

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700

www.CRAworld.com

Fax: (510) 420-9170

## TRANSMITTAL

|                   |                       |          |                              |          |          | 2               |               |               |                                   |        |
|-------------------|-----------------------|----------|------------------------------|----------|----------|-----------------|---------------|---------------|-----------------------------------|--------|
| DATE:             | October 2             | 26, 2009 | ) ·                          |          | REFEI    | RENCE NO        | <b>D.:</b>    | 631000        | <u>.</u>                          |        |
|                   |                       |          |                              |          | Proj     | ECT NAM         | <b>E:</b>     | 1750 Adams    | Avenue, San I                     | eandro |
| To:               | Mr. Steve             | en Plun  | kett                         |          |          |                 |               |               |                                   |        |
|                   | Hazardo               | us Mat   | erials Specia                | alist    |          |                 |               |               | RECEIVED                          |        |
|                   | Alameda<br>(ACEHS)    |          | y Environn                   | nental H | ealth S  | ervices         |               | 9:4           | 44 am, Nov 02, 2009               |        |
|                   | 1131 Har              | bor Ba   | y Parkway,                   | Suite 25 | 0        |                 | <del></del> . |               | Alameda County<br>vironmental Hea |        |
|                   | Alameda               | , Califo | ornia 94502-                 | 6577     |          |                 | <del></del>   | Env           | /ironmental Hea                   | itn    |
| Please find       | l enclosed:           |          | Draft<br>Originals<br>Prints |          |          | Final<br>Other  |               |               |                                   |        |
| Sent via:         |                       |          | Mail<br>Overnight (          | Courier  |          | Same Dane Other |               |               | meda County F                     | TP.    |
| QUAN'             |                       |          |                              |          |          | DESC            |               |               |                                   |        |
| 1                 |                       | Second   | Semi-Annı                    | ual 2009 | Groun    | dwater N        | /Ionito       | ring Report   |                                   |        |
|                   | Requested<br>Your Use |          |                              | For      | Review   | and Com         | nment         |               |                                   |        |
| COMME             | NTS:<br>ve anv que    | estions  | regarding t                  | he conte | nts of t | his docu        | ment,         | please contac | t Robert Foss a                   | t      |
| (510) 420-        |                       |          | -00                          |          |          |                 |               |               |                                   |        |
|                   |                       |          | t Bramblett                  | ·nt      |          |                 |               | ·             |                                   |        |
| Copy to: Complete |                       | obert C  |                              |          |          | –<br>_ Signe    | d: <u>/</u>   | Robert C.     | Fos                               |        |
| Filing:           | Correspon             | dence I  | [Please Pr                   | rint]    |          |                 |               |               | 1                                 |        |



## SECOND SEMI-ANNUAL 2009 GROUNDWATER MONITORING REPORT

FORMER GI TRUCKING COMPANY (ESTES EXPRESS LINES) 1750 ADAMS AVENUE SAN LEANDRO, CALIFORNIA

AGENCY CASE NO. RO00000442

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: 510-420-0700 Fax: 510-420-9170

web: http:\\www.CRAworld.com

OCTOBER 26, 2009 REF. NO. 631000 (3)

This report is printed on recycled paper.

## TABLE OF CONTENTS

|     |                                                            | <u>Page</u> |
|-----|------------------------------------------------------------|-------------|
| 1.0 | INTRODUCTION                                               | 1           |
|     | 1.1 SITE INFORMATION                                       | 1           |
| 2.0 | SITE ACTIVITIES AND RESULTS                                | 1           |
|     | 2.1 CURRENT QUARTER'S ACTIVITIES                           | 1           |
|     | 2.2 CURRENT EVENT RESULTS                                  | 2           |
| 3.0 | SUGGESTED REDUCTION OF ANALYTES                            | 3           |
| 4 0 | ACTIVITIES PLANNED FOR THE FIRST SEMI-ANNUAL EVENT OF 2010 | 4           |

## LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 POTENTIOMETRIC AND HYDROCARBON CONCENTRATION MAP

## **LIST OF TABLES**

TABLE 1 GROUNDWATER MONITORING AND ANALYTICAL DATA

## **LIST OF APPENDICES**

APPENDIX A FIELD DATA SHEETS

APPENDIX B LABORATORY ANALYTICAL REPORTS

APPENDIX C STANDARD FIELD PROCEDURES

### 1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this groundwater monitoring report for the Estes Express Lines site, located at 1750 Davis Avenue, on behalf of Estes Express Lines. Four 12,000-gallon diesel underground storage tanks (USTs) and one 880-gallon used-oil UST were previously operated at the site. The used-oil UST was removed in December 1986 and the diesel USTs were removed in January 1996, with some over-excavation occurring along with the removal of the diesel UST. Investigations and groundwater monitoring began at the site in May 1997. The site is currently owned and operated by Estes Express Lines of Richmond, Virginia as a freight terminal. A vicinity map is presented as Figure 1.

### 1.1 <u>SITE INFORMATION</u>

Site Address 1750 Davis Avenue, San Leandro, CA

**Site Use** Freight Storage and Transfer Facility

Client and Contact Estes Express Lines, c/o Matt Bramblett

(Hart & Hickman, PC)

Consultant and Contact Person CRA, Robert Foss, P.G.

Lead Agency and Contact Alameda County Environmental Health

Department (ACEH), Steven Plunkett

Agency Case No. RO00000442

### 2.0 <u>SITE ACTIVITIES AND RESULTS</u>

### 2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

On September 14, 2009, Muskan Environmental Sampling (Muskan) measured depth to groundwater in all wells and collected groundwater samples in wells MW-2, MW-3, MW-5, RW-1 and RW-2 (Figure 2). In a letter dated January 22, 2009, ACEH requested that groundwater monitoring and sampling of all five site wells occur semi-annually during the First and Third Quarters of 2009. Groundwater samples from these wells are analyzed for total petroleum hydrocarbons as gasoline, as diesel, and as motor oil (TPHg, TPHd and TPHmo) by EPA Method 8015B, benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8021B and naphthalene by EPA Method 8260B. Groundwater monitoring and analytical data are summarized in Table 1 and associated field data sheets are presented as Appendix A. The laboratory analytical report is

presented as Appendix B. CRA's *Standard Field Procedures for Groundwater Monitoring and Sampling* is presented as Appendix C.

### 2.2 CURRENT EVENT RESULTS

Groundwater Flow Direction Southeasterly

Hydraulic Gradient0.012Average Depth to Water6.57 ft

Is Free Product Present on Site

Notes on lab report state, "lighter than

water immiscible sheen/product is present". However, no separate-phase hydrocarbons (SPH) were detected by

interface probe in the field.

**Current Remediation Techniques**Monitored Natural Attenuation

During this monitoring and sampling event, depth to groundwater varied from 6.14 (MW-5) to 6.85 (MW-2) feet below grade (fbg). Groundwater flow direction was calculated toward the southeast. The lowest groundwater elevation was recorded in well MW-3. The calculated gradient in this area of the site was approximately 0.012 (Figure 2). The rose diagram included on Figure 2 illustrates historically calculated groundwater flow directions.

The highest TPHd concentration observed during this event was detected in well RW-1, constructed in the former used-oil tankpit, at 100,000 micrograms per liter ( $\mu$ g/l). TPHd was also reported in well RW-2, constructed in the southern section of the former diesel UST tankfield, at 7,200  $\mu$ g/l. The considerably higher concentrations reported in the groundwater sample collected from well RW-1 compared to RW-2 are a result of leaks from the former used-oil UST, and its proximity to a former damaged diesel dispenser. Figure 2 indicates the location of the former diesel dispenser island. The used-oil tank was deemed to be "damaged beyond repair" by a Xerxes Tank representative in July 1986. The Blymyer Engineers report, dated July 22, 1996, references the UST removal in December 1986 and documents "approximately 3 inches of waste oil on the groundwater surface." Approximately 45 cubic yards of hydrocarbon impacted soil were removed and upon completion of over-excavation it was noted that "diesel fuel was observed flowing into the excavation from the direction of the diesel USTs." This was pumped out on two occasions, leaving only a sheen remaining on the water table. The diesel USTs tested tight in April 1987, so it is suspected that the diesel fuel pumped

from the used-oil excavation "was likely due to releases from past site operations, including a knocked over diesel dispenser which may have damaged one or more product lines, as reported by site workers." The flowing diesel confirms that the used-oil tank excavation is in hydraulic connection with the former diesel tankfield. Despite excavation in this area, along with overexcavation of the tankfield perimeter, residual oil and diesel impacts apparently remain beneath or around the perimeter of the used-oil excavation. Wells MW-2, MW-3 and MW-5 are all completed outside of the former tankpit excavation area. No TPHd above the reporting limit of 50 µg/l was reported in these three wells. TPH as motor oil (TPHmo) was reported at 52,000 (RW-1) and  $4,000 \mu g/1$  (RW-2), respectively. TPHg was reported only in well RW-1 at 310  $\mu g/1$ . However, the lab notation associated with well RW-1 states, "strongly aged gasoline or diesel range compounds are significant in the TPHg chromatogram." This suggests that the reported concentration is comprised primarily, if not exclusively, of the lighter compounds of diesel, and not true gasoline compounds. No BTEX compounds were reported in any of the five wells above the reporting limit of 0.5 μg/l. No concentrations of naphthalene above the reporting limit of  $0.5 \mu g/1$  were detected.

Table 1 lists established RWQCB-Region 2 environmental screening levels (ESLs) for the analyzed constituents. Despite the site's proximity to San Francisco Bay and the commercial/industrial history of the surrounding area, the East Bay Plain Groundwater Sub-Basin underlying this site has been designated as suitable for municipal and domestic use. Table 1 indentifies the ESLs of detected constituents (TPHg, TPHd and TPHmo) "where groundwater is a current of potential drinking water resource" as  $100 \,\mu\text{g/l}$ . All three TPH-range constituents exceed the established ESLs. However, the future use of the first shallow water bearing zone beneath this site for domestic or municipal use is extremely unlikely. The low probability of future use of the first water bearing zone, along with the slight gradient and consequent low probability of groundwater migration to any private domestic wells in the area, make a comparison of reported concentrations to beneficial use ESLs overly conservative.

### 3.0 SUGGESTED REDUCTION OF ANALYTES

In a letter dated January 22, 2009, the ACEH requested semi-annual groundwater monitoring and sampling of the five site wells. In addition to historically analyzed parameters (TPHd, TPHg, TPHmo and BTEX), ACEH requested that these groundwater samples be analyzed for naphthalene due to elevated detection limits of compliance sidewall soil samples collected during tankpit over-excavation in June 1999. No detected naphthalene has been reported in any sample during the two 2009 semi-annual sampling events. As a result, CRA recommends the elimination of naphthalene analysis

in future sampling events. TPHg and BTEX analyses have been intermittently conducted on groundwater samples from onsite wells. Samples have been analyzed for TPHg and BTEX in March 2007 and in both 2009 events. Additionally, samples from wells MW-2 and MW-3 were analyzed for TPHg in the Fourth Quarter 1994 and First Quarter 1995. The only reported concentrations above the laboratory reporting limit of  $50\,\mu\text{g/l}$  have been in well RW-1 in the three most recent sampling events. These reported concentrations have been 140, 160 and 310  $\mu\text{g/l}$ , respectively, and have all been described with the lab note, "strongly aged gasoline or diesel range compounds are significant in the TPHg chromatogram." This, as stated above, strongly suggests that the reported concentrations represent the presence of diesel, rather than gasoline. CRA recommends the elimination of TPHg analyses based on this reasoning. Finally, CRA suggests the elimination of BTEX analyses also. With the exception of a questionable detection of toluene concentration at 1.2  $\mu\text{g/l}$ , reported in well MW-2 in February 1995, no BTEX constituents have ever been detected above laboratory reporting limits.

Based on the known history of fuel storage and usage at the site, and the lack of detected constituents, CRA suggests restricting analysis of any future groundwater samples to TPHd and TPHmo only.

#### 4.0 ACTIVITIES PLANNED FOR THE FIRST SEMI-ANNUAL EVENT OF 2010

If ACEH continues to require groundwater sampling and analysis, CRA will coordinate Muskan to gauge water levels and collect samples for the five site wells. CRA will prepare a table summarizing groundwater elevation data and analytical results, as well as a potentiometric map that will be submitted in a monitoring report along with the field data sheets, standard field procedures, laboratory analytical reports and any additional conclusions and recommendations.

## All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Bryan A. Fong

Robert C. Fors



Robert C. Foss, P.G.

