mg/L	

Page 4 of 4 P0102008

Report Date:

02/14/01 Glovetorium

Client Proj Name: Client Proj #:

6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description

<u>Matrix</u> Water Sampled Date/Time

Lab Sample #:

Received

P0102008-03

B-7	Wate	r	31	Jan. 01 12:10	01 Feb. 01	
Analyte(s)	Result		PQL	Units	Method #	
WetChem						
Vater						
Alkalinity as CaCO3		720	4.0	mg/L	310.1	
Chloride		43	1.0	mg/L	9056	
Ferrous Iron	•	15	1.0	mg/L	SM3500Fe	
Nitrate		0.78	0.10	mg/L	9056	
Nitrite		< 0.10	0.10	mg/L		
≨ ulfate		< 1.0	1.0	mg/L		
Sulfide		< 2.0	2.0	mg/L	376.1	
<u>Metals</u>						
Water				•		
ron		12	0.050	mg/L	6010B	
Manganese		2.2	0.010	mg/L		
Manganese-dissolved		2.1	0.010	mg/L		
RiskAnalysis				-		
Vater						
Carbon dioxide		170	0.60	mg/L	AM15	
Carbon monoxide		< 0.40	0.40	mg/L		
Methane		13000	0.015	ug/L	AM18	
Nitrogen		12	0.40	mg/L	AM15	
₽xygen		0.78	0.15	mg/L		
	•					

P102008

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

Project No.:	7< 00	. 03	Projec	ct Location	$\sum_{k} V_{k}$	ار مما		À		Date:	31/	01	Serial	
Project Name:	Watoris			Logbook N) - 4	1	- / C	Sa		vent Name:	<u>.)((</u>		1.0	7822
Sampler (Signature):	all		15						NALYS	ES •	عو	*		amplers:
	SAMPLE IN	ORMATI	ON (Print Clearly	/)	'		/ *	1/20	7	OF 101	5/			
SAMPLE NO.	DATE	TIME	LAB SAMPLE NO.	NO. OF CON- TAINERS	SAMPI TYPE	E /K	0.57	700		Top of	*/ 	iologie	RE	MARKS
TB-013101	1/31/0	0635	*	1	ox#	メ							anderd	TAT
MW-11	,	<i>0</i> 530		9	1		X	×	X	人				
B-10		1108		9			X	×	X	X		Pr	ouide)	Sata Pack
B-7		120		8			,	X	×	X		70	<u>Julie</u>	Sharp
					.,,									
			***	-			1380y)			14				ere Siltere
			· · · · · · · · · · · · · · · · · · ·			er.	100					in	The S	
				ľ	^_^	·.							include	
					1						11		ntrite	
														de, mangan
			, ,,,									Su	ifate, Su	(fide
												- A -		
	<u> </u>				<u>u</u>	ļ					إليل	<u> </u> fG	= CH4, (ده دسرده
RELINQUISHED BY: (Signature)	12/41	to Fede	DATE \ \\3\\0	TIME 1 15c	<u>۵</u>	(Sig	IVED BY Inature)	[W	ase	Rlai	3	ei	2/1/0	1 14'00
RELINQUISHED BY: (Signature)			DATE	TIME			IVED BY (nature)	<i>.</i>		_			DATE	TIME
RELINQUISHED BY: (Signature)			DATE	TIME			IVED By inature)	/ :					DATE	TIME
METHOD OF SHIPMENT:	ge x		DATE	TIME		LAB C	COMMEN	ITS:				•	·	
Sample Collector:	LEVINE FRICKE 1900 Powell Stre Emeryville, Califo	et, 12th F			ï			borator	,		CF los	:[L }<0_0,	turn (a uerland A	ua.
	(510) 652-4500				5		* 1/5	<u>ں بر</u>	747	477	<u> </u>	mery	ile, CA 9	५५०३

Shipping Copy (White)

Lab Copy (Yellow) File Copy (Pink)

Field Copy (Goldenrod)

9999\COCTEMP.CDR 042998

Client Name: Levine Fricke

ab Sample # Client Sample ID

LFR-4

GW-3

GW-2

P0102021-01

0102021-02

0102021-03

Contact: Julie Sharp

Address: 1900 Powell Street Suite 1200

Emeryville, CA 94608

Page:

Page 1 of 4

Order #:

P0102021

Report Date: Client Proj Name:

02/21/01

Client Proj #:

