

GETTLER-RYAN INC.

TRANSMITTAL

TO:

Alameda County Health Care Services

1131 Harbor Bay Parkway

Alameda, California 94502

DATE: March 18, 1998

G-R #: 180068

FROM:

Deanna L. Harding

Project Manager Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE: Tosco (Unocal) SS #1871

> 96 MacArthur Blvd. Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	February 20, 1998	Groundwater Monitoring and Sampling Report First Quarter 1998-Event of January 14, 1998
COMMENTS:	Pulled	for file Review?

COMMENTS:

At the request of Tosco Marketing Company, we are providing you a copy of the above referenced report. The site is monitored and sampled on a semi-annual basis in January and July. If you have questions please contact the Tosco Project Manager, Ms. Tina R. Berry at (510) 277-2321.

Enclosure

Mr. Dave Vossler, Gettler-Ryan Inc., Novato, CA 94945 agency/1871trb.qmt

February 20, 1998 G-R Job #180068

Ms. Tina R. Berry Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

First Quarter 1998 Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #1871

96 MacArthur Boulevard Oakland, California

Dear Ms. Berry:

This report documents the semi-annual groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On January 14, 1998, field personnel monitored and sampled five wells (MW-1 through MW-5) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2, and a Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Project Manager

Stephen J. Carter

Senior Geologist, R.G. No. 5577

Figure 1: Figure 2:

Potentiometric Map Concentration Map

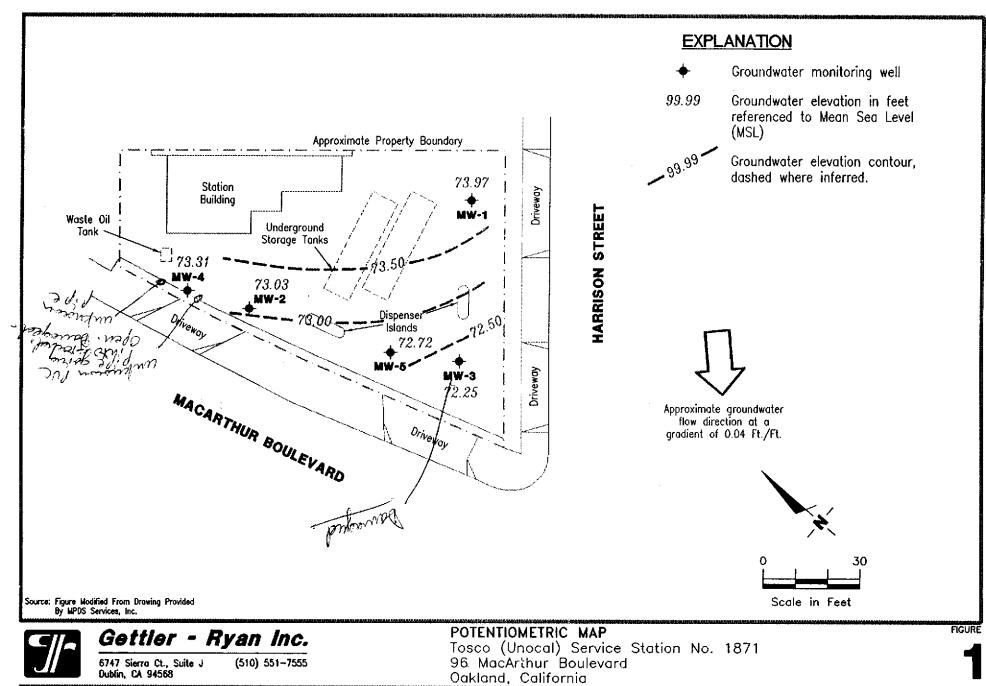
Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results

Attachments:

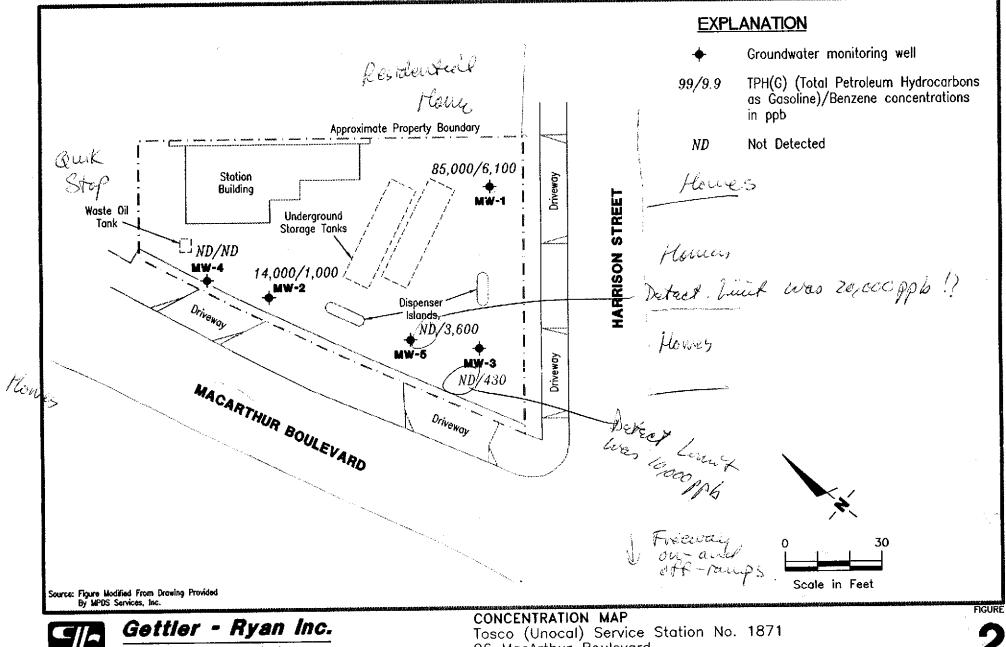

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

No. 5577

1871.qml



JOB NUMBER 180068 REVIEWED BY

DATE

January 14, 1998

REVISED DATE

6747 Sierro Ct., Suite J Dublin, CA 94568

REVIEWED BY

(510) 551-7555

96 MacArthur Boulevard

Oakland, California

DATE

REVISED DATE

JOB NUMBER 180068

January 14, 1998

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #1871 96 MacArthur Boulevard

Oakland, California

				Oakland,					
Well ID/	Date	DTW	GWE	TPH(G)	В	Т	E	X	MTBE
TOC*		(ft.)	(msl)	<			ppb		>
					2 200	4.600	2.700	17.000	
MW-1	11/03/92			260,000	2,300	4,600	3,700	17,000	
	01/25/93			120,000	2,100	4,600	4,900	22,000	b-4
	04/29/93			100,000	850	2,000	4,300	19,000	
	07/16/93			29,000	590	560	980	4,200	
	10/19/93			67,000	1,400	2,600	2,900	5,000	
	01/20/94			92,000	1,200	3,000	3,400	17,000	
	04/13/94			51,000	1,000	2,600	3,200	15,000	
	07/13/94			35,000	550	150	1,400	5,700	
	10/10/94			52,000	1,000	810	3,300	12,000	
	01/10/95			810	16	18	59	250	_
	04/17/95			48,000	880	530	2,500	11,000	
	07/24/95			48,000	1,500	420	2,700	9,700	
	10/23/95			47,000	780	210	2,100	11,000	270
	01/18/96			30,000	1,500	500	3,500	13,000	2,400
	04/18/96			66,000	2,700	2,200	3,100	13,000	57,000
86.24	07/24/96	14.15	72.09	5,600	2,100	ND	160	160	24,000
	10/24/96	14.85	71.39	110,000	7,500	8,000	3,300	14,000	58,000
	01/28/97	11.25	74.99	94,000	7,700	19,000	3,100	15,000	120,000
	07/29/97	14.67	71.57	ND	ND	ND	ND	ND	70,000
	01/14/98	12.27	73.97	85,000	6,100	10,000	3,000	17,000	110,000
MW-2	11/03/92			140	2.2	ND	ND	2.0	
	01/25/93			2,100	56	1.1	90	140	
	04/29/93			1,500	290	ND	33	11	
	07/16/93			510*	17	0.60	3.2	2.5	
	10/19/93			670	24	1.1	7.7	23	
	01/20/94	•		820	97	ND	12	ND	
	04/13/94			550	71	ND	5.1	1.3	
	07/13/94			2,000	490	ND	17	13	
	10/10/94			2,300	340	ND	25	ND	
	01/10/95			850	3.8	ND	8.5	1.3	
	04/17/95			1,300	4.7	ND	8.3	1.2	
	07/24/95			960	20	ND	4.2	6.2	
							ND	ND	19
	10/23/95			ND	ND	ND			19

