

Atlantic Richfield Company (a BP affiliated company)

Alameda County
AUG 0 5 2005

Environmental Health

6 Centerpointe Drive, Room 172 La Palma, CA 90623-1066 Phone: (714) 670-5303

Fax: (714) 670-5195

August 4, 2005

Re:

Former BP Service Station # 11102 Soil and Water Investigation Report 100 MacArthur Boulevard

Oakland, CA

I declare that, to the best of my knowledge at the present time, the information and/or recommendations contained in the attached document are true and correct.

Submitted by:

Kyle Christie

Environmental Business Manager

Alameda County

AUG 0 5 2005

August 4, 2005

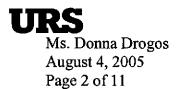
Environmental Health

Ms. Donna Drogos Alameda County Environmental Health Services 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Soil and Water Investigation Report Former BP Service Station #11102 100 MacArthur Boulevard Oakland, California ACEHS Case No. RO0000456

Dear Ms. Drogos:

On behalf of the Atlantic Richfield Company (a BP affiliated company), URS Corporation (URS) has prepared this Soil and Water Investigation (SWI) Report for additional soil and water characterization at the above referenced facility (the Site). The purpose of the work was to further assess the extent of dissolved-phase hydrocarbons in groundwater at the request of Alameda County Environmental Health Services (ACEHS). As proposed within the Revised Soil and Groundwater Investigation Work Plan (Revised Work Plan) dated April 28, 2005, the SWI was to include advanceing of five on-site soil borings and three off-site borings for source area characterization and preferential pathway evaluation. This SWI Report discusses the Site background, describes the scope of investigation and field work performed, and presents conclusions and recommendations based on the findings. A copy of the ACEHS Work Plan approval letter dated May 4, 2005 is provided as Attachment A.


1.0 SITE FEATURES AND BACKGROUND

The Site is an active 76-branded gasoline retail outlet located at the intersection of MacArthur Boulevard and Oakland Avenue in Oakland, California (see Figure 1). The Site is located in a mixed commercial and residential area. A Quikstop station is located northwest of the Site at the intersection of Harrison Street and MacArthur Boulevard. The MacArthur Freeway (Interstate 580), an elevated freeway, is located immediately southwest of the Site.

BP acquired the property from Mobil Oil Corporation (Mobil) in 1989 (BP, 1989). In 1994, BP ceased operations at the Site and transferred the property to TOSCO Marketing Company (TOSCO).

Improvements to the property include the service station building, pump islands, and underground storage tanks (USTs). The last known renovation at the Site occurred in 1990, when new USTs, pump islands and a new canopy were installed. Existing USTs at the station include four fiberglass tanks: one 12,000 gallon tank, one 10,000 gallon tank and one 6,000

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612-1924 Tel: 510.893.3600 Fax: 510.874.3268

gallon gasoline tank installed in 1990, and one 1,000 gallon waste-oil tank installed in September 1988. There are currently three monitoring wells at the Site, MW-1, MW-2 and MW-3 (see Figure 2). Groundwater is typically encountered between 10 to 15 feet below ground surface (bgs) and the wells are screened from 12 to 32 feet bgs. The screened soils are clayey sands, clayey gravels, and clays in well MW-1, silty clays, silts, and clays in well MW-2, and clays in well MW-3.

Site investigations were initiated in 1988 with Mobil Oil Company's removal of a 550-gallon waste-oil UST. Mobil Oil Company conducted soil sampling in conjunction with the waste-oil tank removal activities. Two soil samples were collected: one from below the UST at about 9-feet below ground surface (bgs) and another soil sample was collected from the stockpile of the soil excavated from the UST pit. Although the soil sample from below the UST showed low levels of total petroleum hydrocarbons as diesel (TPH-d) and total oil and grease (TOG), elevated levels of TPH-d (1,700 parts per million [ppm]) and TOG (65,000 ppm) were reported in the stockpile sample which warranted further investigations.

In October 1989, Alton conducted a subsurface investigation at the Site and installed three on-site monitoring wells, MW-1 through MW-3. Boring logs and well construction diagrams for the monitoring wells are included in Attachment B. Saturated soil was encountered at depths ranging from 16 to 19 feet bgs. The initial analysis of groundwater samples collected from these wells identified very low levels of benzene, toluene and total xylenes in soil samples collected from wells MW-2 and MW-3. Mobil Oil Company conducted quarterly groundwater monitoring at the Site until mid-1992, when RM purchased the property. It appears from the historical groundwater tables that the sampling frequency was reduced from quarterly to semi-annual after the November 1992 sampling event due to low detected concentrations. The groundwater flow direction during this period was reported to be generally towards the south-southwest (Emcon, 1994). Historical groundwater data is provided in Attachment B. Historical soil data is included as Attachment C.

In February 2000, Cambria Environmental Technology (Cambria) conducted a historical review, utility survey, and a recovery test. The utility survey was conducted in order to identify the location of potential preferential pathways and subsurface obstructions beneath the Site. The study identified several conduits (Figure 2) including sanitary sewers, storm drains, electrical, water, natural gas, telephone, and tank vent lines. A storm drain located beneath MacArthur Boulevard was believed to intersect groundwater seasonally (Cambria, 2000).

In October 2000, Alisto conducted a Potential Receptor Survey, Expanded Site Plan and Well Search (Alisto, 2000). The survey verified the existence of various utilities and determined that the Site is not within critical distance of any public or private drinking water source.

Ms. Donna Drogos August 4, 2005 Page 3 of 11

2.0 SCOPE OF WORK

The scope of this investigation was to include a preferential pathway evaluation and source area characterization. Three soil borings (SB-1 through SB-3) were proposed along the storm drain on MacArthur Boulevard to assess the potential of the storm drain being used as a preferential pathway. In addition, URS proposed coordinating with the City of Oakland to access the storm drain line to collect a sample if water is present. URS was unable to complete the entire proposed scope of work to evaluate preferential pathways on MacArthur Boulevard. A Caltrans permit was requested to complete the work within MacArthur Boulevard and to date has not been obtained. As soon as the Caltrans permit is received, the proposed preferential pathway evaluation will be completed.

The source area characterization scope of work included advancing five soil boring pairs onsite to a depth of approximately 28 to 32 feet bgs, to assess the potential presence of hydrocarbons in soil and groundwater at the Site. In addition, the three existing on-site monitoring wells (MW-1, MW-2 and MW-3) were sampled to provide complete dissolved hydrocarbon data at the Site.

2.1 SOURCE AREA CHARACTERIZATION

The scope of work performed included advancing five on-site soil borings pairs (SB-4 through SB-7), to help assess the potential presence of hydrocarbons in soil and groundwater at the Site. Soil boring SB-4 was located to assess the extent of hydrocarbons upgradient of the UST cavity and dispenser islands. Borings SB-5 and SB-6 were advanced to assess the extent of hydrocarbons down-gradient (north and northwest) of the USTs and dispenser islands. Boring SB-7 was located to assess the extent of hydrocarbons downgradient of well MW-3 and the waste-oil tank. Soil boring SB-8 was advanced in the vicinity of well MW-1 to determine nearby lithology and assess the reinstallation of well MW-1 in response to ACEHS' concern that well MW-1 was installed within fill material, resulting in skewed data collection.

2.1.1 Preliminary Field Activities

Before initiating field activities, URS obtained a soil boring permit from Alameda County Public Works Agency (ACPWA). A site-specific Health and Safety Plan (HASP) was prepared describing hazards associated with the proposed work. The HASP addressed safety concerns associated with the well installation and groundwater sampling. A copy of the HASP was available on-site at all times. The URS Site supervisor held a tailgate meeting covering aspects of the HASP before the start of all workdays.

Pre-field activities also included notifying Underground Service Alert (USA) of the pending work a minimum of 48 hours before initiating the field investigation, and securing the services of a private utility-locating company to confirm the absence of underground utilities at the well location. In addition, the top 5 feet of soil was cleared using a hand auger at each boring location. A copy of the soil boring permit is included in Attachment D.

Ms. Donna Drogos August 4, 2005 Page 4 of 11

2.1.2 Soil Boring Advancement and Soil Sampling

On July 13 and 14, 2005, a URS geologist observed Gregg Drilling and Testing, Inc. (Gregg) of Martinez, California advance five on-site soil borings (SB-4, SB-5, SB-6, SB-7 and SB-8) to depths of approximately 28 to 32 feet bgs for lithologic description and soil sampling. The first five feet of each boring was physically cleared to at least five feet bgs using a hand auger. The soil borings were continuously cored using direct-push technology. The approximate soil boring locations are illustrated on Figure 2. During soil boring advancement, groundwater was encountered in the lithologic borings at depths between 7.5 feet bgs and 28 feet bgs.

Soil samples were collected in clear acetate sleeves for laboratory analysis near the groundwater interface and from areas of obvious soil impacts. Soil samples were classified by URS personnel under the supervision of a State of California Professional Geologist, according to the Unified Soil Classification System (USCS) and examined using visual and manual methods for parameters including odor, staining, color, grain size, and moisture content. Samples for chemical analysis were covered at each end with Teflon™ sheeting, capped with plastic end caps, labeled, and placed in an ice-filled cooler for preservation. Soil samples were collected in clear acetate sleeves for laboratory analysis near the groundwater interface and from areas of obvious soil impacts and were submitted to Sequoia Analytical Laboratories (Sequoia) for analysis of gasoline range organics (GRO), benzene, toluene, ethylbenzene and total xylenes (BTEX), and fuel additives (methyl tert-butyl ether [MTBE], tert-butyl alcohol [TBA], di-isopropyl ether [DIPE], ethyl tert-butyl ether [ETBE], tert-amyl methyl ether [TAME], 1,2-dichloroethane [1,2-DCA], 1,2-dibromoethane [EDB], and ethanol) by EPA Method 8260B. The sample with the highest GRO concentration was analyzed for total lead by EPA Method 6010B for disposal characterization. Following completion of sampling activities, the borings were sealed to the surface using a neat Portland cement grout slurry.

2.1.3 Groundwater Sampling

On July 13 and 14, 2005, a URS geologist observed Gregg advance the depth discrete groundwater or Hydropunch® soil borings, at all five soil boring locations approximately 1 to 2 feet laterally from the respective initial soil boring location. The Hydropunch® boring locations were cleared to at least five feet bgs using a hand auger.

After clearing the depth discrete groundwater boring locations to five feet bgs using a hand auger, the Hydropunch® sampler was advanced to the appropriate depth intervals in which groundwater was observed in the initial lithologic soil boring. Care was taken to expose the hydro-punch screen only to the saturated zone, so that no cross-contamination would occur. The boring was then allowed to sit for a minimum of 1-hour for groundwater to accumulate. After a minimum of 1-hour, an attempt was made to collect a groundwater sample. If groundwater was not present in the Hydropunch® screen, then the Hydropunch® tool was retracted from the boring, a new drive tip was installed on the drive rods, and the next depth

Ms. Donna Drogos August 4, 2005 Page 5 of 11

interval was attempted for sample collection. No groundwater sample was able to be collected from any of the boring locations. Although no water samples were collected, soil samples were collected from the saturated zones. The saturated soil samples are noted on Table 1.

Following completion of the Hydropunch® boring activities, all borings were sealed to the surface with a neat Portland cement grout slurry.

On July 11, 2005, Blaine Tech Services, Inc. (Blaine Tech) of San Jose, California mobilized to the Site to sample the three on-site monitoring wells (MW-1 through MW-3). Blaine Tech measured the total well depth and depth to water in the wells, and subsequently purged and sampled the wells. Periodic measurements of pH, conductivity, and temperature were recorded during purging activities. All purge water generated during sampling was transported by Blaine Tech to its storage facility pending disposal at an ARCO approved facility. The groundwater samples were submitted to Sequoia and analyzed for GRO, BTEX, and fuel additives (MTBE, TBA, DIPE, TAME, ETBE, 1,2-DCA, EDB, and ethanol) by EPA Method 8260B. A copy of the field procedures and field data sheets are provided in Attachment E.

2.2 Geology and Hydrogeology

The general lithology of soils underlying the Site consists of interbedded gravelly silty sandy clay (fill), silty sands, and silty sandy clays extending to the bottom of the borings. Cross-sections representing the subsurface geology using soil borings from this investigation and previous/historical soil boring and well logs) are presented as Figures 2, 3 and 4. Boring logs are provided in Attachment C.

Groundwater at the Site is typically encountered between 10 to 15 feet bgs. Groundwater flow direction during the 2005 third quarter monitoring event on July 11, 2005 was to the west-southwest at a gradient of 0.06 ft/ft (Figure 5).

3.0 ANALYTICAL RESULTS

3.1 Soil Analytical Results

URS submitted soil samples collected at approximately 5-foot intervals, near the groundwater interface and from areas of obvious soil impacts to Sequoia Analytical, a State of California DHS Certified Laboratory for analysis. The soil samples were analyzed for GRO, BTEX, MTBE, ethanol, TAME, ETBE, DIPE, TBA, EDB and 1,2-DCA using EPA Method 8260B. Cumulative soil analytical results are presented in Table 1. Copies of laboratory analytical reports and chain-of-custody records are presented in Attachment F.

Soil sample analytical results can be summarized as follows:

URS

Ms. Donna Drogos August 4, 2005 Page 6 of 11

- GRO were detected in 11 samples from borings SB-4, SB-5, SB-6 and SB-7.
 Concentrations ranged from 0.14 milligrams per kilogram (mg/kg) [SB-6 (9.5-10')] to 1,300 mg/kg [SB-7 (2-2.5')].
- Ethylbenzene was detected in 3 soil samples at concentrations ranging from 0.14 mg/kg [SB-5 (19.5-20')] to 3.0 mg/kg [SB-7 (2-2.5')]. Total xylenes were detected in 4 samples at concentrations ranging from 0.0054 mg/kg [SB-6 (16.5-17')] to 3.9 mg/kg [SB-7 (5-5.5')].
- MTBE was detected in 11 samples collected from borings SB-4, SB-5, SB-6 and SB-8 at concentrations ranging from 0.0055 mg/kg [SB-6 (9.5-10')] to 3.7 mg/kg [SB-4 (29-29.5')].
- TBA was detected in 2 samples at concentrations of 0.053 mg/kg [SB-5 (29-29.5')] and 0.13 mg/kg [SB-6 (19.5-20')].
- No benzene, toluene, or other fuel additives (ethanol, TAME, ETBE, DIPE, EDB, or 1,2-DCA) were detected at or above their respective laboratory reporting limits in any soil sample analyzed.

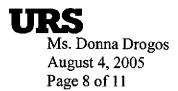
The following is a comparison of the soil analytical results from this investigation to the Regional Water Quality Control Board's (RWQCB) Environmental Screening Levels (ESLs). The ESLs are summarized in lookup tables in the "Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater" guidelines, as revised in July 2003, "Volume 1: Summary Tier 1 Lookup Tables". As specified in the Tier 1 Lookup Table A and C, ESLs for the constituents of concern (COC) are the same for commercial/industrial and residential use sites where groundwater is a potential drinking water resource, regardless of whether subsurface soil impact is less than or greater than 10 feet (or 3 meters) bgs.

Constituent	ESL (mg/kg)
GRO/TPH-g	100
Benzene	0.044
Toluene	2.9
Ethylbenzene	3.3
Xylenes	1.5
MTBE	0.023
TBA	0.073

Of the 36 soil samples collected during this on-site investigation, samples SB-7 (5-5.5'), SB-7 (9.5-10'), and SB-7 (14.5-15') were above the GRO ESL with concentrations of 730 mg/kg,

Ms. Donna Drogos August 4, 2005 Page 7 of 11

340 mg/kg, and 1,300 mg/kg, respectively. Benzene and toluene were not detected at or above their respective laboratory reporting limits in soil samples collected from any of the onsite borings. The detected total xylenes concentrations of 3.0 mg/kg and 3.9 mg/kg at SB-7 (2-2.5') and SB-7 (5-5.5'), respectively, were above the ESL for total xylenes. Of the 11 samples with detectable concentrations of MTBE, 9 of the samples reported concentrations above the MTBE ESL. Only one soil sample [SB-6 (19.5-20')] exceeded the ESL for TBA with a concentration of 0.13 mg/kg.


3.2 Groundwater Analytical Results

Groundwater samples from the three monitoring wells were submitted to Sequoia for GRO, BTEX, and fuel additives (including MTBE, TAME, ETBE, DIPE, TBA, EDB, 1,2-DCA, and ethanol) analysis using EPA Method 8260B. Groundwater analytical results are presented in Table 2 and Table 3. Copies of laboratory analytical reports and chain-of-custody records are presented in Attachment F.

The groundwater analytical results can be summarized as follows:

- GRO was detected in two of the on-site groundwater monitoring wells at concentrations of 130 micrograms per liter (μg/L) (MW-3) and 180 μg/L (MW-1).
- MTBE was detected at concentrations ranging from 36 μg/L (MW-1) to 5,300 μg/L (MW-2). TBA was detected in MW-1 and MW-2 at concentrations of 550 μg/L and 9,000 μg/L, respectively. TAME was detected in MW-2 and MW-3 at concentrations of 99 μg/L and 1.4 μg/L, respectively.
- No BTEX, ethanol, DIPE, ETBE, 1,2-DCA, or EDB were detected at or above their respective laboratory reporting limits.

The following is a comparison of the groundwater analytical results from this investigation to the RWQCB ESLs. The ESLs are summarized in lookup tables in the "Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater" guidelines, as revised in July 2003, "Volume 1: Summary Tier 1 Lookup Tables". As specified in the Tier 1 Lookup Table A and C, ESLs for the COC are the same for commercial/industrial and residential use sites where groundwater is a potential drinking water resource, regardless of whether subsurface soil impact is less than or greater than 10 feet (or 3 meters) bgs.

Constituent	ESL (μg/L)
GRO/TPH-g	100
Benzene	1.0
Toluene	40
Ethylbenzene	30
Xylenes	13
MTBE	5
TBA	12

Of the 3 groundwater monitoring well samples collected on July 11, 2005, samples collected from 2 of the wells exceeded the ESL for GRO with concentrations of 130 μ g/L (MW-3) and 180 μ g/L (MW-1). No BTEX was reported in the groundwater monitoring wells. The concentrations of MTBE detected in all three of the monitoring wells exceeded the ESL with concentrations ranging from 36 μ g/L (MW-1) to 5,300 μ g/L (MW-2). TBA was detected in MW-1 and MW-2 above the ESL at concentrations of 550 μ g/L and 9,000 μ g/L, respectively. There is no current ESL for TAME.

3.3 GeoTracker

In accordance with GeoTracker requirements, URS will upload soil and groundwater analytical data and associated information into the GeoTracker database as soon as the final electronic data files have been obtained from the laboratory.

3.4 Investigation Derived Waste Disposal

Investigation derived waste generated during Site investigation activities was stored temporarily on-site in DOT approved 55-gallon drums pending analytical results and profiling. Following waste characterization, Dillard Environmental (Dillard) will transport the soil to an RM approved disposal facility. Upon receipt, URS will forward the waste manifests to the ACEHS upon request.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The purpose of the investigation was to provide source area characterization and a preferential pathway evaluation. Fieldwork was conducted for source characterization in order to assess the lateral and vertical extent of petroleum hydrocarbons in soils in the vicinity of the source area, such as the UST complex, former and current product dispensers,

Ms. Donna Drogos August 4, 2005 Page 9 of 11

and product piping. The results of the investigation performed by URS can be summarized as follows:

- GRO was detected in 11 soil samples from borings SB-4, SB-5, SB-6 and SB-7. Concentrations ranged from 0.14 mg/kg [SB-6 (9.5-10')] to 1,300 mg/kg [SB-7 (2-2.5')].
- MTBE was detected in 11 soil samples collected from borings SB-4, SB-5, SB-6 and SB-8 at concentrations ranging from 0.0055 mg/kg [SB-6 (9.5-10')] to 3.7 mg/kg [SB-4 (29-29.5')]. TBA was detected in 2 soil samples at concentrations of 0.053 mg/kg [SB-5 (29-29.5')] and 0.13 mg/kg [SB-6 (19.5-20')].
- GRO were detected in two of the on-site groundwater monitoring wells at concentrations of 130 μg/L (MW-3) and 180 μg/L (MW-1).
- MTBE was detected at concentrations ranging from 36 μg/L (MW-1) to 5,300 μg/L (MW-2). TBA was detected in MW-1 and MW-2 at concentrations of 550 μg/L and 9,000 μg/L, respectively.
- No benzene was detected at or above the laboratory reporting limits in any soil or groundwater samples analyzed.
- Recent sampling events indicate groundwater flow direction is to the west-southwest at a calculated hydraulic gradient of 0.06 feet per foot.
- Soil boring SB-8 was advanced in the vicinity of well MW-1 to determine nearby lithology and assess the reinstallation of well MW-1 in response to ACEHS's concern that well MW-1 was installed within fill material. After reviewing and comparing the soil boring logs for well MW-1 and SB-8, the lithology is similar. Native soil appears to be present from a depth between 7.5 and 9 feet bgs. Well MW-1 appears to be screened within native soil which is representative of that area of the Site and does not require reinstallation.

Based on the low residual GRO concentrations and the absence of detectable benzene concentrations in soil and groundwater, URS contends that these constituents are no longer a concern at the Site. However, MTBE concentrations in soil and groundwater are above ESLs, making MTBE the primary constituent of concern at this Site. Based on historical MTBE concentrations in well MW-2, there appears to be evidence of an MTBE release in the vicinity of the USTs around December 1995, and again in September 1999, during ConocoPhillips' operation of the Site. While we do not believe that the MTBE detected in soil and groundwater is related to BP's former operations, we will complete the preferential pathway evaluation as previously proposed.

Ms. Donna Drogos August 4, 2005 Page 10 of 11

6.0 PROPOSED SCHEDULE

Upon obtaining final approval from the City of Oakland to access the storm drain line and receipt of the Caltrans encroachment permit to complete work within MacArthur Boulevard, URS will complete the off-site proposed scope of work. URS will submit a Supplemental Soil and Water Investigation Report within 60 days of receipt of all final laboratory analytical results from field activities.

7.0 LIMITATIONS

This report is based on data, site conditions, and other information that are generally applicable as of the date of the report, and the conclusions and recommendations herein are therefore applicable only to that time frame. This report has been prepared solely for the use of RM and the lead regulatory agency, and should not be used by any third party.

Background information, including but not limited to previous field measurements, analytical results, site plans, and other data has been furnished to URS by RM, its previous consultants, and/or third parties that URS has used in preparing this report. URS has relied on this information as furnished. URS is not responsible for nor has it confirmed the accuracy of this information.

The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory. URS has not performed an independent review of the data and is neither responsible for nor has confirmed the accuracy of these data.

We appreciate the opportunity to present this SWI Report to the ACEHS on behalf of RM and trust that this document meets with your approval. Please do not hesitate to contact Lynelle Onishi at (510) 874-1758 with any questions or comments.

Sincerely,

URS CORPORATION

Lynelle Onishi Project Manager

Typelle Onst

Barbara J. Jakub, P.G

BARBARA J

JAKUB No. 7304

Senior Geologist

cc: Mr. Kyle Christie, Remediation Management, (electronic file uploaded to ENFOS)

Mr. Ade Fagorala, San Francisco Bay Regional Water Quality Control Board, 1515

Clay Street, Suite 1400, Oakland, California 94612

Ms. Shelby Lathrop, ConocoPhillips (electronic file upload to URS FTP site)

Ms. Donna Drogos August 4, 2005 Page 11 of 11

Attachments:

Figure 1 – Site Location Map

Figure 2 – Site Map with Boring, Well, and Cross-Section Locations

Figure 3 – Cross Section A-A'

Figure 4 – Cross Section B-B'

Figure 5 – Groundwater Elevation Contour and Analytical Summary Map, Third Quarter (July 11, 2005)

Table 1 – Soil Analytical Results

Table 2 – Groundwater Elevation and Analytical Results

Table 3 – Fuel Oxygenate Analytical Results

Attachment A - ACEHS Correspondence Dated May 4, 2005

Attachment B - Historical Soil And Groundwater Analytical Data

Attachment C - Soil Boring Logs

Attachment D - Alameda County Public Works Agency Soil Boring Permit

Attachment E - Field Procedures and Field Data Sheets

Attachment F - Laboratory Analytical Reports and Chain-Of-Custody Records

REFERENCES:

- URS, 2005. Revised Soil and Groundwater Investigation Workplan for Former BP Service Station # 11102, 100 MacArthur Boulevard, Oakland, CA. April 28, 2005.
- URS, 2004. Soil and Groundwater Investigation Workplan for Former BP Service Station # 11102, 100 MacArthur Boulevard, Oakland, CA. April 16, 2004.
- Alisto, 2000. Potential Receptor Survey, Expanded Site Plan and Well Search, BP Oil Company Service Station No. 11102, 100 MacArthur Boulevard, Oakland, CA. October 19, 2000.
- Alton, 1989. *Preliminary Site Investigation Report*, Former Mobile Service Station No. 10-E6A, 100 MacArthur Blvd., Oakland, CA. December 20, 1989.
- BP, 1989. Underground Storage Tank Registration, BP Oil Company Facilities, County of Alameda. Letter to Rafat Shahid from W.J. Hollis. July 10, 1989.
- Cambria, 2000. Historical Review, Utility Survey, and Recovery Testing Report. BP Oil Site No. 11102, 100 MacArthur Boulevard, Oakland, CA. February, 24, 2000.
- Emcon 1994. Baseline Assessment Report, Site Number 1102, 100 MacArthur Boulevard, Oakland, CA. December 27, 1994.
- KEI, 1988. Soil Sampling Report, Mobile Service Station #10-E6A, 100 MacArthur Blvd., Oakland, CA. October 7, 1988.

Table 1

Soil Analytical Data

Former BP #11102

100 MacArthur Blvd., Oakland, CA

Soil Sample ID	Sample Depth (feet bgs)		Date Sampled	GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	TBA (mg/kg)	MTBE (mg/kg)	Lead (mg/kg)
SB-4 (5-5.5')	5	U	07/14/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-4 (9.5-10')	9.5	U	07/14/05	ND<0.50	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.10	0.37	NA
SB-4 (14.5-15')	14.5	U	07/14/05	3.5	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	1.1	NA
SB-4 (19.5-20')	19.5	U	07/14/05	-3.8	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	2.4	NA
SB-4 (20-20.5')	20	S	07/14/05	ND<12	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<25	3.4	NA
SB-4 (25-25.5')	25	S	07/14/05	ND<25	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<50	3.5	NA
SB-4 (29-29.5')	29	S	07/14/05	ND<25	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<50	3.7	NA
SB-5 (5-5.5')	5	U	07/14/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-5 (9.5-10')	9.5	U	07/14/05	0.15	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-5 (14.5-15')	14.5	U	07/14/05	0.25	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-5 (19.5-20')	19.5	U :	07/14/05	61	ND<0.025	ND<0.025	0.14	ND<0.025	ND<5.0	ND<0.025	NA
SB-5 (29-29.5')	29	S	07/14/05	0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.053	0.65	NA
SB-6 5-5.5'	5	U	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA.
SB-6 8.5-9'	8.5	S	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-6 9.5-10'	9.5	Ū	07/13/05	0.14	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.0048	ND<0.019	ND<0.0048	5.2
SB-6 14.5-15'	14.5	S	07/13/05	ND<0.097	ND<0.0048	ND<0.0048	ND<0.0048	0.0082	ND<0.019	ND<0.0048	NA
SB-6 16.5-17'	16.5	S	07/13/05	ND<0.098	ND<0.0049	ND<0.0049	ND<0.0049	0.0054	ND<0.020	ND<0.0049	NA
SB-6 19.5-20'	19.5	S	07/13/05	ND<0.50	ND<0.025	ND<0.025	ND<0.025	ND<0.025	0.13	0.15	NA
SB-6 27.5-28 ^t	27.5	S	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA

Table 1

Soil Analytical Data

Former BP #11102

100 MacArthur Blvd., Oakland, CA

Soil Sample ID	Sample Depth (feet bgs)		Date Sampled	GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	TBA (mg/kg)	MTBE (mg/kg)	Lead (mg/kg)
SB-7 (2-2.5')	2	U	07/14/05	1,300	ND<1.0	ND<1.0	3.0	3.0	ND<100	ND<0.50	NA
SB-7 (5-5.5')	5	U	07/14/05	730	ND<1.0	ND<1.0	2.4	3.9	ND<100	ND<0.50	NA
SB-7 (9.5-10')	9.5	U	07/14/05	<u>340</u>	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<250	ND<1.2	NA
SB-7 (14.5-15')	14.5	U	07/14/05	0.11	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-7 (19.5-20')	19.5	U	07/14/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-7(25.5-26')	25.5	U	07/14/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-7 (28.5-29')	28.5	S	07/14/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-7 (30.5-31')	30.5	S	07/14/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 5-5.5'	5	U	07/13/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 7-7.5'	7	S	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 9.5-10'	9.5	U	07/13/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 11-11.5'	11	S	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 14.5-15	14.5	S	07/13/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 17.5-18'	17.5	S	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
SB-8 19.5-20'	19.5	S	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.066	NA
SB-8 20.5-21'	20.5	s	07/13/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.022	NA

Notes:

All Samples analyzed by EPA Method 8260B. Tertiary amyl methyl ether, di-isopropyl ether, 1,2-dibromoethane, 1,2-dichloroethane, ethyl tertiary butyl ether, and ethanol were not detected at or above their respective laboratory reporting limit.

Total lead analyzed by EPA Method 6000/7000 series for soil disposal purposes.

S = Saturated soil sample

U = Unsaturated soil sample

bgs = below ground surface

GRO = Gasoline range organics

TBA = tert-butyl alcohol

MTBE = Methyl tert-butyl ether

mg/kg = milligrams per kilogram

ND< = Not detected at or above stated laboratory reporting limit

NA = Not analyzed

Table 2
Groundwater Elevation and Analytical Data

Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

Well		P/	Foot	TOC (ft	DTW	Product Thickness	GWE (ft	GRO/ TPH-g	Benzene	Toluene	Ethyl-	Total Xylenes	MTBE	DO		<u> </u>	DRO/ TPH-d	TOG	нуос
No.	Date	NP	Note	MSL)	(ft bgs)	(feet)	MSL)	(µg/L)	(µg/L)	(µg/L)	benzene (µg/L)	(µg/L)	(µg/L)	(mg/L)	Lab	pН	(μg/L)	(μg/L)	(µg/L)
MW-1	11/4/1989	_	_	90.20	13.21	-	76.99	<500	3.4	0.6	<0.3	<0.3			SAL		<50	<5000	
	11/11/1989	-	-	90.20	13.32	_	76.88	-	-	-	-		**	-					
	4/3/1990	-	-	90.20	12.46	_	77.74	820	64	1.9	23	34	-	-	ANA	-	_	<u> </u>	
	7/30/1990	-	_	90.20	12.92	-	77.28	190	11	<5.0	<5.0	<5.0	-	-	ANA		<50	<5000	
	11/20/1990	_	-	90.20	14.08	-	76.12	50	2.4	<0.3	<0,3	<0.3	-	-	SAL		79	<5000	
	3/1/1991	_	-	90.20	13.61	_	76.59	<100	0.9	<0.3	<0.3	0.3	-	-	SAL	-	<1000	14,000	
	8/19/1991	_	-	90.20	15.74	-	74.46	370	35	0.73	6.4	5.6	_	_	SEQ	_	<50	<5000	
	11/13/1991		-	90.20	14.08	_	76.12	60	0.68	<0.3	<0.3	<0.3	_	_	SEQ	_	<50	<5000	_
	2/24/1992	-	_	90.20	12.52	· -	77.68	140	3.9	0.66	1.2	3.8			SEQ	_	100	<5000	
	5/19/1992	-	-	90.20	11.80	_	78.40	4,200	440	21	250	37	_	-	SEQ	-	910	<5000	
	6/17/1992	-	-	90.20	12.01	-	78.19	4,000	350	14	150	17	-	-	SEQ	_	560	<5000	
	7/22/1992	_	-	90.20	12.42	-	77.78	4,000	<5.0	19	210	61	-		ANA				-
	8/14/1992	_	-	90.20	12.75	_	77.45	2,400	330	20	150	47		_	SEQ	_	1,700	<5000	
	11/11/1992	_	-	90.20	13.69		76.51	260	30	3.4	7.6	6.8			ANA	_	92	<5000	
	6/7/1993	-	c	90.20	ı	-		3,700	120	12	26	9,5	_	_	PACE		_		
	6/7/1993	-		90.20	10.93	_	79.27	3,400	98	11	21	7.6	-		PACE	_	440		
	12/2/1993	-	_	90.20	12.72	-	77.48	1,100	8.3	3.6	0.6	1.5		_	PACE	_	120	<5000	
	6/22/1994	_	С	90.20	_	-		2,100	30	3.2	2	15	2,000 d	_	PACE	-	-		-
	6/22/1994	_	_	90.20	11.81		78.39	2,100	32	3.8	2.2	17	4,000 d	3.2	PACE	_	<50	<5000	
	1/10/1995	-	C	90.20	_	-		<500	120	<5	5	<10	-		ATI	ı	-		-
	1/10/1995	-	-	90.20	10.97	_	79.23	<500	120	<5	\ 5	<10	-	3.9	ATI	_	420		
	6/21/1995	_	c,e	90.20	-			3,600	<13	<5.0	<5.0	<10	_	-	ATI	_			-
	6/21/1995	-		90.20	9.38		80.82	4,700	16	<5.0	<5.0	<10		6.7	ATI	+	1,300	2,900	0.6
	12/27/1995	_	-	90.20	11.55	-	78.65	430	<2.5	<2.5	<2.5	<5.0	1,200	6.3	ATI	-	2,100	640	
	6/13/1996	_	-	90.20	9,28	-	80.92	3,200	51	<12	<12	<12	4,000	6.3	SPL		920	2,000	
	12/4/1996	-	f	90.20	11.91	-	78.29	1,400	6.2	<5	<5	<5	2,600	6.7	SPL	_	280	2,000	6
	6/10/1997	-	С	90.20	-	-		7,700	14	<25	<25	<25	13,000	-	SPL	-		***	-
	6/10/1997	-	-	90.20	8.97	-	81.23	7,900	12	<10	<10	<10	15,000	6	SPL		1,700	<5	ND
	12/12/1997		-	90.20	11.37	-	78.83	440	8.8	<1.0	2.6	9.4	6,700	5.5	SPL	_	760	1,200	ND
	6/18/1998		-	90.20	8.02	-	82.18	7,500	<2.5	<5.0	<5.0	<5.0	5,600	4.9	SPL	-	2,900	<5	МĐ
	3/9/1999	-	-	90.20	9.80	-	80.40	32,000	100	16	72	110	49,000	_	SPL	-			***
	9/28/1999	_	_	90.20	10.78	-	79.42	1,000	<5.0	<5.0	<5.0	<5.0	730	-	SPL	-			<1.0
	10/14/1999	_	_	90.20	10.84	-	79.36			_			_	_	SPL	_	660		
	3/27/2000	-	-	90.20	9.83		80.37	4,300	160	19	37	43	28,000		PACE	•			
	9/28/2000	-	-	90.20	11.33		78.87	2,700	10	2.6	1.1	2.7	28,000	_	PACE	-			

