RECEIVED

By dehloptoxic at 2:21 pm, Oct 31, 2006

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 1257 San Ramon, California 94583 Phone: (925) 275-3801 Fax: (925) 275-3815

17 October 2006

Re: Third Quarter 2006 Ground-Water Monitoring Report Former BP Service Station # 11102 100 MacArthur Boulevard Oakland, California ACEH Case #RO0000456

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

Paul Supple

Environmental Business Manager

Third Quarter 2006 Ground-Water Monitoring Report

Former BP Service Station #11102 100 MacArthur Boulevard Oakland, California

Prepared for

Mr. Paul Supple Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

27 October 2006

Project No. 06-08-643

Broadbent & Associates, Inc. 1324 Mangrove Ave., Suite 212 Chico, CA 95926 Voice (530) 566-1400 Fax (530) 566-1401

17 October 2006

Project No. 06-08-643

ROBERT H.

MILLER

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Paul Supple

Re:

Third Quarter 2006 Ground-Water Monitoring Report, Former BP Service Station

#11102, 100 MacArthur Boulevard, Alameda County, Oakland, California.

ACEH Case #RO0000456.

Dear Mr. Supple:

Attached is the Third Quarter 2006 Ground-Water Monitoring Report for Former BP Service Station #11102 (herein referred to as Station #11102) located at 100 MacArthur Boulevard, Oakland, Alameda County, California (Property). This report presents a summary of results from ground-water monitoring conducted during the Third Quarter of 2006.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus Senior Engineer, P.E.

Robert H. Miller, P.G., C.HG.

Principal Hydrogeologist

Enclosures

cc: Mr. Steven Plunkett, Alameda County Environmental Health (Submitted via ACEH ftp site)

Ms. Shelby Lathrop, ConocoPhillips (submitted via WebXtender)

Mr. Chris Jimmerson, Reimbursement Processor, Delta Environmental Consulting Inc.,

(Submitted via ENFOS)

TEXAS ARIZONA **CALIFORNIA NEVADA**

STATION #11102 QUARTERLY GROUND-WATER MONITORING REPORT

Facility: #11102 Address: 100 MacArthur Boulevard, Oakland, California

Environmental Business Manager: Mr. Paul Supple

Consulting Co./Contact Persons: Broadbent & Associates, Inc.(BAI)/Rob Miller & Tom Venus.

(530) 566-1400

Consultant Project No.: 06-08-643

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case #RO0000456

WORK PERFORMED THIS QUARTER (Third Quarter 2006):

1. Prepared and submitted Second Quarter 2006 Ground-Water Monitoring Report. Work performed by BAI.

2. Repaired MW-2 well vault and conducted ground-water monitoring/sampling for Third Quarter 2006. Work performed by URS.

WORK PROPOSED FOR NEXT QUARTER (Fourth Quarter 2006):

- 1. Prepared and submitted this Third Quarter 2006 Ground-Water Monitoring Report (contained herein).
- 2. Conduct quarterly ground-water monitoring/sampling for Fourth Quarter 2006. Work to be completed by Stratus Environmental, Inc.

QUARTERLY RESULTS SUMMARY:

Ground-water monitoring/sampling
Wells MW-1 through MW-3: Quarterly
Wells MW-1 through MW-3: Quarterly
No
NA
8.57 (MW-1) to 10.47 (MW-2) feet on 26 July 2006
Southwest
0.05 Feet per foot

DISCUSSION:

Two sampling events were conducted during Third Quarter 2006. On 17 July 2006, URS conducted quarterly monitoring and sampling at the Site. However, well MW-2 was inaccessible due to bent bolts on the well vault. BAI became aware that this had been reported in the First and Second Quarters of 2006 but not repaired. Therefore, BAI instructed URS to discard the samples collected on 17 July 2006 (MW-1 and MW-3 only), repair MW-2's well head, and re-monitor/resample the three wells. Water levels measurements were collected from the three wells on 26 July 2006. Depths to water ranged from 8.57 ft (MW-1) to 10.47 ft (MW-2), within the historic minimum and maximum range at the Site, as summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient on 26 July 2006 of 0.05 ft/ft to the southwest. Ground-water elevation contours are shown over a map of the Site in Drawing 1.

As mentioned above, samples were collected from MW-1 and MW-3 on 17 July 2006, and MW-1, MW-2, and MW-3 on 26 July 2006. No other irregularities were encountered during sampling. Samples were submitted under chain of custody documentation to Test America Analytical Testing

Corporation (Morgan Hill, California), for analysis of Gasoline Range Organics (GRO, C4-C12), fuel additives and oxygenates by EPA Method 8260B. Although BAI directed URS to discard the samples collected on 17 July 2006, the samples had already been submitted to and analyzed by the laboratory. No irregularities were encountered during analyses of the 17 July 2006 samples from MW-1 and MW-3, with the exception that the GRO concentration result for sample MW-3 was partly due to an individual peak(s) in the quantitation range. Similarly, no irregularities were encountered during analyses of the 26 July 2006 samples from the three wells, with the exception that the GRO concentration of MW-2 was partly due to an individual peak(s) in the quantitation range. These notes are called out in the laboratory analytical reports. Copies of the both laboratory analytical reports, including chain of custody documentation, are provided in Appendix A. Results of laboratory analyses from both sample sets are reported in Table 1 and Table 2.

For the 17 July 2006 sampling event, GRO were detected above the laboratory reporting limit in MW-3 only at a concentration of 910 μ g/L. Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) were not detected at or above the laboratory reporting limits in the two wells sampled. Methyl tert-butyl ether (MTBE) was detected above the laboratory reporting limit in the two wells sampled with concentrations of 5.5 μ g/L in MW-1 and 1,400 μ g/L in MW-3. Tert-Butyl alcohol (TBA) was detected at a concentration of 32 μ g/L in MW-1. Tert-Amyl methyl ether (TAME) was detected at a concentration of 15 μ g/L in MW-3. No other fuel oxygenates or additives were detected at or above their respective laboratory reporting limits in the two wells sampled.

For the 26 July 2006 sampling event, GRO were detected above the laboratory reporting limit in two of the three wells sampled: GRO was detected in wells MW-2 and MW-3 at concentrations of 2,700 micrograms per liter (μ g/L) and 810 μ g/L, respectively. BTEX constituents were not detected at or above the laboratory reporting limits in the three wells sampled. MTBE was detected above the laboratory reporting limit in the three wells sampled with concentrations of 4.4 μ g/L in MW-1, 2,900 μ g/L in MW-2, and 1,300 μ g/L in MW-3. TBA was detected at concentrations of 22 μ g/L in MW-1 and 4,500 μ g/L in MW-2. TAME was detected at a concentration of 18 μ g/L in MW-3. No other fuel oxygenates or additives were detected at or above their respective laboratory reporting limits in the three wells sampled.

CLOSURE:

The findings presented in this report are based upon: observations of URS field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Test America (Morgan Hill, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

ATTACHMENTS:

- Drawing 1. Ground-Water Elevation Contour and Analytical Summary Map, 26 July 2006, Former Station #11102, 100 MacArthur Boulevard, Oakland, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #11102, 100 MacArthur Blvd., Oakland, CA

- Table 2. Summary of Fuel Additives Analytical Data, Station #11102, 100 MacArthur Blvd., Oakland, CA
- Appendix A. URS Ground-Water Sampling Data Package (Includes Laboratory Report and Chain of Custody Documentation, Field and Laboratory Procedures, and Field Data Sheets)
- Appendix B. GeoTracker Upload Confirmation

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and	:		TOC Elevation	DTW	Product Thickness	Water Level Elevation	GRO/	C	oncentrati	ons in (µg/ Ethyl-	L) Total		DO			DRO/ TPHd	TOG	нуос
Sample Date	P/NP	Footnote	(feet msl)	ŀ	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene		MtBE	(mg/L)	Lab	рH	μg/L)	(µg/L)	μg/L)
MW-1								!		<u> </u>								
11/4/1989		: 	90.20	13.21		76.99	<500	3.4	0.6	<0.3	<0.3			SAL		<50	<5000	· ·
11/11/1989			90.20	13.32		76.88				-			-					
4/3/1990	-		90.20	12.46		77.74	820	64	1.9	23	34			ANA	-			<u></u>
7/30/1990			90.20	12.92		77.28	190	11	<5.0	<5.0	<5.0			ANA		<50	<5000	
11/20/1990			90.20	14.08		76.12	50	2.4	<0.3	<0.3	<0.3			SAL		79	<5000	!
3/1/1991			90.20	13.61		76.59	<100	0.9	<0.3	<0.3	0.3			SAL		<1000	14,000	
8/19/1991			90.20	15.74		74.46	370	35	0.73	6.4	5.6			SEQ		<50	<5000	
11/13/1991			90.20	14.08		76.12	60	0.68	<0.3	<0.3	<0.3			SEQ		<50	<5000	
2/24/1992			90.20	12.52		77.68	140	3.9	0.66	1.2	3.8			SEQ	! 	100	<5000	
5/19/1992			90.20	11.8		78.4	4,200	440	21	250	37			SEQ		910	<5000	
6/17/1992			90.20	12.01		78.19	4,000	350	14	150	17			SEQ	; :	560	<5000	!
7/22/1992			90.20	12.42		77.78	4,000	<5.0	19	210	61			ANA				
8/14/1992			90.20	12.75		77.45	2,400	330	20	150	47			SEQ	- -	1,700	<5000	
11/11/1992			90.20	13.69		76.51	260	30	3.4	7.6	6.8			ANA		92	<5000	
6/7/1993		С	90.20				3,700	120	12	26	9.5			PACE				i
6/7/1993		7	90.20	10.93		79.27	3,400	98	11	21	7.6			PACE		440		
12/2/1993			90.20	12.72		77.48	1,100	8.3	3.6	0.6	1.5			PACE		120	<5000	
6/22/1994		c, d	90.20	·			2,100	30	3.2	2	15	2,000		PACE				
6/22/1994		d	90.20	11.81		78.39	2,100	32	3.8	2.2	17	4,000	3.2	PACE		<50	<5000	
1/10/1995			90.20	10.97	·	79.23	<500	120	<5	<5	<10	···	3.9	ATI		420		
1/10/1995		c	90.20				<500	120	<5	5	<10			ATI	! ! 			
6/21/1995		c, e	90.20			 · ·	3,600	<13	<5.0	<5.0	<10	':'		ATI				
6/21/1995		:	90.20	9.38		80.82	4,700	16	<5.0	<5.0	<10		6.7	ATI	! 	1,300	2,900	0.6
12/27/1995			90.20	11.55	_	78.65	430	<2.5	<2.5	<2.5	<5.0	1,200	6.3	ATI		2,100	640	
6/13/1996			90.20	9.28		80.92	3,200	51	<12	<12	<12	4,000	6.3	SPL		920	2,000	
12/4/1996		f	90.20	11.91		78.29	1,400	6.2	<5	<5	<5	2,600	6.7	SPL		280	2,000	6
6/10/1997		c	90.20				7,700	14	<25	<25	<25	13,000		SPL				
6/10/1997			90.20	8.97	-	81.23	7,900	12	<10	<10	<10	15,000	6	SPL		1,700	<5	ND
12/12/1997			90.20	11.37		78.83	440	8.8	<1.0	2.6	9.4	6,700	5.5	SPL		760	1,200	ND
6/18/1998			90.20	8.02		82.18	7,500	<2.5	<5.0	<5.0	<5.0	5,600	4.9	SPL		2,900	<5	ND
3/9/1999	; 		90.20	9.8		80.4	32,000	100	16	72	110	49,000		SPL				. <u>-</u>

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

		:	тос		Product	Water Level		c	oncentrati	ons in (µg/l	L)					DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(μg/L)	(μg/L)	(μg/L)
MW-I Cont.																		
9/28/1999			90.20	10.78		79.42	1,000	<5.0	<5.0	<5.0	<5.0	730		SPL				<1.0
10/14/1999		İ	90.20	10.84		79.36								SPL		660		
3/27/2000	·		90.20	9.83		80.37	4,300	160	19	37	43	28,000		PACE				
9/28/2000			90.20	11.33		78.87	2,700	10	2.6	1.1	2.7	28,000		PACE				
3/8/2001			90.20	10.96		79.24	8,200	23.5	6.09	5.23	8.97	11,600		PACE				
9/21/2001			90.20	12.07		78.13	6,000	37.9	<0.5	<0.5	<1.5	7,370		PACE				
2/28/2002			90.20	10.48		79.72	6,400	60.8	<5.0	6.43	<10	7,750		PACE				
9/6/2002			90.20	11.2		79	1,400	<5.0	<5.0	<5.0	<5.0	6,000		SEQ				
2/19/2003		h	90.20	11.29		78.91	<10000	<100	110	<100	<100	4,500		SEQ				
7/14/2003			90.20	11.18		79.02	710	11	<10	<10	<10	940		SEQ				
01/14/2004			90.20	11.74		78.46	<500	<5.0	<5.0	<5.0	<5.0	220		SEQM	6.6			
04/23/2004	P	1	90.20	11.95		78.25	470	3.4	<2.5	<2.5	<2.5	150		SEQM	6.7			
07/01/2004	P		90.20	11.52		78.68	360	<2.5	<2.5	<2.5	<2.5	96		SEQM	6.0			
10/28/2004	P		90.20	12.56		77.64	390	0.94	<0.50	<0.50	<0.50	43		SEQM	6.2			
01/10/2005	P		90.20	11.85		78.35	490	17	<2.5	5.8	5.4	85	; 	SEQM	7.6			
04/13/2005	P		90.20	10.00		80.20	1,000	27	<2.5	<2.5	25	48		SEQM	6.6			
07/11/2005	P		90.20	9.27		80.93	180	<0.50	<0.50	<0.50	<0.50	36		SEQM	7.7			
10/17/2005	₽		90.20	10.96		79.24	140	<0.50	<0.50	<0.50	<0.50	20		SEQM	8.0			
01/17/2006	P		90.20	10.81		79.39	120	0.64	<0.50	<0.50	0.56	38		SEQM	6.5			<u></u>
04/21/2006	P	m	90.20	9.28		80.92	410	1.4	1.0	< 0.50	<0.50	17		SEQM	6.5			
7/17/2006			90.20	9.25		80.95	<50	<0.50	<0.50	<0.50	<0.50	5.5		TAMC	7.7			·
7/26/2006			90.20	8.57		81.63	<50	< 0.50	<0.50	<0.50	<0.50	4.4	_	TAMC	6.6			_
MW-2		1													·			·
11/4/1989		:	87.91	15.84		72.07	<500	6.5	<0.3	<0.3	<0.3			SAL	· ·			
11/11/1989			87.91	14.75		73.16												
4/3/1990	i 	ļ	87.91	15.25		72.66	<500	<0.5	<0.5	<0.5	<0.5			ANA				
7/30/1990			87.91	15.59		72.32	61	6.5	<0.5	<0.5	<0.5			ANA				
11/20/1990	·	:	87.91	17.81		70.1	<50	0.3	<0.3	<0.3	<0.3			SAL				
3/1/1991			87.91	17.11		70.8	<100	0.4	<0.3	<0.3	<0.3			SAL				
8/19/1991	. <u> </u>	1	87.91	17.97		69.94	<30	<0.3	<0.3	<0.3	<0.3			SEQ	! 			:

