

RECEIVED

4:18 pm, Apr 30, 2010

Alameda County Environmental Health ARCADIS U.S., Inc.
100 Montgomery Street, Suite 300
San Francisco, California 94105
Tel 415.374.2744
Fax 415.374.2745
www.arcadis-us.com

Re: First Quarter 2010 Ground-Water Monitoring Report Former BP Service Station #11102 100 MacArthur Boulevard Oakland, California ACEH Case #RO0000456

ENVIRONMENTAL

"I declare that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Date:

04/27/2010

Contact:

Hollis E. Phillips

Phone:

415.374.2744 ext 13

Email:

Hollis.phillips@arcadisus.com

Our ref:

GP09BPNA.C111

Submitted by:

ARCADIS U.S., Inc.

Hollis E. Phillips, PG Project Manager

First Quarter 2010 Ground-Water Monitoring Report

Former BP Service Station #11102 100 MacArthur Boulevard, Oakland, California ACEH Case #RO0000456

Prepared for

Ms. Hollis Phillips, PG Senior Geologist ARCADIS-US, Inc. 100 Montgomery Street, Ste. 300 San Francisco, California 94104

On behalf of
Atlantic Richfield Company
PO Box 1257
San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

27 April 2010

Project No. 09-88-643

27 April 2010

Project No. 09-88-643

ARCADIS-US, Inc. 100 Montgomery Street, Ste. 300 San Francisco, CA 94104

Attn.: Ms. Hollis Phillips, PG

Re: First Quarter 2010 Ground-Water Monitoring Report, Former BP Service Station #11102,

100 MacArthur Boulevard, Alameda County, Oakland, California;

ACEH Case #RO0000456

Dear Ms. Phillips:

Attached is the *First Quarter 2010 Ground-Water Monitoring Report* for Former BP Service Station #11102 located at 100 MacArthur Boulevard, Oakland, Alameda County, California. This report presents a summary of results from ground-water monitoring conducted at Station #11102 during the First Quarter of 2010.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Jason Duda Project Scientist

Thomas A. Venus, P.E.

Senior Engineer

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site)
Ms. Shelby Lathrop, ConocoPhillips, 76 Broadway, Sacramento, California 95818
Electronic copy uploaded to GeoTracker

NEVADA ARIZONA CALIFORNIA TEXAS

STATION #11102 QUARTERLY GROUND-WATER MONITORING REPORT

Facility: #11102 Address: 100 MacArthur Boulevard, Oakland, California

ARCADIS Project Manager: Ms. Hollis Phillips, PG

Consulting Co./Contact Persons:

Broadbent & Associates, Inc.(BAI)/Jason Duda & Tom Venus

(530) 566-1400

Consultant Project No.: 09-88-643

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case #RO0000456

WORK PERFORMED THIS QUARTER (First Quarter 2010):

1. Prepared and submitted Fourth Quarter 2009 Ground-Water Monitoring Report (BAI, 1/28/2010).

2. Conducted ground-water monitoring/sampling for First Quarter 2010. Work performed by BAI on 26 February 2010.

WORK PROPOSED FOR NEXT QUARTER (Second Quarter 2010):

- 1. Prepared and submitted *First Quarter 2010 Ground-Water Monitoring Report* (contained herein).
- 2. Upon acquisition of permits, conduct soil and ground-water investigation as approved by ACEH in their letter dated 21 August 2009.

QUARTERLY RESULTS SUMMARY:

Current phase of project:	Ground-Water Monitoring/Sampling/Characterization
Frequency of ground-water monitoring:	Semi-Annually (1Q & 3Q): Wells MW-1, MW-2, MW-3
Frequency of ground-water sampling:	Semi-Annually (1Q & 3Q): Wells MW-1, MW-2, MW-3
Is free product (FP) present on-site:	No
Current remediation techniques:	NA
Depth to ground water (below TOC):	10.61 (MW-1) to 12.44 (MW-3)
General ground-water flow direction:	West
Approximate hydraulic gradient:	0.05 ft/ft

DISCUSSION:

First Quarter 2010 ground-water monitoring and sampling was conducted at Station #11102 on 26 February 2010 by BAI. Water levels were gauged in each of the three wells at the Site. No irregularities were noted during water level gauging. Depths to water measurements ranged from 10.61 ft at well MW-1 to 12.44 ft at well MW-3. Resulting ground-water surface elevations ranged from 79.59 ft above datum in well MW-1 to 74.58 ft in well MW-3. Water level elevations yielded a potentiometric ground-water flow direction and gradient of 0.05 ft/ft to the west. Ground-water monitoring field data sheets are provided within Appendix A. Measured depths to ground-water and respective ground-water elevations are summarized in Table 1. Current and historic ground-water flow directions and gradients are provided in Table 3. A Site Location Map is provided as Drawing 1. Potentiometric ground-water elevation contours are presented in Drawing 2.

Consistent with the current ground-water sampling schedule, water samples were collected from each of the three wells at the Site. No irregularities were encountered during sampling. Samples were submitted under chain-of-custody protocol to TestAmerica Laboratories, Inc. (Pleasanton, California), for

Broadbent & Associates, Inc. Chico, California

analysis of Gasoline Range Organics (GRO, C6-C12); Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX); Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether (DIPE), Tert-Butyl Alcohol (TBA), 1,2-Dibromomethane (EDB), 1,2-Dichloroethane (1,2-DCA), and Ethanol by EPA Method 8260B. Bio-degradation parameters were not monitored during the sampling event this quarter. No significant irregularities were encountered during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix A.

Gasoline range organics (GRO) were detected above the laboratory reporting limits in two of the three wells sampled at concentrations of 1,100 micrograms per liter (μ g/L) in well MW-2 and 1,500 μ g/L in well MW-3. TAME was detected above the laboratory reporting limits in two of the three wells sampled at concentrations of 13 μ g/L in well MW-2 and 16 μ g/L in well MW-3. TBA was detected above the laboratory reporting limit in two of the three wells sampled at concentrations of 240 μ g/L in well MW-1 and 4,100 μ g/L in well MW-2. MTBE was detected above the laboratory reporting limit in each of the wells sampled at concentrations up to 1,500 μ g/L in well MW-3. The remaining fuel additives and oxygenates were not detected above their laboratory reporting limits in the three wells sampled this quarter. Historic laboratory analytical results are summarized in Table 1, and Table 2. The most recent GRO, Benzene, MTBE, and TBA concentrations are also presented in Drawing 2. A summary of bio-degradation parameters is provided in Table 4. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS:

Water level elevations were between historic minimum and maximum ranges for each well. The potentiometric ground-water flow direction and gradient of 0.05 ft/ft to the west is generally consistent with historical data. Detected concentrations of petroleum hydrocarbons were within the historic minimum and maximum ranges recorded for each well sampled this quarter. Overall, hydrocarbon concentrations increased in well MW-2 and remained relatively stable in wells MW-1 and MW-3 when compared to concentrations observed during the Fourth Quarter 2009 sampling event. Concentrations of GRO, MTBE and TBA are significant, justifying the efforts to characterize the downgradient extents of the contaminated ground-water plume. The *Addendum to Soil & Ground-Water Investigation Work Plan* dated 1 June 2009 was approved by ACEH in their letter dated 21 August 2009. Soil and ground-water investigation activities will be implemented upon approval of the necessary permits and access agreements.

CLOSURE:

The findings presented in this report are based upon: observations of BAI field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by TestAmerica Laboratories, Inc. (Pleasanton, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of ARCADIS-US, Inc. and Atlantic Richfield Company (a BP affiliated company). It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

Page 3

ATTACHMENTS:

- Drawing 1. Site Location Map, Former Station #11102, 100 MacArthur Boulevard, Oakland, California
- Drawing 2. Ground-Water Elevation Contour and Analytical Summary Map, 26 February 2010, Former Station #11102, 100 MacArthur Boulevard, Oakland, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #11102, 100 MacArthur Blvd., Oakland, California
- Table 2. Summary of Fuel Additives Analytical Data, Station #11102, 100 MacArthur Blvd., Oakland, California
- Table 3. Historical Ground-Water Flow Direction and Gradient, Station #11102, 100 MacArthur Blvd., Oakland, California
- Table 4. Bio-Degradation Parameters, Station #11102, 100 MacArthur Blvd., Oakland, California
- Appendix A. BAI Ground-Water Sampling Data (Includes Field Data Sheets, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)
- Appendix B. GeoTracker Upload Confirmation Receipts