Table 2
Groundwater Elevation and Analytical Data

Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

				TOC		Product	GWE	GRO/	<u> </u>		Ethyl-	Total				<u> </u>	DRO/		T
Well No.	Date	P/ NP	Foot Note	(ft MSL)	(ft bgs)	Thickness (feet)	(ft MSL)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	Ha	TPH-d (µg/L)	TOG (μg/L)	HVOC (µg/L)
MW-1	3/8/2001		-	90.20	10.96	(leet)	79.24	8,200	23.5	6.09	5.23	8.97	11,600	(mg/L)	PACE	P11	(H9/L)	(µg/L)	(µg/L/
INIAA-1	9/21/2001	-	_	90.20	12.07		78.13	6,000	37.9	<0.5	<0.5	<1.5	7,370		PACE				
	2/28/2002	_		90.20	10.48		79.72	6,400	60.8	<5.0	6.43	<10	7,370		PACE	-			-
<u> </u>	9/6/2002	_		90.20	11,20		79.00	1,400	<5.0	<5.0 <5.0	<5.0	<5.0	6,000		SEQ		-	-	-
	2/19/2003	_	h	90.20	11.29		78.91	<10000	<100	110	<100	<100	4,500		SEQ				
	7/14/2003	_		90.20	11.18	_	79.02	710	11	<10	<100	<10	940		SEQ				
	01/14/2004	_	_	90.20	11.74	-	78.46	<500	<5.0	<5.0	<5.0	<5.0	220		SEQM	6.6	ļ		
	04/23/2004	Р	-	90.20	11.95		78.25	470	3.4	<2.5	<2.5	<2.5	150		SEQM	6.7			
	07/01/2004	P		90.20	11.52		78.68	360	<2.5	<2.5	<2.5	<2.5	96		SEQM	6.0			
	10/28/2004	P		90.20	12.56		77.64	390	0.94	<0.50	<0.50	<0.50	43		SEQM	6.2			
	01/10/2005	P		90.20	11.85	<u> </u>	78.35	490	17	<2.5	5.8	5.4	85	_	SEQM	7.6			
	04/13/2005	P		90.20	10.00	<u> </u>	80.20	1,000	27	<2.5	<2.5	25	48		SEQM	6.6		<u></u>	
	07/11/2005	P		90.20	9.27		80.93	180⊃	<0.50	<0.50	<0.50	<0.50	36		SEQM	7.7			
-				1			60.55	180	\0.50		~0.50	~0.50	36		SEGIN	1.1			
MW-2	11/4/1989	_	_	87.91	15.84	ı	72.07	<500	6.5	<0.3	<0.3	<0.3			SAL	-			
	11/11/1989			87,91	14.75	ı	73.16	-	-	1	-	_	-	-	_	-	-		-
	4/3/1990			87.91	15.25		72.66	<500	<0.5	<0.5	<0.5	<0.5		-	ANA	-			
	7/30/1990	-	-	87.91	15.59	-	72.32	61	6.5	< 0.5	<0.5	<0.5	-	-	ANA	-			
	11/20/1990	-	ı	87.91	17.81	ı	70.10	<50	0.3	<0.3	<0.3	<0.3	-	-	SAL	_			
	3/1/1991	_	-	87.91	17.11	-	70.80	<100	0.4	<0.3	<0.3	<0.3	-	-	SAL	-			
	8/19/1991			87.91	17.97	-	69.94	<30	<0.3	<0.3	<0.3	<0.3		-	SEQ	-			***
	11/13/1991	_	-	87.91	16.76	-	71.15	38	0.32	<0.3	<0.3	<0.3		-	SEQ	-			
	2/24/1992	_	_	87.91	15.07	-	72.84	<50	<0.5	<0.5	<0.5	0.58	_	-	SEQ	-			
	5/19/1992	-		87.91	14.70	_	73.21	<50	0.55	<0.5	<0.5	<0.5	-		SEQ	_			_
	7/22/1992	_	_	87.91	15.60	_	72.31	90	1.3	0.6	0.9	1.9	-	_	ANA	-			
	8/14/1992	_	-	87.91	15.88	-	72.03	_	_	ı	-			_		-	-	_	
	11/11/1992	_	С	87.91	-	ı		65	3.2	< 0.5	<0.5	1		-	ANA	_			
	11/11/1992		-	87.91	16.19	-	71.72	52	2.8	<0.5	<0.5	0.9	-	_	ANA	_			
	6/7/1993			87.91	14.42	_	73.49	1,200	14	2.8	1.9	1.71	-	_	PACE	-			
	12/2/1993	1	c	87.91	-	-		2,100	32	3.8	2.2	17	3,700 d		PACE	-	_		
	12/2/1993	-		87.91	14.94	_	72.97	790	3,4	0.5	10	<0.5	3,700 d	-	PACE	-		-	
	6/22/1994	_	-	87.91	14.25	-	73.66	110	<0.5	<0.5	<0.5	<0.5	120 d	3.9	PACE				
	1/10/1995	-	-	87.91	13.64	-	74.27	<50	<0.5	<0.5	0.6	1		4.3	ATI	-			
	6/21/1995	_	_	87.91	11.66		76.25	4,700	<10	<10	<10	<20	-	7.8	ATI	-			
	12/27/1995	_	С	87.91	_	_		6,300	<25	<25	<25	<50	19,000		ATI				

Table 2
Groundwater Elevation and Analytical Data

Former BP Station #11102 100 MacArthur Bivd., Oakland, CA

Well		P/	Foot	TOC (ft	DTW	Product Thickness	GWE (ft	GRO/ TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	DO			DRO/ TPH-d	TOG	нуос
No.	Date	NP	Note	MSL)	(ft bgs)	(feet)	MSL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	Lab	pН	(µg/L)	(µg/L)	(µg/L)
MW-2	12/27/1995	-	_	87.91	13.11	-	74.80	6,100	<25	<25	<25	<50	20,000	6.7	ATI	-			
	6/13/1996	_	С	87.91	-	_	-	8,700	<5	<5	<5	<5	13,000		SPL	-	_		
	6/13/1996	_	_	87.91	10.86	-	77.05	8,300	<2.5	<2.5	<2.5	<2.5	13,000	6.5	SPL	-			
	12/4/1996	_	С	87.91		-		5,900	<2.5	<5	<5	<5	11,000	-	SPL		-		_
	12/4/1996		-	87.91	13.03	-	74.88	5,900	<2.5	<5	<5	<5	11,000	6.3	SPL				
	6/10/1997	_	_	87.91	10.04	_	77.87	<50	<0.5	<1.0	<1.0	<1.0	<10	5.8	SPL	-			
	12/12/1997	-	-	87.91	12.44		75.47	<50	<0.5	<1.0	<1.0	<1.0	<10	5.7	SPL	-			
	6/18/1998	_	С	87.91	-	-		<50	<0.5	<1.0	<1.0	<1.0	<10	_	SPL	-			
	6/18/1998	_	_	87.91	8.89		79.02	50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL	•			
	3/9/1999	_		87.91	10.20	-	77.71	15,000	<5.0	<5.0	<5.0	<5.0	23,000	_	SPL	-		***	***
	9/28/1999		_	87.91	11.81		76.10	36,000	<5.0	12	7	26	35,000		SPL	_			<5.0
	10/14/1999			87.91	10.27	-	77.64		-	-	-	_			SPL	-	100		***
	3/27/2000		-	87.91	9.98	-	77.93	1,300	<0.5	<0.5	0.51	<0.5	5,800	-	PACE	-			
	9/28/2000		-	87,91	11.40	-	76.51	1,600	1.8	1.7	0.54	2.2	15,000	-	PACE		-		
	3/8/2001			87,91	11.16	-	76.75	20,000	<0.5	<0.5	<0.5	<0.5	29,100	-	PACE		_		
	9/21/2001		-	87.91	11.65	-	76.26	5,000	<0.5	<0.5	<0.5	<1.5	6,110	-	PACE		-		
	2/28/2002		-	87.91	9.86	-	78.05	3,200	35.1	<0.5	<0.5	<1.0	4,620	_	PACE	-		-	
	9/6/2002	-	_	87.91	12.32	<u> -</u>	75.59	1,900	<10	<10	<10	<10	15,000		SEQ	-			
	2/19/2003	-	h	87.91	11.63		76.28	45,000	<250	<250	<250	<250	32,000	_	SEQ	<u> </u>	-	_	
	7/14/2003	_		87.91	12.07		75.84	9,300	<500	<500	<500	<500	24,000		SEQ		-	-	
	01/14/2004	Р	_	87.91	11.45	-	76.46	<50,000	<500	<500	<500	<500	21,000		SEQM	6.9	-		-
<u> </u>	04/23/2004	P	_	87.91	11.45	_	76.46	5,1001	<250	<250	<250	<250	22,000	~-	SEQM	6.8		_	_
	07/01/2004	P	_	87.91	12.32		75.59	<5,000	<50	<50	<50	<50	5,200		SEQM	5.6			
	10/28/2004	Р		87.91	13.02	-	74.89	8,500	<50	<50	<50	<50	6,800	-	SEQM	6.2			
	01/10/2005	Р	-	87.91	14.38	<u> </u>	73.53	<25,000	<250	<250	<250	<250	7,100		SEQM	7.6			
	04/13/2005	P		87.91	14.03	_	73.88	<5,000	<50	<50	<50	<50	5,300	-	SEQM	6.6			_
	07/11/2005	P		87.91	11.25	-	76.66	<5,000	≥ <50	<50	<50	<50	5,300	-	SEQM	7.5			
MW-3	11/4/1989	-	_	87.02	15.40		71.62	<500	<0.3	<0.3	<0.3	<0.3	_	_	SAL	_			
	11/11/1989	_	-	87.02	14.10	_	72.92	_	_	-	_			_		-			_
	4/3/1990	_	-	87.02	13.90	_	73.12	<100	<0.5	<0.5	<0.5	<0.5	_	-	ANA	_			
	7/30/1990	-	-	87.02	13.77		73,25	<50	<0.5	<0.5	<0.5	<0.5		-	ANA	-	_	<5000	
	11/20/1990	_	-	87.02	14.67	_	72.35	<50	0.3	0.8	0.4	1.5	-	-	SAL	_	••		
	3/1/1991	-	-	87.02	15.22	_	71.80	<100	0.4	<0.3	<0.3	<0.3	_	-	SAL				_
	8/19/1991	_	_	87.02	13.15	-	73.87	<30	<0.3	<0.3	<0.3	<0.3	_	_	SEQ	_	-		_

Table 2
Groundwater Elevation and Analytical Data

Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

Well		P/	Foot	TOC (ft	DTW	Product Thickness	GWE (ft	GRO/ TPH-g	Benzene	Toluene	Ethyi- benzene	Total Xylenes	MTBE	ро			DRO/ TPH-d	TOG	нуос
No.	Date	NP	Note	MSL)	(ft bgs)	(feet)	MSL)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	Lab	pН	(µg/L)	(µg/L)	(µg/L)
MW-3	11/13/1991	_	-	87.02	15.66	-	71.36	<30	<0.3	<0.3	<0.3	<0.3		_	SEQ				
	2/24/1992	_	_	87.02	15.01	-	72.01	<50	0.65	1.4	0.66	4.4		_	SEQ	-			
	5/19/1992	_	-	87.02	15.52	-	71.50	<50	<0.5	<0.5	<0.5	<0.5	_		SEQ				
	7/22/1992	_	-	87.02	15.63		71.39	<50	<0.5	<0.5	<0,5	<0.5			ANA		<50	<5000	
	8/14/1992	-		87.02	13.57	-	73.45	-	-	-			1	_		-			
	11/11/1992	1	-	87.02	14.13	-	72.89	<50	<0.5	0.7	<0.5	1.3	•	-	ANA	-		***	
	6/7/1993	-	-	87.02	12.13	-	74.89	5 0	<0.5	<0.5	<0.5	<0.5		-	PACE	-			
	12/2/1993	_	_	87.02	13.29	<u> </u>	73.73	<50	<0.5	<0.5	<0.5	<0.5		-	PACE	-			
	6/22/1994		_	87.02	12.78	_	74.24	<50	<0.5	<0.5	<0.5	<0.5		2.9	PACE				-
	1/10/1995	_	-	87.02	12.01	_	75.01	<50	<0.5	<0.5	<0.5	<1	-	3.8	ATI	-			
	6/21/1995	_	-	87.02	11.57	_	75.45	<50	<0.50	<0.50	<0.50	<1.0	-	7.4	ATI				
	12/27/1995	_	-	87.02	13.47	-	73.55	<50	<0.50	<0.50	<0.50	<1.0	5.7	7.3	ATI	_			
	6/13/1996	-	_	87.02	11.22	-	75,80	60	<0.5	<0.5	<0.5	<0.5	<10	6.8	SPL	-	-		
	12/4/1996	_	-	87.02	13.28	-	73.74	<50	<0.5	<1	<1	<1	<10	6.7	SPL	-	_		-
	6/10/1997	_	_	87.02	10.22	-	76,80	<50	<0.5	<1.0	<1.0	<1.0	<10	6.1	SPL	-	_		
	12/12/1997		C	87.02	-	_		<50	<0.5	<1.0	<1.0	<1.0	<10		SPL	_			
	12/12/1997	_	-	87.02	12.61	-	74.41	<50	<0.5	<1.0	<1.0	<1.0	<10	5.6	SPL				
	6/18/1998	_	-	87.02	12,80	_	74.22		-		_	-	_			_			
	6/18/1998	_	-	87.02	9.07	_	77.95	50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL	_			
	9/28/1999	_	-	87.02	13.76	-	73.26		-	-	_	_	_						
	3/27/2000	_	-	87.02	13.77	-	73.25	<50	<0.5	<0.5	<0.5	<0.5	1.6	_	PACE				
	9/28/2000	_	-	87.02	11.28	_	75.74	<50	<0.5	7.4	<0.5	1.3	2	_	PACE	_			
	3/8/2001	-	-	87.02	11.75	-	75.27	<50	<0.5	<0.5	<0.5	<0.5	60.4	_	PACE	_			
	9/21/2001	-	-	87.02	11.33	_	75.69	<50	<0.5	<0.5	<0.5	<1.5	8.18	-	PACE	_	-		
	2/28/2002	-	-	87.02	10.86	_	76.16	<50	<0.5	<0.5	<0.5	<1.0	25.5	_	PACE		-		
	9/6/2002	-	_	87.02	12.73	_	74.29	<50	1.2	<0.5	<0.5	1	16		SEQ	_			
	2/19/2003	_	h	87.02	11.72	_	75.30	<500	<5.0	<5.0	<5.0	<5.0	110		SEQ	-			
	7/14/2003	-	-	87.02	13.76	-	73.26	<50	<0.50	<0.50	<0.50	0.67	28	-	SEQ				
	01/14/2004	P	-	87.02	14.83		72.19	550	<5.0	<5.0	<5.0	<5.0	380	_	SEQM	8.1			
	04/23/2004	P	-	87.02	13.17	-	73.85	<2001	<25	<25	<25	<25	560		SEQM	6.8			-
	07/01/2004	Р	-	87.02	15.19	_	71.83	<50	<0.50	<0.50	<0.50	0.50	48	_	SEQM	6.4		-	
	10/28/2004	P	-	87.02	15.50	-	71.52	<500	<5.0	<5.0	<5.0	<5.0	290	-	SEQM	6.3	-		
	01/10/2005	Φ.	-	87.02	15.00	-	72.02	<50	<0.50	<0.50	<0.50	<0.50	18	-	SEQM	7.6		_	
	04/13/2005	P	-	87.02	14.34	-	72.68	<50	<0.50	<0.50	<0.50	<0.50	9.0		SEQM	7.1			
	07/11/2005	P	k	87.02	10.82	-	76.20	130	<1.0	<1.0	<1.0	<1.0	120		SEQM	7.8			

Table 2

Groundwater Elevation and Analytical Data

Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

Well No.	Date	P/ NP	Foot Note	TOC (ft MSL)	DTW (ft bgs)	Product Thickness (feet)	GWE (ft MSL)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	DRO/ TPH-d (µg/L)	TOG (µg/L)	HVOC (µg/L)
QC-2	11/11/1992	_	g	–	-	_	-	<50	<0.5	<0.5	<0.5	<0.5	_	_	ANA				
	6/7/1993	-	g	_	-	-	-	<50	<0.5	<0.5	<0.5	<0.5		_	PACE	_	-	trans.	
	12/2/1993	_	g	_	-	-	-	<50	<0,5	<0.5	<0.5	< 0.5	-		PACE	_			
	6/22/1994	-	g		-	-	_	<50	<0.5	<0.5	<0.5	<0.5	_	_	PACE	_		_	—
	1/10/1995	_	g	_	-	_	_	<50	<0.5	<0.5	<0.5	Ý	-	_	ATI	_	-	_	—
	6/21/1995	_	g	-	-	-		<50	<0.50	<0.50	<0.50	<1.0		-	ATI	_	-		
	12/27/1995	-	g	-	-	_		<50	<0.50	<0.50	<0.50	<1.0	<5.0	-	ATI	_	_		
	6/13/1996	-	g		_	_		<50	<0.5	<0.5	<0.5	< 0,5	<10	_	SPL	_	_		

Table 2

Groundwater Elevation and Analytical Data

Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

ABBREVIATIONS & SYMBOLS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above laboratory reporting limit</p>

DO = Dissolved oxygen

DRO = Diesel Range Organics

DTW = Depth to water in feet below ground surface

ft bgs = feet below ground surface

ft MSL = feet above mean sea level

GRO = Gasoline Range Organics, range C4-C12

GWE = Groundwater elevation measured in feet above mean sea level

HVOC = Halogenated volatile organic compounds

mg/L = Milligrams per liter

MTBE = Methyl tert butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing measured in feet above mean sea level

TOG = Total oil and grease

TPH-d = Total petroleum hydrocarbons as diesel

TPH-g = Total petroleum hydrocarbons as gasoline

ug/L = Micrograms per liter

ANA = Anametrix, Inc.

PACE = Pace, Inc.

ATI = Analytical Technologies, Inc.

CEI = Ceimic Corporation

SAL Superior Analytical Laboratory

SPL = Southern Petroleum Laboratories

SEQ/SEQM= Sequoia Analytical/Sequoia Morgan Hill Laboratories

FOOTNOTES:

- a = Top of casing elevations surveyed to the nearest 0.01 foot above mean sea level.
- b = Groundwater elevations in feet above mean sea level.
- c = Blind duplicate.
- d = A copy of the documentation for this data is included in Appendix C of Alisto report 10-076-06-002.
- e = Tetrachioroethene.
- f = Trans-1.2-Dichloroethene
- g = Travel blank.
- h = TPH-g, BTEX, and MTBE analyzed by EPA Method 82608 beginning on 1st Quarter Sampling event (2/19/03)
- i = Discrete peak @ C6-C7.
- k = The hydrocarbon result was partly due to individual peaks in the quantification range (GRO).
- I = GRO analyzed by EPA Method 8015B.

NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPHg has been changed to GRO. The resulting data may be impacted by the potential of non-TPHg analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12

pH and dissolved oxygen are field measurements.

The data within this table collected prior to August 2002 was provided to URS by RM and their previous consultants. URS has not verified the accuracy of this information.

Table 3

Fuel Additives Analytical Data

Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

Well Number	Date Sampled	Ethanol (µg/L)	TBA (µg/L)	MTBE (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)	Footnotes/ Comments
MW-1	7/14/2003	<2000	2,700	940	<20	<20	<20	_	_	
	01/14/2004	<1,000	2,500	220	<5.0	<5.0	<5.0	<5.0	<5.0	
	04/23/2004	<500	2,500	150	<2.5	<2.5	<2.5	<2.5	<2.5	
	07/01/2004	<500	2,000	96	<2.5	<2.5	<2.5	<2.5	<2.5	
	10/28/2004	<5.0	1,500	43	<0.50	<0.50	0.58	<0.50	<0.50	
	01/10/2005	<500	1,900	85	<2.5	<2.5	<2.5	<2.5	<2.5	
	04/13/2005	<500	1,400	48	<2.5	<2.5	<2.5	<2.5	<2.5	
	07/11/2005	<100	550	36	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2	7/14/2003	<100000	<20000	24,000	<1000	<1000	<1000	_	-	
	01/14/2004	<100,000	<20,000	21,000	<500	<500	<500	<500	<500	
	04/23/2004	<50,000	11,000	22,000	<250	<250	420	<250	<250	
	07/01/2004	<10,000	2,900	5,200	<50	<50	110	<50	<50	
	10/28/2004	<5.0	6,700	6,800	<50	<50	120	<50	<50	
	01/10/2005	<50,000	<10,000	7,100	<250	<250	<250	<250	<250	
	04/13/2005	<10,000	5,300	5,300	<50	<50	95	<50	<50	
	07/11/2005	<10,000	9,000	(5,300)	<50	<50	99	<50	<50	
MW-3	7/14/2003	<100	<20	28	<1.0	<1.0	<1.0	_	_	
	01/14/2004	<1,000	<200	380	<5.0	<5.0	<5.0	<5.0	<5.0	
	04/23/2004	<5,000	<1,000	560	<25	<25	<25	<25	<25	
	07/01/2004	<100	<20	48	<0.50	<0.50	0.52	<0.50	<0.50	
	10/28/2004	<5.0	<200	290	<5,0	<5.0	<5.0	<5.0	<5.0	
	01/10/2005	<100	<20	18	<0.50	<0.50	<0.50	<0.50	<0.50	
	04/13/2005	<100	<20	9.0	<0.50	<0.50	<0.50	<0.50	<0.50	
	07/11/2005	<200	<40	120	<1.0	<1.0	1.4	<1.0	<1.0	а

Table 3

Fuel Additives Analytical Data Former BP Station #11102 100 MacArthur Blvd., Oakland, CA

SYMBOLS & ABBREVIATIONS:

- = Not analyzed/applicable/measured/available

< = Not detected at or above the laboratory reporting limit.</p>

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

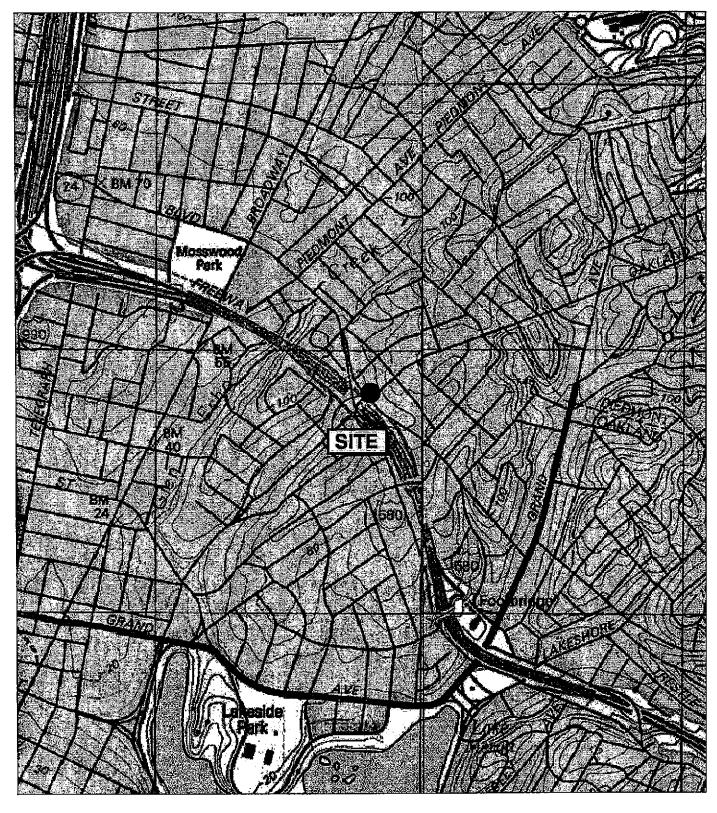
EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

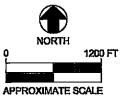
TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol


ug/L = Micrograms per Liter

FOOTNOTES:

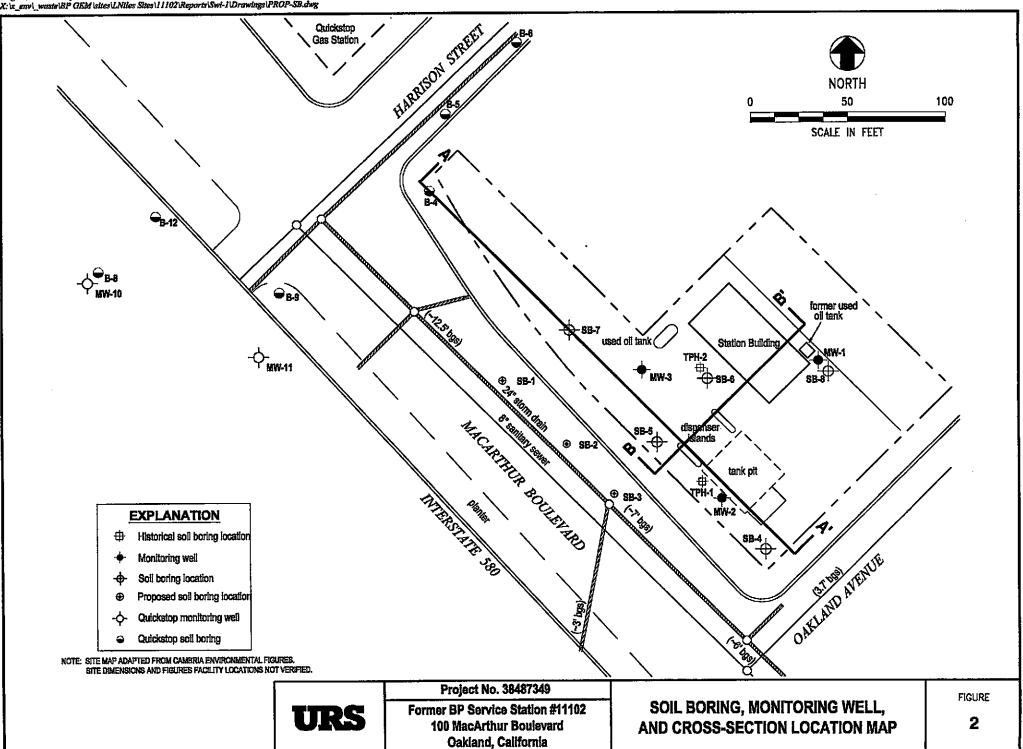
a = The calibration verification for ethanol was within the method limits but outside the contract limits.

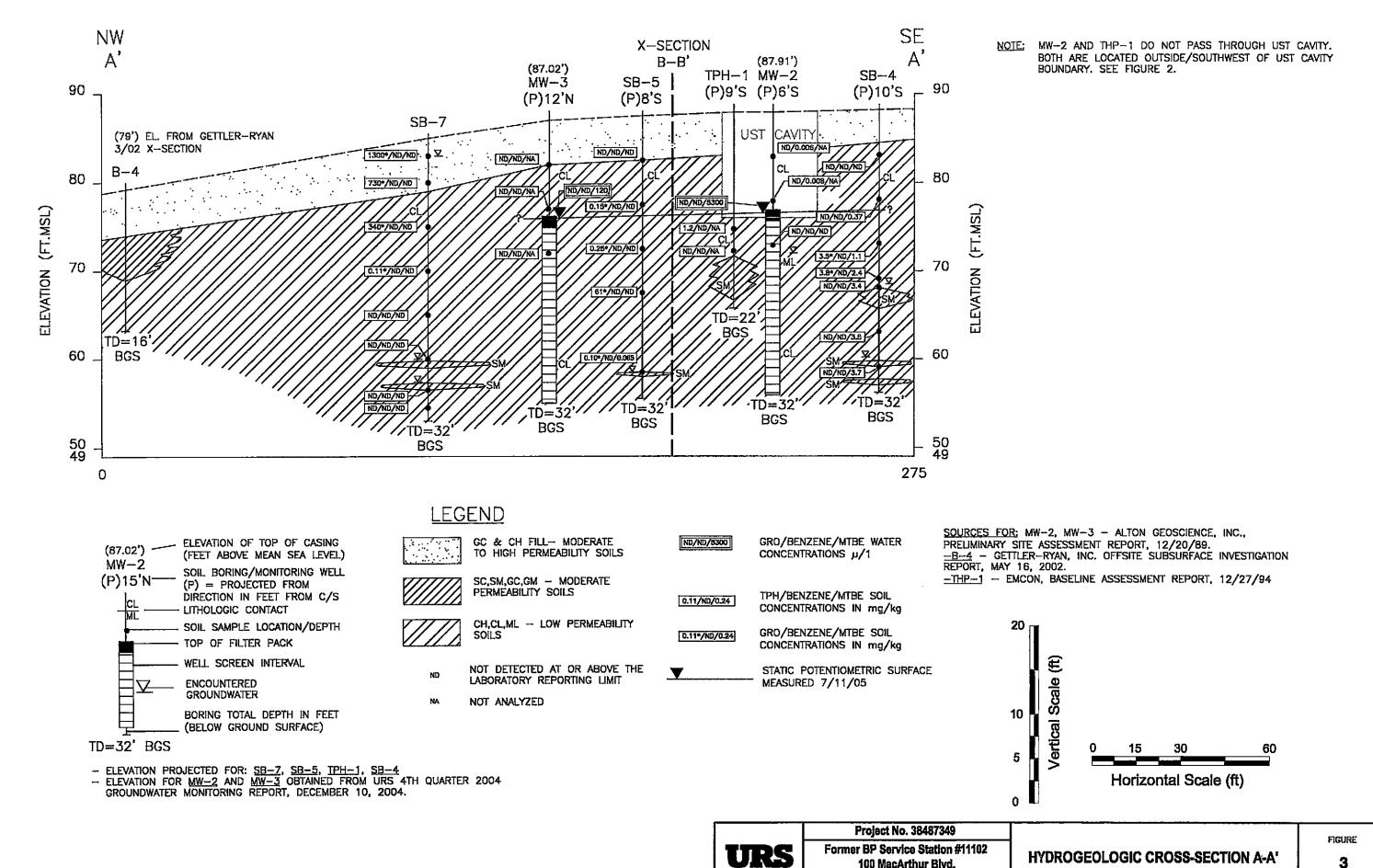

NOTES:

All volatile organic compounds were analyzed using EPA Method 8260B.

REF: BASE MAP FROM USGS TOPO! 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1998

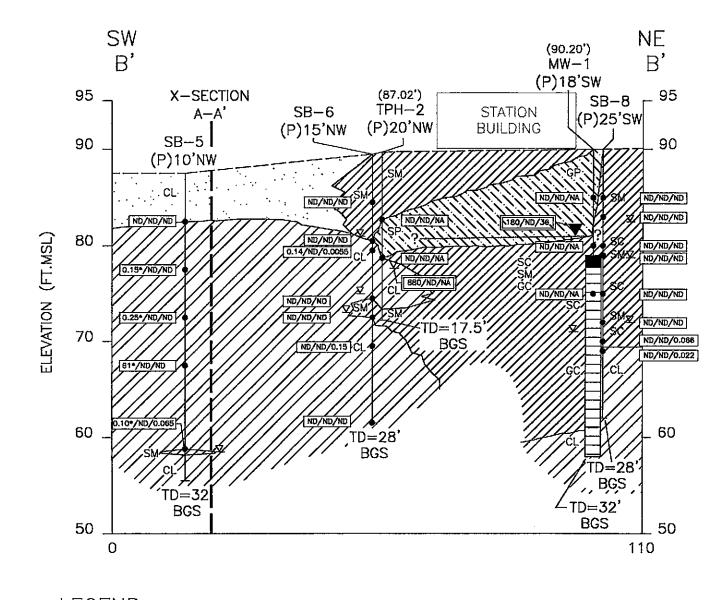
URS


Project No. 38487349


Former BP Service Station #11102 100 MacArthur Boulevard Oakland, California

SITE LOCATION MAP

FIGURE


1

100 MacArthur Blvd. Oakland, California

3

LEGEND

GC & CH FILL- MODERATE TO HIGH PERMEABILITY SOILS

180/ND/38 GRO/BENZENE/MTBE WATER CONCENTRATIONS µ/1

PRELIMINARY SITE INVESTIGATION REPORT, 12/20/89. THP-2 - EMCON, BASELINE ASSESSMENT REPORT, 12/27/94.

SOURCES FOR: MW-1 - ALTON GEOSCIENCE, INC.,

TPH/BENZENE/MTBE SOIL 0.11/ND/0.24 CONCENTRATIONS IN mg/kg

GRO/BENZENE/MTBE SOIL 0.11*/ND/0.24 CONCENTRATIONS IN mg/kg

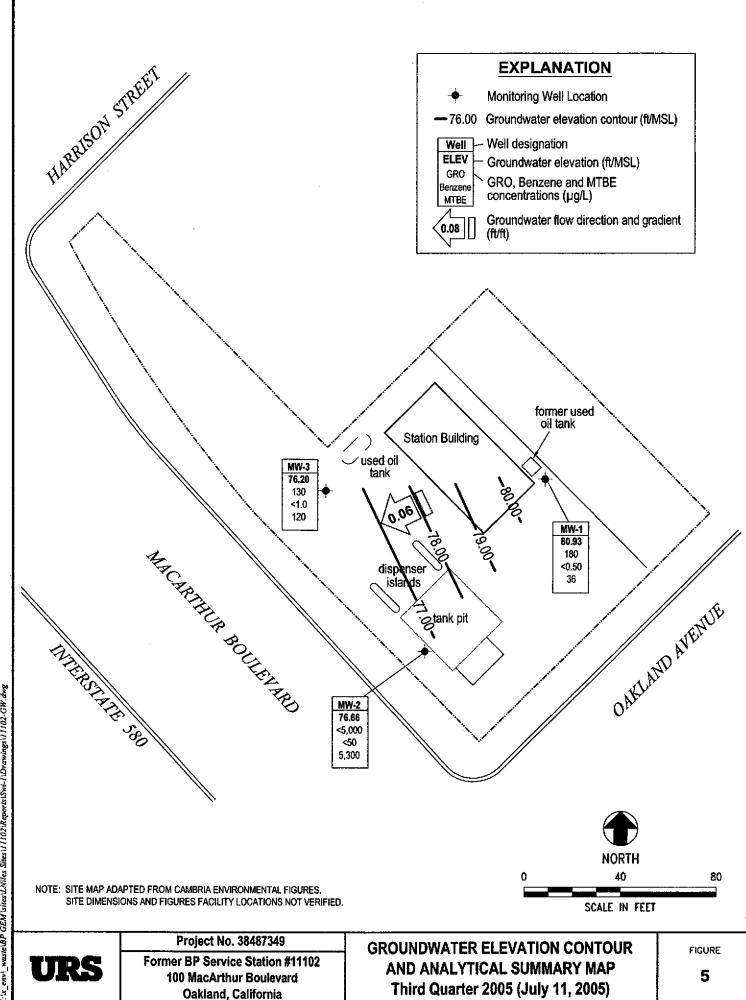
STATIC POTENTIOMETRIC SURFACE MEASURED 7/11/05

10 5 Horizontal Scale (ft)

ELEVATION OF TOP OF CASING (90.20') (FEET ABOVE MEAN SEA LEVEL) MW-1SOIL BORING/MONITORING WELL (P)15'N---(P) = PROJECTED FROM DIRECTION IN FEET FROM C/S LITHOLOGIC CONTACT SOIL SAMPLE LOCATION/DEPTH TOP OF FILTER PACK WELL SCREEN INTERVAL ENCOUNTERED **GROUNDWATER** BORING TOTAL DEPTH IN FEET (BELOW GROUND SURFACE) TD=32' BGS

SC,SM,GC,GM - MODERATE PERMEABILITY SOILS CH,CL,ML - LOW PERMEABILITY SOILS SP,SW,GP,GW - HIGH PERMEABILITY SOILS NOT DETECTED AT OR ABOVE THE LABORATORY REPORTING LIMIT

NOT ANALYZED


ELEVATION PROJECTED FOR: <u>\$B-5</u>, <u>\$B-6</u>, <u>TPH-2</u>, <u>\$B-8</u>
 ELEVATION FOR <u>MW-1</u> OBTAINED FROM URS 4TH QUARTER 2004 GROUNDWATER MONITORING REPORT, DECEMBER 10, 2004.

URS

Project No. 38487349 Former BP Service Station #11102 100 MacArthur Blvd. Oakland, California

HYDROGEOLOGIC CROSS-SECTION B-B'

FIGURE

Aug 03, 2005 - 4:37pm X: Lz_env!-wastelbP GEM tsitestLNiites Sites1/1102/Reports15wi-11Drawings1/1102-GW.dwg

ATTACHMENT A ACEHS CORRESPONDENCE DATED MAY 4, 2005

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

May 4, 2005

Kyle Christie Atlantic Richfield Company 6 Centerpointe Drive, LPR6-161 La Palma, CA 90623-1066

Jennifer Sedlachek ExxonMobil Refining and Supply Co. 7096 Piedmont Ave., #194 Oakland, CA 94611

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Liz Sewell ConocoPhillips 76 Broadway Sacramento, CA 95818

Subject:

Fuel Leak Case No. RO0000456, BP #11102, 100 MacArthur Blvd., Oakland,

California – Workplan Approval

Dear Mr. Christie, Ms. Sedlachek, and Ms. Sewell:

Alameda County Environmental Health (ACEH) has reviewed your April 28, 2005, Revised Soil and Groundwater Investigation Workplan prepared by URS Corporation, Inc., and the case file for the above-referenced site. URS proposes: 1) depth-discrete groundwater sampling from three soil borings immediately upgradient of the storm drain line beneath MacArthur Blvd., 2) two soil borings adjacent to the dispenser islands and USTs, and 3) two onsite soil borings to further characterize the site. The site is located near ACEH case No. RO-455, Unocal #1871. We concur with your workplan provided the following conditions are met:

1. The technical comments listed below will be addressed prior to conducting field work, and documentation will be provided in the report requested below.

2. Soil borings SB-4 and SB-5 will be drilled as close as practicable to the dispenser islands and USTs, and to the total depth of apparent source area contamination. ACEH typically recommends that soil samples be collected and analyzed from a boring within the footprint of a former UST field (or point of fuel release) to at least 10 ft below the total depth of contamination, as identified by field screening of samples.

3. If deemed necessary by your geologist or engineer to fully define the vertical and lateral extent of contamination, additional soil or groundwater samples will be collected as part of the current investigation efforts. ACEH will be informed via telephone or email of any additions to the sampling and analysis plan. Any additional work will follow the workplanspecified procedures. Dynamic investigations are consistent with USEPA protocol for expedited site assessments, which are scientifically valid and offer a cost-effective approach to fully define a plume and to help progress a case toward closure.

4. 72-hr advance written notification (email preferred) will be provided to ACEH prior to field sampling activities.

Please implement the proposed investigation and submit technical reports following the schedule below. In addition, we request that you address the following technical comments.