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос	A PARTICULAR DE LA PART	Product	Water Level		C	oncentrati	ons in (μg/	L)					DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pH	(µg/L)	(μg/L)	(μg/L)
MW-2 Cont.																		
11/13/1991			87.91	16.76		71.15	38	0.32	<0.3	<0.3	<0.3			SEQ				·
2/24/1992			87.91	15.07		72.84	<50	<0.5	<0.5	<0.5	0.58			SEQ				
5/19/1992			87.91	14.7		73.21	<50	0.55	<0.5	<0.5	<0.5			SEQ				: :
7/22/1992			87.91	15.6		72.31	90	1.3	0.6	0.9	1.9			ANA				
8/14/1992			87.91	15.88		72.03												·
11/11/1992			87.91	16.19		71.72	52	2.8	<0.5	<0.5	0.9			ANA				
11/11/1992		· c	87.91				65	3.2	<0.5	<0.5	1		·	ANA				
6/7/1993			87.91	14.42		73.49	1,200	14	2.8	1.9	1.71			PACE				
12/2/1993		c, d	87.91				2,100	32	3.8	2.2	17	3,700		PACE	! !			·
12/2/1993		d	87.91	14.94		72.97	790	3.4	0.5	10	<0.5	3,700		PACE				
6/22/1994	j }	đ	87.91	14.25		73.66	110	<0.5	<0.5	<0.5	<0.5	120	3.9	PACE				·
1/10/1995			87.91	13.64		74.27	<50	<0.5	<0.5	0.6	1		4.3	ATI				
6/21/1995		1	87.91	11.66		76.25	4,700	<10	<10	<10	<20		7.8	ATI	! :			
12/27/1995		1	87.91	13.11		74.8	6,100	<25	<25	<25	<50	20,000	6.7	ATI				
12/27/1995		c	87.91				6,300	<25	<25	<25	<50	19,000		ATI	!			·
6/13/1996			87.91	10.86		77.05	8,300	<2.5	<2.5	<2.5	<2.5	13,000	6.5	SPL				
6/13/1996		. c	87.91				8,700	<5	<5	<5	<5	13,000		SPL				
12/4/1996			87.91	13.03	1	74.88	5,900	<2.5	<5	<5	<5	11,000	6.3	SPL				
12/4/1996		c	87.91				5,900	<2.5	<5	<5	<5	11,000		SPL				: .
6/10/1997			87.91	10.04		77.87	<50	<0.5	<1.0	<1.0	<1.0	<10	5.8	SPL	ļ <u></u>			
12/12/1997			87.91	12.44		75.47	<50	<0.5	<1.0	<1.0	<1.0	<10	5.7	SPL				·
6/18/1998		c	87.91			**	<50	<0.5	<1.0	<1.0	<1.0	<10		SPL				
6/18/1998			87.91	8.89		79.02	50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL				·
3/9/1999		7	87.91	10.2		77.71	15,000	<5.0	<5.0	<5.0	<5.0	23,000		SPL				
9/28/1999		1	87.91	11.81		76.1	36,000	<5.0	12	7	26	35,000		SPL				· <5.0
10/14/1999		:	87.91	10.27		77.64								SPL		100		
3/27/2000			87.91	9.98		77.93	1,300	<0.5	<0.5	0.51	<0.5	5,800		PACE				
9/28/2000			87.91	11.4		76.51	1,600	1.8	1.7	0.54	2.2	15,000		PACE				
3/8/2001		:	87.91	11.16		76.75	20,000	<0.5	<0.5	<0.5	<0.5	29,100	: :	PACE				
9/21/2001			87.91	11.65		76.26	5,000	<0.5	<0.5	<0.5	<1.5	6,110		PACE				
2/28/2002			87.91	9.86		78.05	3,200	35.1	<0.5	<0.5	<1.0	4,620		PACE				

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос		Product	Water Level		C	oncentrati	ons in (µg/	·					DRO/		
Well and	D.O.I.D.	.	Elevation	DTW	Thickness	Elevation	GRO/	n	T-1	Ethyl-	Total	Made	DO (man(f))	7 -1-		TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet msi)	(teet bgs)	(feet)	(feet msl)	TPHg	Benzene	Tolucne	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(μg/L)	(µg/L)
MW-2 Cont.										:			!					
9/6/2002			87.91	12.32		75.59	1,900	<10	<10	<10	<10	15,000		SEQ				
2/19/2003		ħ	87.91	11.63		76.28	45,000	<250	<250	<250	<250	32,000		SEQ				
7/14/2003	:	:	87.91	12.07		75.84	9,300	<500	<500	<500	<500	24,000		SEQ	: · ••			
01/14/2004	P		87.91	11.45		76.46	<50,000	<500	<500	<500	<500	21,000		SEQM	6.9			
04/23/2004	P	1	87.91	11.45		76.46	5,100	<250	<250	<250	<250	22,000		SEQM	6.8			
07/01/2004	P		87.91	12.32		75.59	<5,000	<50	<50	<50	<50	5,200		SEQM	5.6			
10/28/2004	P		87.91	13.02		74.89	8,500	<50	<50	<50	<50	6,800		SEQM	6.2			
01/10/2005	P	1	87.91	14.38		73.53	<25,000	<250	<250	<250	<250	7,100		SEQM	7.6			
04/13/2005	P		87.91	14.03		73.88	<5,000	<50	<50	<50	<50	5,300		SEQM	6.6			
07/11/2005	P		87.91	11.25		76.66	<5,000	<50	<50	<50	<50	5,300		SEQM	7.5			
10/17/2005	P		87.91	12.48		75.43	<5,000	<50	<50	<50	<50	2,500		SEQM	8.2			
01/17/2006	P		87.91	10.70		77.21	<5,000	<50	<50	<50	<50	2,200		SEQM	7.0			
04/21/2006		n	87.91												·			
7/26/2006		k	87.91	10.47		77.44	2,700	<50	<50	<50	<50	2,900	-	TAMC	6.69		-	-
MW-3	min and an analysis of the second					man A continuo e a continuo A co Acontinuo A co Acontinuo A co Acontinuo A	6 m.c	***************************************							-			,
11/4/1989			87.02	15.4		71.62	<500	<0.3	<0.3	<0.3	<0.3			SAL				
11/11/1989			87.02	14.1		72.92				İ								
4/3/1990			87.02	13.9		73.12	<100	<0.5	<0.5	<0.5	<0.5			ANA				
7/30/1990		į	87.02	13.77		73.25	<50	<0.5	<0.5	<0.5	<0.5			ANA			<5000	
11/20/1990			87.02	14.67		72.35	<50	0.3	0.8	0.4	1.5		·	SAL	 			
3/1/1991			87.02	15.22		71.8	<100	0.4	<0.3	<0.3	<0.3			SAL				
8/19/1991			87.02	13.15		73,87	<30	<0.3	<0.3	<0.3	<0.3		· :	SEQ				
11/13/1991			87.02	15.66		71.36	<30	< 0.3	<0.3	<0.3	<0.3			SEQ				
2/24/1992		1	87.02	15.01		72.01	<50	0.65	1.4	0.66	4.4		·	SEQ				
5/19/1992			87.02	15.52		71.5	<50	<0.5	<0.5	<0.5	<0.5		ļ	SEQ				
7/22/1992		•	87.02	15.63		71.39	<50	<0.5	<0.5	<0.5	<0.5		· 	ANA		<50	<5000	·
8/14/1992			87.02	13.57		73.45				-			ļ					
11/11/1992		1	87.02	14.13		72.89	<50	<0.5	0.7	<0.5	1.3			ANA				••
6/7/1993			87.02	12.13		74.89	<50	<0.5	<0.5	<0.5	<0.5			PACE				
12/2/1993			87.02	13.29		73.73	<50	<0.5	<0.5	<0.5	<0.5		·	PACE	! 			

Table I. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			тос	A CONTRACTOR OF THE PARTY OF TH	Product	Water Level		С	oncentrati	ons in (µg/						DRO/		
Well and			Elevation	DTW	Thickness	Elevation	GRO/			Ethyl-	Total		DO			TPHd	TOG	HVOC
Sample Date	P/NP	Footnote	(feet msl)	(feet bgs)	(feet)	(feet msl)	TPHg	Benzene	Toluene	Benzene	Xylenes	MtBE	(mg/L)	Lab	pН	(µg/L)	(μg/L)	(μg/L)
MW-3 Cont.										:					:			
6/22/1994		•	87.02	12.78		74.24	<50	<0.5	<0.5	<0.5	<0.5		2.9	PACE				
1/10/1995			87.02	12.01		75.01	<50	<0.5	<0.5	<0.5	<1		3.8	ATI				
6/21/1995			87.02	11.57		75.45	<50	<0.50	<0.50	<0.50	<1.0		7.4	ATI				
12/27/1995			87.02	13.47		73.55	<50	<0.50	<0.50	<0.50	<1.0	5.7	7.3	ATI				
6/13/1996		:	87.02	11.22		75.8	60	<0.5	<0.5	<0.5	<0.5	<10	6.8	SPL				
12/4/1996			87.02	13.28		73.74	<50	<0.5	<1	<1	<1	<10	6.7	SPL				
6/10/1997			87.02	10.22		76.8	<50	<0.5	<1.0	<1.0	<1.0	<10	6.1	SPL				:
12/12/1997		c	87.02				<50	<0.5	<1.0	<1.0	<1.0	<10		SPL				
12/12/1997			87.02	12.61		74.41	<50	<0.5	<1.0	<1.0	<1.0	<10	5.6	SPL				
6/18/1998			87.02	12.8		74.22									-			
6/18/1998			87.02	9.07		77 <i>.</i> 95	50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL				
9/28/1999			87.02	13.76		73.26												
3/27/2000			87.02	13.77		73.25	<50	<0.5	<0.5	<0.5	<0.5	1.6		PACE				·
9/28/2000			87.02	11.28		75.74	<50	<0.5	7.4	<0.5	1.3	2		PACE				
3/8/2001	·	:	87.02	11.75		75.27	<50	<0.5	<0.5	<0.5	<0.5	60.4		PACE				
9/21/2001			87.02	11.33		75.69	<50	<0.5	<0.5	<0.5	<1.5	8.18		PACE				
2/28/2002			87.02	10.86		76.16	<50	<0.5	<0.5	<0.5	<1.0	25.5		PACE				
9/6/2002			87.02	12.73		74,29	<50	1.2	<0.5	<0.5	1	16		SEQ				
2/19/2003	-	h	87.02	11.72		75.3	<500	<5.0	<5.0	<5.0	<5.0	110		SEQ				
7/14/2003		}	87.02	13.76		73.26	<50	<0.50	<0.50	<0.50	0.67	28		SEQ				
01/14/2004	P		87.02	14.83		72.19	550	<5.0	<5.0	<5.0	<5.0	380		SEQM	8.1			
04/23/2004	P	1	87.02	13.17		73.85	<200	<25	<25	<25	<25	560		SEQM	6.8			
07/01/2004	P	1	87.02	15.19		71.83	<50	<0.50	<0.50	<0.50	0.50	48		SEQM	6.4			
10/28/2004	P		87.02	15.50		71.52	<500	<5.0	<5.0	<5.0	<5.0	290		SEQM	6.3			
01/10/2005	P	1	87.02	15.00		72.02	<50	<0.50	<0.50	<0.50	<0.50	18		SEQM	7.6			
04/13/2005	P		87.02	14.34		72.68	<50	<0.50	<0.50	<0.50	<0.50	9.0		SEQM	7.1			••
07/11/2005	P	k	87.02	10.82		76.20	130	<1.0	<1.0	<1.0	<1.0	120		SEQM	7.8			
10/17/2005	P		87.02	11.84		75.18	<250	<2.5	<2.5	<2.5	<2.5	260	<u></u>	SEQM	8.5			
01/17/2006	P		87.02	11.59		75.43	800	<5.0	<5.0	<5.0	<5.0	980		SEQM	7.2			
04/21/2006	P		87.02	10.00		77.02	<500	<5.0	<5.0	<5.0	<5.0	48		SEQM	6.7			
7/17/2006	P	k	87.02	10.80		76.22	910	<5.0	<5.0	<5.0	<5.0	1,400	! ***	TAMC	7.7			

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #11102, 100 MacArthur Blvd., Oakland, CA

			TOC		Product	Water Level		C	oncentrati	ons in (μg/	L)					DRO/		1
Well and Sample Date	P/NP	Footnote	Elevation (feet msl)		Thickness (feet)	Elevation (feet msl)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MtBE	DO (mg/L)	Lab	рН	TPHd (µg/L)	TOG (μg/L)	HVOC (μg/L)
MW-3 Cont.																		
7/26/2006	P	:	87.02	9.67		77.35	810	<10	<10	<10	<10	1,300		TAMC	6.56			
QC-2													! !					
11/11/1992		g					<50	<0.5	<0.5	<0.5	<0.5			ANA				
6/7/1993		g					<50	< 0.5	<0.5	<0.5	<0.5		ļ	PACE				
12/2/1993		g				**	<50	<0.5	<0.5	<0.5	<0.5			PACE				
6/22/1994	·	g					<50	< 0.5	<0.5	<0.5	<0.5			PACE				·
1/10/1995		g					<50	<0.5	<0,5	<0.5	<1			ATI				
6/21/1995		g				" "	<50	<0.50	<0.50	<0.50	<1.0			ATI				
12/27/1995		g					<50	<0.50	<0.50	<0.50	<1.0	<5.0		ATI				
6/13/1996		g					<50	<0.5	<0.5	<0.5	<0.5	<10		SPL				

ABBREVIATIONS & SYMBOLS:

--/--- Not analyzed/applicable/measured/available

<= Not detected at or above specified laboratory reporting limit

DO = Dissolved oxygen

DRO = Diesel range organics

DTW = Depth to water in ft bgs

ft bgs = feet below ground surface

ft MSL = feet above mean sea level

GRO = Gasoline range organics, range C4-C12

GWE = Groundwater elevation measured in ft MSL

HVOC = Halogenated volatile organic compounds

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing measured in ft MSL

TOG = Total oil and grease

TPH-d = Total petroleum hydrocarbons as diesel

TPH-g = Total petroleum hydrocarbons as gasoline

μg/L = Micrograms per liter

ANA = Anametrix, Inc.

PACE = Pace, Inc.

ATI = Analytical Technologies, Inc.

SAL = Superior Analytical Laboratory

SPL = Southern Petroleum Laboratories

SEQ/SEQM = Sequoia Analytical/Sequoia Analytical - Morgan Hill (Laboratories)

FOOTNOTES:

c = Blind duplicate.

d = A copy of the documentation for this data is included in Appendix C of Alisto report 10-076-06-002.

e = Tetrachloroethene

f = trans-1,2-Dichloroethene

g = Travel blank.

h = TPH-g, benzene, toluene, ethylbenzene, and total xylenes (BTEX), and MTBE analyzed by EPA Method 8260B beginning on 1st quarter sampling event (2/19/03).

k = The hydrocarbon result was partly due to individual peaks in the quantification range (GRO).

1 = GRO analyzed by EPA Method 8015B.

m = Confirmatory analysis for total xylenes was past holding time.

n = Well inaccessible.

NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for pH and DO were obtained through field measurements.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and				Concentration	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ЕТВЕ	TAME	1,2-DCA	EDB	Comments
MW-1	:							***************************************	
7/14/2003	<2000	2,700	940	<20	<20	<20			
01/14/2004	<1,000	2,500	220	<5.0	<5.0	<5.0	<5.0	<5.0	
04/23/2004	<500	2,500	150	<2.5	<2.5	<2.5	<2.5	<2.5	
07/01/2004	<500	2,000	96	<2.5	<2.5	<2.5	<2.5	<2.5	<u> </u>
10/28/2004	<5.0	1,500	43	<0.50	<0.50	0.58	<0.50	<0.50	
01/10/2005	<500	1,900	85	<2.5	<2.5	<2.5	<2.5	<2.5	
04/13/2005	<500	1,400	48	<2.5	<2.5	<2.5	<2.5	<2.5	
07/11/2005	<100	550	36	<0.50	<0.50	<0.50	<0.50	<0.50	
10/17/2005	<100	450	20	<0.50	<0.50	<0.50	<0.50	<0.50	a
01/17/2006	<300	260	38	<0.50	<0.50	0.54	<0.50	<0.50	
04/21/2006	<300	320	17	<0.50	<0.50	<0.50	<0.50	<0.50	
7/17/2006	<300	32	5.5	<0.50	<0.50	<0.50	<0.50	<0.50	
7/26/2006	<300	22	4.4	<0.50	<0.50	<0.50	<0.50	<0.50	·
MW-2									
7/14/2003	<100000	<20000	24,000	<1000	<1000	<1000			
01/14/2004	<100,000	<20,000	21,000	<500	<500	<500	<500	<500	
04/23/2004	<50,000	11,000	22,000	<250	<250	420	<250	<250	· · ·
07/01/2004	<10,000	2,900	5,200	<50	<50	110	<50	<50	
10/28/2004	<5.0	6,700	6,800	<50	<50	120	<50	<50	·
01/10/2005	<50,000	<10,000	7,100	<250	<250	<250	<250	<250	
04/13/2005	<10,000	5,300	5,300	<50	<50	95	<50	<50	
07/11/2005	<10,000	9,000	5,300	<50	<50	99	<50	<50	
10/17/2005	<10,000	5,200	2,500	<50	<50	<50	<50	<50	a
01/17/2006	<30,000	8,400	2,200	<50	<50	<50	<50	<50	and the second s
04/21/2006									Well inaccessible
7/26/2006	<30,000	4,500	2,900	<50	<50	<50	<50	<50	
MW-3					PPF1110000A1IABA				
7/14/2003	<100	<20	28	<1.0	<1.0	<1.0			
01/14/2004	<1,000	<200	380	<5.0	<5.0	<5.0	<5.0	<5.0	
04/23/2004	<5,000	<1,000	560	<25	<25	<25	<25	<25	

Table 2. Summary of Fuel Additives Analytical Data Station #11102, 100 MacArthur Blvd., Oakland, CA

Well and				Concentrati	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-3 Cont.									
07/01/2004	<100	<20	48	<0.50	<0.50	0.52	<0.50	<0.50	
10/28/2004	<5.0	<200	290	<5.0	<5.0	<5.0	<5.0	<5.0	
01/10/2005	<100	<20	18	<0.50	<0.50	<0.50	<0.50	<0.50	
04/13/2005	<100	<20	9.0	<0.50	<0.50	<0.50	<0.50	<0.50	
07/11/2005	<200	<40	120	<1.0	<1.0	1.4	<1.0	<1.0	a
10/17/2005	<500	<100	260	<2.5	<2.5	4.2	<2.5	<2.5	a
01/17/2006	<3,000	200	980	<5.0	<5.0	13	<5.0	<5.0	
04/21/2006	<3,000	<200	48	<5.0	<5.0	<5.0	<5.0	<5.0	
7/17/2006	<3,000	<200	1,400	<5.0	<5.0	15	<5.0	<5.0	
7/26/2006	<6,000	<400	1,400	<10	<10	18	<10	<10	

SYMBOLS & ABBREVIATIONS:

-- = Not analyzed/applicable/measured/available

<= Not detected at or above specified laboratory reporting limit

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

μg/L = Micrograms per Liter

FOOTNOTES:

a = The calibration verification for ethanol was within the method limits but outside the contract limits.

NOTES:

All volatile organic compounds were analyzed using EPA Method 8260B.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

APPENDIX A

URS GROUND-WATER SAMPLING DATA PACKAGE (INCLUDES LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION, FIELD AND LABORATORY PROCEDURES, AND FIELD DATA SHEETS)

URS

August 18, 2006

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, NV 89502

Groundwater Sampling Data Package

Former BP Service Station #11102 100 MacArthur Boulevard Oakland, CA

Field Work Performed: 07/17/06 & 07/26/06

General Information

Data Submittal Prepared/Reviewed by: Alok Kolekar

Phone Number: 510-874-3152

On-Site Supplier Representative: Blaine Tech

Scope of Work Performed: Groundwater Monitoring in accordance with 3rd Quarter 2006 protocols as identified in the Quarterly Monitoring Program Table in the Field and Laboratory Procedures Attachment.

Variations from Work Scope: The technician could not open well box of well MW-2 on 07/17/06. Therefore, this well was not gauged or sampled.

This submittal presents the tabulation of data collected in association with routine groundwater monitoring. The attachments include, at a minimum, sampling procedures, field data collected, laboratory results, chain of custody documentation, and waste management activities. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations. Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Alok D. Kolekar, P.E. Project Manager

Alekar, P.E. nager

cc: Paul Supple, Atlantic Richfield Company (RM), electronic copy uploaded to ENFOS

URS

Attachments

Field and Laboratory Procedures Laboratory Report Chain of Custody Documentation Field Data Sheets Well Gauging Data Well Monitoring Data Sheets

FIELD & LABORATORY PROCEDURES

Sampling Procedures

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear TeflonTM bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

Laboratory Procedures

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by RM have been reviewed and verified by that laboratory.

2 August, 2006

Alok Kolekar URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11102, Oakland, CA

Work Order: MPG0564

Enclosed are the results of analyses for samples received by the laboratory on 07/18/06 16:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate # 1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.

URS Corporation [Arco]	Project: BP Heritage #11102, Oakland, CA	MPG0564
1333 Broadway, Suite 800	Project Number: G07T9-0027	Reported:
Oakland CA, 94612	Project Manager: Alok Kolekar	08/02/06 13:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-I	MPG0564-01	Water	07/17/06 14:45	07/18/06 16:40
MW-3	MPG0564-02	Water	07/17/06 15:10	07/18/06 16:40
TB-11102-07172006	MPG0564-03	Water	07/17/06 00:00	07/18/06 16:40

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Total Purgeable Hydrocarbons by GC/MS (CA LUFT)

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-I (MPG0564-01) Water Sampled:	07/17/06 14:45	Received:	07/18/06	16:40					
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6G21002	07/21/06	07/21/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		102 %	60-	145	31	#	"	#	
MW-3 (MPG0564-02) Water Sampled:	07/17/06 15:10	Received:	07/18/06	16:40					
Gasoline Range Organics (C4-C12)	910	500	ug/l	10	6G21002	07/21/06	07/21/06	LUFT GCMS	PV
Surrogate: 1,2-Dichloroethane-d4		103 %	60	145	n	n	"	n	

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Volatile Organic Compounds by EPA Method 8260B TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MPG0564-01) Water Sample	d: 07/17/06 14:45	Received:	07/18/06 1	6:40					
tert-Amyl methyl ether	ND	0.50	ug/l	1	6G21002	07/21/06	07/21/06	EPA 8260B	
Benzene	ND	0.50	U	41	**	**	ü	п	
tert-Butyl alcohol	32	20	IJ	0	n	11	n	II .	
Di-isopropyl ether	ND	0.50	U	н	"	Ħ	11	ń	
1,2-Dibromoethane (EDB)	ND	0.50	Pt .	U	II	ti .	11	**	
1,2-Dichloroethane	ND	0.50	11	lt .	U	"	tr.	Ħ	
Ethanol	ND	300	#1	**	"	D	"	U	
Ethyl tert-butyl ether	ND	0.50	n	**	11	19	n n	11	
Ethylbenzene	ND	0.50	n	н	n	**	D	U	
Methyl tert-butyl ether	5.5	0.50	II	IJ	n	n	11	Ħ	
Toluene	ND	0.50	II.	II	n	1)	**	**	
Xylenes (total)	ND	0.50	17	11	11	U	*	ft	
Surrogate: 1,2-Dichloroethane-d4		102 %	60-14.	5	n	"	н	"	
Surrogate: 4-Bromofluorobenzene		94 %	60-11.	5	n	"	"	"	
Surrogate: Dibromofluoromethane		100 %	75-13	9	n	n	"	n	
Surrogate: Toluene-d8		93 %	70-13	9	"	*	"	n	
MW-3 (MPG0564-02) Water Sample	d: 07/17/06 15:10	Received:	07/18/06 16	5:40					
tert-Amyl methyl ether	15	5.0	ug/l	10	6G21002	07/21/06	07/21/06	EPA 8260B	
Benzene	ND	5.0	**	14	11	17	U	n	
tert-Butyl alcohol	ND	200	0	ti	11	11	11	Ü	
Di-isopropyl ether	ND	5.0	n .	Ħ	77	U	11*	âŢ	
1,2-Dibromoethane (EDB)	ND	5.0	0	"	u	"	**	4r	
1,2-Dichloroethane	ND	5.0	D	"	n	и	"	u	
Ethanol	ND	3000	ti	"	ıı	II.	II	u	
					0	12	11	u	
Ethyl tert-butyl ether	ND	5.0	H	11					
Ethyl tert-butyl ether Ethylbenzene	ND ND	5.0 5.0)† 71	#	*	**		"	
•									
Ethylbenzene	ND	5.0	71	#	H	**	ti	n.	
Ethylbenzene Toluene	ND ND	5.0 5.0	n U	# # # # # # # # # # # # # # # # # # #	94 94	# f1	ti 11	12	
Ethylbenzene Toluene Xylenes (total)	ND ND	5.0 5.0 5.0	n 1) 1)	" " "	22 14 12	# fi	D # # # # # # # # # # # # # # # # # # #	D D	
Ethylbenzene Toluene Xylenes (total) Surrogate: 1,2-Dichloroethane-d4	ND ND	5.0 5.0 5.0 103 %	" " 60-145	" " 5	# # # # # # # # # # # # # # # # # # #	# # #	0 n n	р п н	

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Morgan Hill, CA

Augha	Danill	Reporting	71.5	D11 41	B . 1				
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (MPG0564-02RE1) Water	Sampled: 07/17/06 1	5:10 Recei	ved: 07/1	8/06 16:4	10				
Methyl tert-butyl ether	1400	25	ug/]	50	6G25002	07/25/06	07/26/06	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		103 %	60-1	45	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		82 %	60-1	15	rr	"	u	#	
Surrogate: Dibromofluoromethane		97 %	75-1	30	n	"	"	"	
Surrogate: Toluene-d8		90 %	70-1	30	n	n	H	n	

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

A set of	D14	Reporting		Spike	Source	4/PFC	%REC	200	RPD	XI.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6G21002 - EPA 5030B P/T / L	UFT GCMS									
Blank (6G21002-BLK1)				Prepared a	& Analyze	ed: 07/21/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Surrogate: 1,2-Dichloroethane-d4	2.51		п	2.50		100	60-145			
Laboratory Control Sample (6G21002-E	SS1)			Prepared a	& Analyze	ed: 07/21/	06			
Gasoline Range Organics (C4-C12)	816	50	ug/l	700		117	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.41		н	2.50		96	60-145			
Laboratory Control Sample (6G21002-E	S2)			Prepared a	& Analyze	d: 07/21/	06			
Gasoline Range Organics (C4-C12)	453	50	ug/l	440		103	75-140			***************************************
Surrogate: 1,2-Dichloroethane-d4	2.36		"	2.50		94	60-145			
Matrix Spike (6G21002-MS1)	Source: M	PG0564-02		Prepared a	& Analyze	d: 07/21/0	06			
Gasoline Range Organics (C4-C12)	8560	500	ug/l	7000	910	109	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.51		tt	2.50		100	60-145			
Matrix Spike Dup (6G21002-MSD1)	Source: M	PG0564-02		Prepared a	& Analyze	d: 07/21/0	06			
Gasoline Range Organics (C4-C12)	8500	500	ug/l	7000	910	108	75-140	0.7	20	
Surrogate: 1,2-Dichloroethane-d4	2.47		"	2.50		99	60-145			

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G21002 - EPA 5030B P/T	/ EPA 8260B									
Blank (6G21002-BLK1)				Prepared	& Analyze	d: 07/21/	06			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	17							
tert-Butyl alcohol	ND	20	Ħ							
Di-isopropyl ether	ND	0.50	U							
1,2-Dibromoethane (EDB)	ND	0.50	11							
1,2-Dichloroethane	ND	0.50	11							
Ethanol	ND	300	1)							
Ethyl tert-butyl ether	ND	0.50	n							
Ethylbenzene	ND	0.50	tr							
Methyl tert-butyl ether	ND	0.50	11							
Toluene	ND	0.50	**							
Xylenes (total)	ND	0.50	**							
Surrogate: 1,2-Dichloroethane-d4	2.51		"	2.50		100	60-145			
Surrogate: 4-Bromofluorobenzene	2.48		"	2.50		99	60-115			
Surrogate: Dibromofluoromethane	2.52		н	2.50		101	75-130			
Surrogate: Toluene-d8	2.42		"	2.50		97	70-130			
Laboratory Control Sample (6G2100)	2-BS1)			Prepared a	& Analyze	d: 07/21/0	06			
tert-Amyl methyl ether	10.4	0.50	ug/l	10.0		104	65-135			
Benzene	9.34	0.50	"	10.0		93	70-125			
tert-Butyl alcohol	218	20	"	200		109	60-135			
Di-isopropyl ether	11.1	0.50	n	10.0		111	70-130			
1,2-Dibromoethane (EDB)	10.9	0.50	19	10.0		109	85-125			
1,2-Dichloroethane	10.3	0.50	**	10.0		103	75-125			
Ethanol	217	300		200		108	15-150			
Ethyl tert-butyl ether	10.8	0.50	п	10.0		108	65-130			
Ethylbenzene	9.30	0.50	н	10.0		93	80-130			
Methyl tert-butyl ether	10.7	0.50	n	10.0		107	50-140			
Toluene	9.68	0.50	n	10.0		97	70-120			
Xylenes (total)	28.0	0.50	H	30.0		93	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.41		rt	2.50		96	60-145			
Surrogate: 4-Bromofluorobenzene	2.54		Ŋ	2.50		102	60-115			
Surrogate: Dibromofluoromethane	2.44		n	2.50		98	75-130			
Surrogate: Toluene-d8	2.57		"	2.50		103	70-130			

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G21002 - EPA 5030B P/T / I	EPA 8260B									
Matrix Spike (6G21002-MS1)	Source: M	IPG0564-02		Prepared	& Analyze	ed: 07/21/	06			
tert-Amyl methyl ether	132	5.0	ug/l	100	15	117	65-135			
Benzene	93.6	5.0	n	100	ND	94	70-125			
tert-Butyl alcohol	2230	200	37	2000	45	109	60-135			
Di-isopropyl ether	112	5.0	•	100	ND	112	70-130			
1,2-Dibromoethane (EDB)	112	5.0	Ħ	100	ND	112	85-125			
1,2-Dichloroethane	109	5.0	ii.	100	ND	109	75-125			
Ethanol	3520	3000	II.	2000	ND	176	15-150			LM
Ethyl tert-butyl ether	110	5.0	n	100	ND	110	65-130			
Ethylbenzene	99.5	5.0	ii.	100	ND	100	80-130			
Methyl tert-butyl ether	1440	5.0	11	100	1300	140	50-140			
Toluene	93.9	5.0	**	100	ND	94	70-120			
Xylenes (total)	288	5.0	tt .	300	ND	96	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.51		"	2.50		100	60-145			
Surrogate: 4-Bromofluorobenzene	2.48		"	2.50		99	60-115			
Surrogate: Dibromofluoromethane	2.48		"	2.50		99	75-130			
Surrogate: Toluene-d8	2.42		"	2.50		97	70-130			
Matrix Spike Dup (6G21002-MSD1)	Source: M	IPG0564-02		Prepared a	& Analyze	ed: 07/21/	06			
tert-Amyl methyl ether	131	5.0	ug/l	100	15	116	65-135	0.8	25	
Benzene	92.6	5.0	tt	001	ND	93	70-125	1	15	
tert-Butyl alcohol	2260	200	0	2000	45	111	60-135	1	35	
Di-isopropyl ether	111	5.0	n	100	ND	111	70-130	0.9	35	
1,2-Dibromoethane (EDB)	110	5.0	n	100	ND	110	85-125	2	15	
1,2-Dichloroethane	107	5.0	11	100	ND	107	75-125	2	10	
Ethanol	3630	3000	37	2000	ND	182	15-150	3	35	LM
Ethyl tert-butyl ether	108	5.0	**	100	ND	108	65-130	2	35	
Ethylbenzene	98.7	5.0	u	100	ND	99	80-130	0.8	15	
Methyl tert-butyl ether	1420	5.0	U	100	1300	120	50-140	1	25	
Toluene	91.7	5.0	п	100	ND	92	70-120	2	15	
Xylenes (total)	285	5.0	U	300	ND	95	85-125	1	15	
Surrogate: 1,2-Dichloroethane-d4	2.47		"	2.50		99	60-145			
Surrogate: 4-Bromofluorobenzene	2.44		#	2.50		98	60-115			
Surrogate: Dibromofluoromethane	2.48		"	2.50		99	75-130			
Surrogate: Toluene-d8	2.45		"	2.50		98	70-130			