Glovetorium

6895.00.032

Sample Identification

Page 2 of 4 P0102021

Order#: Report Date:

02/21/01

Client Proj Name: Client Proj #: Glovetorium 6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200 Emeryville, CA 94608

Sample Description

<u>Matrix</u> Water

Sampled Date/Time

Lab Sample #:

<u>Received</u>

P0102021-01

Water	01 Fe	b. 01 9:50 (02 Feb. 01	
Result	PQL	Units	Method #	
460	4.0	mg/L	310.1	
25	1.0	mg/L	9056	
1.8	1.0	mg/L	Mod7199	
1.5	0.10	mg/L	9056	
< 0.10	0.10	mg/L		
2.8	1.0	mg/L		
< 2.0	2.0	mg/L	376.1	
			4	
1.3	0.050	mg/L	6010B	
2.8	0.010	mg/L		
2.8	0.010	mg/L		
120	0.60	mg/L	AM20GAX	
1.5	0.030	nM		
2200	0.02	ug/L		
13	0.40	mg/L		
3.2	0.15	mg/L		
	## Result 460 25 1.8 1.5 < 0.10 2.8 < 2.0 1.3 2.8 2.8 120 1.5 2200 13	Result PQL 460 4.0 25 1.0 1.8 1.0 1.5 0.10 < 0.10	Result PQL Units 460 4.0 mg/L 25 1.0 mg/L 1.8 1.0 mg/L 1.5 0.10 mg/L < 0.10	

Page 3 of 4

Order #: Report Date:

Client Proj #:

P0102021 02/21/01

Client Proj Name:

Glovetorium 6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description

Matrix Water Sampled Date/Time

Lab Sample #:

Received

P0102021-02

01 Feb. 01 10:35

- 6₩-3	Water	01 Feb	o. 01 10:35	02 Feb. 01
Analyte(s)	Result	PQL	Units	Method #
RiskAnalysis Vater Carbon dioxide Methane Vitrogen Dxygen	54 12 17 8.8	0.60 0.015 0.40 0.15	mg/L ug/L mg/L mg/L	AM15 AM18 AM15

Page 4 of 4 P0102021

Order #: Report Date:

Client Proj #:

02/21/01

Client Proj Name:

Glovetorium 6895.00.032

Client Name: Levine Fricke

Contact: Julie Sharp

Address: 1900 Powell Street

Suite 1200

Emeryville, CA 94608

Sample Description

Matrix

Sampled Date/Time

Lab Sample #:

Received

P0102021-03

01 Feb. 01 10:55

- ₩-2	Water	01 Fe	b. 01 10:55	02 Feb. 01
nalyte(s)	Result	PQL	Units	Method #
RiskAnalysis				
Vater	62	0.60	mg/L	AM15
arbon dioxide	63		•	
Methane	41	0.015	ug/L	AM18
Nitrogen	22	0.40	mg/L	AM15
xygen	3.8	0.15	mg/L	

CHAIN OF CUSTODY / ANALYSES REQUEST FORM

							j.									
Project No.: 699	5.60.6	<u> </u>	<u>a</u>		ct Locat		امراد ا	and	, CA	<u> </u>	Date	2	/(/	0	Serial	
Project Name:	ام کم در ر	~^		Field	Logbool	(No.:	Ų		S	ample E را	vent N ک	ame:			173	7900
Sampler (Signature):	2/				>	V 10 3	Į.	/	A	NALYSI	ES		<u> </u>	*		amplers: X ₁), Mwb
	SAMPLE	INFO	RMATIC	ON (Print Clearl)	/)		d,	7.5	3/6-1	X /_e	12/7	•/	ر اد	777	/ (<u> </u>
SAMPLE NO.	D	ATE	TIME	LAB SAMPLE NO.	NO. OI CON- TAINER	SAM	PLE /	N. Brok	30/ 2/2	* (3°)		5 (3)	or K	10/8H	REM	IARKS
TB-020101	2/	1/61	0500		\	1/20	1		·					* PG	= CHy	+ (O) + N)
LFR-4			6950		9		1	X	X	X	X				١ .	samples
6W-3			1035		٦			X						Filt	eredi	~ Sield
<u></u> Gω-2			1055	·	2			>						*= F	IK, C	hloride.
à'			te. L.				1							mana	gaese,	sulfate,
														SULF	ide,	N.+rate +
4	i di		- 9				A Comment	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			- 3-	y 5450 . N	<u></u>	an to	rite o	icmbo
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ÿ	1	1		ere contra		The second		ewan a w		* **	/ 544.5 0				<u> </u>
		-		·	ļ. <u> </u>		-							12100	<u>udar</u>	DJAT
			atteries spirate and a second	* V					green.	and Signals of State Scientific	ALC: COMPANY OF	and the second		1	- T	
		1				-	r .	1				, y		Send	Pat	,
					-	N	7							to	sulle	Sharp.
RELINQUISHED BY: (Signature)	10	/_	Diede	DATE 2/1/61	TIN	1E),30	RECE (Sig	IVEØ\BY nature)	Mas	Sh	as V		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5/01	TIME 30
RELINQUISHED BY: (Signature)		7/1		DATE	TIN		RECE	IVED BY nature)	<u> </u>					DA	TE .	TIME
RELINQUISHED BY: (Signature)				DATE	TIN	1E		IVED BY nature)	:					DAT	ΓE	TIME
METHOD OF SHIPMENT:	FedE	· /-		DATE	TIN	1E	LAB C	OMMEN	TS:				-	•		
Sample Collector:	LEVINE-FRIC 1900 Powell S Emeryville, Ca (510) 652-450	treet diforn	, 12th Fi				Analy	rtical Lat	`		See	200	5			