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос		Product	Water Level		C	oncentrati	ons in (µg/l	L)					DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(µg/L)	$(\mu g/L)$
MW-1																		
11/4/1989			90.20	13.21		76.99	< 500	3.4	0.6	< 0.3	< 0.3			SAL		<50	<5000	
11/11/1989			90.20	13.32		76.88												
4/3/1990			90.20	12.46		77.74	820	64	1.9	23	34			ANA				
7/30/1990			90.20	12.92		77.28	190	11	< 5.0	< 5.0	< 5.0			ANA		< 50	< 5000	
11/20/1990			90.20	14.08		76.12	50	2.4	< 0.3	< 0.3	< 0.3			SAL		79	< 5000	
3/1/1991			90.20	13.61		76.59	<100	0.9	< 0.3	< 0.3	0.3			SAL		<1000	14,000	
8/19/1991			90.20	15.74		74.46	370	35	0.73	6.4	5.6			SEQ		<50	< 5000	
11/13/1991			90.20	14.08		76.12	60	0.68	< 0.3	< 0.3	< 0.3			SEQ		< 50	< 5000	
2/24/1992			90.20	12.52		77.68	140	3.9	0.66	1.2	3.8			SEQ		100	< 5000	
5/19/1992			90.20	11.80		78.40	4,200	440	21	250	37			SEQ		910	< 5000	
6/17/1992			90.20	12.01		78.19	4,000	350	14	150	17			SEQ		560	<5000	
7/22/1992			90.20	12.42		77.78	4,000	< 5.0	19	210	61			ANA				
8/14/1992			90.20	12.75		77.45	2,400	330	20	150	47			SEQ		1,700	<5000	
11/11/1992			90.20	13.69		76.51	260	30	3.4	7.6	6.8			ANA		92	< 5000	
6/7/1993		c	90.20				3,700	120	12	26	9.5			PACE				
6/7/1993			90.20	10.93		79.27	3,400	98	11	21	7.6			PACE		440		
12/2/1993			90.20	12.72		77.48	1,100	8.3	3.6	0.6	1.5			PACE		120	<5000	
6/22/1994		c, d	90.20				2,100	30	3.2	2	15	2,000		PACE				
6/22/1994		d	90.20	11.81		78.39	2,100	32	3.8	2.2	17	4,000	3.2	PACE		<50	<5000	
1/10/1995		с	90.20				< 500	120	<5	5	<10			ATI				
1/10/1995			90.20	10.97		79.23	< 500	120	<5	<5	<10		3.9	ATI		420		
6/21/1995			90.20	9.38		80.82	4,700	16	< 5.0	< 5.0	<10		6.7	ATI		1,300	2,900	0.6
6/21/1995		c, e	90.20				3,600	<13	<5.0	<5.0	<10			ATI				
12/27/1995			90.20	11.55		78.65	430	<2.5	<2.5	<2.5	< 5.0	1,200	6.3	ATI		2,100	640	
6/13/1996			90.20	9.28		80.92	3,200	51	<12	<12	<12	4,000	6.3	SPL		920	2,000	
12/4/1996		f	90.20	11.91		78.29	1,400	6.2	<5	<5	<5	2,600	6.7	SPL		280	2,000	6
6/10/1997			90.20	8.97		81.23	7,900	12	<10	<10	<10	15,000	6	SPL		1,700	<5	
6/10/1997		с	90.20				7,700	14	<25	<25	<25	13,000		SPL				
12/12/1997			90.20	11.37		78.83	440	8.8	<1.0	2.6	9.4	6,700	5.5	SPL		760	1,200	
6/18/1998			90.20	8.02		82.18	7,500	<2.5	<5.0	< 5.0	< 5.0	5,600	4.9	SPL		2,900	<5	
3/9/1999			90.20	9.80		80.40	32,000	100	16	72	110	49,000		SPL				

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос		Product	Water Level		С	oncentrati	ons in (µg/l	· .					DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(µg/L)	(µg/L)
MW-1 Cont.																		
9/28/1999			90.20	10.78		79.42	1,000	<5.0	<5.0	< 5.0	< 5.0	730		SPL				<1.0
10/14/1999			90.20	10.84		79.36								SPL		660		
3/27/2000			90.20	9.83		80.37	4,300	160	19	37	43	28,000		PACE				
9/28/2000			90.20	11.33		78.87	2,700	10	2.6	1.1	2.7	28,000		PACE				
3/8/2001			90.20	10.96		79.24	8,200	23.5	6.09	5.23	8.97	11,600		PACE				
9/21/2001			90.20	12.07		78.13	6,000	37.9	< 0.5	< 0.5	<1.5	7,370		PACE				
2/28/2002			90.20	10.48		79.72	6,400	60.8	< 5.0	6.43	<10	7,750		PACE				
9/6/2002			90.20	11.20		79.00	1,400	< 5.0	< 5.0	< 5.0	< 5.0	6,000		SEQ				
2/19/2003		h	90.20	11.29		78.91	<10000	<100	110	<100	<100	4,500		SEQ				
7/14/2003			90.20	11.18		79.02	710	11	<10	<10	<10	940		SEQ				
01/14/2004			90.20	11.74		78.46	< 500	<5.0	<5.0	<5.0	<5.0	220		SEQM	6.6			
04/23/2004	P	1	90.20	11.95		78.25	470	3.4	<2.5	<2.5	<2.5	150		SEQM	6.7			
07/01/2004	P		90.20	11.52		78.68	360	<2.5	<2.5	<2.5	<2.5	96		SEQM	6.0			
10/28/2004	P		90.20	12.56		77.64	390	0.94	< 0.50	< 0.50	< 0.50	43		SEQM	6.2			
01/10/2005	P		90.20	11.85		78.35	490	17	<2.5	5.8	5.4	85		SEQM	7.6			
04/13/2005	P		90.20	10.00		80.20	1,000	27	<2.5	<2.5	25	48		SEQM	6.6			
07/11/2005	P		90.20	9.27		80.93	180	< 0.50	< 0.50	< 0.50	< 0.50	36		SEQM	7.7			
10/17/2005	P		90.20	10.96		79.24	140	< 0.50	< 0.50	< 0.50	< 0.50	20		SEQM	8.0			
01/17/2006	P		90.20	10.81		79.39	120	0.64	< 0.50	< 0.50	0.56	38		SEQM	6.5			
04/21/2006	P	m	90.20	9.28		80.92	410	1.4	1.0	< 0.50	< 0.50	17		SEQM	6.5			
7/17/2006			90.20	9.25		80.95	<50	< 0.50	< 0.50	< 0.50	< 0.50	5.5		TAMC	7.7			
7/26/2006			90.20	8.57		81.63	< 50	< 0.50	< 0.50	< 0.50	< 0.50	4.4		TAMC	6.6			
10/31/2006	P		90.20	9.80		80.40	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.8	2.81	TAMC	6.99			
1/8/2007	P		90.20	10.36		79.84	< 50	2.2	< 0.50	< 0.50	< 0.50	6.2	2.51	TAMC	6.97			
4/10/2007	P		90.20	10.65		79.55	160	1.4	< 0.50	< 0.50	< 0.50	9.0	1.75	TAMC	7.00			
7/10/2007	P	p	90.20	10.52		79.68	120	< 0.50	< 0.50	< 0.50	< 0.50	4.9	2.01	TAMC	6.60	160		
10/24/2007	P		90.20	11.23		78.97	100	< 0.50	< 0.50	< 0.50	< 0.50	4.9	1.89	TAMC	6.57			
1/22/2008	P		90.20	11.22		78.98	240	< 0.50	< 0.50	0.83	1.7	7.2	3.18	TAMC	6.49			
4/15/2008	P		90.20	10.26		79.94	240	< 0.50	< 0.50	< 0.50	0.73	5.5	3.32	CEL	6.45			
7/8/2008	P		90.20	11.10		79.10	78	< 0.50	< 0.50	< 0.50	< 0.50	5.8	1.65	CEL	6.78			
11/19/2008	P		90.20	12.51		77.69	150	< 0.50	< 0.50	< 0.50	< 0.50	3.4	1.59	CEL	6.84			

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос		Product	Water Level		C	oncentrati	ons in (µg/l	· .					DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(µg/L)	(µg/L)
MW-1 Cont.																		
2/10/2009	P		90.20	12.71		77.49	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.3	1.63	CEL	7.00			
5/7/2009	P		90.20	10.90		79.30	< 50	1.6	< 0.50	< 0.50	< 0.50	13	1.41	CEL	6.82			
9/3/2009	P		90.20	11.91		78.29	120	< 0.50	< 0.50	< 0.50	0.89	3.8	1.45	CEL	6.82			
10/29/2009	P		90.20	12.54		77.66	< 50	< 0.50	< 0.50	< 0.50	<1.0	22	1.53	TAMC	6.73			
2/26/2010	P		90.20	10.61		79.59	<50	<0.50	<0.50	<0.50	<1.0	8.1	0.75	TAMC	6.55			
MW-2																		
11/4/1989			87.91	15.84		72.07	< 500	6.5	< 0.3	<0.3	< 0.3			SAL				
11/11/1989			87.91	14.75		73.16												
4/3/1990			87.91	15.25		72.66	< 500	< 0.5	< 0.5	< 0.5	< 0.5			ANA				
7/30/1990			87.91	15.59		72.32	61	6.5	< 0.5	< 0.5	< 0.5			ANA				
11/20/1990			87.91	17.81		70.10	< 50	0.3	< 0.3	< 0.3	< 0.3			SAL				
3/1/1991			87.91	17.11		70.80	<100	0.4	< 0.3	< 0.3	< 0.3			SAL				
8/19/1991			87.91	17.97		69.94	<30	< 0.3	< 0.3	< 0.3	< 0.3			SEQ				
11/13/1991			87.91	16.76		71.15	38	0.32	< 0.3	< 0.3	< 0.3			SEQ				
2/24/1992			87.91	15.07		72.84	< 50	< 0.5	< 0.5	< 0.5	0.58			SEQ				
5/19/1992			87.91	14.70		73.21	< 50	0.55	< 0.5	< 0.5	< 0.5			SEQ				
7/22/1992			87.91	15.60		72.31	90	1.3	0.6	0.9	1.9			ANA				
8/14/1992			87.91	15.88		72.03												
11/11/1992		С	87.91				65	3.2	< 0.5	< 0.5	1			ANA				
11/11/1992			87.91	16.19		71.72	52	2.8	< 0.5	< 0.5	0.9			ANA				
6/7/1993			87.91	14.42		73.49	1,200	14	2.8	1.9	1.71			PACE				
12/2/1993		d	87.91	14.94		72.97	790	3.4	0.5	10	< 0.5	3,700		PACE				
12/2/1993		c, d	87.91				2,100	32	3.8	2.2	17	3,700		PACE				
6/22/1994		d	87.91	14.25		73.66	110	< 0.5	< 0.5	< 0.5	< 0.5	120	3.9	PACE				
1/10/1995			87.91	13.64		74.27	< 50	<0.5	< 0.5	0.6	1		4.3	ATI				
6/21/1995			87.91	11.66		76.25	4,700	<10	<10	<10	<20		7.8	ATI				
12/27/1995			87.91	13.11		74.80	6,100	<25	<25	<25	<50	20,000	6.7	ATI				
12/27/1995		с	87.91				6,300	<25	<25	<25	< 50	19,000		ATI				
6/13/1996			87.91	10.86		77.05	8,300	<2.5	<2.5	<2.5	<2.5	13,000	6.5	SPL				
6/13/1996		c	87.91				8,700	<5	<5	<5	<5	13,000		SPL				