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG0564 Reported: 08/02/06 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6G25002 - EPA 5030B P/T	/ EPA 8260B				·					
Blank (6G25002-BLK1)				Prepared:	07/25/06	Analyzed	: 07/26/06			
tert-Amyl methyl ether	ND	0.50	ug/l							
Benzene	ND	0.50	17							
tert-Butyl alcohol	ND	20	**							
Di-isopropyl ether	ND	0.50	"							
1,2-Dibromoethane (EDB)	ND	0.50	u							
1,2-Dichloroethane	ND	0.50	U							
Ethanol	ND	300	u							
Ethyl tert-butyl ether	ND	0.50	D							
Ethylbenzene	ND	0.50	**							
Methyl tert-butyl ether	ND	0.50	11							
Toluene	ND	0.50	**							
Xylenes (total)	ND	0.50	п							
Surrogate: 1,2-Dichloroethane-d4	2.53		**	2.50		101	60-145			
Surrogate: 4-Bromofluorobenzene	2.15		"	2.50		86	60-115			
Surrogate: Dibromofluoromethane	2.37		rr	2.50		95	75-130			
Surrogate: Toluene-d8	2.30		n	2.50		92	70-130			
Laboratory Control Sample (6G25002	2-BS1)			Prepared:	07/25/06	Analyzed	07/26/06			
tert-Amyl methyl ether	9.37	0.50	ug/l	7.52		125	65-135			
Benzene	2.88	0.50	п	2.58		112	70-125			
tert-Butyl alcohol	84.1	20	п	71.6		117	60-135			
Di-isopropyl ether	9.15	0.50	0	7.56		121	70-130			
1,2-Dibromoethane (EDB)	8.85	0.50	n	7.44		119	85-125			
1,2-Dichloroethane	9.18	0.50	**	7.36		125	75-125			
Ethanol	103	300	**	70.8		145	15-150			
Ethyl tert-butyl ether	8.86	0.50	tı	7.52		118	65-130			
Ethylbenzene	3.93	0.50	0	3.77		104	80-130			
Methyl tert-butyl ether	4.29	0.50	n .	3.51		122	50-140			
Toluene	19.5	0.50	U	18.6		105	70-120			
Xylenes (total)	22.8	0.50	11	20.6		111	85-125			
Surrogate: 1,2-Dichloroethane-d4	2,52		#	2.50		101	60-145			
Surrogate: 4-Bromofluorobenzene	2.31		H	2.50		92	60-115			
Surrogate: Dibromofluoromethane	2.48		"	2.50		99	75-130			
Surrogate: Toluene-d8	2.42		"	2.50		97	70-130			

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027
Project Manager: Alok Kolekar

MPG0564 Reported: 08/02/06 13:30

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD	Name
Analyte	Result	Limit	Ontis	Level	Resun	70REC	Limits	KPD	Limit	Notes
Batch 6G25002 - EPA 5030B P/T / E	EPA 8260B				W-41				***************************************	
Matrix Spike (6G25002-MS1)	Source: M	PG0642-17		Prepared:	07/25/06	Analyzec	1: 07/26/06			
tert-Amyl methyl ether	8.88	0.50	ug/l	7.52	ND	118	65-135			
Benzene	2.86	0.50	**	2.58	ND	11 i	70-125			
tert-Butyl alcohol	103	20	11	71.6	22	113	60-135			
Di-isopropyl ether	9.19	0.50	н	7.56	ND	122	70-130			
1,2-Dibromoethane (EDB)	8.38	0.50	н	7.44	ND	113	85-125			
1,2-Dichloroethane	13.6	0.50	н	7.36	5.0	117	75-125			
Ethanol	190	300	n	70.8	ND	268	15-150			LN
Ethyl tert-butyl ether	8.60	0.50	17	7.52	ND	114	65-130			
Ethylbenzene	3.84	0.50	19	3.77	ND	102	80-130			
Methyl tert-butyl ether	8.19	0.50	**	3.51	4.6	102	50-140			
Toluene	19.0	0.50	u	18.6	ND	102	70-120			
Xylenes (total)	22.1	0.50	(I	20.6	ND	107	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.60		"	2.50		104	60-145			
Surrogate: 4-Bromofluorobenzene	2.31		"	2.50		92	60-115			
Surrogate: Dibromofluoromethane	2.42		n	2.50		97	75-130			
Surrogate: Toluene-d8	2.41		n	2.50		96	70-130			
Matrix Spike Dup (6G25002-MSD1)	Source: M	PG0642-17		Prepared:	07/25/06	Analyzed	: 07/26/06			
tert-Amyl methyl ether	10.2	0.50	ug/l	7.52	ND	136	65-135	14	25	LM
Benzene	3.09	0.50	U	2.58	ND	120	70-125	8	15	
tert-Butyl alcohol	109	20	þi	71.6	22	122	60-135	6	35	
Di-isopropyl ether	10.2	0.50	11	7.56	ND	135	70-130	10	35	LM
1,2-Dibromoethane (EDB)	9.81	0.50	77	7.44	ND	132	85-125	16	15	LM, II
1,2-Dichloroethane	15.6	0.50	**	7.36	5.0	144	75-125	14	10	LM, II
Ethanol	166	300	н	70.8	ND	234	15-150	13	35	LM
Ethyl tert-butyl ether	9.76	0.50	п	7.52	ND	130	65-130	13	35	
Ethylbenzene	3.99	0.50	U	3.77	ND	106	80-130	4	15	
Methyl tert-butyl ether	9.65	0.50	D	3.51	4.6	144	50-140	16	25	LM
Toluene	20.3	0.50	b	18.6	ND	109	70-120	7	15	
Xylenes (total)	23.0	0.50	**	20.6	ND	112	85-125	4	15	
Surrogate: 1,2-Dichloroethane-d4	2.75		"	2.50		110	60-145	*****		
Surrogate: 4-Bromofluorobenzene	2.32		*	2.50		93	60-115			
Surrogate: Dibromofluoromethane	2.42		"	2.50		97	75-130			
Surrogate: Toluene-d8	2.41		"	2.50		96	70-130			

URS Corporation [Arco]	Project: BP Heritag	ge #11102, Oakland, CA	MPG0564
1333 Broadway, Suite 800	Project Number: G07T9-002	27	Reported:
Oakland CA, 94612	Project Manager: Alok Kolek	kar	08/02/06 13:30

Notes and Definitions

PV	Hydrocarbon result partly due to individ. peak(s) in quant. range
LM	MS and/or MSD above acceptance limits. See Blank Spike(LCS).
IL	RPD exceeds laboratory control limit
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

n.	
7	

Chain of Custody Record

Project Name: Analytical for QMR sampling

BP BU/AR Region/Enfos Segment:

BP > Americas > West Coast > Retail > WCBU > CA > Central > 11102 > HistoricalBL

State or Lead Regulatory Agency:

California Regional Water Quality Control Board - San Fre

Requested Due Date (mm/dd/yy): B754060777-52

10 Day TAT

Page_ 1405 On-site Time: 50 Temp: Off-site Time: 800 Temp: Sky Conditions: rieg-Meteorological Events: Wind Speed: Direction:

	Vame: Sequoia				-	BP/AR Facility N	D.:	111	02			_					lc	onsultan	/Con	tracto	\r'	URS	<u> </u>		<u></u>
Addr	ess: 885 Jarvis Drive		_			BP/AR Facility A		s: 10	0 M	ıcArt	hur I	Blvd.	. Oε	kland	. CA	946	510 A	ddress:				Iway, Suite 80	nΛ		
<u> </u>	Morgan Hill, CA 95037					Site Lat/Long:	-	_		13/-					<u> </u>							A 94612	-		
	M: Lisa Race / Katt Min					California Global	IDN	0.:	T06	0010	0908	8						onsultant					3487119	1	
,	Fax: 408.782.8156 / 408.782.6308					Enfos Project No.:				027								onsultant					lok Kol		
	R PM Contact: Paul Supple					Provision or RCO	P:	Pro	visio	ıı							{	cle/Fax:				52 / 510.874.		Onar	
Addr	ess: P.O. Box 6549					Pliase/WBS:	04 -	Mo	ı/Re	med l	by N	atura	l At	tenuat	ion		R	eport Ty				Level 1 with			
77.1.0	Мотада, СА. 94570					Sub Phase/Task:		- Ana														ield@urscor			
-	ax: 925-299-8891	***************************************		.,		Cost Element:	05	- Sub	cont	racte	1 Cos	sts						voice to:				chfield Comp			
Lab J	Bottle Order No: 11102	1		М	atrix				P	resei	vati	ve	_			I	Reques	ted Ana				1			
Item No.	Sample Description	Time	Date	Soil/Solid	Water/Liquid Air	Laboratory No.	No. of Containers	Unpreserved	H₂SO₄	HNO ₃	HCI	Methanol		GRO / BIEX (8260)	MIR, 18A (8260)	3DB, 1,2-DCA (8260)	Ethanol (8260)						Comp	Lat/Long nents — 2564/	7
· 1	M65-1	145	04/F10		X	الا	3				X		_	Ž			刻		- 	+					/
2	, Wh-3	15/0			X	or	3	-			V	7		X	- +	\rightarrow	X		╅	╁	+				
. 3	71-11102-07172066		1		<u> </u>	63	<u>~</u>	_			$\langle \cdot \rangle$		_	 ^ 	^+	$^{\sim}$	<i>'</i> -		+	1	+				
4			1				-				<u>^ </u>	-	_				\dashv		- -	_	-	ON HO	UD		
5			<u> </u>								\dashv	-	-	-	-				-		-	ļ			
6											$\neg \dagger$	_			\dashv	-	-		+	+-	+-			···	·
_7										-		-		\vdash		\dashv			+-	+	-			······································	
8									-	_		-			十	-	\neg	_	+	+-	╁┈			***	 -
9											\exists	-			┪	\dashv			_	╁	-				
10		-									_	7			+	1			-	-	┼				
	er's Name: S-Cama	G		<u> </u>		Reling	ishe.	l By /	Affi	liatio				Dat	-	Tin	ne l		400	nnfad	Der /	A 6671 - 41		75.	
	er's Company: Place Teac	1900	٠ ٢			Mill	,e						퓍	0717		1:7			L	700		Affiliation		Date	Time
	ent Date:						-9			Y)2//	7	DZ.		2/1/					70		- fr	<i>VS V /</i>	·	7/7/66	
	ent Method:					Enter 1	2-		,				ᅱ	7/18		164		Telus	·		M	· []		7/18 K	1640
aii	ent Tracking No:													4		- /		(7)	<u></u>		7 1			ZHYM	1040
	nstructions: CC to bpedf@br	oadbent														,									
	Nace Yes No	<u></u>				k Yes				(Cool	er To	emp	eratu	re or	ı Re	eceipt	4.0	/C		Trip	Blank Yes_	₂ /No		
	™e Copy - Lab	oratory	/ Yellov	v Coj	ру - В:	P/Atlantic Richfie	ld Co	o. /I	Pink	Cop	y - (Consi	ulta	nt/Co	ntrac	ctor						RP COC Pay			

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG.

AI .	BP Arco IIIC Felus_ HPG658 y		•	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	1640	B12006		,	_	tory Purposes? WATER YES/NO TER YES/NO
CIRCLE THE APPRO	PRIATE RESPONSE	LAB SAMPLE#	DASH #	CLIENT ID	CONTAINER DESCRIPTION	ATIVE	Hq		DATE SAMPĻED	REMARKS: CONDITION (ETC.)
1. Custody Seal(s)	Present Absent	0/	A.c			1100			7111100	
	Intact / Broken*	or	<u> </u>		3 voas				7/17/46	•
2. Chain-of-Custody	Present + Absent*	03	A13	18-1109-071720db	a voas	HCL.	-	h Quid	7/17/00	
3. Traffic Reports or		·								
Packing List:	Present/Absent	•								
4. Airbiil:	Airbill / Sticker	·				1.1				
	Present / Absent			•						
.5. Airbill #:			·		•					
6. Sample Labels: (Present / Absent	•		•						· · · · · · · · · · · · · · · · · · ·
7. Sample IDs: (Listed / Not Listed ·				•					
	on Chain-of-Custody	· · · · · · · · · · · · · · · · · · ·	ļ		•	1050				
8. Sample Condition: (Intact)Broken* /-			<u> </u>	-	Q W			•	-
	Leaking*		<u> </u>			//				
9. Does information on			 –	. ,						
traffic reports and sa					· · · · /			<u> </u>		
agree?	Yes No*			;					,	:
10. Sample received within				l luk	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- F	/ /		/	
hold time?	Yes / No*)		·			- -	\rightarrow			
11. Adequate sample volu received?	Yes No*					- - -	\mathcal{T}	•		
12. Proper preservatives u				<u> </u>				•		
13. Trip Blank / Temp Blar				· · / · · ·		/· 				
(circle which, if yes)	Yes No*		 -							
14. Read Temp:	3.60						,		,	
Corrected Temp:	- 3.6C	•		, , , , , , , , , , , , , , , , , , ,						
Is corrected temp. 4 +/			/						-	· · · · · · · · · · · · · · · · · · ·
(Acceptance range for samples r	· ·								-	
**Exception (if any): MET				, , , , , , , , , , , , , , , , , , , ,				• .		
or Problem COC	The April Office	/			·				·	
A CONTRACTOR OF THE PROPERTY O		TIE CID	MI ED	NANTACT DDA IFOT M	ANAOED AND	ATTACH			OLUTION	

ion 7 5 (07/13/04) Pege) of (

16 August, 2006

Alok Kolekar URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland, CA 94612

RE: BP Heritage #11102, Oakland, CA

Work Order: MPG1174

Enclosed are the results of analyses for samples received by the laboratory on 07/27/06 17:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Lisa Race

Senior Project Manager

CA ELAP Certificate # 1210

The results in this laboratory report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the BPGCLN Technical Specifications, applicable Federal, State, local regulations and certification requirements as well as the methodologies as described in laboratory SOPs reviewed by the BPGCLN. This entire report was reviewed and approved for release.

URS Corporation [Arco]	Project: BP Heritage #11102, Oakland, CA	MPG1174
1333 Broadway, Suite 800	Project Number: G07T9-0027	Reported:
Oakland CA, 94612	Project Manager: Alok Kolekar	08/16/06 10:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Laboratory ID Matrix		Date Received
MW-1	MPG1174-01	Water	Date Sampled 07/26/06 12:40	07/27/06 17:40
MW-2	MPG1174-02	Water	07/26/06 13:25	07/27/06 17:40
MW-3	MPG1174-03	Water	07/26/06 13:00	07/27/06 17:40
TB-11102-072606	MPG1174-04	Water	07/26/06 00:00	07/27/06 17:40

The carbon range for the TPH-GRO has been changed from C6-C10 to C4-C12. The carbon range for TPH-DRO has been changed from C10-C28 to C10-C36. EPA 8015B has been modified to better meet the requirements of California regulatory agencies. These samples were received with no custody seals.

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG1174 Reported: 08/16/06 10:54

Total Purgeable Hydrocarbons by GC/MS (CA LUFT)

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MPG1174-01) Water Sampled: 0	7/26/06 12:40	Received:	07/27/06	17:40	· · · · · · · · · · · · · · · · · · ·				
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6H06004	08/06/06	08/07/06	LUFT GCMS	
Surrogate: 1,2-Dichloroethane-d4		90 %	60-	145	"	"	"	"	
MW-2 (MPG1174-02) Water Sampled: 0	7/26/06 13:25	Received:	07/27/06	17:40					
Gasoline Range Organics (C4-C12)	2700	1000	ug/l	20	6H07011	08/07/06	08/08/06	LUFT GCMS	PV
Surrogate: 1,2-Dichloroethane-d4		98 %	60-	145	"	"	p	"	
MW-3 (MPG1174-03) Water Sampled: 0	7/26/06 13:00	Received:	07/27/06	17:40					
Gasoline Range Organics (C4-C12)	810	250	ug/l	5	6H09005	08/09/06	08/09/06	LUFT GCMS	***************************************
Surrogate: 1,2-Dichloroethane-d4		89 %	60-	145	"	"	"	II .	