TECHNICAL COMMENTS

1. Investigation Sequence

Due to the typically high rate of natural attenuation of petroleum hydrocarbons away from the source area, and to the significantly higher horizontal vs. vertical hydraulic conductivity of naturally occurring sediments (i.e. native soils), the downgradient vertical distribution in groundwater is likely to be 1) dependent on lithology, and 2) closely related to the depth(s) of source area contamination. Accordingly, ACEH recommended in our January 27, 2005, letter that the groundwater investigation consider the results of source area delineation. URS proposes sample collection from borings SB-1 through SB-3 at depths of 12, 15 and 18 ft bgs. ACEH provisionally concurs with this proposal; however, the actual depths of groundwater sampling from borings SB-1 through SB-3 and SB-6 through SB-8 need to be determined in the field based on observations of vertical contamination distribution in the source area (borings SB-4 and SB-5). Please confirm the investigation sequence in the report requested below.

2. Contaminants of Concern

URS proposes sample analysis for TPHg, BTEX, MTBE, TBA, ETBE, TAME, DIPE, 1,2-DCA, EDB and ethanol. Based on our review of the recent groundwater data, contaminants of concern (COCs) at the site include: TPHg, BTEX, MTBE, TBA, and TAME, only (TBA is a COC in part due to its potential occurrence as a MTBE degradation product). Analysis for lead scavengers, ETBE, and DIPE may not be necessary. Prior to conducting the proposed investigation, we request that you review all historical analytical data for the site in order to 1) confirm compliance with the minimum verification analyses listed in the Tri-Regional Guidelines, and 2) confirm the COCs at the site. Please identify appropriate COCs for the site in the report requested below.

REPORT REQUEST

Please submit your *Soil and Water Investigation Report* by **August 4, 2005**. ACEH makes this request pursuant to California Health & Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2778 outline the responsibilities of a responsible party for an unauthorized release from an UST system, and require your compliance with this request.

Professional Certification and Conclusions/Recommendations

The California Business and Professions Code (Sections 6735 and 7835.1) requires that workplans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

Perjury Statement

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company.

Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports or enforcement actions by ACEH may result in you becoming ineligible to receive cleanup cost reimbursement from the state's Underground Storage Tank Cleanup Fund (senate Bill 2004).

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested we will consider referring your case to the County District Attorney or other appropriate agency, for enforcement. California Health and Safety Code, Section 25299.76 authorizes ACEH enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Please call me at (510) 567-6719 with any questions regarding this case.

Sincerely.

Robert W. Schultz, R.G.

Hazardous Materials Specialist

CC:

Lynelle Onishi, URS Corporation, 500 12th St., Ste. 200, Oakland, CA 94607-4014

Donna Drogos, ACEH Don Hwang, ACEH

File

ATTACHMENT B HISTORICAL SOIL AND GROUNDWATER ANALYTICAL DATA

in Table 2. The official Laboratory Reports and Chain of Custody Records are included in Appendix F.

4.2 Water Analysis and Results

Ground water samples collected from Monitoring Wells MW-2 and MW-3 were analyzed for TPH-G and BTEX. Ground water from Monitoring Well MW-1 was analyzed for the same constituents and for halogenated volatile organic compounds (HVOC) and total oil and grease (TOG). The results of the laboratory analyses are presented in Table 3. The official Laboratory Reports and Chain of Custody Record are included in Appendix F.

TABLE 2

RESULTS OF

LABORATORY ANALYSIS OF SOIL SAMPLES

رکوري

			* · •				•	رق
Boring	Depth (Feet)	TOG (Co	TPH ncentra	B ations	T in p	E parts	X per	HVOC billion)
MW-1	5 10 15	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
MW-2	5 10 15	 ND	ND ND	6 8 ND	ND ND ND	ND ND ND	ND ND ND	
MW-3	5 10 15		ND ND ND	ND ND ND	6 ND ND	ND ND	13 ND ND	
	TOG = tota TPH = tota B = benzen T = toluen E = ethylb	⊥ pet: e e	and gre	ease lydroc	arbo	ns		

E = ethylbenzene

X = xylenes

HVOC = halogenated volatile organic compounds ND = not detected; see lab sheets for various detection limits

--- = not analyzed

Table A-1

Site Number 11102 100 MacArthur Boulevard, Oakland, California

Soil Sample Results of Analyses (ppm)

	Depth		California DHS LUFT Method TPH-G	California Method Hyd	DHS LUFT rocarbon Scan		BT EPA Metho	EX d 5030/8020	
Sample Number	(feet)	Date Collected	TPH-G	TPH-D	ТРН-О	Benzene	Toluene	Ethylbenzene	Total Xylenes
THP1-S-12.5-13*** THP1-S-15-15.5* THP2-S-6.5-7* THP2-S-9.5-10* TD1-0.5* TD3-0.5*	12.5-13 15-15.5 6.5-7 9.5-10 0.5 0.5	11/22/94 11/22/94 11/22/94 11/22/94 11/22/94 11/22/94	1.2 nd nd nd 1.4 nd	nd nd nd nd 2,100 470	nd nd nd nd nd* nd	nd nd nd nd nd	nd nd nd nd 0.006 nd	nd nd nd nd nd	nd nd nd nd o.04

Groundwater Sample Results of Analyses (ppb)

	Depth to Water		California DHS LUFT Method TPH-G	California Method Hyd	DHS LUFT rocarbon Scan	BTEX EPA Method 5030/8020						
Sample Numbe	r (feet)	Date Sampled	TPH-G	TPH-D	ТРН-О	Benzene			Total			
THP2-W BLK-W	12 -	11/22/94 11/22/94	880 nd	610	nd —	nd nd	Toluene 1.8	Ethylbenzene nd	Xylenes 39			
NOTE: TPH-G TPH-D TPH-O nd n/a	Total petroleum hyd	drocarbons as gasoline. drocarbons as diesel, drocarbons as oil, drocarbons as oil, drocarbons as oil,			TB = TD = THP = SGP =	Tosco well. Tosco boring. Tosco dispenser soil s Tosco HydroPunch. Soil gas probe. Raised method reporti THP samples are refer	ample.	atory report in Attachme	nd			

Table 1 Groundwater Elevation and Analytical Data

BP Oil Site #11102 100 MacArthur Boulevard Oakland, CA

VELL ID	SA	DATE OF AMPLING/ ONITORING	TOC (Feet) (a	DEPTH TO a) WATER (Feet)	GWE (Feet)	TPH-G (b) (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	TOG (ug/l)	1,1-DCA (ug/l)	1,2-DCA (ug/l)	HVOC's (ug/l)		DO (ppm)	LAB
MW-1		11/04/89	90.20	13.21	76,99	ND<500	ND<50	3.4	0.6	ND<0.3	ND<0.3		ND<5000		0.9		•		SAL.
		11/11/89		13.32	76.88	_		•••						h					
		04/03/90		12.46	77.74	820	_	64	1.9	23	34	_		***					ANA
		07/30/90		12.92	77.28	190	ND<50	11	ND<5.0	ND<5.0	ND<5.0		ND<5000		ND				ANA
		11/20/90		14.08	76.12	50	79	2.4	ND<0.3	ND<0.3	ND<0.3	***	ND<5000	_	4.0	•••			SAL
		03/01/91		13.61	76.59	ND<100	ND<1000		ND<0.3	ND<0.3	0.3		14000	_	ND	•••			SAL
		08/19/91		15.74	74.46	370	ND<50	35	0.73	6.4	5.6	•••	ND<5000		1.4				SEQ
		11/13/91		14.08	76.12	60	ND<50	0.68	ND<0.3	ND<0,3	ND<0.3		ND<5000		1.0	_		***	SEQ
		02/24/92		12.52	77.68	140	100	3.9	0.66	1.2	3.8		ND<5000		1.7			_	SEQ
		05/19/92		11.8	78.40	4200	910	440	21	250	37		ND<5000	***	ND	•••			SEQ
		06/17/92 07/22/92		12.01	78.19	4000	560	350	14	150	17	***	ND<5000		ND				SEQ
		07/22/92 08/14/92		12.42	77.78	4000	4700	ND<5.0	19	210	61				•••			***	ANA
		11/11/92		12.75	77.45	2400	1700	330	20	150	47		ND<5000		ND<2.5			***	SEQ
		06/07/93		13.69 10.93	76.51	260	92	30	3.4	7.6	6.8	****	ND<5000		ND<2.5	***			ANA
		06/07/93			79.27	3400	440	98	11	21	7.6			6.2	0.9				PACE
(c)		12/02/93		12.72	77.48	3700	100	120	12	26	9.5								PACE
		06/2 2/94		11.81	77.48 78.39	1100 2100	120 ND<50	8.3	3.6	0.6	1.5		ND<5000	2.6	8.1				PACE
6		06/22/94				2100		32 30	3.8	2.2	17	4000	(d) ND<5000	2.3	3.3			3.2	PACE
Ų.		01/10/95		10.97	79.23	ND<500	420		3.2	2.0	15	2000	(d) —						PACE
(c'		01/10/95		10.57	, , , , , ,	ND<500		120 120	ND<5 ND<5	ND<5 5	ND<10			ND<1	1			3.9	ATI
,		06/21/95		9.38	80.82	4700	1300	16	ND<5.0	ND<5.0	ND<10 ND<10			_					ATI
(1		06/21/95		2.36	00.02	3600	1300	10 ND<13	ND<5.0	ND<5.0	ND<10		2900	2.0	0.38	0.6	(e)	6.7	ATI
٠,		12/27/95		11.55	78.65	430	2100	ND<2.5	ND<2.5	ND<2.5	ND<5.0	1200	640	0.67		_			ATI
		06/13/96		9.28	80.92	3200	920	51	ND<12	ND<12	ND<12	4000			ND<0.20	_		6.3	ATI
		12/04/96		11.91	78.29	1400	280	6.2	ND<12	ND<5	ND<12	2600	2000 2000		ND<5.0			6.3	SPL
		06/10/97		8.97	81.23	7900	1700	12	ND<10	ND<10	ND<10	15000	2000 ND<5	ND<5.0 ND<250		6.0 ND	(f)	6.7	SPL
6		06/10/97				7700		14	ND<25	ND<25	ND<25	13000		ND~230	ND<250			6.0	SPL
``		12/12/97		11.37	78.83	440	760	8.8	ND<1.0	2.6	9.4	6700	1200	ND<1.0	ND<1.0	ND		5,5	SPL SPL
		06/18/98		8.02	82.18	7500	2900	ND<2.5	ND<5.0	ND<5.0		5600	ND<5	ND<1.0	ND<5.0	ND		3.3 4.9	
	-	03/09/99		9.80	80.40	32000		100	16	72	110	49000	ND<2	MD<3.0		ND			SPL
		09/28/99		10.78	79.42	1000		ND<5.0	ND<5.0	ND<5.0	ND<5.0	730		ND<1.0	 ND<1.0	ND<1.0			SPL
	1	10/14/99		10.84	79.36		660	740			770-03.0	150	***		14D~1.0				SPL
		03/27/00		9.83	80.37	4300		160	19	37	43	28000	***	***	ND<500			***	SPL PACE
		09/28/00		11.33	78.87	2700		100	2.6	1.1	2.7	28000							
		03/08/01		10.96	79.24	8200		23.5	6,09	5.23	8.97	11600			***				PACE
		09/21/01		12.07	78.13	6000	y-+	37.9	ND<0.5		ND<1.5	7370							PACE PACE
		02/28/02		10.48	79.72	6400		60.8	ND<5.0	6.43	ND<1.5	7750							PACE
		9/06/02*		11.20	79.00	1400		ND<5.0	ND<5.0		ND<5.0	6000	•••						
		02/19/03 (h)	+	11.29	78.91	ND<10,000		ND<100	110	ND<100		4,500							SEQ SEO

Table 1
Groundwater Elevation and Analytical Data

BP Oil Site #11102 100 MacArthur Boulevard Oakland, CA

ELL ID	DATE OF SAMPLING/ MONITORING	TOC (Feet)	DEPTH TO (a) WATER (Feet)	GWE (Feet)	TPH-G (b) (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	TO (ug		A 1,2-DCA (ug/l)	HVOC's (ug/l)	ро (ррт)	LAB
MW-2	11/04/89	87.91	15.84	72.07	ND<500	4	6,5	ND<0.3	ND<0.3	ND<0.3	_				***		SAL
	11/11/89		14.75	73.16		***					_		• •••	•••			
	04/03/90		15.25	72.66	ND<500		ND<0.5	ND<0.5		ND<0.5			-			***	ANA
	07/30/90		15.59	72.32	61		6.5	ND<0.5		ND<0.5	***						ANA
	11/20/90		17.81	70.10	ND<50	***	0.3	ND<0.3		ND<0.3	***		***			_	SAL
	03/01/91		17.11	70.80	ND<100		0.4	ND<0.3	ND<0.3	ND<0.3				4.0			SAL
	08/19/91		17.97	69.94	ND<30		ND<0.3	ND<0.3	ND<0,3	ND<0.3							SEQ
	11/13/91		16.76	71.15	38	***	0.32	ND<0.3	ND<0.3	ND<0.3	-			***		•••	SEQ
	02/24/92		15,07	72.84	ND<50		ND<0.5	ND<0.5	ND<0.5	0,58	_			16			SEQ
	05/19/92		14.7	73.21	ND<50	***	0.55	ND<0.5	ND<0.5	ND<0.5				***			SEQ
	07/22/92		15.6	72.31	90		1.3	0.6	0.9	1.9							ANA
	08/14/92		15.88	72.03		-								_			•••
,	11/11/92		16.19	71.72	52		2.8	ND<0.5	ND<0.5	0.9			***	***			ANA
((c) 11/11/92		_		65		3.2	ND<0.5	ND<0.5	1.0							ANA
(c)	06/07/93 12/02/93		14,42	73.49	1200		14	2.8	1.9	1.7							PACE
			14.94	_	790	•••	3.4	0.5	10	ND<0.5		(d)		•••			PACE
	(c) 12/02/93 06/22/94		14.25	73.66	2100	_	32	3.8	2.2	17		(d)	2.3			***	PACE
	01/10/95		13.64	74.27	110 ND<50		ND<0.5	ND<0.5		ND<0.5		(d)	-	-		3.9	PACE
	06/21/95					***	ND<0.5	ND<0.5	0.6	1			•••			4.3	ATI
	12/27/95		11.66 13.11	76.25 74.80	4700		ND<10	ND<10	ND<10	ND<20		•••			***	7.8	ATI
6	(c) 12/27/95				6100 6300		ND<25 ND<25	ND<25 ND<25	ND<25 ND<25	ND<50 ND<50	20000					6.7	ATI
, C	06/13/96		10.86	77.05	8300						19000	-					ATI
6	(c) 06/13/96		10.40	17.03	8700		ND<2.5 ND<5	ND<2.5 ND<5	ND<2.5 ND<5	ND<2.5 ND<5	13000		_			6.5	SPL
v	12/04/96		13.03	74.88	5900		ND<2.5	ND<5	ND<5	ND<5	13000 11000						SPL
-	c) 12/04/96		13.03	74.00	5900	***	ND<2.5	ND<5	ND<5	ND<5	11000					6,3	SPL
(06/10/97		10.04	77.87	ND<50		ND<0.5	ND<1.0		ND<1.0			***	***			SPL
	12/12/97		12.44	75.47	ND<50		ND<0.5	ND<1.0			ND<10	_	***			5.8	SPL
	06/18/98		8.89	79.02	50		ND<0.5	ND<1.0			ND<10	_		***	**-	5.7 5.3	SPL SPL
6	c) 06/18/98			77.02	ND<50		ND<0.5	ND<1.0		ND<1.0						3.3	SPL
,	03/09/99		10.20	77.71	15000	•••	ND<5.0	ND<5.0		ND<5.0	23000						SPL
	09/28/99		11.81	76.10	36000		ND<5.0	12	7.0	26	35000				ND<5.0		SPL
	10/14/99		10.27	77.64	_	100					33000		****	, ,.,	ND-20		SPL
	03/27/00		9.98	77.93	1300		ND<0.5	ND<0.5	0.51	ND<0.5	5800			ND<100			PACE
	09/28/00		11.40	76.51	1600	•••	1.8	1.7	0.54	2.2	15000			140 -100			PACE
	03/08/01		11.16	76.75	20000		ND<0.5	ND<0.5	ND<0.5		29100						PACE
	09/21/01		11.65	76.26	5000		ND<0.5	ND<0.5	ND<0.5		6110			•••		•••	PACE
	02/28/02		9.86	78.05	3200		35.1	ND<0.5	ND<0.5		4620						PACE
	09/06/02*		12.32	75.59	1900		ND<10	ND<10		ND<10	15000						SEQ
	02/19/03 (1	h)	11.63	76.28	45,000		ND<250	ND<250	ND<250				_				SEQ

Table 1 Groundwater Elevation and Analytical Data

BP Oil Site #11102 100 MacArthur Boulevard Oakland, CA

WELL ID	DATE OF SAMPLING/ MONITORING	TOC (Feet)	DEPTH TO (a) WATER (Feet)	GWE (Feet)	TPH-G (b) (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/I)	X (ug/l)	MTBE (ug/l)	TOG (ug/l)	l,1-DCA (ug/l)	1,2-DCA (ug/l)	HVOC's (ug/I)	DO (ppm)	LAB
MW-3	11/04/89	87.02	15.4	71.62	ND<500		ND<0,3	ND<0.3	ND<0.3	ND<0.3	***		***				SAL
	11/11/89		14.1	72.92		•••		_			_					_	
	04/03/90		13.90	73.12	ND<100		ND<0.5	ND<0.5	ND<0.5	ND<0.5	_					***	ANA
	07/30/90		13.77	73,25	ND<50	***	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<5000	_				ANA
	11/20/90		14.67	72.35	ND<50		0.3	8.0	0.4	1.5	***	***					SAL
	03/01/91		15.22	71.80	ND<100		0.4	ND<0.3	ND<0.3	ND<0.3				ND	_		SAL
	08/19/91		13.15	73.87	ND<30		ND<0.3	ND<0.3	ND<0.3	ND<0.3	•••		•••				SEQ
	11/13/91		t5.66	71.36	ND<30		ND<0.3	ND<0.3	ND<0.3	ND<0.3		***	•••				SEQ
	02/24/92		15.01	72.01	ND<50	***	0.65	1.4	0.66	4.4				ND	***		SEQ
	05/19/92		15.52	71.50	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	•••						SEQ
	07/22/92		15.63	71.39	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5		ND<5000		ND<0.50			ANA
	08/14/92		13.57	73.45	***						***						
	11/11/92		14.13	72.89	ND<50		ND<0.5	0.7	ND<0.5	1.3				•••			ANA
	06/07/93		12.13	74.89	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5							PACE
	12/02/93		13.29	73.73	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	•••		•••				PACI
	06/22/94		12.78	74.24	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	_				***	2.9	PACE
	01/10/95		12.01	75.01	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<1	_		***	1		3.8	ITA
	06/21/95		11.57	75.45	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0	_					7.4	ATI
	12/27/95		13.47	73.55	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0	5.7					7.3	ATI
	06/13/96		11.22	75.80	60		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<10	•••				6.8	SPL
	12/04/96		13.28	73.74	ND<50		ND<0.5	ND<1	ND<1	ND<1	ND<10			•••		6.7	SPL
	06/10/97		10.22	76.80	ND<50		ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			***		6,1	SPL
	12/12/97		12.61	74.41	ND<50	•••	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		***		***	5.6	SPL
	(c) 12/1 2/9 7				ND<50	***	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	_					SPL
	06/18/98		9.07	77.95	50	***	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		•••	***		5.3	SPL
	06/18/98		12.80	74.22		***			***		_			***		***	
	09/28/99		13.76	73.26				_									•
	03/27/00		13.77	73.25	ND<50	***	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.6		***			_	PACE
	09/28/00		11.28	75.74	ND<50	-+-	ND<0.5	7.4	ND<0.5	1.3	2.0	***				_	PACE
	03/08/01		11.75	75.27	ND<50	***	ND<0.5	ND<0.5	ND<0.5	ND<0.5	60.4	_				***	PACE
	09/21/01		11.33	75.69	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<1.5	8.18			•••		***	PACE
	02/28/02		10.86	76.16	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<1.0	25.5	_		***			PACE
	09/06/02*		12.73	74.29	ND<50	***	1.2	ND<0.5	ND<0.5	1.0	16	·	_			***	SEQ
	02/19/03 (h))	11.72	75.30	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	110			_	_		SEQ

Table 1 Groundwater Elevation and Analytical Data

BP Oil Site #11102 100 MacArthur Boulevard Oakland, CA

WELL ID	DATE OF SAMPLING/ MONITORING	TOC (Feet)	DEPTH TO (a) WATER (Feet)	GWE (Feet)	TPH-G (b) (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/1)	MTBE (ug/l)	TOG (ug/l)	l,1-DCA (ug/l)	1,2-DCA (ug/l)	HVOC's (ug/I)	DO (ppm)	LAB
QC-2 (g) 11/11/92	_	_		ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_						ANA
QC-2 (g) 06/07/93	_			ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	-					PACE
QC-2 (g) 12/02/93	_			ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	-					PACE
QC-2 (g) 06/22/94	_			ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_				PACE
QC-2 (g) 01/10/95	***			ND<50	***	ND<0.5	ND<0.5	ND<0.5	ND<1		_				-	ATI
QC-2 (g) 06/21/95	***			ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0		_				_	ATI
QC-2 (g) 12/27/95	***			ND<50		ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<5.0	***				•••	ATI
QC-Z	g) 06/13/96		•••	***	ND<50		ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<10						SPL

Table 1 Groundwater Elevation and Analytical Data

BP Oil Site #11102 100 MacArthur Boulevard Oakland, CA

WELL	DATE OF TOC DEPTH TO SAMPLING/ (Feet) (a) WATER (Feet)	GWE (Feet) (b)	TPH-G (ug/l)	TPH-D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	TOG (ug/l)	1,1-DCA (ug/l)	1,2-DCA (ug/l)	HVOC's (ug/l)	DO (ppm)	LAB
ABBREVI	ATIONS:														
TPH-G	Total petroleum hydrocarbons as gasoline				(a)	Top of casin	g elevations	surveyed	to the neares	t 0.01 foot	above mean	sea level.			
TPH-D B	Total petroleum hydrocarbons as diesel Benzene				(b)	Groundwate	r elevations	in feet ab	ove mean sea	level.					
T	Toluene				• •										
E X	Ethylbenzene Total xylenes				(c)	Blind duplic	ate.								
TOG	Total oil and grease				(d)	A copy of the	e document	ation for t	his data is inc	luded in Ap	pendix C o	f Alisto rep	ort 10-076-	06-002.	
1,1-DCA	1,1-Dichloroethane									-	-	-			
1,2-DCA 1,2-DBA	1,2-Dichloroethane 1,2-Dibromoethane				(e)	Tetrachloroe	thene.								
HVOC's	Halogenated volatite organic compounds				(f)	Trans-1,2-Di	chloroether	ie							
MTBE DIPE	Methyl tert butyl ether Di-Isopropyl Ether				/~\	Travel blank									
ETBE	Ethyl t-Butyl Ether				(g)	Havel Dlank	•								
TAME	t-Amyl Methyl Ether				(h)	TPH, BTEX,	and MTBI	analyzed	by EPA Met	hod 8260B	beginning o	n 1st Quar	ter Samplin	g event (2/19	(03)
DO ug/i	Dissolved oxygen Micrograms per liter				(i)	Discrete peal	k @ ርሌርን								
ppm	Parts per million				(-)	Otsevete pear	K 😂 00-07.								
ND	Not detected above reported detection limit				*	During the se	econd quart	er of 2002	, URS Corpo	ration assur	ned groudny	water moni	toring activ	ities for BP	
SAL	Not analyzed/measured/applicable Superior Analytical Laboratory														
ANA	Anametrix, Inc.														
SEQ	Sequoia Analytical Laboratory														
PACE ATI	Pace, Inc. Analytical Technologies, Inc.														
SPL	Southern Petroleum Laboratories														

ATTACHMENT C SOIL BORING LOGS

1333 Broadway, Suite 800 Oakland, California 94612

LOG OF BORING

Borehole ID: SB-4

Total Depth: 32 ft bgs

PROJ	ECT INFORMATION	DRILL	.ING	INFO	RMATI	ON	
Project: BP #1110	2 Soil and Water Investigation	Drilling Company: Gr	egg Di	illing	& Testin	g	
	MacArthur Blvd, Oakland, CA	Driller: Jesse Pattison				·····	
Project Manager:	Lynelle Onishi	Type of Drilling Rig: N	/arl M	2.5 D	P		
RG: John McCain		Drilling Method: Direc					
Geologist: John M	- · · · · · · · · · · · · · · · · · · ·	Sampling Method: Co		us M	асто-Core	with a	cetate sleeve.
Job Number: 384	· · · · · · · · · · · · · · · · · · ·	Date(s) Drilled: 07/14/	05				
0 1 1 5	· · · · · · · · · · · · · · · · · · ·	FORMATION		0 11			
Groundwater Dep	tn: 20 ft bgs Auger Depth: 5.0 feet bgs/Hand Auger	Boring Location: SE co		site			
	X Y	Boring Type: Explorate					
- Coolamatos.		Dotting 13ber Explorate	1	1	î		
Depth (ft bgs)	Lithologic Description	n	SOSN	PID (ppm)	Sample ID	Recovery	Comments
E 0	AC/Baserock: AC cover (6") with baserock (3")	beneath	FILL	<u> </u>			-
2	SILTY SANDY CLAY w/ GRAVEL: FILL, black 15% sand, 5% slit, 5% gravel, fine to coarse sa gravel and brick fragments to 2" diameter, soft, no petroleum odor	(10YR 2/1), 75% clay,			Borehols grouted to grade with neat Portland		
6	SILTY SANDY CLAY: dark brown (10YR 3/3), 7 slit, 5% gravel, fine to coarse sands, trace subdiameter, soft, moist, med. plasticity, no petrole @ 6' - same as above, no gravel, no petroleum	angular gravel to 0.5* um odor	CL	0	SB-4 (5-5,5')		
- 8 - 10 - 12	@ 10° - Silty Sandy Clay continues, reddish-bro clay, 10% silt, 10% sand, 5% gravel, fine to coa sub-rounded gravels to 0.25°, moist, med. stiff,	rse sands, trace		0.2	SB-4 (9.6-10')		
14	@ 15' - Silty Sandy Clay continues, dark reddis 80% clay, 10% silt, 10% sand, no gravels, fine stiff, no petroleum odor	n gray (2.5YR 4/2), sands, moist, med.		0.2	SB-4 (14.5-15')		
18 20 22	SILTY SAND: brown (7.5YR 5/3), 90% sand, 10 loose, wet, no petroleum odor	9% silt, fine sands,	SM	1.9 9.6	SB-4 (19.5-20') SB-4 (20-20.5')		모
24	SILTY SANDY CLAY: brown (7.5YR 5/3), 70% sand, fine sands, med. stiff, moist to wet, no peplasticity	clay, 15% silt, 15% troleum odor, med.	CL				
BP/Atlant	tic Richfield Company Page 1	l of 2		E	orehol	∌ ID :	SB-4

UR:	LOG OF BORING	ŀ	3ore	ehole l	D:S	B-4
Depth (ft bgs)	Lithologic Description	USCS	PID (ppm)	Sample I.D.	Recovery	Comments
	 25' - Silty Sandy Clay (CL) continues, light brown (7.5YR 6/3), 70% clay, 15% silt, 15% sand, med. stiff, moist to wet, no petroleum odor 26' - Silty Sandy Clay continues, color change to gray (Gley 1 5/10Y) at 26', no petroleum odor 		0.5	SB-4 (25-25.5°)		
30	SILTY SAND: brown (7.5YR 5/3), 90%sand, 10%slit, fine sands, loose, wet, no petroleum odor SILTY SANDY CLAY: gray (Gley 1 5/10Y), 70% clay, 15% slit, 15% sand, fine sands, stiff, moist, no petroleum odor, med. plasticity SILTY SAND: brown (7.5YR 5/3), 90% sand, 10% slit, fine sands, loose, wet, no petroleum odor SILTY SANDY CLAY: gray (Gley 1 5/10Y), 70% clay, 15% slit, 15% sand, fine sands, stiff, moist, no petroleum odor, med. plasticity	SM CL SM CL	0.5	SB-4 (29-29.5)		
- 34 - 36	\sand, fine sands, stiff, moist, no petroleum odor, med. plasticity lost sample at 31.5-32' when cutting acetate liner; no sample Bottom of Boring= 32' bgs Depth discrete groundwater samples were attempted within a boring 1 foot laterally from this location and were not successful.					

Page 2 of 2

BP/Atlantic Richfield Company

1333 Broadway, Suite 800 Oakland, California 94612

LOG OF BORING

Borehole ID: SB-5 Total Depth: 32 ft bgs

		10tti Dehti			<u>, </u>					
PROJE(CT INFORMATION	DRILL	ING	NFC	PRMATI	ON				
Project: BP #11102 S	Soil and Water Investigation	Drilling Company: Gr	egg Dr	illing	& Testin	g				
Site Location: 100 M	acArthur Blvd, Oakland, CA	Driller: Jesse Pattison								
Project Manager: Ly	nelle Onishi	Type of Drilling Rig: N	/arl M	2.5 D	P					
RG: John McCain		Drilling Method: Direc	t Push							
Geologist: John McC	ain	Sampling Method: Co	ntinuo	us Ma	acro-Core	with a	cetate sleeve.			
Job Number: 384873	349.0A034	Date(s) Drilled: 07/14/	05							
	BORING INI	INFORMATION								
Groundwater Depth	: 29 ft bgs	Boring Location: Southwest of dispenser islands								
Air Knife or Hand A	uger Depth: 5.0 feet bgs/Hand Auger	Boring Diameter: 2-inc	h							
Coordinates: X	Y	Boring Type: Explorate	ry							
Depth (ft bgs)	Lithologic Description	1	nscs	PID (ppm)	Sample ID	Recovery	Comments			
0	AC/Baserock: AC cover (6") with baserock (2") t	peneath	FILL		<u> </u>					
2 4 6 8 10	SANDY CLAY: FILL, black (Gley 1 2.5/N), 80% gravel, fine to coarse sands, trace angular grave soft, moist, low plasticity, no petroleum odor @ 2' - Sandy Clay FILL continues, greenish gray 85% clay, 15% sand, soft, moist, low plasticity, rogorore fragments to 3" diameter, soft, moist, sodor. © 5' - same as above, gray (Gley 2 4/5BG), and concrete fragments to 3" diameter, soft, moist, sodor. SILTY SANDY CLAY: brown (7.5YR 5/4), 75% of silt, 5% gravel, fine sands, trace sub-rounded gratiff, moist, med. plasticity, no petroleum odor. © 10' - Silty Sandy Clay continues, brown (7.5YR 10% silt, 10% sand, 5% gravel, trace angular gradiameter, med. stiff, moist, med. plasticity, no petroleum odor.	clay, 15% sand, 5% els to 0.25" diameter, / (Gley 1 5/5GY), no petroleum odor jular gravels and dight petroleum clay, 10% sand, 10% avels to 0.25", med.	CL	0.0	Borehole grouted to grade with neat Portland cement SB-5 (5-5.5') SB-5 (9.5-10')					
	 ① 15' - Silty Sandy Clay continues, brown (7.5Y 10%silt, 10% sand, 5% gravel, trace angular gradiameter, med. stiff, moist, med. plasticity, no perform the same stiff, moist, med. plasticity, no perform the same stiff, moist, med. stiff, moist, slight petroleum odor 			40.9	SB-5 (14.5-15') SB-5 (19.5-20')					
BP/Atlantic	Richfield Company Page 1	of 2		P	Borehold	e ID :	SR-5			

UR	LOG OF BORING	E	3ore	hole l	D:S	B-5
Depth (ft bgs)	Lithologic Description	nscs	PID (ppm)	Sample I.D.	Recovery	Comments
- 26 - 28	@ 25' - Silty Sandy Clay (CL) continues, brown (7.5YR 5/3), 78% clay, 10%silt, 10% sand, 2% gravel, trace gravel to 0.25" diameter, med. stiff, moist, med. plasticity, no petroleum odor					
30	SILTY SAND: brown (7.5YR 5/3), 85% sand, 10% slit, 5% clay, fine to coarse sands, loose, wet, no petroleum odor SILTY SANDY CLAY: brown (7.5YR 5/3), 85% clay, 10% slit, 5% sand, fine to coarse sands, stiff, moist, med. plasticity, no petroleum odor Bottom of Boring= 32' bgs Depth discrete groundwater samples were attempted within a boring 1 foot laterally from this location and were not successful.	SM CL	0.4	SB-5 (29-29.5°		▽
34	boring 1 foot laterally from this location and were not successful.					
	à.					

