RECEIVED

1:25 pm, Oct 12, 2009

Alameda County Environmental Health

October 5, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Quarterly Summary Report—Third Quarter 2009 Former 76 Service Station # 0843 RO # 0450 1629 Webster Street Alameda, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

October 8, 2009

Ms. Barbara Jakub Alameda County Health Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Quarterly Summary Report – Third Quarter 2009
Fuel Leak Case No. RO0000450

Dear Ms. Jakub:

DELTA

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) is submitting the Quarterly Summary Report - Third Quarter 2009, and forwarding a copy of TRC Solutions, Inc. (TRC's) Quarterly Monitoring Report, July through September 2009, dated September 28, 2009, for the following location:

Service Station

Location

76 Service Station No. 0843

1629 Webster Street Alameda, California

Sincerely, **Delta Consultants**

om & B. Bangara

James B. Barnard, P.G.

California Registered Professional Geologist No. 7478

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)

QUARTERLY SUMMARY REPORT Third Quarter 2009

76 Service Station No. 0843 1629 Webster Street Alameda, California

PREVIOUS ASSESSMENT

June 1998 - Tosco Marketing Company (Tosco, now ConocoPhillips) exhumed and removed two 10,000-gallon gasoline underground storage tanks (USTs), one 550-gallon used oil UST, product lines, and fuel dispensers. Two holes approximately ¾-inch in diameter were observed in the used oil tank during removal. Approximately 338 tons of hydrocarbon impacted soil and backfill were removed from beneath the former USTs, fuel dispensers, and product lines during the UST removal activities.

<u>March 1999</u> – Four soil borings (B1 through B4) were advanced at the site and converted to monitor wells MW-1 through MW-4. Groundwater was encountered from 8 to 15 feet below ground surface (bgs). Static groundwater was observed at depths ranging from 4 and 6 feet bgs subsequent to well installation.

<u>December 1999</u> – Two off-site soil borings (B5 and B6) were advanced and subsequently converted to monitor wells MW-5 and MW-6. Groundwater was initially present at approximately 10 feet bgs. Static groundwater was observed at a depth of approximately 7 feet bgs subsequent to well installation.

<u>March 2001</u> - An underground utility survey was conducted to identify and locate underground utilities beneath and in the vicinity of the site that could provide potential preferential pathways for groundwater flow.

<u>May 2001</u> - Five direct-push soil borings (GP-1 through GP-5) were advanced to evaluate whether underground utilities in the vicinity of the site are providing preferential pathways for groundwater flow and the migration of dissolved phase hydrocarbons. The results of the investigation indicated insufficient evidence that underground utility lines were providing preferential pathways for the off-site migration of dissolved phase hydrocarbons.

<u>December 2001</u> - Twelve direct-push soil borings (GP-6 through GP-17) were advanced to further assess the extent of residual hydrocarbons in the vadose zone beneath the site. The results of the investigation indicated that the extent of the residual hydrocarbon impact reported in the previous investigations was limited.

<u>December 2002</u> - One on-site monitoring well (MW-2) was destroyed during remedial excavation of hydrocarbon-impacted soil. Prior to destruction, monitoring well MW-2 was located near the former eastern dispenser island. During the remedial excavation, monitoring well MW-2 was replaced with on-site backfill monitoring well MW-2A. Approximately 292 tons of hydrocarbon-impacted soil was removed from beneath the former eastern dispenser island.

Former 76 Service Station No. 0843

<u>September 2003</u> - A *Request and Work Plan for Closure* prepared by ERI was submitted to the Alameda County Health Care Services Agency (ACHCSA), dated September 10, 2003. The report summarized why no further action is needed for the site; the report also included plans to destroy the existing wells upon regulatory acceptance for no further action. Closure was not granted.

<u>June 2004</u> – A work plan was submitted for the installation of two additional monitor wells down-gradient of MW-5.

<u>May 2005</u> – A work plan titled *Work Plan Addendum – Site Assessment Activity* dated May 17, 2005 was prepared by ATC Associates Inc. (ATC) for the installation of two offsite monitor wells.

<u>September 2005</u> – A work plan was prepared by ATC titled *Work Plan Subsurface Investigation*, for the installation of one on-site monitor well.

<u>September 2005</u> – Site environmental consulting responsibilities were transferred to Delta.

On January 24, 2007 Delta submitted a work plan to the ACHCSA recommending the advancement of one soil boring and the installation of three ozone injection wells at the site.

On August 14, 2008 Gregg Drilling under the supervision of a Delta field geologist advanced one soil boring to a depth of 55 feet bgs. The details of this investigation are described in the *Site Investigation Report* dated October 29, 2008.

In May 2009, as proposed in Delta's Work Plan *Site Investigation and Well Installations*, dated March 16, 2009, a total of seven groundwater monitoring wells (MW-1AR, MW-1BR, MW-7, MW-8, MW-9, MW-10, MW-11) and one injection point well (TSP-1) were installed at the site. One onsite monitoring well (MW-2A) was also abandoned. Results of this investigation are presented in the *Site Investigation and Well Installation Report*, dated July 9, 2009.

SENSITIVE RECEPTORS

<u>June/July 2002</u> - A groundwater receptor survey was conducted. Three irrigation wells were located within a one-half mile radius of the site. The wells are located approximately 1,980 feet west and 2,245 feet southwest of the site, cross-gradient and up-gradient of the site.

November 2006 – A survey entailing a visit to the DWR office in Sacramento was conducted to examine well log records and to identify domestic wells within the survey area. The DWR survey provided 15 potential receptors within one mile of the site; one domestic well located 0.5 mile southwest of the site; one domestic/irrigation well located 0.7 mile southeast of the site; 11 irrigation wells with three located 0.1 mile northwest, west, and southeast of the site; and two industrial wells located 0.3 miles southwest and 0.9 mile northeast of the site.

GROUNDWATER MONITORING AND SAMPLING

Quarterly groundwater monitoring and sampling was initiated in March 1999. Seven new monitoring wells (MW-1AR, MW-1BR, MW-7, MW-8, MW-9, MW-10, and MW-11 were installed onsite during the Second Quarter 2009, and were subsequently incorporated into TRC's Second Quarter 2009 Monitoring and Sampling program. Since The second quarter, twelve points have been gauged and sampled.

During the most recent groundwater monitoring and sampling event conducted on September 14, 2009, depth to groundwater ranged from 6.29 feet (MW-5) to 7.83 (MW-1AR) below top of casing (TOC). The groundwater flow direction was interpreted to be to the northeast with a gradient of 0.005 foot per foot (ft/ft) as compared to the previous quarterly sampling event (05/28/09) when the groundwater flow direction was interpreted to be to the east, with a gradient of 0.02 ft/ft. Historic groundwater flow directions are shown on a rose diagram presented as Attachment B.

Constituents of Concern:

- **TPHg:** Total purgeable petroleum hydrocarbons (as gasoline), were above the laboratory's indicated reporting limits in eight of the twelve groundwater samples collected and submitted for analysis, with a maximum concentration of 11,000 micrograms per liter (μg/L) in MW-11. During the previous sampling event (5/28/2009), TPHg was (again) above the laboratory's indicated reporting limits in nine of the twelve wells sampled with a maximum concentration of 1,200 in MW-9.
- **Benzene:** Benzene was not reported above the laboratory's indicated reporting limits in any of the twelve wells sampled during the current event. These results are consistent with the previous (05/28/09) sampling event.
- MTBE: MTBE was above the laboratory's indicated reporting limits in nine of the twelve wells samples, with a maximum concentration of 18,000 µg/L in well MW-11. During the previous sampling event (05/28/2009), MTBE was above the laboratory's indicated reporting limits in nine of the twelve wells sampled with a maximum concentration of 15,000 µg/L in both wells MW-7 and MW-11.

Toluene, Ethylbenzene, and Total Xylenes were all below laboratory indicated reporting limits in all twelve of the wells sampled during this event. During previous sampling event (5/28/09), Ethylbenzene and Total Xylenes were above laboratory indicated reporting limits in two of the twelve sampled wells with maximum concentrations of 1.4 µg/L (MW-7), and 15 (MW-9), respectively. Toluene was below laboratory indicated reporting limits during the previous sampling event.

REMEDIATION STATUS

Approximately 338 tons of hydrocarbon impacted soil and backfill were removed from beneath the former USTs, fuel dispensers, and product lines during the June 1998 UST removal activities. Approximately 292 tons of hydrocarbon-impacted soil was removed from beneath the former eastern island during the December 2002 excavation.

CHARACTERIZATION STATUS

Based on the data obtained during the August 2008 site investigation, additional assessment was recommended in the vicinity between monitoring well MW-2A, and monitoring well MW-1, and in the northeast corner of the site along the intersection of Pacific and Webster streets. Analytical data from groundwater samples collected from the Shell service station located approximately 75 feet south (up-gradient) of the site indicate that TPPH and MTBE are present in the groundwater and it appears that MW-1 is showing petroleum hydrocarbon impact from the off-site migration of these constituents onto the site.

Additional site investigation ensued in May 2009, pursuant to the ACDPEH-Approved *Workplan for Additional Assessment*, prepared and submitted by Delta. Results of this investigation are presented in the *Site Investigation and Well Installation Report*, dated July 9, 2009.

DISCUSSION

Groundwater monitoring and sampling of the seven new monitoring wells began during the Second Quarter 2009.

During the Third Quarter 2009, Delta proceeded with the proposed ozone injection feasibility testing event. Daily injections, lasting the course of four weeks led to the collection of data which indicates that:

RECENT CORRESPONDENCE

During the first quarter 2009, Alameda County Health Department (ACDH) acknowledged in a letter dated March 6, 2009, receipt of the Work Plan – Site Investigation and Monitoring Well Installation submitted by Delta dated March 16, 2009. The Work Plan was approved by ACDH on April 9, 2009.

WASTE DISPOSAL SUMMARY

Waste generated during the feasibility testing was removed from site and properly disposed of at a COP-approved facility.

THIS QUARTER ACTIVITIES (Third Quarter 2009)

- 1. TRC conducted the quarterly monitoring and sampling activities at the site on September 14, 2009.
- 2. During a four week period from August 10, 2009 to September 4, 2009, Integral, with oversight by Delta, performed a daily ozone injection feasibility test. Confirmation groundwater samples were collected by TRC on September 14, 2009 as part of the regularly scheduled third quarter 2009 monitoring and sampling event. The *Ozone Injection Feasibility Testing Report* was submitted to the Alameda County Health Agency on September 30, 2009.

NEXT QUARTER ACTIVITIES (Fourth Quarter 2009)

- 1. TRC will conduct quarterly groundwater monitoring and sampling activities at the site.
- 2. Delta will prepare and submit the quarterly summary report.

CONSULTANT: Delta Consultants

Attachment A – Historic Groundwater Flow Directions

Attachment A Historic Groundwater Flow Directions

Historic Groundwater Flow Directions ConocoPhillips Site No. 0843

1629 Webster Street Alameda, California N

Legend Concentric circles represent quarterly monitoring events First Quarter 1999 through Third Quarter 2009 41 data points shown

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

September 28, 2009

TO:

ConocoPhillips Company

76 Broadway

Sacramento, CA 95818

ATTN:

MR. TERRY GRAYSON

SITE:

FORMER 76 STATION 0843

1629 WEBSTER STREET ALAMEDA, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT

JULY THROUGH SEPTEMBER 2009

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for Former 76 Station 0843, located at 1629 Webster Street, Alameda, California If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan /

Groundwater Program Operations Manager

CC: Mr. James Barnard, Delta Consultants (2 copies)

Enclosures

20-0400/0843R25 QMS

QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2009

FORMER 76 STATION 0843 1629 Webster Street Alameda, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations

Date: <u>9/26/09</u>

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key Contents of Tables Table 1: Current Fluid Levels and Selected Analytical Results Table 1a: Additional Current Analytical Results Table 1b: Additional Current Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results
Coordinated Event Data	Shell Service Station (Not Provided this Quarter)
Figures	Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map Figure 4: Dissolved-Phase Benzene Concentration Map Figure 5: Dissolved-Phase MTBE Concentration Map Figure 6: Dissolved-Phase TBA Concentration Map
Graphs	Groundwater Elevations vs. Time Benzene Concentrations vs. Time
Field Activities	General Field Procedures Field Monitoring Data Sheets – 09/14/09 Groundwater Sampling Field Notes – 09/14/09
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records
Disposal Documents	Disposal/Treatment Manifests – Current (Pending)
Statements	Limitations

Summary of Gauging and Sampling Activities July 2009 through September 2009 Former 76 Station 0843 1629 Webster Street Alameda, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 09/14/09	Complica by: Christina Carrino
Sample Points	
Groundwater wells: 10 onsite, 2 offsite Purging method: Submersible pump Purge water disposal: Crosby and Overton trea Other Sample Points: 0 Type:	Points gauged: 12 Points sampled: 12 tment facility
Liquid Phase Hydrocarbons (LPH)	
Sample Points with LPH: 0 Maximum thickness LPH removal frequency: Treatment or disposal of water/LPH:	s (feet): Method:
Hydrogeologic Parameters	
Average groundwater elevation (relative to available Average change in groundwater elevation since presented groundwater gradient and flow direction Current event: 0.005 ft/ft, northeast Previous event: 0.02 ft/ft, east (05/28/09)	evious event: -0.71 feet n:
Selected Laboratory Results Sample Points with detected Benzene: 0	Sample Points above MCL (1.0 µg/l):
Sample Points with detected Benzene: 0 Maximum reported benzene concentration:	Sample Points above MCL (1.0 µg/1)
Sample Points with TPH-G by GC/MS 9 Sample Points with MTBE 8260B 9	Maximum: 11,000 μg/l (MW-11) Maximum: 18,000 μg/l (MW-11)
Notes:	

TABLE KEY

STANDARD ABBREVIATIONS

-- = not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons Trace = less than 0.01 foot of LPH in well

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit TOC = top of casing (surveyed reference elevation)

D = duplicate

P = no-purge sample

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether

1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.

REFERENCE

TRC began groundwater monitoring and sampling for Former 76 Station 0843 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: Former 76 Station 0843

Current	Event
---------	-------

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TBA	Ethanol (8260B)	DIPE	ETBE	TAME	Carbon (organic, total)	Chromium VI	Chromium (total)	Iron Ferrous	Manganese (dissolved)	Manganese (total)	Nitrogen as Nitrate
Table 1b	Well/ Date	Sulfate	Dissolved Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP				
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Carbon (organic, total)	Chromium VI	Chromium (total)	Iron Ferrous	Manganese (dissolved)
Table 2b	Well/ Date	Manganese (total)	Nitrogen as Nitrate	Sulfate	Dissolved Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP		

Table 1 CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS **September 14, 2009**

Former 76 Station 0843

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness		Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$								
MW-1			(Scree	en Interval	in feet: 4.5	-20.5)								
09/14/0	9 19.13	7.60	0.00	11.53	-1.14		1700	ND<5.0	ND<5.0	ND<5.0	ND<10		2100	
MW-1AR			(Scree	en Interval	in feet: 25-	30)								
09/14/0	9 19.29	7.83	0.00	11.46	-0.58		480	ND<1.0	ND<1.0	ND<1.0	ND<2.0		890	
MW-1BR			(Scree	en Interval	in feet: 30-	35)								
09/14/0	9 19.13	7.80	0.00	11.33	-1.10		450	ND<1.0	ND<1.0	ND<1.0	ND<2.0		680	
MW-3			(Scree	en Interval	in feet: 5.0	-20.0)								
09/14/0	9 18.05	6.88	0.00	11.17	-1.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-4			(Scree	en Interval	in feet: 5.0	-20.5)								
09/14/0	9 18.14	6.76	0.00	11.38	-1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5			(Scree	en Interval	in feet: 5-2	0)								
09/14/0	9 16.45	6.29	0.00	10.16	-1.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-6			(Scree	en Interval	in feet: 5-2	0)								
09/14/0	9 16.97	6.30	0.00	10.67	-1.04		230	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310	
MW-7			(Scree	en Interval	in feet: 25-	30)								
09/14/0	9 17.81	6.77	0.00	11.04	1.52		7900	ND<25	ND<25	ND<25	ND<50		15000	
MW-8			(Scree	en Interval	in feet: 25-	30)								
09/14/0	9 18.13	6.97	0.00	11.16	0.45		3500	ND<25	ND<25	ND<25	ND<50		5600	
MW-9			(Scree	en Interval	in feet: 20-	25)								
09/14/0	9 18.75	7.36	0.00	11.39	-1.12		280	ND<0.50	ND<0.50	ND<0.50	ND<1.0		390	
MW-10			(Scree	en Interval	in feet: 25-	30)								
09/14/0	9 18.84	7.50	0.00	11.34	-0.81		3300	ND<6.2	ND<6.2	ND<6.2	ND<12		4900	
MW-11					in feet: 25-	30)								
09/14/0	9 18.72	7.45	0.00	11.27	-1.27		11000	ND<25	ND<25	ND<25	ND<50		18000	
0843								Page	1 of 1					@TRC