Shipping Copy (White)

Lab Copy (Yellow)

File Copy (Pink)

Field Copy (Goldenrod)

9999\COCTEMP.CDR 042998

QA/QC Report for Alkalinity

Blank Information

Analysis Date

Result

2/3/01

<4.0 mg/L

2/11/01

<4.0 mg/L

Laboratory Duplicate Sample Information

Analysis Date Sample Result (mg/L) Duplicate Result (mg/L) % Difference

2/3/01 2/11/01 146 588 146 596 0

QA/QC Report for Sulfide

Blank Information

Analysis Date	Result
2/2/01	<2.0 mg/L
2/6/01	<2.0 mg/L

Laboratory Control Sample Information

Analysis Date	True Value (mg/L)	Result (mg/L)	% Recovery
2/2/01	34	19.7	58
2/6/01	34	22.3	65

Laboratory Duplicate Sample Information

Analysis Date	Sample Result (mg/L)	Duplicate Result (mg/L)	% Difference
2/2/01	<2.0	<2.0	0
2/2/01	<2.0	<2.0	0

Laboratory Matrix Spike Information

Analysis Date	Sample Result(mg/L)	MS Result(mg/L)	% Recovery
2/2/01	<2.0	20.5	60
2/6/01	<2.0	2.7	65

QA/QC Report for Ferrous Iron

Blank Information

Analysis Date	Result
2/2/01	<1.0 mg/L
2/2/01	<1.0 mg/L

Laboratory Control Sample Information

Analysis Date	True Value (mg/L)	Result (mg/L)	% Recovery
2/2/01	5	4.99	99
2/2/01	5	3.99	80

Laboratory Duplicate Sample Information

Analysis Date	Sample Result (mg/L)	Duplicate Result (mg/L)	% Difference
2/2/01	<1.0	<1.0	0

Laboratory Matrix Spike/Spike Duplicate Information

Analysis Date	Sample Result(mg/L)	MS Result(mg/L)	% Recovery
2/2/01	<1.0	2.14	43

QA/QC Report for Anions by IC

Rla	nk	Informatio	n
DIA	HIN.	mnomnano	11

Analysis Date	Chloride	Nitrate	Nitrite	Sulfate
1/30/01	<1.0 mg/L	<0.1mg/L	<0.1mg/L	<1.0mg/L
1/31/01	<1.0 mg/L	<0.1mg/L	<0.1mg/L	<1.0mg/L
2/1/01	<1.0 mg/L	<0.1mg/L	<0.1mg/L	<1.0mg/L
2/2/01	<1.0 mg/L	<0.1mg/L	<0.1mg/L	<1.0mg/L

Laboratory Control Sample Information

Analysis Date	Chloride	Nitrate	Nitrite	Sulfate
1/30/01 True Value mg/L	10	10	10	10
Sample Result	10.6	10.2	10.7	11.1
% Recovery	106	102	107	111
1/31/01				
True Value mg/L	10	10	10	. 10
Sample Result	10.6	10.3	10.8	10.6
% Recovery	106	103	108	106
2/1/01				
True Value mg/L	10	10	10	10
Sample Result	10.7	10.4	10.7	10.8
% Recovery	107	104	107	108
2/2/01				·
True Value mg/L	10	10	10	10
Sample Result	10.7	10.3	10.8	11:4
% Recovery	107	103	108	114