1333 Broadway, Suite 800

LOG OF BORING

		Oakland, California 9461	2	Tatal Dandl		~ .			
		· · · · · · · · · · · · · · · · · · ·	_	Total Depth			_		···
		CT INFORMATION					DRMAT		
		Soil and Water Investigation		Company: Gre	egg Di	illing	& Testin	g	
		MacArthur Blvd, Oakland, CA		Jesse Pattison					
Project Manag		ynelle Onishi					P		
RG: John McCa	-	N. S.		-				**1	
Geologist: Joh Job Number:						us M	acro-Core	with a	cetate sieeve.
oop Manner.	304013	·		'			 		
Groundwater	Πenth				en eta	tion b	wilding o	nd dien	vancore
	<u>-</u> -	auger Depth: 5.0 feet bgs/Hand Auger				LIOII C	ontonig a	nu uisp	CHSC18
Coordinates:	X	Y							
 		·	2011119	13pd1 Emplorate	-,		1		
Depth (ft bgs)	Symbol	Lithologic Description			SOSN	PID (ppm)	Sample ID	Recovery	Comments
E ₀	T	AC/Baserock: AC cover (3") with baserock (4") be	Drilling Me Sampling Me Date(s) Dri BORING INFORMATION Boring Loca 0 feet bgs/Hand Auger Y Boring Type Lithologic Description C cover (3") with baserock (4") beneath ILL, red (2.5YR 5/6), 85% sand, 10% silt, 5% grangular gravels to 0.25" diameter, loose, moist angular gravels to 0.25" diameter, loose, wet at 8.5 c. LAY: dark grayish brown (10YR 4/2), 75% clay 5%, fine sands, med. stiff, moist, no petroleum of the course sands, angular gravels to 0.25" medical course of the course sands, angular gravels to 0.25" medical course of the course sands, angular gravels to 0.25" medical course of the course sands, angular gravels to 0.25" medical course sands, med. stiff, moist, no petroleum of the course sands and the course sands are course sands and t						
2 4 6 8 10 12		SILTY SAND: FILL, red (2.5YR 5/6), 85% sand, fine sands, trace angular gravels to 0.25" diametrized petroleum odor @ 7' - Silty Sand continues, same color as above to 0.5" diameter, loose, moist, no petroleum odor @ 8.5' - Silty Sand continues, red (2.5YR 5/6), lo petroleum odor SILTY SANDY CLAY: dark grayish brown (10YR sand, 15% silt, 5%, fine sands, med. stiff, moist,	er, loose, e, angular ose, wet a 4/2), 75% no petrole	gravels at 8.5', a clay, 15% aum odor	CL	0 289 0.9	Borehole grouted to grade with neat Portland cement SB-6 (5-6.5') SB-6 (9.5-10') SB-6 (9.5-10')		✓
– 16	~~ ~~	clay, 5% gravels, fine to coarse sands, angular g wet, no petroleum odor SILTY SANDY CLAY: dark yellowish brown (10Y	R 4/4), 80	0.25*, loose, 1% clay, 10%	CL	0.6	(14.5-15*) SB-6 (16.5-17*)		į
- 18 20 22 24		© 20° - Sility Sandy Clay continues, yellowish bro trace angular gravel to 0.25" diameter, med. stiff, no recovery from 20 - 24' push, soil in shoe @ 24 Clay continues, yellowish brown (10YR 5/4), fine med. stiff, med. plasticity, slight petroleum odor	wn (10YR moist, no	t 5/4), o eder		0.0	SB-6 (19.5-20')		

URS	LOG OF BORING		Borehole ID: SB-6					
Depth (ft bgs)	Lithologic Description	nscs	PID (ppm)	Sample I.D.	Recovery	Comments		
26 	Silty Sandy Clay (CL) continues, grayish brown (10YR 5/2), fine sands, stiff, med. plasticity, no petroleum odor Bottom of Boring= 28' bgs Depth discrete groundwater samples were attempted within a boring 1 foot laterally from this location and were not successful.		0.0	SB-6 (27.5-28*)				

1333 Broadway, Suite 800 Oakland, California, 94612 Oakland, California 94612

LOG OF BORING

Borehole ID: SB-7

Total Depth: 32 ft bgs

PROJECT INFORMATION	DRILL	.ING	INFO	DRMAT	ION	
Project: BP #11102 Soil and Water Investigation	Drilling Company: Gre	egg Dr	illing	& Testin	g	
Site Location: 100 MacArthur Blvd, Oakland, CA	Driller: Jesse Pattison					
Project Manager: Lynelle Onishi	Type of Drilling Rig: M	Aarl M	2.5 D	P		
RG: John McCain	Drilling Method: Direct	t Push				
Geologist: John McCain	Sampling Method: Co.	ntinuo	us M	acro-Core	with a	cetate sleeve.
Job Number: 38487349.0A034	Date(s) Drilled: 07/14/	05				
	FORMATION					
Groundwater Depth: 28.5 ft bgs	Boring Location: South		fuse	d oil UST	· · · · · · · · · · · · · · · · · · ·	
Air Knife or Hand Auger Depth: 5.0 feet bgs/Hand Auger	Boring Diameter: 2-inc			<u>-</u>		
Coordinates: X Y	Boring Type: Explorato	ry				
(g gg) upded Lithologic Description	1	SOSN	PID (ppm)	Sample ID	Recovery	Comments
AC/Baserock: AC cover (4") with baserock (2") I	peneath	FILL				
SILTY CLAYEY SAND: FILL, very dark gray brosand, 7.5% silt, 7.5% clay, 5% gravel, fine sand to 0.25" diameter, loose, moist to wet, petroleun SILTY SANDY CLAY: FILL, dark gray brown (G 15% sand, 10% silt, 5% gravels, fine sands, sof plasticity, petroleum odor	wn (Gley 1 3/10Y), 80% s, trace angular gravels n odor ley 1 3/10Y), 70% clay.		668	SB-7 (2-2.5')		
6			429	SB-7 (5-5.5')		
SILTY SANDY CLAY: light olive brown (2.5Y 5/5% sand, fine sands, stiff, moist, med. plasticity 10 ② 10' - Sandy Silty Clay continues, 80% clay, 1 same color as above, stiff, moist, med. plasticity odor	, no petroleum odor 0% slit. 10% sand.	CL	7.5	SB-7 (9.5-10°)		
SANDY CLAYEY SILT: olive brown (2.5Y 4/3), sand, fine sands, stiff, moist, low plasticity, no p	80% silt, 10% clay, 10% etroleum odor	ML	1.5	SB-7 (14.5-15) SB-7 (16.5-17)		
20 @ 20' - Sandy Clayey Silt continues, light olive to 80% silt, 10% clay, 10% sand, very stiff, moist, to petroleum odor	prown (2.5Y 5/4), ow plasticity, no		0.5	SB-7 (19.5-20')		
BP/Atlantic Richfield Company Page 1	of 2		B	orehol	D:	SB-7

1333 Broadway, Suite 800 Oakland, California 94612

LOG OF BORING

Borehole ID: SB-7 Total Depth: 32 ft bgs

		10441	Depui: 32	111.0	50		
PROJ	ECT INFORMATION		DRILLING	INF	ORMAT	ION	
Project: BP#11102	2 Soil and Water Investigation	Drilling Compa	ny: Gregg D	rilling	g & Testir	ıg	
Site Location: 100	MacArthur Blvd, Oakland, CA	Driller: Jesse Pa	ttison				
Project Manager: 1	Lynelle Onishi	Type of Drilling	Rig: Mari N	12.5 D)P		
RG: John McCain		Drilling Method	: Direct Pusl	ı			
Geologist: John Mo	:Cain	Sampling Meth	od: Continue	ous M	acro-Cor	e with a	cetate sleeve.
Job Number: 3848	7349.0A034	Date(s) Drilled:	07/14/05				-
	BORING IN	FORMATION		··			
Groundwater Dept	h: 28.5 ft bgs	Boring Location	: Southwest	of use	d oil UST	•	
Air Knife or Hand	Auger Depth: 5.0 feet bgs/Hand Auger	Boring Diameter	r: 2-inch		· · · ·		
Coordinates: X	Y	Boring Type: Ex	ploratory				
Depth (ft bgs) Symbol	Lithologic Description	1	nscs	PID (ppm)	Sample ID	Recovery	Comments
E 0	AC/Baserock: AC cover (4") with baserock (2") I	peneath	FILL				
2	SILTY CLAYEY SAND: FILL, very dark gray brosand, 7.5% silt, 7.5% clay, 5% gravel, fine sand to 0.25" diameter, loose, moist to wet, petroleum SILTY SANDY CLAY: FILL, dark gray brown (GI 15% sand, 10% silt, 5% gravels, fine sands, sof plasticity, petroleum odor	wn (Gley 1 3/10Y), 8 s, trace angular grave n odor ley 1 3/10Y), 70% cla	0% els	688	SB-7 (2-2.5')		
6	SILTY SANDY CLAY: light olive brown (2.5Y 5/3 5% sand, fine sands, stiff, moist, med. plasticity.	i), 85% clay, 10% sili	t, CL	429	SB-7 (5-5.5')		
10 10 11 12	@ 10' - Sandy Silty Clay continues, 80% clay, 10 same color as above, stiff, moist, med. plasticity odor	0% silt, 10% sand.		7.5	SB-7 (9.5-10°)		
- 14 16	SANDY CLAYEY SILT: olive brown (2.5Y 4/3), 8 sand, fine sands, stiff, moist, low plasticity, no pe	30% silt, 10% clay, 10 atroleum odor	0% ML	1.5	SB-7 (14.5-15')		
- 18 - 20 - 22 - 24	@ 20' - Sandy Clayey Silt continues, light olive b 80% silt, 10% clay, 10% sand, very stiff, moist, l petroleum odor	rown (2.5Y 5/4), ow plasticity, no		0.5	SB-7 (16.5-17') SB-7 (19.5-20')		

UR		LOG OF BORING	E	3ore	rehole ID: SB-7				
Depth (ft bgs)	Symbol	Lithologic Description	nscs	PID (ppm)	Sample I.D.	Recovery	Comments		
		@ 24.5 - Sandy Clayey Silt continues, light olive brown (2.5Y 5/4), 80% silt, 10% clay, 10% sand, very stiff, moist, low plasticity, no petroleum odor SILTY SAND: brown (2.5Y 4/3), 90% sand, 10% silt, fine sands, loose, moist to wet, no petroleum odor SILTY SANDY CLAY: olive brown (2.5Y 4/3), 80% clay, 10% silt, 10% sand, fine sands, med. stiff, moist, med. plasticity, no petroleum odor SILTY SAND: brown (2.5Y 5/4), 90% sand, 10% silt, fine sands, loose, wet, no petroleum odor	SM	4.2	SB-7 (25.5-26') SB-7 (28.5-29')			×	
32		SILTY SANDY CLAY: brown (2.5Y 4/3), 80% clay, 10% silt, 10% sand, fine sands, med. stiff, moist, med. plasticity, no petroleum odor Bottom of Boring= 32' bgs Depth discrete groundwater samples were attempted within a boring 1 foot laterally from this location and were not successful.	CL	0.1	SB-7 (30.5-31') Borehole grouted to grade with neat Portland				

1333 Broadway, Suite 800 Oakland, California 94612

LOG OF BORING

Borehole ID: SB-8

Total Depth: 28 ft bgs

				10141 2011 2011 263							
		ECT INFORMATION	DRILLING INFORMATION								
· · · · · · · · · · · · · · · · · · ·		Soil and Water Investigation	Drilling Company: Gregg Drilling & Testing								
		MacArthur Blvd, Oakland, CA	Driller: Jesse Pattison								
Project Mana		Lynelle Onishi	Type of Drilling Rig: Marl M2.5 DP								
RG: John McC			Drilling Method: Direct Push								
Geologist: Jo			Sampling Method: C	ontinuo	ous M	acro-Core	with a	acetate sleeve.			
Job Number:	3848		Date(s) Drilled: 07/13	/05							
	<u></u>	· · · · · · · · · · · · · · · · · · ·	FORMATION								
Groundwater			Boring Location: East		7-1						
		Auger Depth: 5.0 feet bgs/Hand Auger	Boring Diameter: 2-in								
Coordinates	X	Y	Boring Type: Explorat	ory							
Depth (ft bgs)	Symbol	Lithologic Description	1	nscs	PID (ppm)	Sample ID	Recovery	Comments			
F ₀		AC/Baserock: AC cover (4") with baserock (2") I	peneath	FILL		· · · · · · · · · · · · · · · · · · ·					
2		SILTY GRAVELY SAND: FILL, ofive (5YR 4/4), clay, 10% gravel, fine to coarse sands, trace sul 0.25" diameter, loose, moist, no petroleum odor	80% sand, 5% silt, 5% b-angular gravels to								
6 8		@ 7' - Silty Sand seam (3" thick) with gravels, 8 10% gravels, reddish brown (2.5YR 5/4), angula loose, wet, no petroleum odor SILTY CLAYEY SAND: brown (2.5YR 4/4), 75%		SM	0.4	SB-8 (5-5.5') SB-8 (7-7.5')		≖			
1 1	77	clay, 5% gravels, fine sands, dense, moist, no p	etroleum odor								
10	77				24.1	SB-8 (9.5-10')					
12	77	@ 11' - Silty Sand seam (3" thick) with gravels, 10% gravels, brown (2.5YR 5/4), angular gravels wet, no petroleum odor	80% sand, 10% slit. s to 0.25", loose,		0.0	SB-8 (11-11.5')					
	~~										
14 E	77				0.1	SB-8 (14.5-15')					
16	-ZZ							İ			
	77										
<u> </u>	77	@ 17.5' - Silty Clayey Sand seam (6" thick), 80%	6 sand, 10% silt.]	0.0	SB-8 (17.5-18')]			
— 18 E		10% clay, reddish brown (2.5YR 5/4), loose, wet odor	, no petroleum]		(17.5-18')					
	77					00.0					
20	<u>~~</u>				0,0	SB-8 (19.5-20')					
 -	77				0.0	SB-8 (20.5-21')					
22	22					·		ļ			
	~~										
- 24	22										
<u></u>	7-7-7			u I	١. ا						

URS		LOG OF BORING	Borehole ID: SB-8						
Depth (ft bgs)	Symbol	Lithologic Description	nscs	PID (ppm)	Sample I.D.	Recovery	Comments		
28		SILTY CLAY: reddish brown (5YR 5/3), 85% clay, 10% silt, 5% sand, trace fine sands, stiff, moist, med. plasticity, no petroleum odor Bottom of Boring= 28' bgs Depth discrete groundwater samples were attempted within a boring 1 foot laterally from this location and were not successful.	CL		Borehole grouted to grade with neat Portland cement				

BORING LOG

PROJECT:	30-063	
----------	--------	--

BORING DATE: 10-26-89

LOCATION 100 MacArthur Boulevard, Oakland

GEOLOGIST: M. Hopwood

10" HSA TYPE:

BORING NO. : MW-1

DRILLING COMPANY: Bay Area Exploration

DEPTH	1	BLOW CTS	MATERIAL ENCOUNTERED	uscs
- -			Asphalt Over Road Base Loose, dry, tan to orange, gravelly SAND.	GP
		5,14,16	Loose, damp, tan to orange, gravelly SAND; wood fragments. CGI = ND.	GP
- - 10 - -	1	6,10,13	Loose, damp, tan to light brown, clayey SAND; poorly sorted. OGI = ND.	sc
15 		8,8,25	Loose, very moist, tan to light brown, clayey SAND; some iron staining.	sc
20 	Ι	9,9,12	Loose, saturated, tan to brown, gravelly SAND, with clay. CGI = ND.	GC
- - 25 - -				
		<u> </u>	Medium stiff, moist, tan CLAY.	CL
- 35 			Total Depth = 32 Feet	
- - - 40				
-				

TPH =Total Petroleum Hydrocarbons
TRPH = Total Recoverable Petroleum Hydrocarbons
X = Ground Water Piezometric Surface

ND = Not Delected

CGI = Combustible Gas Indicator

++ = Sample Analyzed for Hydrocarbon

Concentration

I = Sampling Interval

ppm = Parts per Million LEL = Lower Explosive Limit B = Bonzene

T = Toluena

E = Ethylbenzene

X = Xylene

Total Depth - 32 Feet

BORING LOG

- Simila EOG	
PROJECT: 30-063	
	BORING DATE: 10-25-89
LOCATION: 100 MacArthur Boulevard, Oakland	
	GEOLOGIST: M. Hopwood
TYPE: 10" HSA	
	BORING NO. : MY-2
DRILLING COLUMN.	

DRILLING COMPANY: Bay Area Exploration

DEPTH (FEET)		BLOW CTS	MATERIAL ENCOUNTERED	7
<u>-</u>			Asphalt Over Road Base Very loose, damp, dark brown, silty CLAY.	USC
5 		3,4,7	Loose, damp, greenish gray, silty CLAY with some coarse sand; very slight odor. CGI = 75 ppm.	CIT
10 	I	2,4,6	Medium stiff, damp, tan, sandy SII/TY/CIAY. CGI = ND.	CL
- 15 	I	5,7,12	Moderately stiff, damp, tan, clayey SILT.	ML
- 20 -				
- - 25				
- - - 30		S	tiff, damp, gray, silty CLAY; iron stains; calcite tringers.	CL
	-			
-35			Total Depth - 32 Feet	
-40				

V = Ground Water Plozomoric Surface ND = Not Detected

Ĺż

. .

CGI = Combustible Gas Indicator

I = Sampling Interval

ppm - Parts por Million LEL - Lower Explosive Limit E = Ethylbenzene

X = Xylane

Total Depth . 32 Feet

BORING LOG

PROJECT: 30-063	PODMO TOTAL
100 44 2 44	BORING DATE: 10-26-89
LOCATION: 100 MacArthur Boulevard, Oakland	GEOLOGIST: M. Hopwood
TYPE: 10" HSA	BORING NO.: MW-3
DRILLING COMPANY: Bay Area Evolored	·

DRILLING COMPANY: Bay Area Explore	d
------------------------------------	---

DEPTH FEED	┦╌	BLOW CTS	MATERIAL ENCOUNTERED	7
- -			Asphalt Over Road Base	US
-			Loose, dry, tan to orange, gravelly SAND.	GE
-		1		"
- 5	┢			1
•	μ	7,11,14	Moderately stiff, damp, tan to gray/green, silty CLAY, with gravel: some iron staining	 - -
•	•	i .	with gravel; some iron staining.	CI
•			·	
— 10	I			1
	1	3,5,6		l
'			Moderately soft damp house	
- 15 _		•	Moderately soft, damp, brown, silty CLAY.	CL
. "-1		6,8,13		
f				
- 20		•	Moderately loose, damp, tan to brown, sandy CLAY.	а <u>г</u>
				G.
			· · · · · · · · · · · · · · · · · · ·	
			Soft, moist, tan CIAY.	:
- 25			, and other	CL
	-	-		
	-	1	Becomes silty.	
-30		-		
	1	1		
	ŀ			
			Motol Double 20	
-35	-		Total Depth - 32 Feet	
	-			
	ĺ			
·40	1			
H =Total P PH = Total	ero I Ro	ileum Hydrocarbo		
= Groun = Not Det	ЮW	Aler Piezomatic	Surface I = Sampling Interval F = Employees	
- itel Dec	reij RCIĞ	d 14 Gas Indicator		

I = Sampling Interval
ppm = Pans per Million
LEL = Lower Explosive Limit

Total Depth = 32 Feet

ATTACHMENT D ALAMEDA COUNTY PUBLIC WORKS AGENCY SOIL BORING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/27/2005 By suel

Permits Issued:

W2005-0683

Permits Valid from 07/20/2005 to 07/21/2005

Application Id: Site Location:

1119915257454

Former BP Service Station #11102

100 MacArthur Blvd.

Oakland, CA

Project Start Date:

07/20/2005

Completion Date:07/21/2005

City of Project Site: Oakland

Applicant:

URS Corporation - Lynelle Onishi 1333 Broadway, Suite 800, Oakland, CA 94612 Phone: 510-874-1758

Property Owner:

Conoco Phillips

Phone: 916-558-7604

Client:

76 Broadway, Sacramento, CA 95818

Phone: 714-670-5303

Atlantic Richfield Company 4 Centerpointe Drive, Rm. 172, La Palma, CA 90623

\$200.00

Total Amount Paid: Paid By: CHECK

\$200.00 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 13 Boreholes

Driller: Gregg Drilling - Lic #: 57485165 - Method: other

Work Total: \$200.00

Specifications

Permit Issued Dt Number

Expire Dt

Hole Diam

Boreholes

Max Depth

W2005-0683

06/27/2005 10/18/2005

2.50 in.

40.00 ft

Specific Work Permit Conditions

- 1. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 2. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.
- Applicant shall contact Mike Chun for a inspection time at 510-670-5786 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

ATTACHMENT E FIELD PROCEDURES AND FIELD DATA SHEETS

WELL GAUGING DATA

Proje	ct # <u>()</u>	50711-PM2	Date	7-11-05	Client	Arco	11102	
Site_	100	Macarthur	Blvd.	Oakland				

			1						
	Well		D4-4-	Thickness	Volume of			_	
	Size	Sheen /	Depth to	of	Immiscibles		The state of the s	Survey	
Well ID	(in.)	Odor		Immiscible Liquid (ft.)		Depth to water		Point: TOB	_
	(1117)	Odol	riding (tr.)	riding (1r)	(ml)	(ft.)	bottom (ft.)	of TOE	*
MM-1	4					9.27	31.95		
MW-2	4					11.25	32.00		
MW-3	4					11.25	32.00 32.25	V	
	•					·			
	Δl	cop 1	emored	15 m	n. 84	garajio			· · · · · · · · · · · · · · · · · · ·
				<u>,</u>					
,									
									-
							"		
				·					
				:					
							<u></u>		
					1				
	<u> </u>	<u> </u>	}		<u> </u>	<u> </u>			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

ARCO / BP WELL MONITORING DATA SHEET

BTS #:	050711	-PMZ		Station # /// 02					
Sampler:	Pm			Date: 7-11-05					
Well I.D.:	1 10-			Well Diameter	2 3 4	6 8			
Total Wel	ll Depth:	31.9	5	Depth to Water	9.27		<u> </u>		
Depth to 1	Free Produ	ict:	·	Thickness of F	ree Product (fee	:t):	-		
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	rea'd):	YSI	НАСН		
	Well Diame	cr	Multiplier V		(ultiplier	1			
	["		0.04	4" (0.65				
	2"		0.16		1.47				
	3"		0.37	Other radiu	s ² + 0.163				
Purge Metho	od:	Bailer		Sampling Method:	Bailer				
	D	isposable Bai	ter		X Disposable Bailer				
	Positiv	ve Air Displac	cement		Extraction Port				
		ctric Submers		Other					
		xtraction Pun		Onter:					
	Other:		.h						
	Other:								
Top of Scree	en:		If well is listed as a	no-purge, confirm	that water level is h	alour the to			
			of careen Otherwi	r no pargo, continu	mat water level 18 fe	erom me rol	Ρ		
;		···	of screen. Otherwi	se, the well must be	purged.	<u> </u>			
	14	7	x 3		44.1 Gals				
	1 Casa Mali	ume (Gals.)							
	I Case VO	ume (Gais.)	Specified Vo	iumes Cald	alated Volume				
			Conductivity		<u> </u>				
Time	Temp (°F)	pН	(mS or (µS))	Gals. Removed	Observations				
1510	79.3	8.1	1040	14.7	clear/odo	1			
1513	76.6	7.0	729	29.4	V	· · · · · · · · · · · · · · · · · · ·			
1516	75,1	7.7	739	44.(Y				
]	·								
						<u> </u>			
Did wall	·		\bigcirc						
Did well	iewater?	Yes	(No)	Gallons actuall	y evacuated:	14-1	e de la companya de		
Sampling	Time:	1520		Sampling Date	7-11-05				
Sample I.	D.:	nw-1		Laboratory:	Pace Sequoia	Other_			
Analyzed	for: GR	Ø ВТЕХ	MTBE DRO	Other: See	Score	· · · · · · · · · · · · · · · · · · ·			
D.O. (if re	eq'd):		Pre-purge:	^{mg} /L	Post-purge:	···	mg/ _L		
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:		mV		
Blaine T	ech Serv	ices, Inc	. 1680 Rogers	Ave., San Jo	se, CA 95112	(408) 5			

ARCO / BP WELL MONITORING DATA SHEET

BTS#: ()	5071(-P	m Z		Station# ///	02		
Sampler:				Date: 7-			
Well I.D.:	: MW	1-2		Well Diameter	: 2 3 (4)	68_	
Total Wel	ll Depth:	32.00	_	Depth to Wate	r: 11.25		
Depth to I	Free Produ	ict:		Thickness of F	ree Product (feet	 :):	
Reference	ed to:	(PV)	Grade	D.O. Meter (if	req'd):	rsi hac	CH
L	Well Diame	et i		Yell Diameter 1	Multiplier	1	
	1" 2"		0.04 0.16		0.65 1.47	i	
	3"		0.37	-	us ² * 0.163		
Purge Metho	od:	Bailer		Sampling Method:	Bailer		
Ū		isposable Bail	ler		XDisposable Bailer		
	Positiv	ve Air Displac	cement		Extraction Port		
	ΧEle	ctric Submers	rible	Other:	·		
		xtraction Pun	np				
	Other:						
Top of Scree	n:		If well is listed as a	no-purge, confirm	that water level is be	low the top	
!		_	of screen. Otherwi	se, the well must be	e purged.	ŕ	
	(7)	ζ	٦,	114	4		
]	ume (Gals.)	XSpecified Vo	= <u>46</u>	Gals.		
	1 Case Voi	mile (Gais.)		rumes Can	T Total Volume	<u></u>	
Œ,	Ta (017)	**	Conductivity				
Time	Temp (°F)	pН	(mS of µS))	Gals. Removed	Observations		
1557	76.2	1.1	192	13.5	clear od		
160	73.7	1.8	817	27	/		
1603	73.8	1.5	832	40.5			:
Did well	dewater?	Yes (No	Gallons actual	ly evacuated: 4	0.5	
Sampling	Time:	1610		Sampling Date	: 7-11- <u>0</u> 5		
Sample I.	D.: mi	~-Z		Laboratory:	Pace Sequoia	Other	
Analyzed	for: G	O BTEX	MTBE DRO	Other: See	Store		
D.O. (if re	eq'd):		Pre-purge:	mg/L	Post-purge:		^{mg} /L
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:		mV
Blaine T	ech Serv	ices, Inc	. 1680 Rogers	s Ave., San Jo	se, CA 95112	(408) 573-	0555

ARCO / BP WELL MONITORING DATA SHEET

BTS#: (50711-	PM2		Station # ///	02		
Sampler:	PM			Date: 7-/	1-05		
Well I.D.:	MW-	3		Well Diameter	: 2 3 4) 6	8
Total Wel	ll Depth:	32.25		Depth to Water	r: 10.82		
Depth to 1	Free Produ	ct:		Thickness of F	ree Product (fee	et):	-
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI	HACH
	Well Diamet 1* 2* 3*	et j	<u>Multiplier y</u> 0.04 0.16 0.37	/ell Diameter N 4" (6" 1	<u>fultiplicr</u> 0.65 1.47 is ² * 0.163		
Purge Metho	od:	Bailer		Sampling Method:	Bailer		
	Di	isposable Bail	er	1	がDisposable Bailer		
		e Air Displac		-	Extraction Port		
		ctric Submers		Other:			
		xtraction Pun	-				
Top of Scree	en:			no-purge, confirm se, the well must be	that water level is b	elow th	e top
				se, the well must be	: purgeu.		
	1 Case Volu	ume (Gals.)	x Specified Vo	= <u>U</u> lumes Cale	[1-7 Gals. culated Volume		
			Conductivity				
Time	Temp (°F)	pН	(mS of µS)	Gals. Removed	Observations		
j534	14.7	0.8	659	13.9	clear / ode	N .	
1539	72.8	7.9	000	27.8	и (
1542	12.1	7.8	463	41.7	ų.		
Did well o	dewater?	Yes (No)	Gallons actuall	y evacuated: 4	1.7	
Sampling	Time:	1545		Sampling Date	7-11-05		
Sample I.	D.: MY	-3	Laboratory:	Pace Sequoia	Oth	ier	
Analyzed	for: GK	O BTEX	MIBE DRO	Other: See S	ioge		
D.O. (if re	eq'd):		Pre-purge:	mg/F	Post-purge:		mg/ _L
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:		mV

Chain of Custody Record

Cha		VX	€u	Pro	uy	Nec
	_					

Project Name: Analytical for QMR sampling

BP BU/AR Region/Enfos Segment:

BP > Americas > West Coast > Retail > WCBU >

CA > Central > 11102 > HistoricalBL

State or Lead Regulatory Agency:

California Regional Water Quality Control Board - San Fre

Requested Due Date (mm/dd/yy):

 -		_		
1	Λ	Dans	TAT	
	N.	Dav	IMI	

Wind Speed:

سسلفان

	Page / of /
On-site Time: 1345	Temp: S-Z
Off-site Time:	Temp:
Sky Conditions: clean	
Meteorological Events:	

Direction:

Lab N	ame: Sequoia						BP/AR Facility No	.:	111	02	*								Con	sulta	nt/C	ontra	ctor		UR	S					
Addre	ss: 885 Jarvis Drive						BP/AR Facility Ad	dres	s: 10	0 M	acAr	thur	Blvd	., Oa	klan	d, CA	946	510	Add	ress		133	3 B	road	way	, Sui	te 800)			
	Morgan Hill, CA 95037						Site Lat/Long:		37.8	3191	13 /	122.	.253									Oal	clan	d, C	A 94	612					
Lab P	M: Lisa Race Pax: 408.782.8156 / 408.782.6308						California Global I	D No			001		8						Соп	sulta	nt/C	опіта	etor	Proj	ect l	No.:	384	87119			
							Enfos Project No.:		G07	T9-(0020								Con	su Its	nt/C	ontre	actor	PM:			Lyı	ielle C	mishi		
	R PM Contact: Kyle Christie						Provision or RCOP			visio									Tele	/Fax	:	510	.874	4.175	58/	510.8	374.3	268			
Addre	ss: 4 Centerpointe Dr.						Phase/WBS;	04 -	Mor	1/Re	med	by N	[atur	al At	tenus	tion			Rep	ort T	уре	& Q	C Le	evel:	Lev	vel 1 v	with E	DF			
L	La Palma, CA 90623		 .					03 -											E-m	ail E									.com		
	ax: (714) 670-5303 / (714) 670-51	95					Cost Element:	05 -	Sub		racte		عصف						Invo				antic	Ric	hfie	ld Co	mpa	19		-	
Lab E	ottle Order No: 11102		v	\square	fatr	ix				P	rese	rvati	ive		<u> </u>			Requ	leste	d Ar	alys	is			1						
Item No.					Water/Liquid	Air	Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNG	нсі	Methanol		GRO / BTEX (8260)	MTBE, TAME, ETBE DIPE, TBA (8260)	EDB, 1,2-DCA (8260)	(8260)								Sa	-		Lat/Lon nents	g an	đ
1	mw-1	1520	7/4/65		V			\$				٣	Ī		x	X	r	r						Π	Г		*****				
2	mw-2	1545	11/05		٤, ا			3				×			Y	K	γ	У						П							
3	mw-3	14/0	n /11 /05		3			3				×			У	7	У	Y						Π					<u>, </u>		
4	T8111200711205		′ ′																						Π	٥'n	. #	och)	,		
5											П													Т	Г			<u> </u>			
6														Г			-		ĺ										-		- 1
7																						<u> </u>			┢						
8																								1	╽						
9														<u> </u>						<u> </u>				1							
10	^																	Г					<u> </u>	1	▮						
Samp	ler's Name: MICM	ે		T.			Relinq	iishe	d By	/ Aff	ilisti) DI		<u> </u>	D	ate	Ti	tote		- *		Acce	pted	By/.	Affil	istion			Date		Time
	ier's Company: Blaines	tech					Vand!		<u>~</u>	\@\^	V SS4				11/1	'n	'سک	49	Vil.	H								160	The		
	nent Date:									_	_								7.0		77				1						
	nent Method:																														
	nent Tracking No:						<u> </u>	· · · · ·																							
Speci	al Instructions:		*** ***																												
Custo	ody Seals In Place Yes 🕢 No			Ter	np l	Blar	ık Yes & No					Coc	oler '	Tem	pera	ture •	on R	Lece:	pt_	,	°F/C	3		Tri	p Bl	ank `	Yes 2	N	<u> </u>		

BP GEM OIL COMPANY TYPE A BILL OF LADING

RECORD BILL OF LADING FOR NON-SOURCE **HAZARDOUS PURGEWATER** RECOVERED FROM GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility to the designated destination point via the contractor's facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

// / O Z		
100 Macarthur		
Station Address		-
Total Gallons Collected From G	roundwater Monitoring V	Vells:
added equip.	any other adjustments	
TOTAL GALS. 130	loaded onto BTS vehicle #	2
BTS event #	time date	
050711-PMZ		_/
signature Jan Wo	nul	
· * * * * * * * * * * * * * * * * * * *	***	***
REC'D AT	time date	<i>ተ</i> ጥ ተ ም

ATTACHMENT F

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

27 July, 2005

Lynelle Onishi URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11102, Oakland, CA

Kehobad

Work Order: MOG0331

Enclosed are the results of analyses for samples received by the laboratory on 07/12/05 16:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamshid Kekobad Project Manager

CA ELAP Certificate #1210

URS Corporation [Arco]	Project:BP Heritage #11102, Oakland, CA	MOG0331
1333 Broadway, Suite 800	Project Number:G07T9-0020	Reported:
Oakland CA, 94612	Project Manager:Lynelle Onishi	07/27/05 14:56

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	MOG0331-01	Water	07/11/05 15:20	07/12/05 16:50
MW-2	MOG0331-02	Water	07/11/05 15:45	07/12/05 16:50
MW-3	MOG0331-03	Water	07/11/05 16:10	07/12/05 16:50
TB1112007112005	MOG0331-04	Water	07/11/05 00:00	07/12/05 16:50

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

	Dequ	oia Ana	ij viedi	111UI B	*** 11111				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
MW-1 (MOG0331-01) Water	Sampled: 07/11/05 15:20	Received:	07/12/05	5 16:50			-		
tert-Amyl methyl ether	ND	0.50	ug/l	1	5G21013	07/21/05	07/22/05	EPA 8260B	
Benzene	ND	0.50	"	п	**	**	**	,,	
tert-Butyl alcohol	550	20	**	ш	**	n	π	**	
Di-isopropyl ether	ND	0.50	**	ш		и	τt	**	
1,2-Dibromoethane (EDB)	ND	0.50	**	п	•	ш	71	"	
1,2-Dichloroethane	ND	0.50	"	o	**	II .	**	11	
Ethanol	ND	100	**	II.	**	μ	*	11	
Ethyl tert-butyl ether	ND	0.50	н	IF	**	II	**	11	
Ethylbenzene	ND	0.50	н	n	**	ш	**	н	
Methyl tert-butyl ether	36	0.50	"	II.	**	П	**	н	
Toluene	ND	0.50	n	H	**	II .	"	н	
Xylenes (total)	ND	0.50		**	**	н	**	II	
Gasoline Range Organics (C4-C	C12) 180	50	п		**	н	**	п	
Surrogate: 1,2-Dichloroethane-d-	4	102 %	60-	135	*	"	rr	"	·
MW-2 (MOG0331-02) Water	Sampled: 07/11/05 15:45	Received:	07/12/05	5 16:50					
tert-Amyl methyl ether	99	50	ug/l	100	5G21013	07/21/05	07/22/05	EPA 8260B	
Вепдепе	ND	50	II .	**	"	н	**	II .	
tert-Butyl alcohol	9000	2000	н	**	н	tt	**	II .	
Di-isopropyl ether	ND	50		**	**	*	**	н	
1,2-Dibromoethane (EDB)	ND	50	*	**	11	**	**	II .	
1,2-Dichloroethane	ND	50	H	**	11	**	**	IF	
Et han ol	ND	10000	Ħ	**	н	n	**	II .	
Ethyl tert-butyl ether	ND	50	H	**	н	U .	"	II .	
Ethylbenzene	ND	50	n	**	11	**	**	II .	
Methyl tert-butyl ether	5300	50	11	**	н	*	**	II .	
Toluene	ND	50	H	*	и	**	11	п	
Xylenes (total)	ND	50	H	**	н	"	11	II	
						**	**	II.	
Gasoline Range Organics (C4-C1	2) ND	5000	n	"	н		"		

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

			-						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (MOG0331-03) Water	Sampled: 07/11/05 16:10	Received:	07/12/0	5 16:50					
tert-Amyl methyl ether	1.4	1.0	ug/l	2	5G21012	07/21/05	07/21/05	EPA 8260B	
Benzene	ND	1.0	"	"	**	**	**	•	
tert-Butyl alcohol	ND	40		#	**	**	**	•	
Di-isopropyl ether	ND	1.0		n	**	**	**	**	
1,2-Dibromoethane (EDB)	ND	1.0	**	11	**	**	**	*	
1,2-Dichloroethane	ND	1.0	**	"	Ħ	**	**	**	
Ethanol	ND	200	"	**	**	**	**	**	10
Ethyl tert-butyl ether	ND	1.0	"	**	**	**	**	**	
Ethylbenzene	ND	1.0	11	**	**	**	n	π	
Methyl tert-butyl ether	120	1.0	н	**	11	**	Ħ	11	
Toluene	ND	1.0			п	17	**	H	
Xylenes (total)	ND	1.0	н	••	п	**	#	**	
Gasoline Range Organics (C4-C	12) 130	100	"	**	"	**	fr	**	PV
Surrogate: 1,2-Dichloroethane-d4	1	100 %	60	-135	"	77	H	"	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G21012 - EPA 5030B P/T	EPA 8260B					1		_		
Blank (5G21012-BLK1)				Prepared	& Analyz	ed: 07/21/	05		•	
tert-Amyl methyl ether	ND	0.50	ug/l	F						
Benzene	ND	0.50	,,							
tert-Butyl alcohol	ND	20	н							
Di-isopropyl ether	ND	0.50								
1,2-Dibromoethane (EDB)	ND	0.50	•							
1,2-Dichloroethane	ND	0.50	**							
Ethanol	ND	100	н							3
Ethyl tert-butyl ether	ND	0.50	Ħ							
Ethylbenzene	ND	0.50	"							
Methyl tert-butyl ether	ND	0.50	"							
Toluene	ND	0.50	**							
Xylenes (total)	ND	0.50	**							
Gasoline Range Organics (C4-C12)	ND	50	**							
Surrogate: 1,2-Dichloroethane-d4	5.77		rr .	5.00		115	60-135			
Blank (5G21012-BLK2)				Prepared	& Analyz	ed: 07/21/	05			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	17							
tert-Butyl alcohol	ND	20	**							
Di-isopropyl ether	ND	0.50	*							
1,2-Dibromoethane (EDB)	ND	0.50	н							
1,2-Dichloroethane	ND	0.50	ıı .							
Ethanol	ND	100	•							
Ethyl tert-butyl ether	ND	0.50	•							
Ethylbenzene	ND	0.50	**							
Methyl tert-butyl ether	ND	0.50	**							
Toluene	ND	0.50	н							
Xylenes (total)	ND	0.50	11							
Gasoline Range Organics (C4-C12)	ND	50	н							
Surrogate: 1,2-Dichloroethane-d4	5.57		#	5.00		111	60-135			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G21012 - EPA 5030B P/T	/ EPA 8260B									
Laboratory Control Sample (5G2101)	2-BS1)			Prepared	& Analyz	ed: 07/21/	05			
tert-Amyl methyl ether	10.5	0.50	ug/l	10.0		105	80-115			
Benzene	9.50	0.50	II .	10.0		95	65-115			
tert-Butyl alcohol	49.6	20	п	50.0		99	75-150			
Di-isopropyl ether	9.02	0.50	H	10.0		90	75-125			
1,2-Dibromoethane (EDB)	8.42	0.50	**	10.0		84	85-120			HM
1,2-Dichloroethane	9.44	0.50	**	10.0		94	85-130			
Ethanol	124	100	**	200		62	70-135			IC, HM
Ethyl tert-butyl ether	9.08	0.50	**	10.0		91	75-130			
Ethylbenzene	8.57	0.50	••	10.0		86	75-135			
Methyl tert-butyl ether	9.74	0.50	**	10.0		97	65-125			
Toluene	8.66	0.50	**	10.0		87	85-120			
Xylenes (total)	27.6	0.50	**	30.0		92	85-125			
Surrogate: 1,2-Dichloroethane-d4	5.44		**	5.00		109	60-135			
Laboratory Control Sample (5G2101)	2-BS2)			Prepared	& Analyz	ed: 07/21/	05			
Benzene	5.17	0.50	ug/l	6.08		85	65-115			
Ethylbenzene	6.92	0,50	**	7.84		88	75-135			
Methyl tert-butyl ether	7.97	0.50	#	9.60		83	65-125			
Toluene	32.3	0.50	H	32.9		98	85-120			
Xylenes (total)	39.0	0.50	*	38.5		101	85-125			
Gasoline Range Organics (C4-C12)	448	50	*	440		102	70-124			
Surrogate: 1,2-Dichloroethane-d4	5.29		*	5.00		106	60-135			
Matrix Spike (5G21012-MS1)	Source: M	IOG0291-02		Prepared	& Analyz	ed: 07/21/	05			
Benzene	58.8	5.0	ug/l	60.8	6.0	87	65-115			
Ethylbenzene	98.1	5,0		78.4	25	93	75-135			
Methyl tert-butyl ether	283	5.0	**	96.0	190	97	65-125			
Toluene	340	5.0	**	329	ND	103	85-120			
Xylenes (total)	391	5.0		385	ND	102	85-125			
Gasoline Range Organics (C4-C12)	5550	500	17	4400	500	115	70-124			
Surrogate: 1,2-Dichloroethane-d4	6.01		*	5.00		120	60-135			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5G21012 - EPA 5030B P/T / F	EPA 8260B										
Matrix Spike Dup (5G21012-MSD1)	Source: MOG0291-02			Prepared & Analyzed: 07/21/05							
Benzene	56.0	5,0	ug/i	60,8	6.0	82	65-115	5	20		
Ethylben zene	91.5	5.0	•	78.4	25	85	75-135	7	15		
Methyl tert-butyl ether	281	5.0	**	96.0	190	95	65-125	0.7	20		
l'oluene	322	5.0	**	329	ND	98	85-120	5	20		
Xylenes (total)	364	5.0	**	385	ND	95	85-125	7	20		
Gasoline Range Organics (C4-C12)	5040	500	11	4400	500	103	70-124	10	20		
Surrogate: 1,2-Dichloroethane-d4	6.04		"	5.00		121	60-135				
Batch 5G21013 - EPA 5030B P/T / E	EPA 8260B										
Blank (5G21013-BLK1)				Prepared	& Analyz	ed: 07/21/	05				
ert-Amyl methyl ether	ND	0.50	ug/i								
Benzene	ND	0.50	"								
ert-Butyl alcohol	ND	5.0	"								
Di-isopropyl ether	ND	0.50	**								
,2-Dibromoethane (EDB)	ND	0.50	н								
,2-Dichloroethane	ND	0.50	n								
Ethanol	ND	100	**								
Ethyl tert-butyl ether	ND	0.50	"								
Ethylbenzene	ND	0.50	"								
Methyl tert-butyl ether	ND	0.50	**								
l'oluene	ND	0.50	**								
Xylenes (total)	ND	0.50	**								
Gasoline Range Organics (C4-C12)	ND	50	77								
Surrogate: 1,2-Dichloroethane-d4	2.40		**	2.50		96	60-135				
Blank (5G21013-BLK2)				Prepared:	07/21/05	Analyzed	1: 07/22/05				
ert-Amyl methyl ether	ND	0.50	ug/I								
Benzene	ND	0.50	*								
ert-Butyl alcohol	ND	20	*								
Di-isopropyl ether	ND	0.50	**								
,2-Dibromoethane (EDB)	ND	0.50	n								
,2-Dichloroethane	ND	0.50	н								
Ethanol	ND	100	п								
Ethyl tert-butyl ether	ND	0.50	n								
Ethylbenzene	ND	0.50	и								
Methyl tert-butyl ether	ND	0.50	**								