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

						Station #1	, , , ,											
			TOC		Product	Water Level		C	oncentrati 	ons in (µg/l	·					DRO/		
Well and	D/NID	F 4 4	Elevation	DTW	Thickness	Elevation	GRO/	D	TO 1	Ethyl-	Total	MADE	DO	T . 1		TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	ТРНд	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(μg/L)	(μg/L)
MW-2 Cont.																		
12/4/1996			87.91	13.03		74.88	5,900	<2.5	<5	<5	<5	11,000	6.3	SPL				
12/4/1996		с	87.91				5,900	<2.5	<5	<5	<5	11,000		SPL				
6/10/1997			87.91	10.04		77.87	<50	< 0.5	<1.0	<1.0	<1.0	<10	5.8	SPL				
12/12/1997			87.91	12.44		75.47	< 50	< 0.5	<1.0	<1.0	<1.0	<10	5.7	SPL				
6/18/1998			87.91	8.89		79.02	50	< 0.5	<1.0	<1.0	<1.0	<10	5.3	SPL				
6/18/1998		с	87.91				< 50	< 0.5	<1.0	<1.0	<1.0	<10		SPL				
3/9/1999			87.91	10.20		77.71	15,000	<5.0	<5.0	<5.0	< 5.0	23,000		SPL				
9/28/1999			87.91	11.81		76.10	36,000	< 5.0	12	7	26	35,000		SPL				< 5.0
10/14/1999			87.91	10.27		77.64								SPL		100		
3/27/2000			87.91	9.98		77.93	1,300	< 0.5	< 0.5	0.51	< 0.5	5,800		PACE				
9/28/2000			87.91	11.40		76.51	1,600	1.8	1.7	0.54	2.2	15,000		PACE				
3/8/2001			87.91	11.16		76.75	20,000	< 0.5	< 0.5	< 0.5	< 0.5	29,100		PACE				
9/21/2001			87.91	11.65		76.26	5,000	< 0.5	< 0.5	< 0.5	<1.5	6,110		PACE				
2/28/2002			87.91	9.86		78.05	3,200	35.1	< 0.5	< 0.5	<1.0	4,620		PACE				
9/6/2002			87.91	12.32		75.59	1,900	<10	<10	<10	<10	15,000		SEQ				
2/19/2003		h	87.91	11.63		76.28	45,000	<250	<250	<250	<250	32,000		SEQ				
7/14/2003			87.91	12.07		75.84	9,300	< 500	< 500	< 500	< 500	24,000		SEQ				
01/14/2004	P		87.91	11.45		76.46	<50,000	< 500	< 500	< 500	< 500	21,000		SEQM	6.9			
04/23/2004	P	1	87.91	11.45		76.46	5,100	<250	<250	<250	<250	22,000		SEQM	6.8			
07/01/2004	P		87.91	12.32		75.59	<5,000	<50	<50	<50	<50	5,200		SEQM	5.6			
10/28/2004	P		87.91	13.02		74.89	8,500	<50	<50	<50	<50	6,800		SEQM	6.2			
01/10/2005	P		87.91	14.38		73.53	<25,000	<250	<250	<250	<250	7,100		SEQM	7.6			
04/13/2005	P		87.91	14.03		73.88	<5,000	<50	<50	<50	<50	5,300		SEQM	6.6			
07/11/2005	P		87.91	11.25		76.66	<5,000	<50	<50	<50	<50	5,300		SEQM	7.5			
10/17/2005	P		87.91	12.48		75.43	<5,000	<50	<50	<50	<50	2,500		SEQM	8.2			
01/17/2006	P		87.91	10.70		77.21	<5,000	<50	<50	<50	<50	2,200		SEQM	7.0			
04/21/2006		n	87.91															
7/26/2006		k	87.91	10.47		77.44	2,700	<50	<50	<50	<50	2,900		TAMC	6.69			
10/31/2006	P		87.91	12.02		75.89	2,300	<25	<25	<25	<25	2,300	2.02	TAMC	6.71			
1/8/2007	P		87.91	11.68		76.23	1500	<12	<12	<12	<12	1700	1.37	TAMC	6.54			
4/10/2007	P	k	87.91	11.45		76.46	1,300	<50	<50	< 50	<50	1,500	1.60	TAMC	6.89			

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос		Product	Water Level		С	oncentrati	ons in (µg/l	L)					DRO/		
Well and			Elevation		Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(µg/L)	(µg/L)
MW-2 Cont.																		
7/10/2007	P	k, p	87.91	11.97		75.94	2,300	<25	<25	<25	<25	2,600	1.82	TAMC	6.69	120		
10/24/2007	P	k	87.91	12.91		75.00	2,800	<25	<25	<25	<25	2,800	1.55	TAMC	6.77			
1/22/2008	P		87.91	12.00		75.91	<2,500	<25	<25	<25	<25	1,400	2.08	TAMC	6.55			
4/15/2008	P		87.91	11.77		76.14	73	<2.5	<2.5	<2.5	<2.5	2,400	3.12	CEL	6.72			
7/8/2008	P		87.91	12.65		75.26	93	<50	<50	<50	<50	2,800	1.78	CEL	7.05			
11/19/2008	P		87.91	13.98		73.93	130	<50	<50	<50	< 50	1,900	1.75	CEL	6.72			
2/10/2009	P		87.91	13.64		74.27	<50	<50	<50	<50	<50	940	1.71	CEL	7.04			
5/7/2009	P		87.91	12.00		75.91	350	<20	<20	<20	<20	1,900	1.62	CEL	6.94			
9/3/2009	P	q	87.91	13.68		74.23	890	<40	<40	<40	<40	1,300	1.56	CEL	7.02			
10/29/2009	P	k	87.91	13.88		74.03	530	< 0.50	< 0.50	< 0.50	<1.0	690	1.60	TAMC	6.7			
2/26/2010	P	k	87.91	11.65		76.26	1,100	<10	<10	<10	<20	1,100	0.52	TAMC	6.64			
MW-3																		
11/4/1989			87.02	15.40		71.62	< 500	< 0.3	< 0.3	< 0.3	< 0.3			SAL				
11/11/1989			87.02	14.10		72.92												
4/3/1990			87.02	13.90		73.12	<100	< 0.5	< 0.5	< 0.5	< 0.5			ANA				
7/30/1990			87.02	13.77		73.25	< 50	< 0.5	< 0.5	< 0.5	< 0.5			ANA			< 5000	
11/20/1990			87.02	14.67		72.35	< 50	0.3	0.8	0.4	1.5			SAL				
3/1/1991			87.02	15.22		71.80	<100	0.4	< 0.3	< 0.3	< 0.3			SAL				
8/19/1991			87.02	13.15		73.87	<30	<0.3	< 0.3	< 0.3	< 0.3			SEQ				
11/13/1991			87.02	15.66		71.36	<30	< 0.3	< 0.3	< 0.3	< 0.3			SEQ				
2/24/1992			87.02	15.01		72.01	<50	0.65	1.4	0.66	4.4			SEQ				
5/19/1992			87.02	15.52		71.50	< 50	< 0.5	< 0.5	< 0.5	< 0.5			SEQ				
7/22/1992			87.02	15.63		71.39	<50	< 0.5	< 0.5	< 0.5	< 0.5			ANA		< 50	< 5000	
8/14/1992			87.02	13.57		73.45												
11/11/1992			87.02	14.13		72.89	< 50	< 0.5	0.7	< 0.5	1.3			ANA				
6/7/1993			87.02	12.13		74.89	< 50	< 0.5	< 0.5	< 0.5	< 0.5			PACE				
12/2/1993			87.02	13.29		73.73	<50	< 0.5	< 0.5	< 0.5	< 0.5			PACE				
6/22/1994			87.02	12.78		74.24	< 50	< 0.5	< 0.5	< 0.5	< 0.5		2.9	PACE				
1/10/1995			87.02	12.01		75.01	<50	<0.5	< 0.5	< 0.5	<1		3.8	ATI				
6/21/1995			87.02	11.57		75.45	< 50	< 0.50	< 0.50	< 0.50	<1.0		7.4	ATI				