Table 1 a ADDITIONAL CURRENT ANALYTICAL RESULTS Former 76 Station 0843

Date						Carbon						Nitrogen
Sampled	TTD 4	Ethanol	DIDE	EEDE	T	(organic,	Chromium	Chromium	Iron	Manganese	Manganese	as
	TBA	(8260B)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)	(total)	Nitrate
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(mg/l)
MW-1												
09/14/09	ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	1.4	2.2	220	ND<100	3.7	1600	11
MW-1AR												
09/14/09	110	ND<500	ND<1.0	ND<1.0	ND<1.0	4.5	ND<2.0	170	2500	570	830	17
MW-1BR												
09/14/09	33	ND<500	ND<1.0	ND<1.0	1.9	3.7	ND<2.0	250	ND<500	230	930	17
MW-3 09/14/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50							
09/14/09	ND<10	ND<230	112 (0.00	112 10.00	112 10.00							
MW-4	NTD 10	ND 250	ND 40.50	ND -0.50	NID +0.50							
09/14/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50							
MW-5												
09/14/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50							
MW-6												
09/14/09	23	ND<250	ND<0.50	ND<0.50	ND<0.50							
MW-7												
09/14/09	680	ND<12000	ND<25	ND<25	ND<25	9.8	ND<2.0	76	3200	2000	2200	4.2
MW-8												
09/14/09	ND<500	ND<12000	ND<25	ND<25	ND<25	14	ND<2.0	60	480	1000	1300	7.7
MW-9 09/14/09	24	ND<250	ND<0.50	ND<0.50	ND<0.50	3.0	ND<2.0	520	ND<1000	180	4700	5.0
	24	ND<230	112 (0.00	112 10.00	112 10.00	5.0	ND<2.0	320	112 (1000	180	4700	5.0
MW-10	240	ND<3100	ND 40	ND 62	ND 60	2.7	ND 0.0	24	210	200	200	
09/14/09	240	ND<3100	ND<6.2	ND<6.2	ND<6.2	2.7	ND<2.0	24	210	280	380	6.3
MW-11												
09/14/09	850	ND<12000	ND<25	ND<25	ND<25	3.3	ND<2.0	14	310	570	740	0.73
0843					I	Page 1 of 1					07	TDC

Table 1 b
ADDITIONAL CURRENT ANALYTICAL RESULTS
Former 76 Station 0843

Date Sampled	Sulfate	Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP		
	(mg/l)	(mg O/)	(mV)	(µmhos)	(mg/l)	(mg/l)	(mV)	(mV)		
MW-1 09/14/09	25	6.8	204	429	1.93	3.81	233	146		
MW-1AR 09/14/09	39	7.0	205	655	1.68	1.83	235	187		
MW-1BR 09/14/09	59	6.7	207	673	0.46	1.02	228	143		
MW-3 09/14/09		6.6	196	658	0.49	2.02	146	119		
MW-4 09/14/09		7.1	195	1020	2.16	2.78	142	63		
MW-5 09/14/09		4.0	204	609	0.64	2.08	147	115		
MW-6 09/14/09		7.1	205	595	0.46	1.07	154	118		
MW-7 09/14/09	180	6.9	217	1030	0.26	1.35	-13	-53		
MW-8 09/14/09	260	6.2	407	1100	0.28	1.11	151	92		
MW-9 09/14/09	68	7.3	204	580	3.58	4.16	236	171		
MW-10 09/14/09	33	6.1	205	675	2.19	0.67	235	114		
MW-11 09/14/09	37	6.7	192	780	0.81	0.82	224	49		
09/14/09	31	0.7	192	700		0.82 Page 1 of 1	<i>22</i> 4	49		RC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009

Former 76 Station 0843

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation	1	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
-	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	
MW-1			(Scre	en Interva	al in feet: 4.5	5-20.5)								
03/05/9	99 16.18					86.6		ND	2.04	ND	4.06		23.9	
06/03/9	99 16.18	6.24	0.00	9.94		ND		ND	ND	ND	ND	ND	ND	
09/02/9	99 16.18	7.19	0.00	8.99	-0.95	ND		ND	ND	ND	ND	ND	ND	
12/14/9	99 16.18	8.07	0.00	8.11	-0.88	ND		ND	ND	ND	ND	ND		
03/14/0	00 16.18	5.47	0.00	10.71	2.60	ND		ND	ND	ND	ND	ND		
05/31/0	00 16.18	6.22	0.00	9.96	-0.75	ND		ND	ND	ND	ND	ND		
08/29/0	00 16.18	6.82	0.00	9.36	-0.60	ND		ND	ND	ND	ND	ND		
12/01/0	00 16.18	7.54	0.00	8.64	-0.72	ND		ND	ND	ND	ND	ND		
03/17/0	01 16.18	5.73	0.00	10.45	1.81	ND		ND	ND	ND	ND	ND		
05/23/0	01 16.18	6.43	0.00	9.75	-0.70	ND		ND	ND	ND	ND	ND		
09/24/0	01 16.18	7.12	0.00	9.06	-0.69	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0	01 16.18	6.89	0.00	9.29	0.23	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/11/0	02 16.18	5.61	0.00	10.57	1.28	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0	02 16.18	5.71	0.00	10.47	-0.10	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/03/0	02 16.18													Not monitored/sampled
12/12/0	02 16.18	7.80	0.00	8.38										No longer sampled
03/13/0	03 16.18	5.94	0.00	10.24	1.86									
06/12/0	03 16.18	6.10	0.00	10.08	-0.16									
09/12/0	03 16.18	6.65	0.00	9.53	-0.55									
12/31/0	03 16.18	5.74	0.00	10.44	0.91									Monitored Only
02/12/0		6.02	0.00	10.16										Monitored Only
06/07/0			0.00	9.57	-0.59									Monitored Only
														·

CTRC

Page 1 of 13

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009

Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TDILC			E411	T-4-1	MTDE	MTBE	Comments
Sumpled	Lievation	vv ater	THICKNESS	Elevation		8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(μg/l)	(µg/l)	(µg/l)	
MW-1	continued													
09/17/0		7.58	0.00	8.60	-0.97									Sampled Q1 only
12/11/0)4 16.18	6.49	0.00	9.69	1.09									Sampled Q1 only
03/15/0)5 16.18	5.28	0.00	10.90	1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		27	
05/17/0)5 16.18	5.83	0.00	10.35	-0.55									Sampled Q1 only
07/27/0)5 16.18	6.52	0.00	9.66	-0.69									Sampled Q1 only
11/23/0)5 16.18	7.28	0.00	8.90	-0.76									Sampled Q1 only
02/24/0	06 16.18	6.60	0.00	9.58	0.68		910	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5100	
05/30/0	06 16.18	6.48	0.00	9.70	0.12									Sampled Q1 only
08/30/0	06 16.18	9.51	0.00	6.67	-3.03									Sampled Q1 only
11/22/0	06 16.18	7.05	0.00	9.13	2.46		220	ND<0.50	ND<0.50	ND<0.50	ND<0.50		420	
02/23/0	07 16.18	6.40	0.00	9.78	0.65		1300	ND<5.0	ND<5.0	ND<5.0	ND<5.0		1700	
05/18/0	07 16.18	6.65	0.00	9.53	-0.25		2300	ND<5.0	ND<5.0	ND<5.0	ND<5.0		3300	
08/10/0	07 16.18	7.26	0.00	8.92	-0.61		4100	ND<25	ND<25	ND<25	ND<25		4300	
11/09/0	07 16.18	7.40	0.00	8.78	-0.14		5700	ND<25	ND<25	ND<25	ND<25		5400	
02/08/0	08 16.18	6.09	0.00	10.09	1.31		2600	ND<5.0	ND<5.0	ND<5.0	ND<10		4100	
05/16/0	08 16.18	6.87	0.00	9.31	-0.78		1800	ND<12	ND<12	ND<12	42		3500	
08/15/0	08 16.18	7.78	0.00	8.40	-0.91		1200	ND<5.0	ND<5.0	ND<5.0	ND<10		1900	
11/26/0	08 16.18	8.65	0.00	7.53	-0.87		720	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2400	
02/24/0	9 19.13	6.73	0.00	12.40	4.87		630	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2300	
05/28/0	9 19.13	6.46	0.00	12.67	0.27		1000	ND<10	ND<10	ND<10	ND<20		4100	
09/14/0	9 19.13	7.60	0.00	11.53	-1.14		1700	ND<5.0	ND<5.0	ND<5.0	ND<10		2100	
MW-1AR			(Scre	en Interva	al in feet: 25-	-30)								
05/28/0	9 19.29	7.25		12.04			380	ND<0.50	ND<0.50	ND<0.50	ND<1.0		930	
00.40								Page 2	of 13					

CTRC

Page 2 of 13

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1999 Through September 2009
Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)								
MW-1A														
09/14/0	9 19.29	7.83	0.00	11.46	-0.58		480	ND<1.0	ND<1.0	ND<1.0	ND<2.0		890	
MW-1BR			(Scre	en Interva	ıl in feet: 30-	-35)								
05/28/0	9 19.13	6.70	0.00	12.43			290	ND<0.50	ND<0.50	ND<0.50	ND<1.0		810	
09/14/0	9 19.13	7.80	0.00	11.33	-1.10		450	ND<1.0	ND<1.0	ND<1.0	ND<2.0		680	
MW-2			(Scre	en Interva	ıl in feet: 4.5	5-20.5)								
03/05/9	9 15.57		0.00			34400		2070	7710	2340	8240		8460	
06/03/9	9 15.57	5.96	0.00	9.61		51200		1820	7570	2510	7320	6460	8800	
09/02/9	9 15.57	6.85	0.00	8.72	-0.89	17000		1000	3100	1400	3700	4000	3720	
12/14/9	9 15.57	7.65	0.00	7.92	-0.80	83000		3000	22000	4500	17000	9100	11000	
03/14/0	0 15.57	5.26	0.00	10.31	2.39	31000		1600	4600	2300	7300	5700	8700	
05/31/0	0 15.57	5.60	0.00	9.97	-0.34	9970		598	1030	487	2060	2500	1670	
08/29/0	0 15.57	6.35	0.00	9.22	-0.75	7900		390	1500	280	1900	1800	1300	
12/01/0	0 15.57	7.06	0.00	8.51	-0.71	87500		1860	17400	5590	19400	6220	3790	
03/17/0	1 15.57	5.98	0.00	9.59	1.08	4310		371	59.0	280	682	321	433	
05/23/0	1 15.57	6.97	0.00	8.60	-0.99	45400		374	4490	2790	10900	ND	406	
09/24/0	1 15.57	7.56	0.00	8.01	-0.59	76000		430	13000	4700	18000	ND<2000	480	
12/10/0	1 15.57	6.52	0.00	9.05	1.04	82000		320	9100	4400	16000	ND<2500	270	
03/11/0	2 15.57	5.51	0.00	10.06	1.01	14000		75	1400	1100	3600	ND<250	150	
06/07/0	2 15.57	5.73	0.00	9.84	-0.22	14000		120	1200	1400	4700	540	200	
09/03/0	2 15.57	6.81	0.00	8.76	-1.08	10000		150	1200	610	2800	510	460	
12/12/0	2 15.57													Destroyed, replaced with MW-2A

MW-2a

(Screen Interval in feet: 5-11.5)

CTRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009 Former 76 Station 0843

Date TOC Depth to LPH Ground- Change in Sampled Elevation Water Thickness water Elevation Elevation (feet) (feet)

				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)
MW-2a	continued												
12/12/02		7.45	0.00	8.11		3400		80	260	210	1000	380	400
03/13/03		5.85	0.00			ND<50		ND<0.50	ND<0.50	ND<0.50	1.8	2.4	2.4
06/12/03		6.08	0.00			ND<50		0.59	0.69	ND<0.50	1.2	6.0	4.7
09/12/03	15.56	6.54	0.00	9.02			120	1.8	4.2	6.1	20		6.6
12/31/03	15.56	5.63	0.00	9.93	0.91	88		0.79	1.8	3.6	14	ND<5.0	2.9
02/12/04	15.56	5.68	0.00	9.88	-0.05	160		2.6	4.8	13	48	7.2	7.9
06/07/04	15.56	6.21	0.00	9.35	-0.53	94		0.80	1.2	2.1	9.1	4.5	3.7
09/17/04	15.56	7.16	0.00	8.40	-0.95		230	3.5	6.1	13	41		83
12/11/04	15.56	5.84	0.00	9.72	1.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2
03/15/05	15.56	5.52	0.00	10.04	0.32		92	0.84	1.7	2.4	9.8		ND<10
05/17/05	15.56	5.55	0.00	10.01	-0.03		54	2.1	1.7	1.9	7.0		2.9
07/27/05	15.56	6.16	0.00	9.40	-0.61		ND<50	0.66	1.1	1.3	4.2		3.7
11/23/05	15.56	6.88	0.00	8.68	-0.72		120	1.3	2.8	7.8	30		10
02/24/06	15.56	5.79	0.00	9.77	1.09		84	0.51	1.2	4.2	16		7.2
05/30/06	15.56	5.62	0.00	9.94	0.17		69	0.90	2.2	3.7	14		4.1
08/30/06	15.56	6.38	0.00	9.18	-0.76		77	ND<0.50	0.50	1.0	3.3		2.5
11/22/06	15.56	6.60	0.00	8.96	-0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	2.2		0.59
02/23/07	15.56	6.05	0.00	9.51	0.55		ND<50	ND<0.50	0.66	ND<0.50	1.1		0.72
05/18/07	15.56	6.29	0.00	9.27	-0.24		ND<50	ND<0.50	ND<0.50	0.68	1.6		0.81
08/10/07	15.56	6.90	0.00	8.66	-0.61		ND<50	ND<0.50	ND<0.50	1.6	3.9		ND<0.50
11/09/07	15.56	6.96	0.00	8.60	-0.06		ND<50	ND<0.50	ND<0.50	2.4	4.4		ND<0.50
02/08/08	15.56	5.76	0.00	9.80	1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50
05/16/08	15.56	6.50	0.00	9.06	-0.74		ND<50	ND<0.50	ND<0.50	0.56	1.2		ND<0.50

0843 Page 4 of 13

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009 Former 76 Station 0843

Date Sampled		Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
1				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	
MW-2A	continue	<u> </u>												
08/15/08		7.35	0.00	8.21	-0.85		78	ND<0.50	0.79	2.9	6.5		ND<0.50	
11/26/0	8 15.56	8.12	0.00	7.44	-0.77		120	0.56	0.66	4.6	6.0		1.8	
02/24/09	9 18.51	6.19	0.00	12.32	4.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-3			(Scre	en Interva	ıl in feet: 5.0	0-20.0)								
03/05/99	9 15.11		0.00			135		ND	ND	ND	4.84		2.46	
06/03/99	9 15.11	5.57	0.00	9.54		ND		ND	ND	ND	ND	5.23	12.7	
09/02/99	9 15.11	6.50	0.00	8.61	-0.93	ND		ND	ND	ND	ND	13	11	
12/14/99	9 15.11	7.28	0.00	7.83	-0.78	ND		ND	ND	ND	ND	ND		
03/14/0	0 15.11	4.87	0.00	10.24	2.41	ND		ND	ND	ND	ND	7.2	6.3	
05/31/0	0 15.11	5.58	0.00	9.53	-0.71	ND		ND	ND	ND	ND	ND		
08/29/0	0 15.11	6.06	0.00	9.05	-0.48	ND		ND	ND	ND	ND	ND	ND	
12/01/0	0 15.11	6.76	0.00	8.35	-0.70	ND		ND	ND	ND	ND	ND		
03/17/0	1 15.11	5.09	0.00	10.02	1.67	ND		ND	ND	ND	ND	ND		
05/23/0	1 15.11	5.72	0.00	9.39	-0.63	ND		ND	ND	ND	ND	ND		
09/24/0	1 15.11	6.34	0.00	8.77	-0.62	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0	1 15.11	6.31	0.00	8.80	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/11/02	2 15.11	5.15	0.00	9.96	1.16	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/02	2 15.11	5.45	0.00	9.66	-0.30	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/12/02	2 15.11	7.15	0.00	7.96	-1.70									No longer sampled
03/13/03	3 15.11	5.37	0.00	9.74	1.78									
06/12/03	3 15.11	5.51	0.00	9.60	-0.14									
09/12/03	3 15.11	6.03	0.00	9.08	-0.52									
12/31/03	3 15.11	5.62	0.00	9.49	0.41									Monitored Only