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
		- Land		A44.44	2111111						
Batch 5G21013 - EPA 5030B P/T /	LFA 040UB			D	07/01/05	A 1 1	. 07/00/05				
Blank (5G21013-BLK2)				Prepared:	07/21/05	Analyzeo	l: 07/22/05			<u> </u>	
Toluene	ND	0.50	ug/l								
Xylenes (total)	ND	0.50	**								
Gasoline Range Organics (C4-C12)	ND	50	**								
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96	60-135				
Laboratory Control Sample (5G21013	-BS1)			Prepared.	& Analyze	d: 07/21/	05				
tert-Amyl methyl ether	10.3	0.50	ug/l	10.0		103	80-115				
Benzene	10.0	0.50	11	10.0		100	65-115				
tert-Butyl alcohol	54.5	20	н	50.0		109	75-150				
Di-isopropyl ether	9.96	0.50	"	10.0		100	75-125				
1,2-Dibromoethane (EDB)	10.3	0.50	#	10.0		103	85-120				
1,2-Dichloroethane	9,53	0.50	**	10.0		95	85-130				
Ethanol	197	100	"	200		98	70-135				
Ethyl tert-butyl ether	9.78	0.50	,,	10.0		98	75-130				
Ethylbenzene	11.0	0.50	н	10.0		110	75-135				
Methyl tert-butyl ether	8.79	0.50	II .	10.0		88	65-125				
Toluene	10.1	0.50	"	10.0		101	85-120				
Xylenes (total)	33.9	0.50	н	30.0		113	85-125				
Surrogate: 1,2-Dichloroethane-d4	2.33		"	2.50		93	60-135				
Laboratory Control Sample (5G21013	-BS2)	Prepared & Analyzed: 07/21/05									
Benzene	5.46	0.50	ug/l	6.08		90	65-115				
Ethylbenzene	8.32	0.50	11	7.84		106	75-135				
Methyl tert-butyl ether	8.11	0.50	H	9.60		84	65-125				
Toluene	33.3	0.50	H	32.9		101	85-120				
Xylenes (total)	41.5	0.50	,,	38.5		108	85-125				
Gasoline Range Organics (C4-C12)	388	50	n	440		88	70-124				
Surrogate: 1,2-Dichloroethane-d4	2.40		27	2.50		96	60-135				
•											

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0020 Project Manager:Lynelle Onishi MOG0331 Reported: 07/27/05 14:56

Analyse	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuli	rimit	Umis	Level	Kesun	76KBC	Lilling	KFD	Diffit	140(6)
Batch 5G21013 - EPA 5030B P/T / E	PA 8260B									
Laboratory Control Sample Dup (5G210	013-BSD1)			Prepared a	& Analyze	ed: 07/21/	05			
tert-Amyl methyl ether	10.9	0.50	ug/l	10.0		109	80-115	6	15	
Benzene	10.9	0.50	**	10.0		109	65-115	9	20	
tert-Butyl alcohol	52.7	20	"	50.0		105	75-150	3	25	
Di-isopropyl ether	10.4	0.50		10.0		104	75-125	4	15	
1,2-Dibromoethane (EDB)	10.9	0.50	"	10.0		109	85-120	6	15	
1,2-Dichloroethane	10.4	0.50	11	10.0		104	85-130	9	20	
Ethanol	172	100	**	200		86	70-135	14	35	
Ethyl tert-butyl ether	10.4	0.50	"	10.0		104	75-130	6	25	
Ethylbenzene	11.8	0.50	"	10.0		118	75-135	7	15	
Methyl tert-butyl ether	9.28	0.50	н	10.0		93	65-125	5	20	
Toluene	11.0	0.50	*1	10.0		110	85-120	9	20	
Xylenes (total)	36.1	0.50	н	30.0		120	85-125	6	20	
Surrogate: 1,2-Dichloroethane-d4	2.47		**	2.50		99	60-135			
Matrix Spike (5G21013-MS1)	Source: M	IOG0331-02		Prepared:	07/21/05	Analyzed	l: 07/22/05			
Benzene	537	50	ug/l	608	ND	88	65-115			
Ethylbenzene	831	50	"	784	ND	106	75-135			
Methyl tert-butyl ether	6060	50	и	960	5300	79	65-125			
Toluene	3250	50	11	3290	ND	99	85-120			
Xylenes (total)	4120	50	"	3850	ND	107	85-125			
Gasoline Range Organics (C4-C12)	42000	5000	II .	44000	4200	86	70-124			
Surrogate: 1,2-Dichloroethane-d4	2.37		,,	2.50		95	60-135			
Matrix Spike Dup (5G21013-MSD1)	Source: M	IOG0331-02		Prepared:	07/21/05	Analyzed	1: 07/22/05			
Benzene	569	50	ug/l	608	ND	94	65-115	6	20	
Ethylbenzene	862	50	"	784	ND	110	75-135	4	15	
Methyl tert-butyl ether	5990	50		960	5300	72	65-125	1	20	
Toluene	3430	50	н	3290	ND	104	85-120	5	20	
Xylenes (total)	4310	50	"	3850	ND	112	85-125	5	20	
Gasoline Range Organics (C4-C12)	41900	5000	"	44000	4200	86	70-124	0.2	20	
Surrogate: 1,2-Dichloroethane-d4	2.37		u	2.50		95	60-135			

URS Corporation [Arco]	Project:BP Heritage #11102, Oakland, CA	MOG0331
1333 Broadway, Suite 800	Project Number:G07T9-0020	Reported:
Oakland CA, 94612	Project Manager:Lynelle Onishi	07/27/05 14:56

Notes and Definitions

PV	Hydrocarbon result partly due to individ. peak(s) in quant. range
IC	Calib. verif. is within method limits but outside contract limits
НМ	Analyte recovery below established limit
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

hn

Chain of Custody Record

Project Name: Analytical for QMR sampling

BP BU/AR Region/Enfos Segment:

BP > Americas > West Coast > Retail > WCBU > CA > Central > 11102 > HistoricalBL

State or Lead Regulatory Agency:

Catiornia Regional Water Quality Control Board - San Fr

Requested Due Date (mm/dd/yy):

10 Day TAT

	Page / of /
On-site Time: 1345	Temp: }-2
Off-site Time:	Temp:
Sky Conditions: clean	
Meteorological Events:	
Wind Speed:	Direction:

Lab Name: Sequoia	BP/AR Facility No.: 11102	Consultant/Contractor: URS			
Address: 885 Jarvis Drive	BP/AR Facility Address: 100 MacArthur Blvd., Oakland, CA 94610	Address: 1333 Broadway, Suite 800			
Morgan Hill, CA 95037	Site Lat/Long: 37.819113 / -122.253	Oakland, CA 94612			
Lab PM; Lisa Race	California Global ID No.: T0600100908	Consultant/Contractor Project No.: 38487119			
Tele/Pax: 408.782.8156 / 408.782.6308	Enfos Project No.: G07T9-0020	Consultant/Contractor PM: Lynelle Onishi			
BP/AR PM Contact: Kyle Christie	Provision or RCOP: Provision	Tele/Pax: 510.874.1758 / 510.874.3268			
Address: 4 Centerpointe Dr.	Phase/WBS: 04 - Mon/Remed by Natural Attenuation	Report Type & QC Level: Level 1 with EDF			
La Paima, CA 90623	Sub Phase/Task: 03 - Analytical	B-mail EDD To: Donna Cosper@urscorp.com			
Tele/Fax: (714) 670-5303 / (714) 670-5195	Cost Element: 05 - Subcontracted Costs	Invoice to: Atlantic Richfield Company			
Lab Bottle Order No: 11102 Matrix	Preservative Requ	iested Analysis			
No. Sample Description Time Soil/Solid Water/Liquid	Paragraph of Containers Unpreserved H ₂ SO ₄ HCl Methanol MEB TBA (\$260) MPB TBA (\$260) MPB 1,2-DCA (\$260) Ethanol (\$260)	Sample Point Lat/Long and Comments			
1 MW-1 1520 7/1/85 V	b) 5 x X X X X				
2 MW-Z 1545 MI/OT W	3 x x y y				
3 mw-3 14/0 7/0/05 W	by 3 x Y X Y Y				
4 TR11/200711205 - W	44 2	on Hord			
5					
6					
7					
8					
9					
10					
	Relinguished By / Affiliation Date Time	Accepted By / Affiliation Date Time			
Sampler's Name: (MCN) more Sampler's Company: Blainesterh	2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Mills Myry Sample Costs Jean 7/11/05 1749			
Shipment Date:	SAMPLE CURDAIAN 17/14/5 / 545	1/10/345			
Shipment Method:,	121111 VA/6 1450	10mg 16:50			
Shipment Tracking No:					
ecial Instructions:					
dy Seals In Place Yes / No Temp Bla	nk Yes No Cooler Temperature on Recei	pt 5 to °F/8 Trip Blank Yes 2 No No			

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

WORKORDER: MOG	Pham 10331	-	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	76 2 3 4 7 - 7 (For	iring pre	For Regulatory Purpos DRINKING WATER YI WASTE WATER YE ring preservation checks at receipt, docume			
CIRCLE THE APPROPRIATE RESPO	SAMPLE#	DASH #	CLIENT ID	CONTAINER DESCRIPTION	PRESERV ATIVE	pН	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
Custody Seal(s) Present / Abse		A-C	MW-1	VOA-3	HLL			7-11/0	
Intact / Broken		 	2		1,	1/		11.	,
2. Chain-of-Custody Fresent / Abse	nt* 03	1	V/3	\mathcal{V}	V/	Ψ	٠,		
3. Traffic Reports or	04	1/3	TB1/12007/1005	VOA-2		W_	V	V	
Packing List: Present / Abse									
4. Airbill: Airbill / Sticker	\ }\\\			, , ,	1)
Present / Abse	rht	•					-		
5. Airbill #:			•			,		-	
6. Sample Labels: Rresent / Abse	nt								-/-
7. Sample IDs: (Island / Not Lis	ted -								
on Chain-of-Cu	stody		,						
8. Sample Condition: Intaot / Broken	7		,						<u></u>
Leaking*				•					
9. Does information on chain-of-custody	/,								
traffic reports and sample labels							. /	-	
agree? (Yes / N	o*				ا بـ				
10. Sample received within		,	1	12/1	,				
hold time? (Yes / No) *		f	1000				•	
11. Adequate sample volume			1) . 1/2 //						
received? Yes / No	p*		P			****			· · · · · · · · · · · · · · · · · · ·
12. Proper Preservatives									
used? (res)/ No	p*								-
13. Top Blank / Temp Blank Received?									
(circle which, if yes) Yes / No	o*		/						
14 Temp Boo at liab: (C. fa.)	ی د		• /	· ·					
Is temp 4 +/-2°C?			7			•			
(Acceptance range for samples requiring thermal press	100								
**Exception (if any): METALS / DFF ON IC									 ,
or Problem COC						-			
And the second of the second o		Y ED C	ONTACT PROJECT M	ANAGEDANG	ATTACK		W-17		Total State of the Control of the Co

SRL Revision 6 Replaces Rev 5 (06/07/04) Vective 07/13/04

Page _____of_____

3 August, 2005

Lynelle Onishi URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11102, Oakland, CA

Work Order: MOG0344

Enclosed are the results of analyses for samples received by the laboratory on 07/13/05 18:36. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate #1210

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Bate Sampled	Date Received
SB-6 5-5.5'	MOG0344-01	Soil	07/13/05 09:15	07/13/05 18:36
SB-6 8.5-9'	MOG0344-02	Soil	07/13/05 09:41	07/13/05 18:36
SB-6 19.5-20'	MOG0344-03	Soil	07/13/05 09:48	07/13/05 18:36
SB-6 27.5-28'	MOG0344-04	Soil	07/13/05 10:31	07/13/05 18:36
SB-6 16.5-17'	MOG0344-05	Soil	07/13/05 10:30	07/13/05 18:36
SB-6 14.5-15'	MOG0344-06	Soil	07/13/05 09:29	07/13/05 18:36
SB-6 9.5-10'	MOG0344-07	Soil	07/13/05 09:24	07/13/05 18:36
SB-8 5-5.5'	MOG0344-08	Soil	07/13/05 12:40	07/13/05 18:36
SB-8 7-7.5'	MOG0344-09	Soil	07/13/05 13:00	07/13/05 18:36
SB-8 11-11.5'	MOG0344-10	Soil	07/13/05 13:30	07/13/05 18:36
SB-8 9.5-10'	MOG0344-11	Soil	07/13/05 12:50	07/13/05 18:36
SB-8 14.5-15'	MOG0344-12	Soil	07/13/05 12:55	07/13/05 18:36
SB-8 17.5-18'	MOG0344-13	Soil	07/13/05 14:00	07/13/05 18:36
SB-8 19.5-20'	MOG0344-14	Soil	07/13/05 14:05	07/13/05 18:36
SB-8 20.5-21'	MOG0344-15	Soil	07/13/05 13:15	07/13/05 18:36
Trip Blank	MOG0344-16	Water	07/13/05 16:15	07/13/05 18:36

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Reported: 08/03/05 12:10

MOG0344

Project Manager:Lynelle Onishi

Total Metals by EPA 6000/7000 Series Methods Sequoia Analytical - Morgan Hill

	Re	porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 9.5-10' (MOG0344-07) Soil	Sampled: 07/13/05 00:24	Doggin	od. 07/1	2/05 19.26					
DD 0 310 10 (110 00011 01) 001	Sampled: 07/13/03 09:24	Necen	eu. 0//1.	0/03 10:30					

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

Алајуtе	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
						Trepared	7111417200	Model	-
SB-6 5-5.5' (MOG0344-01) Soil	Sampled: 07/13/05 09:15	Receive	ed: 07/13/	05 18:36					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G14003	07/14/05	07/14/05	EPA 8260B	
Benzene	ND	0.0050	h	ø	н	**	н	**	
tert-Butyl alcohol	ND	0.020	n	n	ti .	n	ii	#	
Di-isopropyl ether	ND	0.0050	н	II.	II	п	и	**	
1,2-Dibromoethane (EDB)	ND	0.0050	н	II	н	•	н	**	
1,2-Dichloroethane	ND	0.0050	H	U	н	H	и	"	
Ethanol	ND	0.10	n	n	19	•	н	*	
Ethyl tert-butyl ether	ND	0.0050	n	ø	n	Ħ	h	*	
Ethylbenzene	ND	0.0050	н	U	H	**	19	н	
Methyl tert-butyl ether	ND	0.0050	n	II	11	н	11	n	
Toluene	ND	0.0050	H	n	11	19	n	n	
Xylenes (total)	ND	0.0050	н	n	44	19	19	n	
Gasoline Range Organics (C4-C12) ND	0.10	н	н	19		и	16	
Surrogate: 1,2-Dichloroethane-d4		81 %	60-	125	"	"	"	п	
SB-6 8.5-9' (MOG0344-02) Soil	Sampled: 07/13/05 09:41	Receive	ed: 07/13/	05 18:36					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G14003	07/14/05	07/14/05	EPA 8260B	
Benzene	ND	0.0050	н _	н	11	17	и	II .	
tert-Butyl alcohol	ND	0.020	н	н	**	4	11	Ħ	
Di-isopropyl ether	ND	0.0050	n	и	11	*	**		
1,2-Dibromoethane (EDB)	ND	0.0050	н	ıŧ	**	19	11	#	
1,2-Dichloroethane	ND	0.0050	н	п	"	16	•	**	
Ethanol	ND	0.10	. н	н	17	**	11	ft .	
Ethyl tert-butyl ether	ND	0.0050	н	п	"	**	**	**	
Ethylbenzene	ND	0.0050	н	н	**	**	•	**	
Methyl tert-butyl ether	ND	0.0050	н	н	**	**	W	**	
Toluene	ND	0.0050	н	н	*	#	#	er er	
Xylenes (total)	ND	0.0050	н	н	*	•	**	v	
Gasoline Range Organics (C4-C12		0.10	н	и	*	**		er .	
Surrogate: 1,2-Dichloroethane-d4		76 %	60-	125	#	н	"	n	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 19.5-20' (MOG0344-03) Soil	Sampled: 07/13/05 09	:48 Rece	ived: 07/1	3/05 18:3	6		•		
tert-Amyl methyl ether	ND	0.025	mg/kg	5	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.025	#	**	н		•	п	
tert-Butyl alcohol	0.13	0.10	и	**	**	er er	•	н	
Di-isopropyl ether	ND	0.025	10	**	18		10	II .	
1,2-Dibromoethane (EDB)	ND	0.025	ly .	**	и	19	11	В	
1,2-Dichloroethane	ND	0.025	и	**	u	77	**	n	
Ethanol	ND	0.50	н	Ħ	н	19	19	и	LQ, IC
Ethyl tert-butyl ether	ND	0.025	11	**	19	11	#	11	
Ethylbenzene	ND	0.025	n	*1	и	17	•	11	
Methyl tert-butyl ether	0.15	0.025	H	Ħ	**	#	*	16	
Toluene	ND	0.025	н	R	n	tt	**	н	
Xylenes (total)	ND	0.025	н	**		Ħ	#	н	
Gasoline Range Organics (C4-C12)	ND	0.50	II.	#	11	TF	*	11	
Surrogate: 1,2-Dichloroethane-d4		108 %	60-	125	*	n	"	"	
SB-6 27.5-28' (MOG0344-04) Soil	Sampled: 07/13/05 10	:31 Rece	ived: 07/1	3/05 18:3	6				
tert-Amyl methyl ether	ND	0.0050	mg/kg	l	5G14003	07/14/05	07/14/05	EPA 8260B	
Benzene	ND	0.0050	#	H	11	17	**	n	
tert-Butyl alcohol	ND	0.020	н	*	n	"	•	19	
Di-isopropyl ether	ND	0.0050	11	*	"	19	*	11	
1,2-Dibromoethane (EDB)	ND	0.0050	н	H	11	19		er e	
1,2-Dichloroethane	ND	0.0050	11	4	10	#	•	**	
Ethanol	ND	0.10	10	**	**	*	H	**	
Ethyl tert-butyl ether	ND	0.0050	**	**	*	**	*	"	
Ethylbenzene	ND	0.0050	**	"	**	**	*	**	
Methyl tert-butyl ether	ND	0.0050	**	Ħ	11	π	п	**	
Toluene	ND	0.0050	#	#1	#	"	w	77	
Xylenes (total)	ND	0.0050	11	н	**	77	*	**	
Gasoline Range Organics (C4-C12)	ND	0.10	**	H	1)	0	и	**	
Surrogate: 1,2-Dichloroethane-d4		78 %	60	125	#	11	rt	н	

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Anatyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note:
SB-6 16.5-17' (MOG0344-05) Soil	Sampled: 07/13/05 10:3	0 Rece	ived: 07/1	3/05 18:3	6				
tert-Amyl methyl ether	ND	0.0049	mg/kg	0.98	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0049	#1		**	н		**	
tert-Butyl alcohol	ND	0.020	H.	**	11	н	Ħ	**	
Di-isopropyl ether	ND	0.0049	#1	**	11	и	н	5 †	
1,2-Dibromoethane (EDB)	ND	0.0049	*1	**	**	H	**	**	
1,2-Dichloroethane	ND	0.0049	н	17	tr.	н		**	
Ethanol	ND	0.098	н		11	14	II	11	IC, LQ
Ethyl tert-butyl ether	ND	0.0049	*1	**	n	14	н	**	
Ethylbenzene	ND	0.0049	Ħ	*	**	н	II	н	
Methyl tert-butyl ether	ND	0.0049	n	w	*	н	н	н	
Toluene	ND	0.0049	•	π	**	n	11	н	
Xylenes (total)	0.0054	0.0049	н	н	#	**	Н	н	
Gasoline Range Organics (C4-C12)	ND	0.098	н	H	0	u	II	н	
Surrogate: 1,2-Dichloroethane-d4		105 %	60-	125	"	,,	"	B	
SB-6 14.5-15' (MOG0344-06) Soll	Sampled: 07/13/05 09:2	9 Rece	ived: 07/1	3/05 18:30	6				
tert-Amyl methyl ether	ND	0.0048	mg/kg	0.97	5G14003	07/14/05	07/14/05	EPA 8260B	
Benzene	ND	0.0048	н	"	**	ø	н	н	
tert-Butyl alcohol	ND	0.019	н	**	#	**	и	n	
Di-isopropyl ether	ND	0.0048	n	10	#	**	19	н	
1,2-Dibromoethane (EDB)	ND	0.0048	Ħ	*	Ħ	#	19	19	
1,2-Dichloroethane	ND	0.0048	п	"	#	#	te .	19	
Ethanol	ND	0.097	n	"	**	#	ti	u	
Ethyl tert-butyl ether	ND	0.0048	n	"	₩	77	11	19	
Ethylbenzene	ND	0.0048	н		#	π	tr	10	
Methyl tert-butyl ether	ND	0.0048	н	*	н	n	0	н	
Toluene	ND	0.0048	11	*	#	н	**	n	
Xylenes (total)	0.0082	0.0048		*	v	0		11	
Gasoline Range Organics (C4-C12)	ND	0.097	11	**	*	#		*	
Surrogate: 1,2-Dichloroethane-d4		92 %	60-	125	n	"	"	н	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Reported: 08/03/05 12:10

MOG0344

Project Manager:Lynelle Onishi

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-6 9.5-10' (MOG0344-07) Soil	Sampled: 07/13/05 0	9:24 Receiv	ed: 07/13	3/05 18:3 6					
tert-Amyl methyl ether	ND	0.0048	mg/kg	0.95	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	0.0048	**	#	n	H	11	•	
tert-Butyl alcohol	ND	0.019	n	**	н	10)ı	**	
Di-isopropyl ether	ND	0.0048	н	w	n	19	н	#*	
1,2-Dibromoethane (EDB)	ND	0.0048		"	n	10	10	*	
1,2-Dichloroethane	ND	0.0048	н	•		"		**	
Ethanol	ND	0.095	**	**	н	11	11	"	
Ethyl tert-butyl ether	ND	0.0048	Ħ	**	н	ti .	II.	**	
Ethylbenzene	ND	0.0048	**	n	н	10	н	**	
Methyl tert-butyl ether	0.0055	0.0048	**	**	11	*	19	*	
Toluene	ND	0.0048	**	"	IJ	l y	Ħ	*	
Xylenes (total)	ND	0.0048		u	H	**	N	#	
Gasoline Range Organics (C4-C12	0.14	0.095	**	ø	11	n	10	#	
Surrogate: 1,2-Dichloroethane-d4		103 %	60-	125	"	"	"	#	
SB-8 5-5.5' (MOG0344-08) Soil S	ampled: 07/13/05 12	:40 Receive	ed: 07/13/	05 18:36					
tert-Amyl methyl ether	ND	0.0050	mg/kg	0.99	5G15003	07/15/05	07/15/05	EPA 8260B	_
Benzene	ND	0.0050	**	u	n	н	11	Ħ	
tert-Butyl alcohol	ND	0.020	**		н	Ħ	n	#	
Di-isopropyl ether	ND	0.0050	**	11	н	**	11	**	
1,2-Dibromoethane (EDB)	ND	0.0050	**	11	n	19	11 "	**	
1,2-Dichloroethane	ND	0.0050		11	Ħ	t#	н	.	
Ethanol	ND	0.099	v	11	H	11	la .	#	IC, LQ
Ethyl tert-butyl ether	ND	0.0050	**	17	н	Ħ	11	#	
Ethylbenzene	ND	0.0050	v	"	n		Ħ	tr	
Methyl tert-butyl ether	ND	0.0050	**	**	n	17	19	#	
Toluene	ND	0.0050	*	**	н	10	111	π	
Xylenes (total)	ND	0.0050	•	10	н	"	11	н	
Gasoline Range Organics (C4-C12)	ND	0.099	**	11	Н	11		Я	· · · · · · · · · · · · · · · · · · ·
Surrogate: 1,2-Dichloroethane-d4		93 %	60-	125	#	H	H	Ħ	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Number: G0/19-0024
Project Manager: Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
					Dakii	Торыса	Maiyzed	Micarca	11000
SB-8 7-7.5' (MOG0344-09) Soil	Sampled: 07/13/05 13:00	Receive	ed: 07/13/	05 18:36					
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0050	н	н	19	"	17	"	
tert-Butyl alcohol	ND	0.020	н	н	16	н	n	•	
Di-isopropyl ether	ND	0.0050	H	н	*	н	#	,,	
1,2-Dibromoethane (EDB)	ND	0.0050	H	H	**	17	W	*	
1,2-Dichloroethane	ND	0.0050	n	H	"	н	π-	*	
Ethanol	ND	0.10	tt	n	**	it .	11	n	IC, LQ
Ethyl tert-butyl ether	ND	0.0050	н	n	1F	19	10	rr	
Ethylbenzene	ND	0.0050	Ħ	н	"	17	W	**	
Methyl tert-butyl ether	ND	0.0050	н	19	0	н	. "	H	
Toluene	ND	0.0050	н	**	**	19	0	R	
Xylenes (total)	ND	0.0050	н	н	*	н	11	Ħ	
Gasoline Range Organics (C4-C12)) ND	0.10	н	н	**	Ħ	**	#	
Surrogate: 1,2-Dichloroethane-d4		104 %	60-	125	"	"	,,	tr	
SB-8 11-11.5' (MOG0344-10) Soil	Sampled: 07/13/05 13:	30 Rece	lved: 07/1	3/05 18:30	5				
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0050	Ħ	11	**	Ħ	W	Ħ	
tert-Butyl alcohol	ND	0.020	h	Ħ	**	1+	**	н	
Di-isopropyl ether	ND	0.0050	n	11	"	**	**	n	
1,2-Dibromoethane (EDB)	ND	0.0050	п	н	"	19	**	н	
1,2-Dichloroethane	ND	0.0050	н	11	"	19	91	п	
Ethanol	ND	0.10	н	**	**	**	N	п	IC, LQ
Ethyl tert-butyl ether	ND	0.0050	n	10	**	*	**	н	
Ethylbenzene	ND	0.0050	н	**	**	*	н	n	
Methyl tert-butyl ether	ND	0.0050	tt	n	Ħ	#	**	н	
Toluene	ND	0.0050	n	11	Ħ		н	и	
Xylenes (total)	ND	0.0050	n	**	**	**	н	н	
Gasoline Range Organics (C4-C12)) ND	0.10			n	ŧτ	Ħ	11	
Surrogate: 1,2-Dichloroethane-d4		101 %	60	125	"	Ħ	H	#	

Project:BP Heritage #11102, Oakland, CA

Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-8 9.5-10' (MOG0344-11) Soil	Sampled: 07/13/05 1	2:50 Receiv	/ed: 07/13	/05 18:36					
tert-Amyl methyl ether	ND	0.0050	mg/kg	0.99	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0050	•	н	**	11	10	,	
tert-Butyl alcohol	ND	0.020	*	н	**	11	III	n	
Di-isopropyl ether	ND	0.0050	*	H	H	41	14	"	
1,2-Dibromoethane (EDB)	ND	0.0050	11	н	H	*	10	#	
1,2-Dichloroethane	ND	0.0050	"	п	**	**	14	π	
Ethanol	ND	0.099	*	н	н		11	IF	IC, LQ
Ethyl tert-butyl ether	ND	0.0050		н	н	π	"	11	
Ethylbenzene	ND	0.0050	**	11	n		π	11	
Methyl tert-butyl ether	ND	0.0050	**	19	н	II .	**	u	
Toluene	ND	0.0050	**	19	н	19	*	Ħ	
Xylenes (total)	ND	0.0050	**	19	n	**	*	it	
Gasoline Range Organics (C4-C12)	ND	0.099	n	11	п	e	π	Ħ	
Surrogate: 1,2-Dichloroethane-d4		97 %	60-	125	"	*	"	n	
SB-8 14.5-15' (MOG0344-12) Soil	Sampled: 07/13/05	12:55 Rece	ived: 07/1	3/05 18:3	6				
tert-Amyl methyl ether	ND	0.0050	mg/kg	0.99	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0050	n	17	H	#1	m	н	
tert-Butyl alcohol	ND	0.020	н	19	11	•	17	II.	
Di-isopropyl ether	ND	0.0050	н	•	11	**	**	n	
1,2-Dibromoethane (EDB)	ND	0.0050	н	0	a	**	W.	n	
1,2-Dichloroethane	ND	0.0050	H	#	11	н	0	и	
Ethanol	ND	0.099	н	*	**	"	**	п	IC, LQ
Ethyl tert-butyl ether	ND	0.0050	п	•	*	**	Ħ	19	
Ethylbenzene	ND	0.0050	n	77	\$ †	Ħ	н	H	
Methyl tert-butyl ether	ND	0.0050	II		#f	Ħ	н	n	
Toluene	ND	0.0050	н	Ħ	#	Ħ	n	10	
Xylenes (total)	ND	0.0050	н	*	Ħ	н	H	11	
Gasoline Range Organics (C4-C12)	ND	0.099	"	11	n	n	n	11	
Surrogate: 1,2-Dichloroethane-d4		95 %	60-	125	#	Jt .) (н	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-8 17.5-18' (MOG0344-13) Soil	Sampled: 07/13/05 14:	00 Rece	ived: 07/1	3/05 18:30	б				
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0050	**	#	et.	19	и	II	
tert-Butyl alcohol	ND	0.020	n	11	**	H	19	II	
Di-isopropyl ether	ND	0.0050	71	77	**	11	11	(1	
1,2-Dibromoethane (EDB)	ND	0.0050	77	"	#	н	11	O	
1,2-Dichloroethane	ND	0.0050	**	17	**	n	11	n	
Ethanol	ND	0.10	Ħ	10	0	н	11	н	IC, LQ
Ethyl tert-butyl ether	ND	0.0050	**	19	**	н	11	n	
Ethylbenzene	ND	0.0050	**	10	- #	ti .	19	н	
Methyl tert-butyl ether	ND	0.0050	#	10	•	n	10	19	
Toluene	ND	0.0050	#	Ħ	*	н	19	И	
Xylenes (total)	ND	0.0050	**	11	Ħ	19	11	ij	
Gasoline Range Organics (C4-C12)	ND	0.10	T	17	17	ly .	19	н	
Surrogate: 1,2-Dichloroethane-d4		99 %	60-	125		"	"	"	
SB-8 19.5-20' (MOG0344-14) Soil	Sampled: 07/13/05 14:	05 Rece	ived: 07/1	3/05 18:30	6				
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G15003	07/15/05	07/15/05	EPA 8260B	
Benzene	ND	0.0050	**	**	v	19	11	n	
tert-Butyl alcohol	ND	0.020	**	**	**	n	11	n	
Di-isopropyl ether	ND	0.0050	**	•	v	И	u	н	
1,2-Dibromoethane (EDB)	ND	0.0050	**	**	#	н	ø	и	
1,2-Dichloroethane	ND	0.0050	17	11	4	н	11	n	
Ethanol	ND	0.10	11	**	"	н	40	19	IC, LQ
Ethyl tert-butyl ether	ND	0.0050	11	11	*	н	41	19	
Ethylbenzene	ND	0.0050	π	**	**	н	**		
Methyl tert-butyl ether	0.066	0.0050	**	W.	н	*	**	H	
Toluene	ND	0.0050	*	v	D	19	#	H	
Xylenes (total)	ND	0.0050	**	**	D	н	**	"	
Gasoline Range Organics (C4-C12)	ND	0.10	17	*	"	19			
Surrogate: 1,2-Dichloroethane-d4		101 %	60-	125	н	п	"	#	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-8 20.5-21' (MOG0344-15) Soil	Sampled: 07/13/05	13:15 Rece	ived: 07/1	13/05 18:3	6				
tert-Amyl methyl ether	ND	0.0050	mg/kg	1	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	0.0050	n	19	19	н	"	н	
tert-Butyl alcohol	ND	0.020	ri	5 ‡	16	н		н	
Di-isopropyl ether	ND	0.0050	н	10	11	Ħ		н	
1,2-Dibromoethane (EDB)	ND	0.0050		17	n	Ħ		н	
1,2-Dichloroethane	ND	0.0050	н	11	"	п	•	н	
Ethanol	ND	0.10	н	19	и	н	**	u	
Ethyl tert-butyl ether	ND	0.0050	н	В	II	н	W	n	
Ethylbenzene	ND	0.0050	41	#	н	н	w	n	
Methyl tert-butyl ether	0.022	0.0050	Ħ	11	11	H	U	н	
Toluene	ND	0.0050	н	19	Ħ	#	v	н	
Xylenes (total)	ND	0.0050	н	и	11	41	10	н	
Gasoline Range Organics (C4-C12)	ND	0.10	**	и	н	n		п	
Surrogate: 1,2-Dichloroethane-d4		97 %	60-	125	"	ı	"	#	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5H01022 - EPA 3050B / EPA 6	010B									
Blank (5H01022-BLK1)				Prepared:	08/01/05	Analyzed	l: 08/02/05			
Lead	ND	5.0	mg/kg							
Laboratory Control Sample (5H01022-B5	S1)			Prepared:	08/01/05	Analyzed	l: 08/02/05			
Lead	49.3	5.0	mg/kg	50.0		99	75-120			
Matrix Spike (5H01022-MS1)	Source: M	OG1012-01		Prepared:	08/01/05	Analyzed	l: 08/02/05			
Lead	59.7	5.0	mg/kg	50.0	14	91	75-120	· ·		
Matrix Spike Dup (5H01022-MSD1)	Source: M	OG1012-01		Prepared:	08/01/05	Analyzed	l: 08/02/05			
Lead	58.6	5.0	mg/kg	50.0	14	89	75-120	2	20	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RFD	RPD Limit	Notes
Batch 5G14003 - EPA 5030B P/T / EP/	\ 8260B								<u></u>	
Blank (5G14003-BLK1)				Prepared &	& Analyze	:d: 07/14/0)5			
tert-Amyl methyl ether	ND	0.0050	mg/kg	.1						
Benzene	ND	0.0050	11							
tert-Butyl alcohol	ND	0.020	n							
Di-isopropyl ether	ND	0.0050	*							
1,2-Dibromoethane (EDB)	ND	0.0050	**							
1,2-Dichloroethane	ND	0.0050	**							
Ethanol	ND	0.10	4							
Ethyl tert-butyl ether	ND	0.0050	tt							
Ethylbenzene	ND	0.0050	н							
Methyl tert-butyl ether	ND	0.0050	н							
Toluene	ND	0.0050	H							
Xylenes (total)	ND	0.0050	H							
Gasoline Range Organics (C4-C12)	ND	0.10	н							
Surrogate: 1,2-Dichloroethane-d4	0.00424		11	0.00500		85	60-125			
Laboratory Control Sample (5G14003-BS1)			Prepared &	& Analyze	:d: 07/14/0)5			
tert-Amyl methyl ether	0.0109	0.0050	mg/kg	0.0100		109	80-130			
Benzene	0.00982	0.0050	11	0.0100		98	65-125			
tert-Butyl alcohol	0.0491	0.020	11	0.0500		98	80-165			
Di-isopropyl ether	0.0104	0.0050	11	0.0100		104	85-115			
1,2-Dibromoethane (EDB)	0.0108	0.0050	**	0.0100		108	85-130			
1,2-Dichloroethane	0.0122	0.0050	**	0.0100		122	63-124			
Ethano l	0.220	0.10	n	0.200		110	35-150			
Ethyl tert-butyl ether	0.0105	0.0050	**	0.0100		105	80-125			
Ethylbenzene	0.0116	0.0050	н	0.0100		116	80-135			
Methyl tert-butyl ether	0.0111	0.0050	**	0.0100		111	75-115			
Toluene	0.0113	0.0050	**	0.0100		113	85-125			
Xylenes (total)	0.0356	0.0050	**	0.0300		119	80-140			
Surrogate: 1,2-Dichloroethane-d4	0.00497		rr	0.00500		99	60-125			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