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG1174 Reported: 08/16/06 10:54

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Morgan Hill, CA

Methyl tert-butyl ether 4.4 0.50 """"""""""""""""""""""""""""""""""""	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
Benzene	MW-1 (MPG1174-01) Water 5	Sampled: 07/26/06 12:40	Received:	Received: 07/27/06 17:40							
tert-Butyl alcohol 22 20 " " " " " " " " " " " " " " " " " " "	tert-Amyl methyl ether	ND	0.50	ug/l	1	6H06004	08/06/06	08/07/06	EPA 8260B	•	
Di-isopropyl ether ND 0.50 " " " " " " " " " " " " "	Benzene	ND	0.50	U	*1	n	11	tt	ij		
1,2-Dichloroethane (EDB) 1,2-Dichloroethane (EDB) 1,2-Dichloroethane ND 0,50 0,50 0,00 0,00 0,50 0,5	-	22	20	11	n	**	**	п	n		
1,2-Dichloroethane		ND	0.50	"	II .	n	"	1)	**		
Ethanol ND 300 "	• ,	ND	0.50	**	11	17	11	1)	II .		
Ethyl tert-butyl ether ND 0.50 " </td <td></td> <td>ND</td> <td>0.50</td> <td>19</td> <td>11</td> <td>**</td> <td>u</td> <td>,,</td> <td>IJ</td> <td></td>		ND	0.50	19	11	**	u	,,	IJ		
Ethylbenzene ND 0.50 """"""""""""""""""""""""""""""""""""	Ethanol		300	Ħ	**	tt.	41	tr	11		
Methyl tert-butyl ether 4.4 0.50 """"""""""""""""""""""""""""""""""""	Ethyl tert-butyl ether		0.50	U	H	U	**	u u	*		
Toluene ND 0.50 " " " " " " " " "		ND		11	U	11	H.	11	· ·		
ND				17	11	II .	H	n	II .		
Surrogate: 1,2-Dichloroethane-d4 90 % 60-145 " " " " " " Surrogate: 4-Bromofluorobenzene 94 % 60-115 " " " " " " Surrogate: Dibromofluoromethane 98 % 75-130 " " " " " " Surrogate: Toluene-d8 98 % 70-130 " " " " " " MW-2 (MPG1174-02) Water Sampled: 07/26/06 13:25 Received: 07/27/06 17:40 tert-Amyl methyl ether ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 " " " " " " " " " " " " " " " " " " " tert-Butyl alcohol 4500 2000 " " " " " " " " " " " " Di-isopropyl ether ND 50 " " " " " " " " " " " " " " " " " " "			0.50	17	11	u	11	Ħ	п		
Surrogate: 4-Bromofluorobenzene 94 % 60-115 " " " " " " " Surrogate: Dibromofluoromethane 98 % 75-130 " " " " " " " Surrogate: Toluene-d8 98 % 70-130 " " " " " " MW-2 (MPG1174-02) Water Sampled: 07/26/06 13:25 Received: 07/27/06 17:40 tert-Amyl methyl ether ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 6H06004 08/06/06 08/07/06 08/07/06 EPA 8260B Benzene ND 50 ug/l 100 0g/l	Xylenes (total)	ND	0.50	Ir .	"	11	**		11		
Surrogate: Dibromofluoromethane 98 % 75-130 " <	Surrogate: 1,2-Dichloroethane-d4	1	90 %	60-	145	"	п	"	n		
Surrogate: Toluene-d8 98 % 70-130 " " " " " " MW-2 (MPG1174-02) Water Sampled: 07/26/06 13:25 Received: 07/27/06 17:40 tert-Amyl methyl ether ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "	Surrogate: 4-Bromofluorobenzene	?	94 %	60	115	n	"	"	"		
MW-2 (MPG1174-02) Water Sampled: 07/26/06 13:25 Received: 07/27/06 17:40 tert-Amyl methyl ether ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 " " " " " " " " " " " " " " " " " "	Surrogate: Dibromofluoromethan	e	98 %	75	130	"	n	rt	и		
tert-Amyl methyl ether ND 50 ug/l 100 6H06004 08/06/06 08/07/06 EPA 8260B Benzene ND 50 " " " " " " " " " " " " " " " " " "	Surrogate: Toluene-d8		98 %	70	130	"	"	"	"		
Benzene ND 50 " " " " " " " " " " " " " " " " " " "	MW-2 (MPG1174-02) Water S	Sampled: 07/26/06 13:25	Received:	07/27/06	17:40						
tert-Butyl alcohol 4500 2000 " <td>tert-Amyl methyl ether</td> <td>ND</td> <td>50</td> <td>ug/l</td> <td>100</td> <td>6H06004</td> <td>08/06/06</td> <td>08/07/06</td> <td>EPA 8260B</td> <td></td>	tert-Amyl methyl ether	ND	50	ug/l	100	6H06004	08/06/06	08/07/06	EPA 8260B		
Di-isopropyl ether ND 50 " " " " " " " " " " " " "	Benzene	ND	50	*11	п	**	11	n	11		
1,2-Dibromoethane (EDB) ND 50 "<	tert-Butyl alcohol	4500	2000	Ħ	(r	11	**	u	11		
1,2-Dichloroethane ND 50 " " " " " " " " " " " " " " " " " " "		ND	50	lt.	**	н	(r	u	tt		
Ethanol ND 30000 " <t< td=""><td></td><td></td><td>50</td><td>н</td><td>Ir</td><td>н</td><td>II.</td><td>1)</td><td>II .</td><td></td></t<>			50	н	Ir	н	II.	1)	II .		
Ethyl tert-butyl ether ND 50 " <td>· ·</td> <td>ND</td> <td>50</td> <td>11</td> <td>IJ</td> <td>11</td> <td>u</td> <td>27</td> <td>IJ</td> <td></td>	· ·	ND	50	11	IJ	11	u	27	IJ		
Ethylbenzene ND 50 "		ND	30000	"	11	"	11	U	17		
Methyl tert-butyl ether 2900 50 "<			50	**	11	"	17	IJ	**		
Toluene ND 50 "	•	ND		11		0	IF	IJ	II.		
Xylenes (total) ND 50 "			50	II .	1)	n	ij	11	n		
Surrogate: 1,2-Dichloroethane-d4 94 % 60-145 " " " " " Surrogate: 4-Bromofluorobenzene 89 % 60-115 " " " " " Surrogate: Dibromofluoromethane 101 % 75-130 " " " "				"	n	11	U	**	и		
Surrogate: 4-Bromofluorobenzene 89 % 60-115 " " " " " " " " " " " " " " " " " "	Xylenes (total)	ND	50	11	11	et .	71	lt	11		
Surrogate: Dibromofluoromethane 101 % 75-130 " " " " "	Surrogate: 1,2-Dichloroethane-d4	,	94 %	60-1	145	и	л	o	n		
	Surrogate: 4-Bromofluorobenzene		89 %	60-1	115	n	"	"	ı,		
Surrogate: Toluene-d8 90 % 70-130 " " " " "	Surrogate: Dibromofluoromethane	2	101 %	75-1	130	n	"	Ħ	и		
	Surrogate: Toluene-d8		90 %	70-1	130	n	"	n	"		

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027
Project Manager: Alok Kolekar

MPG1174 Reported: 08/16/06 10:54

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3 (MPG1174-03) Water	Sampled: 07/26/06 13:00	Received:	07/27/06	17:40					
tert-Amyl methyl ether	18	10	ug/l	20	6H06007	08/06/06	08/07/06	EPA 8260B	
Benzene	ND	10	H	IJ	19	Ħ	11	11	
tert-Butyl alcohol	ND	400	IJ	11	U	п	11	17	
Di-isopropyl ether	ND	10	**	**	n n	a a	,,	rt .	
1,2-Dibromoethane (EDB)	ND	10	11	**	n	11	tr	tt	
1,2-Dichloroethane	ND	10	91	tr.	17	11	n	U	
Ethanol	ND	6000	H	JF.	**	Ħ	ц	II .	
Ethyl tert-butyl ether	ND	10	11	n	ţı	tr	11	II .	
Ethylbenzene	ND	10	Iŧ	11	II	11	11	11	
Methyl tert-butyl ether	1300	10	"	Ħ	er .	ц	**	#P	
Toluene	ND	10	и	11	n	10	**	н	
Xylenes (total)	ND	10	11	17	11	11	11	u	
Surrogate: 1,2-Dichloroethane-d	4	106 %	60-	145	n	"	n	n	
Surrogate: 4-Bromofluorobenzen	e	94 %	60-	115	"	"	"	0	
Surrogate: Dibromofluoromethar	пе	98 %	75-	130	"	"	n	tt.	
Surrogate: Toluene-d8		96 %	70-	130	"	"	*	n	

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG1174 Reported: 08/16/06 10:54

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6H06004 - EPA 5030B P/T / I	UFT GCMS								•	
Blank (6H06004-BLK1)				Prepared:	08/06/06	Analyzed	l: 08/07/06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Surrogate: 1,2-Dichloroethane-d4	2.18		μ	2.50		87	60-145			
Laboratory Control Sample (6H06004-I	BS1)			Prepared a	& Analyze	ed: 08/06/	06			
Gasoline Range Organics (C4-C12)	463	50	ug/l	440		105	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.06		"	2.50		82	60-145			
Matrix Spike (6H06004-MS1)	Source: M	PG1173-03		Prepared a	& Analyze	ed: 08/06/	06			
Gasoline Range Organics (C4-C12)	10700	500	ug/l	4400	6000	107	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.06		"	2.50		82	60-145			
Matrix Spike Dup (6H06004-MSD1)	Source: M	PG1173-03		Prepared of	& Analyze	ed: 08/06/	06			
Gasoline Range Organics (C4-C12)	10700	500	ug/l	4400	6000	107	75-140	0	20	
Surrogate: 1,2-Dichloroethane-d4	2.04		n	2.50		82	60-145			
Batch 6H07011 - EPA 5030B P/T / I	UFT GCMS									
Blank (6H07011-BLK1)				Prepared:	08/07/06	Analyzed	: 08/08/06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l	· · · · · · · · · · · · · · · · · · ·						
Surrogate: 1,2-Dichloroethane-d4	2.41		#	2.50		96	60-145			
Laboratory Control Sample (6H07011-E	S1)			Prepared &	& Analyze	:d: 08/07/0	06			
Gasoline Range Organics (C4-C12)	465	50	ug/l	440	····	106	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.11		ff.	2.50		84	60-145			
Matrix Spike (6H07011-MS1)	Source: MI	PG1178-03		Prepared &	& Analyze	:d: 08/07/0)6			
Gasoline Range Organics (C4-C12)	455	50	ug/l	440	ND	103	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.08		"	2.50		83	60-145			

Project: BP Heritage #11102, Oakland, CA

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG1174 Reported: 08/16/06 10:54

Total Purgeable Hydrocarbons by GC/MS (CA LUFT) - Quality Control TestAmerica - Morgan Hill, CA

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6H07011 - EPA 5030B P/T / L	UFT GCMS									
Matrix Spike Dup (6H07011-MSD1)	Source: M	PG1178-03		Prepared	& Analyz	ed: 08/07/	06			
Gasoline Range Organics (C4-C12)	440	50	ug/l	440	ND	100	75-140	3	20	
Surrogate: 1,2-Dichloroethane-d4	2.04		n	2.50		82	60-145			
Batch 6H09005 - EPA 5030B P/T / L	UFT GCMS									
Blank (6H09005-BLK1)				Prepared	& Analyz	ed: 08/09/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							***************************************
Surrogate: 1,2-Dichloroethane-d4	2.53		"	2.50		101	60-145			
Laboratory Control Sample (6H09005-B	IS2)			Prepared	& Analyz	ed: 08/09/	06			
Gasoline Range Organics (C4-C12)	510	50	ug/l	440		116	75-140			• • • • • • • • • • • • • • • • • • • •
Surrogate: 1,2-Dichloroethane-d4	2.17		"	2.50		87	60-145			
Matrix Spike (6H09005-MS1)	Source: M	PG1174-03		Prepared 4	& Analyz	ed: 08/09/	06			
Gasoline Range Organics (C4-C12)	2800	250	ug/l	2200	810	90	75-140			
Surrogate: 1,2-Dichloroethane-d4	2.05		f)	2.50		82	60-145			
Matrix Spike Dup (6H09005-MSD1)	Source: M	PG1174-03		Prepared o	& Analyze	ed: 08/09/	06			
Gasoline Range Organics (C4-C12)	2850	250	ug/l	2200	810	93	75-140	2	20	
Surrogate: 1,2-Dichloroethane-d4	2.05		"	2.50		82	60-145			

RPD

URS Corporation [Arco] 1333 Broadway, Suite 800 Oakland CA, 94612

Project: BP Heritage #11102, Oakland, CA

Spike

MPG1174 Project Number: G07T9-0027 Reported: Project Manager: Alok Kolekar 08/16/06 10:54

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6H06004 - EPA 5030B P/T /	EPA 8260B									
Blank (6H06004-BLK1)				Prepared:	08/06/06	Analyzed	: 08/07/06			
tert-Amyl methyl ether	ND	0,50	ug/l							
Benzene	ND	0.50	"							
tert-Butyl alcohol	ND	20	n							
Di-isopropyl ether	ND	0.50	11							
1,2-Dibromoethane (EDB)	ND	0.50	u							
1,2-Dichloroethane	ND	0.50	**							
Ethanol	ND	300	**							
Ethyl tert-butyl ether	ND	0.50	Ħ							
Ethylbenzene	ND	0.50	II .							
Methyl tert-butyl ether	ND	0.50	u							
Toluene	ND	0.50	п							
Xylenes (total)	ND	0.50	h							
Surrogate: 1,2-Dichloroethane-d4	2.18		,,	2.50		87	60-145		• • • • • • • • • • • • • • • • • • • •	
Surrogate: 4-Bromofluorobenzene	2.34		п	2.50		94	60-115			
Surrogate: Dibromofluoromethane	2.46		"	2.50		98	75-130			
Surrogate: Toluene-d8	2.35		"	2.50		94	70-130			
Laboratory Control Sample (6H06004	-BS1)			Prepared a	& Analyze	d: 08/06/0)6			
tert-Amyl methyl ether	14.8	0.50	ug/l	15.0		99	65-135			
Benzene	5.36	0.50	n	5.16		104	70-125			
tert-Butyl alcohol	137	20	п	143		96	60-135			
Di-isopropyl ether	14.6	0.50	IJ	15.1		97	70-130			
1,2-Dibromoethane (EDB)	14.8	0.50	11	14.9		99	85-125			
1,2-Dichloroethane	13.4	0.50	**	14.7		91	75-125			
Ethanol	101	300	**	142		71	15-150			
Ethyl tert-butyl ether	14.4	0.50	tr .	15.0		96	65-130			
Ethylbenzene	7.08	0.50	u	7.54		94	80-130			
Methyl tert-butyl ether	7.23	0.50	u	7.02		103	50-140			
Foluene	37.8	0.50	п	37.2		102	70-120			
Xylenes (total)	39.6	0.50	IJ	41.2		96	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.06		"	2.50		82	60-145			
Surrogate: 4-Bromofluorobenzene	2.70		"	2.50		108	60-115			
Surrogate: Dibromofluoromethane	2.29		"	2.50		92	75-130			
Surrogate: Toluene-d8	2.59		*	2.50		104	70-130			

Project: BP Heritage #11102, Oakland, CA

Spike

Source

Project Number: G07T9-0027 Project Manager: Alok Kolekar MPG1174 Reported: 08/16/06 10:54