Conestoga-Rovers & Associates, Inc. (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

## **FIGURES**



Former GI Trucking Company (Estes Express Lines)

1750 Adams Avenue San Leandro, California



**Vicinity Map** 



TABLE

| Sample ID<br>TOC | Date<br>Sampled | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | ТРНто        | ТРНа           | трнд             | Benzene | Toluene   | Ethylbenzene     |            | MTBE<br>ded in ug/ |    | TAME | DIPE | TBA          | 1,2-DCA | EDB  | Ethanol | Napthalene |
|------------------|-----------------|--------------------------------|--------------------------|-----------------------------------------|--------------|----------------|------------------|---------|-----------|------------------|------------|--------------------|----|------|------|--------------|---------|------|---------|------------|
| Final Groundwat  | er ESL (Table E | -1), Potential                 | l Vapor Intrus           | sion Concerns                           |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
| Residential      |                 |                                |                          |                                         | NE           |                | oil gas<br>le E) | 540     | 380,000   | 170,000          | 160,000    | 24,000             | NE | NE   | NE   | use soil gas | 200     | NE   | NE      | 3,200      |
| Commercial/I     | Industrial      |                                |                          |                                         | NE           | use so<br>(Tab | oil gas<br>le E) | 1,800   | 530,000   | 170,000          | 160,000    | 80,000             | NE | NE   | NE   | use soil gas | 690     | NE   | NE      | 11,000     |
| Final Groundwat  | er ESL (Table F | -1), Groundw                   | ater is a Curr           | ent or Potential L                      | Prinking Wat | er Resource    |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  |                 |                                |                          |                                         | 100          | 100            | 100              | 1.0     | 40        | 30               | 20         | 5.0                | NE | NE   | NE   | 12           | 0.5     | 0.05 | NE      | 17         |
| MW-1             | 11/15/1988      |                                | 0.22                     |                                         |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
| 100.00           | 2/16/1989       | 6.03                           | 0.20                     | 94.13                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/19/1989       | 6.31                           | 0.20                     | 93.85                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/22/1989       | 6.72                           | 0.18                     | 93.42                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 11/21/1989      | 6.51                           | Sheen                    | 93.49                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 2/23/1990       | 5.74                           | Sheen                    | 94.26                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/23/1990       | 6.34                           | 0.15                     | 93.78                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/27/1990       | 6.27                           | Sheen                    | 93.73                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 12/3/1990       | 6.49                           | Sheen                    | 93.51                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 3/13/1991       | 4.94                           | Sheen                    | 95.06                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  |                 | 9.46                           | Sheen                    | 90.54                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/29/1991       |                                |                          |                                         |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/28/1991       | 6.31                           | 0.09                     | 93.76                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 12/9/1991       | 6.49                           | 0.20                     | 93.67                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 2/18/1992       | 4.19                           | 0.10                     | 95.89                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/15/1992       | 5.72                           | 0.17                     | 94.42                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/13/1992       | 6.12                           | 0.19                     | 94.03                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 12/3/1992       | 5.65                           | 0.10                     | 94.43                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 3/25/1993       | 4.60                           | Sheen                    | 95.40                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/21/1993       | 5.56                           | 0.09                     | 94.51                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/17/1993       | 6.07                           | 0.13                     | 94.03                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 12/13/1993      |                                | Sheen                    |                                         |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 2/24/1994       | 4.97                           | Sheen                    | 95.63                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/11/1994       | 5.20                           | Sheen                    | 94.80                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/23/1994       | 6.06                           | 0.08                     | 94.00                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 11/29/1994      | 5.98                           | Sheen                    | 94.02                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 2/15/1995       | 4.93                           | Sheen                    | 95.07                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 5/18/1995       | 4.99                           | Sheen                    | 95.01                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/16/1995       | 6.46                           | Sheen                    | 93.54                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 11/16/1995      | 5.21                           | Sheen                    | 94.79                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 2/15/1996       | 4.68                           | Sheen                    | 95.32                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | July 1996       | ←                              |                          |                                         |              |                |                  |         | Well MW-1 | Reconstructed as | s well RW- | 1 -                |    |      |      |              |         |      |         | <b></b>    |
| RW-1             | 8/5/1996        | 6.05                           | 0.35                     | 94.23                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
| 100.00           | 2/6/1997        | 4.40                           | Sheen                    | 95.60                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
| 130.00           | 8/22/1997       | 4.40                           | Sheen                    | 95.10                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 2/12/1998       | 3.18                           | 0.00                     | 96.82                                   |              | 89,000         |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 8/27/1998       | 5.16                           |                          | 94.05                                   |              | 69,000         |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |
|                  | 0/2//1998       | 5.95                           | Sheen                    | 94.03                                   |              |                |                  |         |           |                  |            |                    |    |      |      |              |         |      |         |            |

| Sample ID<br>TOC | Date<br>Sampled   | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | TPHmo        | ТРН              | трнд        | Benzene     | Toluene | Ethylbenzene |         | MTBE<br>ded in ug/ |       | TAME  | DIPE  | TBA          | 1,2-DCA | EDB   | Ethanol | Napthalene |
|------------------|-------------------|--------------------------------|--------------------------|-----------------------------------------|--------------|------------------|-------------|-------------|---------|--------------|---------|--------------------|-------|-------|-------|--------------|---------|-------|---------|------------|
| Final Groundwa   | iter ESL (Table E | -1), Potential                 | l Vapor Intrus           | sion Concerns                           |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
| Residential      |                   |                                |                          |                                         | NE           | use soi<br>(Tabl | -           | 540         | 380,000 | 170,000      | 160,000 | 24,000             | NE    | NE    | NE    | use soil gas | 200     | NE    | NE      | 3,200      |
| Commercial       | /Industrial       |                                |                          |                                         | NE           | use soi<br>(Tabl |             | 1,800       | 530,000 | 170,000      | 160,000 | 80,000             | NE    | NE    | NE    | use soil gas | 690     | NE    | NE      | 11,000     |
| Final Groundwa   | iter ESL (Table F | -1), Groundw                   | ater is a Curr           | ent or Potential l                      | Drinking Wat | er Resource      |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  |                   |                                |                          |                                         | 100          | 100              | 100         | 1.0         | 40      | 30           | 20      | 5.0                | NE    | NE    | NE    | 12           | 0.5     | 0.05  | NE      | 17         |
|                  | 3/4/1999*         | 4.98                           | Sheen                    | 95.02                                   |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/30/2001         |                                | Sheen                    |                                         |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 6/18/2002         | 6.28                           | 0.00                     | 93.72                                   |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
| RW-1 (cont)      | 3/13/2003         | 6.15                           | 0.00                     | 93.85                                   |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/17/2004         | 5.60                           | 0.00                     | 94.40                                   |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/17/2005         | 5.39                           | 0.00                     | 94.61                                   |              |                  |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/2/2007          | 5.22                           | Sheen                    | 94.78                                   | 9,300        | 16,000 c         | 140 g       | < 0.5       | <0.5    | <0.5         | < 0.5   | < 0.5              | < 0.5 | < 0.5 | < 0.5 | < 5.0        | < 0.5   | < 0.5 | <50     |            |
|                  | 4/21/2009         | 5.91                           | Sheen                    | 94.09                                   | 23,000       | 50,000 c, d      | 160 b, d    | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       |              |         |       |         | <0.5 d     |
|                  | 9/14/2009         | 6.53                           | 0.00                     | 93.47                                   | 100,000 a,d  | 52,000 a,d       | 310 b,d     | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       | -            |         |       |         | <0.5 d     |
| MW-2             | 11/15/1988        |                                |                          |                                         |              | <200             |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
| 100.24           | 2/16/1989         | 6.13                           | 0.00                     | 94.11                                   |              | <90              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/19/1989         | 6.24                           | 0.00                     | 94.00                                   |              | <80              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/22/1989         | 6.68                           | 0.00                     | 93.56                                   |              | <30              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 11/21/1989        | 6.64                           | 0.00                     | 93.60                                   |              | <30              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/23/1990         | 6.04                           | 0.00                     | 94.20                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/23/1990         | 6.40                           | 0.00                     | 93.84                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1990         | 6.70                           | 0.00                     | 93.54                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 12/3/1990         | 6.83                           | 0.00                     | 93.41                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/13/1991         | 5.64                           | 0.00                     | 94.60                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/29/1991         | 6.31                           | 0.00                     | 93.93                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/28/1991         | 6.68                           | 0.00                     | 93.56                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 12/9/1991         | 6.69                           | 0.00                     | 93.55                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/18/1992         | 4.96                           | 0.00                     | 95.28                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/15/1992         | 6.07                           | 0.00                     | 94.17                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/13/1992         | 6.42                           | 0.00                     | 93.82                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 12/3/1992         | 6.25                           | 0.00                     | 93.99                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/25/1993         | 5.40                           | 0.00                     | 94.84                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/21/1993         | 6.04                           | 0.00                     | 94.20                                   |              | <50              |             |             |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/17/1993         | 6.42                           | 0.00                     | 93.82                                   |              | <50              |             | < 0.5       | < 0.5   | <0.5         | <0.5    | < 0.5              |       |       |       |              |         |       |         |            |
|                  | 12/13/1993        | 6.09                           | 0.00                     | 94.15                                   |              | <50              |             | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       |              |         |       |         |            |
|                  | 2/24/1994         | 5.57                           | 0.00                     | 94.67                                   |              | <50              |             | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       |              |         |       |         |            |
|                  | 5/11/1994         | 5.94                           | 0.00                     | 94.30                                   |              | <50              |             | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       |              | -       |       |         |            |
|                  | 8/23/1994         | 6.44                           | 0.00                     | 93.80                                   |              | <50              |             | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       |              |         |       |         |            |
|                  | 11/29/1994        | 5.82                           | 0.00                     | 94.42                                   |              | 90               | <50         | <0.5        | <0.5    | <0.5         | <0.5    |                    |       |       |       |              | -       |       |         |            |
|                  | 2/15/1995         | 5.68                           | 0.00                     | 94.42                                   | <500         | 100              | <50         | <0.5        | 1.2     | <0.5         | <0.5    |                    |       |       |       |              |         |       |         |            |
|                  | 2/ 13/ 1993       | 5.00                           | 0.00                     | 94.00                                   | <b>\</b> 300 | 100              | <b>\</b> 30 | <b>\0.5</b> | 1.∠     | <b>~</b> 0.5 | ~0.5    |                    |       |       |       |              |         |       |         |            |

| Sample ID<br>TOC | Date<br>Sampled        | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | TPHmo<br><b>←</b> | ТРНА         | ТРНд             | Benzene | Toluene  | Ethylbenzene |          | MTBE<br>ded in ug/ |       | ТАМЕ  | DIPE  | TBA          | 1,2-DCA | EDB   | Ethanol | Napthalene |
|------------------|------------------------|--------------------------------|--------------------------|-----------------------------------------|-------------------|--------------|------------------|---------|----------|--------------|----------|--------------------|-------|-------|-------|--------------|---------|-------|---------|------------|
| Final Groundwa   | iter ESL (Table E      | -1), Potentia                  | l Vapor Intrus           | sion Concerns                           |                   |              |                  |         |          |              |          |                    |       |       |       |              |         |       |         | _          |
| Residential      |                        |                                |                          |                                         | NE                |              | oil gas<br>le E) | 540     | 380,000  | 170,000      | 160,000  | 24,000             | NE    | NE    | NE    | use soil gas | 200     | NE    | NE      | 3,200      |
| Commercial       | /Industrial            |                                |                          |                                         | NE                |              | oil gas<br>le E) | 1,800   | 530,000  | 170,000      | 160,000  | 80,000             | NE    | NE    | NE    | use soil gas | 690     | NE    | NE      | 11,000     |
| Final Groundwa   | iter ESL (Table F      | -1), Groundu                   | ater is a Curi           | ent or Potential I                      | Drinking Wat      | ter Resource |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  |                        |                                |                          |                                         | 100               | 100          | 100              | 1.0     | 40       | 30           | 20       | 5.0                | NE    | NE    | NE    | 12           | 0.5     | 0.05  | NE      | 17         |
|                  | E /10 /100E            |                                |                          |                                         |                   |              |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 5/18/1995<br>8/16/1995 | 6.19                           | 0.00                     | 94.05                                   |                   | 63           |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
|                  | 11/16/1995             |                                |                          |                                         |                   |              |                  | ~U.5    | ~0.5<br> | <0.5<br>     | ~0.5<br> |                    |       |       |       |              |         |       |         |            |
|                  | 2/15/1996              | 5.62                           | 0.00                     | 94.62                                   |                   | <br>79       |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
|                  | 8/5/1996               | 6.22                           | 0.00                     | 94.02                                   |                   | 100          |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
|                  | 2/6/1997               | 5.50                           | 0.00                     | 94.74                                   |                   | 140          |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
| MW-2 (cont)      | 8/22/1997              | 6.57                           | 0.00                     | 93.67                                   |                   | <100         |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
| 1111 2 (2011)    | 2/12/1998              | 4.88                           | 0.00                     | 95.36                                   |                   | <100         |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1998              | 6.42                           | 0.00                     | 93.82                                   |                   | 93           |                  | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         |            |
|                  | 3/4/1999*              | 6.39                           | 0.00                     | 93.85                                   |                   | <50          |                  | <0.5    | <0.5     | <0.5         | <0.5     | <5                 |       |       |       |              |         |       |         |            |
|                  | 5/30/2001              |                                |                          |                                         |                   |              |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 6/18/2002              | 7.14                           | 0.00                     | 93.10                                   |                   | <50          |                  | < 0.5   | < 0.5    | <0.5         | < 0.5    | <2.5               |       |       |       |              |         |       |         |            |
|                  | 3/13/2003              | 6.64                           | 0.00                     | 93.60                                   |                   | <48          |                  | <0.5    | <0.5     | <0.5         | <0.5     | <2.0               |       |       |       |              |         |       |         |            |
|                  | 3/17/2004              | 6.63                           | 0.00                     | 93.61                                   |                   | <500         |                  | <0.5    | <0.5     | <0.5         | <0.5     | <2.5               |       |       |       |              |         |       |         |            |
|                  | 3/17/2005              | 6.76                           | 0.00                     | 93.48                                   |                   | <50          |                  | <0.5    | <0.5     | <0.5         | <0.5     | <5                 |       |       |       |              |         |       |         |            |
|                  | 3/2/2007               | 5.77                           | 0.00                     | 94.47                                   | <250              | <50          | <50              | <0.5    | <0.5     | <0.5         | <0.5     | <0.5               | < 0.5 | < 0.5 | < 0.5 | <5.0         | < 0.5   | < 0.5 | <50     |            |
|                  | 4/21/2009              | 6.38                           | 0.00                     | 93.86                                   | <250              | <50          | <50              | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         | < 0.5      |
|                  | 9/14/2009              | 6.85                           | 0.00                     | 93.39                                   | <50               | <250         | <50              | <0.5    | <0.5     | <0.5         | <0.5     |                    |       |       |       |              |         |       |         | <0.5       |
| MW-3             | 11/15/1988             |                                |                          |                                         |                   | <200         |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
| 100.22           | 2/16/1989              | 6.00                           | 0.00                     | 94.22                                   |                   | <90          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 5/19/1989              | 6.20                           | 0.00                     | 94.02                                   |                   | <80          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 8/22/1989              | 6.60                           | 0.00                     | 93.62                                   |                   | <30          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 11/21/1989             | 6.55                           | 0.00                     | 93.67                                   |                   | <30          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 2/23/1990              | 5.83                           | 0.00                     | 94.39                                   |                   | 340          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 5/23/1990              | 6.38                           | 0.00                     | 93.84                                   |                   | 640          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1990              | 6.67                           | 0.00                     | 93.55                                   |                   | 410          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 12/3/1990              | 6.75                           | 0.00                     | 93.47                                   |                   | < 50         |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 3/13/1991              | 5.42                           | 0.00                     | 94.80                                   |                   | 1,300        |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 5/29/1991              | 6.28                           | 0.00                     | 93.94                                   |                   | 540          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 8/28/1991              | 6.62                           | 0.00                     | 93.60                                   |                   | 240          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 12/9/1991              | 6.65                           | 0.00                     | 93.57                                   |                   | 200          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 2/18/1992              | 4.73                           | 0.00                     | 95.49                                   |                   | 890          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 5/15/1992              | 5.99                           | 0.00                     | 94.23                                   |                   | 380          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 8/13/1992              | 6.32                           | 0.00                     | 93.90                                   |                   | 200          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |
|                  | 12/3/1992              | 6.23                           | 0.00                     | 93.99                                   |                   | <50          |                  |         |          |              |          |                    |       |       |       |              |         |       |         |            |