Laboratory Duplicate Sample Information

Analysis Date 1/30/01	Chloride	Nitrate	Nitrite	Sulfate
Sample Result	76.1	75.8	<0.10	50.6
Dup Result mg/L	76.3	76.3	<0.10	51.0
% Difference	0.2	1	0	1
1/31/01				
Sample Result	21.2	1.0	<0.10	8.3
Dup Result mg/L	20.6	1	<0.10	8.1
% Difference	3	0	0	2

2/1/01	-			
Sample Result	130	15	<0.10	94
Dup Result mg/L	130	15	<0.10	94
% Difference	0	0	0	0
2/2/01				
Sample Result	26	1.5	<0.10	2.8
Dup Result mg/L	25	1	<0.10	2.8
% Difference	4	28	0	0

Laboratory Matrix Spike/Spike Duplicate Information

Analysis Date	Nitrite
1/30/01	
Sample Result	<0.1
MS Result	10.8
% Recovery	108
MSD Result	10.7
% Recovery	107
% Difference	9

Analysis Date	Nitrate	Nitrite	Sulfate
1/31/01			
Sample Result	1.0	<0.1	8.3
MS Result	9.6	10.8	18.3
% Recovery	86	108	100
MSD Result	9.1	109	18.2
% Recovery	81	109	98
% Difference	6	1	2

Analysis Date	Nitrate	Nitrite
2/1/01		
Sample Result	15	<0.1
MS Result	24	10.5
% Recovery	87	105
MSD Result	23	10.6
% Recovery	84	106
% Difference	4	1

Analysis Date	Nitrate	Nitrite
2/2/01		
Sample Result	1.5	<0.1
MS Result	10.5	10.4
% Recovery	90	104
MSD Result	10.7	10.6
% Recovery	92	106
% Difference	2	2

QA/QC Report for Total/Dissolved Metals

Blank Information

Analysis Date	Iron	Total Manganese	Dissolved Manganese
2/2/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/2/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/1/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/1/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/1/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/1/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/7/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/7/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/7/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L
2/7/01	<0.050 mg/L	<0.010 mg/L	<0.010 mg/L

Laboratory Control Sample Information

Analysis Date 2/2/01	Iron	Total Manganese
True Value mg/L	5.0	2.50
Sample Result	4.92	2.35
% Recovery	98	94
Analysis Date 2/1/01	Iron	Total Manganese
True Value mg/L	5.0	2.50
Sample Result	5.2	2.50
% Recovery	104	100
Analysis Date	Iron	Total Manganese
2/7/01		
True Value mg/L	5.0	2.50
Sample Result	5.15	2.45
% Recovery	103	98

Laboratory Duplicate Sample Information

Analysis Date	Iron	Total Manganese
2/2/01		_
Sample Result	<0.050	< 0.010
Dup Result mg/L	<0.050	< 0.010
% Difference	0	0

QA/QC Report for Metals continued

Laboratory Matrix Spike Information

Iron	Manganese
0.057	<0.010
1.01	0.48
95	96
	0.057 1.01

***** QUALITY CONTROL *****

P101280

CONTINUING CALIBRATION STANDARDS 01/31/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
METHANE (FID)	T43 166	30.00	32.98	9.93
CARBON DIOXIDE	T43 169	7.50	7.26	3.20
OXYGEN	T43 169	3.50	3.39	3.14
NITROGEN	T43 169	33.25	31.94	3.94
METHANE (TCD)	T43 169	2.25	2.16	4.00
HYDROGEN	T43 167	25.00	25.16	0.64

HE IN LOOP 01/31/01

00110011110	EU E 10	DET LUNT	MENOUPED
COMPOUND	FILE ID	DE L. LIMIT	MEASURED
METHANE (FID)	T43 170	0.015ug/l	ND
CARBON DIOXIDE	T43 170	0.60mg/l	ND
OXYGEN	T43 170	0.15mg/l	ND
NITROGEN	T43 170	0.40mg/l	ND
METHANE (TCD)	T43 170	0.07mg/l	ND
HYDROGEN	T43 170	0.03nM	ND