CTRC

Page 5 of 13

0843

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009

Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	1	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	
MW-3	continued													
02/12/0)4 15.11	5.51	0.00	9.60	0.11									Monitored Only
06/07/0)4 15.11	5.92	0.00	9.19	-0.41									Monitored Only
09/17/0)4 15.11													Unable to locate
12/11/0)4 15.11	5.94	0.00	9.17										Sampled annually
03/11/0)5 15.11	4.76	0.00	10.35	1.18		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/17/0)5 15.11	5.23	0.00	9.88	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/27/0)5 15.11	5.81	0.00	9.30	-0.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/0)5 15.11	6.60	0.00	8.51	-0.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
02/24/0	06 15.11	5.37	0.00	9.74	1.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.2	
05/30/0	06 15.11	5.08	0.00	10.03	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.92	
08/30/0	06 15.11	5.52	0.00	9.59	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.51	
11/22/0	06 15.11	6.38	0.00	8.73	-0.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.94	
02/23/0	07 15.11	5.72	0.00	9.39	0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.61	
05/18/0	07 15.11	5.94	0.00	9.17	-0.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	
08/10/0	07 15.11	7.64	0.00	7.47	-1.70		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/09/0	07 15.11	6.75	0.00	8.36	0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	
02/08/0	08 15.11	5.39	0.00	9.72	1.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/16/0	08 15.11	6.17	0.00	8.94	-0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.2	
08/15/0	08 15.11	7.01	0.00	8.10	-0.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.3	
11/26/0	08 15.11	7.73	0.00	7.38	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.8	
02/24/0	9 18.05	5.98	0.00	12.07	4.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.9	
05/28/0	9 18.05	5.64	0.00	12.41	0.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/14/0	9 18.05	6.88	0.00	11.17	-1.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
								D (

CTRC

Page 6 of 13

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009

Former 76 Station 0843

Date TOC Depth to LPH Ground- Change in Comments Sampled Elevation Water Thickness water Elevation TPH-G TPH-G **MTBE MTBE** Ethyl-Total Elevation 8015 (GC/MS) Toluene (8021B) (8260B) Benzene benzene Xylenes (feet) (feet) (feet) (feet) (feet) $(\mu g/l)$ $(\mu g/l)$ MW-4 (Screen Interval in feet: 5.0-20.5) 03/05/99 15.17 0.00 ND ND ND ND 2.44 25.2 ----06/03/99 15.17 5.45 0.00 9.72 ND ND ND ND ND ND 3.96 --09/02/99 15.17 6.48 0.00 8.69 -1.03 ND ND ND ND ND 23 27 0.00 12/14/99 15.17 7.27 7.90 -0.79ND NDND ND ND 200 270 03/14/00 15.17 4.67 0.00 10.50 2.60 ND ND ND ND ND 46 49 05/31/00 15.17 5.48 0.00 9.69 -0.81ND NDND ND ND ND --08/29/00 15.17 6.10 0.00 9.07 -0.62ND ND ND ND ND 6.1 3.2 12/01/00 15.17 6.79 0.00 8.38 -0.69ND ND ND ND ND 152 101 03/17/01 15.17 5.01 0.00 10.16 1.78 ND ND ND ND ND ND 05/23/01 15.17 5.78 0.00 9.39 -0.77ND ND ND ND ND ND 09/24/01 15.17 6.42 0.00 8.75 -0.64ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<5.0 12/10/01 15.17 6.41 0.00 8.76 0.01 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 1700 1300 03/11/02 15.17 5.05 0.00 10.12 1.36 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<5.0 06/07/02 15.17 5.42 0.00 9.75 -0.37ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.5 09/03/02 15.17 6.50 0.00 8.67 -1.08 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.5 0.00 12/12/02 15.17 7.18 7.99 -0.68ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 2.9 3.3 --03/13/03 15.17 5.42 0.00 9.75 1.76 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.0 06/12/03 15.17 5.60 0.00 9.57 -0.18ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<2.0 09/12/03 15.17 6.07 0.00 9.10 -0.47--ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 --ND<2.0 12/31/03 15.17 5.63 0.00 9.54 0.44 750 ND<5.0 ND<5.0 ND<5.0 ND<5.0 790 0.00 02/12/04 15.17 5.26 9.91 0.37 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<5.0 06/07/04 15.17 5.82 0.00 9.35 -0.56 ND<50 ND<0.3 ND<0.3 ND<0.3 ND<0.6 ND<1 ----09/17/04 15.17 6.86 0.00 8.31 -1.04 56 ND<0.50 ND<0.50 ND<0.50 ND<1.0 10

CTRC

0843 Page 7 of 13

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009 Former 76 Station 0843

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	D	m 1	Ethyl-	Total	MTBE	MTBE	
	(f4)	(f4)	(f4)			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued		0.00	0.16	0.05		250	NID 2.5	ND 0.5	ND 2.5	ND 50		200	
12/11/0			0.00	9.16	0.85		350	ND<2.5	ND<2.5	ND<2.5	ND<5.0		380	
03/11/0			0.00	10.56	1.40		ND<50		ND<0.50		ND<1.0		ND<0.50	
05/17/0			0.00	10.24	-0.32		ND<50			ND<0.50	ND<1.0		ND<0.50	
07/27/0			0.00	9.43	-0.81		ND<50			ND<0.50	ND<1.0		ND<0.50	
11/23/0			0.00	8.58	-0.85		ND<50		ND<0.50		ND<1.0		23	
02/24/0		5.19	0.00	9.98	1.40		ND<50			ND<0.50	ND<1.0		4.7	
05/30/0	06 15.17	5.07	0.00	10.10	0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/30/0	06 15.17	6.02	0.00	9.15	-0.95		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/22/0	06 15.17	6.37	0.00	8.80	-0.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		16	
02/23/0	07 15.17	5.61	0.00	9.56	0.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
05/18/0	07 15.17	5.87	0.00	9.30	-0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
08/10/0	07 15.17	7.49	0.00	7.68	-1.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/09/0	07 15.17	6.77	0.00	8.40	0.72		50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		39	
02/08/0	08 15.17	5.10	0.00	10.07	1.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/16/0	08 15.17	6.06	0.00	9.11	-0.96		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/15/0	08 15.17	6.91	0.00	8.26	-0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	1.1		ND<0.50	
11/26/0	08 15.17	7.71	0.00	7.46	-0.80		55	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
02/24/0	09 18.14	5.96	0.00	12.18	4.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.8	
05/28/0	09 18.14	5.70	0.00	12.44	0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/14/0	09 18.14	6.76	0.00	11.38	-1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5			(Scre	en Interva	ıl in feet: 5-2	(0)								
12/14/9	99 13.34	6.45	0.00	6.89		ND		ND	ND	ND	ND	3.5	3.8	
03/14/0	00 13.34	4.46	0.00	8.88	1.99	ND		ND	ND	ND	ND	ND		
0843								Page 8	3 of 13					@TPC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009

Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-5	continued													
05/31/0	00 13.34	5.18	0.00	8.16	-0.72	ND		ND	ND	ND	ND	ND		
08/29/0	00 13.34	5.46	0.00	7.88	-0.28	ND		ND	ND	ND	ND	ND		
12/01/0	00 13.34	5.95	0.00	7.39	-0.49	ND		ND	ND	ND	ND	ND		
03/17/0	13.34	5.36	0.00	7.98	0.59	ND		ND	ND	ND	ND	ND		
05/23/0	13.34	5.09	0.00	8.25	0.27	ND		ND	ND	ND	ND	ND		
09/24/0	13.34	5.58	0.00	7.76	-0.49	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
12/10/0	13.34	5.51	0.00	7.83	0.07	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
03/11/0	02 13.34	4.70	0.00	8.64	0.81	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0	02 13.34													Paved over
09/03/0	02 13.34													Paved over
12/12/0	02 13.34	6.42	0.00	6.92		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
03/13/0	03 13.34	5.12	0.00	8.22	1.30	ND<50		ND<0.50	0.54	ND<0.50	ND<0.50	ND<2.0		
06/12/0	03 13.34	5.24	0.00	8.10	-0.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
09/12/0	03 13.34	5.53	0.00	7.81	-0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/31/0	03 13.34	5.11	0.00	8.23	0.42	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
02/12/0	04 13.34	5.02	0.00	8.32	0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
06/07/0	04 13.34	5.35	0.00	7.99	-0.33	ND<50		ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
09/17/0	04 13.34	6.10	0.00	7.24	-0.75									Sampled annually
12/11/0	04 13.34	5.53	0.00	7.81	0.57									Sampled annually
03/11/0)5 13.34	4.96	0.00	8.38	0.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/17/0)5 13.34	5.04	0.00	8.30	-0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/27/0)5 13.34	5.31	0.00	8.03	-0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/0)5 13.34	5.86	0.00	7.48	-0.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
0843								Page 9	9 of 13					@TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009 Former 76 Station 0843

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	l	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	
MW-5	continued													
02/24/0	06 13.34	5.08	0.00	8.26	0.78		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/30/0	06 13.34	5.01	0.00	8.33	0.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/30/0	06 13.34	5.65	0.00	7.69	-0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/22/0	06 13.34	5.82	0.00	7.52	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
02/23/0	13.34	4.47	0.00	8.87	1.35		ND<50	ND<0.50	ND<0.50	ND<0.50	0.53		ND<0.50	
05/18/0	13.34	5.51	0.00	7.83	-1.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
08/10/0	7 13.34	6.05	0.00	7.29	-0.54		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
11/09/0	7 13.34	6.10	0.00	7.24	-0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
02/08/0	08 13.34	5.06	0.00	8.28	1.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/16/0	08 13.34	5.69	0.00	7.65	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/15/0	08 13.34	6.35	0.00	6.99	-0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/26/0	08 13.34	6.82	0.00	6.52	-0.47		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
02/24/0	9 16.45	5.10	0.00	11.35	4.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/28/0	9 16.45	5.12	0.00	11.33	-0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/14/0	9 16.45	6.29	0.00	10.16	-1.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-6			(Scre	en Interva	ıl in feet: 5-2	20)								
12/14/9	9 14.08	6.64	0.00	7.44		ND		ND	ND	ND	ND	11000	18000	
03/14/0	00 14.08	4.72	0.00	9.36	1.92	ND		ND	ND	ND	ND	19000	21000	
05/31/0	00 14.08	5.28	0.00	8.80	-0.56	ND		ND	ND	ND	ND	13200		
08/29/0	00 14.08	5.39	0.00	8.69	-0.11	ND		ND	ND	ND	ND	270	400	
12/01/0	00 14.08	6.11	0.00	7.97	-0.72	ND		ND	ND	ND	ND	6330	3640	
03/17/0	14.08	6.02	0.00	8.06	0.09	18700		2950	989	1040	3000	10200	11500	
05/23/0	14.08	5.82	0.00	8.26	0.20	ND		ND	ND	ND	ND	4660		

CTRC

Page 10 of 13

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009

Former 76 Station 0843

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
						8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
	continued													
09/24/0		6.59		7.49	-0.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	160	190	
12/10/0		6.50		7.58	0.09	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	3200	2400	
03/11/0	02 14.08	4.81	0.00	9.27	1.69	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	92	120	
06/07/0	02 14.08													Paved over
09/03/0	02 14.08													Paved over
12/12/0	02 14.08	6.51	0.00	7.57		590		ND<0.50	ND<0.50	ND<0.50	ND<0.50	1500	6200	
03/13/0	03 14.08	5.20	0.00	8.88	1.31	1600		ND<5.0	ND<5.0	ND<5.0	ND<5.0	4900	4100	
D 03/13/0	03 14.08	5.20	0.00	8.88	1.31								5100	
06/12/0	03 14.08	5.38	0.00	8.70	-0.18	1600		ND<10	ND<10	ND<10	ND<10	5200	3700	
09/12/0	03 14.08	6.29	0.00	7.79	-0.91		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5.0		310	
12/31/0	03 14.08	5.38	0.00	8.70	0.91	3300		ND<25	ND<25	ND<25	ND<25	3800		
02/12/0	04 14.08	5.06	0.00	9.02	0.32	1100		ND<10	ND<10	ND<10	ND<10	1900	2800	
06/07/0	04 14.08	5.45	0.00	8.63	-0.39	2500		ND<3	ND<3	ND<3	ND<6	3200	2900	
09/17/0	04 14.08	6.20	0.00	7.88	-0.75		1300	ND<10	ND<10	ND<10	ND<20		2000	
12/11/0	04 14.08	5.60	0.00	8.48	0.60		1800	ND<10	ND<10	ND<10	ND<20		2700	
03/11/0	05 14.08	4.71	0.00	9.37	0.89		ND<1000	ND<10	ND<10	ND<10	ND<20		2500	
05/17/0	05 14.08	4.98	0.00	9.10	-0.27		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2200	
07/27/0	05 14.08	5.48	0.00	8.60	-0.50		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1100	
11/23/0	05 14.08	6.01	0.00	8.07	-0.53		590	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1700	
02/24/0	06 14.08	5.12	0.00	8.96	0.89		400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		990	
05/30/0	06 14.08	5.04	0.00	9.04	0.08		ND<1200	ND<12	ND<12	ND<12	ND<25		560	
08/30/0	06 14.08	7.01	0.00	7.07	-1.97		930	ND<5.0	ND<5.0	ND<5.0	ND<5.0		820	
11/22/0	06 14.08	6.16	0.00	7.92	0.85		690	ND<5.0	ND<5.0	ND<5.0	ND<5.0		620	

CTRC

Page 11 of 13

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS March 1999 Through September 2009 Former 76 Station 0843

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	
MW-6 02/23/0	continued	5.44	0.00	8.64	0.72		190	ND<0.50	ND<0.50	ND<0.50	ND<0.50		410	
05/18/0		5.63	0.00	8.45	-0.19		390	ND<0.50	ND<0.50	ND<0.50	ND<0.50		620	
08/10/0		6.71	0.00	7.37	-1.08		390	ND<0.50	ND<0.50	ND<0.50	ND<0.50		660	
11/09/0		6.17	0.00	7.91	0.54		580			ND<0.50			820	
02/08/0	8 14.08	5.20	0.00	8.88	0.97		360	ND<0.50	ND<0.50	ND<0.50	ND<1.0		570	
05/16/0	8 14.08	5.70	0.00	8.38	-0.50		200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		480	
08/15/0	8 14.08	6.46	0.00	7.62	-0.76		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		450	
11/26/0	8 14.08	7.01	0.00	7.07	-0.55		300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		400	
02/24/0	9 16.97	5.20	0.00	11.77	4.70		250	ND<0.50	ND<0.50	ND<0.50	ND<1.0		450	
05/28/0	9 16.97	5.26	0.00	11.71	-0.06		74	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	
09/14/0	9 16.97	6.30	0.00	10.67	-1.04		230	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310	
MW-7			(Scre	en Interva	ıl in feet: 25-	.30)								
05/28/0	9 17.81	8.29	0.00	9.52			1100	ND<0.50	ND<0.50	1.4	7.1		15000	
09/14/0	9 17.81	6.77	0.00	11.04	1.52		7900	ND<25	ND<25	ND<25	ND<50		15000	
MW-8			(Scre	en Interva	ıl in feet: 25-	.30)								
05/28/0	9 18.13	7.42	0.00	10.71			850	ND<0.50	ND<0.50	ND<0.50	ND<1.0		12000	
09/14/0	9 18.13	6.97	0.00	11.16	0.45		3500	ND<25	ND<25	ND<25	ND<50		5600	
MW-9			(Scre	en Interva	ıl in feet: 20-	.25)								
05/28/0	9 18.75	6.24	0.00	12.51			1200	ND<0.50	ND<0.50	0.75	15		13000	
09/14/0	9 18.75	7.36	0.00	11.39	-1.12		280	ND<0.50	ND<0.50	ND<0.50	ND<1.0		390	
MW-10 05/28/0	9 18.84	6.69	(Scree	en Interva 12.15	ll in feet: 25- 		700	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3500	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
March 1999 Through September 2009