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #1871

96 MacArthur Boulevard

Oakland, California

				Oakianu,					
Well ID/	Date	DTW	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(msl)	<u> </u>			ppb		>
MW-2	01/18/96			900	300	86	7.6	18	4,300
	04/18/96			18,000	3,600	680	890	4,100	19,000
(cont)	07/24/96	10.02	71.64	100,000	13,000	21,000	2,700	16,000	120,000
81.66	10/24/96	10.02	70.88	800	110	17	11	20	20,000
	01/28/97	7.70	73.96	45,000	2,400	2,900	2,000	7,600	29,000
	07/29/97	10.28	71.38	ND	1.2	0.72	0.63	0.62	17,000
	01/14/98	8.63	71.36 73.03	14,000	1,000	150	790	3,300	23,000
	01/1 0/0	5.00	, 2, 1	- 1,111	,			·	·
MW-3	11/03/92			2,100	120	15	38	200	
	01/25/93			2,300	80	1	55	52	-
	04/29/93			4,500	1,700	ND	200	140	
	07/16/93			4,000*	1,100	28	52	70	
	10/19/93			3,800	42	ND	50	56	
	01/20/94			4,200	11	ND	21	15	
	04/13/94			4,200	210	ND	36	53	
	07/13/94			1,800**	16	16	ND	21	
	10/10/94			4,300	11	ND	12	ND	
	01/10/95			310	4.6	ND	3.5	2.1	_
	04/17/95			7,800	ND	4.6	300	450	
	07/24/95			3,200	170	ND	22	16	
	10/23/95			3,900	55	ND	19	11	4,500
	01/18/96			2,200	270	33	26	18	5,500
	04/18/96			6,000	1,800	ND	100	230	48,000
82.55	07/24/96	12.17	70.38	ND	2,500	ND	ND	ND	71,000
02.55	10/24/96	12.65	69.90	3,800	660	ND	15	ND	65,000
	01/28/97	9.50	73.05	4,400	250	13	87	47	54,000
	07/29/97	11.99	70.56	ND	3,500	ND	220	ND	75,000
	01/14/98	10.30	72.25	${ m ND}^3$	430	ND^3	100	380	37,000
	01/14/20	10.50	. 2.20						•
MW-4	04/18/96			ND	630	ND	ND	ND	18,000
82.04	07/24/96	10.47	71.57	ND	ND	ND	ND	5.2	3,900
	10/24/96	11.14	70.90	ND	ND	ND	ND	ND	6,300
	01/28/97	7.94	74.10	1,200	490	ND .	17	6.8	16,000

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #1871 96 MacArthur Boulevard

Oakland, California

Date	DTW	GWE	TPH(G)	В	Т	E	X	MTBE
The property of the second				ale en plate la relatification de la la contraction de la contraction de la contraction de la contraction de l	a anno an galar na anna ag garanna ann an an an an gaile ag ga			,000,000,000,000,000,000
A contract the second second	(ft.)	(msl)	<			ppb		>
07/29/97	10.86	71.18	50	1.5	0.61	0.73	0.78	15,000
01/14/98	8.73	73.31	ND ³	ND ³	ND^3	ND ³	ND ³	5,200
04/18/96			31,000	5,500	1,400	1,700	8,100	66,000
07/24/96	10.80	71.00	32,000	6,400	ND	1,600	6,100	120,000
10/24/96	11.40	70.40	17,000	6,900	ND	970	130	84,000
01/28/97	7.76	74.04	19,000	6,100	62	82	310	160,000
07/29/97		70.22	ND	ND	ND	ND	ND	71,000
01/14/98	9.08	72.72	ND ³	3,600	ND ³	ND ³	ND ³	80,000
			.	ND.	ATO) TO	NTO.	ND
	04/18/96 07/24/96 10/24/96 01/28/97 07/29/97	01/14/98 8.73 04/18/96 07/24/96 10.80 10/24/96 11.40 01/28/97 7.76 07/29/97 11.58 01/14/98 9.08	01/14/98 8.73 73.31 04/18/96 07/24/96 10.80 71.00 10/24/96 11.40 70.40 01/28/97 7.76 74.04 07/29/97 11.58 70.22 01/14/98 9.08 72.72	01/14/98 8.73 73.31 ND³ 04/18/96 31,000 31,000 07/24/96 10.80 71.00 32,000 10/24/96 11.40 70.40 17,000 01/28/97 7.76 74.04 19,000 07/29/97 11.58 70.22 ND 01/14/98 9.08 72.72 ND³	01/14/98 8.73 73.31 ND³ ND³ 04/18/96 31,000 5,500 07/24/96 10.80 71.00 32,000 6,400 10/24/96 11.40 70.40 17,000 6,900 01/28/97 7.76 74.04 19,000 6,100 07/29/97 11.58 70.22 ND ND 01/14/98 9.08 72.72 ND³ 3,600	01/14/98 8.73 73.31 ND³ ND³ ND³ 04/18/96 10.80 71.00 32,000 6,400 ND 10/24/96 11.40 70.40 17,000 6,900 ND 01/28/97 7.76 74.04 19,000 6,100 62 07/29/97 11.58 70.22 ND ND ND 01/14/98 9.08 72.72 ND³ 3,600 ND³	01/14/98 8.73 73.31 ND³ ND³ ND³ ND³ 04/18/96 31,000 5,500 1,400 1,700 07/24/96 10.80 71.00 32,000 6,400 ND 1,600 10/24/96 11.40 70.40 17,000 6,900 ND 970 01/28/97 7.76 74.04 19,000 6,100 62 82 07/29/97 11.58 70.22 ND ND ND ND 01/14/98 9.08 72.72 ND³ 3,600 ND³ ND³	01/14/98 8.73 73.31 ND³ ND³ ND³ ND³ ND³ 04/18/96 31,000 5,500 1,400 1,700 8,100 07/24/96 10.80 71.00 32,000 6,400 ND 1,600 6,100 10/24/96 11.40 70.40 17,000 6,900 ND 970 130 01/28/97 7.76 74.04 19,000 6,100 62 82 310 07/29/97 11.58 70.22 ND ND ND ND ND 01/14/98 9.08 72.72 ND³ 3,600 ND³ ND³ ND³

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing elevation

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

X = Xylenes

(msl) = Referenced relative to mean sea level

MTBE = Methyl tertiary butyl ether

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations were re-surveyed by Kier & Wright in May, 1996, per City of Oakland Benchmark No. 2310, a cut square in concrete curb at mid point of return at the northeast corner of El Dorado and Fairmont Street. (Elevation = 77.53 msl).
- Laboratory report indicates the presence of discrete peaks not indicative of gasoline.
- Laboratory report indicates the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- Detection limit raised. Refer to analytical results.

Depth to water and groundwater elevation history will be updated in future reports.

Table 2

Groundwater Analytical Results

Tosco (Unocal) Service Station #1871 96 MacArthur Boulevard Oakland, California

Vell D	Date	TPH(D)	TOG	VOC	svoc
MW-4	04/18/96	110 ¹	ND	ND	
	07/24/96	ND	ND	ND	ND
	10/24/96	ND	ND	ND	ND^2
	01/28/97	210^{3}	ND	ND	ND^4
	07/29/97	ND	ND	ND	ND
	01/14/98	ND	ND	ND	ND

EXPLANATIONS:

Groundwater analytical results prior to January 14, 1998, were compiled from reports prepared by MPDS Services, Inc.

TPH(D) = Total Petroleum Hydrocarbons as Diesel

TOG = Total Oil and Grease

VOC = Volatile Organic Compounds by EPA Method 8010

SVOC = Semi-Volatile Organic Compounds by EPA Method 8270

ppb = Parts per billion

- = Not Analyzed

ND = Not Detected

Laboratory report indicates the hydrocarbons detected did not appear to contain diesel.

Bis (2-ethylhexyl) phthalate was detected at a concentration of 14 ppb.

Laboratory report indicates the hydrocarbons detected appeared to be a diesel and non-diesel mixture.

Naphthalene was detected at a concentration of 17 ppb.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using a MMC flexi-dip interface probe or equivalent. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

N;\tosco\\forms\standard.pro.1/98

ilient/ acility #	Blvd.	Job#: Date: Sampler:	18000	_	
lity: Oakand	Blvol.		1-14-	98	
lity: Oakand		Sampler:			
			ەل		
Well ID Mw-1	Well Condition	. <u>0</u> .1	_		
Vell Diameterin.	Hydrocarbon Thickness:	in.	Amount Bai		(gal.)
otal Depth 24.12 ft.	Volume Factor (VF)	2" = 0.17		4	" = 0.66
Pepth to Water 12.27 ft.					
11.85 Juga x	7.82 VF 0.66 = 00000		Estimated Pur	ge Volume: _	24 (gai.)
Purge Disposable Bailer Guipment: Bailer		mpling uipment: Dis	posable Bai	ler	
Stack		Bal	ller ssure Bailer		
Suction	•		ab Sample		
Other:	_	Other: _			
Starting Time: jj:30	Weather (Conditions:	leavy r	αι' <u>λ</u>	
Sampling Time: 12:50 P. M	<u>···</u> Water Col	lor: <u>clear</u>		Odor:_/Md	with the sail
Purging Flow Rate:		Description:	Nona		
Did well de-water?	If yes; T	ime:	Volume	e:	(gal_
Time Volume pH (gal.)	Conductivity	Temperature	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
11:35 0 7.15	7.30	67.9			
11:40 8 702	- 6.98	69.5			
11:45 16 6.95	- <u>C14</u>	193			
11.90 27 6.97					
·	LABORATORY IN		RATORY	ANAL	YSES
SAMPLE ID (#) - CONTAINER	REFRIG. PRESERV				TEV MITTE
<u> </u>	REFRIG. PRESERV			TPHG-87	/CX-M/SC
r				1PHG-87	/CX-M/SC
<u> </u>				1PHG-87	/ex-m/sc