LABORATORY CONTROL SAMPLE 01/31/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
METHANE (FID)	T43 168	300.00	312.58	4.19
CARBON DIOXIDE	T43 167	1.00	1.01	1.00
OXYGEN	T43 167	2.00	2.01	0.50
HYDROGEN	T43 168	25.00	24.60	1.60

REVIEW MA

***** QUALITY CONTROL *****

P101293

CONTINUING CALIBRATION STANDARDS 02/01/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
METHANE (FID)	T43 184	30.00	32.20	7.33
CARBON DIOXIDE	T43 187	7.50	7.37	1.73
OXYGEN	T43 187	3.50	3.42	2.29
NITROGEN	T43 187	33.25	32.31	2.83
METHANE (TCD)	T43 187	2.25	2.17	3.56
HYDROGEN	T43 185	25.00	24.86	0.56

HE IN LOOP 02/01/01

COMPOUND	FILE ID	DET. LIMIT	MEASURED
METHANE (FID)	T43 188	0.015ug/l	, ND
CARBON DIOXIDE	T43 188	0.60mg/l	ND
OXYGEN	T43 188	0.15mg/l	ND
NITROGEN	T43 188	0.40mg/l	ND
METHANE (TCD)	T43 188	0.07mg/l	ND
HYDROGEN	T43 188	0.03nM	ND

LABORATORY CONTROL SAMPLE 01/31/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
METHANE (FID)	T43 186	300.00	310.13	3.38
CARBON DIOXIDE	T43 185	1.00	1.03	3.00
OXYGEN	T43 185	2.00	2.03	1.50
HYDROGEN	T43 186	25.00	24.64	1.44

***** QUALITY CONTROL *****

(P102008/P102021)

CONTINUING CALIBRATION STANDARDS 02/06/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
METHANE (FID)	T43 222	30.00	32.08	6.93
CARBON DIOXIDE	T43 223	7.50	7.36	1.87
OXYGEN	T43 223	3.50	3.32	5.14
NITROGEN	T43 223	33.25	31.33	5.77
METHANE (TCD)	T43 223	2.25	2.10	6.67
HYDROGEN	T43 224	25.00	28.13	12.5

HE IN LOOP 02/06/01

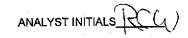
COMPOUND	FILE ID	DET. LIMIT	MEASURED
METHANE (FID)	T43 226	0.015ug/l	ND
CARBON DIOXIDE	T43 226	0.60mg/l	ND
OXYGEN	T43 226	0.15mg/l	ND
NITROGEN	T43 226	0.40mg/l	ND
METHANE (TCD)	T43 226	0.07mg/l	ND
HYDROGEN	T43 226	0.03nM	ND

LABORATORY CONTROL SAMPLE 02/06/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
METHANE (FID)	T43 225	300.00	298.57	0.48
CARBON DIOXIDE	T43 224	1.00	1.02	2.00
OXYGEN	T43 224	2.00	2.03	1.50
HYDROGEN	T43 225	25.00	25.20	0.80

WATER

CONTINUING CALIBRATION STANDARDS 02/06/01


METHO	NO REVI	NK UZ	/U6/UT

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.
		159.62	157.10	1.58
CARBON DIOXIDE	X24 157	109.02		
OXYGEN	X24 157	16.96	16.34	3.66
NITROGEN	X24 157	135.14	135.44	0.22
CARBON MONOXIDE	X24 157	14.55	13.84	4.86
METHANE (TCD)	X24 157	5.48	5.97	8.99
METHANE (FID)	X24 158	36.66	35.37	3.52
ETHANE	X24 158	23631	22908	3.06
ETHYLENE	X24 158	26522	25824	2.63
PROPANE	X24 158	33655	32447	3.59
PROPYLENE	X24 158	39153	38043	2.84
ISO-BUTANE	X24 158	42718	41353	3.20
N-BUTANE	X24 158	43297	41892	3.25
METHANE (FID) D	X24 158	36.66	36.04	1.69
ETHANE D	X24 158	23631	23249	1.62
ETHYLENE D	X24 158	26522	27049	1,99
1				