Former 76 Station 0843

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation	1	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$								
MW-10 09/14/0	continue 0 9 18.84	i 7.50	0.00	11.34	-0.81		3300	ND<6.2	ND<6.2	ND<6.2	ND<12		4900	
MW-11			(Scre	en Interva	al in feet: 25-	-30)								
05/28/0	9 18.72	6.18	0.00	12.54			920	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15000	
09/14/0	9 18.72	7.45	0.00	11.27	-1.27		11000	ND<25	ND<25	ND<25	ND<50		18000	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date Sampled	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (μg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (µg/l)	Manganese (dissolved) (μg/l)
MW-1												
09/02/99	ND	ND			ND	ND	ND					
03/15/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
02/24/06	62	ND<250			ND<0.50	ND<0.50	5.5					
11/22/06	74	ND<250			ND<0.50	ND<0.50	0.51					
02/23/07	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
05/18/07	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
08/10/07	ND<500	ND<12000			ND<25	ND<25	ND<25					
11/09/07	ND<500	ND<12000			ND<25	ND<25	ND<25					
02/08/08	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
05/16/08	ND<250	ND<6200			ND<12	ND<12	ND<12					
08/15/08	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	2.5	1.3			ND<100	ND<1.0
05/28/09	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10	1.8	2.0	87	ND<500	2.4
09/14/09	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0	1.4	2.2	220	ND<100	3.7
MW-1AR												
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.6					
09/14/09	110	ND<500			ND<1.0	ND<1.0	ND<1.0	4.5	ND<2.0	170	2500	570
MW-1BR												
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	2.0					
09/14/09	33	ND<500			ND<1.0	ND<1.0	1.9	3.7	ND<2.0	250	ND<500	230
MW-2												
09/02/99	ND	ND			ND	ND	ND					
12/14/99	ND	ND	ND	ND	ND	ND	ND					

Page 1 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
	(µg/l)	(µg/l)	$(\mu g/l)$	(mg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)				
	continued											
03/14/00	1300	ND	ND	ND	ND	ND	ND					
05/31/00) ND	ND	ND	ND	ND	ND	ND					
08/29/00	250	ND	ND	ND	ND	ND	ND					
12/01/00) ND	ND	ND	ND	ND	ND	ND					
03/17/01	ND	ND	ND	ND	14.8	ND	ND					
05/23/01	ND	ND	ND	ND	ND	ND	ND					
09/24/01	ND<5000	ND<50000000	ND<100	ND<100	ND<100	ND<100	ND<100					
12/10/01	ND<500	ND<12000000	ND<25	ND<25	ND<25	ND<25	ND<25					
03/11/02	ND<1000	ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20					
06/07/02	ND<1000	ND<2000000	ND<25	ND<25	ND<25	ND<25	ND<25					
09/03/02	ND<1000	ND<5000000	ND<20	ND<20	ND<20	ND<20	ND<20					
MW-2a												
12/12/02	ND<100	ND<500000	ND<2.0	2.3	ND<2.0	ND<2.0	ND<2.0					
03/13/03	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
06/12/03	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
09/12/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
12/31/03	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
02/12/04	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
06/07/04	ND<12	ND<800	ND<0.5	ND<0.5	ND<1	ND<1	ND<1					
09/17/04	6.7	ND<50			ND<1.0	ND<0.50	ND<0.50					
12/11/04	ND<5.0	ND<50			ND<1.0	ND<0.50	ND<0.50					
03/15/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	5 ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					

Page 2 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(mg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)
MW-2A	continued											
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	17			110	ND<1.0
MW-3												
09/02/99	ND	ND			ND	ND	ND					
03/11/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
	1.2 .10	1.2 .200										

Page 3 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
	$(\mu g/l)$	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)
MW-3 co	ntinued											
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	3.2			ND<100	ND<1.0
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
09/14/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
MW-4												
09/02/99	ND	ND			ND	ND	ND					
12/10/01	ND<290	ND<7100000	ND<14	ND<14	ND<14	ND<14	ND<14					
12/12/02	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
09/12/03		ND<500										
09/17/04	ND<5.0	ND<50			ND<1.0	ND<0.50	ND<0.50					
12/11/04	ND<25	ND<250			ND<5.0	ND<2.5	ND<2.5					
03/11/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					

Page 4 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(mg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)
MW-4 co	ntinued											
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	290			ND<0.50	ND<0.50	ND<0.50					
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	1.7			ND<100	3.1
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
09/14/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
MW-5												
09/12/03		ND<500										
03/11/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
05/17/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
07/27/05	ND<5.0	ND<50			ND<0.50	ND<0.50	ND<0.50					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/06	59	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/30/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/22/06	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					

CTRC

Page 5 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
-	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(mg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)				
MW-5 co	ntinued											
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	4.5			ND<100	ND<1.0
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
09/14/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
MW-6												
03/17/01	ND	ND	ND	219	ND	ND	ND					
09/24/01	ND<100	ND<1000000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
12/10/01	ND<500	ND<12000000	ND<25	ND<25	ND<25	ND<25	ND<25					
03/11/02	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
12/12/02	ND<10000	ND<50000000	ND<200	ND<200	ND<200	ND<200	ND<200					
03/13/03	ND<5000	ND<25000000	ND<100	ND<100	ND<100	ND<100	ND<100					
06/12/03	ND<2000	ND<10000000	ND<40	ND<40	ND<40	ND<40	ND<40					
09/12/03		ND<2500										
02/12/04	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40					
06/07/04	ND<200	ND<8000	ND<5	ND<5	ND<10	ND<10	ND<10					
09/17/04	ND<100	ND<1000			ND<20	ND<10	ND<10					
12/11/04	ND<100	ND<1000			ND<20	ND<10	ND<10					
03/11/05	ND<100	ND<1000			ND<10	ND<10	ND<10					
05/17/05	ND<100	ND<1000			ND<10	ND<10	ND<10					
07/27/05	ND<100	ND<1000			ND<10	ND<10	ND<10					
11/23/05	ND<10	ND<250			ND<0.50	ND<0.50	1.0					
02/24/06	ND<10	ND<250			ND<0.50	ND<0.50	0.68					
05/30/06	ND<250	ND<6200			ND<12	ND<12	ND<12					

CTRC

Page 6 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date Sampled	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Iron Ferrous (µg/l)	Manganese (dissolved) (μg/l)
MW-6 co	ntinued											
08/30/06	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
11/22/06	ND<100	ND<2500			ND<5.0	ND<5.0	ND<5.0					
02/23/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/18/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/10/07	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/09/07	ND<10	ND<250			ND<0.50	ND<0.50	0.52					
02/08/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
05/16/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
08/15/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
11/26/08	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50					
02/24/09	ND<10	ND<250			ND<0.50	ND<0.50	ND<0.50	2.7			ND<100	1.2
05/28/09	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
09/14/09	23	ND<250			ND<0.50	ND<0.50	ND<0.50					
MW-7												
05/28/09	150	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11					
09/14/09	680	ND<12000			ND<25	ND<25	ND<25	9.8	ND<2.0	76	3200	2000
MW-8												
05/28/09	36	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.7	9.9	ND<2.0	140	ND<1000	280
09/14/09	ND<500	ND<12000			ND<25	ND<25	ND<25	14	ND<2.0	60	480	1000
MW-9												
05/28/09	40	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11					
09/14/09	24	ND<250			ND<0.50	ND<0.50	ND<0.50	3.0	ND<2.0	520	ND<1000	180
MW-10 05/28/09	39	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	4.6	2.4	2.0	ND<10	150	280

CTRC

Page 7 of 8

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Iron	Manganese
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	Ferrous	(dissolved)
	(µg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	(mg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)
MW-10 09/14/09	continued 240	ND<3100			ND<6.2	ND<6.2	ND<6.2	2.7	ND<2.0	24	210	280
MW-11 05/28/09	140	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.4					
09/14/09	850	ND<12000			ND<25	ND<25	ND<25	3.3	ND<2.0	14	310	570

Page 8 of 8

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date Sampled	Manganese (total) (μg/l)	Nitrogen as Nitrate (mg/l)	Sulfate (mg/l)	Dissolved Oxygen (Lab) (mg O/)	Redox Potential (ORP-Lab) (mV)	Specific Con- ductance (µmhos)	Post-purge Dissolved Oxygen (mg/l)	Pre-purge Dissolved Oxygen (mg/l)	Pre-purge ORP (mV)	Post-purge ORP (mV)	
MW-1											
02/24/09	500		18				4.63	3.22	57	59	
05/28/09	550	9.9	25	8.6	130	463	0.80	2.95	119	171	
09/14/09	1600	11	25	6.8	204	429	1.93	3.81	233	146	
MW-1AR 05/28/09							1.72	0.95	144	177	
09/14/09	830	17	39	7.0	205	655	1.68	1.83	235	187	
MW-1BR											
05/28/09							0.61	1.37	145	165	
09/14/09	930	17	59	6.7	207	673	0.46	1.02	228	143	
MW-2A 02/24/09	130		87				3.38	4.44	50	34	
MW-3 02/24/09	1100		130				5.01	2.30	46	49	
05/28/09							0.61	4.03	141	85	
09/14/09				6.6	196	658	0.49	2.02	146	119	
MW-4											
02/24/09	250		130				6.15	4.27	61	64	
05/28/09							3.68	3.76	141	55	
09/14/09				7.1	195	1020	2.16	2.78	142	63	
MW-5	520		- 1					2.50	25	24	
02/24/09			64				5.65	2.58	27	34	
05/28/09							1.71	4.32	138	94	
09/14/09				4.0	204	609	0.64	2.08	147	115	

Page 1 of 2

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 0843

Date		Nitrogen		Dissolved	Redox	Specific	Post-purge	Pre-purge		
Sampled	Manganese	as		Oxygen	Potential	Con-	Dissolved	Dissolved	Pre-purge	Post-purge
	(total)	Nitrate	Sulfate	(Lab)	(ORP-Lab)	ductance	Oxygen	Oxygen	ORP	ORP
	(µg/l)	(mg/l)	(mg/l)	(mg O/)	(mV)	(µmhos)	(mg/l)	(mg/l)	(mV)	(mV)
MW-6										
02/24/09	2300		85				3.40	1.29	68	67
05/28/09							1.06	1.85	142	56
09/14/09				7.1	205	595	0.46	1.07	154	118
MW-7										
05/28/09							1.24	0.63	160	124
09/14/09	2200	4.2	180	6.9	217	1030	0.26	1.35	-13	-53
MW-8										
05/28/09	830	12	130	9.0	124	923	2.22	1.38	146	68
09/14/09	1300	7.7	260	6.2	407	1100	0.28	1.11	151	92
MW-9										
09/14/09	4700	5.0	68	7.3	204	580	3.58	4.16	236	171
MW-10										
05/28/09	350	9.1	30	7.1	139	661	0.30	1.76	151	156
09/14/09	380	6.3	33	6.1	205	675	2.19	0.67	235	114
MW-11										
05/28/09							0.22	0.80	1.56	147
09/14/09	740	0.73	37	6.7	192	780	0.81	0.82	224	49

Page 2 of 2

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. NA = not analyzed, measured, or collected. UST = underground storage tank. Shell Service Station data not provided this quarter.

165521

PROJECT:

FACILITY:
FORMER 76 STATION 0843
1629 WEBSTER STREET
ALAMEDA, CALIFORNIA

GROUNDWATER ELEVATION
CONTOUR MAP
September 14, 2009

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B. μ g/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. () = representative historical value. UST = underground storage tank. Shell Service Station data not provided this quarter.

165521

PROJECT:

FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET

ALAMEDA, CALIFORNIA

DISSOLVED-PHASE TPH-G (GC/MS) CONCENTRATION MAP September 14, 2009

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. μ g/I = micrograms per liter. ND = not detected at limit indicated on official laboratory report. Dashes indicate contour based on non-detect at elevated detection limit. () = representative historical value. ${\sf UST = underground\ storage\ tank.\ \ Shell\ Service\ Station\ data\ not\ provided\ this\ quarter.}$

165521

PROJECT:

FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET ALAMEDA, CALIFORNIA

DISSOLVED-PHASE BENZENE CONCENTRATION MAP September 14, 2009

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether. μ g/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. () = representative historical value. UST = underground storage tank. Shell Service Station data not provided this quarter. Results obtained using EPA Method 8260B.

165521

PROJECT:

FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET ALAMEDA, CALIFORNIA

DISSOLVED-PHASE MTBE CONCENTRATION MAP September 14, 2009

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. TBA = tertiary butyl alcohol. μg/l = micrograms per liter. ND = not detected at limit indicated on official laboratory report. Dashes indicate contour based on non-detect at elevated detection limit. () = representative historical value. UST = underground storage tank. Shell Service Station data not provided this quarter. Results obtained using EPA Method 8260B.

165521

PROJECT:

FACILITY: FORMER 76 STATION 0843 1629 WEBSTER STREET ALAMEDA, CALIFORNIA

DISSOLVED-PHASE TBA CONCENTRATION MAP September 14, 2009

Benzene Concentrations vs Time

Former 76 Station 0843

02/26/99

10/18/01

06/09/04

01/30/07

09/21/09

02/26/99

10/18/01

06/09/04

01/30/07

09/21/09

Benzene Concentrations vs Time

Former 76 Station 0843

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

3/7/08 version

FIELD MONITORING DATA SHEET

Technician:_	Andrew Vidners	Job #/Task #:	165521	FAZO	Date:	9/14/09
Site#_	0843	Project Manager_	A. (0)	ins	Page	1 of 2

		Time	Total	Depth to	Depth to	Product Thickness	Time	
Well#	TOC	Gauged		Water	Product	(feet)	Time Sampled	Misc. Well Notes
MW- 4	V	0643	18.24	6.76	~		0811	2"
Mw-3	V	0650	19.91	6-88			0633	211
MW-5	1	0700	20.28	6.29	*		0855	2"
MW-6	√	0710	20.12	6.30		_	0916	Z "
Mw-8	✓	0720	29,38	6.97		_	1020	Z '
MW-7	~	0731	29 16	6.77			1034	2"
	_	<i>*</i>						
					:			

							·	
	11		,					
								:
					1			
					_			
FIELD DATA	COMPLE	ETE	QA/QC		coc	WI	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR'	ſ .	TRAFFIC (CONTROL		

FIELD MONITORING DATA SHEET

 Technician: Picky // Job #/Task #: 165521 /FA20
 Date: 09/14/09

 Site # 6843
 Project Manager A. Colling
 Page 2 of 2

Well#	TOC	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
mw. 182	V	0641	34.50	7.80	·		0816	z"
mw./AR		0647					0835	2"
mw-10		0652		7.50			0859	۲۰۱
mw-1	V	6657		7.60			0922	て ''
mw-9		0702		7.36			1000	211
mw.11		0706					1027	Sil
	•							
	•							
	· .							
							 	
					-			
							<u>. </u>	
FIELD DATA	COMPL	ETE	QA/QC		COC	W	ELL BOX C	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR	Y	TRAFFIC (CONTROL		

Technician:

Vidners

Site: 0843 165521 Project No : Date: Sub Well No._ Purge Method: 6.76 Depth to Water (feet): Depth to Product (feet): 18.24 Total Depth (feet) LPH & Water Recovered (gallons): Z Water Column (feet): Casing Diameter (Inches):_ 2 80% Recharge Depth(feet): 1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre	-Purge	និសាសស្វាស្វាន	errasalpea scoriji				2.78	147	
0866			2	1168	18.0	6.80		1	
			4,	1177	18.1	6.84			
	0804		6	1191	18.2	6.88			<u> </u>
Post	PVRGE						2.16	63	
Sta	 itic at Time S	ampled	Tota	I [al Gallons Pur	ged		Sample	Time	
	9.06			6			0811		·
Comment	:s:		•				<u> </u>		

MW-3 Sub Well No. Purge Method: 6.88 Depth to Water (feet): Depth to Product (feet): 19.91 Total Depth (feet)_ LPH & Water Recovered (gallons): 13.03 2 Water Column (feet): Casing Diameter (Inches):_ 949 3 80% Recharge Depth(feet): 1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D.O (mg/L)	ORP	Turbidity
	-Purge						2.02	146	
0824			3	675.5	14.6	7.41	_		
			6	637.1	21.0	7.20			
	0828		9	688.5	21.3	6.99			
POST	PURGE						0.49	119	
Sta	atic at Time Sa	ampled	Tot	al Gallons Pur	ged	[Sample	Time	<u> </u>
	6.43			9			0833		
Commen	s:								

Technician: A. Vidwrs

Site: 0843 Project No.:	165521	Date: 9/4/09
Well No. MW-5	Purge Method: Sub	
Depth to Water (feet): 4.29	Depth to Product (feet):	
Total Depth (feet) 20. 26	LPH & Water Recovered (gallons):	
Water Column (feet): 13.99	Casing Diameter (Inches): 2	<u> </u>
80% Recharge Depth(feet): 9.04	1 Well Volume (gallons): 3	· • ·

Comment			<u>L</u>				-055		
	9.00			9			0855		
Sta	tic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	.1
POST	PURGE						0.64	115	
	0850		9	598.8	21.4.	6.52			
			6	584.4	21.1	6.61			
3846			3	600.2	i9.6	6.77			
	-Purge						7.08	147	
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	pН	D O (mg/L)	ORP	Turbidity