A t. a	Den B	Reporting		Spike	Source	A/DEC	%REC	DDD	RPD	37-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G14003 - EPA 5030B P/T	/EPA 8260B									
Laboratory Control Sample (5G1406	3-BS2)			Prepared &	& Analyze	d: 07/14/	05			
Benzene	0.00482	0.0050	mg/kg	0.00608	-	79	65-125			
Ethylbenzene	0.00829	0.0050	TP.	0.00784		106	80-135			
Methyl tert-butyl ether	0.00874	0.0050	**	0.00960		91	75-115			
Toluene	0.0325	0.0050	#	0.0329		99	85-125			
Xylenes (total)	0.0405	0.0050	**	0.0385		105	80-140			
Gasoline Range Organics (C4-C12)	0.378	0.10	77	0.440		86	53-126			
Surrogate: 1,2-Dichloroethane-d4	0.00487		n	0.00500		97	60-125			
Laboratory Control Sample Dup (5G	(14003-BSD1)			Prepared &	& Analyze	d: 07/14/	05			
tert-Arnyl methyl ether	0.0110	0.0050	mg/kg	0.0100		110	80-130	0.9	25	
Benzene	0.0102	0.0050	#	0.0100		102	65-125	4	20	
tert-Butyl alcohol	0.0498	0.020	**	0.0500		100	80-165	1	25	
Di-isopropyl ether	0.0107	0.0050	**	0.0100		107	85-115	3	20	
1,2-Dibromoethane (EDB)	0.0108	0.0050	**	0.0100		108	85-130	0	15	
1,2-Dichloroethane	0.0125	0.0050	**	0.0100		125	63-124	2	25	L
Ethanol	0.215	0.10	**	0.200		108	35-150	2	40	
Ethyl tert-butyl ether	0.0108	0.0050	#	0.0100		108	80-125	3	25	
Ethylbenzene	0.0117	0.0050	*1	0.0100		117	80-135	0.9	20	
Methyl tert-butyl ether	0.0116	0.0050	"	0.0100		116	75-115	4	35	Þ
Toluene	0.0106	0.0050	n	0.0100		106	85-125	6	15	
Xylenes (total)	0.0357	0.0050	. "	0.0300		119	80-140	0.3	20	
Surrogate: 1,2-Dichloroethane-d4	0.00504		н	0.00500		101	60-125			
Laboratory Control Sample Dup (5G	(14003-BSD2)			Prepared &	& Analyze	d: 07/14/	05			
Benzene	0.00535	0.0050	mg/kg	0.00608		88	65-125	10	20	
Ethylbenzene	0.00876	0.0050	н	0.00784		112	80-135	6	20	
Methyl tert-butyl ether	0.00868	0.0050	п	0.00960		90	75-115	0.7	35	
Toluene	0.0319	0.0050	n	0.0329		97	85-125	2	15	
Xylenes (total)	0.0426	0.0050	н	0.0385		111	80-140	5	20	
Gasoline Range Organics (C4-C12)	0.387	0.10	н	0.440		88	53-126	2	25	
Surrogate: 1,2-Dichloroethane-d4	0.00413		H	0.00500		83	60-125			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G15003 - EPA 5030B P/T	' / EPA 8260B									
Blank (5G15003-BLK1)				Prepared &	& Analyze	:d: 07/15/0)5			
tert-Amyl methyl ether	ND	0.0050	mg/kg							
Benzene	ND	0.0050	"							
tert-Butyl alcohol	ND	0.020	•							
Di-isopropyl ether	ND	0.0050								
1,2-Dibromoethane (EDB)	ND	0.0050	Ħ							
1,2-Dichloroethane	ND	0.0050	H							
Ethanol	ND	0.10	н							10
Ethyl tert-butyl ether	ND	0.0050	н							
Ethylbenzene	ND	0.0050	п							
Methyl tert-butyl ether	ND	0.0050	и							
Toluene	ND	0.0050	и							
Xylenes (total)	ND	0.0050	н					•		
Gasoline Range Organics (C4-C12)	ND	0.10	11							
Surrogate: 1,2-Dichloroethane-d4	0.00439		H	0.00500		88	60-125			
Laboratory Control Sample (5G1500	13-BS1)			Prepared &	& Analyze	:d: 07/15/0)5			
tert-Amyl methyl ether	0.0106	0.0050	mg/kg	0.0100	-	106	80-130			
Benzene	0.0100	0.0050	#	0.0100		100	65-125			
tert-Butyl alcohol	0.0489	0.020	н	0.0500		98	80-165			
Di-isopropyl ether	0.0102	0.0050	w	0.0100		102	85-115			
1,2-Dibromoethane (EDB)	0.0105	0.0050	. "	0.0100		105	85-130			
1,2-Dichloroethane	0.0110	0.0050	U	0.0100		110	63-124			
Ethanol	0.353	0.10	n	0.200		176	35-150			IC
Ethyl tert-butyl ether	0.0103	0.0050	n	0.0100		103	80-125			
Ethylbenzene	0.0116	0.0050	**	0.0100		116	80-135			
Methyl tert-butyl ether	0.0101	0.0050	н	0.0100		101	75-115			
Toluene	0.0113	0.0050	н	0.0100		113	85-125			
Xylenes (total)	0.0364	0.0050	n	0.0300		121	80-140			
Surrogate: 1,2-Dichloroethane-d4	0.00450		,,	0.00500		90	60-125			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G15003 - EPA 5030B P/T	/ EPA 8260B									
Laboratory Control Sample (5G1500	3-BS2)			Prepared 4	& Analyze	:d: 07/15/	05			
Benzene	0.00514	0.0050	mg/kg	0.00608		85	65-125			
Ethylbenzene	0.00852	0.0050	n	0.00784		109	80-135			
Methyl tert-butyl ether	0.00974	0.0050	**	0.00960		101	75-115			·
Toluene	0.0339	0.0050	н	0.0329		103	85-125			
Xylenes (total)	0.0413	0.0050	н	0.0385		107	80-140			
Gasoline Range Organics (C4-C12)	0.395	0.10	•	0.440		90	53-126			
Surrogate: 1,2-Dichloroethane-d4	0.00520		*	0.00500		104	60-125			
Laboratory Control Sample Dup (5G	(15003-BSD1)			Prepared &	& Analyze	:d: 07/15/	05			
tert-Amyl methyl ether	0.0104	0.0050	mg/kg	0.0100		104	80-130	2	25	
Benzene	0.00995	0.0050	#	0.0100		100	65-125	0.5	20	
tert-Butyl alcohol	0.0488	0.020	#	0.0500		98	80-165	0.2	25	
Di-isopropyl ether	0.0102	0.0050	11	0.0100		102	85-115	0	20	
1,2-Dibromoethane (EDB)	0.0104	0.0050	77	0.0100		104	85-130	1	15	
1,2-Dichloroethane	0.0112	0.0050	π	0.0100		112	63-124	2	25	
Ethanol	0.267	0.10	**	0.200		134	35-150	28	40	10
Ethyl tert-butyl ether	0.0101	0.0050	H	0.0100		101	80-125	2	25	
Ethylbenzene	0.0113	0.0050	*	0.0100		113	80-135	3	20	
Methyl tert-butyl ether	0.0101	0.0050		0.0100		101	75-115	0	35	
Toluene	0.0116	0.0050	π	0.0100		116	85-125	3	15	
Xylenes (total)	0.0344	0.0050	18	0.0300		115	80-140	6	20	
Surrogate: 1,2-Dichloroethane-d4	0.00464		"	0.00500		93	60-125		· · · · · · · · · · · · · · · · · · ·	
Matrix Spike (5G15003-MS1)	Source: M	OG0344-08		Prepared &	& Analyze	d: 07/15/0	05			
Benzene	0.00499	0.0050	mg/kg	0.00608	ND	82	65-125			
Ethylbenzene	0.00692	0.0050	Ħ	0.00784	ND	88	80-135			
Methyl tert-butyl ether	0.00947	0.0050	Ħ	0.00960	ND	99	75-115			
Toluene	0.0282	0.0050		0.0329	0.00022	85	85-125			
Xylenes (total)	0.0329	0.0050	п	0.0385	ND	85	80-140			
Gasoline Range Organics (C4-C12)	0.215	0.10	н	0.440	0.041	40	53-126			LN
Surrogate: 1,2-Dichloroethane-d4	0.00497		#	0.00500		99	60-125		· · · · · · · · · · · · · · · · · · ·	

URS Corporation [Arco]Project:BP Heritage #11102, Oakland, CAMOG03441333 Broadway, Suite 800Project Number:G07T9-0024Reported:Oakland CA, 94612Project Manager:Lynelle Onishi08/03/05 12:10

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G15003 - EPA 5030B P/T / I	EPA 8260B									
Matrix Spike Dup (5G15003-MSD1)	Source: M	OG0344-08		Prepared	& Analyze	:d: 07/15/	05			
Benzene	0.00505	0.0050	mg/kg	0.00608	ND	83	65-125	1	20	
Ethylbenzene	0.00732	0.0050	и	0.00784	ND	93	80-135	6	20	
Methyl tert-butyl ether	0.00977	0.0050	**	0.00960	ND	102	75-115	3	35	
Toluene	0.0303	0.0050		0.0329	0.00022	91	85-125	7	15	
Xylenes (total)	0.0348	0.0050	11	0.0385	ND	90	80-140	6	20	
Gasoline Range Organics (C4-C12)	0.230	0.10	**	0.440	0.041	43	53-126	7	25	LN
Surrogate: 1,2-Dichloroethane-d4	0.00510		"	0.00500		102	60-125			
Batch 5G25003 - EPA 5030B P/T / E	EPA 8260B									
Blank (5G25003-BLK1)				Prepared	& Analyze	d: 07/25/	05			
tert-Amyl methyl ether	ND	0.0050	mg/kg							
Benzene	ND	0.0050	•							
tert-Butyl alcohol	ND	0.020	**							
Di-isopropyl ether	ND	0.0050	Ħ							
1,2-Dibromoethane (EDB)	ND	0.0050	н							
1,2-Dichloroethane	ND	0.0050	н							
Ethanol	ND	0.10	н							
Ethyl tert-butyl ether	ND	0.0050	н							
Ethylbenzene	ND	0.0050	19							
Methyl tert-butyl ether	ND	0.0050	19							
Toluene	ND	0.0050	19							
Xylenes (total)	ND	0.0050	17							
Gasoline Range Organics (C4-C12)	ND	0.10	"							
Surrogate: 1,2-Dichloroethane-d4	0.00525		"	0.00500		105	60-125			,
Blank (5G25003-BLK2)				Prepared:	07/25/05	Analyzed	: 07/26/05			
tert-Amyl methyl ether	ND	0.0050	mg/kg							
Benzene	ND	0.0050	"							
tert-Butyl alcohol	ND	0.020	"							
Di-isopropyl ether	ND	0.0050	H							
1,2-Dibromoethane (EDB)	ND	0.0050	Ħ							
1,2-Dichloroethane	ND	0.0050	H							
Ethanol	ND	0.10	н							
Ethyl tert-butyl ether	ND	0.0050	н							
Ethylbenzene	ND	0.0050	н							
Methyl tert-butyl ether	ND	0.0050	19							

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G25003 - EPA 5030B P/T	/ EPA 8260B									•
Blank (5G25003-BLK2)				Prepared:	07/25/05	Analyzed	l: 07/26/05			
Toluene	ND	0.0050	mg/kg	•						
Xylenes (total)	ND	0.0050	H							
Gasoline Range Organics (C4-C12)	ND	0.10	Ħ							
Surrogate: 1,2-Dichloroethane-d4	0.00484		"	0.00500		97	60-125			
Laboratory Control Sample (5G2500	3-BS1)			Prepared &	& Analyz	ed: 07/25/	05			
ert-Amyl methyl ether	0.00993	0.0050	mg/kg	0.0100	_	99	80-130			
Benzene	0.0100	0.0050	11	0.0100		100	65-125			
ert-Butyl alcohol	0.0587	0.020	10	0.0500		117	80-165			
Di-isopropyl eth er	0.0106	0.0050		0.0100		106	85-115			
,2-Dibromoethane (EDB)	0.0103	0.0050	11	0.0100		103	85-130			
,2-Dichloroethane	0.00965	0.0050	"	0.0100		97	63-124			
thanol	0.188	0.10	n	0.200		94	35-150			
thyl tert-butyl ether	0.00961	0.0050	4	0.0100		96	80-125			
thylbenzene	0.0107	0.0050	**	0.0100		107	80-135			
lethyl tert-butyl ether	0.00893	0.0050	#	0.0100		89	75-115			
oluene	0.0108	0.0050	Ħ	0.0100		108	85-125			
Kylenes (total)	0.0341	0.0050	н	0.0300		114	80-140			
urrogate: 1,2-Dichloroethane-d4	0.00426		"	0.00500		85	60-125			
aboratory Control Sample (5G2500	3-BS2)			Prepared &	& Analyze	ed: 07/25/	05			
Benzene	0.00538	0.0050	mg/kg	0.00608		88	65-125			
thylbenzene	0.00771	0.0050	Ħ	0.00784		98	80-135			
Aethyl tert-butyl ether	0.00857	0.0050	**	0.00960		89	75-11 5			
oluene	0.0342	0.0050	Ħ	0.0329		104	85-125			
(ylenes (total)	0.0382	0.0050	71	0.0385		99	80-140			
Fasoline Range Organics (C4-C12)	0.443	0.10	*1	0.440		101	53-126			
Surrogate: 1,2-Dichloroethane-d4	0.00501		" "	0.00500		100	60-125			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0344 Reported: 08/03/05 12:10

	·	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G25003 - EPA 5030B P/T	/ EPA 8260B									
Laboratory Control Sample Dup (5G	(25003-BSD1)			Prepared:	07/25/05	Analyzed	i: 07/26/05			
tert-Amyl methyl ether	0.00952	0.0050	mg/kg	0.0100		95	80-130	4	25	
Benzene	0.00988	0.0050	h	0.0100		99	65-125	1	20	
tert-Butyl alcohol	0.0577	0.020	н	0.0500		115	80-165	2	25	
Di-isopropyl ether	0.0102	0.0050	n	0.0100		102	85-115	4	20	
1,2-Dibromoethane (EDB)	0.0103	0.0050	n	0.0100		103	85-130	0	15	
1,2-Dichloroethane	0.00862	0.0050	B	0.0100		86	63-124	11	25	
Ethanol	0.211	0.10	н	0.200		106	35-150	12	40	
Ethyl tert-butyl ether	0.00926	0.0050	H	0.0100		93	80-125	4	25	
Ethylbenzene	0.0101	0.0050	n	0.0100		101	80-135	6	20	
Methyl tert-butyl ether	0.00836	0.0050	п	0.0100		84	75-115	7	35	
Toluene	0.0102	0.0050	н	0.0100		102	85-125	6	15	
Xylenes (total)	0.0323	0.0050	н	0.0300		108	80-140	5	20	
Surrogate: 1,2-Dichloroethane-d4	0.00386		"	0.00500		77	60-125			
Laboratory Control Sample Dup (50	(25003-BSD2)			Prepared:	07/25/05	Analyzed	l: 07/26/05			
Benzene	0.00532	0.0050	mg/kg	0.00608		88	65-125	1	20	
Ethylbenzene	0.00778	0.0050	н	0.00784		99	80-135	0.9	20	
Methyl tert-butyl ether	0.00749	0.0050	н	0.00960		78	75-115	13	35	
Toluene	0.0338	0.0050	n	0.0329		103	85-125	1	15	
Xylenes (total)	0.0391	0.0050	ri .	0.0385		102	80-140	2	20	
Gasoline Range Organics (C4-C12)	0.421	0.10	Ħ	0.440		96	53-126	5	25	
Surrogate: 1,2-Dichloroethane-d4	0.00404		"	0.00500		81	60-125			
Matrix Spike (5G25003-MS1)	Source: M	IOG0491-01		Prepared a	& Analyze	d: 07/25/	05		·	
Benzene	0.00495	0.0050	mg/kg	0.00608	0.0013	60	65-125			Lì
Ethylbenzene	0.00520	0.0050	Ħ	0.00784	0.00031	62	80-135			Lì
Methyl tert-butyl ether	0.0586	0.0050	н	0.00960	0.069	NR	7 5 -115			Lì
Toluene	0.0281	0.0050	н	0.0329	0.0090	58	85-125			LI
Xylenes (total)	0.0251	0.0050	n	0.0385	0.0010	63	80-140			LI
Gasoline Range Organics (C4-C12)	0.282	0.10	H	0.440	0.10	41	53-126			Lì
Surrogate: 1,2-Dichloroethane-d4	0.00521		н	0.00500		104	60-125			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0344 Reported: 08/03/05 12:10

Analyte	Result	Reporting Limit	Units	Spīke Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G25003 - EPA 5030B P/T / E	PA 8260B									
Matrix Spike Dup (5G25003-MSD1)	Source: M	IOG0491-01		Prepared	& Analyze	d: 07/25/	05			
Benzene	0.00482	0.0050	mg/kg	0.00608	0.0013	58	65-125	3	20	LN
Ethylbenzene	0.00487	0.0050	10	0.00784	0.00031	58	80-135	7	20	LN
Methyl tert-butyl ether	0.0513	0.0050	D	0.00960	0.069	NR	75-115	13	35	LN
Toluene	0.0274	0.0050	**	0.0329	0.0090	56	85-125	3	15	LN
Xylenes (total)	0.0236	0.0050	**	0.0385	0.0010	59	80-140	6	20	LN
Gasoline Range Organics (C4-C12)	0.262	0.10	**	0.440	0.10	37	53-126	7	25	LN
Surrogate: 1,2-Dichloroethane-d4	0.00513		**	0.00500		103	60-125			

URS Corporation [Arco]	Project:BP Heritage #11102, Oakland, CA	MOG0344
1333 Broadway, Suite 800	Project Number:G07T9-0024	Reported:
Oakland CA, 94612	Project Manager: Lynelle Onishi	08/03/05 12:10

Notes and Definitions

LQ	LCS recovery above method control limits.
LN	MS and/or MSD below acceptance limits. See Blank Spike(LCS).
IC	Calib. verif. is within method limits but outside contract limits
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR.	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Aplease fax copy of received COC to Lynelle Onishi at 510-874-3268 Chain of Custody Record

Project Name: BP BU/AR Region/Enfos Segment:

Former BP Site 11102 Soil/Groundwater Investigation BP/Americas/WestCoast/Retail/WCBU/CA/Cenj

State or Lead Regulatory Agency:

Alameda County Environmental Health

Requested Due Date (mm/dd/yy):

Standard TAT

On-site Time: 5:00 Off-site Time: 5:00 pm Sky Conditions: C Jeen Meteorological Events: none Wind Speed: ,5-10 Minh Direction:

Lab Name:	Sequoia Analytical				BP/AR Facility No	١,:			11102	<u>:</u>							Cor	ısult	ant/(Contr	actor	;	UR	s				
Address:	885 Jarvis Drive				BP/AR Facility Ad	dres	3:	100	Mac/	Arthu	r Avo	, Oa	kian	i, C	A			iress					way.	, Suit	e 800			
	Morgan Hill, CA 95037				Site Lat/Long:																		A 94					<u> </u>
Lab PM:	Lisa Race				California Global I	D N).;	***	a #-								Cor	sult	ant/C	Contr	actor	Proj	ect N	0.:	3841	87349		
Tele/Fax:	408-782-8156/408-782-6308				Bnfos Project No.:			G07	T9-00								Coi	sult	ant/C	Contr	actor	PM:	:		Lyne	elle Or	nishi	
BP/AR PM Contact:					Provision or RCO	- (ci	rele or	ne)	2	260	P /-	roy	11:51	01			Tel	/Fa	KC:	51	0-87	4-17	58/5	10-87	74-326	68		
Address: 4 Centerpois	nte Dr.				Phase/WBS:	_	Asses		nt																t EDF			
La Palma, CA					Sub Phase/Task:		- Anal																			orp.cc	<u>m</u>	
Tele/Fax: 714-670-53				V	Cost Element:	05	Subc			****	~						-				est C	oast	Glob	gi-Alli	iance			
Lab Bottle Order No	D:			Matrix			<u> </u>	P	reser	vativ	e				1	Requ	este	d A	naly	sis			\mathbb{Z}	111	~~	4.19)
Item No.	Sample Description	Тіте	Date	Soil/Solid Water/Liquid Air	Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNO3	HCI	Methanol		GRO (8260)	BTEX (8260)	Fuel Add. (8260):	MTBE, 1,2-DCA,	DIPE, ETBE	Ethanol (8260)	Total Lead			•		_	nple P	639 Point L Comm	at/Long	and
1	SB-6 5-5.5'	9:15	7/15/05	X	(خ	ì	X						X	X	X	X	X	X	JX		Т		₩		2 (5 <i>p</i> e	1	
2	56-6 R.S-9'	9:41	T		w	li					\top	ľ	\Box	7	T	ī	Ī	ì	1	1	1	1-						
3	SB-6 19.5-20'	9:48	1	╟╁┼╌┤╌		H				┪	十	┰	+	╁	+	\vdash	╁	╁	++	+	╫	╁╌		,	,	772	200	
4	SB-6 27.5-28'	10:31	-		639 by	1	$\ \cdot\ $		\dashv			┨	71	H	╫	H	╁┼	Н	H	-	╫	-	┦┸	se/	<u>ک</u> د	<u>J</u>		
5	SB-6 16.5-17'	10:30	-		65	lt	$\ \cdot\ $		\vdash	┪	十	┪	++	H	+	╁	 	H	╁╉	+-	╂┈	-	╢	—		<u></u>		
6	58-6 14.5-15"	9:29		╟╀┾╼┼━			H					┰╫	\forall	H	+	H	╫	H	++		╁	+	╫					
7	SB-6 9.5-10'	9:24			04 07	ľ	$\ \cdot\ $			┪	┰	┰╂	╁	H	+	╫	+	Н	╁╋	╁	╫	+	╫					
8	58-8 5-5.5'	12:40		╟┼┼╌┼╌	.of	H			\vdash	_	┰	╼╢	₩	H	+	╫	H	╫	╫	+	╂╌	+	╢					
9	5B-8 7-7.5'	13:00	 	╟┼├╌┼	on .	1	$\ \cdot\ $		- 		┰	┪	╫	╫	╁	H	H	Н	╫	╁	+-	\vdash	╂	—				
10	58-8 11-11.51	13:30			lo	-	V					╅	₩	₩	+	V	1	H	11	/	╁	╁	╢	—				
Sampler's Name:	John M'Cain		<u>''</u>	نــاتا	Religi	urleb.	لحيبها	/ A DE	llation			╬	Da	-		me	1 4	1 3	<u> </u>			<u> </u>	<u></u>					<u> </u>
Sampler's Company					1	7			KE.			-	413				⊨	J.L.	7				Affili		9/0		Date	Time
Shipment Date:	7/13/05				100 A.	. <u>L</u>	ay		/ <u>/~</u>	<u>. </u>						<u>"心</u> 产途		_			Ž.			Jap p			7/3	4/2
Shipment Method:	Courier			· · · · · · · · · · · · · · · · · · ·	7							┰╬	4.5.	2	- 0		r			_	ተሊ						1/12	18131
Shipment Tracking												┪	_	╢			┢											ļ
Special Instructions:	: Analyze soil sample with highe	st GRO	concent	ration for T	otal Lead (Pb).					-				الجبيب			·				······						<u> </u>	
	alysis and result are >50ppm, run \$7																••									7		-
ustody Seals In Pl				Temp Blan		$\overline{}$					er Te						pt_	8,2	e _{f //}	<u>c)</u>		Tri	ip Bla	ank Y	es V	No	Viel	7
•	Distribution: White Copy - Lat	oratory	/ Yello	w Copy - B	P/Atlantic Richfie	ld C	o. / I	ink	Copy	7 - C	onsu	ltant	t/Co	ntrac	ctor											10/1/04		/

Hease fax copy of received COC to L Lynelle Onishi at 510-874-3268

Chain of Custody Record

On-site Time: 9

Direction:

Project Name:

Former BP Site 11102 Soil/Groundwater Investigation

BP BU/AR Region/Enfos Segment:

BP/Americas/WesiCoast/Retail/WCBU/CA/Cent

State or Lead Regulatory Agency:

Alameda County Environmental Health

Requested Due Date (mm/dd/yy):

Standard TAT

Wind Speed:

Off-site Time: Temp: Sky Conditions: Meteorological Events: none

5-10mDh

				_																								
Lab Name:	Sequoia Analytical					BP/AR Facility No).:			1110	2							C	nsul	tant/	Соп	tract	or:	U.	RS			
Address:	885 Jarvis Drive					BP/AR Facility Ad	ldres	s:	100	0 Мас	Arth	iur Av	e, Oa	aklar	ıd, C	Α			dres		_			_	y, Suite	800		
	Morgan Hill, CA 95037					Site Lat/Long:																			94612			
Lab PM:	Lisa Race					California Global I	DN	J.;							•			C	nsul	tant/			or Pro			3848734	19	
Tele/Fax:	408-782-8156/408-782-6308					Enfos Project No.:			G0	7T9-0	024												or PM			Lyneile	Onishi	
BP/AR PM Contact:	Kyle Christic					Provision or RCOi	► (ci	rcle e	ne)		RU	OP-	Pro	יעם	ኔ ነ	$\overline{\wedge}$		Te	le/Fa	x:	5	10-8	74-1	758/	510-874			
Address: 4 Centerpoi	nte Dr.					Phase/WBS:	01-	Asse	ssm	ent								Re	port	Турк		_			vel 1 &			
La Palma, CA						Sub Phase/Task:	03	- Ana	ılytic	cal																rscom.	com	
Tele/Fax: 714-670-53						Cost Element:	05	Sub	cont	tracted	i Cos	sta		_											bal Alija			
Lab Bottle Order No):			M	ttrix					Ртеве	rvati	lve					Req	uest	ed A	naly	ais				/14	<i>.</i>		7
Item No.	Sample Description	Time	Date	Soil/Solid	Water/Liquid Air	Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNO,	HCI	Methanol		GRO (8260)	BTEX (8260)	Fuel Add. (8260):	MTBE, 1,2-DCA,	DIPE, ETBE	(09C8) louethe	Total Lead					\	ole Poini	344 Lat/Long : ments	and
i j	SB-8 9.5-10°	12:50	1/13/0	X		Ø)	T	X		1				X	X	区	X	JΣ	77	V	1	T	╗	7	5500	مرگ	ecial	
l <u>2</u>	58-8 14.5-15'	/2:55	1			n	ī	П						П	1	Т	ÍΤ	11	T	1	†	十					7000	
13		14:00		П		13	lī			T	Г			1			Ħ	††	H	\Box	╁	+	╀	╁╴		7	7043	
14	# A	14:05			—	14	I	什		十			7	H	1	╫	Ħ	$\dagger \dagger$	++	╫	\dagger	╅		╢	be!	<u>اسم</u>		
15		13:15	V	V	1	ir	ı	V	1	\vdash	Г	+	-	V	1/	1	┧	1	1.	1	+	╁	+	╢				
16	Lab blank Temp blank		7/3/05	-	(╟╌	╟─		1	X	1	┪	Ť	Ψ		Ť	+	+	╁	+	+	+	1	told		· · · · · · · · · · · · · · · · · · ·	
17	Trip blank	16:15	7/3/05	!—	Х	14	1	又	1	十		╁┯╁	1				┢	╁	╂-	╁	┪	+	+		told			
18		1040	713/03	H	\top		F	۳	╁┈	\vdash			╗	-1		_	十	+	╁	╁	╁	+	╬	╣	TON			
19				$\ \cdot \ $			-	╟		+	-	╁╌┼		\dashv	-		┝	╁	╁	╬	╁	╬	+	╢				
710				\vdash	\top		╟─	┢	┢╌	╁╾	\vdash		╗	\dashv	_	_	┢	╄	╁	╁╴	+	┿	╬	╂				
Sampler's Name:	John Main			<u> </u>		/Reling	<u>l</u>	ll	/AN	elintic	<u></u>	<u> </u>		Da		70	lme	╁		<u>Щ</u>	ᆜ	<u> </u>	<u>. </u>			·····	7	
Sampler's Company						01/2	7			UK		 	-	7/				╬		_	Ac	cepte 7	a By	/ Atmi	iation	1 40	Date	Time
Shipment Date:	7-13-05	-				111	<u> </u>	bar			-7		-	//	44	14	<u>کار</u> کی:	}	۲			7,2~	7	*	- 4112	720	7/13	400
Shipment Method:	courier			-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	per	-01	100			~	-	10	-3-	10	٠.	╊		4			/	<u>~`</u>			7/13/	18:36
Shipment Tracking	No:							٠					┪			一		1-				·						
Special Instructions:	Analyze soil sample with highe	st GRO	concent	ration	for T	otal Lead (Pb).						7						<u>-1</u>							· · · · · · · · · · · · · · · · · · ·			<u> </u>
If running total Pb and	alysis and result are >50ppm, run ST	LC, if S	ILC resu	lts are	>5ppi	m, run TCLP							_					_			_			_				
Custody Seals In Pl	ace Yes No 🗸			Tem	p Blar	k Yes No v	_				Coc	oler T	emp	eratı	ire c	n R	ecei	pt	8.2	·F/	Ø		Τ'n	in Ri	lank Ye	e t/ N	10 J (6)	S)
· . · · · ·	Distribution: White Copy - Lab	oratory	/ Yellov	v Cor	y - Bl	P/Atlantic Richfie	ld C	o. /]	Pinl	с Сор	y - (Consu	iltan	t/Co	ntra	ctor		-			_					v. 4 10/1/)

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: 1 URS			DATE REC'D AT LAB	4.	7./13	105	٠.				ory Purposes?
· · · · · · · · · · · · · · · · · · ·			TIME REC'D AT LAB:		18:	36		1			water yes/NOD
REC. BY (PRINT): Erica	icci :		DATE LOGGED IN:	Ŕ		12-14-E	2				TER YES/NO
WORKORDER: 1 MOG 63	7.7				/For (lients recu	iring pr	eservatio	ori check	s at reci	eipt, document here 🗘)
						PRESERV		SAMPI			REMARKS:
CIRCLE THE APPROPRIATE RESPONSE	LAB ! DA	* I	CLIENT ID		TAINER RIPTION		рH		IX SAM	• 1	CONDITION (ETC.)
	SAMPLE#	#						8		3/05	
1. Custody Seal(s) Present / Ausent	101	4	SB-6 5-5.5".	plast	c core	<u> </u>			. 7	7107	
Intact / Broken*	62	1	3B-6 8.5-91		 		-	 		1	
2. Chain-of-Custody Pesent / Absent*	537		38-6 19.5-201		 			 	- 	1	
3: Fraffic Reports or	69		SB-C 17.5-28'	ļ <u> </u>	<u> </u>		 	╂──├─		1	
Packing List: Present / Absent	br.		SB-C 16:5-17	<u> </u>	 		 			 - 	
4. Airbill: Airbill / Sticker	. 04		SB-6 14.5-15'	<u> </u>	ļ	<u> </u>	ļ		- 		
Present / Absent	67		53-6 9.5-10	<u> </u>		}	 -	 			
5. Airbill #:	2g.	•	5B-8 5-5.5'		<u> </u>					+	
6. Sample Labels: Present / Abserit	09		'SB-8 7-7.5'		<u> </u>	 	} -	- 			
7. Sample IDs: : Listed / Not Listed	10	<u> </u>	SB-8 11-11.5*	<u> </u>	<u> </u>	 	 - -		<u> </u>		
on Chain-of-Custody	11		58-8 9.5-10'	ļ	<u> </u>	ļ	 		- 		
8. Sample Condition: Intact / Broken* /	12		58-8 14.5-15'		<u></u>		 	}	∸-		
Leaking*	13	1	88-8 17.5-18				1-1-	 	 		
9. Does information on chain-of-custody,	14		8B-8 19.5 - 20'	<u> </u>	<u> </u>		 		_	<u> </u>	
itraffic reports and sample labels.	14		88-8 20.5-21		<u>/</u>	<u> </u>	\ 	<u> </u>		. -	
> agree? Yes / No*	14	/	+emp blank		voa · 1	HC1	 				
10. Sample received within	17.1	· . B	trip blank	4	VD9 . 2	<u>- - </u>	14	_ k			
hold time? Yes / No*											
11. Adequate sample volume							<u> </u>	<u>'</u>			
received? Yes / No*			· ·		<u> </u>	<u> </u>	 			· ·	
12. Proper Preservatives					<u> </u>		<u></u>	_			
	7.	***				1210	12		_	• •	· · · · · · · · · · · · · · · · · · ·
used? (Yas / No* 13 / Trip Blank / Temp Blank Received?				1.	· _	10	1_				
		*****	•	1		<u> </u>		<u> </u>		•	
	· · · ·		•								
(a) · · · · · · · · · · · · · · · · · · ·					•						
					•						<u> </u>
(Acceptance range for samples requiring thermal pros.)			-	_			Ŀ				
**Exception (If any): METALS / DFF ON ICE											
or Problem COC					ACED A	OATTAC	H BEC		RESO	UTION	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT

SRL Revision 6 Replaces Rev 5 (06/07/04) Ellective 07/13/04

4 August, 2005

Lynelle Onishi URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11102, Oakland, CA

chobad

Work Order: MOG0378

Enclosed are the results of analyses for samples received by the laboratory on 07/14/05 19:07. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamshid Kekobad Project Manager

CA ELAP Certificate #1210

URS Corporation [Arco]	Project:BP Heritage #11102, Oakland, CA	MOG0378
1333 Broadway, Suite 800	Project Number: G07T9-0024	Reported:
Oakland CA, 94612	Project Manager:Lynelle Onishi	08/04/05 15:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-4 (5-5.5')	MOG0378-01	Soil	07/14/05 07:40	07/14/05 19:07
SB-4 (9.5-10')	MOG0378-02	Soil	07/14/05 07:50	07/14/05 19:07
SB-4 (14.5-15')	MOG0378-03	Soil	07/14/05 07:52	07/14/05 19:07
SB-4 (19.5-20')	MOG0378-04	Soil	07/14/05 08:05	07/14/05 19:07
B-4 (20-20.5')	MOG0378-05	Soil	07/14/05 08:15	07/14/05 19:07
SB-4 (25-25.5')	MOG0378-06	Soil	07/14/05 08:25	07/14/05 19:07
(B-4 (29-29.5')	MOG0378-07	Soil	07/14/05 08:45	07/14/05 19:07
ab Blank	MOG0378-08	Water	07/14/05 14:55	07/14/05 19:07
B-7 (2-2.5')	MOG0378-09	Soil	07/14/05 12:20	07/14/05 19:07
B-7 (5-5.5')	MOG0378-10	Soil	07/14/05 12:35	07/14/05 19:07
B-7 (9.5-10')	MOG0378-11	Soil	07/14/05 12:45	07/14/05 19:07
B-7 (14.5-15')	MOG0378-12	Soil	07/14/05 12:52	07/14/05 19:07
B-7 (19.5-20')	MOG0378-13	Soil	07/14/05 12:57	07/14/05 19:07
B-7 (25.5-26')	MOG0378-14	Soil	07/14/05 13:05	07/14/05 19:07
B-7 (28.5-29')	MOG0378-15	Soil	07/14/05 13:25	07/14/05 19:07
B-7 (30.5-31')	MOG0378-16	Soil	07/14/05 13:20	07/14/05 19:07
B-5 (5-5.5')	MOG0378-17	Soil	07/14/05 10:02	07/14/05 19:07
B-5 (9.5-10')	MOG0378-18	Soil	07/14/05 10:10	07/14/05 19:07
B-5 (14.5-15')	MOG0378-19	Soil	07/14/05 10:16	07/14/05 19:07
B-5 (19.5-20')	MOG0378-20	Soil	07/14/05 10:20	07/14/05 19:07
BB-5 (29-29.5)	MOG0378-21	Soil	07/14/05 10:50	07/14/05 19:07

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Total Metals by EPA 6000/7000 Series Methods