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Reporting

		Reporting		Spike	Source		MICEC		KLD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch 6H06004 - EPA 5030B P/T / E	EPA 8260B									
Matrix Spike (6H06004-MS1)	Source: MI	PG1173-03		Prepared .	& Analyze	ed: 08/06/	06			
tert-Amyl methyl ether	145	5.0	ug/l	150	ND	97	65-135			*************
Benzene	193	5.0	"	51.6	140	103	70-125			
tert-Butyl alcohol	1620	200		1430	270	94	60-135			
Di-isopropyl ether	313	5.0	n	151	160	101	70-130			
1,2-Dibromoethane (EDB)	144	5.0	11	149	ND	97	85-125			
1,2-Dichloroethane	133	5.0	19	147	ND	90	75-125			
Ethanol	1420	3000	4	1420	ND	100	15-150			
Ethyl tert-butyl ether	142	5.0	tř	150	ND	95	65-130			
Ethylbenzene	185	5.0	u	75.4	110	99	80-130			
Methyl tert-butyl ether	301	5.0	I)	70.2	220	115	50-140			
Toluene	874	5.0	п	372	510	98	70-120			
Xylenes (total)	967	5.0	n	412	580	94	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.06		11	2.50		82	60-145			
Surrogate: 4-Bromofluorobenzene	2.65		"	2.50		106	60-115			
Surrogate: Dibromofluoromethane	2.23		p	2.50		89	75-130			
Surrogate: Toluene-d8	2.63		"	2.50		105	70-130			
Matrix Spike Dup (6H06004-MSD1)	Source: MF	G1173-03		Prepared o	& Analyze	d: 08/06/0	06			
tert-Amyl methyl ether	146	5.0	ug/l	150	ND	97	65-135	0.7	25	
Benzene	193	5.0	**	51.6	140	103	70-125	0	15	
tert-Butyl alcohol	1620	200	11	1430	270	94	60-135	0	35	
Di-isopropyl ether	307	5.0	п	151	160	97	70-130	2	35	
1,2-Dibromoethane (EDB)	144	5.0	п	149	ND	97	85-125	0	15	
1,2-Dichloroethane	129	5.0	п	147	ND	88	75-125	3	10	
Ethanol	1550	3000	11	1420	ND	109	15-150	9	35	
Ethyl tert-butyl ether	140	5.0	b	150	ND	93	65-130	1	35	
Ethylbenzene	181	5.0	**	75.4	110	94	80-130	2	15	
Methyl tert-butyl ether	306	5.0	**	70.2	220	123	50-140	2	25	
Toluene	865	5.0	**	372	510	95	70-120	1	15	
Xylenes (total)	953	5.0	u	412	580	91	85-125	1	15	
Surrogate: 1,2-Dichloroethane-d4	2.04		"	2.50		82	60-145			
Surrogate: 4-Bromofluorobenzene	2.67		*	2.50		107	60-115			
Surrogate: Dibromofluoromethane	2.26		"	2.50		90	75-130			
Surrogate: Toluene-d8	2.66		p	2.50		106	70-130			

Project: BP Heritage #11102, Oakland, CA

Spike

Source

%REC

Project Number: G07T9-0027
Project Manager: Alok Kolekar

MPG1174 Reported: 08/16/06 10:54

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6H06007 - EPA 5030B P/T / E	EPA 8260B			***************************************						
Blank (6H06007-BLK1)				Prepared:	08/06/06	Analyzed	l: 08/07/06			
tert-Amyl methyl ether	ND	0.50	ug/l		***************************************				***************************************	••••
Benzene	ND	0.50	11							
tert-Butyl alcohol	ND	20	11							
Di-isopropyl ether	ND	0.50	11							
1,2-Dibromoethane (EDB)	ND	0.50	**							
1,2-Dichloroethane	ND	0.50	tr .							
Ethanol	ND	300	п							
Ethyl tert-butyl ether	ND	0.50	IJ							
Ethylbenzene	ND	0.50	II .							
Methyl tert-butyl ether	ND	0.50	n							
Toluene Toluene	ND	0.50	**							
Xylenes (total)	ND	0.50	в							
Surrogate: 1,2-Dichloroethane-d4	2.80		"	2.50		112	60-145			
Surrogate: 4-Bromofluorobenzene	2.35		"	2.50		94	60-115			
Surrogate: Dibromofluoromethane	2.47		a	2.50		99	75-130			
Surrogate: Toluene-d8	2.42		"	2.50		97	70-130			
Laboratory Control Sample (6H06007-B	SS1)			Prepared:	08/06/06	Analyzed	: 08/07/06			
tert-Amyl methyl ether	15.2	0.50	ug/l	15.0		101	65-135			
Benzene	5.38	0.50	11	5.16		104	70-125			
tert-Butyl alcohol	166	20	*1	143		116	60-135			
Di-isopropyl ether	15.0	0.50	**	15.1		99	70-130			
1,2-Dibromoethane (EDB)	16.4	0.50	17	14.9		110	80-125			
1,2-Dichloroethane	15.4	0.50	Ħ	14.7		105	75-125			
Ethanol	149	300	It	142		105	15-150			
Ethyl tert-butyl ether	15.7	0.50	п	15.0		105	65-130			
Ethylbenzene	7.48	0.50	ш	7.54		99	70-130			
Methyl tert-butyl ether	7.60	0.50	11	7.02		108	50-140			
Foluene	34.8	0.50	11	37.2		94	70-120			
Xylenes (total)	42.4	0.50	*1	41.2		103	80-125			
Surrogate: 1,2-Dichloroethane-d4	2.37		"	2.50		95	60-145			
Surrogate: 4-Bromofluorobenzene	2.41		n	2.50		96	60-115			
Surrogate: Dibromofluoromethane	2.47		"	2.50		99	75-130			
Surrogate: Toluene-d8	2.57		*	2.50		103	70-130			

Project: BP Heritage #11102, Oakland, CA

Spike

Source

Project Number: G07T9-0027 Project Manager: Alok Kolekar

MPG1174 Reported: 08/16/06 10:54

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica - Morgan Hill, CA

Reporting

Matrix Spike (6H06007 - EPA 5030B P/T / EPA 8260B Matrix Spike (6H06007 - EPA 5030B P/T / EPA 8260B Matrix Spike (6H06007 - MS1) Source: MPGI175-01 Prepared: 08/06/06 Analyzed: 08/07/06 Ert-Amyl methyl ether 16.9 0.50 wg/l 15.0 0.71 108 65-135			Reporting		Брікс	Source		%KEC		KPD	
Matrix Spike (6H06007-MS1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06	Analyte	Result	Limit	Units		Result	%REC	Limits	RPD		Notes
Retr-Amyl methyl ether 16.9 0.50 wg/l 15.0 0.71 108 65-135	Batch 6H06007 - EPA 5030B P/T / I	EPA 8260B	***************************************								
Benzene 5.65 0.50 "5.16 0.15 107 70-125	Matrix Spike (6H06007-MS1)	Source: M	PG1175-01		Prepared:	: 08/06/06	Analyze	d: 08/07/06			
tert-Butyl alcohol 171 20 " 143 ND 120 60-135	tert-Amyl methyl ether	16.9	0.50	ug/l	15.0	0.71	108	65-135			
Di-isopropyl ether 16.8	Benzene	5.65	0.50	u	5.16	0.15	107	70-125			
1,2-Dibromoethane (EDB) 1,3-Dibromoethane (EDB) 1,3-Dichloroethane 1,7-4 1,2-Dichloroethane 1,7-4 1,2-Dichloroethane 1,7-4 1,2-Dichloroethane 1,7-4 1,2-Dichloroethane 1,7-4 1,2-Dichloroethane 1,7-4 1,2-Dichloroethane 1,7-5 1,3-0	tert-Butyl alcohol	171	20	п	143	ND	120	60-135			
1,2-Dichloroethane	Di-isopropyl ether	16.8	0.50	п	15.1	ND	111	70-130			
Ethanol 144 300 " 142 ND 101 15-150 Ethylbenzene 7.69 0.50 " 15.0 ND 117 65-130 Ethylbenzene 7.69 0.50 " 7.54 ND 102 70-130 Methyl tetr-butyl ether 9.08 0.50 " 7.54 ND 102 70-130 Methyl tetr-butyl ether 9.08 0.50 " 7.02 0.36 124 50-140 Toluene 36.3 0.50 " 37.2 ND 98 70-120 Xylenes (total) 43.1 0.50 " 41.2 ND 105 80-125 Surrogate: 1.2-Dichloroethane-44 Surrogate: Dibromofluoromethane 2.46 " 2.50 99 75-130 Surrogate: Dibromofluoromethane 2.47 " 2.50 99 75-130 Marrix Spike Dup (6H06007-MSD1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06 Hert-Amyl methyl ether 18.0 0.50 ug/l 15.0 0.71 115 65-135 6 25 Benzene 5.94 0.50 " 5.16 0.15 112 70-125 5 15 tetr-Butyl alcohol 179 20 " 143 ND 125 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 14.9 ND 126 70-130 13 35 Di-isopropyl ether 19.1 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane (EDB) 18.7 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 15.0 ND 129 65-135 10 LM Ethanol 162 300 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tetr-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Methyl tetr-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 1.2-Dichloroethane-44 Surrogate: 1.2-Dichloroethane-44 Surrogate: 1.2-Dichloroethane-44 Surrogate: 1.2-Dichloroethane-44 Surrogate: 1.2-Dichloroethane-48 Surrogate: 1.2-Dichloroethane-4	1,2-Dibromoethane (EDB)	18.3	0.50	11	14.9	ND	123	80-125			
Ethyl tert-butyl ether	1,2-Dichloroethane	17.4	0.50	19	14.7	ND	118	75-125			
Ethylbenzene 7.69 0.50 " 7.54 ND 102 70-130 Methyl tert-butyl ether 9.08 0.50 " 7.02 0.36 124 50-140 Toluene 36.3 0.50 " 37.2 ND 98 70-120 Xylenes (total) 43.1 0.50 " 41.2 ND 105 80-125 Surrogate: 1.2-Dichloroethane-44 2.59 " 2.50 98 60-115 Surrogate: 4-Bromofluorobenzene 2.46 " 2.59 98 60-115 Surrogate: Toluene-48 2.59 " 2.50 98 60-115 Surrogate: Toluene-48 2.59 " 2.50 99 75-130 Surrogate: Toluene-48 2.59 " 2.50 104 70-130 Matrix Spike Dup (6H06007-MSD1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06 Etert-Amyl methyl ether 18.0 0.50 ug/l 15.0 0.71 115 65-135 6 25 Benzene 5.94 0.50 " 5.16 0.15 112 70-125 5 15 Etert-Butyl alcohol 179 20 " 143 ND 125 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 15.1 ND 126 70-130 13 35 1.2-Dirbomoethane (EDB) 18.7 0.50 " 14.7 ND 126 70-130 13 35 1.2-Dirbomoethane (EDB) 18.7 0.50 " 14.7 ND 126 80-125 2 15 LM 1,2-Dirbomoethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM 1,2-Dirbomoethane 18.9 0.50 " 15.0 ND 129 65-130 10 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethyl tert-butyl ether 19.3 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NStylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NSTylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NSTylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 NSTylenes (total) 44.6 0.50 " 41.2	Ethanol	144	300	**	142	ND	101	15-150			
Methyl tert-butyl ether 9.08 0.50 " 7.02 0.36 124 50-140 Toluene 36.3 0.50 " 37.2 ND 98 70-120 Xylenes (total) 43.1 0.50 " 41.2 ND 105 80-125 Surrogate: 1,2-Dichloroethane-d4 2.59 " 2.50 104 60-145 Surrogate: Dibromofluoromethane 2.47 " 2.50 99 75-130 Surrogate: Dibromofluoromethane 2.47 " 2.50 99 75-130 Surrogate: Toluene-d8 2.39 " 2.50 104 70-130 Matrix Spike Dup (6H06007-MSD1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06 Lett-Anyl methyl ether 18.0 0.50 ug/l 15.0 0.71 115 65-135 6 25 Benzene 5.94 0.50 " 5.16 0.15 112 70-125 5 15 Lett-Butyl alcohol 179 20 " 143 ND 126 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 15.1 ND 126 80-125 2 15 LM 1,2-Dibromoethane (EDB) 18.7 0.50 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 142 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 7.54 ND 108 70-130 6 15 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 7.54 ND 108 70-130 6 15 Surrogate: 1,2-Dichloroethane-4 2.71 " 2.50 108 60-145 Surrogate: 1,2-Dichloroethane-4 2.71 " 2.50 108 60-145 Surrogate: 1,2-Dichloroethane-4 2.71 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Ethyl tert-butyl ether	17.5	0.50	H	15.0	ND	117	65-130			
Toluene 36.3 0.50 " 37.2 ND 98 70-120 Xylenes (total) 43.1 0.50 " 41.2 ND 105 80-125 Surrogate: 1,2-Dichloroethane-44 2.59 " 2.50 104 60-145 Surrogate: 4-Bromofluorobenzene 2.46 " 2.50 98 60-115 Surrogate: Dibromofluoromethane 2.47 " 2.50 99 75-130 Surrogate: Toluene-d8 2.59 " 2.50 104 70-130 Matrix Spike Dup (6H06007-MSD1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06 Hatrix Spike Dup (6H06007-MSD1) 18.0 0.50 ug/l 15.0 0.71 115 65-135 6 25 Benzene 5.94 0.50 " 5.16 0.15 112 70-125 5 15 tett-Butyl alcohol 179 20 " 143 ND 125 60-135 5 35 Di-isopopyl ether 19.1 0.50 " 15.1 ND 126 70-130 13 35 Ly-Dibromoethane (EDB) 18.7 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM 1,2-Dichloroethane 162 300 " 14.2 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethyl tert-butyl ether 19.3 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 4 Surrogate:	Ethylbenzene	7.69	0.50	II .	7.54	ND	102	70-130			
Xylenes (total)	Methyl tert-butyl ether	9.08	0.50	n	7.02	0.36	124	50-140			
Surrogate: 1,2-Dichloroethane-d4 2.59 " 2.50 104 60-145	Toluene	36.3	0.50	11	37.2	ND	98	70-120			
Surrogate: 4-Bromofluorobenzene 2.46 " 2.50 98 60-115	Xylenes (total)	43.1	0.50	27	41.2	ND	105	80-125			
Surrogate: Dibromofluoromethane 2.47 " 2.50 99 75-130	Surrogate: 1,2-Dichloroethane-d4	2.59		n	2.50		104	60-145			
Matrix Spike Dup (6H06007-MSD1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06 tert-Amyl methyl ether 18.0 0.50 ug/l 15.0 0.71 115 65-135 6 25 Benzene 5.94 0.50 ug/l 15.0 0.15 112 70-125 5 15 tert-Butyl alcohol 179 20 " 143 ND 125 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 15.1 ND 126 70-130 13 35 1,2-Dibromoethane (EDB) 18.7 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 14.2<	Surrogate: 4-Bromofluorobenzene	2.46		n	2.50		98	60-115			
Matrix Spike Dup (6H06007-MSD1) Source: MPG1175-01 Prepared: 08/06/06 Analyzed: 08/07/06 tert-Amyl methyl ether 18.0 0.50 ug/l 15.0 0.71 115 65-135 6 25 Benzene 5.94 0.50 " 5.16 0.15 112 70-125 5 15 tert-Butyl alcohol 179 20 " 143 NID 125 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 15.1 NID 126 70-130 13 35 1,2-Dibromoethane (EDB) 18.7 0.50 " 14.9 NID 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 NID 129 75-125 8 10 LM Ethanol 162 300 " 142 NID 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 7.54 <	Surrogate: Dibromofluoromethane	2.47		"	2.50		99	75-130			
tert-Amyl methyl ether	Surrogate: Toluene-d8	2.59		"	2.50		104	70-130			
Benzene 5.94 0.50 " 5.16 0.15 112 70-125 5 15 tert-Butyl alcohol 179 20 " 143 ND 125 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 15.1 ND 126 70-130 13 35 1,2-Dibromoethane (EDB) 18.7 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 142 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 99 75-130	Matrix Spike Dup (6H06007-MSD1)	Source: M	PG1175-01		Prepared:	08/06/06	Analyzed	i: 08/07/06			
tetr-Butyl alcohol 179 20 " 143 ND 125 60-135 5 35 Di-isopropyl ether 19.1 0.50 " 15.1 ND 126 70-130 13 35 1,2-Dibromoethane (EDB) 18.7 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 142 ND 114 15-150 12 35 Ethyl tetr-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethyl tetr-butyl ether 19.3 0.50 " 7.54 ND 108 70-130 6 15 Methyl tetr-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 99 75-130 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	tert-Amyl methyl ether	0.81	0.50	ug/l	15.0	0.71	115	65-135	6	25	
Di-isopropyl ether 19.1 0.50 15.1 ND 126 70-130 13 35 1,2-Dibromoethane (EDB) 18.7 0.50 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 142 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 7 2.50 99 75-130	Benzene	5.94	0.50	(F	5.16	0.15	112	70-125	5	15	
1,2-Dibromoethane (EDB) 18.7 0.50 " 14.9 ND 126 80-125 2 15 LM 1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 142 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 102 60-145 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	tert-Butyl alcohol	179	20	п	143	ND	125	60-135	5	35	
1,2-Dichloroethane 18.9 0.50 " 14.7 ND 129 75-125 8 10 LM Ethanol 162 300 " 142 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 102 60-145 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Di-isopropyl ether	19.1	0.50	11	15.1	ND	126	70-130	13	35	
Ethanol 162 300 " 142 ND 114 15-150 12 35 Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	1,2-Dibromoethane (EDB)	18.7	0.50	11	14.9	ND	126	80-125	2	15	LN
Ethyl tert-butyl ether 19.3 0.50 " 15.0 ND 129 65-130 10 35 Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluoromethane 2.48 " 2.50 99 75-130	1,2-Dichloroethane	18.9	0.50	11	14.7	ND	129	75-125	8	10	LN
Ethylbenzene 8.13 0.50 " 7.54 ND 108 70-130 6 15 Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Ethanol	162	300	**	142	ND	114	15-150	12	35	
Methyl tert-butyl ether 9.75 0.50 " 7.02 0.36 134 50-140 7 25 Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Ethyl tert-butyl ether	19.3	0.50	n	15.0	ND	129	65-130	10	35	
Toluene 36.9 0.50 " 37.2 ND 99 70-120 2 15 Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Ethylbenzene	8.13	0.50	11	7.54	ND	108	70-130	6	15	
Xylenes (total) 44.6 0.50 " 41.2 ND 108 80-125 3 15 Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Methyl tert-butyl ether	9.75	0.50	п	7.02	0.36	134	50-140	7	25	
Surrogate: 1,2-Dichloroethane-d4 2.71 " 2.50 108 60-145 Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Toluene	36.9	0.50	u	37.2	ND	99	70-120	2	15	
Surrogate: 4-Bromofluorobenzene 2.54 " 2.50 102 60-115 Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Xylenes (total)	44.6	0.50	tt	41.2	ND	108	80-125	3	15	
Surrogate: Dibromofluoromethane 2.48 " 2.50 99 75-130	Surrogate: 1,2-Dichloroethane-d4	2.71		#	2.50		108	60-145			
	Surrogate: 4-Bromofluorobenzene	2.54		"	2.50		102	60-115			
Surrogate: Toluene-d8 2.55 " 2.50 102 70-130	Surrogate: Dibromofluoromethane	2.48		tr	2.50		99	75-130			
	Surrogate: Toluene-d8	2.55		ı	2.50		102	70-130			