Well No. MW-6	Purge Method: Sih
Depth to Water (feet): 6.30	Depth to Product (feet):
Total Depth (feet) 20, 12	LPH & Water Recovered (gallons):
Water Column (feet): 13.92	Casing Diameter (Inches): 2
80% Recharge Depth(feet): 406	1 Well Volume (gallons): 3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рĤ	D O (mg/L)	ORP	Turbidity
Pre	-Purge						1.07	154	
0906			3	576.5	19.7	6.66			
			6	5803	203	6.53			
	0910		9	601.5	20.5	6.48	<u> </u>		
Post	PURGE						0.46	118	
Sta	.I itic at Time S	ampled	Tot	l al Gallons Pur	ged		Sample	Time	
	9.06			9			09/6		
Comment	s:		·				- 1/10		

A. Vidhers Technician: Site: 0943 165521 Project No.:_ Well No. Purge Method: 6.97 Depth to Water (feet): Depth to Product (feet): 29.59 Total Depth (feet) LPH & Water Recovered (gallons): 22-61 Water Column (feet): Casing Diameter (Inches): 11.49 80% Recharge Depth(feet): 1 Well Volume (gallons):

Comment	7.43			12			1020		
Sta	tic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	
POST	PURGE						0 28	42	
	0949		12	1059	21.1	6.82			
`			8	1040	21, 1	6.83			
0944			4	473.2	20,5	6.69			
	-Purge						1.17	15)	
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	Нq	D O (mg/L)	ORP	Turbidity

Commen			1	TO AV	[4		1057		
	7.57			-10 AV	12		1034	·	
Sta	atic at Time S	ampled	Tota	al Gallons Pur	ged	•	Sample	Time	1
[*7]	TVLOE						0.26	-53	
POST	PURGE		12	1006	21.8	6.69	0.3/	-	
	1010					6.11			ļ
			8	189.9	21.3	/ 71			
1005			4	1016	21.0	6.91		<u></u>	
Pre	-Purge						1.35	-13	
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	рН	D:O (mg/L)	ORP	Turbidit

Technician: Ricky #-

Site: 084	3_	Proje	ect No : 16	5521			Date:	09/14	100
Well No	ma-	18 12 m	W. IBR	Purge Method	d:	Sub			
Depth to Wa	ater (feet):	7.80		Depth to Prod	duct (feet):			-	
Total Depth	(feet)	34.50	****		Recovered (ga				
Water Colu	mn (feet):	26.70		Casing Diame	eter (Inches): 2			rene	
		et): 13,14		1 Well Volum	e (gallons):_5_	<u></u>			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F ,	рН	D.O (mg/L)	ORP	Turbidity
l	ourge						501	228	
0756			<u>5</u> _	808.7		6.08			
			10	835-2	· · · · · · · · · · · · · · · · · · ·	5.86	- 46	143	
	0803		15	813.8	19.0	3.64	0.46	113	
<u> </u>	ļ- <u></u>			a A					
Stat	ic at Time Sa	ampled	Tota	al Gallons Pur	ged	<u> </u>	Sample	Time	
	9.00	∂		15		0810	6		
Comments): 						- VIII (1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
Well No	ma	1-1412	-	Purge Metho	d:	SWB	····	·	
Depth to W	ater (feet):	7.83		Depth to Pro	duct (feet):				
		29.80			r Recovered (g				
		2197		Casing Diam	eter (Inches):_3	<u>, " </u>			
		eet): <u> 12-22</u>		1 Well Volun	ne (gallons): <u>4</u>				
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, 6)	рН	DO (mg/L)	ORP	Turbidity

Comment	8.10			12		0835			
Sta	tic at Time S	Sampled	Tot	al Gallons Pur	ged		Sample	Time	
	0811		12	697.7	190	5.70	1.68	187	
			8	692.5	19.0	5.70			
0805			4	663.4	18.8	5.68			n the Ballace for the separate
Pre-	Purge		370				1.83	532	
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, G)	рH	D O (mg/L)	ORP	Turbidit

Technician: Roky U

Site: 0 84.	3	Proje	ect No.:	165521			Date:_	<u>08</u>	09/14/0
Well No	mw	-10	 .	Purge Method	d:	du2			
Depth to Wa	ater (feet):	7.50			duct (feet):				
Total Depth	(feet)	29.23		LPH & Water	Recovered (ga	allons):	·		
		21.73			eter (Inches):_				
		eet): <u>11-85</u>		1 Well Volum	e (gallons): <u> </u>		hW		
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, C)	рН	D O (mg/L)	ORP	Turbidity
Pre-	Purge						0.67	235	
0846			8	6807	20.4	6.00			
				714.5		5.73	2.19		
	0825		12	721.6	20.0	5.63	2.19		
Sta	tic at Time S	ampled	Tot	al Gallons Pur	ged	<u> </u>	Sample		
Comments	11.50				.,	08	59	,	
Comment									
Well No	MW-1	-th as halfaland spaces.	، استند غربتم سوسی	Purge Metho	od:	Sub			
Depth to W	/ater (feet):_	7.60		Depth to Pro	duct (feet):				
		19.85		LPH & Wate	r Recovered (g	allons):			
		12.25		Casing Diam	neter (Inches):_	2 '`			
		eet): 10.05		1 Well Volun	ne (gallons): <u> </u>				

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, 🕙	pН	D O (mg/L)	ORP	Turbidity
Pre-	Purge	1 4400					3.81	233	
0912			3	295.4	19.9	6.16		<u> </u>	
			6	351.1	19.7	5.83			
	0916		9	419.1	19.7	5.68	193	146	
					10-				
Sta	tic at Time S	Sampled	Tot	al Gallons Pu	ged		Sample	Time	
	9.80	2		9		097	27		
Comment									

Technician: Ricky 14

Site: <u>084</u>	3	Proje	ct No.: 16	55Z)_			Date:_	08 €	9/14/0	
Well No	mw-9			Purge Method	d:	Sub				
Depth to W	ater (feet):	7.36		Depth to Prod	duct (feet):					
		4.40		LPH & Water Recovered (gallons):						
•		7,04		Casing Diam	eter (inches): <u>-2</u>	211				
80% Recha	rge Depth(fe	eet): 10.77		1 Well Volum	e (gallons):_3					
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature	рН	D O. (mg/L)	ORP	Turbidity	
Pre-	Purge						4.16	234		
0947				486.6	51.8	5.79				
	0951		<u>6</u> 9	540.3	21.1	6.17	3.58	171		
	17:00		77.4	LO-Us-à Du-			Compale	Ti		
Stat	ic at Time Sa どりら		l Ota	al Gallons Pur Q	gea	i c	Sample Soo	e i ime		
Comments					7 1/1					
Well No.	mw.	1/	1-104	Purge Metho	d:	,ω				
		7.45			duct (feet):					
		27.49			r Recovered (g					
· ·	-	20.64			eter (inches):2					
		eet): 11.46			ne (gallons): <u>4</u>					
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F ©)	pH	D.O (mg/L)	ORP	Turbidity	
Pre	Purge	100 Apr 13					0.82	224		
1015			4	861.3	21.8	6.00	 			
	1020		12	845.6	20.8	5.80 572	081	49		
	<u> </u>			 				1	1	

Total Gallons Purged

Static at Time Sampled

Comments:

7.15

Sample Time

1027

Date of Report: 09/23/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

0843 RE:

BC Work Order: 0912166 B068502 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 9/14/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

 TRC
 Project:
 0843
 Reported:
 09/23/2009 15:27

 21 Technology Drive
 Project Number:
 4511010865

Irvine, CA 92618 Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on .			
0912166-01	COC Number:		Receive Date:	09/14/2009 21:00	Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date:	09/14/2009 10:20	Acidified
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-8	Sample Matrix:	Water	
	Sampled By:	TRCI			
0912166-02	COC Number:		Receive Date:	09/14/2009 21:00	Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date:	09/14/2009 10:34	Acidified
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-7	Sample Matrix:	Water	
	Sampled By:	TRCI			
0912166-03	COC Number:		Receive Date:	09/14/2009 21:00	Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date:	09/14/2009 08:16	Acidified
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-1BR	Sample Matrix:	Water	
	Sampled By:	TRCI	·		
0912166-04	COC Number:		Receive Date:	09/14/2009 21:00	Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date:	09/14/2009 08:35	Acidified
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-1AR	Sample Matrix:	Water	
	Sampled By:	TRCI			
912166-05	COC Number:		Receive Date:	09/14/2009 21:00	Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date:	09/14/2009 08:59	Acidified
	Sampling Location:		Sample Depth:		
	Sampling Point:	MW-10	Sample Matrix:	Water	
	Sampled By:	TRCI	22		

Irvine, CA 92618

 TRC
 Project:
 0843
 Reported:
 09/23/2009
 15:27

 21 Technology Drive
 Project Number:
 4511010865

Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on .	
0912166-06	COC Number:		Receive Date: 09/14/2009 21:00 Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date: 09/14/2009 09:22 Acidified
	Sampling Location:		Sample Depth:
	Sampling Point:	MW-1	Sample Matrix: Water
	Sampled By:	TRCI	
0912166-07	COC Number:		Receive Date: 09/14/2009 21:00 Metal Analysis: 2-Lab Filtered and
	Project Number:	0843	Sampling Date: 09/14/2009 10:00 Acidified
	Sampling Location:		Sample Depth:
	Sampling Point:	MW-9	Sample Matrix: Water
	Sampled By:	TRCI	
0912166-08	COC Number:		Receive Date: 09/14/2009 21:00 Metal Analysis: 2-Lab Filtered and
0012100 00	Project Number:	0843	Sampling Date: 09/14/2009 10:27 Acidified
	Sampling Location:		Sample Depth:
	Sampling Point:	MW-11	Sample Matrix: Water
	Sampled By:	TRCI	
0912166-09	COC Number:		Receive Date: 09/14/2009 21:00
	Project Number:	0843	Sampling Date: 09/14/2009 08:11
	Sampling Location:		Sample Depth:
	Sampling Point:	MW-4	Sample Matrix: Water
	Sampled By:	TRCI	
0912166-10	COC Number:		Receive Date: 09/14/2009 21:00
	Project Number:	0843	Sampling Date: 09/14/2009 08:33
	Sampling Location:		Sample Depth:
	Sampling Point:	MW-3	Sample Matrix: Water
	Sampled By:	TRCI	·

TRC Project: 0843 Reported: 09/23/2009 15:27

21 Technology Drive Project Number: 4511010865
Irvine, CA 92618 Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information										
0912166-11	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-5 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/14/2009 21:00 09/14/2009 08:55 Water							
0912166-12	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 0843 MW-6 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/14/2009 21:00 09/14/2009 09:16 Water							

TRC Project: 0843 Reported: 09/23/2009 15:27

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0912166-01	Client Sample	e Name:	0843, MW-8, 9/14/2	009 10:20:00)AM							
	•				Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Methyl t-butyl ether	5600	ug/L	50	EPA-8260	09/15/09	09/16/09 13:21	KEA	MS-V12	100	BSI0836	ND	A01
Toluene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Total Xylenes	ND	ug/L	50	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
t-Amyl Methyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
t-Butyl alcohol	ND	ug/L	500	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Ethanol	ND	ug/L	12000	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	3500	ug/L	2500	Luft-GC/M S	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	99.5	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:21	KEA	MS-V12	100	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	98.9	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:21	KEA	MS-V12	100	BSI0836		
Toluene-d8 (Surrogate)	99.3	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	99.0	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:21	KEA	MS-V12	100	BSI0836		
4-Bromofluorobenzene (Surrogate)	99.5	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:57	KEA	MS-V12	50	BSI0836		

TRC Project: 0843 Reported: 09/23/2009 15:27

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

Water Analysis (General Chemistry)

BCL Sample ID: 0912166	6-01 c	Client Sampl	e Name:	0843, MW-8, 9/14/2009 10:20:00AM									
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3		7.7	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 03:44	CRR	IC5	1	BSI0860	ND	
Sulfate		260	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 03:44	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @ 25 C		1100	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:40	RML	MET-1	1	BSI0867		
Iron (II) Species		480	ug/L	100	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	1	BSI0870	ND	
Non-Volatile Organic Carbon		14	mg/L	1.5	EPA-415.1	09/16/09	09/17/09 09:17	CDR	TOC2	5	BSI1052	ND	A01
Dissolved Oxygen		6.2	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-01	Client Sample	e Name:	0843, MW-8	3, 9/14/2009 10:20:00	AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		ND	ug/L	2.0	EPA-7196	09/15/09	09/15/09 07:38	TDC	KONE-1	1	BSI0896	ND	
Manganese		1000	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:22	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium		60	ug/L	10	EPA-6010 B	09/17/09	09/17/09 14:44	ARD	PE-OP1	1	BSI1037	ND	
Total Recoverable Manga	anese	1300	ug/L	2.0	EPA-200.8	09/16/09	09/22/09 11:54	JDC	PE-EL1	2	BSI0963	ND	A01

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-02	Client Sample	e Name:	0843, MW-7, 9/14/2	009 10:34:00)AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Methyl t-butyl ether	15000	ug/L	100	EPA-8260	09/15/09	09/16/09 13:03	KEA	MS-V12	200	BSI0836	ND	A01
Toluene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Total Xylenes	ND	ug/L	50	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
t-Amyl Methyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
t-Butyl alcohol	680	ug/L	500	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Ethanol	ND	ug/L	12000	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	7900	ug/L	2500	Luft-GC/M S	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	98.7	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	99.9	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:03	KEA	MS-V12	200	BSI0836		
Toluene-d8 (Surrogate)	99.8	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:03	KEA	MS-V12	200	BSI0836		
Toluene-d8 (Surrogate)	100	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	98.8	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:39	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	99.6	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:03	KEA	MS-V12	200	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-02	Client Samp	le Name:	0843, MW-	7, 9/14/2009 10:34:00	AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	4.2	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 03:58	CRR	IC5	1	BSI0860	ND	
Sulfate	180	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 03:58	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @ 25 C	1030	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:42	RML	MET-1	1	BSI0867		
Iron (II) Species	3200	ug/L	200	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	2	BSI0870	ND	A01
Non-Volatile Organic Carbon	9.8	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 21:46	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen	6.9	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-02	Client Sample	e Name:	0843, MW-	7, 9/14/2009 10:34:00	AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		ND	ug/L	2.0	EPA-7196	09/15/09	09/15/09 07:39	TDC	KONE-1	1	BSI0896	ND	
Manganese		2000	ug/L	5.0	EPA-200.8	09/15/09	09/22/09 10:44	JDC	PE-EL1	5	BSI1111	ND	A01
Total Chromium		76	ug/L	10	EPA-6010 B	09/17/09	09/17/09 14:46	ARD	PE-OP1	1	BSI1037	ND	
Total Recoverable Manga	inese	2200	ug/L	2.0	EPA-200.8	09/16/09	09/22/09 12:11	JDC	PE-EL1	2	BSI0963	ND	A01

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-03	Client Sampl	e Name:	0843, MW-1BR, 9/1	4/2009 8:16	:00AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Methyl t-butyl ether	680	ug/L	5.0	EPA-8260	09/15/09	09/15/09 19:33	KEA	MS-V12	10	BSI0836	ND	A01
Toluene	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Total Xylenes	ND	ug/L	2.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
t-Amyl Methyl ether	1.9	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
t-Butyl alcohol	33	ug/L	20	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Ethanol	ND	ug/L	500	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	450	ug/L	100	Luft-GC/M S	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	97.9	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:33	KEA	MS-V12	10	BSI0836		
Toluene-d8 (Surrogate)	95.5	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:33	KEA	MS-V12	10	BSI0836		
Toluene-d8 (Surrogate)	97.3	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836		
4-Bromofluorobenzene (Surrogate)	97.9	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:49	KEA	MS-V12	2	BSI0836		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:33	KEA	MS-V12	10	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-03	Client Samp	le Name:	0843, MW-1	BR, 9/14/2009 8:16:	MA00							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	17	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 04:13	CRR	IC5	1	BSI0860	ND	
Sulfate	59	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 04:13	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @ 25 C	673	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:47	RML	MET-1	1	BSI0868		
Iron (II) Species	ND	ug/L	500	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	5	BSI0870	ND	A10
Non-Volatile Organic Carbon	3.7	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 22:04	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen	6.7	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-03	Client Sample	e Name:	0843, MW-	-1BR, 9/14/2009 8:16:	00AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		ND	ug/L	2.0	EPA-7196	09/14/09	09/14/09 23:56	CRR	KONE-1	1	BSI0853	ND	
Manganese		230	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:34	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium		250	ug/L	10	EPA-6010	09/17/09	09/17/09 14:48	ARD	PE-OP1	1	BSI1037	ND	
					В								
Total Recoverable Manga	anese	930	ug/L	1.0	EPA-200.8	09/16/09	09/22/09 12:14	JDC	PE-EL1	1	BSI0963	ND	