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

						Station #1	, , , ,											
***			TOC	D/DIX	Product	Water Level	CDO/	C	oncentrati	ons in (µg/l	·		D.O.			DRO/	mag	THE C
Well and	D/ND	E44-	Elevation	DTW	Thickness	Elevation	GRO/	D	Т-1	Ethyl-	Total	MADE	DO (TO TO TO	T -1-	11	TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	ТРНд	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(μg/L)	(μg/L)
MW-3 Cont.																		
12/27/1995			87.02	13.47		73.55	<50	< 0.50	< 0.50	< 0.50	<1.0	5.7	7.3	ATI				
6/13/1996			87.02	11.22		75.80	60	< 0.5	< 0.5	< 0.5	< 0.5	<10	6.8	SPL				
12/4/1996			87.02	13.28		73.74	<50	< 0.5	<1	<1	<1	<10	6.7	SPL				
6/10/1997			87.02	10.22		76.80	< 50	< 0.5	<1.0	<1.0	<1.0	<10	6.1	SPL				
12/12/1997		c	87.02				< 50	< 0.5	<1.0	<1.0	<1.0	<10		SPL				
12/12/1997			87.02	12.61		74.41	< 50	< 0.5	<1.0	<1.0	<1.0	<10	5.6	SPL				
6/18/1998			87.02	9.07		77.95	50	< 0.5	<1.0	<1.0	<1.0	<10	5.3	SPL				
6/18/1998			87.02	12.80		74.22												
9/28/1999			87.02	13.76		73.26												
3/27/2000			87.02	13.77		73.25	<50	< 0.5	< 0.5	< 0.5	< 0.5	1.6		PACE				
9/28/2000			87.02	11.28		75.74	<50	< 0.5	7.4	< 0.5	1.3	2		PACE				
3/8/2001			87.02	11.75		75.27	<50	< 0.5	< 0.5	< 0.5	< 0.5	60.4		PACE				
9/21/2001			87.02	11.33		75.69	<50	< 0.5	< 0.5	< 0.5	<1.5	8.18		PACE				
2/28/2002			87.02	10.86		76.16	<50	< 0.5	< 0.5	< 0.5	<1.0	25.5		PACE				
9/6/2002			87.02	12.73		74.29	<50	1.2	< 0.5	< 0.5	1	16		SEQ				
2/19/2003		h	87.02	11.72		75.30	< 500	< 5.0	< 5.0	< 5.0	< 5.0	110		SEQ				
7/14/2003			87.02	13.76		73.26	<50	< 0.50	< 0.50	< 0.50	0.67	28		SEQ				
01/14/2004	P		87.02	14.83		72.19	550	< 5.0	< 5.0	< 5.0	< 5.0	380		SEQM	8.1			
04/23/2004	P	1	87.02	13.17		73.85	<200	<25	<25	<25	<25	560		SEQM	6.8			
07/01/2004	P		87.02	15.19		71.83	<50	< 0.50	< 0.50	< 0.50	0.50	48		SEQM	6.4			
10/28/2004	P		87.02	15.50		71.52	< 500	<5.0	<5.0	<5.0	<5.0	290		SEQM	6.3			
01/10/2005	P		87.02	15.00		72.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	18		SEQM	7.6			
04/13/2005	P		87.02	14.34		72.68	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.0		SEQM	7.1			
07/11/2005	P	k	87.02	10.82		76.20	130	<1.0	<1.0	<1.0	<1.0	120		SEQM	7.8			
10/17/2005	P		87.02	11.84		75.18	<250	<2.5	<2.5	<2.5	<2.5	260		SEQM	8.5			
01/17/2006	P		87.02	11.59		75.43	800	< 5.0	< 5.0	<5.0	<5.0	980		SEQM	7.2			
04/21/2006	P		87.02	10.00		77.02	< 500	<5.0	<5.0	<5.0	<5.0	48		SEQM	6.7			
7/17/2006	P	k	87.02	10.80		76.22	910	<5.0	<5.0	<5.0	<5.0	1,400		TAMC	7.7			
7/26/2006	P		87.02	9.67		77.35	810	<10	<10	<10	<10	1,300		TAMC	6.56			
10/31/2006	P		87.02	10.85		76.17	1,600	<10	<10	<10	<10	2,300	2.50	TAMC	6.84			
1/8/2007	P		87.02	12.73		74.29	520	<5.0	<5.0	<5.0	<5.0	760	3.61	TAMC	7.12			

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			TOC		Product	Water Level		C	oncentrati	ons in (µg/l	L)					DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet)	(feet bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(μg/L)	(µg/L)
MW-3 Cont.																		
4/10/2007	P	k	87.02	11.93		75.09	630	<5.0	<5.0	<5.0	<5.0	750	2.31	TAMC	7.15			
7/10/2007	P	k, p	87.02	11.30		75.72	1,800	< 5.0	< 5.0	< 5.0	< 5.0	2,400	1.56	TAMC	6.72	66		
10/24/2007	P	k	87.02	13.77		73.25	2,000	<25	<25	<25	<25	3,500	1.62	TAMC	6.41			
1/22/2008	P	k	87.02	12.92		74.10	1,600	<12	<12	<12	<12	2,800	2.17	TAMC	6.32			
4/15/2008	P		87.02	15.25		71.77	< 50	<2.5	<2.5	<2.5	<2.5	960	3.44	CEL	6.71			
7/8/2008	P		87.02	12.27		74.75	< 50	< 50	< 50	<50	<50	2,200	1.52	CEL	7.01			
11/19/2008	P		87.02	15.27		71.75	< 50	<50	<50	<50	<50	2,700	1.60	CEL	6.83			
2/10/2009	P		87.02	13.61		73.41	< 50	< 50	< 50	< 50	<50	1,800	1.66	CEL	6.98			
5/7/2009	P		87.02	11.75		75.27	140	<10	<10	<10	<10	780	1.28	CEL	6.86			
9/3/2009	P	q	87.02	13.47		73.55	1,100	<10	<10	<10	<10	2,400	1.33	CEL	6.87			
10/29/2009	P	k	87.02	13.04		73.98	1,000	<10	<10	<10	<20	1,500	0.97	TAMC	7.09			
2/26/2010	P	k	87.02	12.44		74.58	1,500	<10	<10	<10	<20	1,500	0.74	TAMC	6.69			
QC-2																		
11/11/1992		g					< 50	< 0.5	< 0.5	< 0.5	< 0.5			ANA				
6/7/1993		g					< 50	< 0.5	< 0.5	< 0.5	< 0.5			PACE				
12/2/1993		g					< 50	< 0.5	< 0.5	< 0.5	< 0.5			PACE				
6/22/1994		g					< 50	< 0.5	< 0.5	< 0.5	< 0.5			PACE				
1/10/1995		g					< 50	< 0.5	< 0.5	< 0.5	<1			ATI				
6/21/1995		g					< 50	< 0.50	< 0.50	< 0.50	<1.0			ATI				
12/27/1995		g					< 50	< 0.50	< 0.50	< 0.50	<1.0	< 5.0		ATI				
6/13/1996		g					< 50	< 0.5	< 0.5	< 0.5	< 0.5	<10		SPL				

ABBREVIATIONS & SYMBOLS:

- --/--- Not analyzed/applicable/measured/available
- < = Not detected at or above specified laboratory reporting limit

DO = Dissolved oxygen

DRO = Diesel range organics

DTW = Depth to water in ft bgs

ft bgs = feet below ground surface

GRO = Gasoline range organics, range C4-C12

GWE = Groundwater elevation measured in ft

HVOC = Halogenated volatile organic compounds

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing measured in ft

TOG = Total oil and grease

TPH-d = Total petroleum hydrocarbons as diesel

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

ANA = Anametrix, Inc.

PACE = Pace, Inc.

ATI = Analytical Technologies, Inc.

SAL = Superior Analytical Laboratory

SPL = Southern Petroleum Laboratories

SEQ/SEQM = Sequoia Analytical/Sequoia Analytical - Morgan Hill (Laboratories)

CEL = CalScience Environmental Laboratories, Inc.

FOOTNOTES:

- c = Blind duplicate.
- d = A copy of the documentation for this data is included in Appendix C of Alisto report 10-076-06-002.
- e = Tetrachloroethene
- f = trans-1,2-Dichloroethene
- g = Travel blank.
- h = TPH-g, benzene, toluene, ethylbenzene, and total xylenes (BTEX), and MTBE analyzed by EPA Method 8260B beginning on 1st quarter sampling event (2/19/03).
- k = The hydrocarbon result was partly due to individual peaks in the quantification range (GRO).
- 1 = GRO analyzed by EPA Method 8015B.
- m = Confirmatory analysis for total xylenes was past holding time.
- n = Well inaccessible.
- p = Hydrocarbon in req. fuel range, but doesn't resemble req. fuel (DRO).
- q = Quantitaion of unknown hydrocarbon(s) in sample based on gasoline (GRO).

NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for pH and DO were obtained through field measurements.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through September 30, 2009. GRO analysis was changed to EPA method 8260B (C6-C12) for the time period October 1, 2009 through the present.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and				Concentration	ons in (µg/L)		<u> </u>		
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
			- 10	• 0	• 0	- 0			
7/14/2003	<2000	2,700	940	<20	<20	<20			
01/14/2004	<1,000	2,500	220	<5.0	<5.0	<5.0	<5.0	<5.0	
04/23/2004	<500	2,500	150	<2.5	<2.5	<2.5	<2.5	<2.5	
07/01/2004	<500	2,000	96	<2.5	<2.5	<2.5	<2.5	<2.5	
10/28/2004	<5.0	1,500	43	< 0.50	<0.50	0.58	< 0.50	< 0.50	
01/10/2005	< 500	1,900	85	<2.5	<2.5	<2.5	<2.5	<2.5	
04/13/2005	<500	1,400	48	<2.5	<2.5	<2.5	<2.5	<2.5	
07/11/2005	<100	550	36	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
10/17/2005	<100	450	20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
01/17/2006	<300	260	38	< 0.50	< 0.50	0.54	< 0.50	< 0.50	
04/21/2006	<300	320	17	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
7/17/2006	<300	32	5.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
7/26/2006	<300	22	4.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
10/31/2006	<300	<20	2.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
1/8/2007	<300	110	6.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
4/10/2007	<300	210	9.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
7/10/2007	<300	110	4.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
10/24/2007	<300	94	4.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
1/22/2008	<300	110	7.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
4/15/2008	<300	84	5.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
7/8/2008	<300	64	5.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/19/2008	<300	110	3.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/10/2009	<300	110	5.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
5/7/2009	<300	17	13	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
9/3/2009	<300	260	3.8	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
10/29/2009	<100	210	22	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/26/2010	<100	240	8.1	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
7/14/2003	<100000	<20000	24,000	<1000	<1000	<1000			
01/14/2004	<100,000	<20,000	21,000	<500	<500	<500	<500	<500	
04/23/2004	<50,000	11,000	22,000	<250	<250	420	<250	<250	
0+/23/2004	<50,000	11,000	22,000	\230	\230	420	\230°	C230	