| Sample ID<br>TOC | Date<br>Sampled  | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | TPHmo<br><b>◆</b> | ТРНа           | ТРНд             | Benzene | Toluene | Ethylbenzene |         | MTBE<br>ded in ug/ |       | TAME  | DIPE  | TBA          | 1,2-DCA | EDB   | Ethanol | Napthalene |
|------------------|------------------|--------------------------------|--------------------------|-----------------------------------------|-------------------|----------------|------------------|---------|---------|--------------|---------|--------------------|-------|-------|-------|--------------|---------|-------|---------|------------|
| Final Groundwa   | ter ESL (Table E | -1), Potential                 | Vapor Intrus             | ion Concerns                            |                   |                |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
| Residential      |                  |                                |                          |                                         | NE                | use so<br>(Tab | oil gas<br>le E) | 540     | 380,000 | 170,000      | 160,000 | 24,000             | NE    | NE    | NE    | use soil gas | 200     | NE    | NE      | 3,200      |
| Commercial/      | Industrial       |                                |                          |                                         | NE                | use so<br>(Tab |                  | 1,800   | 530,000 | 170,000      | 160,000 | 80,000             | NE    | NE    | NE    | use soil gas | 690     | NE    | NE      | 11,000     |
| Final Groundwa   | ter ESL (Table F | -1), Groundw                   | ater is a Curr           | ent or Potential L                      | Drinking Wate     | er Resource    |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  |                  |                                |                          |                                         | 100               | 100            | 100              | 1.0     | 40      | 30           | 20      | 5.0                | NE    | NE    | NE    | 12           | 0.5     | 0.05  | NE      | 17         |
|                  | 3/25/1993        | 5.27                           | 0.00                     | 94.95                                   |                   | 1,600          |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/21/1993        | 5.97                           | 0.00                     | 94.25                                   |                   | 720            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/17/1993        | 6.59                           | 0.00                     | 93.63                                   |                   | 480            |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 12/13/1993       | 6.33                           | 0.00                     | 93.89                                   |                   | 190            |                  | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 2/24/1994        | 5.76                           | 0.00                     | 94.46                                   |                   | 380            |                  | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 5/11/1994        | 5.84                           | 0.00                     | 94.38                                   |                   | 580            |                  | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 8/23/1994        | 6.38                           | 0.00                     | 93.84                                   |                   | 450            |                  | < 0.5   | 0.6     | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
| MW-3 (cont)      | 11/29/1994       | 5.76                           | 0.00                     | 94.46                                   |                   | 960            | < 50             | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 2/15/1995        | 5.60                           | 0.00                     | 94.62                                   | < 500             | 1,700          | < 50             | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 5/18/1995        |                                |                          |                                         |                   |                |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/16/1995        | 6.11                           | 0.00                     | 94.11                                   |                   | 1,100          |                  | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 11/16/1995       |                                |                          |                                         |                   |                |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/15/1996        | 5.48                           | 0.00                     | 94.74                                   |                   | 1,300          |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 8/5/1996         | 6.16                           | 0.00                     | 94.06                                   |                   | 1,000          |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 2/6/1997         | 5.36                           | 0.00                     | 94.86                                   |                   | 2,400          |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 8/22/1997        | 5.85                           | 0.00                     | 94.37                                   |                   | 2,000          |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 2/12/1998        | 4.81                           | 0.00                     | 95.41                                   |                   | 1,500          |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1998        | 6.25                           | 0.00                     | 93.97                                   |                   | 410            |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         |            |
|                  | 3/4/1999*        | 6.14                           | 0.00                     | 94.08                                   |                   | 330            |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   | 17                 |       |       |       |              |         |       |         |            |
|                  | 5/30/2001        |                                |                          |                                         |                   |                |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 6/18/2002        | 7.07                           | 0.00                     | 93.15                                   |                   | 1,100          |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   | 3.6/3.1            |       |       |       |              |         |       |         |            |
|                  | 3/13/2003        | 6.45                           | 0.00                     | 93.77                                   |                   | 680            |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   | 2.9                |       |       |       |              |         |       |         |            |
|                  | 3/17/2004        | 5.98                           | 0.00                     | 94.24                                   |                   | 450            |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   | <2.5               |       |       |       |              |         |       |         |            |
|                  | 3/17/2005        | 5.72                           | 0.00                     | 94.50                                   |                   | 160            |                  | < 0.5   | < 0.5   | <0.5         | < 0.5   | < 5.0              |       |       |       |              |         |       |         |            |
|                  | 3/2/2007         | 5.68                           | 0.00                     | 94.54                                   | <250              | <50            | < 50             | <0.5    | <0.5    | <0.5         | <0.5    | <0.5               | < 0.5 | < 0.5 | < 0.5 | <5.0         | < 0.5   | < 0.5 | <50     |            |
|                  | 4/21/2009        | 6.26                           | 0.00                     | 93.96                                   | <250              | <50            | <50              | < 0.5   | < 0.5   | <0.5         | < 0.5   |                    |       |       |       |              |         |       |         | < 0.5      |
|                  | 9/14/2009        | 6.81                           | 0.00                     | 93.41                                   | < 50              | <250           | <50              | <0.5    | <0.5    | <0.5         | <0.5    |                    |       |       |       |              |         |       |         | <0.5       |
| MW-4             | 11/15/1988       |                                |                          |                                         |                   | <200           |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
| 99.48            | 2/16/1989        | 5.92                           | 0.00                     | 93.56                                   |                   | <90            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/19/1989        | 5.25                           | 0.00                     | 94.23                                   |                   | <80            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/22/1989        | 6.76                           | 0.00                     | 92.72                                   |                   | <30            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 11/21/1989       | 5.72                           | 0.00                     | 93.76                                   |                   | <30            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/23/1990        | 4.92                           | 0.00                     | 94.56                                   |                   | <50            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/23/1990        | 5.39                           | 0.00                     | 94.09                                   |                   | <50            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1990        | 5.66                           | 0.00                     | 93.82                                   |                   | <50            |                  |         |         |              |         |                    |       |       |       |              |         |       |         |            |

| Sample ID<br>TOC | Date<br>Sampled  | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | ТРНто        | ТРНа           | ТРНд             | Benzene | Toluene | Ethylbenzene   |         | MTBE<br>ded in ug/ |    | TAME | DIPE | TBA          | 1,2-DCA | EDB  | Ethanol | Napthalene |
|------------------|------------------|--------------------------------|--------------------------|-----------------------------------------|--------------|----------------|------------------|---------|---------|----------------|---------|--------------------|----|------|------|--------------|---------|------|---------|------------|
| Final Groundwa   | ter ESL (Table E | -1), Potentia                  | l Vapor Intrus           | sion Concerns                           |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
| Residential      |                  |                                |                          |                                         | NE           |                | oil gas<br>le E) | 540     | 380,000 | 170,000        | 160,000 | 24,000             | NE | NE   | NE   | use soil gas | 200     | NE   | NE      | 3,200      |
| Commercial       | /Industrial      |                                |                          |                                         | NE           | use so<br>(Tab | oil gas<br>de E) | 1,800   | 530,000 | 170,000        | 160,000 | 80,000             | NE | NE   | NE   | use soil gas | 690     | NE   | NE      | 11,000     |
| Final Groundwa   | ter ESL (Table F | -1), Groundu                   | ater is a Curr           | ent or Potential L                      | Drinking Wat | er Resource    |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  |                  |                                |                          |                                         | 100          | 100            | 100              | 1.0     | 40      | 30             | 20      | 5.0                | NE | NE   | NE   | 12           | 0.5     | 0.05 | NE      | 17         |
|                  | 12 /2 /1000      | F.0F                           | 0.00                     | 02.52                                   |              | <b>∠</b> E0    |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 12/3/1990        | 5.95                           | 0.00                     | 93.53                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 3/13/1991        | 4.39                           | 0.00                     | 95.09                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 5/29/1991        | 5.27                           | 0.00                     | 94.21                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/28/1991        | 5.70                           | 0.00                     | 93.78                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 12/9/1991        | 5.78                           | 0.00                     | 93.70                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 2/18/1992        | 3.60                           | 0.00                     | 95.88                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 5/15/1992        | 5.03                           | 0.00                     | 94.45                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/13/1992        | 5.40                           | 0.00                     | 94.08                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 12/3/1992        | 5.14                           | 0.00                     | 94.34                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
| MW-4 (cont)      | 3/25/1993        | 4.14                           | 0.00                     | 95.34                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 5/21/1993        | 4.95                           | 0.00                     | 94.53                                   |              | < 50           |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/17/1993        | 5.40                           | 0.00                     | 94.08                                   |              | <50            |                  | < 0.5   | < 0.5   | < 0.5          | < 0.5   |                    |    |      |      |              |         |      |         |            |
|                  | 12/13/1993       | 5.08                           | 0.00                     | 94.40                                   |              | <50            |                  | < 0.5   | < 0.5   | <0.5           | < 0.5   |                    |    |      |      |              |         |      |         |            |
|                  | 2/24/1994        | 4.38                           | 0.00                     | 95.10                                   |              | <50            |                  | <0.5    | < 0.5   | <0.5           | <0.5    |                    |    |      |      |              |         |      |         |            |
|                  | 5/11/1994        | 4.85                           | 0.00                     | 94.63                                   |              | <50            |                  | <0.5    | <0.5    | <0.5           | <0.5    |                    |    |      |      |              |         |      |         |            |
|                  | 8/23/1994        | 5.47                           | 0.00                     | 94.01                                   |              | <50            |                  | <0.5    | <0.5    | <0.5           | <0.5    |                    |    |      |      |              |         |      |         |            |
|                  | 11/29/1994       | 4.76                           | 0.00                     | 94.72                                   |              |                |                  | ٧٥.5    |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 2/15/1995        | 4.70                           |                          | 94.72<br>                               |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  |                  |                                |                          |                                         |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 5/18/2005        |                                |                          |                                         |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/16/1995        | 5.16                           | 0.00                     | 94.32                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 11/16/1995       |                                |                          |                                         |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 2/15/1996        | 4.40                           | 0.00                     | 95.08                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/5/1996         | 5.27                           | 0.00                     | 94.21                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 2/6/1997         | 4.26                           | 0.00                     | -4.26                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/22/1997        | 5.09                           | 0.00                     | -5.09                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 2/12/1998        | 3.58                           | 0.00                     | -3.58                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/27/1998        | 5.43                           | 0.00                     | -5.43                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 3/4/1999*        | 5.34                           | 0.00                     | -5.34                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | June 1999        | •                              |                          |                                         |              |                |                  |         |         | Well Destroyed |         |                    |    |      |      |              |         |      |         | <b></b>    |
| MW-5             | 11/15/1988       |                                |                          |                                         |              | <200           |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
| 99.60            | 2/16/1989        | <br>5.42                       | 0.00                     |                                         |              | <90            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
| 33.0U            |                  |                                |                          | 94.18                                   |              |                |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 5/19/1989        | 5.53                           | 0.00                     | 94.07                                   |              | <80            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 8/22/1989        | 5.94                           | 0.00                     | 93.66                                   |              | <30            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 11/21/1989       | 5.91                           | 0.00                     | 93.69                                   |              | <30            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |
|                  | 2/23/1990        | 5.69                           | 0.00                     | 93.91                                   |              | <50            |                  |         |         |                |         |                    |    |      |      |              |         |      |         |            |