Sequoia Analytical - Morgan Hill

	Re	porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (2-2.5') (MOG0378-09) Soil	Sampled: 07/14/05 12:20	Recei	ved: 07/1	4/05 19:07					
Lead	15	5.0	mg/kg	1	5H01022	08/01/05	08/02/05	EPA 6010B	

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

	Re	porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4 (5-5.5') (MOG0378-01) Soil	Sampled: 07/14/05 07:40	Recei	ved: 07/1	4/05 19:07					
tert-Amyl methyl ether	ND	5.0	ug/kg	1	5G23006	07/23/05	07/23/05	EPA 8260B	
Benzene	ND	5.0	n n	н	**	II .	19	19	
tert-Butyl alcohol	ND	20	n	н		II .	19	n	
Di-isopropyl ether	ND	5.0	Ħ	н	91	ц	19	Н	
1,2-Dibromoethane (EDB)	ND	5.0	H	n	**	н	н	н	
1,2-Dichloroethane	ND	5.0	н	н	**	Ħ	Н	u	
Ethanol	ND	100	ěl .	н	"	ŧŧ	н	н	
Ethyl tert-butyl ether	ND	5.0	#1	H	**	**	H	ıt	
Ethylbenzene	ND	5.0	•1	*	**	tr	n	II .	
Methyl tert-butyl ether	ND	5.0	**	11	**	H	II	n	
Toluene	ND	5.0	**		11	**	н	H	
Xylenes (total)	ND	5.0	**	**	10	**	Ш	II .	
Gasoline Range Organics (C4-C12)	ND	100	•	"	•	**	II	н	
Surrogate: 1,2-Dichloroethane-d4		113 %	60-	125	#	N	v	"	
SB-4 (9.5-10') (MOG0378-02) Soil	Sampled: 07/14/05 07:50	Rece	ived: 07/	14/05 19:0	7				
tert-Amyl methyl ether	ND	25	ug/kg	5	5G23006	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	25	•	**	n	**	н	н	
tert-Butyl alcohol	ND	100	н	**	•	**	н	67	
Di-isopropyl ether	ND	25	H	"	"	*	н	**	
1,2-Dibromoethane (EDB)	ND	25	H	16	**	π	tt.	N	
1,2-Dichloroethane	ND	25	•	#	•	п	Ħ	et	
Ethanol	ND	500	**	H	*	H	"	**	
Ethyl tert-butyl ether	ND	25	**	**	**	*	**	**	
Ethylbenzene	ND	25	**		**	H.	*	**	
Methyl tert-butyl ether	370	25	10	**	*	**	w	•	
Toluene	ND	25	**	17	18	*	*	**	
Xylenes (total)	ND	25	11	*	Ħ	**	*		
Gasoline Range Organics (C4-C12)	ND	500		**		**		*	
Surrogate: 1,2-Dichloroethane-d4		104 %	60-	125	**	н	п	r	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 (14.5-15') (MOG0378-03) Soil	Sampled: 07/14/05	07:52 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	0.025	mg/kg	1	5G23010	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	0.050	н	17	**	11	**	11	
tert-Butyl alcohol	ND	5.0	н	#	n	11	**	ti .	
Di-isopropyl ether	ND	0.025	ш	•	"	"	11	11	
1,2-Dibromoethane (EDB)	ND	0.025	н	**	II .	"	**	"	
1,2-Dichloroethane	ND	0.025	н	*	н	•	10	**	
Ethanol .	ND	10	n	**	н		**	**	
Ethyl tert-butyl ether	ND	0.025	11	#	н	•	#	11	
Ethylbenzene	ND	0.050	19	**	н	**		#	
Methyl tert-butyl ether	1.1	0.025	и	. "	**	**	#	**	
Toluene	ND	0.050	и	**	н	**	n	Ħ	
Xylenes (total)	ND	0.050	19	11	#	*		н	
Gasoline Range Organics (C4-C12)	3.5	2.5	11	**	**		н	**	
Surrogate: 1,2-Dichloroethane-d4		92 %	60-	25	"	rr	"	"	
SB-4 (19.5-20') (MOG0378-04) Soil	Sampled: 07/14/05	08:05 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	0.025	mg/kg	1	5G23010	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	0.050		**		**	W.	n	
tert-Butyl alcohol	ND	5.0	**			**	**		
,	עאו	J.U		14	**				
Di-isopropyl ether	ND	0.025	**	17	*	**	*	••	
· · · · · · · · · · · · · · · · · · ·						49 97	ët H	**	
Di-isopropyl ether	ND	0.025	**	18	•			60 60	
Di-isopropyl ether 1,2-Dibromoethane (EDB)	ND ND	0.025 0.025	**	1† 7†	"	41	at .		
Di-isopropyl ether 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Ethanol	ND ND ND	0.025 0.025 0.025	स स	1† 37 37	"	67 67	at et	tr	
Di-isopropyl ether 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Ethanol Ethyl tert-butyl ether	ND ND ND ND	0.025 0.025 0.025 10	स स	16 39 16 76	** ** **	67 67	20 27 29	ft tf	
Di-isopropyl ether 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Ethanol Ethyl tert-butyl ether Ethylbenzene	ND ND ND ND ND	0.025 0.025 0.025 10 0.025	97 97 91 99	18 39 30 10 10	** ** ** ** ** ** **	17 17 17	# # #	tr tt	
Di-isopropyl ether 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Ethanol Ethyl tert-butyl ether Ethylbenzene Methyl tert-butyl ether	ND ND ND ND ND ND	0.025 0.025 0.025 10 0.025 0.050	17 17 11 29 14	18 39 30 10 10	11 11 11 11 11	11 11 11	# # # # # # # # # # # # # # # # # # #	" " " "	
Di-isopropyl ether 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Ethanol Ethyl tert-butyl ether Ethylbenzene Methyl tert-butyl ether Toluene	ND ND ND ND ND ND	0.025 0.025 0.025 10 0.025 0.050 0.025	# # # # # # # # # # # # # # # # # # #	11 77 77 77 77 47 44	** ** ** ** ** ** ** ** **	11 tt	# # # #	17 17 18	
Di-isopropyl ether 1,2-Dibromoethane (EDB) 1,2-Dichloroethane	ND ND ND ND ND ND 2.4 ND	0.025 0.025 0.025 10 0.025 0.050 0.025	11 11 11 11 11 11 11 11 11 11 11 11 11	17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	11 11 11 11 11	11 H	е е е е	17 17 18 18	PV

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 (20-20.5') (MOG0378-05) Soil	Sampled: 07/14/05	08:15 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	0.12	mg/kg	5	5G23010	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	0.25	U	п	Ħ	*	"	•	
tert-Butyl alcohol	ND	25	II .	n n	**	**	"	41	
Di-isopropyl ether	ND	0.12	и	Ħ	**	*	*	#	
1,2-Dibromoethane (EDB)	ND	0.12	н	u	**	**	•	4	
1,2-Dichloroethane	ND	0.12	п	H	**	**	*	tt.	
Ethanol	ND	50	п	п	rr .	Ħ	#	Ħ	
Ethyl tert-butyl ether	ND	0.12	11	II .	п	11	**	Ħ	
Ethylbenzene	ND	0.25	н	II .	n	#	"	**	
Methyl tert-butyl ether	3.4	0.12	п	II.	н	*	*		
Toluene	ND	0.25	н	п	**	*	*	4	
Xylenes (total)	ND	0.25	п	п	н	M	n	**	
Gasoline Range Organics (C4-C12)	ND	12	п	н	n	#	*	Ħ	
Surrogate: 1,2-Dichloroethane-d4		95 %	60	125	u	n	"	n	
SB-4 (25-25.5') (MOG0378-06) Soil	Sampled: 07/14/05	08:25 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	0.25	mg/kg	10	5G23010	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	0.50	н	н	n	19	H	ti .	
tert-Butyl alcohol	ND	50	п	н	n	**	*	Ħ	
Di-isopropyl ether	ND	0.25	И	H	n	11	*	e	
1,2-Dibromoethane (EDB)	ND	0.25	н	н	n	19	п	ŧı	
1,2-Dichloroethane	ND	0.25	U	n	Œ	**		н	
Ethanol	ND	100	17	н	**	**	*	н	
Ethyl tert-butyl ether	ND	0.25	11	11	u .	*	*	ŧ	
Ethylbenzene	ND	0.50	19	**	н	#	11	H	
Methyl tert-butyl ether	3.5	0.25	и	U	19	Ħ	11	íi	
Toluene	ND	0.50	и		a.	•	10	н	
Xylenes (total)	ND	0.50	н	n	n .	**	**	Ħ	
Gasoline Range Organics (C4-C12)	ND	25	14	**	н	n	•	М	

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4 (29-29.5') (MOG0378-07) Soil	Sampled: 07/14/05 08:	45 Rec	eived: 07	/14/05 19:	07	-		-	
tert-Amyl methyl ether	ND	0.25	mg/kg	10	5G23010	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	0.50	н	If	et	*	**	n	
tert-Butyl alcohol	ND	50	н	п	**	**	38	•	
Di-isopropyl ether	ND	0.25	н	п	"	**	18		
1,2-Dibromoethane (EDB)	ND	0.25	II .	н	**	**	11	**	
1,2-Dichloroethane	ND	0.25	н	*	17	**	11	*	
Ethanol	ND	100	и	*	**	**	11	"	
Ethyl tert-butyl ether	ND	0.25	И	**	18	**	11	π	
Ethylbenzene	ND	0.50	n	"	**	**	41	**	
Methyl tert-butyl ether	3.7	0.25	н	•	**	**	**	*	
Toluene	ND	0.50	п	4	11	**	#	*	
Xylenes (total)	ND	0.50	II .	**	19	**	**	**	
Gasoline Range Organics (C4-C12)	ND	25	11	"	и	**	11	**	
Surrogate: 1,2-Dichloroethane-d4		92 %	60	125	"	"	"	"	
SB-7 (2-2.5') (MOG0378-09) Soil S	Sampled: 07/14/05 12:20	Recei	ved: 07/14	1/05 19:07					
tert-Amyl methyl ether	ND	0.50	mg/kg	20	5G27015	07/27/05	07/28/05	EPA 8260B	
Benzene	ND	1.0	u	**	Ħ	н	n	**	
tert-Butyl alcohol	ND	100	**	"	**	"	n	•	
Di-isopropyl ether	ND	0.50	"		#	н	н	**	
1,2-Dibromoethane (EDB)	ND	0.50	н	n	**	н	Н	**	
1,2-Dichloroethane	ND	0.50	н	н	Ħ	н	n	II.	
Ethanol	ND	200	н	н	**	н	n	11	
Ethyl tert-butyl ether	ND	0.50	*1	н	**	"	n	10	
Ethylbenzene	3.0	1.0	**	п	Ħ	97	11	u	
Methyl tert-butyl ether	ND	0.50	**	н	•	н	ıı	**	
Toluene	ND	1.0	**	n	**	н	п	**	
Xylenes (total)	3.0	1.0	**	ıı .	*	**	II	"	
Gasoline Range Organics (C4-C12)	1300	50			**	"		11	
Surrogate: 1,2-Dichloroethane-d4		101 %	60-	175	"	"	.,	#	

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

				1,101 8					
Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-7 (5-5.5') (MOG0378-10) Soil	Sampled: 07/14/05 12:35	Received: 07/14/05 19:07							
tert-Amyl methyl ether	ND	0.50	mg/kg	20	5G27015	07/27/05	07/28/05	EPA 8260B	
Benzene	ND	1.0	11	*	N	п	#	n	
tert-Butyl alcohol	ND	100	n	•	H	II	и	н	
Di-isopropyl ether	ND	0.50	н			н	"	n	
1,2-Dibromoethane (EDB)	ND	0.50	и	**	*	II .	10	н	
1,2-Dichloroethane	ND	0.50	u	**	**	н	19	н	
Ethanol	ND	200	n	"	W)	η	**	Ħ	
Ethyl tert-butyl ether	ND	0.50	11	` "	п	n	17	II	
Ethylbenzene	2.4	1.0	11	"	**	11	"	и	
Methyl tert-butyl ether	ND	0.50	Ħ	**	H	IJ	"	н	
Toluene	ND	1.0	H		H	н	*	н	
Xylenes (total)	3.9	1.0	н	#	**	#1	*	II .	
Gasoline Range Organics (C4-C12)		50	11	•	**	**	*	н	
Surrogate: 1,2-Dichloroethane-d4		95 %	60	125	"	"	"	"	
SB-7 (9.5-10') (MOG0378-11) Soil	Sampled: 07/14/05 12:45	Rece	eived: 07/1	14/05 19:0	7				
tert-Amyl methyl ether	ND	1.2	mg/kg	50	5G27015	07/27/05	07/28/05	EPA 8260B	
Benzene	ND	2.5	Н	•	**	"	*	н	
tert-Butyl alcohol	ND	250	n	"	*	H	*	II .	
Di-isopropyl ether	ND	1.2	И	**		H	*	11	
1,2-Dibromoethane (EDB)	ND	1.2	II	Ħ	R	н	n	п	
1,2-Dichloroethane	ND	1.2	H	n	и	н	**	n	
Ethanol	ND	500	n	*	n	н	**	ш	
Ethyl tert-butyl ether	ND	1.2	H	*	н	н	*	н	
Ethylbenzene	ND	2.5	Н	Ħ	и	н	н	н	
Methyl tert-butyl ether	ND	1.2	Н	*	H	н	**	н	
Toluene	ND	2.5	11	**	H	н	*	11	
Xylenes (total)	ND	2.5	п	•	**	10	**	и	
Gasoline Range Organics (C4-C12)	340	120	п		**	**		н	
Surrogate: 1,2-Dichloroethane-d4		96 %	60	125	"	**	n	"	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 (14.5-15') (MOG0378-12) Soil	Sampled: 07/14/05	12:52 Rec	eived: 07	/14/05 19:	07			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
tert-Amyl methyl ether	ND	5.0	ug/kg	0.99	5G23006	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	5.0	19	**		**	**	**	
tert-Butyl alcohol	ND	20	*	78	**	**	Ħ	**	
Di-isopropyl ether	ND	5.0	17	**	,,	Ħ	"	Ħ	
1,2-Dibromoethane (EDB)	ND	5.0	m	17	"	m	"	R	
1,2-Dichloroethane	ND	5.0	**	**	**	**	**	H	
Ethanol	ND	99	19	**	#	**	#	н	
Ethyl tert-butyl ether	ND	5.0	79	##	**	**	*	tt	
Ethylbenzene	ND	5.0	**	**	**	*	н	**	
Methyl tert-butyl ether	ND	5.0	**	**	77	ч	n	n	
Toluene	ND	5.0		**	n	**	Ħ	n	
Xylenes (total)	ND	5.0	n	u	**	w	п	н	
Gasoline Range Organics (C4-C12)	110	99	**	H	n	n	11	н	
Surrogate: 1,2-Dichloroethane-d4		105 %	60-	125	"	n	11	"	
SB-7 (19.5-20') (MOG0378-13) Soil	Sampled: 07/14/05	12:57 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	5.0	ug/kg	0.99	5G23006	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	5.0	и.	н		n	"	n	
tert-Butyl alcohol	ND	20	н	H	11	11	n	и	
Di-isopropyl ether	ND	5.0	**	н	**	**	**	н	
1,2-Dibromoethane (EDB)	ND	5.0	н	ıı.		H	*	11	
1,2-Dichloroethane	ND	5.0	n	н		**	**	11	
Ethanol	ND	99	n	n	**	н	**	**	
Ethyl tert-butyl ether	ND	5.0	н	n		R	**	11	
Ethylbenzene	ND	5.0	н	п	"	н	п	**	
Methyl tert-butyl ether	ND	5.0	н	н	H	н	н	0	
Toluene	ND	5.0	ŧŧ	n	#	II .	н	**	
Xylenes (total)	ND	5.0	**	H	н	н	н	0	
Gasoline Range Organics (C4-C12)	ND	99	н	11	0	н	н	•	
Surrogate: 1,2-Dichloroethane-d4		112 %	60-	125	#	H	IJ	n	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager: Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B Secuoia Analytical - Morgan Hill

·		iola Alia	. y	1,1015					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 (25.5-26') (MOG0378-14) Soil	Sampled: 07/14/05	13:05 Rec	eived: 07	//14/05 19:	07				
ert-Amyl methyl ether	ND	5.0	ug/kg	0.99	5G23006	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	5.0	**	**	**	н	"	TT.	
ert-Butyl alcohol	ND	20	#	**	H	н		**	
Di-isopropyl ether	ND	5.0	**	**	**	н	н	0	
1,2-Dibromoethane (EDB)	ND	5.0	**	**	**	н	н	"	
1,2-Dichloroethane	ND	5.0	**	**	**	tt	19	**	
Ethanol	ND	99		**	11	n	11	at "	
Ethyl tert-butyl ether	ND	5.0	0		m	Ħ	p	**	
Ethylbenzene	ND	5.0	**	**	•	11	11	**	
Methyl tert-butyl ether	ND	5.0	**	**	•	**	и	m .	
Toluene	ND	5.0	**	**	*	M	н	w	
Xylenes (total)	ND	5.0	11	**	н	H	н	u .	
Gasoline Range Organics (C4-C12)	ND	99	**	77	•	**	и	R.	
Surrogate: 1,2-Dichloroethane-d4		112 %	60-	125	"	"	"	"	
SB-7 (28.5-29') (MOG0378-15) Soil	Sampled: 07/14/05	13:25 Rec	eived: 07	//14/05 19:	07				
tert-Amyl methyl ether	ND	5.0	ug/kg	1.01	5G23006	07/23/05	07/24/05	EPA 8260B	
Benzene	ND	5.0	"	Ħ	•	tt	n	a	
tert-Butyl alcohol	ND	20	11	11	**	**	И	**	
Di-isopropyl ether	ND	5.0	**	и	**	**	н	n	
1,2-Dibromoethane (EDB)	ND	5.0	14	*	**	**	H	**	
1,2-Dichloroethane	ND	5.0	19	#	n	**	n	**	
Ethanol	ND	100	10	**	••	Ħ	п	"	
Ethyl tert-butyl ether	ND	5.0	19	*	••	H	н	**	
Ethylbenzene	ND	5.0	10	**		**	н	**	
Methyl tert-butyl ether	ND	5.0	19	**	**	н	н	II.	
Toluene	ND	5.0	н	**	•	*	н	P	
Xylenes (total)	ND	5.0		Ħ	11	**	н	n	
Gasoline Range Organics (C4-C12)	ND	100	14	*	"	**	н	#	
Surrogate: 1,2-Dichloroethane-d4	** ** *** *** *** *** *** *** *** ***	118 %	60-	125	"	n	"	"	

Project:BP Heritage #11102, Oakland, CA

Project Number:G07T9-0024
Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-7 (30.5-31') (MOG0378-16) Soil	Sampled: 07/14/05 13:2	20 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	5.0	ug/kg	1.01	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	5.0	ц	11	**		н	*	
tert-Butyl alcohol	ND	20	H	11		•	44	n	
Di-isopropyl ether	ND	5.0	н	н	**	*	**	Ħ	
1,2-Dibromoethane (EDB)	ND	5.0	H	n	**	*	10	#	
1,2-Dichloroethane	ND	5.0	Ħ	11	**	н	**	41	
Ethanol	ND	100	п	"	Ħ	11	*	19	
Ethyl tert-butyl ether	ND	5.0	II	17	n	IT	#	**	
Ethylbenzene	ND	5.0	II .	я	н	19	"	**	
Methyl tert-butyl ether	ND	5.0	н	**	н	"		•	
Toluene	ND	5.0	n	**	H	**	H	•	
Xylenes (total)	ND	5.0	н	*	н	16	н	R	
Gasoline Range Organics (C4-C12)	ND	100	н	**	u	*	н	et	
Surrogate: 1,2-Dichloroethane-d4		85 %	60-	125	#	н	"	n	
SB-5 (5-5.5') (MOG0378-17) Soil	Sampled: 07/14/05 10:02	Receiv	ved: 07/1	1/05 19:07					
tert-Amyl methyl ether	ND	5.0	ug/kg	0.99	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	5.0	11	n	W	Ħ	H	n	
tert-Butyl alcohol	ND	20	11	n	n	tt	ft	н	
Di-isopropyl ether	ND	5.0	**	n	n	ti	11	ii .	
1,2-Dibromoethane (EDB)	ND	5.0	11	#		fl	n	11	
1,2-Dichloroethane	ND	5.0	••	#	II.	н	н	И	
Ethanol	ND	99	**	**	"	п	**	49	
Ethyl tert-butyl ether	ND	5.0	**	"	10	н	"	14	
Ethylbenzene	ND	5.0	н	11	**	н	**	40	
Methyl tert-butyl ether	ND	5.0	**	**	**	н	le .	**	
Toluene	ND	5.0	**		ŧr	11	35	•	
Xylenes (total)	ND	5.0	n	**	**	11	*	**	
Gasoline Range Organics (C4-C12)	ND	99	N	n	**			**	

Project:BP Heritage #11102, Oakland, CA

Project Number:G07T9-0024
Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

	Rep	orting							
Analyte	-	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5 (9.5-10') (MOG0378-18) Soil	Sampled: 07/14/05 10:10	Rece	ived: 07/	14/05 19:0	7				
tert-Amyl methyl ether	ND	5.0	ug/kg	1	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	5.0	н	Ħ	0	"	Ħ	11	
tert-Butyl alcohol	ND	20	н	**	0	H	**	19	
Di-isopropyl ether	ND	5.0	n	**		#	"	19	
1,2-Dibromoethane (EDB)	ND	5.0	н	*	**	•	#	n	
1,2-Dichloroethane	ND	5.0	U	•	**	*	н	и	
Ethanol	ND	100	п	#	#	**	#	н	
Ethyl tert-butyl ether	ND	5.0	н	Ħ	78	**	**	H	
Ethylbenzene	ND	5.0	н	H	**	**	**	H	
Methyl tert-butyl ether	ND	5.0	н	**	•	n	**	11	
Toluene	ND	5.0	н	*	**	•	**	10	
Xylenes (total)	ND	5.0	н	**	**	**	**	19	
Gasoline Range Organics (C4-C12)	150	100	0	*	Ħ	"	91	· n	
Surrogate: 1,2-Dichloroethane-d4		82 %	60	125	11	"	н	"	
SB-5 (14.5-15') (MOG0378-19) Soil	Sampled: 07/14/05 10:1	6 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	5.0	ug/kg	1	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	5.0	н	Ħ	**	#1	4	III	
tert-Butyl alcohol	ND	20	n n	**	**	••	4	W	
Di-isopropyl ether	ND	5.0	11		**	*	**	11	
1,2-Dibromoethane (EDB)	ND	5.0	11	n	**	**	#1	10	
1,2-Dichloroethane	ND	5.0	н	**	w	Ħ	#1	19	
Ethanol	ND	100	н	*	**	Ħ	11	10	
Ethyl tert-butyl ether	ND	5.0	u		**	77	"	H+	
Ethylbenzene	ND	5.0	n	**	**	et	**	74	
Methyl tert-butyl ether	ND	5.0	11	*	**	v	**	11	
Toluene	ND	5.0	н	*	w	*	**	11	
Xylenes (total)	ND	5.0	н	**	*	*	**	•	
Gasoline Range Organics (C4-C12)		100	н		n	77	*	**	
Surrogate: 1,2-Dichloroethane-d4		97 %	60	125	н	#	H	п	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-5 (19.5-20') (MOG0378-20) Soil	Sampled: 07/14/05	10:20 Rec	eived: 07	/14/05 19:	07				
tert-Amyl methyl ether	ND	0.025	mg/kg	1	5G27015	07/27/05	07/28/05	EPA 8260B	
Benzene	ND	0.050	**	**	**	н	*	H	
tert-Butyl alcohol	ND	5.0	**	#*	11	11		er	
Di-isopropyl ether	ND	0.025	**	"	**	19	#	u	
1,2-Dibromoethane (EDB)	ND	0.025	Ħ	**	**	17	•	n	
1,2-Dichloroethane	ND	0.025	#	,,	"	**	"	н	
Ethanol	ND	10	#		u	**	н	н	
Ethyl tert-butyl ether	ND	0.025	H	*		**	*	н	
Ethylbenzene	0.14	0.050	N	*	#	ŧI	*	н	
Methyl tert-butyl ether	ND	0.025	m	Ħ	#	e	*	п	
Toluene	ND	0.050	19		77	**	11	n	
Xylenes (total)	ND	0.050	11	Ħ	H	P	10	и	
Gasoline Range Organics (C4-C12)	61	2.5	**	H	ø	н	19	и	
Surrogate: 1,2-Dichloroethane-d4		98 %	60-	125	r	"	Ħ	"	
SB-5 (29-29.5) (MOG0378-21) Soil	Sampled: 07/14/05	10:50 Rec	eived: 07/	14/05 19:0	7				
tert-Amyl methyl ether	ND	5.0	ug/kg	1	5G25003	07/25/05	07/25/05	EPA 8260B	
Benzene	ND	5.0		0	#	н	P	•	
tert-Butyl alcohol	53	20		**	n	н	N	•	
Di-isopropyl ether	ND	5.0	**	**	**	a	н	•	
1,2-Dibromoethane (EDB)	ND	5.0	н	**	**	н	*	•	
1,2-Dichloroethane	ND	5.0	41	**	11	n	H	ŧŧ	
Ethanol	ND	100	**	**	**	μ	н	#	
Ethyl tert-butyl ether	ND	5,0	n	**	"	n n	H	п	
Ethylbenzene	ND	5.0	n	н	•	н		и	
Methyl tert-butyl ether	65	5.0	н	н	н	**	н	II .	
Toluene	ND	5.0	*1	н	•	п	н	11	
Xylenes (total)	ND	5.0	н	н	p	41	II	11	
Gasoline Range Organics (C4-C12)	100	100	н	н	н	n	н	**	

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5H01022 - EPA 3050B / EPA 6	010B									
Blank (5H01022-BLK1)				Prepared:	08/01/05	Analyzed	1: 08/02/05			
Lead	ND	5.0	mg/kg							
Laboratory Control Sample (5H01022-BS	81)			Prepared:	08/01/05	Analyzed	1: 08/02/05			
Lead	49.3	5.0	mg/kg	50.0		99	75-120			
Matrix Spike (5H01022-MS1)	Source: M	OG1012-01		Prepared:	08/01/05	Analyzed	1: 08/02/05			
Lead	59.7	5.0	mg/kg	50.0	14	91	75-120			
Matrix Spike Dup (5H01022-MSD1)	Source: M	OG1012-01		Prepared:	08/01/05	Analyzed	1: 08/02/05			
Lead	58.6	5.0	mg/kg	50.0	14	89	75-120	2	20	

Project:BP Heritage #11102, Oakland, CA Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Amaluta	Th	Reporting	r 1. '-	Spike	Source	6/DEC	%REC	בים מ	RPD	X T=¢
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G23006 - EPA 5030B P/T /	EPA 8260B									
Blank (5G23006-BLK1)				Prepared a	& Analyze	d: 07/23/	05			
tert-Amyl methyl ether	ND	5.0	ug/kg							
Benzene	ND	5.0	n							
tert-Butyl alcohol	ND	20	н							
Di-isopropyl ether	ND	5.0	н							
1,2-Dibromoethane (EDB)	ND	5.0	н							
1,2-Dichloroethane	ND	5.0								
Ethanol	ND	100	и							
Ethyl tert-butyl ether	ND	5.0	и							
Ethylbenzene	ND	5.0	11							
Methyl tert-butyl ether	ND	5.0								
Toluene	ND	5.0	н							
Xylenes (total)	ND	5.0	n							
Gasoline Range Organics (C4-C12)	ND	100	н							
Surrogate: 1,2-Dichloroethane-d4	5.50		"	5.00		110	60-125			
Blank (5G23006-BLK2)				Prepared .	& Analyze	ed: 07/23/	05			
tert-Amyl methyl ether	ND	5.0	ug/kg							
Benzene	ND	5.0								
tert-Butyl alcohol	ND	20	п							
Di-isopropyl ether	ND	5.0	п							
1,2-Dibromoethane (EDB)	ND	5.0	п							
1,2-Dichloroethane	ND	5.0								
Ethanol	ND	100	п							
Ethyl tert-butyl ether	ND	5.0	u							
Ethylbenzene	ND	5.0	n							
Methyl tert-butyl ether	ND	5.0								
Toluene	ND	5.0	n n							
Xylenes (total)	ND	5.0	a							
Gasoline Range Organics (C4-C12)	ND	100	u							
Surrogate: 1,2-Dichloroethane-d4	5.65		n	5.00		113	60-125			
-										

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G23006 - EPA 5030B P/T /	EPA 8260B									
Laboratory Control Sample (5G23006	5-BS1)			Prepared a	& Analyze	ed: 07/23/0	05			
tert-Amyl methyl ether	10.2	5.0	ug/kg	10.0		102	80-130			
Benzene	10.1	5.0	**	10.0		101	65-125			
tert-Butyl alcohol	53.4	20		50.0		107	80-165			
Di-isopropyl ether	10.7	5.0	m	10.0		107	85-115			
1,2-Dibromoethane (EDB)	10.7	5.0	*	10.0		107	85-130			
1,2-Dichloroethane	11.9	5.0	*	10.0		119	63-124			
Ethanol	187	100	Ħ	200		94	35-150			
Ethyl tert-butyl ether	9.90	5.0	n	10.0		99	80-125			
Ethylbenzene	10.7	5.0	**	10.0		107	80-135			
Methyl tert-butyl ether	10.2	5.0	π	10.0		102	75-115			
Toluene	10.8	5.0	n	10.0		108	85-125			
Xylenes (total)	33.3	5.0	11	30.0		111	80-140			
Surrogate: 1,2-Dichloroethane-d4	5.23		н	5.00		105	60-125			
Laboratory Control Sample (5G23006	5-BS2)			Prepared of	& Analyze	ed: 07/23/	05			
Benzene	5.58	5.0	ug/kg	6.08		92	65-125			
Ethylbenzene	7.88	5.0	10	7.84		101	80-135			
Methyl tert-butyl ether	9.78	5.0	10	9.60		102	75-115			
Toluene	33.2	5.0	10	32.9		101	85-125			
Xylenes (total)	39.1	5.0	19	38.5		102	80-140			
Gasoline Range Organics (C4-C12)	415	100	16	440		94	53-126			
Surrogate: 1,2-Dichloroethane-d4	5.74		#	5.00		115	60-125			
Laboratory Control Sample Dup (5G2	23006-BSD1)			Prepared a	& Analyza	ed: 07/23/0	05			
tert-Amyl methyl ether	9.86	5.0	ug/kg	10.0		99	80-130	3	25	
Benzene	10.1	5.0	н	10.0		101	65-125	0	20	
tert-Butyl alcohol	53.1	20	II .	50.0		106	80-165	0.6	25	
Di-isopropyl ether	10.8	5.0	н	10.0		108	85-115	0.9	20	
1,2-Dibromoethane (EDB)	11.0	5.0	н	10.0		110	85-130	3	15	
1,2-Dichloroethane	12.0	5.0	11	10.0		120	63-124	0.8	25	
Ethanol	203	100	п	200		102	35-150	8	40	
Ethyl tert-butyl ether	9.94	5.0	0	10.0		99	80-125	0.4	25	
Ethylbenzene	10.2	5.0	п	10.0		102	80-135	5	20	
Methyl tert-butyl ether	10.1	5.0	n	10.0		10 1	75-115	1	35	
Toluene	9.54	5.0	ęı	10.0		95	85-125	12	15	
Xylenes (total)	32.6	5.0	ŧI	30.0		109	80-140	2	20	

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		- Danie	OHIUS	Level	resuit	/orCEC	Lunus	NrD	CHIR	NOTES
Batch 5G23006 - EPA 5030B P/T / E	PA 8260B									
Laboratory Control Sample Dup (5G230	006-BSD1)	· <u>·</u> ·		Prepared &	& Analyzo	ed: 07/23/	05			
Surrogate: 1,2-Dichloroethane-d4	5.23		ug/kg	5.00		105	60-125			
Matrix Spike (5G23006-MS1)	Source: M	OG0378-01		Prepared:	07/23/05	Analyzed	l: 07/24/05			
Benzene	5.44	5.0	ug/kg	6.08	ND	89	65-125			
Ethylbenzene	7.10	5.0	4	7.84	ND	91	80-135			
Methyl tert-butyl ether	12.7	5.0	#	9.60	3.1	100	75-115			
Toluene	32.1	5.0	11	32.9	0.41	96	85-125			
Xylenes (total)	35.8	5.0	**	38.5	ND	93	80-140			
Gasoline Range Organics (C4-C12)	392	100	n	440	ND	89	53-126			
Surrogate: 1,2-Dichloroethane-d4	5.74		r	5.00		115	60-125			
Matrix Spike Dup (5G23006-MSD1)	Source: M	OG0378-01		Prepared:	07/23/05	Analyzed	l: 07/24/05			
Benzene	5.07	5.0	ug/kg	6.08	ND	83	65-125	7	20	
Ethylbenzene	6.74	5.0	**	7.84	ND	86	80-135	5	20	
Methyl tert-butyl ether	11.3	5.0	**	9.60	3.1	85	75-115	12	35	
Toluene	30.0	5.0	n	32.9	0.41	90	85-125	7	15	
Xylenes (total)	33.7	5.0	**	38.5	ND	88	80-140	6	20	
Gasoline Range Organics (C4-C12)	353	100	16	440	ND	80	53-126	10	25	
Surrogate: 1,2-Dichloroethane-d4	5.71		п	5.00		114	60-125		.,	
Batch 5G23010 - EPA 5030B/5035A	MeOH / EPA	8260B								
Blank (5G23010-BLK1)				Prepared:	07/23/05	Analyzed	l: 07/24/0 5			
tert-Amyl methyl ether	ND	0.025	mg/kg	<u> </u>						
Веплепе	ND	0.050	"							
tert-Butyl alcohol	ND	5.0	n							
Di-isopropyl ether	ND	0.025	н							
1,2-Dibromoethane (EDB)	ND	0.025	н							
1,2-Dichloroethane	ND	0.025	н							
Ethanol	ND	10	tt							
Ethyl tert-butyl ether	ND	0.025	n							
Ethylbenzene	ND	0.050	n							
Methyl tert-butyl ether	ND	0.025	п							
Toluene	ND	0.050	н							
Xylenes (total)	ND	0.050	n							
Gasoline Range Organics (C4-C12)	ND	2.5	ш							
Surrogate: 1,2-Dichloroethane-d4	0.00468		"	0.00500	• •	94	60-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Project:BP Heritage #11102, Oakland, CA

Project Number:G07T9-0024
Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G23010 - EPA 5030B/503	5A MeOH / EPA	8260B								
Laboratory Control Sample (5G2301	0-BS1)			Prepared:	07/23/05	Analyzed	: 07/24/05			
tert-Amyl methyl ether	0.462	0.025	mg/kg	0.500		92	80-130			
Benzene	0.485	0.050	**	0.500		97	65-125			
tert-Butyl alcohol	2.65	5.0	"	2.50		106	80-165			
Di-isopropyl ether	0.499	0.025		0.500		100	85-115			
1,2-Dibromoethane (EDB)	0.456	0.025	**	0.500		91	85-130			
1,2-Dichloroethane	0.482	0.025	**	0.500		96	63-124			
Ethanol	12.3	10	**	10.0		123	35-150			
Ethyl tert-butyl ether	0.453	0.025		0.500		91	80-125			
Ethylbenzene	0.546	0.050	10	0.500		109	80-135			
Methyl tert-butyl ether	0.449	0.025	••	0.500		90	75-115			
Foluene	0.520	0.050	**	0.500		104	85-125			
Xylenes (total)	1.69	0.050	•	1.50		113	80-140			
Surrogate: 1,2-Dichloroethane-d4	0.00494		· ·	0.00500		99	60-125			
Laboratory Control Sample (5G2301	0-BS2)		~.~	Prepared:	07/23/05	Analyzed	: 07/24/05			
Benzene	0.198	0.050	mg/kg	0.228		87	65-125			
Ethylbenzene	0.311	0.050	**	0.294		106	80-135			
Methyl tert-butyl ether	0.294	0.025	14	0.360		82	75-115			
l'oluene	1.25	0.050	**	1.23		102	85-125			
Xylenes (total)	1.57	0.050	11	1.44		109	80-140			
Gasoline Range Organics (C4-C12)	16.9	2.5	н	16.5		102	60-140			
Surrogate: 1,2-Dichloroethane-d4	0.00485		n	0.00500		97	60-125			
Laboratory Control Sample Dup (50	G23010-BSD1)			Prepared:	07/23/05	Analyzed	: 07/24/05			
tert-Amyl methyl ether	0.467	0.025	mg/kg	0.500		93	80-130	1	25	
Benzene	0.480	0.050	π	0.500		96	65-125	1	20	
tert-Butyl alcohol	2.85	5.0	π	2.50		114	80-165	7 .	25	
Di-isopropyl ether	0.490	0.025	R	0.500		98	85-115	2	20	
1,2-Dibromoethane (EDB)	0.457	0.025	+1	0.500		91	85-130	0.2	15	
1,2-Dichloroethane	0.470	0.025	•	0.500		94	63-124	3	25	
Ethanol	11.7	10	***	10.0		117	35-150	5	40	
Ethyl tert-butyl ether	0.450	0.025	*1	0.500		90	80-125	0.7	25	
Ethylbenzene	0.546	0.050	**	0.500		109	80-135	0	20	
Methyl tert-butyl ether	0.446	0.025	**	0.500		89	75-115	0.7	35	
Toluene	0.510	0.050	10	0.500		102	85-125	2	15	
Xylenes (total)	1.73	0.050	**	1.50		115	80-140	2	20	