Table 2. Summary of Fuel Additives Analytical Data Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and					ons in (µg/L)		nui bivu., O		
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-2 Cont.									
07/01/2004	10,000	2,000	5 200	.FO	-50	110	-50	-50	
07/01/2004	<10,000	2,900	5,200	<50	<50	110	<50	<50	
10/28/2004	<5.0	6,700	6,800	<50	<50	120	<50	<50	
01/10/2005	<50,000	<10,000	7,100	<250	<250	<250	<250	<250	
04/13/2005	<10,000	5,300	5,300	<50	<50	95	<50	<50	
07/11/2005	<10,000	9,000	5,300	<50	<50	99	<50	<50	
10/17/2005	<10,000	5,200	2,500	<50	< 50	<50	<50	< 50	a
01/17/2006	<30,000	8,400	2,200	<50	<50	<50	<50	<50	
04/21/2006									Well inaccessible
7/26/2006	<30,000	4,500	2,900	<50	<50	<50	<50	< 50	
10/31/2006	<15,000	9,300	2,300	<25	<25	41	<25	<25	a
1/8/2007	<7,500	7700	1700	<12	<12	38	<12	<12	
4/10/2007	<30,000	6,400	1,500	< 50	< 50	< 50	<50	< 50	
7/10/2007	<15,000	8,700	2,600	<25	<25	42	<25	<25	
10/24/2007	<15,000	9,500	2,800	<25	<25	52	<25	<25	
1/22/2008	<15,000	6,000	1,400	<25	<25	<25	<25	<25	
4/15/2008	<1,500	6,800	2,400	<2.5	<2.5	30	2.8	<2.5	
7/8/2008	<30,000	7,600	2,800	<50	<50	<50	<50	< 50	
11/19/2008	<30,000	7,100	1,900	<50	<50	<50	<50	<50	
2/10/2009	<30,000	2,700	940	<50	<50	<50	<50	<50	
5/7/2009	<12,000	3,900	1,900	<20	<20	30	<20	<20	
9/3/2009	<24,000	7,500	1,300	<40	<40	<40	<40	<40	
10/29/2009	<100	3,900	690	< 0.50	< 0.50	12	2.4	< 0.50	
2/26/2010	<2,000	4,100	1,100	<10	<10	13	<10	<10	
MW-3									
7/14/2003	<100	<20	28	<1.0	<1.0	<1.0			
01/14/2004	<1,000	<200	380	<5.0	<5.0	<5.0	<5.0	<5.0	
04/23/2004	<5,000	<1,000	560	<25	<25	<25	<25	<25	
07/01/2004	<100	<20	48	<0.50	<0.50	0.52	<0.50	<0.50	
10/28/2004	<5.0	<200	290	<5.0	<5.0	<5.0	<5.0	<5.0	
01/10/2005	<100	<200	18	<0.50	<0.50	<0.50	<0.50	<0.50	
04/13/2005	<100	<20	9.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

Table 2. Summary of Fuel Additives Analytical Data Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and				Concentration	ons in (µg/L)		· · · · · · · · · · · · · · · · · · ·	· · · · · ·	
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-3 Cont.									
07/11/2005	<200	<40	120	<1.0	<1.0	1.4	<1.0	<1.0	a
10/17/2005	<500	<100	260	<2.5	<2.5	4.2	<2.5	<2.5	a
01/17/2006	<3,000	200	980	<5.0	<5.0	13	<5.0	< 5.0	
04/21/2006	<3,000	<200	48	<5.0	<5.0	<5.0	<5.0	<5.0	
7/17/2006	<3,000	<200	1,400	<5.0	<5.0	15	<5.0	< 5.0	
7/26/2006	<6,000	<400	1,300	<10	<10	18	<10	<10	
10/31/2006	<6,000	<400	2,300	<10	<10	39	<10	<10	a
1/8/2007	<3000	<200	760	< 5.0	< 5.0	9.7	<5.0	< 5.0	
4/10/2007	<3,000	<200	750	<5.0	<5.0	<5.0	<5.0	< 5.0	
7/10/2007	<3,000	<200	2,400	< 5.0	< 5.0	39	< 5.0		
10/24/2007	<15,000	<1,000	3,500	<25	<25	58	<25	<25	
1/22/2008	<7,500	< 500	2,800	<12	<12	34	<12	<12	
4/15/2008	<1,500	<50	960	<2.5	<2.5	9.2	<2.5	<2.5	
7/8/2008	<30,000	<1,000	2,200	< 50	<50	< 50	<50	< 50	
11/19/2008	<30,000	<1,000	2,700	<50	<50	<50	<50	< 50	
2/10/2009	<30,000	<1,000	1,800	<50	<50	< 50	<50	< 50	
5/7/2009	<6,000	<200	780	<10	<10	11	<10	<10	
9/3/2009	<6,000	<200	2,400	<10	<10	39	<10	<10	
10/29/2009	<2,000	110	1,500	<10	<10	17	<10	<10	
2/26/2010	<2,000	<80	1,500	<10	<10	16	<10	<10	

ABBREVIATIONS & SYMBOLS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above specified laboratory reporting limit

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

 $\mu g/L = Micrograms per Liter$

FOOTNOTES:

a = The calibration verification for ethanol was within the method limits but outside the contract limits.

NOTES:

All volatile organic compounds were analyzed using EPA Method 8260B.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #11102, 100 MacArthur Blvd., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
4/21/2006		
7/17/2006	Southwest	0.05
10/31/2006	Southwest	0.04
1/8/2007	West	0.06
4/10/2007	West	0.05
7/10/2007	Southwest	0.04
10/24/2007	West-Southwest	0.06
1/22/2008	West	0.05
4/15/2008	West-Southwest	0.09
7/8/2008	West-Southwest	0.05
11/19/2008	West	0.06
2/10/2009	West	0.04
5/7/2009	West	0.05
9/3/2009	West	0.05
10/29/2009	West	0.04
2/26/2010	West	0.05

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 4. Bio-Degradation Parameters Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and	Conce	ntrations in ((μg/L)					Hydrogen			
Sample Date	Total	Nitrate	Sulfate	Ferrous	ORP	DO	Conductivity	Sulfide	Methane		
	Alkalinity	NO3	SO4	Iron (mg/L)	(mV)	(mg/L)	(µS/cm)	(mg/L)	(µg/L)	pН	Comments
MW-1											
7/10/2007		1,500	21,000	0.11	71.1	2.01		<1.0		6.60	
10/24/2007						1.89	639			6.57	
1/22/2008		760	11,000	0.42	108	3.18	811	<1.0		6.49	
4/15/2008		240	9,900	0.26		3.32	758	< 0.100		6.45	
7/8/2008		860	19,000	0.23		1.65	628			6.78	
11/19/2008		540	16,000	0.5		1.59	853			6.84	
2/10/2009		830	35,000	0.0	63	1.63	899	<100		7.00	
5/7/2009		9,300	40,000	0.5	59	1.41	851	<100		6.82	
9/3/2009		<440	15,000	0.0	62	1.45	676	<100		6.82	
10/29/2009		<1,000	19,000	< 0.10	20	1.53	142.8	2.9		6.73	a
2/26/2010					45	0.75	761.2			6.55	
MW-2											
7/10/2007		< 500	26,000	0.16	9.7	1.82		<1.0		6.69	
10/24/2007						1.55	863			6.77	
1/22/2008		8,500	26,000	0.15	167	2.08	672	<1.0		6.55	
4/15/2008		<100	28,000	< 0.100		3.12	799	< 0.100		6.72	
7/8/2008		<440	25,000	0.15		1.78	753			7.05	
11/19/2008		3,300	20,000	0.0		1.75	581			6.72	
2/10/2009		22,000	42,000	0.0	87	1.71	591	100		7.04	CL (NO3)
5/7/2009		<440	33,000	0.03	90	1.62	1,108	<100		6.94	
9/3/2009		<440	16,000	0.5	93	1.56	525	<100		7.02	
10/29/2009		<1,000	14,000	0.64		1.60	514.4	3.1		6.7	a
2/26/2010					9	0.52	577.9			6.64	
MW-3											
7/10/2007		8,500	19,000	< 0.100	182.9	1.56		<1.0		6.72	
10/24/2007						1.62	639			6.41	
1/22/2008		5,600	17,000	< 0.100	144	2.17	636	<1.0		6.32	
4/15/2008		1,600	21,000	< 0.100		3.44	638	< 0.100		6.71	
7/8/2008		6,700	18,000	< 0.100		1.52	651			7.01	
11/19/2008		6,100	15,000	0.5		1.60	651			6.83	

Table 4. Bio-Degradation Parameters

Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and	Conce	entrations in ((μg/L)					Hydrogen			
Sample Date	Total	Nitrate	Sulfate	Ferrous	ORP	DO	Conductivity		Methane		
	Alkalinity	NO3	SO4	Iron (mg/L)	(mV)	(mg/L)	(µS/cm)	(mg/L)	(μg/L)	pН	Comments
MW-3 Cont.											
2/10/2009		5,400	22,000	0.0	91	1.66	659	<100		6.98	
5/7/2009		11,300	19,000	0.0	87	1.28	643	<100		6.86	
9/3/2009		8,100	15,000	0.0	85	1.33	557	<100		6.87	
10/29/2009		12,000	17,000	< 0.10	-21	0.97	630	2.4		7.09	a
2/26/2010					17	0.74	665.6			6.69	

ABBREVIATIONS AND SYMBOLS:

< = Not detected at or above specified laboratory reporting limit

ORP = Oxygen reduction potential

DO = Dissolved oxygen

CO2 = Carbon dioxide

mV = Millivolts

 $\mu g/L = Micrograms per liter$

mg/L = Milligrams per liter

a = Sample analyzed for total sulfide instead of hydrogen sulfide due to holding time requirements

CL = Initial analysis within holding time but required dilution

APPENDIX A

BAI GROUND-WATER SAMPLING DATA (INCLUDES FIELD DATA SHEETS, LABORATORY ANALYTICAL REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION, AND FIELD PROCEDURES)

DATE: 2/26/10

PERSONNEL: T. Gaddies

PROJECT NO.: 1/102 69-88-643

COMMENTS:

WEATHER: Overlust Equip: Geosquirt Tubing Bailers DO WII Ec/pH

		1400)										
Well ID	Time	MEASURING POINT	DTW (FT)	PRODUCT THICKNESS	рН	Cond. (X100)	Temp. (C/F)	DO (mg/l)	Redox (mV)	Iron (mg/l)	Alk. (mg/l)	WELL HEAD CONDITION: VAULT, BOLTS, CAP, LOCK, ETC
9W-1	Ò 9 48	TGC	10.61									17
4W-2	0835		11.65									12
1w.3	0835	V	12.44									13
											September 1	3gal from purge sampling 45 45gal in Drum lettonsik
												45
												45 galin Drum lettensite
0.0												
											*	
	7 7 7 7											
			*				1			nia com un se acesta		