| Sample ID<br>TOC | Date<br>Sampled  | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | ТРНто        | ТРНа           | трнд            | Benzene | Toluene | Ethylbenzene |         | MTBE<br>ded in ug/ |       | TAME  | DIPE  | TBA          | 1,2-DCA | EDB   | Ethanol | Napthalene |
|------------------|------------------|--------------------------------|--------------------------|-----------------------------------------|--------------|----------------|-----------------|---------|---------|--------------|---------|--------------------|-------|-------|-------|--------------|---------|-------|---------|------------|
| Final Groundwa   | ter ESL (Table E | -1), Potentia                  | l Vapor Intrus           | sion Concerns                           |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
| Residential      |                  |                                |                          |                                         | NE           | use so<br>(Tab | il gas<br>le E) | 540     | 380,000 | 170,000      | 160,000 | 24,000             | NE    | NE    | NE    | use soil gas | 200     | NE    | NE      | 3,200      |
| Commercial/      | Industrial       |                                |                          |                                         | NE           | use so<br>(Tab | il gas<br>le E) | 1,800   | 530,000 | 170,000      | 160,000 | 80,000             | NE    | NE    | NE    | use soil gas | 690     | NE    | NE      | 11,000     |
| Final Groundwa   | ter ESL (Table F | -1), Groundu                   | ater is a Curi           | ent or Potential L                      | Prinking Wat | er Resource    |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  |                  |                                |                          |                                         | 100          | 100            | 100             | 1.0     | 40      | 30           | 20      | 5.0                | NE    | NE    | NE    | 12           | 0.5     | 0.05  | NE      | 17         |
| _                | _ , ,            |                                |                          |                                         |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/23/1990        | 5.92                           | 0.00                     | 93.68                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1990        | 6.17                           | 0.00                     | 93.43                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 12/3/1990        | 6.05                           | 0.00                     | 93.55                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/13/1991        | 5.01                           | 0.00                     | 94.59                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/29/1991        | 5.57                           | 0.00                     | 94.03                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/28/1991        | 5.90                           | 0.00                     | 93.70                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 12/9/1991        | 5.99                           | 0.00                     | 93.61                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/18/1992        | 4.45                           | 0.00                     | 95.15                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/15/1992        | 5.33                           | 0.00                     | 94.27                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/13/1992        | 5.62                           | 0.00                     | 93.98                                   |              | < 50           |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 12/3/1992        | 5.58                           | 0.00                     | 94.02                                   |              | < 50           |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
| MW-5 (cont)      | 3/25/1993        | 4.34                           | 0.00                     | 95.26                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/21/1993        | 5.28                           | 0.00                     | 94.32                                   |              | <50            |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/17/1993        | 5.61                           | 0.00                     | 93.99                                   |              | <50            |                 | < 0.05  | < 0.5   | < 0.5        | < 0.5   | < 0.5              |       |       |       |              |         |       |         |            |
|                  | 12/13/1993       | 5.38                           | 0.00                     | 94.22                                   |              | <50            |                 | < 0.05  | <0.5    | <0.5         | <0.5    | <0.5               |       |       |       |              |         |       |         |            |
|                  | 2/24/1994        | 4.90                           | 0.00                     | 94.70                                   |              | <50            |                 | < 0.05  | <0.5    | <0.5         | <0.5    | <0.5               |       |       |       |              |         |       |         |            |
|                  | 5/11/1994        | 5.23                           | 0.00                     | 94.37                                   |              | <50            |                 | < 0.05  | <0.5    | <0.5         | <0.5    | <0.5               |       |       |       |              |         |       |         |            |
|                  | 8/23/1994        | 5.70                           | 0.00                     | 93.90                                   |              | <50            |                 | < 0.05  | <0.5    | <0.5         | <0.5    | <0.5               |       |       |       |              |         |       |         |            |
|                  | 11/29/1994       | 5.12                           | 0.00                     | 94.48                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  |                  |                                |                          |                                         |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/15/1995        |                                |                          |                                         |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 5/18/2005        |                                |                          |                                         |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/16/1995        | 5.47                           | 0.00                     | 94.13                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 11/16/1995       |                                |                          |                                         |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/15/1996        | 4.90                           | 0.00                     | 94.70                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/5/1996         | 5.50                           | 0.00                     | 94.10                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/6/1997         | 4.80                           | 0.00                     | 94.80                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/22/1997        | 6.37                           | 0.00                     | 93.23                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 2/12/1998        | 4.32                           | 0.00                     | 95.28                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 8/27/1998        | 5.77                           | 0.00                     | 93.83                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 3/4/1999*        | 5.88                           | 0.00                     | 93.72                                   |              |                |                 |         |         |              |         |                    |       |       |       |              |         |       |         |            |
|                  | 6/18/2002        | 5.97                           | 0.00                     | 93.63                                   |              | 61             |                 | < 0.5   | < 0.5   | < 0.5        | < 0.5   | <2.5               |       |       |       |              |         |       |         |            |
|                  | 3/13/2003        | 5.77                           | 0.00                     | 93.83                                   |              | <47            |                 | < 0.5   | <0.5    | < 0.5        | < 0.5   | < 2.0              |       |       |       |              |         |       |         |            |
|                  | 3/17/2004        | 5.37                           | 0.00                     | 94.23                                   |              | <50            |                 | < 0.5   | < 0.5   | < 0.5        | < 0.5   | <2.5               |       |       |       |              |         |       |         |            |
|                  | 3/17/2005        | 5.23                           | 0.00                     | 94.37                                   |              | < 50           |                 | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 5.0              |       |       |       |              |         |       |         |            |
|                  | 3/2/2007         | 5.12                           | 0.00                     | 94.48                                   | <250         | <50            | <50             | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5              | < 0.5 | < 0.5 | < 0.5 | < 5.0        | < 0.5   | < 0.5 | < 50    |            |
|                  | 4/21/2009        | 5.65                           | 0.00                     | 93.95                                   | <250         | <50            | < 50            | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                    |       |       |       |              |         |       |         | < 0.5      |

TABLE 1 Page 7 of 8

## GROUNDWATER ELEVATION AND ANALYTICAL DATA ESTES-GI TRUCKING COMPANY 1750 ADAMS AVENUE SAN LEANDRO, CALIFORNIA

| Sample ID<br>TOC | Date<br>Sampled   | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | ТРНто        | ТРН              | ТРНд  | Benzene | Toluene | Ethylbenzene |         | MTBE<br>led in ug |       | TAME  | DIPE  | TBA          | 1,2-DCA | EDB   | Ethanol | ! Napthalene |
|------------------|-------------------|--------------------------------|--------------------------|-----------------------------------------|--------------|------------------|-------|---------|---------|--------------|---------|-------------------|-------|-------|-------|--------------|---------|-------|---------|--------------|
| Final Groundwa   | iter ESL (Table E | E-1), Potential                | Vapor Intrus             | sion Concerns                           |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
| Residential      |                   |                                |                          |                                         | NE           | use soi<br>(Tabl | -     | 540     | 380,000 | 170,000      | 160,000 | 24,000            | NE    | NE    | NE    | use soil gas | 200     | NE    | NE      | 3,200        |
| Commercial,      | /Industrial       |                                |                          |                                         | NE           | use soi<br>(Tabl |       | 1,800   | 530,000 | 170,000      | 160,000 | 80,000            | NE    | NE    | NE    | use soil gas | 690     | NE    | NE      | 11,000       |
| Final Groundwa   | iter ESL (Table F | -1), Groundw                   | ater is a Curr           | ent or Potential I                      | Orinking Wat | er Resource      |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
|                  |                   |                                |                          |                                         | 100          | 100              | 100   | 1.0     | 40      | 30           | 20      | 5.0               | NE    | NE    | NE    | 12           | 0.5     | 0.05  | NE      | 17           |
|                  | 9/14/2009         | 6.14                           | 0.00                     | 93.46                                   | <50          | <250             | <50   | <0.5    | <0.5    | <0.5         | <0.5    |                   |       |       | -     | -            |         |       |         | <0.5         |
| RW-2             | 8/5/1996          | 6.02                           | 0.31                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
| not surveyed     | 2/6/1997          | 4.41                           | 0.00                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
| •                | 8/22/1997         | 4.88                           | 0.00                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
|                  | 2/12/1998         | 3.21                           | 0.00                     |                                         |              | 100,000          |       | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                   |       |       |       |              |         |       |         |              |
|                  | 8/27/1998         | 5.92                           | 0.00                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
|                  | 3/4/1999*         | 4.95                           | 0.00                     |                                         |              | 74,000           |       | <1.0    | <1.0    | <1.0         | <1.0    | <10               |       |       |       |              |         |       |         |              |
|                  | 5/30/2001         |                                | 0.00                     |                                         |              | 9,000            |       | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                   |       |       |       |              |         |       |         |              |
|                  | 6/18/2002         | 6.30                           | 0.00                     |                                         |              | 280,000          |       | <10     | <10     | <10          | <10     | < 50              |       |       |       |              |         |       |         |              |
|                  | 3/13/2003         | 6.11                           | 0.00                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
|                  | 3/17/2004         | 5.58                           | 0.00                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
|                  | 3/17/2005         | 5.30                           | 0.00                     |                                         |              |                  |       |         |         |              |         |                   |       |       |       |              |         |       |         |              |
|                  | 3/2/2007          | 5.21                           | 0.00                     |                                         | 2,500        | 5,500 c          | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5             | < 0.5 | < 0.5 | < 0.5 | < 5.0        | < 0.5   | < 0.5 | < 50    |              |
|                  | 4/21/2009         | 5.88                           | Sheen                    |                                         | 3,000        | 6,000 c, d       | <50 d | < 0.5   | < 0.5   | < 0.5        | < 0.5   |                   |       |       |       |              |         |       |         | <0.5 d       |
|                  | 9/14/2009         | 6.54                           | 0.00                     |                                         | 7.200 c.d    | 4.000 c.d        | <50 d | <0.5    | <0.5    | <0.5         | <0.5    |                   |       |       |       |              |         |       |         | <0.5 d       |

#### Abbreviations and Notes:

TOC = elevation of the top of casing relative to an abritraty elevation from well RW-1's TOC (100.00 ft)

ft btoc = measured in feet below top of casing

SPH = separate phase hydrocarbons or non-aqueous phase liquid (NAPL)

ug/L = micrograms per liter

Sheen = non-measurable SPH sheen observed

-- = Not measured, not analyzed, not applicable

TPHd = total petroleum hydrocarbons as diesel analyzed by modified EPA Method 8015; beginning 3/2/2007 analyzed by EPA Method 8015C with silica gel cleanup

TPHmo = total petroleum hydrocarbons as motor oil analyzed by EPA Method 8015C with silica gel clenaup

TPHg = total petroleum hydrocarbons as gasoline analyzed by EPA Method 8015C

BTEX = benzene, toluene, ethylbenzene, xylenes analyzed by EPA Method 8020/8021B; beginning 3/2/2007 analyzed by EPA Method 8260B

 $MTBE = methyl\ tertiary-butyl\ ether\ analyzed\ by\ EPA\ Method\ 8020/8021B;\ beginning\ 3/2/2007\ analyzed\ by\ EPA\ Method\ 8260B$ 

ETBE = ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = tertiary-amyl methyl ether analyzed by EPA Method 8260B

DIPE = di-isopropyl ether analyzed by EPA Method 8260B

TBA = tertiary butyl alcohol analyzed by EPA Method 8260B

1,2-DCA = one, two-dichloroethane analyzed by EPA Method 8260B

EDB = ethylene dibromide analyzed by EPA Method 8260B

Ethanol analyzed by EPA Method 8260B

| Sample ID<br>TOC | Date<br>Sampled  | Depth to<br>Water<br>(ft btoc) | SPH<br>Thickness<br>(ft) | Groundwater<br>Elevation<br>(arbitrary) | ТРНто        | ТРН              | ТРНд | Benzene | Toluene | Ethylbenzene | Xylenes<br>- Record | MTBE<br>led in ug/ |    | ТАМЕ | DIPE | TBA          | 1,2-DCA | EDB  | Ethanol | Napthalene<br>• |
|------------------|------------------|--------------------------------|--------------------------|-----------------------------------------|--------------|------------------|------|---------|---------|--------------|---------------------|--------------------|----|------|------|--------------|---------|------|---------|-----------------|
| Final Groundwat  | ter ESL (Table E | -1), Potential                 | Vapor Intrus             | ion Concerns                            |              |                  |      |         |         |              |                     |                    |    |      |      |              |         |      |         |                 |
| Residential      |                  |                                |                          |                                         | NE           | use soi<br>(Tabl | -    | 540     | 380,000 | 170,000      | 160,000             | 24,000             | NE | NE   | NE   | use soil gas | 200     | NE   | NE      | 3,200           |
| Commercial/      | Industrial       |                                |                          |                                         | NE           | use soi<br>(Tabl |      | 1,800   | 530,000 | 170,000      | 160,000             | 80,000             | NE | NE   | NE   | use soil gas | 690     | NE   | NE      | 11,000          |
| Final Groundwat  | ter ESL (Table F | -1), Groundw                   | ater is a Curr           | ent or Potential D                      | rinking Wate | r Resource       |      |         |         |              |                     |                    |    |      |      |              |         |      |         |                 |
|                  |                  |                                |                          |                                         | 100          | 100              | 100  | 1.0     | 40      | 30           | 20                  | 5.0                | NE | NE   | NE   | 12           | 0.5     | 0.05 | NE      | 17              |