9/97-fieldet.fm

Client/		TILLE BY (
acility #	71		Job#:	18000	68	
Address: 96	Mac Acthor	81vol.	Date:	1-14	-98	
City:	T .		Sampler:	To	د	
Well ID	MW-2	Well Condition	n: 0, k			
Well Diameter	4in.	Hydrocarbon		Amount Ba	ailed	
	24.72	Thickness: _	io.	(product/wa		(gal_)
Total Depth	8-63	Volume Factor (VF)	$2^{n} = 0.17$ $6^{n} =$		12" = 5.80	= 0.66
Depth to Water	8 ~					
	16.09 x	VF 0.66 = 10.62	X 3 (case volume)	= Estimated Pu	تر نابع :irge Volume	3 2 (gal.)
Purge Equipment:	Disposable Bailer Bailer		ımpling Juipment: D	isposable Ba	iler	
Equipmont	Stack		B	ailer ressure Baile	و.	
•	Suction Grundfos			irab Sample	•	
	Other:	_ '	Other: .		_	
Starting Time:	10:00	Weather	Conditions: _	Heavy !	ais	
Sampling Time:	10:35 Am	Water Co	olor: E/e.a.	()	Odor:	Sligh
Purging Flow Rate	e:2 gr	m. Sedimen	t Description: _	None		· · · · ·
Did well de-water	r? <u>No</u>	if yes;	Time:	Volum	ne:	(gal.)
	olume pH (gal.)	Conductivity	Temperature	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
10:07	0 759	4.85	66.8			
10:15	11 7.42	4.46	71.2			
10:20	21 7.30	4.37	70.4			
10:25	32 7.44	- 4.59	70.1			
SAMPLE ID	(#) - CONTAINER	LABORATORY I		ORATORY	ANAL	YSES
mw-2	2 VO A	400			TPHG, 81	EX-MTBE
				 =		
<u></u> _						
	Į.					
COMMENTS: _						

Client/ Facility #	71_			Job#:	:	1800	_	
Address: 96	Mac	Arthr	Blvd.	Date:		1-14-	98	
)2 + (a u			Samp	oler:	500	2	
City.								
Well ID	Nω	_3	Well Condit	rion.	0.	10		
Weil ID	1					A Da		
Well Diameter		in_	Hydrocarbo Thickness:		in	Amount Ba		(gal.)
Total Depth		.69 _{ft}	Volume	2" = 0.		3" = 0.38		= 0.66
Depth to Water		,30 fr	Factor (VF)	, -	6" = 1	50	12" = 5.80	
	_13	.39 x v	0.66 = 8.8	£ x 3 (case	volume) =	Estimated Pu	irge Volume: 🔟	27 _(gal.)
Purge Equipment:	Dispos Bailer Stack Suctio Grund Other:	os	•	Sampling Equipment	Ba Pro Gr	sposable Ba iller essure Baile ab Sample	វ	
Starting Time: Sampling Time: Purging Flow Ra		1:00 1:38 Am 1:35 gpm	Water	er Conditio Color: ent Descrip	Bar .	Rainy Clear None		sligh
Did well de-wat		0	. If yes;	Time:		Volum	ie:	(gal.)
Time	Volume (gal.)	pН	Conductivity µmhos/cm	Temp	erature E	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
9:10	0	7.88	6.38	69	19			
9:16	9	7.36	6.42		<u>, ~</u>	. ———		
9:22 _	18 27	7.19	6.31	_ <u>70.</u> 70				
<u>9:30</u> _			6.26					
<u> </u>				V INCODIA	·		<u></u>	
SAMPLE ID	(#) - CC	NTAINER F	LABORATOR	T INFORMA ERV. TYPE		RATORY	ANAL	
MW-27	24		Ή	CL			TPHG.B	TEX-UNTBE
				 	<u> </u>			
	 							
	<u> </u>				<u> </u>	<u>,</u>	·	
COMMENTS:								<u></u>
		,						
								9/97-fieldet.frm

Address: 46 MacAtthur Blvo. Date:	Client/ acility #/8	71			Job#:	18000		·
Well ID Well Diameter Vell Diamete	ddress: _9	6 Mac	Acthor	Blvo!	Date:	1-14-	98	
Well ID Well Diameter Vell Diameter Volume Purge Equipment: Stack Sempling Sampling Time: Sampling Tim	ച	sklan	ل		Sampler:	Joe		
Vell Diameter								
Thickness: in (product/water): [gal] Volume 2" = 0.17 3" = 0.38 4" = 0.66 Factor (VF) 6" = 1.50 Purge Disposable Bailer Bailer Stack Pressure Bailer Stack Pressure Bailer Grab Sampling For Disposable Bailer Stack Pressure Bailer Grab Sampling For Disposable Bailer Starting Time: Starting Time: Starting Time: Purging Flow Rate: Purging Flow Rate: Did well de-water? No If yes; Time: Volume PH Conductivity pmhos/cm C (gal.) Pico Time Volume PH Conductivity pmhos/cm C (gal.) Pico Time Volume PH Conductivity pmhos/cm C (gal.) Seliment Description: Purging Flow Rate: No Time Volume PH Conductivity pmhos/cm C (gal.) Selice PH Conductivity pmhos/cm C C C C C C C C C C C C C	Well ID	Mu	·-4	Well Conditio	n:O	1		
19.56 ft. 19.5	Vell Diameter		2 in.					(gal.)
Purge Sisposable Bailer Stack Purge Grundfos Other: Disposable Bailer Stack Pressure Bailer Grab Sampling Equipment: Starting Time: Sampling Time: Sampling Time: Sampling Time: Sampling Time: Sampling Time: Sampling Time: Sediment Description: Purging Flow Rate: No If yes; Time: Volume (gal.) Time Volume (gal.) Time Volume (gal.) Factor (VF) 6° = 1.50 12° = 5.80 It x 3 (case volume) = Estimated Purge Volume: Bisposable Bailer Beiler Pressure Bailer Grab Sample Other: Odor: Volume (gal.) Factor (VF) 6° = 1.50 12° = 5.80 It x 3 (case volume) = Estimated Purge Volume: Beiler Grab Sample Other: Odor: Volume (gal.) Time Volume (gal.) Factor (VF) Factor (VF) Sampling Factor (VF) Fa	otal Depth	19.	56 ft					" = 0.66
Purge (quipment: Bailer Stack Pressure Bailer Stack Pressure Bailer Grab Sample Other: Weather Conditions: Purging Flow Rate: 0.5 gpm. Sediment Description: None: Qual Time Volume pH Conductivity Temperature D.O. ORF Alkalinity (gal.) PH Conductivity Temperature D.O. ORF Alkalinity (gal.) Physical Science (mg/L) (mV) (ppm) 8:15 0 7.29 5.33 6.58 8:20 2 7.20 6.02 66.1 8:30 6.7.22 5.94 66.2 8:30 6.7.3	epth to Water	8.	73 ft	1		.50	12" = 5.80	
Equipment: Bailer Stack Stack Stack Grundfos Other: Other: Other: Other: Grab Sample Other: Weather Conditions: Railer Starting Time: 8:00 Starting Time: 8:42-A Water Color: Clear Odor: None Purging Flow Rate: 0.5 gpm. Sediment Description: Mane Purging Flow Rate: No If yes; Time: Volume: (gal.) Time Volume pH Conductivity Temperature D.O. ORF Alkalinity (myl.) (myl.) (ppm) 8:15			9.93 x v	= 0.17 = 1.84	X 3 (case volume) =	Estimated P	ırge Volume: _	6 (gal.)
Stack Gründos Other: Starting Time: Starti			able Bailer			sposable Ba	niler	
Starting Time:	:dabwerr:		_		Be	iler		
Other: Other: Other: Other: Starting Time: 8;00 Weather Conditions: Paray Sampling Time: 8:42-A Water Color: Clear Odor: None Purging Flow Rate: 0.5 gpm. Sediment Description: None Did well de-water? No If yes; Time: Volume: (gal.) Time Volume (gal.) pH Conductivity Temperature D.O. ORP Alkalinity (my) (ppm) 8:15							er	
Sampling Time:						•	-	
Sampling Time:		.	1 0			Paris	1	
Purging Flow Rate:	-	 -		_	1	r		Vone
Did well de-water? No	-		- C					
S C (mg/L) (mV) (ppm)	-		 				ne:	(gal.)
120 2 7.20 6.02 6.02 8:25 4 7.18 5.94 66.2 8:30 6.22 5.90 66.2	Time		pН					
8:25 4 7.18 5.94 66.2 8:30 C 7.22 S.90 66.2 LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-4 4 4 VOA HCL TSHC, 8TEX-MTBE-	8:15	0	7.29	<u> 5.33</u>	65-8			
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-4 4 4 VOA HCL TP44,87EX-MT8E-	8120	2	7.20	6.02	_66.1			
LABORATORY INFORMATION SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-4 4 404 HCL TP44,87EX-MT8E-		4					. 	
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-4 4 VOA HCL TP44,87EX-M78E-	<u>8:30</u>		7.22	5.90	66.2			
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-4 4 VOA HCL TP46,87EX-M78E-								
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TYPE LABORATORY ANALYSES MW-4 4 VOA HCL TP46,87EX-M78E-		·		LABORATORY	NEORMATION			
	SAMPLE ID	(#) - CC	NTAINER I			DRATORY		
3 Amber	Mw-4	4 vo	A-	# 0			TP44,876	X-MTBE-
		3 Am	ber			 .	TOG. TA	PHD, 8270
		 						·
						<u> </u>	<u> </u>	
	COMMENTS:							

9/97-fieldet.fm

Client/ Facility #	71	Job#: 180068
	Mac Arthur	Blvd, Date: 1-14-98
_	tland	Sampler:
Well ID	Mu-5	Well Condition: 01/c
Well Diameter	in	Hydrocarbon Amount Bailed Thickness: in (product/water): (gal.)
Total Depth	20,00 #	Volume 2" = 0.17 3" = 0.38 4" = 0.66
Depth to Water	9.08 #	Factor (VF) $6^* = 1.50$ $12^* = 5.80$
Purge	Disposable Baller	Sampling Equipment: Disposable Bailer
Equipment:	Bailer Stack Suction Grundfos Other:	Bailer Pressure Bailer Grab Sample Other:
Starting Time: Sampling Time: Purging Flow Ra	10:50 11:30 A.W te: 0.6 gpm	Weather Conditions: Reijag Water Color: Cea Odor: Consideration Sediment Description: 10 x 2
Did well de-wate	A	If yes; Time: Volume: (gal.)
Time	Volume pH (gal.)	Conductivity Temperature D.O. ORP Alkalinity umhos/cm •C (mg/L) (mV) (ppm)
11:02	<u>0</u> 7.18 2 7.10	2.28 67.0
11:08	4 7.05	2.76 66.3
<u>#:12</u> _	6 7.12	2.30 66.5
 		LABORATORY INFORMATION
SAMPLE ID	(#) - CONTAINER	REFRIG. PRESERV. TYPE LABORATORY ANALYSES
mw-5	2 VOA	HCL TPHG, BTEX, MTBE
COMMENTS: .		