COMPOUND	FILE ID	DET. LIMIT	MEASURED
CARBON DIOXIDE	X24 160	0.60mg/l	ND
OXYGEN	X24 160	0.15mg/l	ND
NITROGEN	X24 160	0.40mg/l	ND
CARBON MONOXIDE	X24 160	0.40mg/l	ND
METHANE (TCD)	X24 160	0.07mg/l	ND .
METHANE (FID)	X24 160	0.015ug/l	ND
ETHANE	X24 160	5ng/l	ND
ETHYLENE	X24 160	5ng/l	ND
PROPANE	X24 160	25ng/l	ND
PROPYLENE	X24 160	25ng/l	ND
ISO-BUTANE	X24 160	25ng/l	ND
N-BUTANE	X24 160	25ng/l	ND
METHANE (FID) D	X24 160	0.15ug/l	ND
ETHANE D	X24 160	50ng/l	ND
ETHYLENE D	X24 160	50ng/l	ND

SECOND SOURCE (LH012700): 02/06/01

			-	
CARBON DIOXIDE	X24 159	21.28	20.41	4.11
OXYGEN	X24 159	9.69	9.36	3.36
METHANE (FID)	X24 159	73.31	69.38	5.37
ETHANE	X24 159	47164	44886	4.83
ETHYLENE	X24 159	53282	50629	4.98

WATER

(CONTINUING CALIBRATION STANDARDS 02/07/01

METHOD BLANK 02/07/01

COMPOUND	FILE ID	TRUE CONC.	MEASURED	% DIFF.		COMPOUND	FILE ID	DET. LIMIT	MEASURED
CARBON DIOXIDE	X24 188	159.62	160,08	0.29		CARBON DIOXIDE	X24 191	0.60mg/l	ND
OXYGEN	X24 188	16.96	16.14	4.82		OXYGEN	X24 191	0.15mg/l	ND
NITROGEN	X24 188	135.14	135.78	0.47		NITROGEN	X24 191	0.40mg/l	ND
CARBON MONOXIDE	X24 188	14.55	14.10	3.07		CARBON MONOXIDE	X24 191	0.40mg/l	ND
METHANE (TCD)	X24 188	5.48	5.97	8.91		METHANE (TCD)	X24 191	0.07mg/l	ND
METHANE (FID)	X24 189	36.66	34.68	5.39	-	METHANE (FID)	X24 191	0.015ug/l	ND
ETHANE	X24 189	23631	22490	4.83		ETHANE	X24 191	5ng/i	ND
ETHYLENE	X24 189	26522	25339	4.46	•	ETHYLENE	X24 191	5ng/f	ND
PROPANE	X24 189	33655	31860	5.33		PROPANE	X24 191	25ng/l	ND
PROPYLENE	X24 189	39153	36655	6.38		PROPYLENE	X24 191	25ng/	ND
ISO-BUTANE	X24 189	42718	40725	4.67		ISO-BUTANE	X24 191	25ng/l	ND
N-BUTANE	X24 189	43297	41102	5.07		N-BUTANE	X24 191	25ng/l	ND
METHANE (FID) D	X24 189	36.66	35.52	3.10		METHANE (FID) D	X24 191	0.15ug/l	ND
ETHANE D	X24 189	23631	22953	2.87		ETHANE D	X24 191	50ng/l	ND
ETHYLENE D	X24 189	26522	26725	0.77		ETHYLENE D	X24 191	50ng/l	ND
				•					
SECOND SOURCE (LH	1012700): 0	2/07/01							
CARBON DIOXIDE	X24 190	21,28	20.64	3.03					
OXYGEN	X24 190	9.69	9.54	1.53		,			
METHANE (FID)	X24 190	73.31	68.27	6.87					
ETHANE	X24 190	47164	44249	6.18					
ETHYLENE	X24 190	53282	49926	6.30					
MS/MSD 02/07/01	•	SAMPLE; P010	02058-04						
	SAMPLE	SPIKE	MS	MSD	MS	MSD			
COMPOUND	CONC.	CONC.	CONC	CONC.	%R	%R	%D		
CARBON DIOXIDE	23.91	5.99	27.94	28.68	67.26	79.63	16.84	- '	
OXYGEN	1.43	8.72	9.09	8.93	87.80	79.03 85.94			
METHANE (FID)	54.11	65,62	100.2	106.6	70.29	79.95	2.14		
ETHANE	225	40873	37112	36586	90.25		12.87	-	
ETHYLENE	33	38148	34828	33852	1	88.96	1.44		
		00170	J-1020	33032	91.21	88.65	2.84		

REVIEWAL.