<sup>\* =</sup> data collected on March 4 & 11, 1999

a = unmodified or weakly modified diesel is significant

b = strongly aged gasoline or diesel range compounds are significant in the gasoline chromatogram

c = aged diesel (?) is significant

d = lighter than water immisible sheen/product is present

## APPENDIX A

FIELD DATA SHEETS



## WELL GAUGING SHEET

|                  |             |                                                                                                                | AAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LL GA                                                       | UGIIN              | G SIII                             |                                                                            |
|------------------|-------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------|------------------------------------|----------------------------------------------------------------------------|
| Client:          | Conestoga-l | Rovers and A                                                                                                   | Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |                    |                                    |                                                                            |
| Site<br>Address: | 1750 Adam   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CA                                                          |                    |                                    |                                                                            |
| Date:            | 9/14/2009   |                                                                                                                | and the second s | Signature:                                                  |                    | By                                 |                                                                            |
|                  |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | 10                 | g fluinsag fluinsaccineissenscones |                                                                            |
| Well ID          | Time        | Depth to<br>SPH                                                                                                | Depth to<br>Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SPH<br>Thickness                                            | Depth to<br>Bottom |                                    | Comments                                                                   |
| Wh-5             | 10:40       |                                                                                                                | 6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | 23.19              | RW-1                               | DTU in u" Casing=6.53<br>DTW in 12" casing=6.50<br>DTB in 12" casing=10.23 |
| MH-3             | 10:45       |                                                                                                                | 6.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | 20.63              |                                    | Removed skimmer before                                                     |
| MW-5             | 10:35       |                                                                                                                | 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | 21.55              |                                    |                                                                            |
| RL-1             | 10:55       |                                                                                                                | 6.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | 10.25              |                                    |                                                                            |
| Rn-3             | 10:50       |                                                                                                                | 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MINISTER MANUFACTOR CONTROL SECTION S SAN HER WOOD ANNOUNCE | 12.15              |                                    |                                                                            |
|                  |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                    |                                    |                                                                            |
|                  |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                    |                                    |                                                                            |
|                  |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                    |                                    |                                                                            |
|                  |             | MAZATIRAA SARCIJASSA KARATIKA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                    |                                    |                                                                            |
|                  |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                    |                                    |                                                                            |
|                  |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                    |                                    |                                                                            |



| Date:         |                     | 9/14/2009         |                    |                      |                    |              |                                |                  |
|---------------|---------------------|-------------------|--------------------|----------------------|--------------------|--------------|--------------------------------|------------------|
| Client:       |                     | Conestoga-I       | Rovers and         | Associates           | 3                  |              |                                |                  |
| Site Addr     | ess:                | 1750 Adam         | s Avenue,          | San Leandi           | ro, CA             |              |                                |                  |
| Well ID:      |                     | MN-2              |                    |                      |                    |              |                                |                  |
| Well Dian     | neter:              | 2"                |                    |                      |                    |              |                                |                  |
| Purging D     | evice:              | Disposab          | le Baile.          | (                    |                    |              |                                |                  |
| Sampling      | Method:             | Disposable        | Bailer             |                      |                    |              |                                |                  |
| Total Wel     | l Depth:            |                   |                    | 23.19                | Fe=                | mg/L         |                                |                  |
| Depth to V    | Water:              |                   |                    | 6.85                 | ORP=               | mV           |                                |                  |
| Water Col     | umn Height          |                   |                    | 16.34                | DO=                | mg/L         |                                |                  |
| Gallons/ft    | :                   |                   |                    | 0.16                 |                    |              |                                |                  |
| 1 Casing      | Volume (gal         | ):                |                    | 2.61                 | COMMI              | ENTS:        |                                |                  |
| 3 Casing      | Volumes (ga         | al):              |                    | 7.83                 | very               | turbid, silt | Y                              |                  |
| TIME:         | CASING VOLUME (gal) | TEMP<br>(Celsius) | <sub>рН</sub> 7.75 | COND. (μS)           |                    |              |                                |                  |
| 11:50         | 6.0                 | 20.1              | 7.68               | 731                  |                    |              |                                |                  |
| 11:55         | 8,0                 | 19.8              | 7.75               | 725                  |                    |              |                                |                  |
|               |                     |                   |                    |                      |                    |              |                                |                  |
|               |                     |                   |                    |                      |                    |              |                                |                  |
| Sample<br>ID: | Sample Da           | ite:              | Sample Time:       | Container            | r Tyne             | Preservative | Analytes                       | Method           |
|               | 9/14/               |                   | 12:00              | 1L Amber<br>40 ml VO | ,                  | HCI, ICE     | TPHd,<br>TPHmo, TPHg,<br>BTEX, | 8015, 8021, 8260 |
| 1.12.0        | 111-11              | V · I             | 12.00              | 10 1111 70.          | £ 3.               | 1101, 101    | Napthalene                     |                  |
|               |                     |                   |                    |                      |                    |              |                                |                  |
|               |                     |                   |                    |                      |                    |              |                                |                  |
|               |                     |                   |                    |                      |                    |              |                                |                  |
|               |                     |                   |                    |                      |                    |              | ///                            | /                |
|               |                     |                   |                    |                      |                    | Signatu      | re:                            |                  |
|               |                     |                   |                    |                      | 45116 SSATES NACES | J.S.ittitu.  | -                              |                  |



| Date:           |                           | 9/14/2009   |            |            |                                     |                    |                       |                            |
|-----------------|---------------------------|-------------|------------|------------|-------------------------------------|--------------------|-----------------------|----------------------------|
| Client:         |                           | Conestoga-F | Rovers and | Associates |                                     |                    |                       |                            |
| Site Address:   | 1                         | 1750 Adams  | s Avenue,  | San Leandr | o, CA                               |                    | 8                     |                            |
| Well ID:        |                           | MW-3        |            |            |                                     |                    |                       |                            |
| Well Diameter:  |                           | 2"          |            |            |                                     |                    |                       |                            |
| Purging Device: | : 7                       | Disposal    | de Bai     | le,        |                                     |                    |                       |                            |
| Sampling Metho  | od: I                     | Disposable  | Bailer     |            | por orthogonal participation in the |                    |                       |                            |
| Total Well Dep  | th:                       |             |            | 20.63      | Fe=                                 | mg/L               |                       |                            |
| Depth to Water: |                           |             |            | 6.81       | ORP=                                | mV                 |                       |                            |
| Water Column    | Height:                   |             |            | 13.82      | DO=                                 | mg/L               |                       |                            |
| Gallons/ft:     |                           |             |            | 0.16       |                                     |                    |                       |                            |
| 1 Casing Volun  | ne (gal)                  | :           |            | 2.21       | COMME                               | ENTS:              |                       |                            |
| 3 Casing Volun  | nes (gal                  | ):          |            | 6.63       | very +                              | ents: whid, very s | ilty                  |                            |
| CAS             | SING                      | TEMP        |            | COND.      |                                     |                    |                       |                            |
|                 | (al)                      | (Celsius)   | pН         | (μS)       |                                     |                    |                       |                            |
| 12:15 2.        | 5                         | 21.7        | 704        | 700        |                                     |                    |                       |                            |
| 12:20 5.        | _                         | 21.7        | 7.11       | 709        |                                     |                    |                       |                            |
| 12:25 6.        | 5                         | 21.7        | 7.13       | 720        |                                     |                    |                       |                            |
|                 |                           |             |            |            |                                     |                    |                       |                            |
|                 |                           |             |            |            |                                     |                    |                       |                            |
| Sample          |                           |             | Sample     |            |                                     |                    |                       |                            |
| ID: Sam         | ple Dat                   | te:         | Time:      | Container  | Type                                | Preservative       | Analytes TPHd,        | Method<br>8015, 8021, 8260 |
| 0,12            | r                         |             |            | 1L Amber   |                                     |                    | TPHmo, TPHg,<br>BTEX. | 0013, 0021, 0200           |
| MN-3 9/         | 14/0                      | 9           | 12:30      | 40 ml VO.  | <u>A</u>                            | HCI, ICE           | Napthalene            |                            |
|                 |                           |             |            |            |                                     |                    |                       |                            |
|                 |                           |             |            |            |                                     |                    | -                     |                            |
|                 |                           |             |            |            |                                     |                    |                       |                            |
|                 |                           |             |            |            |                                     |                    |                       | 2                          |
|                 |                           |             |            |            |                                     |                    | A                     | Mes .                      |
|                 | alies Was all meeting del |             |            |            |                                     | Signatui           | re:                   |                            |



| Date:      |                           | 9/14/2009         |            |              |        |               |                                         |                            |
|------------|---------------------------|-------------------|------------|--------------|--------|---------------|-----------------------------------------|----------------------------|
| Client:    |                           | Conestoga-        | Rovers and | d Associates | S      |               |                                         |                            |
| Site Add   | ress:                     | 1750 Adam         | s Avenue,  | San Leand    | ro, CA |               |                                         |                            |
| Well ID:   |                           | MH-5              |            |              |        |               |                                         |                            |
| Well Diar  |                           | 2"                |            |              |        |               |                                         |                            |
| Purging D  | evice:                    | Disposa           | ble B      | Bailer       |        |               |                                         |                            |
| Sampling   |                           | Disposable        |            |              |        |               | *************************************** |                            |
| Total Wel  | l Depth:                  |                   |            | 21.55        | Fe=    | mg/L          |                                         |                            |
| Depth to   | Water:                    |                   |            | 6.14         | ORP=   | mV            |                                         |                            |
| Water Co.  | lumn Height               | t:                |            | 15.41        | DO=    | mg/L          |                                         |                            |
| Gallons/ft |                           |                   | 8          | 0.16         |        |               |                                         |                            |
| 1 Casing   | Volume (gal               | ):                |            | 2.46         | СОММЕ  | ENTS:         |                                         |                            |
| 3 Casing   | Volumes (ga               | al):              |            | 7.38         | very.  | tuibid, silty |                                         |                            |
| TIME:      | CASING<br>VOLUME<br>(gal) | TEMP<br>(Celsius) | pН         | COND.        |        |               |                                         |                            |
| 11:15      | 2.5                       | 21.4              | 7.19       | 783          |        |               |                                         |                            |
| 11:20      | 5.0                       | 21.7              | 7.20       | 777          |        |               |                                         |                            |
| 11:25      | 7.0                       | 21.0              | 7.19       | 785          |        |               |                                         |                            |
|            |                           |                   |            |              |        |               |                                         |                            |
|            |                           |                   | 22.200     |              |        |               |                                         |                            |
| Sample     |                           |                   | Sample     |              |        |               |                                         |                            |
| ID:        | Sample Da                 | ite:              | Time:      | Container    | Type   | Preservative  | Analytes TPHd.                          | Method<br>8015, 8021, 8260 |
| MW-5       | 9/14/                     | loa               | 11:30      | 1L Amber,    |        | HOLIOF        | TPHmo, TPHg,<br>BTEX,                   | 0015, 0021, 0200           |
| 1.16.2     | 9/14/                     | 79                | 11:30      | 40 ml VO     | A      | HCI, ICE      | Napthalene                              |                            |
|            |                           |                   |            |              |        |               |                                         |                            |
|            |                           |                   |            |              |        |               | -                                       |                            |
|            |                           |                   |            |              |        |               |                                         |                            |
|            |                           |                   |            |              |        |               |                                         | 10                         |
|            |                           |                   |            |              |        | Signatur      | /                                       |                            |
|            |                           |                   |            |              |        | Signatur      | " Al                                    |                            |



| 50 |
|----|
|    |
|    |
|    |
|    |
|    |
|    |



| STATE OF THE PARTY | The act associated to the advantage of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|----------------------------------------------|------------------|
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/14/2009                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conestoga-F                 | Rovers and                                | Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                     |                      |                                              |                  |
| Site Addı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ess:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1750 Adam                   | s Avenue,                                 | San Leandi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ro, CA                                |                      |                                              |                  |
| Well ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RN-2                        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| Well Diar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4"                          |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| Purging D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | evice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disposa                     | ble Bo                                    | uler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                      |                                              |                  |
| Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disposable                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| Total Wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                           | 12.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe=                                   | mg/L                 |                                              |                  |
| Depth to V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                           | 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORP=                                  | mV                   |                                              |                  |
| Water Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lumn Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ::                          |                                           | 5.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DO=                                   | mg/L                 |                                              |                  |
| Gallons/ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                           | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                      | ,                                            |                  |
| 1 Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volume (gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ):                          |                                           | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СОММЕ                                 | ENTS:                | . 11                                         |                  |
| 3 Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Volumes (ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nl):                        |                                           | 10.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | veryt                                 | ents:<br>-wbid, very | 3, 144                                       |                  |
| TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CASING<br>VOLUME<br>(gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEMP<br>(Celsius)           | рН                                        | COND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     |                      |                                              |                  |
| 12:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.0                        | 7.14                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| 12:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.5                        | 7.16                                      | 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                      |                                              |                  |
| 12:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.7                        | 7.12                                      | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                      |                                              |                  |
| 12:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-1                         |                                           | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                      |                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the state of t | averes and the last because | Sample                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
| ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ite:                        | Time:                                     | Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type                                  | Preservative         | Analytes TPHd,                               |                  |
| RH-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109                         | 00:1                                      | 1L Amber<br>40 ml VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | HCl, ICE             | TPHu,<br>TPHmo, TPHg,<br>BTEX,<br>Napthalene | 8015, 8021, 8260 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -                    | 3                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      |                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                      | 1                                            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the second s |                             | en la | The state of the s | A ALIFE TO THE PROPERTY OF THE PARTY. | Signatur             | e: ///                                       | 5                |

## McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD

PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com

Telephone: (877) 252-9262 Fax: (925) 252-9269

## CHAIN OF CUSTODY RECORD

TURN AROUND TIME

GeoTracker EDF 🞾 PDF 📮 Excel 📮 Write On (DW) 🖵

RUSH 24 HR 48 HR 72 HR 5 DAY

|                              |                                                                                                                     |                                   |              |                |                 |                             |      |        |          | _        |          |             |          |                   |               |                                                  |                                      |                                       |                                   |                                    |                                                   | C                              | hec                                   | k if                         | sam                             | ple            | is                                | effli                                       | uen                                         | t an                               | d "J" fla   | ag is    | required                        |
|------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|----------------|-----------------|-----------------------------|------|--------|----------|----------|----------|-------------|----------|-------------------|---------------|--------------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|---------------------------------------------------|--------------------------------|---------------------------------------|------------------------------|---------------------------------|----------------|-----------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|-------------|----------|---------------------------------|
| Report To: Boy               | Stora-Rovers & Associates  Hollis St. Ste A  E-Mail: Chee & Cramorld Com  Fax: (510) 420-9170  Project Name 510 077 |                                   |              |                | acc             | Analysis Request Other Comn |      |        |          |          |          |             | Comments |                   |               |                                                  |                                      |                                       |                                   |                                    |                                                   |                                |                                       |                              |                                 |                |                                   |                                             |                                             |                                    |             |          |                                 |
| Company: Cone 59(0)  Eme     | Storg-Rov<br>Hollis S<br>CXVIIIE                                                                                    | ers &                             | Asso.        | Cicto<br>E-Mai | il:             | 855<br>ee.                  | 80   | raw    | orto     | d-(      | Om<br>Om | 7           |          | 5)7               | 11 (c. ge)    | 520 E/B&F)                                       |                                      |                                       |                                   |                                    | Congonare                                         | 6                              |                                       |                              |                                 |                |                                   | 020)                                        | (20)                                        |                                    | 20          |          | Filter<br>Samples<br>for Metals |
| Project #: 6310              | V13                                                                                                                 |                                   | T D          | roise          | >IV             | ) L                         | 121  | -41    | TU       | _        | L        | Con         | man      | 8015)7            | 3             | 4/5                                              | 8.1)                                 | (8)                                   | \$02.1)                           | 1200                               | lore                                              |                                | (ag                                   |                              |                                 |                | (\$1                              | 9/0                                         | 09/0                                        |                                    | 70          |          | analysis:                       |
| Project Location:            | 1750 Ad                                                                                                             | 0 0 0                             | Aug          | C              | t Nar           | ne:                         | 2570 | 3.0    | 1        | M        | Kirs     | 5           | 700      | 21 +              | 于了            | (166                                             | s (41                                | HVC                                   | 8/20                              | dec (                              | Aro                                               |                                | hiri                                  |                              | 1                               | 6              | PN                                | 109                                         | 6010                                        | 6                                  | 75          |          | Yes / No                        |
| Sampler Signatur             | e: Mucko                                                                                                            | in En                             | viron        | ne i           | h. I            | $\lesssim$                  | VAN  | line   | 3        | X        |          |             |          | 2 / 80            | 7             | ease                                             | rbon                                 | 021 (                                 | PA 6                              | octic                              | .>                                                | cides                          | H                                     | 3                            |                                 | 3              | Hs                                | 90.8                                        | 0.8                                         | / 602                              | 8709E879    |          |                                 |
| 8                            | - TOO STON                                                                                                          | The same is not asked the same of | PLING        | T              | 1               | T                           | MA   | TRI    | 1        | 1        | MET      | НО          | D        | Gas (602 / 8021 + | 1             | & Gr                                             | roca                                 | 0 / 8                                 | N E                               | a la                               | 0                                                 | Pesti                          | 100                                   | 100                          | 13) 0                           | (2)            | 0 (PA                             | 7/2                                         | 7 / 20                                      | 2010                               | ا           |          |                                 |
|                              | LOCATION/                                                                                                           | SAMI                              | LING         | ers            | ainer           | $\vdash$                    | IVIA | IRI    | <u> </u> | PI       | RESI     | ERV         | ED       | as Gas            | (8015)        | m Oil                                            | m Hyd                                | 1 / 801                               | INC                               | 8081                               | , PCR                                             | NP                             | 1 (Acid                               | 4 / 826                      | 700/3                           | 170 / 0        | 1/831                             | ls (200.                                    | s (200.                                     | 00.8 / 6                           | Me          |          |                                 |
| SAMPLE ID                    | Field Point<br>Name                                                                                                 | Date                              | Time         | # Containers   | Type Containers | Water                       | Soil | Air    | Other    | ICE      | HCL      | HNO,        | Other    | BTEX & TPH        | TPH as Diesel | Total Petroleum Oil & Grease (1664 / 5520 E/B&F) | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (FPA 602 / 8021) | TPA 505/608 / 8081 (Cl Peeticides) | FPA 608 / 8082 PCR's ONI V. Aroclore / Conconsure | EPA 507 / 8141 (NP Pesticides) | FDA 515 / 8151 (Acidio Cl Herbicidae) | EPA 5247 / 624 / 8260 (VOCs) | (2001) 0226 / 363 / 6 363 v 453 | EFA 343.4 / 04 | EPA 8270 SIM / 8310 (PAHs / PNAs) | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) | Maptha lene |          |                                 |
| MN-2                         |                                                                                                                     | 9-14-09                           | 13.00        | 4              | Anh             | X                           |      |        |          | ×        | X        |             |          | X                 | X             |                                                  |                                      |                                       | -                                 |                                    | W 1800 E U 1800                                   |                                | HOMEOUT STATE                         | -                            |                                 | -              |                                   |                                             |                                             |                                    | X           |          |                                 |
| ML1-3                        |                                                                                                                     | 1                                 | 12:30        | 19             | I               | ff                          |      | $\top$ | $\top$   |          |          | -           |          | 1                 | $\forall$     | -                                                | $\vdash$                             | -                                     | +                                 | -                                  | +-                                                | +                              | +-                                    | -                            | -                               | +              | +                                 | -                                           |                                             |                                    | +           | $\dashv$ |                                 |
| MI I-C                       |                                                                                                                     |                                   | 11:30        |                | $H^-$           | H                           |      | +      |          |          | +        | -           | $\vdash$ | +                 | +             |                                                  | +-                                   | +                                     | +                                 | -                                  | +-                                                | +                              | +                                     | +                            | +                               | +              | +                                 |                                             | -                                           |                                    | +           | $\dashv$ |                                 |
| 1011                         |                                                                                                                     |                                   |              | $\vdash$       | $\vdash$        | H                           |      | -      | +        | H        | +        | -           | +        | +                 | +             | -                                                | -                                    | +                                     | +                                 | +-                                 |                                                   | -                              | -                                     |                              | +                               |                | -+                                |                                             |                                             | -                                  | +           | $\dashv$ |                                 |
| MW-3<br>MW-5<br>RW-1<br>RW-2 |                                                                                                                     |                                   | 1:30         | *              | 1               | H                           |      | +      | +        | H        | +        | -           | +        | +                 | 1             | -                                                | -                                    | +-                                    | -                                 | -                                  |                                                   | -                              | +-                                    |                              | +                               | -              | -                                 |                                             |                                             | -                                  | 1           | $\dashv$ |                                 |
| NN Z                         |                                                                                                                     | 1                                 | 1.00         | 1              | VOA             | K                           |      | +      | +        | 1        | K        | -           | $\vdash$ | 1                 | 1             |                                                  | -                                    | +-                                    | -                                 | +-                                 |                                                   | -                              | +                                     |                              | -                               | -              |                                   |                                             |                                             | -                                  | X           | $\dashv$ | 1. / /                          |
|                              |                                                                                                                     | 1                                 | (manager)    | -              | V 0/-           | F                           |      | +      | +        | 1        | 11       | -           | +        |                   |               | -                                                | -                                    | +                                     | +                                 | +-                                 | +=                                                | =                              | -                                     |                              | -                               | 4146           | -                                 |                                             |                                             |                                    |             | =        | HO/d                            |
|                              | -                                                                                                                   |                                   |              | -              |                 | -                           |      | -      | +-       | -        | -        | -           |          |                   |               |                                                  | -                                    | -                                     |                                   | -                                  | <del> </del>                                      |                                | _                                     |                              |                                 | -              | 4                                 |                                             |                                             | _                                  |             | _        |                                 |
|                              | -                                                                                                                   |                                   |              |                |                 | _                           |      | -      | _        | _        | -        | ļ           |          |                   |               |                                                  | -                                    | -                                     | -                                 |                                    |                                                   | _                              |                                       | _                            |                                 |                | _                                 |                                             |                                             |                                    |             |          |                                 |
|                              |                                                                                                                     |                                   |              |                |                 |                             |      |        |          |          | -        |             |          |                   |               |                                                  |                                      |                                       |                                   |                                    |                                                   |                                |                                       |                              |                                 |                |                                   |                                             |                                             |                                    |             |          |                                 |
|                              |                                                                                                                     |                                   |              |                |                 |                             |      |        |          | L        |          |             |          |                   |               |                                                  |                                      |                                       |                                   |                                    |                                                   |                                |                                       |                              |                                 |                |                                   |                                             |                                             |                                    |             |          |                                 |
|                              |                                                                                                                     |                                   |              |                |                 |                             |      |        |          |          |          |             |          |                   |               |                                                  |                                      |                                       |                                   |                                    |                                                   |                                |                                       |                              |                                 |                |                                   |                                             |                                             |                                    |             |          |                                 |
|                              |                                                                                                                     |                                   |              |                |                 |                             |      |        |          |          |          |             |          |                   |               |                                                  |                                      |                                       |                                   |                                    |                                                   |                                |                                       | 1                            |                                 |                |                                   |                                             |                                             |                                    |             |          |                                 |
|                              |                                                                                                                     |                                   |              |                |                 |                             |      | 1      |          | T        |          | ļ —         |          |                   |               |                                                  | 1                                    |                                       | 1                                 | 1                                  | 1                                                 |                                | 1                                     | 1                            | +                               | +              | 1                                 |                                             |                                             |                                    |             | 1        |                                 |
| (2)                          |                                                                                                                     |                                   |              |                | 1               | $\vdash$                    |      |        | +        | $\vdash$ |          | -           | $\Box$   |                   |               |                                                  |                                      | -                                     | +                                 | +                                  | +                                                 | +                              | +                                     | +-                           | +                               | +              | +                                 | -+                                          | -                                           | 1                                  |             | +        |                                 |
| Relinquished By:             |                                                                                                                     | Date: 9/14/0                      | Time: 3:1517 | Rece           | ived B          | yC                          |      | V      | l        | R        |          |             |          | GC                | E/t°_         | COI                                              | NDI                                  | TIO                                   | N_                                |                                    |                                                   |                                |                                       |                              |                                 |                |                                   |                                             | CON                                         | MMI                                | ENTS:       |          |                                 |
| Relinquished By:             |                                                                                                                     | Date:                             | Time:        | Rece           | eived B         |                             |      |        |          |          |          | ORDER STORE |          | DE<br>AP          | PRO           | LOR                                              | INA                                  | TEE<br>E CC                           | NI O                              | LAE                                | ERS                                               |                                |                                       |                              |                                 |                |                                   |                                             |                                             |                                    |             |          |                                 |
| Relinquished By:             |                                                                                                                     | Date:                             | Time:        | Rece           | eived B         | y:                          |      |        |          |          |          |             |          |                   |               | RVA                                              |                                      | V                                     |                                   | s (                                | <br>D&G                                           |                                | IET.<br>I<2                           | ALS                          | o                               | TH             | ER                                |                                             |                                             |                                    |             |          |                                 |

### APPENDIX B

LABORATORY ANALYTICAL REPORT S

## McCampbell Analytical, Inc. "When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Conestoga-Rovers & Associates | Client Project ID: #631000; Estes-GI | Date Sampled: 09/14/09   |
|-------------------------------|--------------------------------------|--------------------------|
| 5900 Hollis St, Suite A       | Trucking Company                     | Date Received: 09/14/09  |
| Emeryville, CA 94608          | Client Contact: Bob Foss             | Date Reported: 09/21/09  |
| Zanery vine, err 7 1000       | Client P.O.:                         | Date Completed: 09/21/09 |

WorkOrder: 0909379

September 21, 2009

| De | ar | R | പ | h | ٠ |
|----|----|---|---|---|---|
|    |    |   |   |   |   |

#### Enclosed within are:

- 5 analyzed samples from your project: #631000; Estes-GI Trucking Compa 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

N



## McCAMPBELL ANALYTICAL, INC.

1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262

Fax: (925) 252-9269

## CHAIN OF CUSTODY RECORD

|                  | <br> |  |
|------------------|------|--|
| TURN AROUND TIME |      |  |

48 HR 72 HR 5 DAY RUSH 24 HR

GeoTracker EDF A PDF Excel Write On (DW)

Check if sample is effluent and "J" flag is required Report To: Bob Bill To: Conestago-Rovers & Associates Analysis Request Other Comments Company: Conston-Rovers & Associates EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Filter Fotal Petroleum Oil & Grease (1664 / 5520 E/B&F) Samples E-Mail: CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) Fax: (510) 420-9170 Tele: (510 )420-3348 MTBE / BTEX ONLY (EPA 602 / 8021) analysis: Fotal Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) EPA 8270 SIM / 8310 (PAHs / PNAs) Project #: 631000 Project Name: Estes GI Towking Yes / No Lead (200.7 / 200.8 / 6010 / 6020) Project Location: 1750 Adams Ave. Leandro EPA 525.2 / 625 / 8270 (SVOCs) EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Environmental Sampler Signature: Muskam TPH as Diesel (8015)/m( METHOD MATRIX SAMPLING Type Containers PRESERVED # Containers LOCATION/ SAMPLE ID BTEX & TPH Field Point Sludge Water Name Time Date Other HNO3 ICE Soil Air MN-2 9-14-09 12:00 12:31 11:30 1:30 1:00 Relinquished By ICE/to GOC Date: Time: Received Byy COMMENTS: GOOD CONDITION HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION

## McCampbell Analytical, Inc.

1534 Willow Pass Rd

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 WorkOrder: 0909379 **ClientCode: CETE** (925) 252-9262 WaterTrax WriteOn **✓** EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Bill to: Report to: Requested TAT: 5 days bfoss@craworld.com, chee@craworld.c **Bob Foss** Email: Accounts Payable Conestoga-Rovers & Associates Conestoga-Rovers & Associates cc: Date Received: 09/14/2009 PO: 5900 Hollis St, Suite A 5900 Hollis St, Ste. A Emeryville, CA 94608 ProjectNo: #631000; Estes-GI Trucking Company Emeryville, CA 94608 Date Printed: 09/14/2009 (510) 420-3309 FAX (510) 420-9170 Requested Tests (See legend below) Lab ID **Client ID** Collection Date Hold 2 3 5 6 9 10 12 Matrix 1 11 0909379-001 MW-2 Water 9/14/2009 12:00 С Α В Α С 0909379-002 MW-3 9/14/2009 12:30 Α В Water 0909379-003 MW-5 Water 9/14/2009 11:30 Α В 0909379-004 RW-1 9/14/2009 13:30 Α В Water 0909379-005 RW-2 Water 9/14/2009 13:00 С Α В

#### Test Legend:

| 1  | 8260VOC_W | 2 G-MBTEX_W | 3 PREDF REP | ORT 4 TPH(DM | o)wsg_w 5                   |
|----|-----------|-------------|-------------|--------------|-----------------------------|
| 6  |           | 7           | 8           | 9            | 10                          |
| 11 |           | 12          |             |              |                             |
|    |           |             |             |              | Prepared by: Melissa Valles |

#### **Comments:**

## **Sample Receipt Checklist**

| Client Name:      | Conestoga-Rovers & A            | ssociates     |        |          | Date a        | and Time Received:   | 9/14/2009    | 4:55:16 PM     |
|-------------------|---------------------------------|---------------|--------|----------|---------------|----------------------|--------------|----------------|
| Project Name:     | #631000; Estes-GI Truc          | king Compa    | ny     |          | Check         | list completed and r | eviewed by:  | Melissa Valles |
| WorkOrder N°:     | <b>0909379</b> Matrix           | Water         |        |          | Carrie        | r: Client Drop-In    |              |                |
|                   |                                 | Chain d       | of Cu  | stody (C | OC) Informa   | ntion                |              |                |
| Chain of custody  | present?                        |               | Yes    | V        | No 🗆          |                      |              |                |
| Chain of custody  | signed when relinquished an     | d received?   | Yes    | V        | No 🗆          |                      |              |                |
| Chain of custody  | agrees with sample labels?      |               | Yes    | <b>✓</b> | No 🗌          |                      |              |                |
| Sample IDs noted  | by Client on COC?               |               | Yes    | <b>V</b> | No 🗆          |                      |              |                |
| Date and Time of  | collection noted by Client on C | OC?           | Yes    | <b>✓</b> | No 🗆          |                      |              |                |
| Sampler's name r  | noted on COC?                   |               | Yes    | <b>✓</b> | No 🗆          |                      |              |                |
|                   |                                 | Saı           | mple   | Receipt  | Information   | !                    |              |                |
| Custody seals in  | tact on shipping container/coo  | ler?          | Yes    |          | No 🗆          |                      | NA 🔽         |                |
| Shipping containe | er/cooler in good condition?    |               | Yes    | <b>V</b> | No 🗆          |                      |              |                |
| Samples in prope  | er containers/bottles?          |               | Yes    | <b>V</b> | No 🗆          |                      |              |                |
| Sample containe   | ers intact?                     |               | Yes    | <b>✓</b> | No 🗆          |                      |              |                |
| Sufficient sample | e volume for indicated test?    |               | Yes    | <b>✓</b> | No 🗌          |                      |              |                |
|                   | <u>Sa</u>                       | ımple Preserv | atior/ | n and Ho | old Time (HT) | ) Information        |              |                |
| All samples recei | ived within holding time?       |               | Yes    | <b>✓</b> | No 🗌          |                      |              |                |
| Container/Temp B  | Blank temperature               |               | Coole  | er Temp: | 6°C           |                      | NA $\square$ |                |
| Water - VOA vial  | ls have zero headspace / no b   | oubbles?      | Yes    | <b>V</b> | No 🗆          | No VOA vials subm    | itted 🗆      |                |
| Sample labels ch  | necked for correct preservation | า?            | Yes    | <b>✓</b> | No 🗌          |                      |              |                |
| TTLC Metal - pH   | acceptable upon receipt (pH<2   | 2)?           | Yes    |          | No 🗆          |                      | NA 🗹         |                |
| Samples Receive   | ed on Ice?                      |               | Yes    | <b>✓</b> | No 🗆          |                      |              |                |
|                   |                                 | (Ice Type:    | : WE   | TICE     | )             |                      |              |                |
| * NOTE: If the "N | No" box is checked, see comn    | nents below.  |        |          |               |                      |              |                |
| =====             | =======                         | =====         | ==     | ===      |               |                      | =====        | ======         |
|                   |                                 |               |        |          |               |                      |              |                |
| Client contacted: |                                 | Date contacte | d:     |          |               | Contacted            | by:          |                |
| Comments:         |                                 |               |        |          |               |                      |              |                |

| Conestoga-Rovers & Associates | Client Project ID: #631000; Estes-GI<br>Trucking Company | Date Sampled: 09/14/09   |
|-------------------------------|----------------------------------------------------------|--------------------------|
| 5900 Hollis St, Suite A       | Trucking Company                                         | Date Received: 09/14/09  |
|                               | Client Contact: Bob Foss                                 | Date Extracted: 09/15/09 |
| Emeryville, CA 94608          | Client P.O.:                                             | Date Analyzed 09/15/09   |

### Napthalene by P&T and GC/MS\*

Analytical methods SW8260B Extraction method SW5030B 0909379 Lab ID Client ID Matrix Naphthalene DF % SS Comments 001C MW-2 W ND 002C W 1 80 MW-3 ND 003C MW-5 W ND 1 78 004C RW-1 W ND b6 1 82 005C RW-2 W ND 1 81 b6 Reporting Limit for DF = 1; W 0.5  $\mu g/L$ 

| above the reporting limit                            | S               | NA                                             | NA                       |
|------------------------------------------------------|-----------------|------------------------------------------------|--------------------------|
| * water and vapor samples and all TCLP & SPLP extrac | ts are reported | in μg/L, soil/sludge/solid samples in μg/kg, w | ripe samples in μg/wipe, |

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or surrogate coelutes with another peak.

b6) lighter than water immiscible sheen/product is present

product/oil/non-aqueous liquid samples in mg/L.

| Conestoga-Rovers & Associates | Client Project ID: #631000; Estes-GI<br>Trucking Company | Date Sampled:   | 09/14/09          |
|-------------------------------|----------------------------------------------------------|-----------------|-------------------|
| 5900 Hollis St, Suite A       | Trucking Company                                         | Date Received:  | 09/14/09          |
|                               | Client Contact: Bob Foss                                 | Date Extracted: | 09/15/09-09/17/09 |
| Emeryville, CA 94608          | Client P.O.:                                             | Date Analyzed:  | 09/15/09-09/17/09 |

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 0909379

| Extraction | on method: SW5030B                             |        |        | Analyt | ical methods: S | SW8021B/8015 | Bm           |         | Wor | k Order: | )909379  |
|------------|------------------------------------------------|--------|--------|--------|-----------------|--------------|--------------|---------|-----|----------|----------|
| Lab ID     | Client ID                                      | Matrix | TPH(g) | MTBE   | Benzene         | Toluene      | Ethylbenzene | Xylenes | DF  | % SS     | Comments |
| 001A       | MW-2                                           | W      | ND     |        | ND              | ND           | ND           | ND      | 1   | 104      |          |
| 002A       | MW-3                                           | W      | ND     |        | ND              | ND           | ND           | ND      | 1   | 98       |          |
| 003A       | MW-5                                           | W      | ND     |        | ND              | ND           | ND           | ND      | 1   | 101      |          |
| 004A       | RW-1                                           | W      | 310    |        | ND              | ND           | ND           | ND      | 1   | 95       | d7,b6    |
| 005A       | RW-2                                           | W      | ND     |        | ND              | ND           | ND           | ND      | 1   | 96       | b6       |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            |                                                |        |        |        |                 |              |              |         |     |          |          |
|            | rting Limit for DF =1;                         | W      | 50     | 5.0    | 0.5             | 0.5          | 0.5          | 0.5     |     | μg/I     |          |
|            | eans not detected at or ve the reporting limit | S      | 1.0    | 0.05   | 0.005           | 0.005        | 0.005        | 0.005   |     | mg/k     | Zg       |

| * water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, | wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| TCLP & SPLP extracts in mg/L.                                                       |                                                                         |

<sup>#</sup> cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

- b6) lighter than water immiscible sheen/product is present
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram



<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

| Conestoga-Rovers & Associates | Client Project ID: #631000; Estes-GI | Date Sampled:   | 09/14/09          |
|-------------------------------|--------------------------------------|-----------------|-------------------|
| 5900 Hollis St, Suite A       | Trucking Company                     | Date Received:  | 09/14/09          |
|                               | Client Contact: Bob Foss             | Date Extracted: | 09/14/09          |
| Emeryville, CA 94608          | Client P.O.:                         | Date Analyzed:  | 09/18/09-09/19/09 |

#### Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up\*

Extraction method: SW3510C/3630C Analytical methods: SW8015B Work Order: 0909379 TPH-Diesel TPH-Motor Oil DF Lab ID Client ID Matrix % SS Comments (C10-C23) (C18-C36) 0909379-001B MW-2 W ND ND 96 0909379-002B MW-3 W ND ND 99 0909379-003B MW-5 W ND ND 102 0909379-004B RW-1 W 100,000 52,000 50 90 e1,b6 0909379-005B W 7200 4000 RW-2 99 e3,b6 Reporting Limit for DF = 1; 50 250 W μg/L ND means not detected at or S NA NA mg/Kg above the reporting limit

- b6) lighter than water immiscible sheen/product is present
- e1) unmodified or weakly modified diesel is significant
- e3) aged diesel is significant



<sup>\*</sup> water samples are reported in  $\mu$ g/L, wipe samples in  $\mu$ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu$ g/L.

<sup>#)</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

### **QC SUMMARY REPORT FOR SW8260B**

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45709 WorkOrder: 0909379

| EPA Method SW8260B            | Extrac | ction SW | 5030B  |        |        |        |        | 5        | Spiked Sar | nple ID | : 0909360-0  | )05B |
|-------------------------------|--------|----------|--------|--------|--------|--------|--------|----------|------------|---------|--------------|------|
| Analyte                       | Sample | Spiked   | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acc        | eptance | Criteria (%) | )    |
| 7 may to                      | μg/L   | μg/L     | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD   | RPD     | LCS/LCSD     | RPD  |
| tert-Amyl methyl ether (TAME) | ND<1.0 | 10       | 89.2   | 85.9   | 3.83   | 89.3   | 91.5   | 2.36     | 70 - 130   | 30      | 70 - 130     | 30   |
| Benzene                       | ND<1.0 | 10       | 98.9   | 94.7   | 4.30   | 111    | 114    | 2.78     | 70 - 130   | 30      | 70 - 130     | 30   |
| t-Butyl alcohol (TBA)         | 230    | 50       | 83     | 86.5   | 1.12   | 87.1   | 92.9   | 6.39     | 70 - 130   | 30      | 70 - 130     | 30   |
| Chlorobenzene                 | ND<1.0 | 10       | 88.7   | 84.7   | 4.59   | 102    | 105    | 3.29     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dibromoethane (EDB)       | ND<1.0 | 10       | 83.4   | 80.3   | 3.90   | 99.7   | 103    | 3.68     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dichloroethane (1,2-DCA)  | ND<1.0 | 10       | 94.6   | 89.5   | 5.49   | 101    | 103    | 1.25     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,1-Dichloroethene            | ND<1.0 | 10       | 108    | 104    | 4.49   | 106    | 109    | 3.24     | 70 - 130   | 30      | 70 - 130     | 30   |
| Diisopropyl ether (DIPE)      | ND<1.0 | 10       | 114    | 109    | 4.62   | 114    | 118    | 3.53     | 70 - 130   | 30      | 70 - 130     | 30   |
| Ethyl tert-butyl ether (ETBE) | ND<1.0 | 10       | 104    | 99.5   | 4.06   | 102    | 107    | 4.29     | 70 - 130   | 30      | 70 - 130     | 30   |
| Methyl-t-butyl ether (MTBE)   | ND<1.0 | 10       | 105    | 102    | 3.02   | 101    | 105    | 3.09     | 70 - 130   | 30      | 70 - 130     | 30   |
| Toluene                       | ND<1.0 | 10       | 86.7   | 82.5   | 5.03   | 104    | 108    | 3.91     | 70 - 130   | 30      | 70 - 130     | 30   |
| Trichloroethene               | ND<1.0 | 10       | 101    | 96.1   | 4.62   | 109    | 112    | 2.49     | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS1:                         | 99     | 25       | 99     | 99     | 0      | 77     | 77     | 0        | 70 - 130   | 30      | 70 - 130     | 30   |
| % SS2:                        | 103    | 25       | 101    | 101    | 0      | 101    | 102    | 0.998    | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS3:                         | 84     | 2.5      | 82     | 82     | 0      | 97     | 100    | 3.26     | 70 - 130   | 30      | 70 - 130     | 30   |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 45709 SUMMARY