9/97-fieldet.frm

9801768

Chair	1-of-	Cust	odv-	Record
Onun	וטון	vuəi	ouy_	NOCOL

TOSCO

Tosco Marketing Company 2000 Crow Caryon PL, Ste. 400 San Ramon, Caltornia 94553

5-111-1-11/00CAC SS# 1871	Contact (Name) MS. TINA REPRY
Facility Number UVOCAC 55# 1871 Facility Address 96 MacArthur Blud	(Phone) (510) 277 - 232 /
Consultant Project Number 180068	Loborotory Name Sequoia Analytical
Consultant Name Gettler-Ryan Inc. (G-R Inc.)	Laboratory Release Number
Address 6747 Sierra Court, Suite J. Dublin, CA 94568	Samples Collected by (Name) JOE ASEMIAN
Project Contact (Nome) Deanna L. Harding	Collection Date 1-14-98
(Phone) 510-551-7555 (Fax Number) 510-551-7888	Signature Sa Qasaiz
1	

			귳					,				•	Analys	oo To B	e Perfor	med				•	₹	NOT BILL
Sample Number	Lab Sample Number	Number of Containers	Matrix S = Soil A = Air W = Water C = Charcool	Type G = Grab C = Composite D = Discrete	Тіт	Sample Preservation	load (Yes or No.)	TPH Gas + BTEX W/MTBE (8016) (8020)	TPH Diesed (8015)	Off and Grease (5520)	Purgeable Halocarbons (8010)	Purgeoble Aromatics (8020)	Purgedble Organica (8240)	Extractable Organics (8270)	Metals C4,Cr,Pb,Zn,Ni (tCAP or AA)							MALYSIS
TB-LB	0	1		G	_	Her	les	1														
mw-l	02	2404	W	G	12,00	HCL	Yes	/										•.	<u> </u>			
MW-2	03	2VOA	1	5	10:35 A. w	"	7	1												ļ		
MW-3	04	2 VOA	1	1	9:39	1	4	1						ļ						-		
MW-4	20	240A 3A4	1	11	81.42	1/	1/	1	/	/	/		ļ		<u> </u>					<u> </u>		
mw-5	06	2 Yo A		5	11:20 A.w	4	11	/							,					-		<u> </u>
	· ·								**								`					
							ļ	<u> </u>			<u> </u>				 					-		
· · ·	-			-														<u> </u>				
														_	ļ			ļ	<u> </u>		<u> </u>	
· ·										<u> </u>				<u> </u>						 	ļ	·
							1,	.					<u> </u>	<u> </u>			6.1	L_	<u></u>	<u> </u>	<u> </u>	Ob -1 - 1
Relinquished By	(Signature)			anization R Inc	. 1	ote/Time -14-98	17 400	odyod B	J /3v	dir	\a		Organizai	lion	Date	/Im. 14/9	v 4.	4	ium Ar		ne (Circle Hre,	Unolog)
Relinquished B	(Signoture)	1		anizotion	 '-	Date/Ilme	R	pelved B	y (Sign	otur•)	1/2	١	rgopizo	tlan (2	1/1	4/01	3			5	Hre. Daye	写 15 <u>4</u>

'slingulahed By (Signoture)

Organization

Post-/fires 11/5/98

Received By (Signature)

Realeved For Laboratory By (Signature)
Taraf.

Organization See Date/Time 1/15/98 1407

写 15 生 17

C10 Doys As Contracted

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: TB-LB

Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9801768-01

Sampled: 01/14/98 Received: 01/15/98

Received: 01/15/98

Analyzed: 01/28/98 Reported: 01/30/98

QC Batch Number: GC012898BTEX18A

Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit ug/L	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	50 2.5 0.50 0.50 0.50 0.50	N.D. N.D. N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 130	% Recovery 81

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: MW-1

Matrix: LIQUID

Analysis Method: 8015Mod/8020 Lab Number: 9801768-02

Sampled: 01/14/98 Received: 01/15/98

Analyzed: 01/28/98 Reported: 01/30/98

QC Batch Number: GC012898BTEX18A

instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Det	Sample Results ug/L		
TPPH as Gas		20000	********	85000
Methyl t-Butyl Ether		1000		110000
Benzene		200		6100
Toluene	*************	200		10000
Ethyl Benzene	***********	200		3000
Xylenes (Total)	*************	200		
Chromatogram Pattern:				GAS
Surrogates	Cor	ntrol Limits %		% Recovery
Trifluorotoluene	70		130	80

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: MW-2

Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9801768-03

Sampled: 01/14/98 Received: 01/15/98

Analyzed: 01/28/98 Reported: 01/30/98

QC Batch Number: GC012898BTEX18A

Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Det	Sample Results ug/L	
TPPH as Gas		5000	14000
Methyl t-Butyl Ether		250	23000
Benzene		50	
Toluene		50	
Ethyl Benzene		50	790
Xylenes (Total)		50	
Chromatogram Pattern:	***************************************	••••	GAS
Surrogates	Con	trol Limits %	% Recovery
Trifluorotoluene	70	130	94

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Page:

4

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: MW-3

Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9801768-04

Sampled: 01/14/98 Received: 01/15/98

Analyzed: 01/28/98 Reported: 01/30/98

QC Batch Number: GC012898BTEX18A

Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	— 	ection Limit ug/L	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:		10000 500	
Surrogates Trifluorotoluene	Cont 70	rol Limits % 130	% Recovery 91

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike/Enegory Project Manager

Page:

5

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: MW-4

Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9801768-05

Sampled: 01/14/98 Received: 01/15/98

Analyzed: 01/28/98

Reported: 01/30/98

QC Batch Number: GC012898BTEX18A Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limit ug/L	S	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	2000 100 20 20 20 20 20		N.D. 5200 N.D. N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits % 70	% 130	Recovery 89

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1210

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600. (510) 988-9600 (916) 921-9600

FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Unocal SS#1871, 180068 Client Proj. ID:

Sample Descript: MW-4

Matrix: LIQUID Analysis Method: EPA 8015 Mod

Lab Number: 9801768-05

Sampled: 01/14/98 Received: 01/15/98 Extracted: 01/19/98 Analyzed: 01/20/98

Reported: 01/30/98

QC Batch Number: GC011998OHBPEXB

Instrument ID: GCHP5A

Total Extractable Petroleum Hydrocarbons (TEPH)

Analyte

Detection Limit ug/L

Sample Results ug/L

TEPH as Diesel Chromatogram Pattern: 50

N.D.

Surrogates n-Pentacosane (C25)

Control Limits %

% Recovery 161 Q

Analytes reported as N.D. were not present above the stated limit of detection.

ELAP #1210

Mike Gregory

Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568 Client Proj. ID: Unocal SS#1871, 180068

Sampled: 01/14/98
Received: 01/15/98
Analyzed: see below

Lab Proj. ID: 9801768

Analyzed: see below Reported: 01/30/98

Attention:

Deanna Harding

LABORATORY ANALYSIS

Analyte	Units	Date Analyzed	Detection Limit	Sample Results
Lab No: 9801768-05 Sample Desc : LIQUID,MW-4		·		
TRPH (SM 5520 B&F)	mg/L	01/21/98	5.0	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600

FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J

Client Proj. ID: Unocal SS#1871, 180068 Sample Descript: MW-4

Sampled: 01/14/98 Received: 01/15/98

Dublin, CA 94568

Matrix: LIQUID

Analyzed: 01/21/98

Attention: Deanna Harding

Analysis Method: EPA 8010 Lab Number: 9801768-05

Reported: 01/30/98

QC Batch Number: GC012198801009A

Instrument ID: GCHP09

Halogenated Volatile Organics (EPA 8010)

Analyte	Detection Limit ug/L	Sample Results ug/L	
Bromodichloromethane	0.50	N.D.	
Bromoform	0.50	N.D.	
Bromomethane	1.0	N.D.	
Carbon Tetrachloride	0.50	N.D.	
Chlorobenzene	0.50	N.D.	
Chloroethane	1.0	N.D.	
2-Chloroethylvinyl ether	1.0	N.D.	
Chloroform	0.50	N.D.	
Chloromethane	1.0	N.D.	
Dibromochloromethane	0.50	N.D.	
1,2-Dichlorobenzene	0.50	N.D.	
1,3-Dichlorobenzene	0.50	N.D.	
1,4-Dichlorobenzene	0.50	Ŋ.D.	
1,1-Dichloroethane	0.50	N.D.	
1,2-Dichloroethane	0.50	Ŋ.D.	
1,1-Dichloroethene	0.50	Ņ.D.	
cis-1,2-Dichloroethene	0.50	Ŋ.D.	
trans-1,2-Dichloroethene	0.50	N.D.	
1,2-Dichloropropane	0.50	N.D.	
cis-1,3-Dichloropropene	0.50	N.D.	
trans-1,3-Dichloropropene	0.50	N.D.	
Methylene chloride	5.0	N.D.	
1,1,2,2-Tetrachloroethane	0.50	N.D.	
Tetrachloroethene	0.50	N.D.	
1,1,1-Trichloroethane	0.50	N.D.	
1,1,2-Trichloroethane	0.50	N.D.	
Trichloroethene	0.50	N.D.	
Trichlorofluoromethane	0.50	N.D.	
Vinyl chloride	1.0	N.D.	
Surrogates	Control Limits %	% Recovery	
1-Chloro-2-fluorobenzene	70 130	97	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -**ELAP #1210**