URS Corporation [Arco]Project:BP Heritage #11102, Oakland, CAMPG11741333 Broadway, Suite 800Project Number:G07T9-0027Reported:Oakland CA, 94612Project Manager:Alok Kolekar08/16/06 10:54

Notes and Definitions

PV Hydrocarbon result partly due to individ. peak(s) in quant. range

LM MS and/or MSD above acceptance limits. See Blank Spike(LCS).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Chain of Custody Record

Project Name: Analytical for QMR sampling

BP BU/AR Region/Enfos Segment:

BP > Americas > West Coast > Relail > WCBU > CA > Central > 11102 > HistoricalBL.

State or Lead Regulatory Agency:

California Regional Water Quality Control Board - San Fre

Requested Due Date (mm/dd/yy):

10 Day TAT

	Pageof
On-site Time: /145	Temp:
Off-site Time: 1345	Temp.
Sky Conditions: Sun	
Meteorological Events:	
Wind Speed:	Direction:

Lab Name: Sequoia	BP/AR Facility No.: 11102	Consultant/Contractor: URS				
Address: 885 Jarvis Drive	BP/AR Facility Address: 100 MacArthur Blvd., Oakland, CA 94610	Address: 1333 Broadway, Suite 800				
Morgan Hill, CA 95037	Site Lat/Long: 37.819113 / -122.253	Oakland, CA 94612				
Lab PM: Lisa Race / Katt Min	California Global ID No.: T0600100908	Consultant/Contractor Project No.: 38487119				
Tele/Fax: 408.782.8156 / 408.782.6308	Enfos Project No.: G07T9-0027	Consultant/Contractor PM; Alok Kolekar				
BP/AR PM Contact: Paul Supple	Provision or RCOP: Provision	Tele/Fax: 510.874.3152 / 510.874.3268				
Address: P.O. Box 6549	Phase/WBS: 04 - Mon/Remed by Natural Attenuation	Report Type & QC Level: Level 1 with EDF				
Moraga, CA 94570		E-mail EDD To: jane field@urscorp.com				
Tele/Fax: 925-299-8891		Invoice to: Atlantic Richfield Company				
Lab Bottle Order No: 11102 Matrix	Preservative Requ	ested Analysis				
Item Date Description Time Date Water/Liquid	HOLI MATHR (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260) MATHRA (\$260)	Sample Point Lat/Long and Comments				
1 MW-1 1240 7/2400 X	0) 3 X X X X					
2 MW-Z 1325 T X 3 MW-B 1300 X	02 3 X XXX	,				
3 NW-3 1300 X	03 3 X X X X					
4 13-11102.072606 - 1/ X	04 2 1	0n160				
5		+ ONTED				
6						
7						
8						
9						
10						
Sampler's Name: Shawn Cand	Relifiquished By / Affiliation Date Time	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Sampler's Company:	- I delay 1780	Accepted By / Affiliation Date Time				
Shipment Date:	1/21/26 1/38	725 AG 180				
Shipment Method:	727-00 1740					
Shipment Tracking No:	V-Claurito ,	The alle (int) Take The				
Special Instructions: CC to bpedf@broadbentinc.com						
-//	• ^					
Custody Seals In Place Yes No Temp Blai	ak Yes No Cooler Temperature on Receip	t 3 9 90 Trip Blank Yes No				

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER: MPG 1174		- -	DATE REC'D AT LAB: TIME REC'D AT LAB: DATE LOGGED IN:	Ct 4		10		DRINKING WASTE WA	ATER YES/NO
CIRCLE THE APPROPRIATE RESPONSE	LAB SAMPLE#	DASH #	CLIENT ID	CONTAINER DESCRIPTION	PRESERV ATIVE	рH	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)
Custody Seal(s) Present / Absent Intact / Broken*									
Chain-of-Custody Present / Absent* Traffic Reports or			35			J		· .	
Packing List: Present / Absent 4. Airbill: Airbill / Sticker					, ,		,	·	
Present / Absent 5. Airbill #:					,	•			
6. Sample Labels: Rresent / Absent 7. Sample IDs: Listed / Not Listed on Chain-of-Custody					-				
8. Sample Condition: Intact / Broken* / Leaking*						/		•	
9. Does information on chain-of-custody, traffic reports and sample labels agree? Yes/No*				W.		•	- 1	<u>ر ۱</u>	
10. Sample received within hold time?	-				70				
11. Adequate sample volume received?							· · · · ·	2	
12. Propes preservatives used? Yes / No* 13. Trio Blank / Temp Blank Received?		:							
(circle which, if yes) 14. Read Temp: Corrected Temp:		/			·				
Is corrected temp 4 +/-2°C? Yes / No** (Acceptance range for samples requiring thermal pres.)									
**Exception (if any): METALS / DFF ON ICE or Problem COC			ONTACT PROJECT M				www.composition		

SRL Revision 7 Replaces Rev 5 (07/13/04) Effective 07/19/05 Page ____ of __(:__

WELL GAUGING DATA

Project #	06077.52	Date 07/17/36	Client BP 1110Z	
Site	100 Martin	- Blog Oakland	(D	

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)		Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
Mw 1	1415	4					9.25	32.00		
MW-7	45	Coly	ان ۱۸ ارا	- <u> </u>	; Con	lat ope	9.25 ~v216w 10.80	· bent on	4	
MW-3	1420	u				**	10.80	3244	W	
	-									
										
	_									
<u> </u>										
	· · · · · · · · · · · · · · · · · · ·									

BTS #:	060717	- 5c2		Station #	DAINO	<u>`</u> ``		
BTS #: Sampler:	5.0	imuik		Date: 07/17	(.0.6-			
Well I.D.:	MV	J -\		Well Diameter:	2 3	4 6	8	
Total Wel	l Depth:	3200		Depth to Water	:9-25			
Depth to F	Free Produ	ct		Thickness of Fr	ee Product	(feet):		
Reference	d to:	PVC)	Grade	D.O. Meter (if a	req'd):	YSI	НА	CH
*************************************	Well Diameter 1" 2" 3"	er <u>n</u>	Aultiplier W 0.04 0.16 0.37	4" 0 6" 1	ultiplier .65 .47 ² * 0.163			
Purge Metho	d:	Bailer		Sampling Method:				
		sposable Bail		Y	Disposable Ba			
		e Air Displac			Extraction P	ort		
	T T	etric Submers		Other:				
		xtraction Pum	p					
				<u>.</u> .		, ,		
Top of Scree	:n:			no-purge, confirm		el is below	the top	
ı	: 11		of screen. Otherwi	se, the well must be	purged.	<u> </u>		י ן
1	14	-8	x			als.		
	l Case Vol	ume (Gals.)	Specified Vo	lumes Calc	ulated Volume			<u> </u>
Time	Temp (°F)	pН	Conductivity (mS or us)	Gals. Removed	Observation	ons		
1430	69.8	ζ. ⊃	764	14.8	clear	117	slight,	don
1433	69,6	7.7	757	29.6	در	۲,	٠(٢	(
1436	GW.V	77	737	44.4	10	در	لد ١	(
,			ļ				All F (1)	····
Did well		Yes	No	Gallons actual	ly evacuate	:d: 44.	7	
Sampling		445	pproproaction of the second	Sampling Date	: 07/1	7/06		
Sample I.	.D.: //	IW-1		Laboratory:	Pace Sequ	uoia	Other 7	<u> </u>
Analyzed	for: c	GRO BTEX M	TBE DRO Oxy's 1,2-D		Other: 5	ر د د	26	
D.O. (if r	eq'd):		Pre-purge	: mg/	Post-p	ourge:		mg/
O.R.P. (i			Pre-purge	mV		ourge:	nn: ===	m\

Sampler: S. Caracca Date: Depth to Process Well I.D.: March Depth to Water: Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC Grade D.O. Meter (if req'd): YSI HACH Well Disposition Multiplier O.O. Other (if req'd): YSI HACH Well Disposition Englier Disposition Englier Positive Air Displacement Electric Submersible Extraction Purp Other: Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Time Temp (°F) pH (mS or µS) Gats. Removed Observations Time Temp (°F) pH (mS or µS) Gats. Removed Observations Calculated Volume Calculated Volu	BTS#: 060717-507	Serie " ROITI-7
Well I.D.: MU-1 Total Well Depth: Depth to Water: Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC Grade D.O. Meter (if req'd): YSI HACH Well Diameter Multiplier 1 0.04 6 6 0.035 2 0.16 6 6 0.035 3 0.37 0her nedus* 0.163 3 0.37 0her nedus* 0.163 3 0.37 0her nedus* 0.163 Purge Method: Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Top of Screen: Otherwise, the well must be purged. Top of Screen: Otherwise, the well must be purged. Time Temp (F) pH (mS or µS) Gals. Removed Observations **Calculated Volume** Time Temp (F) pH (mS or µS) Gals. Removed Observations **Calculated Volume** Calculated Volume Time Temp (F) pH (mS or µS) Gals. Removed Observations **Calculated Volume** Calculated Volume Calculated Volume Did well dewater? Yes No Gallons actually evacuated: Sampling Time: Sampling Date: Sampling Date: Laboratopy Pace Sequois Other Other: O.O. (if req'd): Pre-purge: myV Post-purge: one of the post-purge: one		Station # \$\$1/10-2
Total Well Depth: Depth to Free Product: Referenced to: Pvc Grade D.O. Meter (if req'd): YSI HACH Well Diameter Multiplier 0.04 4 0.65 1.47		Date: 07/17/06
Depth to Free Product: Referenced to: Pvc Grade D.O. Meter (if req'd): YSI HACR Well Diameter	Well I.D.: MW-Z	Well Diameter: 2 3 4 6 8
Referenced to: PVC Grade D.O. Meter (if req'd): YSI HACH	Total Well Depth:	Depth to Water:
Referenced to: PVC Grade D.O. Meter (if req'd): YSI HACH	Depth to Free Product:	Thickness of Free Product (feet):
Well Diameter Multiplier Well Diameter Multiplier O.65	Gade	DO Meter (if regid)
Disposable Bailer Positive Air Displacement Electric Submersible Extraction Pump Other: Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. X Case Volume (Gals.) Conductivity (mS or µS) Gals. Removed Observations Calculated Volume Conductivity (mS or µS) Gals. Removed Observations	1" 0.04 2" 0.16 3" 0.37	Well Diameter Multiplier 4" 0.65 6" 1.47
Positive Air Displacement Electric Submersible Other: Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Calculated Volume Time Temp (°F) pH (mS or µS) Gals. Removed Observations Calculated Volume Calculated Volume Observations Calculated Volume Ca		Sampling Method: Bailer
Electric Submersible Extraction Pump Other: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Case Volume (Gals.) Conductivity Gals. Removed Observations		and the same of th
Extraction Pump Other: Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Calculated Volume Calculated Volume		
Top of Screen: If well is listed as a no-purge, confirm that water level is below the top of screen. Otherwise, the well must be purged. Calculated Volume (Gals.) Calculated Volume	and the second s	Other:
of screen. Otherwise, the well must be purged. I Case Volume (Gals.) X = Gals. I Case Volume (Gals.) Specified Volumes Calculated Volume	Other:	
Time Temp (°F) pH Conductivity (mS or µS) Gals. Removed Observations Could Not Acce I Gall Not are well become sampling Time: Sampling Time: Sampling Time: Sample I.D.: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE, DRO ONYS 13-DEX EDB Edianol Other: O.O. (if req'd): Pre-purge: MY Post-purge: my Pre-purge: my	22 Wolf is fished as a	no-purge, confirm that water level is below the top se, the well must be purged.
Time Temp (°F) pH (mS or µS) Gals. Removed Observations Conductivity (mS or µS) Gals. Removed Observations Could Not Acce I (Gald Not area wellton) Did well dewater? Yes No Gallons actually evacuated: Sampling Time: Sampling Time: Sampling Date: Laborator: Pace Sequoia Other D.O. (if req'd): Pre-purge: Malyzed for: Conductivity (mS or µS) Gals. Removed Observations Calculated Volume Calculated V		
Time Temp (°F) pH (mS or µS) Gals. Removed Observations Cecle Not Arce S (Gall Not area wellton) Did well dewater? Yes No Gallons actually evacuated: Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GBO BTEX MTBE DRO ONYS 12-DEN EDB Edianol Other: D.O. (if req'd): Pre-purge: my Post-purge: my Post-pur		
Time Temp (°F) pH (mS or µS) Gals. Removed Observations Call Not Ace I (Gall Not open well the Did well dewater? Yes No Gallons actually evacuated: Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: Ground BTEX MTBE. DRO Oxys 12 DEX EDB Edianol Other: D.O. (if req'd): Pre-purge: my Post-purge: my Post-pu		Calebrate Volume
Did well dewater? Yes No Gallons actually evacuated: Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GBO BTEX MTBE DRO Oxys 12-DEX EDB Edianol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge:		Gals. Removed Observations
Did well dewater? Yes No Gallons actually evacuated: Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GBO BTEX MTBE DRO ONYS 12 DEX EDB Edianol Other: D.O. (if req'd): Pre-purge: my/L Post-purge:	* Could Not Access (Could	Not open weller
Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE: DRO Oxys 1.2-Dex EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: m		
Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE: DRO DAY'S 1.2-DEX EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge:		
Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE: DRO Oxys 1.2-Dex EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: m		
Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE: DRO Oxys 1.2-Dex EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: m		
Sampling Time: Sampling Date: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE DRO Oxy's 1.2-DEX EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: m		
Sample I.D.: Laboratory: Pace Sequoia Other Analyzed for: GRO BTEX MTBE DRO Oxy's 1.2-DEX EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: mg	Old well dewater? Yes No	Gallons actually evacuated:
Analyzed for: GRO BTEX MTBE. DRO Oxys 12-Dex EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: Sampling Time:	Sampling Date:	
Analyzed for: GRO BTEX MTBE DRO OXYS 1.2 DEX EDB Ethanol Other: D.O. (if req'd): Pre-purge: mg/L Post-purge: Sample I.D.:	Laboratory: Pace Seguoia Other	
O.O. (if req'd): Pre-purge:	Analyzed for:	
O.R.P. (if req'd): Pre-purge: O (if rould)	mg /	
Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 05112 (400) 572 6755	O.R.P. (if req'd): Pre-purge:	mV Post
= "=", ==" 0000; 0x 00112 (408) 5/3-1155F	Blaine Tech Services, Inc. 1680 Rogers	Ave., San Jose, CA 95112 (408) 573-0555