Groundwater Sampling Data Sheet

Well I.D.:			,	MW-				
Project Na	ame/Loc	ation:	BP 11					: 09-88-643
Sampler's	Name:		T. 61	ddes			Date: 7	2/26/10
Purging E	quipmen	it:	Bai	ler				
Sampling	Equipme	ent:	Baile	· <u>~</u>	A . 4			
Casing Ty	pe: PVC			<i>(</i>)	i di			
Casing Di	ameter:			4				CASING VOLUMES
Total Wel	l Depth:			<u> 32.</u>				= 0.16 gal/lin ft.
Depth to	Water:		· · · · · · · · · · · · · · · · · · ·	- 10.				= 0.37 gal/lin ft.
Water Co	lumn Thi	ckness:		= 21	. 39 feet			= 0.65 gal/lin ft.
Unit Casi	ng Volum	ne*:		×6	AND AND THE STATE OF THE STATE	oot	6"	= 1.47 gal/lin ft.
Casing W	ater Volu	ıme:		=_13	gailons			
Casing Vo	olume:				3 each			
Estimated				= 41.	, 7 gallons			
Free prod	luct mea	sureme	nt (if pr	esent):		Y The second		
Purged	Time	DO	ORP	Fe	Conductance	Temperature	pН	Observations
(gallons)	(24:00)	».	(mV)		(μ5)	(Fahrenheit)	1 0-	
0	0918	.75	45		152.2	65.6	6.85	
5	0925	X	X	X	672.9	65.3	6.98	
10	0930	X	X	X	693.9	65.3	6.52	
15	0937	Х	Х	×	746.5	653	6.55	
17.	0940	1.89	Х	Х	761.2	65.5	6.55	
		X	X	×				
		Х	×	x				
		×	×	×				
Total Wat	er Volun	ne Purg	ed:		17	gallons	tuan 175 - 175 Life da 17	
Depth to	Water at	Sample	e Collec	tion:	11.60	feet		
Sample					0945		Purg	ged Dry?(Y/🕦
		m	7	920	`			
Comment	s:	VI		<u>32, c</u>				
				4-11				
• 1								
								

Groundwater Sampling Data Sheet

Well I.D.:		_		MW	<u>-2</u>				
Project Na	me/Loc	ation:	5	D 11102				Project #	: 09-88-643 (26/10
Sampler's			T. (5 coldes	· 1 · 1 ·			Date: 2	[26/10
Purging E	quipmer	nt:	Bu	ile					
Sampling			Bu	iber		1 to			
Casing Ty	pe: PVC	•							
Casing Dia			ř Vi	_4	4	inch		*UNIT	CASING VOLUMES
Total Well	Depth:			32	39	feet			= 0.16 gal/lin ft.
Depth to	Water:		* w	- 11,6	5	feet			= 0.37 gal/lin ft.
Water Col	umn Th	ickness:		= 20	2	feet			= 0.65 gal/lin ft.
Unit Casir	ng Volun	ne*:		×6	5	gallon / fo	oot	6"	= 1.47 gal/lin ft.
Casing Wa	ater Vol	ume:		= 13	,4/	gailons			
Casing Vo	lume:			×	3	each			
Estimated	Purge '	Volume:		= <u>40</u>	,44	gallons		40	
Free prod	uct mea	sureme	nt (if pr	esent):					
Purged	Time	DO	ORP	Fe	Con	ductance	Temperature	рН	Observations
(gallons)	(24:00)		(mV)			(μS) 4 Δ:	(Fahrenheit)	1 010	
6	1005	0.52	9		1589	4.9	66.1	6.98	
5	1010	Х	X	х	560). 4	66.3	6.63	
9	1015	X	×	x	Ssi	fo [66.4	6.59	
12	1020	1.44	Х	х	57,	7.9	66.5	664	
		х	Х	х					
		х	X	x		1.09			
		х	Х	х	1 2 0				
		х	х	×				.50	
Total Wat	er Volur	me Purge	ed:			12	gallons		
Depth to				tion:		20,24	feet		
Sample (lt	27		Pur	ged Dry? (Y 🔊
				1					
Comment	s:			14/2	2 "	2.40			
									
			,						
-						38			

Groundwater Sampling Data Sheet

Well I.D.:				Mh	<u>/-3</u>					
Project Na	me/Loc	ation:	BP 1	1102				Project #: 69-88-643		
Sampler's			T.	Ordel.	15			Date: 2	126/10	
Purging E	quipmen	nt:		iler			A. comment	·		
Sampling	Equipme	ent:	Bai	ber_						
Casing Ty	pe: PVC				14					
Casing Dia	ameter:			4		inch			CASING VOLUMES	
Total Well	Depth:			32,		feet			= 0.16 gal/lin ft.	
Depth to	Water:			- 12.4		feet			= 0.37 gal/lin ft.	
Water Col	umn Thi	ickness:		= <u>20</u>		feet			= 0.65 gal/lin ft.	
Unit Casir	ng Volum	ne*:		x ,6		gallon / fo	oot	6" =	= 1.47 gal/lin ft.	
Casing Wa	ater Volu	ıme:		= 13.	00	gailons				
Casing Vo	lume:			×	3	each				
Estimated	Purge \	/olume:		= 39	01	gallons				
Free prod	uct mea	sureme	nt (if pr	esent):						
Purged (gallons)	Time (24:00)	DO	ORP (mV)	Fe		luctance (μS)	Temperature (Fahrenheit)	рН	Observations	
D		0.74	Q		65	3.2	66.0	7,00		
5	1052	x	×	х	65	1.8	250	6.70		
10	1058	Х	X	X	669	.8	6765	6.70		
13	1102	1.76	X	×	669	26	672	669		
		'×	X	X						
		Х	X	×						
		Х	×	X						
		х	x	×	N N N					
Total Wat	er Volur	ne Purge	ed:			13	gallons			
Depth to				tion:		19,53	řeet			
Sample (1109	V	Purg	ed Dry?(Y 🛝	
				4-17	, 7	2 /1				
Comment	s:		***	D1.12	· ~	2.51		· · · · · · · · · · · · · · · · · · ·		
								aga da sa sa		
		-	-7							

ANALYTICAL REPORT

Job Number: 720-26203-1

Job Description: BP #11102, Oakland

For:
ARCADIS U.S., Inc.
155 Montgomery Street
Suite 1500
San Francisco, CA 94104

Attention: Hollis Phillips

Sharma

Approved for release Dimple Sharma Project Manager I 4/23/2010 4:43 PM

Dimple Sharma
Project Manager I
dimple.sharma@testamericainc.com
04/23/2010
Revision: 1

cc: Mr. Jason Duda Mr. Ben McKenna

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-26203-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for sample 26203-2 and 3 are due to the presence of discrete peaks: MW-2(02/26/10) (720-26203-2), MW-3(02/26/10) (720-26203-3).

No other analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Lab Sample ID	Client Sample ID		Reporting		
Analyte		Result / Qualifier	Limit	Units	Method
720-26203-1	MW-1(02/26/10)				
MTBE		8.1	0.50	ug/L	8260B/CA_LUFTMS
TBA		240	4.0	ug/L	8260B/CA_LUFTMS
720-26203-2	MW-2(02/26/10)				
MTBE		1100	10	ug/L	8260B/CA_LUFTMS
TBA		4100	80	ug/L	8260B/CA_LUFTMS
TAME		13	10	ug/L	8260B/CA_LUFTMS
Gasoline Range	Organics (GRO)-C6-C12	1100	1000	ug/L	8260B/CA_LUFTMS
720-26203-3	MW-3(02/26/10)				
MTBE		1500	10	ug/L	8260B/CA_LUFTMS
TAME		16	10	ug/L	8260B/CA_LUFTMS
Gasoline Range	Organics (GRO)-C6-C12	1500	1000	ug/L	8260B/CA_LUFTMS

METHOD SUMMARY

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Description	Lab Location	Method Preparation Method
Matrix: Water		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Purge and Trap	TAL SF	SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-26203-1	MW-1(02/26/10)	Water	02/26/2010 0945	02/26/2010 1610
720-26203-2	MW-2(02/26/10)	Water	02/26/2010 1027	02/26/2010 1610
720-26203-3	MW-3(02/26/10)	Water	02/26/2010 1109	02/26/2010 1610

Analytical Data

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Client Sample ID: MW-1(02/26/10)

Lab Sample ID: 720-26203-1 Date Sampled: 02/26/2010 0945

Client Matrix: Water Date Received: 02/26/2010 1610

8260B/CA	LUFTMS	8260B /	CA L	JFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-66772 Instrument ID: HP4

 Preparation:
 5030B
 Lab File ID:
 03011012.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 03/01/2010 2022
 Final Weight/Volume:
 10
 mL

Date Prepared: 03/01/2010 2022

Date Prepared: 03/01/2010 2022			
Analyte	Result (ug/L)	Qualifier	RL
MTBE	8.1		0.50
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	240		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		67 - 130
Toluene-d8 (Surr)	87		70 - 130

Analytical Data

70 - 130

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Client Sample ID: MW-1(02/26/10)

Toluene-d8 (Surr)

Lab Sample ID: 720-26203-1 Date Sampled: 02/26/2010 0945

Client Matrix: Water Date Received: 02/26/2010 1610

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-66809 Instrument ID: HP5

Preparation: 5030B Lab File ID: 03021009.D Dilution: 1.0 Initial Weight/Volume: 10 mL

 Date Analyzed:
 03/02/2010
 1407
 Final Weight/Volume:
 10 mL

 Date Prepared:
 03/02/2010
 1407

96

Analyte Result (ug/L) Qualifier RL
Gasoline Range Organics (GRO)-C6-C12 ND 50

Surrogate %Rec Qualifier Acceptance Limits
4-Bromofluorobenzene 92 67 - 130
1,2-Dichloroethane-d4 (Surr) 82 67 - 130