é Gregory Project Manager

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

■ Gettler Ryan/Geostrategies # 6747 Slerra Court # Dublin, CA 94568 6747 Sierra Court Suite J

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: MW-4 Matrix: LIQUID

Analysis Method: EPA 8270 Lab Number: 9801768-05

Sampled: 01/14/98 Received: 01/15/98 Extracted: 01/19/98 Analyzed: 01/21/98

Reported: 01/30/98

QC Batch Number: MS0113988270EXA

Instrument ID: H5

Semivolatile Organics (EPA 8270)

Analyte	Detection Limit ug/L	Sample Results ug/L
Acenaphthene	5.0	N.D.
Acenaphthylene	5.0	N.D.
Anthracene	5.0	N.D.
Benzoic Acid	10	N.D.
Benzo(a)anthracene	5.0	N.D.
Benzo(b)fluoranthene	5.0	N.D.
Benzo(k)fluoranthene	5.0	N.D.
Benzo(g,h,i)perylene	5.0	N.D. N.D.
Benzo(a) pyrene	5.0	N.D. N.D.
Benzyl alcohol	5.0	N.D.
Bis(2-chloroethoxy)methane	5.0 5.0	N.D.
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	5.0 5.0	N.D.
Bis(2-ethylhexyl)phthalate	5.0 10	N.D.
4-Bromophenyl phenyl ether	5.0	N.D.
Butyl benzyl phthalate	5.0 5.0	N.D.
4-Chloroaniline	10	N.D.
2-Chloronaphthalene	5.0	N.D.
4-Chloro-3-methylphenol	5.0	N.D.
2-Chlorophenol	5.0	N.D.
4-Chlorophenyl phenyl ether	5.0	N.D.
Chrysene	5.0	N.D.
Dibenzo(a,h)anthracene	5.0	N.D.
Dibenzofuran	5.0	N.D.
Di-n-butyl phthalate	10	N.D.
1,2-Dichlorobenzene	5.0	N.D.
1,3-Dichlorobenzene	5.0	N.D.
1,4-Dichlorobenzene	5.0	Ŋ.D.
3,3-Dichlorobenzidine	10_	N.D.
2,4-Dichlorophenol	5.0	N.D.
Diethyl phthalate	5.0	Ŋ.D.
2,4-Dimethylphenol	5.0	N.D.
Dimethyl phthalate	5.0	N.D.
4,6-Dinitro-2-methylphenol	, 10	N.D.
2,4-Dinitrophenol	10	N.D. N.D.
2,4-Dinitrotoluene	5.0	N.D. N.D.
2,6-Dinitrotoluene Di-n-octyl phthalate	5.0 5.0	N.D. N.D.
Fluoranthene	5.0 5.0	N.D.
i idoramiene	J. U	N.U.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

 ☐ Gettler Ryan/Geostrategies
 ☐ 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Unocal SS#1871, 180068 Client Proj. ID:

Sample Descript: MW-4 Matrix: LIQUID

Analysis Method: EPA 8270 Lab Number: 9801768-05

Sampled: 01/14/98 Received: 01/15/98 Extracted: 01/19/98 Analyzed: 01/21/98 Reported: 01/30/98

QC Batch Number: MS0113988270EXA

Instrument ID: H5

Analyte	Detection Limit ug/L	Sample Results ug/L
Fluorene	5.0	N.D.
Hexachlorobenzene	5.0	N.D.
Hexachlorobutadiene	5.0	N.D.
Hexachlorocyclopentadiene	10	N.D.
Hexachloroethane	5.0	N.D.
Indeno(1,2,3-cd)pyrene	5.0	N.D.
Isophorone	5.0	N.D.
2-Methylnaphthalene	5.0	N.D.
2-Methylphenol	5.0	N.D.
4-Methylphenol	5.0	N.D.
: Naphthalene	5.0	N.D.
: 2-Nitroaniline	10	N.D.
3-Nitroaniline	10	N.D.
4-Nitroaniline	10	N.D.
Nitrobenzene	5.0	N.D.
2-Nitrophenol	5.0	N.D.
4-Nitrophenol	10	N.D.
n-Nitrosodiphenylamine	5.0	N.D.
n-Nitroso-di-n-propylamine	5.0	Ŋ.D.
Pentachlorophenol	10	N.D.
Phenanthrene	5.0	N.D.
Phenol	5.0	Ŋ.D.
Pyrene	5.0	N.D.
1,2,4-Trichlorobenzene	5.0	N.D.
2,4,5-Trichlorophenol	10	N.D.
2,4,6-Trichlorophenol	5.0	N.D.
Surrogates	Control Limits %	% Recovery
	04 440	40

Surrogates	Controi Li	% Recovery	
2-Fluorophenol	21	110	42
Phenol-d5	10	110	29
Nitrobenzene-d5	35	114	68
2-Fluorobiphenyl	43	116	70
2,4,6-Tribromophenol	10	123	66
p-Terphenyl-d14	33	141	66

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL ELAP #1210

Mike Gregory Project Manager

Page:

10

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#1871, 180068

Sample Descript: MW-5

Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9801768-06

Sampled: 01/14/98 Received: 01/15/98

Analyzed: 01/28/98 Reported: 01/30/98

QC Batch Number: GC012898BTEX18A

Instrument ID: GCHP18

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

Analyte	Detection Limi ug/L	l	Sample Results ug/L
TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern:	20000 1000 200 200 200 200 200		N.D. 80000 3600 N.D. N.D. N.D.
Surrogates Trifluorotoluene	Control Limits 9	% 130	% Recovery 81

Possible to negerat Door Pichette

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1210

Mike Gregory Project Manager

Page:

11

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

6747 Sierra Court Suite J Dublin, CA 94568 Attention: Deanna Harding Client Proj. ID: Unocal SS#1871, 180068

Received: 01/15/98

Lab Proj. ID: 9801768

Reported: 01/30/98

LABORATORY NARRATIVE

In order to properly interpret this report, it must be reproduced in its entirety. report contains a total of 20 pages including the laboratory narrative, sample results, quality control, and related documents as required (cover page, COC, raw data, etc.).

TPGBMW: Samples 768-4,5 & 6 were reshot to confirm analytes.

pH analysis:

The voas had a pH = 1

SEQUOIA ANALYTICAL

Mike Gregory Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568 Client Project ID: Matrix: Unocal SS#1871, 180068

Liquid

Attention: Deanna Harding

Work Order #:

Please Note:

9801768 -01-06

Reported:

Jan 30, 1998

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	Gas			
_			Benzene					
QC Batch#: G	C012898BTEX18A	GC012898BTEX18A	GC012898BTEX18A	GC012898BTEX18A	GC012898BTEX18/			
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015M			
Prep. Method:	EPA 5030	EPA 5030	EPA 5030	EPA 5030	EPA 5030			
Analyst:	J. Minkei	J. Minkel	J. Minkel	J. Minkel	J. Minkel			
MS/MSĎ#:	980188103	980188103	980188103	980188103	980188103			
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.			
Prepared Date:	1/28/98	1/28/98	1/28/98	1/28/98	1/28/98			
Analyzed Date:	1/28/98	1/28/98	1/28/98	1/28/98	1/28/98			
Instrument I.D.#:	GCHP18	GCHP18	GCHP18	GCHP18	GCHP18			
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L	60 μg/L			
Result:	8.4	8.5	8.5	25	59			
MS % Recovery:	84	85	85	83	98			
Dup. Result:	8.6	8.8	8.7	27	60			
MSD % Recov.:	86	88	87	90	100			
RPD:	2.4	3.5	2.3	7.7	1.7			
RPD Limit:	0-25	0-25	0-25	0-25	0-25			
LCS #:	BLK012898	BLK012898	BLK012898	BLK012898	BLK012898			
Prepared Date:	1/28/98	1/28/98	1/28/98	1/28/98	1/28/98			
Analyzed Date:	1/28/98	1/28/98	1/28/98	1/28/98	1/28/98			
Instrument I.D.#:	GCHP18	GCHP18	GCHP18	GCHP18	GCHP18			
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L	30 μg/L	60 μg/L			
LCS Result:	10	10	10	32	71			
LCS % Recov.:	100	100	100	107	118			
MS/MSD	60-140	60-140	60-140	60-140	60-140			
LCS	70-130	70-130	70-130	70-130	70-130			

SEQUOIA ANALYTICAL

Control Limits

Project Manager

SEGULIA ANAGINICAE

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

interference, the LCS recovery is to be used to validate the batch.