~	1021700	501	St	ation# \$P.	-11102	
mnler	2- CMM 5- CMM MW-2	cell	D	ate: 57/		
mpier.	MN -2		V	Vell Diameter:	2 3 (4) 6	8
ell I.D.:	Denth:	32,	14 D	epth to Water:	10.80	
					ee Product (feet):	
	ee Product	1		O.O. Meter (if re		HACH
eferenced	Well Diameter	PVC	ultiplier Wel	Diameter Mu	ltiplier .	
	1"	- 0	7.04	4" 0.6 6" 1.4		
	2" 3"			Other radius ²	+ 0.163	
Mathad	L	Bailer	\$	Sampling Method:	Bailer	
irge Method	r. Disj	posable Baile	er	X	(Disposable Bailer	
		Air Displace		0.1	Extraction Port	
	•	ric Submersi		Other: _		
		traction Pum	p			
	Other: _			a .	to belo	w the ton
op of Scree	n:		If well is listed as a	no-purge, confirm t	hat water level is belo	w the top
- F "			of screen. Otherwis	e, the well must be	parged.	٠,
	14.	\overline{J}	~ ~~	·_ 42.	Gals.	\
	l Case Volu	· · · · · (Cals)	X Specified Vol	umes Calc	culated Volume	
	Case Voit	ime (Gais.)	Conductivity			
Time	Temp (°F)	pН	(mS or μ S)	Gals, Removed	Observations	·
1450	68-9	7.9	746	14-1	cline jodo.	
1453	68-7	7.7	452	28.2	\<	
1455	108-5	7.7	768	42.3		
					16	
Did well	dewater?	Yes	(No)		lly evacuated: 4	۵.5
Samplin		1510)	Sampling Dat	•	
Sample	I.D.: /^ \	n-77		Laboratory:	Pace Sequoia	Other TA
Analyze	ed for:	GRO BTEX	MTBE DRO Oxy's 1.2-	mg	Other: Sec	ريد
D.O. (if	req'd):		Pre-purg	<u>ت</u>		
	(if req'd):		Pre-purg	e: m	V Post-purge:	n

BP GEM OIL COMPANY TYPE A BILL OF LADING

RECORD BILL OF LADING FOR NON-**SOURCE HAZARDOUS PURGEWATER RECOVERED** FROM GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

BP11107	
Station #	
100 Magricher Blue	d. Orldans
Station Address	•
Total Gallons Collected From G	***
added equip. rinse water	any other 7/19 adjustments
TOTAL GALS. RECOVERED 92	loaded onto BTS vehicle #
BTS event#	time date
0717-512	158007 A+06
signature Alaz	
********	********
REC'D AT	time date
	//
unloaded by signature	

WELLHEAD INSPECTION CHECKLIST BP / GEM

Page	of	1

Date	17/06							
Site Address	100 ManArd	har Blod.	Ochlor	d, CA	······································			
Job Number _	060717 25	رگ	MANAGEMENT OF THE PARTY OF THE	Tec	hnician	5, (4	-mall	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
W7~(١٠٠١				Wellbox		Delow)	Odiow)
MV .2		Kirll	not ope	~ Yell 6	104			
MW-1 MW-2 MW-3	-XCC		130,				X	
	-							
		-						
NOTES:	Mr-7=)	both ta	P1244	SAC!				
			· · · · · · · · · · · · · · · · · · ·					
								-

.

Repair Data Sheet

Page ____ of _____

Client	A	<u>C</u>	0	1	BA	,									_Dat	e	7-	25-	26	
Site Address			10	Ó		M	<u>a c</u>	41	H_{h}	ur_	_{	3/v	1		, <i>Q</i>	onk!	an			
Job Number	06	07	125	A	11	_ T	echi	nicia	an		A	بلام	pp l	v	A.	dino	1P:			
							CH	eck	ndica	ites di	eficie	ncy								
Inspection Point (Well ID or description of location)	Wall Inspected, Cleaned, Labeled - No Further Corrective Action Required	Replaced Cap	Replaced Lock	Replaced Lid Seal	Casing	Annufar Seal	Tabs / Botts	Box Structure	Apron	Trip Hazard	Below Grade	Not Securable by Design (12" dlameter or less)	Udnat marked with wards "MONITORING WELL"	Other Deficiency	Not Securable by Design (greater than 12" diameter)	Well Not Inspected (explain in notes)	Deficiency Logged on Repair Order	Deficiency Remains Uncorrected/Logged on Site Inspection Checklist	Parial Repair Completed/Outstanding Deficiency Logged on Repair Order	All Repairs Completed
							X													X
WM-S	Notes:					30	计	6	(1)	<u> </u>		10	Μο	ve	1	anu	1 0	tro	add.	el
			10	w	12	olt	3											1		
MW-3						}	\angle									_				×
(MW->	Notes:				2	of	2	2		5	fia	oe A		tab	5	1	etro 1	heli		
											11						1			
	Notes:																			
	Notes:						L	1	!			1	1	}	I				·	
	·																		-	
						T														
	Notes:	1			L	L			1			l.		1						***************************************
	· · · · · · ·				·····	····												***************************************	·	
					\neg	T	П	7												
	Notes:					l.	1	l			<u>.</u>		1	li	<u>.</u>	1				
						·····														
															·					

WELL GAUGING DATA

Project # 060726612 Date 7/26/06 Client A

					Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /		Immiscible		Depth to water	Depth to well		
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOB or	Notes
MW-Z MW-Z	1200	4	***************************************				8.57	32.02	- 1	
MW-Z	-1710	4,			·		8.57 10.47 9.67	32.40		
MW-3	1205	4					9.67	3250		
									5	
					Market Control of the					

							•			
									-	
- Time										

O WIN

BTS #:	16012	6-5	12	Station # 1110 Z						
Sampler:	<u>SL</u>			Date: 7/26/06						
Well I.D.	: MW-1	! 		Well Diamete	r: 2 3 🔕	6 8				
Total We	ll Depth:	32.02	<u> </u>	Depth to Wate	er: 8.57					
Depth to	Free Produ	ict:		Thickness of l	Free Product (feet	t):				
Reference	ed to:	PVC	Grade	D.O. Meter (if	f req'd):	YSI HACH				
	Well Diame 1" 2" 3"		Aultiplier <u>y</u> 0.04 0.16 0.37	Vell Diameter 4" 6" Other rad	Multiplier 0.65 1.47 ius ² * 0.163					
Purge Metho		Bailer		Sampling Method						
		isposable Bail (a. Air Diamlac			Disposable Bailer					
	C \(\sigma\)	ve Air Displac ctric Submersi		Othor	Extraction Port					
		xtraction Pum		Other	1					
			•							
Ton of Scree	en:		If well is listed as a	, no	. Alica III Born					
1 op 0. 55.0.	·····		of screen. Otherwi	rno-purge, connen	that water level is be	low the top				
	1,-1		-7	so, the well thust b	c purged.					
	17.4	_	x	= 76	Gals.					
	l Case Vol	ume (Gals.)	Specified Vo	lumes Ca	lculated Volume					
Time	Temp (°F)	pН	Conductivity (mS or (S))	Gals. Remoyed	Observations					
1228	69.9	6.69	542	15.4	defi					
1231	69.6	6.62	-636	30.8						
1234	68.6	6.63	664	46.2						
Did well	dewater?	Yes (No	Gallons actual	lly evacuated: 4	6.2				
Sampling	Time:	240		Sampling Date	e: 7/26/c	26				
Sample I.	D.: MV	U-1		Laboratory:	Pace Sequoia	Other TA				
Analyzed	for:	RO BTEX MT	BE DRO Oxy's 1,2-DO	A EDB Elhanol	Other:					
D.O. (if r	eq'd):		Pre-purge:	mg/	L Post-purge:	mg/L				
O.R.P. (if	~ .		Pre-purge:			mV				
Blaine T	ech Serv	ices, Inc	. 1680 Rogers	s Ave., San J	ose, CA 95112	(408) 573-0555				

BTS #:060726-962	Station # ///0Z
Sampler: SL	Date: 7/26/66
Well I.D.: MW-Z	Well Diameter: 2 3 4 6 8
Total Well Depth: 32.40	Depth to Water: 10.47
Depth to Free Product:	Thickness of Free Product (feet):
	Grade. D.O. Meter (if req'd): YSI HACH
Well Diameter Multiplier 1" 0.04 2" 0.16 3" 0.37 Purge Method: Bailer Disposable Bailer	Well Diameter Multiplier 4" 0.65 6" 1.47 Other radius² * 0.163 Sampling Method: Bailer Disposable Bailer
Positive Air Displacement Electric Submersible Extraction Pump Other:	Other:
Top of Screen: If well i	is listed as a no-purge, confirm that water level is below the top
14.3 x	en. Otherwise, the well must be purged. Specified Volumes Calculated Volume Cal
	S or Gals. Removed Observations
1313 70.7 6.52 9	187 14.3
136 71.3 6.77 6	39 8.6
1319 70.8 6.69 6	79 42.9
Did well dewater? Yes No	Gallons actually evacuated: 4 2 9
Sampling Time: 1375	Sampling Date: 7/26/06
Sample I.D.: MW-Z	Laboratory: Pace Sequoia Other 1-4
Analyzed for: CRO STEX STEE DRO	O Oxy's (2-DC a EDD Ethanol Other:
D.O. (if req'd):	Pre-purge: mg/L Post-purge: mg/L
O.R.P. (if req'd):	Pre-purge: mV Post-purge: mV
Blaine Tech Services, Inc. 168	80 Rogers Ave., San Jose, CA 95112 (408) 573-0555

BTS#: 660726-9LZ	Station # ///07
Sampler: \leq	Date: 7/26/06
Well I.D.: MW-Z	Well Diameter: 2 3 4 6 8
Total Well Depth: 32.50	Depth to Water: 9.67
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: PVC Grade.	D.O. Meter (if req'd): YSI HACH
Well Diameter Multiplier 1° 0.04 2° 0.16 3° 0.37	Well Diameter Multiplier 4" 0.65 6" 1.47 Other radius² * 0.163 Sampling Method: Bailer
Disposable Bailer	Disposable Bailer
Positive Air Displacement	Extraction Port
Extraction Pump	Other:
Other:	1
Top of Screen: If well is listed	as a no-purge, confirm that water level is below the top
or screen. One	erwise, the well must be purged.
1 Case Volume (Gals.) X Specified	d Volumes Calculated Volume
Conductivit	
Time Temp (°F) pH (mS or uS	Gals. Removed Observations
1252 70.4 6.69 625	14.8 clar
1255 70.9 6.55 607	29.6
1258 71.2 656 612	44.4
Did well dewater? Yes No	Gallons actually evacuated: 44.4
Sampling Time: 1300	Sampling Date: 7/26/07
Sample I.D.: MW-3	Laboratory: Pace Sequoia Other TA
Analyzed for: GRO BTEX MTBE DRO ONY'S	
D.O. (if req'd): Pre-pu	erge: mg/L Post-purge: mg/L
O.R.P. (if req'd): Pre-pu	
Blaine Tech Services, Inc. 1680 Rog	gers Ave., San Jose, CA 95112 (408) 573-0555

BP GEM OIL COMPANY TYPE A BILL OF LADING

RECORD BILL OF LADING FOR NON-SOURCE **HAZARDOUS PURGEWATER RECOVERED** FROM GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is PLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

11102		
Station #		
M. A. T.	~ - 1	
Station Address	BLUD CO	reland
Station Address		
Total Gallons Collected From Gro	oundwater Moni	itoring Wells:
•		J
added equip.	any other	
rinse water_\(\lambda\right)	adjustments_	
	<u>-</u>	
TOTAL GALS. 143.5	loaded onto	
RECOVERED 173.J	BTS vehicle	#
BTS event #	time	date
_	unc	uaic
060726-SL3	1720	7126106
signature <u>Si</u>		
*****	* * * * * * * * *	*****
REC'D AT	time	date
unloaded by		
signature		

WELLHEAD INSPECTION CHECKLIST

i	}	[
Page	of	_

-644-	6 -		BP /	GEM				
Date 7/2 Site Address Job Number 6	6/06	1-1-1	سر یا	ZI.) /)2k	120	\rangle
Site Address	00 1	(0)	2/-//	7 =-	haisian	51-	1/	
Job Number 2		0/1	676	700	innician	<i></i>		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
MV-	X							
MW-Z	X			چىلېسلاس سىدىن ئ				
MW-3	 							
	-							· · · · · · · · · · · · · · · · · · ·
						,		
							£/	
						· · · · · · · · · · · · · · · · · · ·		
	,							
			<u></u>	<u></u>	<u> </u>	<u>!</u>		
NOTES:					<u></u>			**************************************
					<u> </u>			
								

SÄN JOSE

SACRAMENTO

LOS ANGELES

www.blainelech.com

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATION

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

3Q 06 GEO_WELL

Submittal Date/Time:

10/19/2006 4:52:54 PM

Confirmation Number:

6908140420

Back to Main Menu

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 4370432198

Date/Time of Submittal: 10/19/2006 4:54:03 PM

Facility Global ID: T0600100908 #11102 Facility Name: BP

Submittal Title: 3Q 06 GW Monitoring Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

100 MACARTHUR BLVD OAKLAND, CA 94610

Regional Board - Case #: 01-0985 SAN FRANCISCO BAY RWQCB (REGION 2) Local Agency (lead agency) - Case #: 1108 ALAMEDA COUNTY LOP - (SP)

CONF# 4370432198 TITLE 3Q 06 GW Monitoring

QUARTER Q3 2006

SUBMITTED BY Broadbent & Associates, Inc. **SUBMIT DATE** 10/19/2006

STATUS PENDING REVIEW

SAMPLE DETECTIONS REPORT

- # FIELD POINTS SAMPLED
- # FIELD POINTS WITH DETECTIONS
- # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL

SAMPLE MATRIX TYPES

2 WATER

3

O

0

Y

METHOD QA/QC REPORT

METHODS USED **TESTED FOR REQUIRED ANALYTES?** LAB NOTE DATA QUALIFIERS

8260FA,8260TPH

QA/QC FOR 8021/8260 SERIES SAMPLES

TECHNICAL HOLDING TIME VIOLATIONS METHOD HOLDING TIME VIOLATIONS LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT

LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING?

- LAB METHOD BLANK - MATRIX SPIKE
- MATRIX SPIKE DUPLICATE
- BLANK SPIKE
- SURROGATE SPIKE

WATER SAMPLES FOR 8021/8260 SERIES

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135% Υ MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30% Υ SURROGATE SPIKES % RECOVERY BETWEEN 85-115% Υ BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130% Υ

MATRIX SPIKE / MATRIX	SPIKE DUPLICATE(S) % RECOV SPIKE DUPLICATE(S) RPD LESS RECOVERY BETWEEN 70-125%		n/a n/a n/a
BLANK SPIKE / BLANK S	PIKE DUPLICATES % RECOVERY	BETWEEN 70-130%	n/a
of content alternative statements and processes of the statement of a statement of the stat	TO CONTRACT OF A THINK IN THE POST OF A CONTRACT OF PROCESS OF PROCESSING PROCESSING AS A SECURITY OF A SECURITY O	وران در در در در در در در در در در در در در	• 1902/70, 15
FIELD QC SAMPLES	TO CONTROL OF A MINISTER AND A MINISTER OF THE PROPERTY OF COMMUNICATION OF A 1999, A SECRETARIST STATE OF THE	t distributive that there was you in markets receiving all relative states when so have a some	• morte,::
eg i interest komende somerengensy reviserer var priestrer, k z i interestas tekste reger artikse i I	COLLECTED	DETECTIONS >	REPDI
FIELD QC SAMPLES		DETECTIONS > 0	REPDI
FIELD QC SAMPLES		DETECTIONS > 0 0	REPD

Logged in as BROADBENT-C (CONTRACTOR)

CONTACT SITE ADMINISTRATOR.