Analytical Data

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Client Sample ID: MW-2(02/26/10)

Lab Sample ID: 720-26203-2 Date Sampled: 02/26/2010 1027

Client Matrix: Water Date Received: 02/26/2010 1610

8260B/CA	LILETMAN	/ ^ ^ !	LIET MAC

Method: 8260B/CA_LUFTMS Analysis Batch: 720-66772 Instrument ID: HP4

 Preparation:
 5030B
 Lab File ID:
 03011013.D

 Dilution:
 20
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 03/01/2010 2053
 Final Weight/Volume:
 10
 mL

Date Prepared: 03/01/2010 2053

	D 11 (11)	0 115	D.
Analyte	Result (ug/L)	Qualifier	RL
MTBE	1100		10
Benzene	ND		10
EDB	ND		10
1,2-DCA	ND		10
Ethylbenzene	ND		10
Toluene	ND		10
Xylenes, Total	ND		20
TBA	4100		80
Ethanol	ND		2000
DIPE	ND		10
TAME	13		10
Ethyl t-butyl ether	ND		10
Gasoline Range Organics (GRO)-C6-C12	1100		1000
Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		67 - 130
Toluene-d8 (Surr)	89		70 - 130
* ,			

Analytical Data

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Client Sample ID: MW-3(02/26/10)

Lab Sample ID: 720-26203-3 Date Sampled: 02/26/2010 1109

Client Matrix: Water Date Received: 02/26/2010 1610

8260B/CA	LUFTMS	8260B /	CA L	UFT	MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-66772 Instrument ID: HP4

Preparation: 5030B Lab File ID: 03011014.D Dilution: 20 Initial Weight/Volume: 10 mL Date Analyzed: 03/01/2010 2126 Final Weight/Volume: 10 mL

Date Prepared: 03/01/2010 2126

	D 11 (11)	0 ""	D .
Analyte	Result (ug/L)	Qualifier	RL
MTBE	1500		10
Benzene	ND		10
EDB	ND		10
,2-DCA	ND		10
Ethylbenzene	ND		10
oluene	ND		10
Kylenes, Total	ND		20
⁻ BA	ND		80
Ethanol	ND		2000
DIPE	ND		10
AME	16		10
Ethyl t-butyl ether	ND		10
Gasoline Range Organics (GRO)-C6-C12	1500		1000
Surrogate	%Rec	Qualifier	Acceptance Limits
-Bromofluorobenzene	99		67 - 130
,2-Dichloroethane-d4 (Surr)	102		67 - 130
oluene-d8 (Surr)	88		70 - 130

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-66	772				
LCS 720-66772/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-66772/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-66772/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-66772/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-66772/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-26203-1	MW-1(02/26/10)	Т	Water	8260B/CA_LUFT	
720-26203-1MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-26203-1MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-26203-2	MW-2(02/26/10)	Т	Water	8260B/CA_LUFT	
720-26203-3	MW-3(02/26/10)	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-668	809				
LCS 720-66809/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-66809/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-66809/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-26203-1	MW-1(02/26/10)	Т	Water	8260B/CA LUFT	

Report Basis

T = Total

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Method Blank - Batch: 720-66772

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-66772/4

Client Matrix: Water Dilution: 1.0

Date Analyzed: 03/01/2010 1606

Analysis Batch: 720-66772

Prep Batch: N/A Units: ug/L

Instrument ID: HP4

Lab File ID: 03011004.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Prepared: 03/01/2010 1606

Analyte	Result	Qual	RL
MTBE	ND		0.50
Benzene	ND		0.50
EDB	ND		0.50
1,2-DCA	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		4.0
Ethanol	ND		100
DIPE	ND		0.50
TAME	ND		0.50
Ethyl t-butyl ether	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	99	67 - 130	
1,2-Dichloroethane-d4 (Surr)	99	67 - 130	
Toluene-d8 (Surr)	89	70 - 130	

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-66772 Preparation: 5030B

LCS Lab Sample ID: LCS 720-66772/5 Analysis Batch: 720-66772 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 03011005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 03/01/2010 1638 Final Weight/Volume: 10 mL Date Prepared: 03/01/2010 1638

LCSD Lab Sample ID: LCSD 720-66772/6 Analysis Batch: 720-66772 Instrument ID: HP4
Client Matrix: Water Prep Batch: N/A Lab File ID: 03011006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 03/01/2010 1710 Final Weight/Volume: 10 mL Date Prepared: 03/01/2010 1710

% Rec. **RPD** LCSD Qual Analyte LCS LCSD Limit RPD Limit LCS Qual **MTBE** 106 73 - 123 20 103 4 Benzene 98 98 82 - 127 0 20 **EDB** 104 106 70 - 130 2 20 1,2-DCA 111 75 - 145 0 20 111 Ethylbenzene 107 105 86 - 135 2 20 Toluene 2 20 103 101 83 - 129 TBA 100 0 20 100 85 - 110 Ethanol 120 117 31 - 216 2 20 DIPE 116 20 117 74 - 155 1 **TAME** 106 3 20 109 79 - 129 104 70 - 130 2 20 Ethyl t-butyl ether 106 LCS % Rec LCSD % Rec Acceptance Limits Surrogate 4-Bromofluorobenzene 106 106 67 - 130 1,2-Dichloroethane-d4 (Surr) 98 98 67 - 130 Toluene-d8 (Surr) 92 70 - 130 93 LCS % Rec LCSD % Rec Acceptance Limits Surrogate 4-Bromofluorobenzene 106 106 67 - 130 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 102 Toluene-d8 (Surr) 92 92 70 - 130

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-66772 Preparation: 5030B

MS Lab Sample ID: 720-26203-1 Analysis Batch: 720-66772 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 03011010.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 03/01/2010 1918
 Final Weight/Volume:
 10
 mL

Date Analyzed: 03/01/2010 1918 Final Weight/Volume: 10 ml Date Prepared: 03/01/2010 1918

MSD Lab Sample ID: 720-26203-1 Analysis Batch: 720-66772 Instrument ID: HP4

Client Matrix: Water Prep Batch: N/A Lab File ID: 03011011.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 03/01/2010 1950 Final Weight/Volume: 10 mL

Date Prepared: 03/01/2010 1950

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
MTBE	103	101	60 - 138	1	20		
Benzene	100	100	60 - 140	0	20		
EDB	101	100	60 - 140	1	20		
1,2-DCA	107	104	60 - 140	3	20		
Ethylbenzene	111	111	60 - 140	0	20		
Toluene	105	105	60 - 140	0	20		
TBA	104	99	60 - 140	3	20		
Ethanol	120	110	60 - 140	8	20		
DIPE	116	114	60 - 140	2	20		
TAME	107	107	60 - 140	0	20		
Ethyl t-butyl ether	106	105	60 - 140	1	20		
Surrogate		MS % Rec	MSD	% Rec	Acce	ptance Limits	
4-Bromofluorobenzene		104	103		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)		94	94		6	7 - 130	
Toluene-d8 (Surr)		91	91		7	0 - 130	

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Method Blank - Batch: 720-66809

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-66809/4

Client Matrix: Water Dilution: 1.0

Date Analyzed: 03/02/2010 1039 Date Prepared: 03/02/2010 1039 Analysis Batch: 720-66809

Prep Batch: N/A Units: ug/L Instrument ID: HP5

Lab File ID: 03021004.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Gasoline Range Organics (GRO)-C6-C12	ND		50
Surrogate	% Rec		Acceptance Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	91		67 - 130
Toluene-d8 (Surr)	95		70 - 130
Surrogate	LCS % Rec	LCSD % Rec	Acceptance Limits
4-Bromofluorobenzene	98	94	67 - 130
1,2-Dichloroethane-d4 (Surr)	86	81	67 - 130
Toluene-d8 (Surr)	99	98	70 - 130

Sharma, Dimple

From: Phillips, Hollis [Hollis.Phillips@arcadis-us.com]

Sent: Monday, March 01, 2010 3:38 PM

To: Sharma, Dimple

Subject: FW: Status: Samples received for ARCADIS U.S., Inc. - San Francisco [720-26203-1]

Dimple:

Please do not analyze the purge water samples (the MWs can be analyzed per the COC)

From: TotalAccess [mailto:totalaccess@testamericainc.com]

Sent: Monday, March 01, 2010 12:19 PM

To: Phillips, Hollis

Subject: Status: Samples received for ARCADIS U.S., Inc. - San Francisco [720-26203-1]

WORK ORDER

720-26203-1

San Francisco Laboratory

Project Number:

Report To:	Invoice To:
Hollis Phillips	Accounts Payable
ARCADIS U.S., Inc San Francisco	ARCADIS U.S. Inc

155 Montgomery Street Suite 1500 Attn: Accounts Payable 640 Plaza Drive, Suite 130

San Francisco, California 94104 Highlands Ranch, CO 80129

Phone: Phone: Fax: Fax:

 Laboratory Project Manager:
 Dimple Sharma
 Date Due:
 03/12/10 23:59

 Status:
 Received
 Date Received:
 02/26/10 16:10

 Status Date:
 02/26/10 19:51
 Date Logged:
 03/01/10 11:43

Analysis Expires Status Status Date

MW-1(02/26/10) (720-26203-1-720-26203-1) Water Sampled: 02/26/10 09:45 8260B LL 03/12/10 23:59

8260B_LL 03/12/10 23:59 Ready 03/01/10 12:01

MW-2(02/26/10) (720-26203-1-720-26203-2) Water Sampled: 02/26/10 10:27 8260B LL 03/12/10 23:59

8260B_LL 03/12/10 23:59 Ready 03/01/10.12:01

MW-3(02/26/10) (720-26203-1-720-26203-3) Water Sampled: 02/26/10 11:09
8260B_LL 03/12/10 23:59 Ready 03/01/10 12:01