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID : 0912166-04	Client Sample	e Name:	0843, MW-1AR, 9/1	4/2009 8:35	:00AM							
	•				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Methyl t-butyl ether	890	ug/L	5.0	EPA-8260	09/15/09	09/15/09 19:15	KEA	MS-V12	10	BSI0836	ND	A01
Toluene	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Total Xylenes	ND	ug/L	2.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
t-Amyl Methyl ether	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
t-Butyl alcohol	110	ug/L	20	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Ethanol	ND	ug/L	500	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	480	ug/L	100	Luft-GC/M S	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	96.0	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:15	KEA	MS-V12	10	BSI0836		
Toluene-d8 (Surrogate)	99.4	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:15	KEA	MS-V12	10	BSI0836		
Toluene-d8 (Surrogate)	95.9	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:31	KEA	MS-V12	2	BSI0836		
4-Bromofluorobenzene (Surrogate)	99.1	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:15	KEA	MS-V12	10	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-	i-04 c	lient Sampl	e Name:	0843, MW	-1AR, 9/14/2009 8:35:0	MA00							
	-					Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3		17	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 04:27	CRR	IC5	1	BSI0860	ND	
Sulfate		39	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 04:27	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @ 25 C		655	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:49	RML	MET-1	1	BSI0868		
Iron (II) Species		2500	ug/L	100	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	1	BSI0870	ND	
Non-Volatile Organic Carbon		4.5	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 22:22	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen		7.0	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S 05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-04	Client Sampl	e Name:	0843, MW-1A	R, 9/14/2009 8:35	00AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium	ND	ug/L	2.0	EPA-7196	09/14/09	09/14/09 23:56	CRR	KONE-1	1	BSI0853	ND	
Manganese	570	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:36	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium	170	ug/L	10	EPA-6010 B	09/17/09	09/17/09 14:50	ARD	PE-OP1	1	BSI1037	ND	
Total Recoverable Manganese	830	ug/L	1.0	Б ЕРА-200.8	09/16/09	09/22/09 12:27	JDC	PE-EL1	1	BSI0963	ND	

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-05	Client Sampl	e Name:	0843, MW-10, 9/14/	/2009 8:59:0	0AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	6.2	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	6.2	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Methyl t-butyl ether	4900	ug/L	25	EPA-8260	09/15/09	09/15/09 18:21	KEA	MS-V12	50	BSI0836	ND	A01
Toluene	ND	ug/L	6.2	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Total Xylenes	ND	ug/L	12	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
t-Amyl Methyl ether	ND	ug/L	6.2	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
t-Butyl alcohol	240	ug/L	120	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	6.2	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Ethanol	ND	ug/L	3100	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	6.2	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	3300	ug/L	620	Luft-GC/M S	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	99.6	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:21	KEA	MS-V12	50	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	100	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836		
Toluene-d8 (Surrogate)	97.1	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:21	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	96.7	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:21	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	99.0	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 15:12	KEA	MS-V12	12.500	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-05	Client Samp	le Name:	0843, MW-	10, 9/14/2009 8:59:00	DAM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3		6.3	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 04:42	CRR	IC5	1	BSI0860	ND	
Sulfate		33	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 04:42	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @	D 25 C	675	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:50	RML	MET-1	1	BSI0868		
Iron (II) Species		210	ug/L	100	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	1	BSI0870	ND	
Non-Volatile Organic Car	rbon	2.7	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 22:39	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen		6.1	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-05	Client Sample	e Name:	0843, MW-1	0, 9/14/2009 8:59:00	DAM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		ND	ug/L	2.0	EPA-7196	09/15/09	09/15/09 07:39	TDC	KONE-1	1	BSI0896	ND	
Manganese		280	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:39	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium		24	ug/L	10	EPA-6010	09/17/09	09/17/09 14:52	ARD	PE-OP1	1	BSI1037	ND	
					В								
Total Recoverable Manga	inese	380	ug/L	1.0	EPA-200.8	09/16/09	09/22/09 12:30	JDC	PE-EL1	1	BSI0963	ND	

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-06	Client Sampl	e Name:	0843, MW-1, 9/14/2	009 9:22:00	AM							
	=				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	5.0	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	5.0	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Methyl t-butyl ether	2100	ug/L	25	EPA-8260	09/15/09	09/15/09 18:02	KEA	MS-V12	50	BSI0836	ND	A01
Toluene	ND	ug/L	5.0	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Total Xylenes	ND	ug/L	10	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
t-Amyl Methyl ether	ND	ug/L	5.0	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
t-Butyl alcohol	ND	ug/L	100	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	5.0	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Ethanol	ND	ug/L	2500	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	5.0	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	1700	ug/L	500	Luft-GC/M S	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	94.3	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:02	KEA	MS-V12	50	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	98.7	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836		
Toluene-d8 (Surrogate)	96.3	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836		
Toluene-d8 (Surrogate)	97.2	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:02	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 18:02	KEA	MS-V12	50	BSI0836		
4-Bromofluorobenzene (Surrogate)	98.0	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:57	KEA	MS-V12	10	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-06	Client Sampl	le Name:	0843, MW-	1, 9/14/2009 9:22:00	AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	11	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 04:56	CRR	IC5	1	BS10860	ND	
Sulfate	25	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 04:56	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @ 25 C	429	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:51	RML	MET-1	1	BSI0868		
Iron (II) Species	ND	ug/L	100	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	1	BSI0870	ND	
Non-Volatile Organic Carbon	1.4	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 22:57	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen	6.8	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-06	Client Sample	e Name:	0843, MW-	1, 9/14/2009 9:22:00/	AΜ							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		2.2	ug/L	2.0	EPA-7196	09/15/09	09/15/09 07:55	TDC	KONE-1	1	BSI0896	ND	
Manganese		3.7	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:42	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium		220	ug/L	10	EPA-6010 B	09/18/09	09/21/09 12:18	ARD	PE-OP1	1	BSI1100	ND	
Total Recoverable Mang	anese	1600	ug/L	2.0	EPA-200.8	09/16/09	09/22/09 12:33	JDC	PE-EL1	2	BSI0963	ND	A01

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-07	Client Sampl	e Name:	0843, MW-9, 9/14/2	009 10:00:00)AM							
					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Methyl t-butyl ether	390	ug/L	2.5	EPA-8260	09/15/09	09/16/09 12:10	KEA	MS-V12	5	BSI0836	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
t-Butyl alcohol	24	ug/L	10	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Ethanol	ND	ug/L	250	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	
Total Purgeable Petroleum Hydrocarbons	280	ug/L	50	Luft-GC/M S	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:10	KEA	MS-V12	5	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	95.2	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)	97.8	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)	94.6	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:10	KEA	MS-V12	5	BSI0836		
4-Bromofluorobenzene (Surrogate)	104	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 13:39	KEA	MS-V12	1	BSI0836		
4-Bromofluorobenzene (Surrogate)	93.9	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:10	KEA	MS-V12	5	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-07	Client Samp	le Name:	0843, MW-9	9, 9/14/2009 10:00:00	AM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3	5.0	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 05:10	CRR	IC5	1	BSI0860	ND	
Sulfate	68	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 05:10	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @ 25 C	580	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:56	RML	MET-1	1	BSI0868		
Iron (II) Species	ND	ug/L	1000	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	10	BSI0870	ND	A10
Non-Volatile Organic Carbon	3.0	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 23:14	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen	7.3	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-07	Client Sample	Name:	0843, MW-	9, 9/14/2009 10:00:00	AM							
		-				Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		ND	ug/L	2.0	EPA-7196	09/15/09	09/15/09 07:39	TDC	KONE-1	1	BSI0896	ND	
Manganese		180	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:45	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium		520	ug/L	10	EPA-6010	09/18/09	09/21/09 12:20	ARD	PE-OP1	1	BSI1100	ND	
					В								
Total Recoverable Manga	anese	4700	ug/L	5.0	EPA-200.8	09/16/09	09/22/09 12:36	JDC	PE-EL1	5	BSI0963	ND	A01

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-08	Client Sample	e Name:	0843, MW-11, 9/14/	2009 10:27:0	MA00							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Ethylbenzene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Methyl t-butyl ether	18000	ug/L	100	EPA-8260	09/15/09	09/16/09 12:45	KEA	MS-V12	200	BSI0836	ND	A01
Toluene	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Total Xylenes	ND	ug/L	50	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
t-Amyl Methyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
t-Butyl alcohol	850	ug/L	500	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Diisopropyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Ethanol	ND	ug/L	12000	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Ethyl t-butyl ether	ND	ug/L	25	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01
Total Purgeable Petroleum Hydrocarbons	11000	ug/L	2500	Luft-GC/M S	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836	ND	A01,A90
1,2-Dichloroethane-d4 (Surrogate)	99.6	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	97.9	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:45	KEA	MS-V12	200	BSI0836		
Toluene-d8 (Surrogate)	97.1	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836		
Toluene-d8 (Surrogate)	99.4	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:45	KEA	MS-V12	200	BSI0836		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:45	KEA	MS-V12	200	BSI0836		
4-Bromofluorobenzene (Surrogate)	98.9	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 17:26	KEA	MS-V12	50	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-08	Client Samp	le Name:	0843, MW-	-11, 9/14/2009 10:27:0	0AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Nitrate as NO3		0.73	mg/L	0.44	EPA-300.0	09/14/09	09/15/09 05:25	CRR	IC5	1	BSI0860	ND	
Sulfate		37	mg/L	1.0	EPA-300.0	09/14/09	09/15/09 05:25	CRR	IC5	1	BSI0860	ND	
Electrical Conductivity @	25 C	780	umhos/c m	1.00	EPA-120.1	09/15/09	09/15/09 13:57	RML	MET-1	1	BSI0868		
Iron (II) Species		310	ug/L	100	SM-3500-F eD	09/15/09	09/15/09 05:30	MRM	SPEC05	1	BSI0870	ND	
Non-Volatile Organic Carb	oon	3.3	mg/L	0.30	EPA-415.1	09/16/09	09/16/09 23:31	CDR	TOC2	1	BSI1052	ND	
Dissolved Oxygen		6.7	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID:	0912166-08	Client Sample	e Name:	0843, MW-1	11, 9/14/2009 10:27:0	0AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Hexavalent Chromium		ND	ug/L	2.0	EPA-7196	09/15/09	09/15/09 07:41	TDC	KONE-1	1	BSI0896	ND	
Manganese		570	ug/L	1.0	EPA-200.8	09/15/09	09/21/09 13:48	JDC	PE-EL1	1	BSI1111	ND	
Total Chromium		14	ug/L	10	EPA-6010	09/18/09	09/21/09 12:22	ARD	PE-OP1	1	BSI1100	ND	
					В								
Total Recoverable Manga	anese	740	ug/L	1.0	EPA-200.8	09/16/09	09/22/09 12:39	JDC	PE-EL1	1	BSI0963	ND	

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID:	0912166-09	Client Sample	Name:	0843, MW-4, 9/14/2	009 8:11:00	AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
Total Purgeable Petroleun Hydrocarbons	n	ND	ug/L	50	Luft-GC/M S	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836	ND	
1,2-Dichloroethane-d4 (Su	ırrogate)	94.4	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)		96.0	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836		
4-Bromofluorobenzene (S	urrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:45	KEA	MS-V12	1	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 09	12166-09	Client Sampl	le Name:	0843, MW-	4, 9/14/2009 8:11:00	ΑM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Electrical Conductivity @ 25	S C	1020	umhos/c	1.00	EPA-120.1	09/15/09	09/15/09 13:59	RML	MET-1	1	BSI0868		
			m										
Dissolved Oxygen		7.1	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-10	Client Sample	Name:	0843, MW-3, 9/14/2	009 8:33:00	AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/M S	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836	ND	
1,2-Dichloroethane-d4 (Sui	rrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)		94.1	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836		
4-Bromofluorobenzene (Su	ırrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:27	KEA	MS-V12	1	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-10	Client Samp	le Name:	0843, MW-	-3, 9/14/2009 8:33:00	ΔM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Electrical Conductivity	@ 25 C	658	umhos/c	1.00	EPA-120.1	09/16/09	09/16/09 10:45	RML	MET-1	1	BSI0950		
			m										
Dissolved Oxygen		6.6	mg O/L	0.50	SM-4500O	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0899		S05
					G								

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID:	0912166-11	Client Sample	Name:	0843, MW-5, 9/14/2	009 8:55:00	AM							
		•				Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Toluene		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Total Xylenes		ND	ug/L	1.0	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Ethanol		ND	ug/L	250	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
Total Purgeable Petroleum Hydrocarbons	ı	ND	ug/L	50	Luft-GC/M S	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836	ND	
1,2-Dichloroethane-d4 (Su	rrogate)	100	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)		93.5	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836		
4-Bromofluorobenzene (Su	ırrogate)	99.5	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 20:10	KEA	MS-V12	1	BSI0836		

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 09121	166-11 C	Client Sample	Name:	0843, MW-5, 9/1	4/2009 8:55:00A	M							
	-					Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Electrical Conductivity @ 25 C		609	umhos/c	1.00	EPA-120.1	09/15/09	09/15/09 14:00	RML	MET-1	1	BSI0868		
			m										
Dissolved Oxygen		4.0	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0901		S05

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

BCL Sample ID: 0912166-12	Client Sample	e Name:	0843, MW-6, 9/14/2	009 9:16:00	ΔM							
					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Methyl t-butyl ether	310	ug/L	2.5	EPA-8260	09/15/09	09/16/09 12:27	KEA	MS-V12	5	BSI0836	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
t-Butyl alcohol	23	ug/L	10	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Ethanol	ND	ug/L	250	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	
Total Purgeable Petroleum Hydrocarbons	230	ug/L	50	Luft-GC/M S	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	100	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:27	KEA	MS-V12	5	BSI0836		
1,2-Dichloroethane-d4 (Surrogate)	99.9	%	76 - 114 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)	96.2	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836		
Toluene-d8 (Surrogate)	98.0	%	88 - 110 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:27	KEA	MS-V12	5	BSI0836		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/16/09 12:27	KEA	MS-V12	5	BSI0836		
4-Bromofluorobenzene (Surrogate)	104	%	86 - 115 (LCL - UCL)	EPA-8260	09/15/09	09/15/09 19:51	KEA	MS-V12	1	BSI0836		

21 Technology Drive Project Number: 4511010865
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID:	0912166-12	Client Samp	le Name:	0843, MW-6	6, 9/14/2009 9:16:00 <i>A</i>	ΑM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Electrical Conductivity	@ 25 C	595	umhos/c	1.00	EPA-120.1	09/15/09	09/15/09 14:02	RML	MET-1	1	BSI0868		
			m										
Dissolved Oxygen		7.1	mg O/L	0.50	SM-4500O G	09/15/09	09/15/09 07:30	HPR	MANUAL	1	BSI0901		S05

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSI0836	Matrix Spike	0911528-36	0	20.650	25.000	ug/L		82.6		70 - 130
		Matrix Spike Duplicate	0911528-36	0	24.920	25.000	ug/L	18.7	99.7	20	70 - 130
Toluene	BSI0836	Matrix Spike	0911528-36	0	19.650	25.000	ug/L		78.6		70 - 130
		Matrix Spike Duplicate	0911528-36	0	23.660	25.000	ug/L	18.5	94.6	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSI0836	Matrix Spike	0911528-36	ND	9.2600	10.000	ug/L		92.6		76 - 114
		Matrix Spike Duplicate	0911528-36	ND	9.4400	10.000	ug/L		94.4		76 - 114
Toluene-d8 (Surrogate)	BSI0836	Matrix Spike	0911528-36	ND	10.100	10.000	ug/L		101		88 - 110
		Matrix Spike Duplicate	0911528-36	ND	9.8200	10.000	ug/L		98.2		88 - 110
4-Bromofluorobenzene (Surrogate)	BSI0836	Matrix Spike	0911528-36	ND	10.290	10.000	ug/L		103		86 - 115
		Matrix Spike Duplicate	0911528-36	ND	9.9900	10.000	ug/L		99.9		86 - 115