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|------------------|--------------|-------------------|----------------|------------------|
| 0909379-001C | 09/14/09 12:00 PM | 1 09/15/09     | 09/15/09 3:14 PM | 0909379-002C | 09/14/09 12:30 PM | 09/15/09       | 09/15/09 3:58 PM |
| 0909379-003C | 09/14/09 11:30 AM | 09/15/09       | 09/15/09 4:42 PM | 0909379-004C | 09/14/09 1:30 PM  | 09/15/09       | 09/15/09 5:25 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

\* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



### QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45823 WorkOrder: 0909379

| EPA Method SW8260B            | Extrac  | ction SW | 5030B  |        |        |        |        | S        | Spiked Sar | nple ID | : 0909380-0  | 002B |
|-------------------------------|---------|----------|--------|--------|--------|--------|--------|----------|------------|---------|--------------|------|
| Analyte                       | Sample  | Spiked   | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acc        | eptance | Criteria (%) | 1    |
| , and yes                     | μg/L    | μg/L     | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD   | RPD     | LCS/LCSD     | RPD  |
| tert-Amyl methyl ether (TAME) | ND      | 10       | 84     | 86.8   | 3.21   | 90.4   | 91.1   | 0.748    | 70 - 130   | 30      | 70 - 130     | 30   |
| Benzene                       | ND      | 10       | 98.6   | 103    | 4.83   | 113    | 111    | 1.23     | 70 - 130   | 30      | 70 - 130     | 30   |
| t-Butyl alcohol (TBA)         | ND      | 50       | 89.4   | 94.1   | 5.13   | 95.3   | 91.4   | 4.15     | 70 - 130   | 30      | 70 - 130     | 30   |
| Chlorobenzene                 | ND      | 10       | 91.1   | 94.5   | 3.66   | 103    | 102    | 1.03     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dibromoethane (EDB)       | ND      | 10       | 95.9   | 98.8   | 2.97   | 104    | 101    | 2.69     | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,2-Dichloroethane (1,2-DCA)  | ND      | 10       | 91.5   | 95     | 3.70   | 101    | 101    | 0        | 70 - 130   | 30      | 70 - 130     | 30   |
| 1,1-Dichloroethene            | ND      | 10       | 94.6   | 100    | 5.55   | 110    | 106    | 4.28     | 70 - 130   | 30      | 70 - 130     | 30   |
| Diisopropyl ether (DIPE)      | ND      | 10       | 103    | 107    | 4.57   | 117    | 117    | 0        | 70 - 130   | 30      | 70 - 130     | 30   |
| Ethyl tert-butyl ether (ETBE) | ND      | 10       | 94.6   | 96.6   | 2.10   | 105    | 104    | 0.949    | 70 - 130   | 30      | 70 - 130     | 30   |
| Methyl-t-butyl ether (MTBE)   | 2.5     | 10       | 95.1   | 96.7   | 1.35   | 105    | 103    | 2.36     | 70 - 130   | 30      | 70 - 130     | 30   |
| Toluene                       | ND      | 10       | 95.5   | 99.5   | 4.11   | 108    | 106    | 1.37     | 70 - 130   | 30      | 70 - 130     | 30   |
| Trichloroethene               | ND      | 10       | 98.3   | 103    | 5.14   | 110    | 110    | 0        | 70 - 130   | 30      | 70 - 130     | 30   |
| %SS1:                         | 77      | 25       | 76     | 77     | 1.14   | 76     | 77     | 1.83     | 70 - 130   | 30      | 70 - 130     | 30   |
| % SS2:                        | 98      | 25       | 97     | 97     | 0      | 97     | 97     | 0        | 70 - 130   | 30      | 70 - 130     | 30   |
| % SS3:                        | 91.9776 | 2.5      | 93     | 98     | 5.28   | 95     | 95     | 0        | 70 - 130   | 30      | 70 - 130     | 30   |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 45823 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    | Lab ID | Date Sampled | Date Extracted | Date Analyzed |
|--------------|------------------|----------------|------------------|--------|--------------|----------------|---------------|
| 0909379-005C | 09/14/09 1:00 PM | M 09/15/09     | 09/15/09 6:09 PM |        |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

\* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.



QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45822 WorkOrder: 0909379

| EPA Method SW8021B/8015Bm Extraction SW5030B Sp |        |        |        |        |        |        |        |          |          |         | piked Sample ID: 0909379-001A |     |  |  |  |
|-------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|----------|----------|---------|-------------------------------|-----|--|--|--|
| Analyte                                         | Sample | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce     | eptance | Criteria (%)                  |     |  |  |  |
| Analyto                                         | μg/L   | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD | RPD     | LCS/LCSD                      | RPD |  |  |  |
| TPH(btex <sup>f</sup> )                         | ND     | 60     | 106    | 103    | 2.40   | 126    | 113    | 11.1     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |
| MTBE                                            | ND     | 10     | 105    | 102    | 2.61   | 106    | 98.2   | 7.45     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |
| Benzene                                         | ND     | 10     | 99.1   | 104    | 5.14   | 91.8   | 89.2   | 2.91     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |
| Toluene                                         | ND     | 10     | 97.3   | 102    | 5.22   | 98.2   | 87.9   | 11.1     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |
| Ethylbenzene                                    | ND     | 10     | 96.7   | 101    | 4.87   | 89.3   | 87.1   | 2.54     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |
| Xylenes                                         | ND     | 30     | 98.1   | 103    | 4.72   | 90.2   | 87.7   | 2.82     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |
| %SS:                                            | 104    | 10     | 97     | 99     | 2.57   | 106    | 96     | 10.5     | 70 - 130 | 20      | 70 - 130                      | 20  |  |  |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 45822 SUMMARY

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|------------------|--------------|-------------------|----------------|------------------|
| 0909379-001A | 09/14/09 12:00 PM | 09/17/09       | 09/17/09 2:28 PM | 0909379-002A | 09/14/09 12:30 PM | 09/16/09       | 09/16/09 5:47 PM |
| 0909379-003A | 09/14/09 11:30 AM | 09/16/09       | 09/16/09 2:06 AM | 0909379-004A | 09/14/09 1:30 PM  | I 09/17/09     | 09/17/09 2:13 AM |
| 0909379-005A | 09/14/09 1:00 PM  | 09/15/09       | 09/15/09 5:05 PM |              |                   |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.



QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 45772 WorkOrder 0909379

| EPA Method SW8015B   |        | 8      | Spiked San | nple ID: | : N/A  | RPD 30 |        |          |          |         |              |     |
|----------------------|--------|--------|------------|----------|--------|--------|--------|----------|----------|---------|--------------|-----|
| Analyte              | Sample | Spiked | MS         | MSD      | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acce     | eptance | Criteria (%) | ١   |
| , analyto            | μg/L   | μg/L   | % Rec.     | % Rec.   | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| TPH-Diesel (C10-C23) | N/A    | 1000   | N/A        | N/A      | N/A    | 84.6   | 84.8   | 0.239    | N/A      | N/A     | 70 - 130     | 30  |
| %SS:                 | N/A    | 2500   | N/A        | N/A      | N/A    | 83     | 83     | 0        | N/A      | N/A     | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 45772 SUMMARY

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|------------------|--------------|-------------------|----------------|------------------|
| 0909379-001B | 09/14/09 12:00 PM | 09/14/09       | 09/18/09 1:09 AM | 0909379-002B | 09/14/09 12:30 PM | 09/14/09       | 09/18/09 2:17 AM |
| 0909379-003B | 09/14/09 11:30 AM | 09/14/09       | 09/18/09 3:25 AM | 0909379-004B | 09/14/09 1:30 PM  | 09/14/09       | 09/19/09 4:11 AM |
| 0909379-005B | 09/14/09 1:00 PM  | 09/14/09       | 09/18/09 7:59 AM |              |                   |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



## APPENDIX C

STANDARD FIELD PROCEDURES

## Conestoga-Rovers & Associates

## STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

This document presents standard field methods for groundwater monitoring, purging and sampling, and well development. These procedures are designed to comply with Federal, State and local regulatory guidelines. Cambria's specific field procedures are summarized below.

### **Groundwater Elevation Monitoring**

Prior to performing monitoring activities, the historical monitoring and analytical data of each monitoring well shall be reviewed to determine if any of the wells are likely to contain non-aqueous phase liquid (NAPL) and to determine the order in which the wells will be monitored (i.e. cleanest to dirtiest). Groundwater monitoring should not be performed when the potential exists for surface water to enter the well (i.e. flooding during a rainstorm).

Prior to monitoring, each well shall be opened and the well cap removed to allow water levels to stabilize and equilibrate. The condition of the well box and well cap shall be observed and recommended repairs noted. Any surface water that may have entered and flooded the well box should be evacuated prior to removing the well cap. In wells with no history of NAPL, the static water level and total well depth shall be measured to the nearest 0.01 foot with an electronic water level meter. Wells with the highest contaminant concentrations shall be measured last. In wells with a history of NAPL, the NAPL level/thickness and static water level shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level meter and/or interface probe shall be thoroughly cleaned and decontaminated at the beginning of the monitoring event and between each well. Monitoring equipment shall be washed using soapy water consisting of Liqui-nox<sup>TM</sup> or Alconox<sup>TM</sup> followed by one rinse of clean tap water and then two rinses of distilled water.

## **Groundwater Purging and Sampling**

Prior to groundwater purging and sampling, the historical analytical data of each monitoring well shall be reviewed to determine the order in which the wells should be purged and sampled (i.e. cleanest to dirtiest). No purging or groundwater sampling shall be performed on wells with a measurable thickness of NAPL or floating NAPL globules. If a sheen is observed, the well should be purged and a groundwater sample collected only if no NAPL is present. Wells shall be purged either by hand using a disposal or PVC bailer or by using an aboveground pump (e.g. peristaltic or Wattera<sup>TM</sup>) or down-hole pump (e.g. Grundfos<sup>TM</sup> or DC Purger pump).

Groundwater wells shall be purged approximately three to ten well-casing volumes (depending on the regulatory agency requirements) or until groundwater parameters of temperature, pH, and conductivity have stabilized to within 10% for three consecutive readings. Temperature, pH, and conductivity shall be measured and recorded at least once per well casing volume removed. The total volume of groundwater removed shall be recorded along with any other notable physical characteristic such as color and odor. If required, field parameters such as turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) shall also be measured prior to collection of each groundwater sample.

Groundwater samples shall be collected after the well has been purged. If the well is slow to recharge, a sample shall be collected after the water column is allowed to recharge to 80% of the pre-purging static water level. If the well does not recover to 80% in 2 hours, a sample shall be collected once there is enough groundwater in the well. Groundwater samples shall be collected using clean disposable bailers or pumps (if an operating remediation system exists on site and the project manager approves of its use for sampling) and shall be decanted into clean containers supplied by the analytical laboratory. New latex gloves and disposable tubing or bailers shall be

## Conestoga-Rovers & Associates

used for sampling each well. If a PVC bailer or down-hole pump is used for groundwater purging, it shall be decontaminated before purging each well by using soapy water consisting of Liqui-nox<sup>TM</sup> or Alconox<sup>TM</sup> followed by one rinse of clean tap water and then two rinses of distilled water. If a submersible pump with non-dedicated discharge tubing is used for groundwater purging, both the inside and outside of pump and discharge tubing shall be decontaminated as described above.

### Sample Handling

Except for samples that will be tested in the field, or that require special handling or preservation, samples shall be stored in coolers chilled to 4° C for shipment to the analytical laboratory. Samples shall be labeled, placed in protective foam sleeves or bubble wrap as needed, stored on crushed ice at or below 4° C, and submitted under chain-of-custody (COC) to the laboratory. The laboratory shall be notified of the sample shipment schedule and arrival time. Samples shall be shipped to the laboratory within a time frame to allow for extraction and analysis to be performed within the standard sample holding times.

Sample labels shall be filled out using indelible ink and must contain the site name; field identification number; the date, time, and location of sample collection; notation of the type of sample; identification of preservatives used; remarks; and the signature of the sampler. Field identification must be sufficient to allow easy cross-reference with the field datasheet.

All samples submitted to the laboratory shall be accompanied by a COC record to ensure adequate documentation. A copy of the COC shall be retained in the project file. Information on the COC shall consist of the project name and number; project location; sample numbers; sampler/recorder's signature; date and time of collection of each sample; sample type; analyses requested; name of person receiving the sample; and date of receipt of sample.

Laboratory-supplied trip blanks shall accompany the samples and be analyzed to check for cross-contamination, if requested by the project manager.

#### Waste Handling and Disposal

Groundwater extracted during sampling shall be stored onsite in sealed U.S. DOT H17 55-gallon drums and shall be labeled with the contents, date of generation, generator identification, and consultant contact. Extracted groundwater may be disposed offsite by a licensed waste handler or may be treated and discharged via an operating onsite groundwater extraction/treatment system.

H:\- MGT IR Group Info\SOPs\Groundwater Monitoring and Sampling SOP 07-2005.doc