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Project:BP Heritage #11102, Oakland, CA

Project Number: G07T9-0024 Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G23010 - EPA 5030B/503	5A MeOH / EPA	A 8260B								
Laboratory Control Sample Dup (5G	23010-BSD1)			Prepared:	07/23/05	Analyzed	: 07/24/05			
Surrogate: 1,2-Dichloroethane-d4	0.00470		mg/kg	0.00500		94	60-125			
Laboratory Control Sample Dup (5G	(23010-BSD2)			Prepared:	07/23/05	Analyzed	: 07/24/05			
Benzene	0.207	0.050	mg/kg	0.228		91	65-125	4	20	
Ethylbenzene	0.320	0.050	*	0.294		109	80-135	3	20	
Methyl tert-butyl ether	0.305	0.025	**	0.360		85	75-115	4	35	
Toluene	1.32	0.050	17	1.23		107	85-125	5	15	
Xylenes (total)	1.61	0.050	10	1.44		112	80-140	3	20	
Gasoline Range Organics (C4-C12)	17.8	2.5		16.5		108	60-140	5	25	
Surrogate: 1,2-Dichloroethane-d4	0.00498		"	0.00500		100	60-125			
Batch 5G25003 - EPA 5030B P/T	/EPA 8260B						· · · · · · · · · · · · · · · · · · ·	<u></u>		
Blank (5G25003-BLK1)				Prepared &	& Analyz	ed: 07/25/	05			
tert-Amyl methyl ether	ND	5.0	ug/kg							
Benzene	ND	5.0	н							
tert-Butyl alcohol	ND	20	п							
Di-isopropyl ether	ND	5.0	н							
1,2-Dibromoethane (EDB)	ND	5.0	н							
1,2-Dichloroethane	ND	5.0	н							
Ethanol	ND	100	*1							
Ethyl tert-butyl ether	ND	5.0	н							
Ethylbenzene	ND	5.0	**							

ND

ND

ND

ND

5.25

5.0

5.0

5.0

100

5.00

Methyl tert-butyl ether

Gasoline Range Organics (C4-C12)

Surrogate: 1,2-Dichloroethane-d4

Toluene

Xylenes (total)

60-125

Project:BP Heritage #11102, Oakland, CA Project Number: G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Datab 5025002 FD 1 5020D D/T /	ED 4 92/0D									
Batch 5G25003 - EPA 5030B P/T /	EPA 8200B			- ·	000000		. 05/06/05			
Blank (5G25003-BLK2)	ND			Prepared:	07/25/05	Anaiyzeo	1: 07/26/05			
tert-Amyl methyl ether		5.0	ug/kg "							
Benzene	ND	5.0	"							
tert-Butyl alcohol	ND	20	" "							
Di-isopropyl ether	ND	5.0	 a							
1,2-Dibromoethane (EDB)	ND	5.0								
1,2-Dichloroethane	ND	5.0	u 							
Ethanol	ND	100	н							
Ethyl tert-butyl ether	ND	5.0	н							
Ethylbenzene	ND	5.0								
Methyl tert-butyl ether	ND	5.0	н							
Toluene	ND	5.0	н							
Xylenes (total)	ND	5.0	И							
Gasoline Range Organics (C4-C12)	ND	100	.,						<u> </u>	
Surrogate: 1,2-Dichloroethane-d4	4.84		*	5.00		97	60-125			
Laboratory Control Sample (5G25003	-BS1)			Prepared	& Analyz	ed: 07/25/	05			
tert-Amyl methyl ether	9.93	5.0	ug/kg	10.0		99	80-130			
Benzene	10.0	5.0	11	10.0		100	65-125			
tert-Butyl alcohol	58.7	20	17	50.0		117	80-165			
Di-isopropyl ether	10.6	5.0	11	10.0		106	85-115			
1,2-Dibromoethane (EDB)	10.3	5.0	17	10.0		103	85-130			
1,2-Dichloroethane	9.65	5.0	D	10.0		96	63-124			
Ethanol	188	100	10	200		94	35-150			
Ethyl tert-butyl ether	9.61	5.0	**	10.0		96	80-125			
Ethylbenzene	10.7	5.0	#	10.0		107	80-135			
Methyl tert-butyl ether	8.93	5.0	**	10.0		89	75-115			
Toluene	10.8	5.0	**	10.0		108	85-125			
Xylenes (total)	34.1	5.0	n	30.0		114	80-140			
Surrogate: 1,2-Dichloroethane-d4	4.26		"	5.00		85	60-125			

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Ana ¹ yte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G25003 - EPA 5030B P/T /	EPA 8260B									
Laboratory Control Sample (5G25003	-BS2)			Prepared 4	& Analyze	:d: 07/25/0	05			
Benzene	5.38	5.0	ug/kg	6.08		88	65-125			
Ethylbenzene	7.71	5.0	11	7.84		98	80-135			
Methyl tert-butyl ether	8.57	5.0	"	9.60		89	75-115			
Toluene	34.2	5.0	"	32.9		104	85-125			
Xylenes (total)	38.2	5.0		38.5		99	80-140			
Gasoline Range Organics (C4-C12)	443	100	11	440		101	53-126			
Surrogate: 1,2-Dichloroethane-d4	5.01		rt	5.00		100	60-125			
Laboratory Control Sample Dup (5G2	5003-BSD1)			Prepared:	07/25/05	Analyzed	l: 07/26/05			
tert-Amyl methyl ether	9.52	5.0	ug/kg	10.0		95	80-130	4	25	
Benzene	9.88	5.0		10.0		99	65-125	1	20	
tert-Butyl alcohol	57 .7	20	*	50.0		115	80-165	2	25	
Di-isopropyl ether	. 10.2	5.0	"	10.0		102	85-115	4	20	
1,2-Dibromoethane (EDB)	10.3	5.0	**	10.0		103	85-130	0	15	
1,2-Dichloroethane	8.62	5.0	Ħ	10.0		86	63-124	11	25	
Ethanol	211	001	.,	200		106	35-150	12	40	
Ethyl tert-butyl ether	9.26	5.0	а	10.0		93	80-125	4	25	
Ethylbenzene	10.1	5.0	*	10.0		101	80-135	6	20	
Methyl tert-butyl ether	8.36	5.0	Ħ	10.0		84	75-115	7	35	
Toluene	10.2	5.0	11	10.0		102	85-125	6	15	
Xylenes (total)	32.3	5.0	71	30.0		108	80-140	5	20	
Surrogate: 1,2-Dichloroethane-d4	3.86		n	5.00		77	60-125			
Laboratory Control Sample Dup (5G2	(5003-BSD2)			Prepared:	07/25/05	Analyzed	1: 07/26/05	v_L		
Benzene	5.32	5.0	ug/kg	6.08		88	65-125	1	20	
Ethylbenzene	7.78	5.0	11	7.84		99	80-135	0.9	20	
Methyl tert-butyl ether	7.49	5.0	Ħ	9.60		78	75-115	13	35	
Foluene	33.8	5.0	н	32.9		103	85-125	1	15	
Xylenes (total)	39.1	5.0	11	38.5		102	80-140	2	20	
Gasoline Range Organics (C4-C12)	421	100	rt	440		96	53-126	5	25	
Surrogate: 1,2-Dichloroethane-d4	4.04		п	5.00		81	60-125			
-										

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Project Manager:Lynelle Onishi

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		Laut	Omo		100011	74			2	
Batch 5G25003 - EPA 5030B P/T / E		1000401 01		D1	0. Al	. 1. 07/25/		 		
Matrix Spike (5G25003-MS1)	4.95	IOG0491-01		6.08	& Analyza	60 60	05 65-125			Lì
Benzene	4.93 5.20	5,0 5.0	ug/kg	7.84	0.31	62	80-135			L:
Ethylbenzene Methyl tert-butyl ether	58,6	5.0	56	9.60	69	NR	75-115			Lì Lì
Toluene	28.1	5.0	11	32,9	9.0	58	85-125			L)
Xylenes (total)	25.1	5.0	19	38.5	1.0	63	80-140			Lì Lì
Gasoline Range Organics (C4-C12)	282	100	н	36.5 440	1.0	41	53-126			Lì
		100	, ,	5.00	100	104	60-125			
Surrogate: 1,2-Dichloroethane-d4	5.21									
Matrix Spike Dup (5G25003-MSD1)		IOG0491-01			& Analyz					
Benzene	4.82	5.0	ug/kg	6.08	1.3	58	65-125	3	20	Lì
Ethylbenzene	4.87	5.0	11	7.84	0.31	58	80-135	7	20	Lì
Methyl tert-butyl ether	51.3	5.0	n	9.60	69	NR	75-115	13	35	Lì
Toluene	27.4	5.0	н	32.9	9.0	56	85-125	3	15	Lì
Xylenes (total)	23.6	5.0	H	38.5	1.0	59	80-140	6	20	Lì
Gasoline Range Organics (C4-C12)	262	100	n	440	100	37	53-126	7	25	Lì
Surrogate: 1,2-Dichloroethane-d4	5.13		Ŋ	5.00		103	60-125	•		
Batch 5G27015 - EPA 5030B/5035A	MeOH / EP	A 8260B								
Blank (5G27015-BLK1)				Prepared:	07/27/05	Analyzed	1: 07/28/05			
tert-Amyl methyl ether	ND	0.025	mg/kg							
Benzene	ND	0.050	**							
tert-Butyl alcohol	ND	5.0	**							
Di-isopropyl ether	ND	0.025	**							
1,2-Dibromoethane (EDB)	ND	0.025	**							
1,2-Dichloroethane	ND	0.025	н							
Ethanol	ND	10	#							
Ethyl tert-butyl ether	ND	0.025								
Ethylbenzene	ND	0.050	n							
Methyl tert-butyl ether	ND	0.025	**							
Toluene	ND	0.050	Nr.							
Xylenes (total)	ND	0.050	4							

ND

0.00477

2.5

0.00500

Gasoline Range Organics (C4-C12)

Surrogate: 1,2-Dichloroethane-d4

60-125

Project:BP Heritage #11102, Oakland, CA Project Number:G07T9-0024

Project Manager:Lynelle Onishi

MOG0378 Reported: 08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
· MILLY CO	RESH	Linit	Cuits	LEVEI	Vesiti	OILEC	PRIMS	KrD	Limit	Notes
Batch 5G27015 - EPA 5030B/503	5A MeOH / EPA	A 8260B		181						
Laboratory Control Sample (5G2701	(5-BS1)			Prepared:	07/27/05	Analyzed	l: 07/28/05			
tert-Amyl methyl ether	0.440	0.025	mg/kg	0.500		88	80-130			
Benzene	0.472	0.050	11	0.500		94	65-125			
tert-Butyl alcohol	2.40	2.0	11	2.50		96	80-165			
Di-isopropyl ether	0.482	0.025	11	0.500		96	85-115			
1,2-Dibromoethane (EDB)	0.445	0.025	н	0.500		89	85-130			
1,2-Dichloroethane	0.487	0.025	н	0.500		9 7	63-124			
Ethanol	14.7	10	II .	10.0		147	35-150			
Ethyl tert-butyl ether	0.444	0.025	н	0.500		89	80-125			
Ethylbenzene	0.535	0.050	И	0.500		107	80-135			
Methyl tert-butyl ether	0.423	0.025	n	0.500		85	75-115			
Foluene	0.509	0.050	n	0.500		102	85-125			
(Yylenes (total)	1.68	0.050	н	1.50		112	80-140			
Surrogate: 1,2-Dichloroethane-d4	0.00475		"	0.00500		95	60-125			
Laboratory Control Sample (5G2701	(5-BS2)			Prepared:	07/27/05	Analyzed	l: 07/28/05			
Gasoline Range Organics (C4-C12)	22.7	2.5	mg/kg	16.5		138	60-140			
Surrogate: 1,2-Dichloroethane-d4	0.00486		"	0.00500		97	60-125			
Laboratory Control Sample Dup (5G	G27015-BSD1)			Prepared:	07/27/05	Analyzed	1: 07/28/05			
ert-Amyl methyl ether	0.455	0.025	mg/kg	0.500		91	80-130	3	25	
Benzene	0.479	0.050	н	0.500		96	65-125	1	20	
tert-Butyl alcohol	2.29	2.0	19	2.50		92	80-165	5	25	
Di-isopropyl ether	0.486	0.025	11	0.500		97	85-115	0.8	20	
1,2-Dibromoethane (EDB)	0.462	0.025	н	0.500		92	85-130	4	15	
1,2-Dichloroethane	0.477	0.025	n	0.500		95	63-124	2	25	
Ethanol	14.9	10	и	10.0		149	35-150	1	40	
Ethyl tert-butyl ether	0.443	0.025	11	0.500		89	80-125	0.2	25	
Ethylbenzene	0.544	0.050	н	0.500		109	80-135	2	20	
Methyl tert-butyl ether	0.435	0.025	19	0.500		87	75-115	3	35	
Toluene	0.526	0.050	19	0.500		105	85-125	3	15	
Xylenes (total)	1.72	0.050	n	1.50		115	80-140	2	20	
Surrogate: 1,2-Dichloroethane-d4	0.00463		"	0.00500		93	60-125			
=										

Project:BP Heritage #11102, Oakland, CA

Project Number:G07T9-0024 Project Manager:Lynelle Onishi MOG0378 Reported:

08/04/05 15:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

									•	
		Reporting		Spike	Source		%REC		RPD	ļ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 5G27015 - EPA 5030B/5035A MeOH / EPA 8260B

Laboratory Control Sample Dup (50										
Gasoline Range Organics (C4-C12)	16.8	2.5	mg/kg	16.5	102	60-140	30	25	RB	
Surrogate: 1,2-Dichloroethane-d4	0.00490		"	0.00500	98	60-125				

URS Corporation [Arco] Project:BP Heritage #11102, Oakland, CA MOG0378
1333 Broadway, Suite 800 Project Number:G07T9-0024 Reported:
Oakland CA, 94612 Project Manager:Lynelle Onishi 08/04/05 15:43

Notes and Definitions

RB	RPD exceeded method control limit; % recoveries within limits.
PV	Hydrocarbon result partly due to individ. peak(s) in quant. range
LN	MS and/or MSD below acceptance limits. See Blank Spike(LCS).
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

PROBLEM CHAIN-OF-CUSTODY

CLIENT SERVICES REP	DATE RECEIVED 2/19/g- TURN AROUND TIME 520 ANALYST 745
	711712101
PROBLEM	
•	
WATER IN SAMPLES SB-4 (25.	-45.5) And JA-4 (25-25.5)
	MOG 6378)
	(),
RESOLUTIO	
Client Instruction* e-mail sent 7/14 fr	: charling to be charle on mayl
her attalia.	I samples.
- Analyse above two roi	1 samples.
Analyze sample with his	
- Arrange Sample with VIII	These Circs for 10 mai 1 B.
Telephone Number of Client:	· · · · · · · · · · · · · · · · · · ·
Ollege Control for the control	0. 31.
Client Contact for Instruction:	- Cur. v-
Date and Time of Instruction:	
Date & Time Form Given to Sample Control:	
CLIENT SERVICES REP. SIGNATURE:	hates,
DATE/TIME:	7/15/05

*If client does not return call within 24 hours, please route this form to the Laboratory Director.

* Fax copy of received COC to Lynelle Onishi @ 510-8741-3268 Chain of Custody Record

Project Name:

Former BP Site 11102 Soil/Groundwater Investigation

BP BU/AR Region/Enfos Segment:

BP/Americas/WestCoast/Retail/WCBU/CA/Cont

State or Lead Regulatory Agency:

Alameda County Environmental Health

Requested Due Date (mm/dd/yy):

Standard TAT

n-site	Time:	7:0	Dam	Temp:	60°F
ff-site	Time:	74	OOpm	_ Temp:	89°F
ky Con	ditions:	cl	eat		
leteoro	logical E	dvents:	nov	Q	
ind St	reed: 🎺	7-10	nah	Direction	· W-NW

Lab Name:	Sequoia Analytical					BP/AR Facility No.	.:		1	1102							Co	ตรนไ	tant	/Con	tracte	or:	UR	S					
Address:	885 Jarvis Drive					BP/AR Facility Ad	dress	i:	1001	MacA	rthur A	ve, (Dakla	nd, (CA.		Ad	dres	s:	1	333	Broa	dway,	, Suite	800				
	Morgan Hill, CA 95037					Site Lat/Long:														()akla	ınd, (CA 94	4612					•
Lab PM:	Lisa Race					California Global II	D No).;		-					<u> </u>		Co	nsu)	tant	/Con	tracte	or Pro	ject N	o.:	3848	7349			
Tele/Fax:	408-782-8156/408-782-6308					Enfos Project No.:			G077	T9-00	24						Co	nsu)	tant	/Con	tracto	or PM	(:		Lyne	lle Oı	nishi		
BP/AR PM Contact:	Kyle Christie					Provision or RCOP	(oit	cle o	ne)		Tovisio	m)					Te	le/P	ıx:	5	10-8	74-1	758/5	10-87	4-326	8			
Address: 4 Centerpoi	nte Dr.					Phase/WBS:	01-	Asse	ssmen	nt ~~		_					Re	port	Туг	e &	QC I	evel:	Lev	/c11&	: BDF				
La Palma, CA						Sub Phase/Task:	03 -	Ana	lytical	1								_							ursco	rp.co	om	•	
Tele/Fax: 714-670-53	103/714-6705195					Cost Element:	05 -	Sub	contra	cted (Costs						Inv	roice	to:	BP	West	Coas	t Glob	al Alli	ance			\sum	<u> </u>
Lab Bottle Order No	0:			Mat	xix				Pr	eserv	ative					Req	uest	ed A	inal	ysis				7			* 0	\rightarrow	\mathcal{T}
Item No.	Sample Description	Time	Date	Sotl/Solid Water/Liquid	Air	Laboratory No.	No. of Containers	Unpreserved	[‡] OS ² H	HNO,	HCI Methanol		GRO (8260)	BTEX (8260)	Fuel Add. (8260):	MTBE, 1,2-DCA,	DIPE, ETBE	(0/00/ t be	Emanoi (8260)	total Lead			(/				at/Lor	ng an	r idi
1	5B4(5-5.5)	7.40	7-140		T	i d	\overline{I}	X		П			ĪΫ	1>	<u>ا</u> پ	1)	<u> </u>	ĺχ		X		T	4	80	e S	00	eial	/	
2	SB-4 (9,5-101)	7:50		1	Т	12		1							ſ	ſ	ı	П	T	1		╗			ne				
3	SB-4(14.5-15')	7:50				v4							Π	П	11	Π	11	71	T	T		一			elo		_ حِي ع		
4	5B-4(19.5-20')	8:05				# 44							\blacksquare	11	17	11	\sqcap	T	1	#	十	十	1		<u>~, -</u>	 -			
5	518-4(20-20,51)	8:15			T	br.				寸		1		H	11	Π	$\dagger \dagger$	T	\dagger	#	\top	十	┪			•			
6		8:25				04	Г			\top		1	$\parallel \parallel$	11	H	Ħ	11	Ħ	+		\top	十	-∤						
7	513-4/29-29,5"	8145		$H \vdash$	\top	р ² -	┢					╁	It	オオ	朼	H	オナ	八	木	И	十	┪	╢─						
8	Lab Blank	14:55			+	08	┢	*			$\frac{1}{x}$	1-	╁	╀	┯	╨	1	ť	+	+	+	+	١,	1)	$\overline{\lambda}$				
					+		\vdash				ᠲ	+	╬	╁	+	╀╌	╁	╁	+	- -	+	╬		to L					
9	Tenp Blank	4:55		\mathbb{H}^{2}	╙		\vdash	X	 			+	╢	╀	╂	╄	+-	┿	+	+	-	-	- -4	40	<u> </u>				
10 Sampler's Name:	1 1/1 C/ E			<u>t</u>		7	<u> </u>	<u>L</u>		<u></u> .	L_	<u> </u>	╇	<u> </u>	<u> </u>	<u>L</u>	<u> </u>	<u> </u>		<u> </u>					·		1		
	John M'(ain					Relling		A	/ Ami	intion				ate		ime	#-			A	ccept	ed By	/ Affile	ation			Dat		Time
Sampler's Company	7-14-0.5				-			<u> </u>							5	<u>. w</u>	- 54		20		241	7_					7//		
Shipment Date: Shipment Method:						1660	a.	7	THE				70	Ç		20	**		$\frac{1}{2}$) -	10		7_	•			7/14	5	15-7
Shipment Tracking	courier No:								у				╢		╫		╫		<u> </u>	<u>-</u> -		•)			1-1	╬	
	: Analyze soil sample with higher	est GRO	concent	tration	for T	otal Lead (Ph)			*****			·	_		ال		_!L										<u> </u>		
	alysis and result are >50ppm, run S'					· · · · · · · · · · · · · · · · · · ·												·			-	 -							
ody Seals In P						nk Yes No					Cooler	Ten	npera	ture	on F	lece	ipt	61	o OI	/C		T ₁	rin Pl	ank V	ر ا وم	/ No			
-		harntanı	/ Valler	Ody Seals In Place Yes No Temp Blank Yes No Cooler Temperature on Receipt OF/O Trip Blank Yes No Distribution: White Copy - Laboratory / Yellow Copy - BP/Atlantic Richfield Co. / Pink Copy - Consultant/Contractor BP COC Rev. 4 10/1/04													- F " -		<u> </u>	<u></u>		<u>.</u>							

Lynelle Onishi @ 510-874-3268 Chain of Custody Record

Project Name:

Former BP Site 11102 Soil/Groundwater Investigation

BP BU/AR Region/Enfos Segment:

BP/Americas/WestCoast/Retail/WCBU/CA/Cent

State or Lead Regulatory Agency:

Alameda County Environmental Health

Requested Due Date (mm/dd/yy):

Standard TAT

Page Z of S

	Time:	Temp:	
Off-site	Time:	Temp:	
Sky Con	ditions:		
Meteoro	logical Events:		
Wind Sp	eed:	Direction:	

Lab Name:	Sequoia Analyticai					BP/AR Pacifity No).:			1110	12							Lo	nsu	tant/	Ļοπ	itrac	tor:		UK2					
Address:	885 Jarvis Drive					BP/AR Facility Address: 100 MacArthur Avc, Oakland, CA												Ad	dres	s:	1	333	Br	oady	vay, S	Suite	800			
	Morgan Hill, CA 95037					Site Lat/Long:												L			(Daki	land	, C	946	512				
	Lisa Race					California Global I	D No	٥.,										Co	nsul	tant/	Con	itrac	tor F	roje	ct No.	.:	38487	7349 .		
	408-782-8156/408-782-6308					Enfos Project No.:				7T9-(0024							Co	nsul	tant/	Con	itrac	tor E	M:			Lynel	le Onis	hi	
BP/AR PM Contact:	Kyle Christie					Provision or RCOF	(ch	ele t	ne)		Pro	vision	<u>ک</u>					Te	e/Fa	x:	5	10-	874	-175	8/51	0-874	1-3268	3		
Address: 4 Centerpoint	e Dr,					Phase/WBS:	01-	Asse	ssm	ent `								Re	port	Тур	<u>&</u>	QC	Leve	el:	Leve	11&	EDF			
La Paima, CA						Sub Phase/Task:		· Ana																				rp.con	<u>a </u>	
Tele/Fax: 714-670-530						Cost Element:	05 -	Sub	cont	tracte	d Co	sts						Ins	oice	to:	BP	Wes	t Co	ast (3loba	l Allje	mce			//
Lab Bottle Order No		gual are concernancement, busyer		M	[atrlx		Г		1	Prese	rvat	ive					Req	uest	ed A	naly	sis						_			7)
Item No.	Sample Description	Time	Date	Soil/Solid	Water/Liquid Air	Laboratory No.	No. of Containers	Unpreserved	H ₂ SO ₄	HNO,	HCI	Methanol		GRO (8260)	BTEX (8260)	Fuel Add. (8260):	MTBE, 1,2-DCA,	DIPE, ETHE	(0700) (0700)	Culation (6200)	200			(•	ple-Poi	037 int Lat ommen	l/Long s	and
1	SB-7 2-2.51	12:20	1/4/08	X		09	T	IX	T	Ī	Ī	1		X	X	X	X	TX	Z	ひ	7	T			D	Σ εί	· S/	e.e.c/	oi/	
2	56-7 5-5.51	/2:35	1			Į0	1	ī						1	T	١	1	1	1	1	1	T				_			bei	luc.
3		12:45		111		lı.	1	丌	T	1	T	\top		H		\dagger	17	17	Ħ	11	†	1	寸		<u> </u>	7 · ·	LLY.	0-7-	-901	000
4	58-7 14.5-151	12:52	1		_ -	iv	ì	$\ \mathbf{f} \ $	T	-	1	T		-	1	\dagger	\parallel	#	Ħ	╁	十	\exists	7			_				
5	58-7- 14.5-20'	12:57	\top		-	(1	1	什		╈	\vdash	╁		╫╴		T	╫	╫	Ħ	+1	+	┪								
6	58-7 25-5-26'	13:05	1	17		14	Ħ	$\ \cdot\ $	\vdash		<u> </u>	十	_	╫	+	1	${\sf H}$	#	††	╫	+	寸								
7	587 285-29'	13:25	1			,(<u>`</u>		T	+	\vdash	T		十		\vdash	$\dagger \dagger$	$\dagger\!$	Ħ	11	\dagger	+								
8	587 30.5-31	/3:20	1	Ш		14	ì		T		1	T		\parallel		H	$\dag \uparrow$	$\dagger \dagger$	Ħ	+	\dagger	寸								
9	SB-5 5-5-5'	10:02	1			17	Ìτ		╁		-	1		\vdash	1	H	1	11	,	Н		寸								
10			A	团		18	1	4	十		T		_	7	7	1	4	N		木	h	_								
Sampler's Name:	John M. Carr	₹		-		Reiina	pish	ed By	IAS	Milatio	on			D	ite	T	rne	T	<u>-1</u>		À	ссер	ted I	3y / A	filliat	tion			Date	Time
Sampler's Company:		-				Vhm	7	24	Z					71	/ os	76	55	17	2			4	\sum_{i}	7				<u> </u>	7/14	15.17
Shipment Date:	7-14-05					Len	1	-	Л	_e				5/	Z		On.	#			7	_	0			[7/14	150
Shipment Method:	courter							₹.	7							£7		1		/		7			ک	>		ľ	7	
Shipment Tracking 1	√o:																													
Special Instructions:	Analyze soil sample with highe	st GRO c	onceni	tratic	m for 1	Total Lead (Pb).																								
ulf running total Pb ana	lysis and result are >50ppm, run S7	LC, if ST	LC rest	ults a	re >5pp	m, run TCLP																								
tody Scals In Pla	ce Yes <u> </u>			Ten	np Bla	nk Yes XO No					Со	oler 1	'emj	erat	ure (on R	ece	ipt 🤇	2, ر	OF.	(C)	<u> </u>		Tri	Bla	nk Y	es <u> </u>	No_		

A Fox Copy of received COC to Lynelle Onishi @ 510-874-3268

Chain of Custody Record

Project Name: Former BP Site 11102 Soil/Groundwater Investigation

BP BU/AR Region/Enfos Segment: BP/Americas/WestCoast/Retail/WCBU/CA/Cent

Page_J_of	
Temp:	

Тетр:

On-site Time:

Off-site Time:

Sky Conditions:

		State	or Lea	а ке		tory Agency:				ounty	/ En					n						vent	s;		<u></u>		
					Rec	juested Due Date	(MII	/dd/	' 33)	:	_	Sta	ndan	AŢ Ŀ	T			Wi	rd Sp	eed:				anim visc	Directi	on:	
							m.						,	<u> </u>				-11									
Lab Name:	Sequoia Analytical	BP/AR Facility No.: 11102										Consultant/Contractor: URS															
Address:	885 Jarvis Drive					BP/AR Facility Ad	dres	s:	100	0 Mac	Arth	ıur A	ve, O	aklar	d, C	Α_		Ad	dress	:					ay, Suite 800		
 	Morgan Hill, CA 95037					Site Lat/Long:												L				_	- "-	_	94612		
Lab PM:	Lisa Race		_			California Global I		D.:										Co	ısult	ant/C	ontr	actor	r Pro	ojeci	t No.: 384873	· · · · · · · · · · · · · · · · · · ·	
Tele/Fax:	408-782-8156/408-782-6308					Enfos Project No.:				7T9-(Co	sult	mt/C	ontr	actor	r PM	S :	Lyneik	e Onishi	
BP/AR PM Contact:	Kyle Christie					Provision or RCOP (circle one) Provision											Tele/Fax: 510-874-1758/510-874-3268										
Address: 4 Centerpoir	nte Dr.					Phase/WBS:	01-	Asse	esam	ien(_								Re	ort	Гуре	& Q	C Le	evel:	I	Level 1 & BDF		
La Palma, CA					Sub Phase/Task: 03 - Analytical											E-mail BDD To: lynelle onishi@urscorp.eem											
Tele/Fax: 714-670-5303/714-6705195					Cost Element:												iobal Alliance		11								
Lab Bottle Order No	»:			M	atrix												. 27/2	77									
Item No.	Sample Description	Time	. Date	Soil/Solid	Water/Liquid	Laboratory No.	No. of Containers	Unpreserved	H,SO.	HNO,	HCI	Methanol		GRO (8260)	BTEX (8260)	Fuel Add. (8260):	MTBE, 1,2-DCA,	DIPE, ETBE	Ethanol (8260)	Total Lead					-	nt Lat/Long :	
1	58-5 14-S-15'	10:16	7/14/2		T	14	1	X	Ī		Т	T		X	又	X	17	√X	X	N.	1	Ť.	1	┪	base.	Special	
2	58-5 19.5-201	10:20		II		10	1	Π		1		1			1	T	T	П	П	Π			\top	7	instruction		(b)
3	58-5 29-295	10:50		EU		1.1	ī	V	1			1		V	abla	\bigvee	1	1	V	V	1	1	1	7	7 (0)		
4		1	1	*	┪	1 **-	1	╽	T	\top		1	Т	<u> </u>		Ť	ľ	*	Ť	┪~	╈	十		1			
5		1			-		┢	⇈	†-	╅	T	┪┈	 	-		-	┢	╅	十	†-	╫	╁┈	十	╢	· ·		
6		┪	 		\dagger		┢	┢	╁┈		-	十		-	-	-	┢╌	╁╴	+	╁	T	T	╁	╁			
7		-			+	<u> </u>	╫─	┢	十	╁	╁┈	+	1		-	-	一	\vdash	\vdash	┼~	╁╴	╁┈	╁	╁			
8		-	 		+		╂╌	╂─	╁	+	\vdash	╁	-	_	┢		┢	╁	\vdash	╁	╁	╁	╫	╢			
9			}	\blacksquare	+		╟	╟	╁	╁	+	+		-	-		┢	╁╌	╁	╁	╁	+	+	╢			
10		-}	1	╂┼	-	,,,	╫╴	╫	+-	+	╁╌	┼	-	\vdash	\vdash	-	┝	╁	+-	╁╾	╁	╁	╁	╬			
Sampler's Name:	John M. Cair		<u> </u>	<u> </u>		// Reline	il	ed Rv	1 4 4	Effiliatio	<u> </u>		<u> </u>	'n	ate	T	ime	╁	<u>. </u>	<u> </u>	A 600	enter	d Ru	144	ffliation	Date	Time
Sampler's Company						// Relinquistical By / Affiliation Date Tim																					
Shipment Date: 7-14-05																			7/14	1507							
Shipment Method:	courier					The second of the second							23							1707							
Shipment Tracking														╢─									 				
	: Analyze soil sample with high	est GRO	concen	tratio	n for	Total Lead (Ph)								<u></u>		l											<u> </u>
	alysis and result are >50ppm, run S																					•••	•				
72	lace Yes T No					nk Ves No					Co	oler '	rem	nerat	ure :	מ מח	ece	int (w D	OF#	^\		ጥ		Plank Vec X	`No	

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER:	7A4 MOGE	•	- -	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	19°>	l'or		٠.	DRINKING WASTE WA	tory Purposes? WATER YES / NO ATER YES / NO elpt, document here !
CIRCLE THE APPRO	LAB	DASH		CONTAINER		SAMPLE	DATE	REMARKS:		
		SAMPLE#	#	CLIENT ID	DESCRIPTION		рH	MATRIX	SAMPLED	CONDITION (ETC.)
Custody Seal(s)	Present / Absert	-		SB-4(5-55)	Plestic Core		` رمید	. ک څ	7/17/95	-
	Intact / Broken*			(55-102)			1	- 1	7 .	•
2. Chain-of-Custody	Present / Absent*			(14.5-15)				· 1		
3. Traffic Reports or		·		(19.5-201)		•				
Packing List:	Present / Alssent	• • • • • • • • • • • • • • • • • • • •		(20-20.5)						
4. Airbill:	Airbill / Sticker_	، ۶		(25-25-5)) }	$ \cdot $				
	Present / Absent			J (25-25,5		J		-		
5. Airbill #:				LAR RLAUK	(2) VOA	HL1				
6. Sample Labels:	Present / Absent			HOLF BLANK	~•4				-	
7. Sample iDs:	Listed / Not Listed -	•			Plastic Cre	. ,		1		` .
	on Chain-of-Custody			5-6.57						
8. Sample Condition:	/Intact / Broken* /			(9.5-10')				-		
• •	Leaking*			(17.5-101)						
9. Does information on	chain-of-custody,			(12.5-251)						
itraffic reports and s	ample labels	,		(25.5-26°)						
agree?	Yes No*			(28.5-29)			1.			
10. Sample received with		•		4. (30 (-31)			-		•	
hold time?	Yes / No*		_	SB-5 (5-4.47)	.]					
11. Adequate sample volu	ume (1)			1 . (4,5 - 101)						
received?	Yes / No*			(145/-151)						
12. Proper Preservatives	· ا			(19.5-207)			1			-
used?	Yeş / No*			(29-27.5)	T U	J.			1	
13/Trip Blank / Temp Bla	nk Received%			7						
(ctrole which, if yes)	Yes / No*									
14. Temp Rec. at Lab:	6.00/	4		•	1					
ls-temp 4 +/-2°C?	Yes / No**	•							· · · · · · · · · · · · · · · · · · ·	
 (Acceptance range for samples	requiring thermal pres.)				· ·					
**Exception (if any): MET								*		
or Problem COC										
	TERCHONOMICA CONSTRUIT ACTIVA EN EN	tie Cid		ONTACT DOO ISCT N			STRANGERS.	2012000000000	electrony desirable and the	

%L Revision 6 ces Rev 5 (06/07/04) 07/13/04

.

Attachments can contain viruses that may harm your computer. Attachments may not display correctly.

Jamshid Kekobad

From:

Lynelle_Onishi@URSCorp.com [Lynelle_Onishi@URSCorp.com]

Sent: Fri 7/15/2005 8:48 AM

To:

Jamshid Kekobad

Cc:

Donna_Cosper@URSCorp.com; "Richard_W_Murray@URSCorp.com, "LisaRace"

<!race@sequoialabs.com/@urscorp.com</pre>

Subject:

Re: Notification of problems and some questions on BP#11102 sampled 7/14/05

Attachments: Problem COC.pdf(367K8)

Jamshid,

Yes, please analyze the soil samples SB-4 (25-25.5) and SB-4 (29-29.5).

The soil samples were saturated, reason for water.

Yes, please analyze sample with highest GRO concentration for total lead.

Any other questions, please let me know.

Thank you.

Lynelle

Lynelle Onishi **URS Corporation** 1333 Broadway, Suite 800 Oakland, CA 94612 (510)874-1758 ofc (510)874-3268 FAX (408)839-4836 cell

"Lisa Race"

<

s.com>

To

<Donna_Cosper@URSCorp.com>,

07/14/2005 09:08

<Richard_W_Murray@URSCorp.com>, <Richard_W_Murray@URSCorp.com>,

<Lynelie_Onishi@URSCorp.com>

CC

"Jamshid Kekobad"

<jkekobad@sequoialabs.com>

Subject

Notification of problems and some questions on BP#11102 sampled

7/14/05

Please see the attahced COC. Samples SB-4 (25-25.5) and SB-4 (29-29.5) were received with water in with the soil samples. Please let us know if you would still like these two samples analyzed. Also, please clarify if

you want lead analyzed on all of the samples or just on the sample with the highest GRO. Please send your reply to jkekobad@sequoialabs.com and copy me. If you have any questions, please contact Jamshid Kekobad at 408-782-8170.

Thank you for your help. Lisa Race Senior Project Manager

Tel.: 408-776-9600 Direct.: 408-782-8156 Fax: 408-782-6308

e-mail: irace@sequoialabs.com(See attached file: Problem COC.pdf)