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

				_						Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Nitrate as NO3	BSI0860	Duplicate	0912149-01	24.157	24.192		mg/L	0.1		10	
		Matrix Spike	0912149-01	24.157	48.225	22.358	mg/L		108		80 - 120
		Matrix Spike Duplicate	0912149-01	24.157	48.064	22.358	mg/L	0.7	107	10	80 - 120
Sulfate	BSI0860	Duplicate	0912149-01	100.71	100.95		mg/L	0.2		10	
		Matrix Spike	0912149-01	100.71	212.24	101.01	mg/L		110		80 - 120
		Matrix Spike Duplicate	0912149-01	100.71	212.38	101.01	mg/L	0.1	111	10	80 - 120
Electrical Conductivity @ 25 C	BSI0868	Duplicate	0911596-02RE1	1970.0	1939.0		umhos/cm	1.6		10	
Iron (II) Species	BSI0870	Duplicate	0912166-01	481.10	481.10		ug/L	0		10	
Dissolved Oxygen	BSI0899	Duplicate	0912166-01	6.2000	6.2000		mg O/L	0		10	
Dissolved Oxygen	BSI0901	Duplicate	0912166-11	4.0000	4.0000		mg O/L	0		10	
Electrical Conductivity @ 25 C	BSI0950	Duplicate	0912154-01	637.40	646.20		umhos/cm	1.4		10	
Non-Volatile Organic Carbon	BSI1052	Duplicate	0912166-01	14.005	14.305		mg/L	2.1		10	
		Matrix Spike	0912166-01	14.005	41.407	25.126	mg/L		109		80 - 120
		Matrix Spike Duplicate	0912166-01	14.005	41.477	25.126	mg/L	0.3	109	10	80 - 120

Irvine, CA 92618

TRC Project: 0843
21 Technology Drive Project Number: 4511010865

Project Number: 4511010865 Project Manager: Anju Farfan **Reported:** 09/23/2009 15:27

Water Analysis (Metals)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits	
			Source	Source		Spike			Percent		Percent	·
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recover	y Lab Quals
Hexavalent Chromium	BSI0853	Duplicate	0912156-01	0.061000	ND		ug/L			10		
		Matrix Spike	0912156-01	0.061000	42.093	52.632	ug/L		79.9		85 - 115	Q03
		Matrix Spike Duplicate	0912156-01	0.061000	40.596	52.632	ug/L	3.6	77.0	10	85 - 115	Q03
Hexavalent Chromium	BSI0896	Duplicate	0912166-01	0.31700	ND		ug/L			10		
		Matrix Spike	0912166-01	0.31700	51.401	52.632	ug/L		97.1		85 - 115	
		Matrix Spike Duplicate	0912166-01	0.31700	51.049	52.632	ug/L	0.7	96.4	10	85 - 115	
Total Recoverable Manganese	BSI0963	Duplicate	0912166-01	1271.0	1338.1		ug/L	5.2		20		
		Matrix Spike	0912166-01	1271.0	1434.8	100.00	ug/L		164		70 - 130	A03
		Matrix Spike Duplicate	0912166-01	1271.0	1363.2	100.00	ug/L	55.9	92.2	20	70 - 130	A03,Q02
Total Chromium	BSI1037	Duplicate	0912224-01	-0.0029879	ND		ug/L			20		
		Matrix Spike	0912224-01	-0.0029879	205.36	200.00	ug/L		103		75 - 125	
		Matrix Spike Duplicate	0912224-01	-0.0029879	203.62	200.00	ug/L	0.9	102	20	75 - 125	
Total Chromium	BSI1100	Duplicate	0912278-01	2.6318	ND		ug/L			20		
		Matrix Spike	0912278-01	2.6318	224.10	200.00	ug/L		111		75 - 125	
		Matrix Spike Duplicate	0912278-01	2.6318	217.97	200.00	ug/L	2.8	108	20	75 - 125	
Manganese	BSI1111	Duplicate	0912279-01	7.2840	7.1780		ug/L	1.5		20		
		Matrix Spike	0912279-01	7.2840	116.05	102.04	ug/L		107		70 - 130	
		Matrix Spike Duplicate	0912279-01	7.2840	118.04	102.04	ug/L	1.8	109	20	70 - 130	

21 Technology DriveProject Number:4511010865Irvine, CA 92618Project Manager:Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	OC Type	Result	Spike Level	PQL	Units	Percent	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BSI0836	BSI0836-BS1	QC Type LCS	27.510	25.000	0.50	ug/L	Recovery 110	KPD	70 - 130	RPD	Lan Quais
Toluene	BSI0836	BSI0836-BS1	LCS	25.290	25.000	0.50	ug/L	101		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSI0836	BSI0836-BS1	LCS	9.5700	10.000		ug/L	95.7		76 - 114		
Toluene-d8 (Surrogate)	BSI0836	BSI0836-BS1	LCS	9.9600	10.000		ug/L	99.6		88 - 110		
4-Bromofluorobenzene (Surrogate)	BSI0836	BSI0836-BS1	LCS	10.130	10.000		ug/L	101		86 - 115		

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
Nitrate as NO3	BSI0860	BSI0860-BS1	LCS	22.568	22.134	0.44	mg/L	102		90 - 110		
Sulfate	BSI0860	BSI0860-BS1	LCS	103.79	100.00	1.0	mg/L	104		90 - 110		
Electrical Conductivity @ 25 C	BSI0867	BSI0867-BS1	LCS	316.10	303.00	1.00	umhos/cm	104		90 - 110		
Electrical Conductivity @ 25 C	BSI0868	BSI0868-BS1	LCS	318.90	303.00	1.00	umhos/cm	105		90 - 110		
Iron (II) Species	BSI0870	BSI0870-BS1	LCS	2028.1	2000.0	100	ug/L	101		90 - 110		
Electrical Conductivity @ 25 C	BSI0950	BSI0950-BS1	LCS	318.90	303.00	1.00	umhos/cm	105		90 - 110		
Non-Volatile Organic Carbon	BSI1052	BSI1052-BS1	LCS	5.0710	5.0000	0.30	mg/L	101		85 - 115		

21 Technology Drive Project Number: 4511010865
Irvine, CA 92618 Project Manager: Anju Farfan

Water Analysis (Metals)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent	RPD	Percent Recovery	RPD	Lab Quals
Hexavalent Chromium	BSI0853	BSI0853-BS1	LCS	48.735	50.000	2.0	ug/L	97.5	KPD	85 - 115	KPD	Lab Quais
Hexavalent Chromium	BSI0896	BSI0896-BS1	LCS	48.702	50.000	2.0	ug/L	97.4		85 - 115		
Total Recoverable Manganese	BSI0963	BSI0963-BS1	LCS	114.26	100.00	1.0	ug/L	114		85 - 115		
Total Chromium	BSI1037	BSI1037-BS1	LCS	206.54	200.00	10	ug/L	103		85 - 115		
Total Chromium	BSI1100	BSI1100-BS1	LCS	204.38	200.00	10	ug/L	102		85 - 115		
Manganese	BSI1111	BSI1111-BS1	LCS	106.55	100.00	1.0	ug/L	107		85 - 115		

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL M	DL	Lab Quals
Benzene	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
Ethylbenzene	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
Toluene	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
Total Xylenes	BSI0836	BSI0836-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BSI0836	BSI0836-BLK1	ND	ug/L	10		
Diisopropyl ether	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
Ethanol	BSI0836	BSI0836-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BSI0836	BSI0836-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BSI0836	BSI0836-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BSI0836	BSI0836-BLK1	104	%	76 - 114 (LCL - U	CL)	
Toluene-d8 (Surrogate)	BSI0836	BSI0836-BLK1	99.6	%	88 - 110 (LCL - U	CL)	
4-Bromofluorobenzene (Surrogate)	BSI0836	BSI0836-BLK1	99.9	%	86 - 115 (LCL - U	CL)	

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Nitrate as NO3	BSI0860	BSI0860-BLK1	ND	mg/L	0.44		
Sulfate	BSI0860	BSI0860-BLK1	ND	mg/L	1.0		
Iron (II) Species	BSI0870	BSI0870-BLK1	ND	ug/L	100		
Non-Volatile Organic Carbon	BSI1052	BSI1052-BLK1	ND	mg/L	0.30		

21 Technology Drive Project Number: 4511010865 Irvine, CA 92618 Project Manager: Anju Farfan

Water Analysis (Metals)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Hexavalent Chromium	BSI0853	BSI0853-BLK1	ND	ug/L	2.0		
Hexavalent Chromium	BSI0896	BSI0896-BLK1	ND	ug/L	2.0		
Total Recoverable Manganese	BSI0963	BSI0963-BLK1	ND	ug/L	1.0		
Total Chromium	BSI1037	BSI1037-BLK1	ND	ug/L	10		
Total Chromium	BSI1100	BSI1100-BLK1	ND	ug/L	10		
Manganese	BSI1111	BSI1111-BLK1	ND	ug/L	1.0		

21 Technology Drive Project Number: 4511010865
Irvine, CA 92618 Project Manager: Anju Farfan

Notes And Definitions

MDL Method Detection Limit	MDL	Method Detection Limit
----------------------------	-----	------------------------

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A03 The sample concentration is more than 4 times the spike level.

A10 PQL's and MDL's were raised due to matrix interference.

A90 TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.

Q02 Matrix spike precision is not within the control limits.

Q03 Matrix spike recovery(s) is(are) not within the control limits.

S05 The sample holding time was exceeded.

September 17, 2009

TRC 21 Technology Drive Irvine, CA 92618 Attn: Anju Farfan RE: 09-12166

Attached are the results from Zalco Laboratories, Inc.

BCL Sample ID 09-12166-01 09-12166-02 09-12166-03 09-12166-04 09-12166-05 09-12166-06 09-12166-07 09-12166-08 09-12166-09	Client Sample ID MW-8 MW-7 MW-1BR MW1AR MW-10 MW-1 MW-9 MW-11 MW-4	Sample Date/Time 09/14/09@10:20 09/14/09@10:34 09/14/09@08:16 09/14/09@08:35 09/14/09@08:59 09/14/09@09:22 09/14/09@10:00 09/14/09@10:27 09/14/09@08:11
		\sim

Analytical & Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Wednesday, September 16, 2009

Molly Meyers BC Laboratories Inc 4100 Atlas Court Bakersfield, CA 93308

TEL: (661) 327-4911 FAX (661) 327-1918

RE: 0912166

Dear Molly Meyers:

Order No.: 0909170

Zalco Laboratories, Inc. received 12 sample(s) on 9/15/2009 for the analyses presented in the following report.

We appreciate your business and look forward to serving you in the future. Please feel free to call our office if you have any questions regarding these test results.

Sincerely,

Authorized Signature Zalco Laboratories, Inc.

(661) 395-0539

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Qual.

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

Analyses

0912166 Client Sample ID: 0912166-01

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-001A

Collection Date:

9/14/2009 10:20:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

Method

Result

mν

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID:

0912166-02

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-002A

Collection Date: Matrix:

9/14/2009 10:34:00 AM

AQUEOUS

Analyses Method Result Units Date Analyzed Qual.

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

217

mν

9/15/2009

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID:

0912166-03

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-003A

Collection Date:

9/14/2009 8:16:00 AM

Matrix:

AQUEOUS

Analyses Method Result Units Date Analyzed Qual.

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

mν

9/15/2009

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting NSS - Non-Sufficient Sample Amount

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Qual.

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID:

Analyses

0912166-04

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-004A

Collection Date:

9/14/2009 8:35:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

Method

205

Result

mν

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Qual.

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID: 0912166-05

Analyses

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-005A

Collection Date:

9/14/2009 8:59:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

Method

Result

mν

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Qual.

CLIENT: Lab Order: BC Laboratories Inc

0909170

Project:

0912166

Analyses

Client Sample ID: 0912166-06

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-006A

Collection Date:

9/14/2009 9:22:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

Method

Result

mv

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

D1498

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID: 0912166-07

Report Comment:

Oxidation Reduction Potential

Report Date:

9/16/2009

Lab ID:

0909170-007A

9/15/2009

Collection Date:

9/14/2009 10:00:00 AM

Matrix:

AQUEOUS

Analyses	Method	Result	Units	Date Analyzed	Qual.
OXIDATION REDUCTION POTE	NTIAL BY ASTIV	I D1498			

mν

204

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Qual.

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID: 0912166-08

Analyses

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-008A

Collection Date:

9/14/2009 10:27:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

Method

Result

mν

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENT:

BC Laboratories Inc

0909170

Lab Order: Project:

0912166

- 10,000

Client Sample ID: 0912166-09

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-009A

Collection Date:

9/14/2009 8:11:00 AM

Matrix:

AQUEOUS

Analyses	Method	Result	Units	Date Analyzed Qual.
OXIDATION REDUCTION POTE Oxidation Reduction Potential			mν	9/15/2009

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID: 0912166-10

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-010A

Collection Date:

9/14/2009 8:33:00 AM

Matrix:

AQUEOUS

Analyses	Method	Result	Units	Date Analyzed Qual.
OXIDATION REDUCTION POTEN Oxidation Reduction Potential			mv	9/15/2009

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Qual.

CLIENT:

BC Laboratories Inc

Lab Order:

Analyses

0909170

Project: Client Sample ID: 0912166-11

0912166

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-011A

Collection Date:

9/14/2009 8:33:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

Method

Result

mν

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting NSS - Non-Sufficient Sample Amount

Analytical and Consulting Services

4309 Armour Avenue Bakersfield, California 93308

(661) 395-0539 FAX (661) 395-3069

Oual.

CLIENT:

BC Laboratories Inc

Lab Order:

0909170

Project:

0912166

Client Sample ID: 0912166-12

Analyses

Report Comment:

Report Date:

9/16/2009

Lab ID:

0909170-012A

Collection Date:

9/14/2009 9:16:00 AM

Matrix:

AQUEOUS

OXIDATION REDUCTION POTENTIAL BY ASTM D1498

Oxidation Reduction Potential

D1498

Method

Result

mν

Units

9/15/2009

Date Analyzed

Qualifiers / Abbreviations: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

H - Hold Time Exceeded

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

DLR: Detection Limit for Reporting

BC LABORATORIES INC.		SAMPLE	RECEIP	TFORM	Re	v. No. 12	06/24/08	Page _	_ Of "\(\frac{7}{3}\)	
Submission #: $09 - 12166$	>									
	MATION Hand Deliv (Specify)	very 🗆		Office and the second s	ce Chest		Non		ify)	
Refrigerant: Ice → Blue Ice □	None	□ Otl	her 🗆 🔻	Commen	ts:		- CANADAR - TAX - A	71.7	- MARKET	
	Containe	rs 🗆	1	Comme						
All samples received? Yes ONO A	All samples	containers	s intact? Y	es No (Descripti	on(s) mate	th COC? Y	No [7
MAES INC.	nissivity: _				Thermomet	ter ID:#8	D_	Date/Time	a/11/10	9 2055 1
SAMPLE CONTAINERS		2	101/2	107	SAMPLE	NUMBERS				
OT GENERAL MINERAL/ GENERAL PHYSICAL	l	<u> </u>	101 8	110 4	111 8	1 4 6	7	8	9	10
T PE UNPRESERVED	BC	BC	12	(3)	6	B				
OT INORGANIC CHEMICAL METALS		W) C			19					
PT INORGANIC CHEMICAL METALS PT CYANIDE FOR LOUS TUMS	P	0								
T NITROGEN FORMS										
PT TOTAL SULFIDE										
202. NITRATE / NITRITE 2T TOTAL ORGANIC CARBON	FG					1				
PT TOX										
T CHEMICAL OXYGEN DEMAND										
ATA PHENOLICS	TENESCO E					ĺ				
0mi VOA VIAL TRAVEL BLANK										
0ml VOA VIAL	A 13	H13	1A 3	A3	MB	A 3	()	()		()
<u>)T EPA 413.1, 413.2, 418.1</u>										
'T ODOR										
RADIOLOGICAL								·		
BACTERIOLOGICAL										
0 ml VOA VIAL- 504							_			
OT EPA 508/608/8080										
OT EPA 515.1/8150										
)T EPA 525										
)T EPA 525 TRAVEL BLANK										
00ml EPA 547										
00ml EPA 531.1										
QT EPA 548			***************************************							
<u>)</u> T EPA 549							***************************************			
OT EPA 632					 					
)T EPA 8015M										
)T AMBER	4		(^	<u></u>				
OZ. JAR	1									
12 OZ. JAR				 						
3OIL SLEEVE										
°CB VIAL						 				
LASTIC BAG										
ERROUS IRON							· · · · · · · · · · · · · · · · · · ·			
ENCORE			 			 		-		l
	H	<u>L</u>						1		

omments:__ ample Numbering Completed By:_ = Actual / C = Corrected

Date/Time:

BC LABORATORIES INC.		SAMPLI	E RECEIP	TFORM	Re	v. No. 12	06/24/08	Page _	70,5	
Submission #: $90 - 210$	(0)						00/2 //00	. age <u>-</u>		
SHIPPING INFO	DRMATION Hand Deli r □ (Specify	very \square			lce Chest Box	YÉ .	NG CON Non Othe		cify)	
Refrigerant: Ice Blue Ice	□ None	□ Ot	her □	Commen	ts:				70 - 100	
Custody Seals Ice Chest I	Containe	ers 🗆	7	Comme						
All samples received? Yes ₩ No □	All samples		s intact? Y	es No I		Descript	tion(s) mate	h COC? Y	estra No	
COC Received	Emissivity:					#	か		alul	/
Y YES □ NO	Limesivity.		Jonamer	phe	Inermome	ter ID:47 (Date/Time	= <i>1/19/0</i>	14 2055
	Temperature	: A	<u></u> °	C / C	1.7	°C		Analyst Ir	nit/ <i>IA</i>	7
					CAMBLE	NUMBERS				
SAMPLE CONTAINERS	1	2	3	4	5 5	6	7	0		
QT GENERAL MINERAL/ GENERAL PHYSICA	AL		·				1	8	9	10
PT PE UNPRESERVED	Z (comment		BC		C					
OT INORGANIC CHEMICAL METALS	12									
PT INORGANIC CHEMICAL METALS	Constant and the second				0	D				
PT INORGANIC CHEMICAL METALS PT CHANDE TO POPULATE POPULATION			E							
PT NITROGEN FORMS Ifor	and the same of th									
PT TOTAL SULFIDE	100.0									
202 NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON		FG	FG	FG	FG	FG	FG	F6		
PT TOX		<u>'</u>			-	,	,			
PT CHEMICAL OXYGEN DEMAND										
PLA PHENOLICS						·				
40ml VOA VIAL TRAVEL BLANK			1 5							
40ml VOA VIAL	(()	A 3	AB	A 3	A 3,	A 3	A 13	(()
OT EPA 413.1, 413.2, 418.1										
PT ODOR										
RADIOLOGICAL	200									
BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
OT EPA 508/608/8080 OT EPA 515.1/8150		<u> </u>				·				
QT EPA 525										
QT EPA 525 TRAVEL BLANK										
100ml EPA 547										
100ml EPA 531.1										
OT EPA 548										LI
QT EPA 549										
QT EPA 632										
OT EPA 8015M										
OT AMBER		ii.								
3 OZ. JAR						-				
32 OZ. JAR										
SOIL SLEEVE	The state of the s									
PCB VIAL	7									
PLASTIC BAG	S. Cartering									<u> </u>
FERROUS IRON .							·			
ENCORE								·		
omments:	-7			.)						
ample Numbering Completed By:	MM	Date/Tir	пе:	4104	2110,	- H:\DOCS\WP80	NLAB_DOCSIF	ORMS\SAMREC	C2.WPD]	

Submission #:	BC LABORATORIES INC.		SAMPLE	RECEIP	TFORM	l Re	v. No. 12	06/24/08	Page _)
Secretal Express UPS None Class Secretal Service Content Specify Secrity Secri	Submission #: (1)9 - 120	6									
Custody Seals Ice Chest	SHIPPING INFO	Hand Deli	very 🗆				Ŕ	Non	e 🗆	ify)	
All samples received? Yeld No O All samples containers intent? Yes PNO Description(s) match COC? Yeld? No D COC Received YES ON O Temperature: A 2 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Refrigerant: Ice Due Ice [None	□ Oth	ner 🗆 🤇	Commer	ıts:					
COC Received YES	T	1		None 🛱	Comme	ents:					
TO YES ON Temperature: A 2 'C I C 1.4 'C Analyst Init (All samples received? Yes No 🗆	All samples	containers	s intact? Y	es No	0	Descrip	tion(s) mate	ch COC? Y	e s P, No	Ď
SAMPLE CONTAINERS 1 2 3 4 6 4 7 1 1 10 OT GENERAL MERAL PHYSICAL PT PE UPPRESERVED OF DORGADIC CHEMICAL METALS PT INORGANIC CARRON PT INORGAN	Y YES NO	Emissivity: _	. 98 c :A	ontainer:	cic_	Thermome	eter ID:#7	3D_		1/2/2	99 2055 1
OT GENERAL MINERAL GENERAL PHYSICAL PT PE UPPLESENCED BC BC BC TO TROGGONG CHEMICAL METALS PT MORGANIC CHEMICAL METALS PT MORGANIC CHEMICAL METALS PT MORGANIC CHEMICAL METALS PT MORGANIC GENERICAL METALS PT MORGANIC GENERICAL METALS PT TOTAL SULFIDE RIGHTHATE INTRITE RIGHTHATE RIGHTHATE INTRITE RIGHTHATE INTRITE RIGHTHATE RIGHTHATE INTRITE RIGHTHATE RIGHTHA		1	2	3	4						
FFFE UPPRESERVED OT ENGRGANIC CHEMICAL METALS PT SYLANDE - PERCUS TROYS	OT GENERAL MINERAL/ GENERAL PHYSICA	L I	<u> </u>					1		l 9	10
OT PORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS PT INOTAL SULFIDE E. NITRATE HINTHITE PT TOTAL SULFIDE E. NITRATE HINTHITE PT TOTAL ORGANIC CARBON PT TOTAL ORGANIC CARBON PT TOTAL PT CHEMICAL OXYGEN DEMAND FLA PHENOLICS SIGNI YOU VIAL TRAVEL BLANK SOTEPA 4151, 4131, 4181 PT ODOR RADIOLOGICAL SALVING VIAL SSI OT EPA 5151/8159					BC		BC	100	B.C.		
PT INORGANIC CHEMICAL METALS DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	OT INORGANIC CHEMICAL METALS	577					1	10,0	15,5		
PT CALANDE — CROIS TROIS PT NOTAGES PORMS PT TOTAL SUR LETTE 100. NITRATE / NITRITE PT TOTAL ORGANIC CARBON PT TOTAL ORGANIC CARBON PT TOTAL ORGANIC CARBON PT TOTAL ORGANIC CARBON PT CHEMICAL OXYGEN DEMAND PA PHENOLICS 100. NITRATE / NITRITE PT TOTAL ORGANIC CARBON PT TOTO PA PASH NO AVAL TRAVEL BLANK 100. NITRATE / NITRITE 1			İ	D	D			10	0		
PT NITROGEN FORMS PT TOTAL SULFIDE DEAD, NITRATE THINTET PT TOTAL ORGANIC CARBON PT TOX PT TOX PT CHEMICAL OXYGEN DEMAND PLA PHENOLICS 90al VOA VIAL TRAVEL BLANK 90al VOA VIAL 1	(Chara-	1017000		Wange.	E	TE.			F		
FT TOTAL SULFIDE 202 NITRATE / NITRITE 202 NITRATE / NITRITE 203 NITRATE / NITRITE 204 NITRATE / NITRITE 205 NITRATE / NITRITE 206 NITRATE / NITRITE 207 NITRATE / NITRITE 208 N				100				 			
26. NIBATE / NITRITE PT TOTAL ORGANIC CARBON PT (TOX PT CHEMICAL OXYGEN DEMAND PLA PIRINOLICS 40ml VOA VALA TRAVEL BILANK 40ml VOA VALA Sel CT EPA 510.1 Sel CT EPA 511.1 Sel CT EPA 512.5 Sel CT EPA 513.1 Sel CT EPA 547 100ml EPA 53.1 Sel CT EPA 549 CT EPA 540 C						-			1		
FT TOTAL ORGANIC CARBON FT TOX FT CHEMICAL OXYGEN DEMAND PA PHENOLICS 10mil VOA VIAL TRAVEL BLANK 10mil VOA VIAL 1			-2								
PT TOX PT CHEMICAL OXYGEN DEMAND PA PHENOLICS 9		200						 	 	<u> </u>	
PT CHEMICAL OXYGEN DEMAND PA PHENOLICS 40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL 1											
PAPENOLICS # # # # # # # # # # # # # # # # # # #									 		
40mi VOA VIAL TRAVEL BLANK 40mi VOA VIAL 40m									-	<u> </u>	
40mi VOA VIAL		200									
OT EPA 413.1, 413.2, 418.1 PT ODOR RADIOLOGICAL BACTERIOLOGICAL BACTER		-	()		,	1 ,	1 .		1 ,	,	
PT ODOR RADIOLOGICAL BACTERIOLOGICAL 40 ml VOA VIAL- 504 60 ml VOA VIAL- 504 70 TEPA 508/608/8080 70 TEPA 515/18/150 70 TEPA 525 TRAVEL BLANK 100ml EPA 525 70 TEPA 525 TRAVEL BLANK 100ml EPA 531.1 70 TEPA 548 70 TEPA 549 70 TEPA 549 70 TEPA 549 70 TEPA 540 7						<u> </u>	1	1	,, ,, ,,	'	1 '
RADIOLOGICAL BACTERIOLOGICAL 40 ml VOA VIAL - 504 OT EPA 508608780800 OT EPA 515.1/8150 OT EPA 515.2 OT EPA 525 OT EPA 547 100ml EPA 547 100ml EPA 548 OT EPA 548 OT EPA 549 OT EPA 632 OT EPA 632 OT EPA 633 OT EPA 639 OT EPA 63015M OT AMBER BOZ. JAR SOUL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON I COMMERCIAL						1					
BACTERIOLOGICAL 40 mi VOA VIAL- 504 OT EPA 508/608/8080 OT EPA 515.1/8150 OT EPA 515.1/8150 OT EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 543.1 OT EPA 548 OT EPA 549 OT EPA 632 OT EPA 632 OT EPA 8015M OT AMBER 8 OZ. JAR 32 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG FERROUS RON ENCORE		A STATE OF THE STA						1.	<u> </u>		
40 mi VOA VIAL- 504 OT EPA 508/608/8080 OT EPA 515.1/8150 OT EPA 525 OT EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 547 100ml EPA 548 OT EPA 549 OT EPA 549 OT EPA 5632 OT EPA 8015M OT EPA 8015M OT AMBER 8 OZ. JAR 32 OZ. JAR 501L SLEEVE PCB VIAL PLASTIC BAG ENCORE											
OT EPA 508/608/80800 OT EPA 515.1/8150 OT EPA 525 OT EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 548 OT EPA 548 OT EPA 632 OT EPA 632 OT EPA 8015M OT AMBER 8 OZ. JAR 32 OZ. JAR 32 OZ. JAR 30 OZ. JAR 50 OL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON ENCORE	;										
QT EPA 515.1/8150											
OT EPA 525 OT EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 531.1 OT EPA 548 OT EPA 549 OT EPA 632 OT EPA 632 OT AMBER 8 OZ. JAR 9 OT EPA 630 ENCORE								<u> </u>		<u> </u>	
OT EPA 525 TRAVEL BLANK 100ml EPA 547 100ml EPA 531.1 OT EPA 548 OT EPA 549 OT EPA 632 OT AMBER 8 OZ. JAR 32 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON I O O O O O O O O O O O O O O O O O O							<u> </u>				
100ml EPA 547									<u> </u>		
100mJ EPA 531.1											
QT EPA 548 QT EPA 549 QT EPA 632 QT EPA 632 QT EPA 8015M QT EPA					 					 	-
QT EPA 549				-	-	-			·		
OT EPA 632 OT EPA 8015M OT AMBER OT AMB											
OT EPA 8015M OT AMBER OT AMBER 8 OZ. JAR 8 OZ. JAR 92 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON ENCORE										-	-
OT AMBER 8 OZ. JAR 8 OZ. JAR 32 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON ENCORE											-
8 OZ. JAR 32 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON ENCORE			· ·	14	17	14	11	<u></u>	17	-	-
32 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG FERROUS IRON ENCORE		- Charles	 		'	+ 11	177	77	1,,		-
SOIL SLEEVE		14. 14. 14. 14. 14. 14. 14. 14. 14. 14.			<u> </u>			_			
PCB VIAL PLASTIC BAG FERROUS IRON ENCORE			 		-		-			 	-
PLASTIC BAG FERROUS IRON ENCORE			1	 	1			-		 	
FERROUS IRON ENCORE					-			-	-		-
ENCORE				 	 	-	-				-
		The second	1	-	 						
		<u> </u>		<u>L</u>	1			1		<u> </u>	

Date/Time:

[H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD]

BC LABORATORIES, INC. (661) 327-4911

Bakersfield, CA 93308 FAX (661) 327-1918

CHAIN OF CUSTODY

						Analy	/sis	Re	dne	air a dealar. ceann ann a		Λ	7
Bill to: C	Conoco Phillips/ TRC	Consultant Firm: TR	C	MATRIX (GW)	50	tetal chouses toology terous I can by 55, 18 3300F & 10				6-, 8260	150.16	200	24
Address	::	21 Technology Driv		Ground-	/ 8015	2 2 2				900	,	10 60 NOV	700
1629	Webster St.	Irvine, CA 92618-230)2	water	Gas by	STON S		8260B			0 PA	Suffest e	sted
		Attn: Anju Farfan		(S) Soil	, G	10 10 10 10 10 10 10 10 10 10 10 10 10 1	oxygenates			600/100g	-w 0	Q. 20	6y 200.5
City:		4-digit site#: ೧೪५	3	(WW)	by 8021B,		√ ge	S m	9	700	926 450	1019 100 100 100 100 100 100 100 100 100	
A.1	ameda	Workorder # 62867	-4511010865	Waste- water)y 8(300 L 180 L	(O)	X	826	GC/MS/	SECT	300.00 300.00 38aves	ime
State: C	A Zip:	Project #: 16557	Î	(SL)	ш		ist?	BE/(L by	Ö	Con C	F Jog	2
Conoco	Phillips Mgr: Terry Gro	Sampler Name: 72,	clay H.	Sludge	Z		money many many trans	CMT	0	-G by		<u>१ ५</u> ६	\$ 0 0 0
Lab#	Sample Description	Field Point Name	Date & Time		STEX/MTBE		8260 full list w/	BTEX/MTBE/OXYS BY	ETHANOL by 8260B	Ā	25.50	SSel	Turnaround Time
_			Sampled	0 (1)	Lens.A	XX	00	<u></u>	<u> </u>		S P	\$ 30 V	4-
-h	- A STATE OF THE S	mw-8	09/14/09 1030	5 GW									< 70/4Y
-2		un w-7	1030		-								- Comment
-3		mw-1BR	SIL								200		
-17		mw-14R	OLS'S						1000				
~ 5		mur lo	0954					REPORT LEASE FOR THE PARTY OF T					
-6		mw-1	0922			TO CONTRACT OF THE PARTY OF THE					-		200 CO
_7		mw-9	1000										
-6		mw-11	J 1027			VV		V	1	<i>y</i>	\vee	0/	/ \/
Comments	s:	Relinquished by:	Signature			Receive	d by:	lon		Date 9	& Ti		47)
		Relinguished by (Signature	and the section of th		Receive	<i>'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	L Scor		1-//	1/1/	me	<i>f</i>
GLOBAL	ID:	1/212 h	ILLOW THE	2		RU	ALLU	سال	nesi k		e & Ti 4-09		20
TOGGA	i	Relinquished by: (S	Signature)	2106		Receive	n. ^			1	e & Ti		ain
1000	102263	1 R Kly	9-14-09	2006			4\J_\			14-1	4-6	<u> </u>	aidD

BC LABORATORIES, INC.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

							An	aly	/sis	Re	que	ste	d		
Bill to: Conoco Phillips/ TRC		Consultant Firm: TRC		MATRIX (GW)	ក						\$260B		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		
Address:	1629 Webster St-	21 Technology Drive Irvine, CA 92618-2302 Attn: Anju Farfan			Ground- water (S)	3, Gas by 8015			nates	/ 8260B		in By	-	4500-0)///48 Requested
city: Alameda		4-digit site#: 0943 Workorder# 02907 - 45 6 0865			(WW) Waste- water	by 8021B,	TPH GAS by 8015M	TPH DIESEL by 8015	8260 full list w/ oxygenates	BTEX/MTBE/OXYS BY	8260B	TPH-G by GC/MS, EDBE	conductance by		Turnaround Time Reques
State: CA	Zip:	Project #: 6552)			(SL) Sludge	Ш	Š	Į	Š.	D D	D A	S C	- N	8	3 5
Conoco Phillips Mgr: Terry Gray Sin Sampler Name: Andrew Vides							GAS	Ш О	3	INO	S S	တို	(Š,	a .	
Lab#	Sample Description	Field Point Name		Date & Time Sampled		BTEX/MTBE by	루	Ē	8260		ETHANOL by	Ā	SPACH		
-9	1	NW-4	9/1	4/09 08/1	6W					X	X	X	X	XX	(7 DAY
-10		MW-3		0833											
-11	/	NW-5		0855	and the state of t										
-12		MW-6	\	09/6	1					<u>\</u>	1	V	V	<u> </u>	V V

Comments:			Relinquished by: (Signature)			Received by:					loy	Date & Time 9/14/09 1340			
GLOBAL ID: 70600/07263		Relinquished by: (S) Relinquished by: (S)	9/14/09 2100	Received by: Received by:						Date & Time 9-14-09 16 60 Date & Time 9-14-09 2100					

Receipt of Manifest is Pending

(September 28, 2009)

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.