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample

fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix

9801768.GET <1>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568 Client Project ID:

Unocal SS#1871, 180068

Matrix:

Liquid

Attention: Deanna Harding

Work Order #:

9801768-05

Reported:

Jan 30, 1998

QUALITY CONTROL DATA REPORT

Analyte:	1,1-Dichloro-	Trichloro-	Chloro-		
Allaryte.	ethene	ethene	Benzene		
OC Patch#:	GC012198801009A	GC012198801009A	GC012198801009	n.	
				۹.	
Analy. Method:	EPA 8010	EPA 8010	EPA 8010		
Prep. Method:	EPA 5030	EPA 5030	EPA 5030		
Analyst:	M. McLachlan	M. McLachlan	M. McLachlan		
MS/MSD #:	980188301	980188301	980188301		
Sample Conc.:	N.D.	N.D.	N.D.		
Prepared Date:	1/20/98	1/20/98	1/20/98		
Analyzed Date:	1/21/98	1/21/98	1/21/98		
Instrument I.D.#:	GCHP9	GCHP9	GCHP9		
Conc. Spiked:	25 μg/L	25 μg/L	25 μg/L		
Result:	24	25	27		
MS % Recovery:	96	100	108		
Dup. Result:	27	26	28		
MSD % Recov.:	108	104	112		
RPD:	12	3.9	3.6		
RPD Limit:	0-25	0-25	0-25		
					0000
LCS #:	BLK012198	BLK012198	BLK012198		
Prepared Date:	1/21/98	1/21/98	1/21/98		
Analyzed Date:	1/21/98	1/21/98	1/21/98		
Instrument I.D.#:		GCHP9	GCHP9		
Conc. Spiked:	25 μg/L	25 μg/L	25 μg/L		
LCS Result:	29	26	28		
LCS % Recov.:	116	104	112		
MS/MSD	60-140	60-140	60-140		

SEQUOIA ANALYTICAL

LCS

Control Limits

SEQUUIA ANALTTICAL

like Gregory eject Manager Please Note:

70-130

65-135

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

70-130

9801768.GET <2>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Client Project ID:

Unocal SS#1871, 180068

Matrix:

Liquid

Attention: Deanna Harding

Work Order #:

9801768-05

Reported:

Jan 30, 1998

QUALITY CONTROL DATA REPORT

Analyte:

Diesel

QC Batch#: GC0119980HBPEXB Analy. Method: Prep. Method:

EPA 8015M

EPA 3510

Analyst: MS/MSD #: D. Lockhart 980179301

Sample Conc.: **Prepared Date:**

360 1/19/98

Analyzed Date: Instrument I.D.#:

1/19/98 GCHP5

Conc. Spiked:

1000 µg/L

Result:

1400

MS % Recovery:

104

Dup. Result:

1300

MSD % Recov.:

94

RPD:

7.4

RPD Limit:

0-50

LCS#:

BLK011998

Prepared Date:

1/19/98

Analyzed Date: Instrument I.D.#: 1/19/98 GCHP5

Conc. Spiked:

 $1000 \, \mu \mathrm{g/L}$

LCS Result:

950

LCS % Recov.:

95

MS/MSD LCS

50-150

60-140

Control Limits

SEQUOIA ANALYTICAL

Project Manager

Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9801768.GET <3>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Client Project ID:

Unocal SS#1871, 180068

Matrix:

Liquid

Dublin, CA 94568 Attention: Deanna Harding

Work Order #:

9801768-05

Reported: Jan 30, 1998

QUALITY CONTROL DATA REPORT

Analyte:	Phenol	2-Chlorophenol	1,4-Dichloro-	N-Nitroso-Di-	
			benzene	N-propylamine	
QC Batch#:	MS0113988270EXA	MS0113988270EXA	MS0113988270EXA	MS0113988270EXA	
Analy. Method:	EPA 8270	EPA 8270	EPA 8270	EPA 8270	
Prep. Method:			EPA 3510	EPA 3510	
<u> </u>	<u></u>				
Analyst:	E. Manuel	E. Manuel	E. Manuel	E. Manuel	
MS/MSD #:	980119308	980119308	980119308	980119308	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	1/13/98	1/13/98	1/13/98	1/13/98	
Analyzed Date:	1/14/98	1/14/98	1/14/98	1/14/98	
Instrument I.D.#:	H5	H5	, . H5	H5	
Conc. Spiked:	200 μg/L	200 μg/L	200 μg/L	200 μg/L	
Denuite		446		400	
Result:	75	140	131	139	
MS % Recovery:	38	70	66	70	
Dup. Result:	79	135	109	134	
MSD % Recov.:	40	68	55	67	
		•			
RPD:	5.2	3.6	18	3.7	
RPD Limit:	0-30	0-30	0-30	0-30	
LCS #:	LCS011998	LCS011998	LCS011998	LCS011998	
Prepared Date:	1/19/98	1/19/98	1/19/98	1/19/98	
Analyzed Date:	1/21/98	1/21/98	1/21/98	1/21/98	
Instrument I.D.#:	H5	H5	H5	H5	
Conc. Spiked:	200 μg/L	200 μg/L	200 μg/L	200 μg/L	
LCS Result:	70	100	101	. 122	
LCS % Recov.:	72 36	126	121	133	
LC3 % ReCOV.:	30	63	61	67	
			2		
MS/MSD LCS			:		
Control Limits	12-110	27-123	36-97	41-116	

SEQUOIA ANALYTICAL

Afegory

Project Manager

the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Please Note:

** MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference Page 1 of 3

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents,

preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If

9801768.GET <4>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568 Client Project ID:

Unocal SS#1871, 180068

Matrix:

Liquid

Attention: Deanna Harding

Work Order #:

9801768-05

Reported:

Jan 30, 1998

QUALITY CONTROL DATA REPORT

Analyte:	1,2,4-Trichloro-	4-Chloro-3-	Acenaphthene	4-Nitrophenol	
Analyte	benzene		Acenaphulene	r ma optionor	
OC Botob#		Methylphenol	MS0113988270EXA	MS0113988270EXA	
	MS0113988270EXA	MS0113988270EXA			
Analy. Method:	EPA 8270	EPA 8270	EPA 8270	EPA 8270	
Prep. Method:	EPA 3510	EPA 3510	EPA 3510	EPA 3510	
Analyst:	E. Manuel	E. Manuel	E. Manuel	E. Manuel	
MS/MSĎ#:	980119308	980119308	980119308	980119308	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	1/13/98	1/13/98	1/13/98	1/13/98	
Analyzed Date:	1/14/98	1/14/98	1/14/98	1/14/98	
Instrument i.D.#:	H5	H5	H5	์ H5	
Conc. Spiked:	200 μg/L	200 μg/L	200 μg/L	200 μg/L	
Result:	149	154	141	76	
MS % Recovery:	75	77	71	38	
Dup. Result:	141	150	138	76	
MSD % Recov.:	71	75	69	38	
MOD /6 HEGOV	, ,	75	5 5		
RPD:	5.5	2.6	2.2	0.0	
RPD Limit:	0-30	0-30	0-30	0-30	
LCS #:	LCS011998	LC\$011998	LCS011998	LCS011998	
Prepared Date:	1/19/98	1/19/98	1/19/98	1/19/98	
Analyzed Date:		1/21/98	1/21/98	1/21/98	
Instrument I.D.#:		H5	H5	H5	
Conc. Spiked:	200 μg/L	200 μg/L	200 μg/L	200 μg/L	
LCS Result:	144	156	135	71	
LCS % Recov.:		78	68	36	
	- -	· •		•	
H8/468****			<u> </u>		
MS/MSD LCS			• • • • • • • • • • • • • • • • • • •		
Control Limits	39-98	23-97	46-118	10-80	

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD=MS Duplicate, RPD = Relative % Difference

Page 2 of 3

9801768.GET <5>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Client Project ID:

Work Order #:

Unocal SS#1871, 180068 Liquid

Dublin, CA 94568

Attention: Deanna Harding

Matrix: Liqui

Reported: Jan 30, 1998

QUALITY CONTROL DATA REPORT

9801768-05

Analyte:	2,4-Dinitro-	Pentachloro-	Pyrene	
	toluene	phenol		
QC Batch#:	MS0113988270EXA	MS0113988270EXA	MS0113988270EXA	
Analy. Method:	EPA 8270	EPA 8270	EPA 8270	
Prep. Method:	EPA 3510	EPA 3510	EPA 3510	
A 1 4-				
Analyst:	E. Manuel	E. Manuel	E. Manuel	
MS/MSD #:	980119308	980119308	980119308	
Sample Conc.:	N.D.	N.D.	N.D.	
Prepared Date:	1/13/98	1/13/98	1/13/98	
Analyzed Date:	1/14/98	1/14/98	1/14/98	
Instrument I.D.#:	H5	H5	H5	
Conc. Spiked:	200 μg/L	200 μg/L	200 μg/L	
Result:	156	163	150	
MS % Recovery:	78	82	75	
Dup. Result:	149	161	141	
MSD % Recov.:	75	81		
MSD % Recov	75	81	71	
RPD:	4.6	1.2	6.2	
RPD Limit:	0-30	0-30	0-30	
LCS #:	LCS011998	LCS011998	LCS011998	
Prepared Date:	1/19/98	1/19/98	1/19/98	
Analyzed Date:		1/21/98	1/21/98	
Instrument I.D.#:		H5	H5	
Conc. Spiked:		200 μg/L	200 μg/L	
LCS Result:	150	140	150	
LCS % Recov.:		70	75	·
	75	70		
MS/MSD LCS				
Control Limits				

SEQUOIA ANALYTICAL

Mike Gregory Project Manager Please Note

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

Page 3 of 3

9801768.GET <6>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J

Client Project ID:

Unocal SS#1871, 180068

Matrix:

Liquid

Dublin, CA 94568 Attention: Deanna Harding

Work Order #:

9801768-05

Reported:

Jan 30, 1998

QUALITY CONTROL DATA REPORT

Analyte: Total Recoverable

Petroleum Hydrocarbons

QC Batch#: IN011398552000A Analy. Method: Prep. Method:

SM 5520BF

Analyst:

SM 5520BF

BS/BSD #:

P. Cheung BLK011398 N.D.

Sample Conc.: Prepared Date: Analyzed Date:

1/13/98 1/14/98

Instrument I.D.#: Conc. Spiked: MANUAL 10 mg/L

Result:

7.3

BS % Recovery:

73

Dup. Result: BSD % Recov.:

8.4

84

RPD:

14

RPD Limit:

0-30

LCS #:

LCS012098

Prepared Date:

1/20/98

Analyzed Date:

1/21/98

Instrument I.D.#:

MANUAL

Conc. Spiked:

10 mg/L

LCS Result:

8.1

LCS % Recov.:

81

MS/MSD

LCS

60-140

Control Limits

70-130

SEQUOIA ANALYTICAL

≟regory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Dup!icate, RPD = Relative % Difference

9801768.GET <7>

Table 1 - Chemical Analytical Data

Former Tosco 76 Branded Facility No. 1871 96 Mac Arthur Boulevard Oakland, California

Sample	Date	Sample	TPHg	Benzene	Toluene	Ethyl-	Xylenes	MTBE	TPHd	O&G	HVOCs	SVOCs
Б	Collected	Depth (feet)	(ppm)	(ppm)	(ppm)	Benzene (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
GASOLINE UST F	OUT EVCANA	TION (SOII										
	5/11/98	11.5	ND	ND	ND	ND	ND	1.9	NR	NR	NR	NR
SW1 SW2	5/11/98	11.5	ND	0.031	ND	ND	0.015	3.8	NR	NR	NR	NR
SW2 SW3	5/11/98	11.5	2,000	9.7	29	38	150	16	NR	NR	NR	NR
SW3 SW4	5/11/98	11.5	1,800	5.5	82	49	290	15	NR	NR	NR	NR
			5,0 ⁴	0.049	0.051	0.050	0.20	6,6	NR	NR	NR	NR
SW3-5	. 5/12/98	11.0 11.0	ND	0.049	ND	ND	0.039	12	NR	NR	NR	NR
SW4-55 **	5/12/98	11.0	ND	0.000	ΝD	112						
GASOLINE UST I	PIT EXCAVA	TION (WA	<u>rer)</u>). TIS	3.00), TID
Water-FT	5/11/98	NA	620	ND	18	13	83	ND	NR	NR	NR	NR
WASTE OIL UST	PIT EXCAVA	ATION (SO	<u>[L)</u>					. —		* 40	.	NTD.
WO1	5/11/98	11.0	ND	ND	ND	ND	ND	ND	ND	140	ND	ND
WASTE OIL UST	PIT EXCAVA	ATION (WA	TER)						1		- — 2	
Water-WO	5/11/98	NA	0.090^{4}	ND	ND	ND	ND	ND	0.890 ¹	ND	ND^2	ND
PRODUCT PUM	P ISLANDS (SOIL)										
P1	5/11/98	4.0	ND	ND	ND	ND	ND	0.74	NR	NR	NR	NR
P2	5/11/98	4.0	15^{3}	ND	0.056	0.10	0.19	ND	NR	NR	NR	NR
DISPOSAL CHAF	RACTERIZAT	TION SAMI	PLE (SOIL I	FROM WAS	TE OIL US	T PIT)						
WO SP1	5/12/98	NA	ND	ND	ND	ND	0.014	NR	6.8 ⁵	110	ND	ND^6

5' distance from initial sample

Table 1 - Chemical Analytical Data

Former Tosco 76 Branded Facility No. 1871 96 Mac Arthur Boulevard Oakland, California

Sample ID	Date Collected	Sample Depth	ТРНд	Benzene	Toluene	Ethyl- Benzene	Xylenes	Total Lead	
10	Conceicu	(feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
ISPOSAL CHAR	ACTERIZAT	ION SAMP	LES_						
SP1 (A-D)	5/12/98	NA	ND	ND	ND	ND	0.015	19	
SP1 (E-H)	5/12/98	NA	170^{3}	2.9	0.74	0.78	3.2	2.2	
SP1 (I-L)	5/12/98	NA	60	1.5	5.5	6.6	27	5.9	
SP1 (M-P)	5/12/98	NA	380	1.6	5.6	7.5	34	4.6	
SP1 (Q-T)	5/12/98	NA	50	0.32	0.90	0.81	3.5	4.9	
SP1 (U-X)	5/12/98	NA	1,200	9.0	26	28	100	2.1	
SP1 (Y,Z,1,2)	5/12/98	NA	130	0.94	2.8	2.3	12	3.5	
SP1 (1,2,1,2) SP1 (3,4,5,6)	5/12/98	NA	13 ⁴	0.36	0.57	0.22	0.92	1.9	

Sample ID	Date Collected	Sample Depth	Lead	Chromium	Nickel	Zinc	Cadmiun	TPHhf	
ш	Concerca	(feet)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
WO1	5/11/98	11.0	1.0	18	21	61	ND	NR	
WO SP1	5/12/98	NA	3.0	30	56	57	ND	NR	
Water-WO	5/11/98	NA	ND	0.053	0.055	0.065	ND	NR	
H-1	5/12/98	8.0	NR	NR	NR	NR	NR	ND	
H-2	5/12/98	8.0	NR	NR	NR	NR	NR	ND	

EXPLANATION:

ND = none detected

NA = not applicable

ppm = parts per million

NR = analysis not requested

MTBE = methyl tert-butyl ether

ANALYTICAL LABORATORY;

Sequoia Analytical (ELAP # 1271)

Table 1 - Chemical Analytical Data

Former Tosco 76 Branded Facility No. 1871 96 Mac Arthur Boulevard Oakland, California

NOTES:

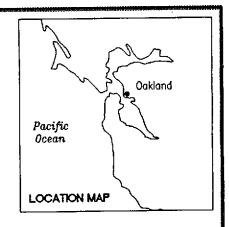
- ¹ = Laboratory reports indicates unidentified hydrocarbons <C14
- ² = None of the analytes detected except bromodichloromethane (0.0058 ppm), chloroform (0.014 ppm), dibromochloromethane (0.0019 ppm), 1,4-dichlorobenzene (0.00089 ppm), 1,2-dichlorobenzene (0.0028 ppm), and tetrachloroethene (0.0017 ppm).
- ³ = Laboratory reports indicates gasoline and unidentified hydrocarbons >C8
- ⁴ = Laboratory reports indicates gasoline and discrete peaks
- ⁵ = Laboratory reports indicates unidentified hydrocarbons >C16
- ⁶ = Non of the analytes detected except for phenanthrene (0.350 ppm), pyrene (0.380 ppm), and fluoranthene (0380 ppm).

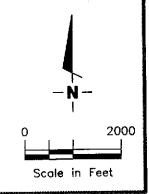
ANALYTICAL METHODS:

TPHg = Total Petroleum Hydrocarbons as gasoline according to EPA Method 8015 Modified.

TPHd = Total Petroleum Hydrocarbons as diesel according to EPA Method 8015 Modified.

TPHhf = Total Petroleum Hydrocarbons as hydraulic fluid according to EPA Method 8015 Modified.


O&G = Total recoverable petroleum oil according to Standard Methods 5520 E&F(Gravimetric).


HVOCs = Halogenated volatile organic compounds according to EPA Method 8010.

SVOCs = Semi-volatile organic compounds according to EPA Method 8270.

Metals = EPA Method 6010.

Base Map: USGS Topographic Map

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

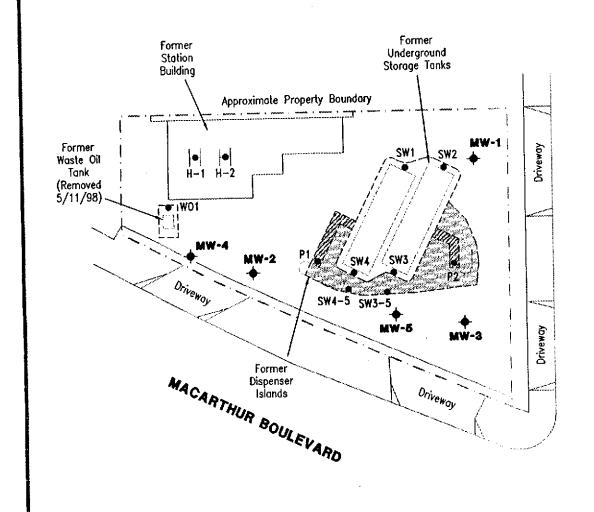
(925) 551-7555

REVIEWED BY

VICINITY MAP

Former Tosco 76 Branded Facility No. 1871 96 MacArthur Boulevard

Oakland, California


DATE

July, 1998

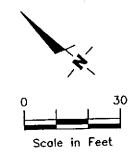
FIGURE

REVISED DATE

JOB NUMBER 140165

EXPLANATION

- Groundwater monitoring well
- Soil sample location


Product piping trench

Tank excavation

HARRISON STREET

Over excavation

Source: Figure Modified From Drawing Provided By MPDS Services, Inc.

Gettler - Ryan Inc.

REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

SITE PLAN/SOIL SAMPLE LOCATION MAP Former Tosco 76 Branded Facility No. 1871 96 MacArthur Boulevard Oakland, California

DATE

July, 1998

REVISED DATE

JOB NUMBER 140165.02

FIGURE

GETTLER-RYAN INC.

FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the contents of these plans prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Samples

Soil samples are collected from the wall or base of the excavation with a hand-driven sampling device fitted with a 2-inch-diameter, clean brass tube or stainless steel liner. If safety artions preclude collection of the samples with the drive sampler, the excavating equipment is used to bring soil from the pit wall to the surface, where a sample tube is filled by driving it into the soil in the excavator's bucket. After removal from the sampling device, sample tubes are covered on both ends with teflon sheeting, capped, labeled, and place in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory.

If it is necessary to collect a sample of groundwater standing in the UST pit, the sample is collected by lowering a new, clean teflon bailer into the pit from a safe position along the pit wall. Once filled and retrieved, the groundwater in the bailer is carefully decanted into the appropriate containers supplied by the analytical laboratory. If required, preservative is added to the sample bottles by the laboratory prior to delivery. The samples are then labeled and place in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory.

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from soil samples. This test procedure involves placing a small amount of the soil to be screened in a sealable plastic bag. The bag is warmed in the sun to allow organic compounds in the soil sample to volatilize. The PID probe is inserted through the wall of the bag and into the headspace inside, and the meter reading is recorded in the field notes. An alternative method involves placing a plastic cap over the end of the sample tube. The PID probe is placed through a hole in the plastic cap, and vapors with the covered tube measured. Head-space screening is performed and results recorded as reconnaissance data only. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Storing and Sampling of Soil Stockpiles

Excavated material is stockpiled on and covered with plastic sheeting. Stockpile samples are collected and analyzed for disposal classification on the basis of one composite sample per 100 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis. Each discrete stockpile sample is collected by removing the upper 12 to 18 inches of soil, and them driving the stainless steel or brass sample tube into the stockpiled material with a mallet or drive sampler. The sample tubes are then covered on both ends with teflon sheeting, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

June 4, 1998

Gettler-Ryan, Inc. 6747 Sierra Court, Suite J Dublin, CA 94568

Attention: Haig Kavork

RECEIVED
JUN 3 0 1998
GETTLER-RYAN INC.
GENERAL CONTRACTORS

RE:

FORWARD, INC. Approval No. 685822

Disposal of Petroleum Contaminated Soils from

Former Unocal No. 1871

96 MacArthur Blvd., Oakland CA

Dear Mr. Kavork:

FORWARD, INC. is pleased to confirm the disposal of 1,252.78 tons of soil from the referenced site. The material was received at our Manteca, California facility on 5/8/98, 5/12/98 and 5/13/98. The waste was placed in a Class II Class 2 waste management unit.

Approval for this material was based on the information provided in the waste profile and associated materials submitted by Gettler-Ryan on behalf of Tosco Marketing Company (Generator). Acceptance of the waste is subject to the "Terms and Conditions" agreed to and signed by the generator or agent therof in the waste profile.

Thank you for the opportunity to be of service. Should you have any questions regarding this matter, please do not hesitate to contact our office at (800) 204-4242.

Sincerely,

FORWARD, INC.

Borad & Bonnel 14

Brad J. Bonner Sales Manager

cc: Clyde Galantine, Gettler-Ryan

BJB/ls

F:\FORWARD\MERGE FORMS\CONSULTANT CONFIRMATION OF DISPOSAL

05/13/98 STOCKPILET

485822

MATERIAL ANALYSIS REPORT BY ACCOUNT

For the period / / - 06/02/98 Detailed report for sites 00 - 99

- ZZZZZZZZZZ Material Types - Z Customer Types - Z Materials Accounts 685822 - 685822 Count Est. vol. Act. Vol. Est. Wt. Actual Wt. Charge - Material Type Customer Type Tickets Date 27.36 0.00 27.36 18 0 18 685822 ₿ 01-083038 05/08/98 STOCKPILET P 25.98 0.00 18 26.98 18 0 01-083046 982855 В Ρ 05/08/98 STOCKPILET 0.00 24.45 24.45 18 18 0 01-083051 685822 Ř 05/08/98 STOCKPILET 0.00 25.48 25.48 18 18 01-083052 0 3 05/08/98 STOCKPILET 885822 0.00 25.89 18 25.89 18 01 - 0830530 Ρ 685822 ₿ 05/08/98 STOCKPILET 25.49 25.49 0.00 18 0 18 ₿ 01-083056 685822 05/08/98 STOCKPILET 23.56 0.00 23.56 18 18 01-083058 0 В 685822 05/08/98 STOCKPILET 0.00 24.93 24.93 18 0 18 01-083066 695822 ₿ 05/08/98 STOCKPILET 26.74 0.00 25.74 18 18 0 01-083089 05/08/98 STOCKPILET p 685822 В 0.00 29.61 14.95 18 18 0 482855 B 01-083097 05/08/98 STOCKPILET 0.00 25.50 25.50 19 18 01-083110 0 58283 В 05/08/98 STOCKPILET 0.00 28.28 28.28 18 18 01-083112 685822 В 05/08/98 STOCKPILET ₽ 0.00 23.01 10.85 18 18 0 B 01-083115 05/08/98 STOCKPILET Ρ 485822 20.65 0.00 18 20.66 18 0 558586 В 01-083116 05/08/98 STOCKPILET 0.00 29.96 29.96 18 18 ð 685822 01-083375 35/12/98 STOCKPILET 0.00 23.87 23,87 19 18 01-083284 0 685822 3 05/12/98 STOCKPILET 0.00 25.01 25.01 18 18 0 В 01-083286 585822 35/12/98 STOCKPILET 0.00 29.69 29.68 18 18 0 01-083289 685822 35/12/98 STOCKPILET 0.00 23.78 18 23.78 18 0 Е 01-083290 05/12/98 STOCKPILET P 685822 0.00 20.83 20.83 18 18 0 8 01-083293 685822 05/12/98 STOCKPILET 0.00 27.37 .27.37 18 18 В 01-083296 0 685822 05/12/98 STOCKPILET 0.00 21.30 21.30 0 18 18 01-083298 **685822** В 05/12/98 STOCKPILET 25.78 0.00 25.78 18 18 Ü 01-083307 05/12/98 STOCKPILET ρ 685822 В 0.00 18 24.05 24.06 18 0 В 01-083308 685822 05/12/98 STOCKPILET 26.51 12.35 0.00 18 18 01-083311 0 685822 В 05/12/98 STOCKPILET Ρ 0.00 28.27 28.27 18 0 18 01-083322 P 685822 В 05/12/98 STOCKPILET 0.00 26.51 26.51 18 0 18 01-083334 685822 В 05/12/98 STOCKPILET ₽ 0.00 26.97 18 18 26.87 0 B 01-083342 05/12/98 STOCKPILET 685822 0.00 18 25.92 25.92 18 0 В 01-083344 685822 95/12/98 STOCKPILET ρ 0.00 33.72 33,72 18 18 01-083351 0 05/12/98 STOCKPILET p 685822 В 23.94 0.00 23.94 18 0 18 01-083352 Ρ 685822 В 05/12/98 STOCKPILET 0.00 24.05 24.05 18 18 0 01-083354 8 05/12/98 STOCKPILET P 685822 0.00 25.16 18 25.16 0 18 01-083356 Ρ 85822 В 05/12/98 STOCKPILET 0.00 18 26.07 26.07 18 0 01-083358 85822 В P 05/12/98 STOCKPILET 27.98 27.98 0.00 18 18 0 9 01-083363 685822 05/12/98 STOCKPILET 0.00 27.01 27.01 18 0 18 485822 01-083364 05/12/98 STOCKPILET 0.00 28.84 18 28.84 0 18 01-083371 685822 05/12/98 STOCKPILET В 0.00 32.91 32.91 18 Ó 18 01-083372 05/12/98 STOCKPILET 685822 B 25.54 0.00 18 25.54 18 0 01-083401 685822 8 05/13/98 STOCKPILET 0.00 18 25.04 25.04 18 0 01-083403 05/13/98 STOCKPILET 685822 В 23.91 0.00 23.91 18 18 0 01-083406 05/13/98 STOCKPILET ۶ 482822 ₿ 0.00 28.27 28.27 18 0 18 В 01-083407 05/13/98 STOCKPILET 685822 0.00 25.24 25.24 18 18 01-083416 0 В 05/13/98 STOCKPILET 685852 0.00 28.30 28.30 18 18 0 01-083426 685822 05/13/98 STOCKPILET 0.00 29.90 29.90 18 18 0 01-083432 P 685822 8 05/13/98 STOCKPILET

01-083433

23.22

18

18

0

23.22

0.00

MATERIAL ANALYSIS REPORT BY ACCOUNT

For the period / / - 06/02/98 Detailed report for sites 00 - 99

Accounts 685822 - 685822 Customer Types - Z Materials - ZZZZZZZZZZ Material Types - Z

Date	- Material	Type	Customer	Type	Tickets	Count	Est. vol.	Act. Vol.	Est. Wt. A	ctual Wt.	Charge
=======================================		:===3=:				22322223		22777271			
05/13/98	STOCKPILET	P	685822	В	01-083435	0	18	18	27.85	27.85	0.00
05/13/98	STOCKPILET	Þ	685822	В	01-083443	0	18	18	22.17	22.17	0.00
	TOSCO MARKE	TING	(T.BERRY)		48	0	864	864	1252.78	1252.78	0.00
	Average					0	18	-18	26.00	26.00	0.00
	Report Tota	I			48	0	864	864	1252.78	1252.78	9.00
	Report Aver	age				0	81	81	26.00	26.00	0.00

ð