Sampled: 02/26/10 11:35 08/25/10 23:59 Waiting N/A 04/07/10 23:59 Ready 03/01/10 12:16 03/12/10 23:59 Ready 03/01/10 12:01 03/05/10 23:59 In-Transit 03/01/10 12:03 08/19/15 11:35 In-Transit 03/01/10 12:02

San Francisco

Pleasanton, CA 94566

phone 925.484.1919 fax \$25.60 3002

1220 Quarry Lane

720-26203

Chain of Custody Record

TestAmerica
The LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

Bullet Contact	Project Ma	anager: Jas	on Duda		***************************************	Site	e Cor	tact:	Tracy	Gedde	S	this common	***************************************	***************************************	Date:	2/26/	2010	10011000		*******	COC No:
Broadbent & Associates	Tel/Fax: (530) 566-1400/ (530) 566-1401			Lab Contact: Dimple Sharma Car							Carrier: BAI				**********		1 of1_ COCs				
1324 Mangrove Ave Suite 212		Analysis T	urnaround	Time	3.				es .	П	Т	Т				T		Т	T		Job No.
Chico, CA 95926			ork Days (W						Chloroform, Naphthalene, ethene by 8260B			108	l m	ead							
(530) 566-1400	1	***************************************	rom Below St	************	***************		5 Oxys by 8260B		Ë		2	37 60	75	Fath							
(530) 566-1401			weeks				8.	3	Nap 809		2	Pea	24 8	CSO							SDG No.
Project Name: BP 11102			week				xys	y 82	W 82	;	Ď.	S. L.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	urI							
Site: 100 MacArthur Blvd, Oakland, CA			days				50	8 8	rofo te b	- C	SZF	E.	A Ac	6-ho				1			N _{ee} r
P O # GP09BPNA.C111			day			Ħ	X, &	8264	the sta	760	500	rom	<u>Ş</u>	tic 9				Anna			
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Fiftered Sa	GRO, BTEX	1,2 DCA and EDB by 8260B Ethanol by 8260B	Acetone, C Trichloroe	GRØ by 8260B	Sulfide by 4500.S2F	Arsenic, Chromium & Lead by 6010B	BTEX, 1,2-BCa, Acefone, Chloroform, MTBB/Naphthatene, TBA, & Trichloroethene by 8260B	Acute Aquatic 96-hour LC50 Fathead							Sample Specific Notes:
MW-1(02/26/10)	2/26/2010	0945	Grab	Water	6		X :	хх											T		
MW-2(02/26/10)	2/26/2010	1027	Grab	Water	6		X :	x x									\top				4
ህ ወ MW-3(02/26/10)	2/26/2010	1109	Grab	Water	6		x :	x x								\prod		T			A
0 11102RusgeWater(02/26/10)	2/26/2010	1135	Composite	Water	_12_				Y	х,	(x		X	У			1/4	2	10	2	Today love
17																H	4	17	14		Hollis on 3/1/10
O Th						T	1				1	\Box				$\dagger \dagger$	+	\dagger			aucis en 3/1/10.
18						T	T	T			1					T		\dagger	\Box		
					-1						1	\Box	***************************************			T	7	1	$ \cdot $	\exists	water the state of
						T		1			1	\Box				T	\top	\dagger	\dagger	\dashv	
					· ·	1	1	\top			1		***************************************		\top		\top	+	H	\neg	
			****			T					T						\blacksquare	\dagger		+	
Trip Blank(02/26/2010)	2/26/10				2	,										fTf	\top	1	10	7	Hold Trip Blank
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOl	H; 6= Other				***************************************	1					†				\top	$\vdash \vdash$	+	+	H	\dashv	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B		Inknown			S	amp	Retu	<mark>sposa</mark> i ım To ((A fe	e m	ay be	assessed Disposare		iples a		tained rchive		ger t	han	1 month) Months
Special Instructions/QC Requirements & Comments:				22.	THE RESERVE WAS		DISSELLE			- Landard House		WARRIARS	Military Company	Jy LED			, GIIV	, r <i>ui</i>		-	- World's
2	Company /	AI		Date/Tin	126	0	-	red by	<u>010</u>	un	. (/	Nu	llu	Δ	,	(sa)	A.	M	۲		Date/Time: 7-76-10 1610
	Company:			Date/Tin	ne:	R	eceiv	ed by											V		Date/Time:
Relinquished by:	Company:			Date/Tin	ne:	R	eceiv	ed by			* The share			***************************************				***************************************	-	E	Date/Time:

Login Sample Receipt Check List

Client: ARCADIS U.S., Inc. Job Number: 720-26203-1

Login Number: 26203 List Source: TestAmerica San Francisco

Creator: Mullen, Joan List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Is the Field Sampler's name present on COC?	True
Sample Preservation Verified	True

BROADBENT & ASSOCIATES INC. FIELD PROCEDURES

A.1 QUALITY ASSURANCE/QUALITY CONTROL FIELD PROTOCOLS

Field protocols have been implemented to enhance the accuracy and reliability of data collection, ground-water sample collection, transportation and laboratory analysis. Discussion of these protocols is provided below.

A.1.1 Water Level & Free-Product Measurement

Prior to ground-water sample collection from each monitoring well, the presence of separate-phase hydrocarbons (SPH or free product, FP) and depth to ground water shall be measured. Depth to ground water will be measured with a standard water level indicator that has been decontaminated prior to its use in accordance with procedures discussed below. Depth to groundwater will be gauged from a saw cut notch at the top of the well casing on each well head. Where FP is suspected, the initial gauging will be done with an oil-water interface probe. Once depth to water has been measured, the first retrieval of a new disposable bailer will be scrutinized for the presence of SPH/FP.

A.1.2 Monitoring Well Purging

Subsequent to measuring depth to ground water and prior to the collection of ground-water samples, purging of standing water within the monitoring will be performed if called for. Consistent with the American Society for Testing and Materials (ASTM) Standard D6452-99, Section 7.1, the well will be purged of approximately three wetted-casing volumes of water, or until the well is dewatered, or until monitored field parameters indicate stabilization. The well will be purged using a pre-cleaned disposable bailer or submersible pump and disposable plastic tubing dedicated to each individual well. The well will be purged at a low flow rate to minimize the possibility of purging the well dry. So that the sample collected is representative of formation water, several field parameters will be monitored during the purging process. The sample will not be collected until these parameters (i.e. temperature, pH, and conductivity) have stabilized to within 10% of the previously measured value. If a well is purged dry, the sample should not be collected until the well has recovered to a minimum 50% of its initial volume.

A.1.3 Ground-Water Sample Collection

Once the wells are satisfactorily purged, water samples will be collected from each well. Water samples for organic analyses will be collected using a pre-cleaned, new, disposable bailer and transferred into the appropriate, new, laboratory-prepared containers such that no head space or air bubbles are present in the sample container (if appropriate to the analysis). The samples will be properly labeled (i.e. sample identification, sampler initials, date/time of collection, site location, requested analyses), placed in an ice chest with bagged ice or ice substitute, and delivered to the contracted analytical laboratory.

A.1.4 Surface Water Sample Collection

Unless specified otherwise, surface water samples will be collected from mid-depth in the central area of the associated surface water body. Water samples will be collected into appropriate, new, laboratory-prepared containers by dipping the container into the surface water unless the container has a preservative present. If a sample preservative is present, a new, cleaned non-preserved surrogate container will be used to obtain the sample which will then be directly transferred into a new, laboratory-provided, preserved container. Samples will be properly labeled and transported as described above.

A.1.5 Decontamination Protocol

Prior to use in each well, re-usable ground-water sampling equipment (e.g., water level indicator, oil-interface probe, purge pump, etc.) will be decontaminated. Decontamination protocol will include thoroughly cleaning with a solution of Liquinox, rinsing with clean water, and final rinsing with control water (potable water of known quality, distilled, or de-ionized water). Pre-cleaned new disposable bailers and disposable plastic tubing will be dedicated to each individual well.

A.1.6 Chain of Custody Procedures

Sample identification documents will be carefully prepared so identification and chain of custody can be maintained and sample disposition can be controlled. The sample identification documents include Chain-of-Custody (COC) records and Daily Field Report forms. Chain of custody procedures are outlined below.

Field Custody Procedures

The field sampler is individually responsible for the care and custody of the samples collected until they are properly transferred.

Samples will have unique labels. The information on these labels will correspond to the COC which shows the identification of individual samples and the contents of the shipping container. The original COC will accompany the shipment and a copy will be retained by the field sampler.

Transfer of Custody and Shipment

A COC will accompany samples during transfer and shipment. When transferring samples, the individual relinquishing and the individual receiving the samples will each sign, date, and note the time on the COC. This documents the sample custody transfer.

Samples will be packaged properly for shipment and dispatched to the appropriate laboratory for analysis, with a separate COC accompanying each shipment. Shipments will be accompanied by the original COC. Samples will be delivered by BAI personnel to the laboratory, or shipped by responsible courier. When a shipping courier is utilized, the sample shipment number will be identified on the COC.

A.1.7 Field Records

In addition to sample identification numbers and COC records, Daily Field Report records will be maintained by field staff to provide daily records of significant events, observations, and measurements during field investigations. These documents will contain observed information such as: the personnel present, site conditions, sampling procedures, measurement procedures, calibration records, equipment used, supplies used, etc. Field measurements will be recorded on the appropriate forms. Entries on the data forms will be signed and dated. The data forms will be kept as permanent file records.

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 1Q10 GEO_WELL 11102

Facility Global ID: T0600100908
Facility Name: BP #11102
File Name: GEO_WELL.zip

Organization Name: Broadbent & Associates, Inc.

<u>Username:</u> BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 4/12/2010 11:19:05 AM

Confirmation Number: 8755746304

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Quarterly

Submittal Title: 1Q10 GW Monitoring

Facility Global ID: T0600100908
Facility Name: BP #11102

<u>File Name:</u> 720-26203-1rev2.zip

Organization Name: Broadbent & Associates, Inc.

<u>Username:</u> BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 4/26/2010 5:22:15 PM

Confirmation Number: 5603074073

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California