March 26, 1993 131.01.003 Alameda County Environmental Health Services Hazardous Materials Division 80 Swan Way Room 200 Oakland, California 94621 Attn: Ms. Susan Hugo QUARTERLY GROUNDWATER MONITORING REPORT FEBRUARY 1993 SAMPLING EVENT EMERY BAY PLAZA 1650 65TH STREET, EMERYVILLE, CALIFORNIA Dear Ms. Hugo: This letter presents data collected by PES Environmental, Inc. (PES) during the February 18, 1993 quarterly groundwater monitoring conducted at Emery Bay Plaza, located at 1650 65th Street in Emeryville, California (Plate 1). PES has been retained by Emery Bay Plaza to conduct groundwater monitoring at the site. PES also provides operation, maintenance and monitoring of a groundwater extraction and treatment system at the site. The purpose of the groundwater monitoring program at this site is to: (1) evaluate the presence of hydrocarbons in groundwater; (2) provide data to assess the performance and effectiveness of the groundwater remedial program; and (3) monitor seasonal water level variations at the site. The monitoring is performed in accordance with California Regional Water Quality Control Board (RWQCB) guidelines and the approved remedial action plan for this site. #### BACKGROUND Six monitoring wells and one extraction well were installed at the site (Plate 2) following removal of an on site underground storage tank (UST) in July 1987 and several offsite USTs in September and October 1989. Groundwater has been monitored since November, 1989. An activated carbon groundwater treatment system was installed and its operation was begun in December 1990. Discharges of treated groundwater are to the sanitary sewer under the authority of an East Bay Municipal Utility District wastewater discharge permit (Permit No. 502-45131). The present sampling is the fourteenth consecutive sampling event since groundwater monitoring was initiated, and the sixth to be conducted by PES. Ms. Susan Hugo March 26, 1993 Page 2 # **GROUNDWATER ELEVATIONS** # Water-level Measurement Procedures Prior to sampling, the groundwater level in each of the six monitoring wells was measured to a precision of 0.01 feet using an electronic water-level indicator. Prior to each measurement, the portion of the water-level indicator that was submerged in the well was cleaned with a mild detergent solution and rinsed with de-ionized water. #### Results Water-level data were converted to water-level elevations referenced to mean sea level (MSL). A groundwater elevation map constructed from the data is presented on Plate 3. An historical summary of groundwater elevations for wells at the site is presented in Table 1. Water levels have increased between 0.38 to 1.85 feet in all wells since November 1992. Based on measured water levels on February 18, 1993, groundwater flow direction at the site was calculated to be toward the southwest, with an approximate gradient of less than 0.01 foot per foot. This is generally consistent with historical groundwater flow direction and gradient. # GROUNDWATER SAMPLING AND ANALYTICAL TESTING # Sampling Protocol Groundwater samples were collected on February 18, 1993 by Blaine Tech Services, Inc. (Blaine Tech) from Monitoring Wells MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7. Prior to sampling, the groundwater was visually inspected to assess the presence of floating product. A minimum of three well volumes were evacuated prior to sampling using a teflon bladder pump. During pumping the discharge water was measured for pH, temperature, electrical conductivity and turbidity. Groundwater samples were collected with a clean teflon bailer and decanted into clean 40-milliliter glass vials with teflon lined caps. Samples were immediately labeled to designate sample number, time and date collected, and analysis requested, and stored in a chilled, thermally insulated cooler for transport to the analytical laboratory for chemical analysis. The information collected during the groundwater sampling and the chain of custody records are presented in a groundwater sampling report prepared by Blaine Tech, provided in Appendix A. Ms. Susan Hugo March 26, 1993 Page 3 A sample (sample 93049A) was collected on February 18, 1993 by PES from the extraction well (Well EW-1), to monitor chemical conditions of extracted groundwater. The sample was collected from a sample tap located on piping upstream of the treatment system. Water was purged from the sample tap for approximately one minute prior to collection of the sample. Three 40-milliliter glass vials with teflon-lined caps were filled directly from the sample tap. # **Analytical Program** Groundwater samples from all wells including the extraction well were sent to Coast-to-Coast Analytical Services, Inc. (Coast to Coast) in Benicia, California, a State-certified chemical analysis laboratory. Samples were analyzed for total petroleum hydrocarbons quantified as gasoline (TPH gas) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Test Method 5030/8260 and Cal DHS Draft TPH (Modified). # **Analytical Results** Detectable levels of TPH gas and BTEX were found in all wells except Well MW-6. Consistent with historical monitoring data, Well MW-2, located within the backfill of the soil excavation at the former onsite UST, exhibited the highest levels of dissolved hydrocarbons (TPH and BTEX). However, levels of all analytes in Well MW-2 were lower than in the November 10, 1992 sampling. Concentrations of detected analytes declined in all wells except for Wells MW-7 and EW-1. Analytical results for all wells, including historical monitoring results for the previous sampling events and relevant federal and state standards, are presented in Table 2. Laboratory reports and chain of custody records are provided in Appendix B. The distribution of hydrocarbons in groundwater at the site on February 18, 1993 is presented on Plate 4. Ms. Susan Hugo March 26, 1993 Page 4 # **SUMMARY** Groundwater elevations have increased since the November 10, 1992 sampling, and is likely due to substantial rainfall since late December. The groundwater flow direction continues to be southwest. All wells except Wells MW-7 and EW-1 show decreased levels of total petroleum hydrocarbons quantified as gasoline (TPH gas), benzene, toluene, ethylbenzene and total xylenes. If you have any questions or comments, please do not hesitate to call either of the undersigned. Yours very truly, PES ENVIRONMENTAL, INC. Paul R. Lohman Staff Engineer Robert S. Creps, P. E. Associate Engineer # Attachments: Table 1 Summary of Groundwater Elevations through February 1993 Table 2 Summary of Analytical Results for Groundwater Samples through February 1993 Plate 1 Site Location Map Plate 2 Well Location Map Plate 3 Groundwater Elevation Contours on February 18, 1993 Plate 4 Dissolved Hydrocarbons in Groundwater on February 18, 1993 Appendix A Groundwater Sampling Report Appendix B Analytical Laboratory Reports pc: Mr. Thomas Gram - P. O. Partners Ms. Lynn Tolin - Emery Bay Plaza Mr. Matt Dulka - Hanson, Bridgett, Marcus, Vlahos & Rudy Table 1. Summary of Groundwater Elevations Through February 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California | | | | (feet MSL) | (feet) | (feet MSL) | |---------|------------------------|------|------------|--------------|------------| | MW-2 | 21-Feb-90 | ES | 15.75 | 11.72 | 4.03 | | 19199 2 | 25-May-90 | ES | 15.75 | 11.83 | 3.92 | | | 29-Aug-90 | ES | | 11.72 | 4.03 | | | 29-Aug-90
29-Nov-90 | | 15.75 | | | | | | ES | 15.75 | 11.99 | 3.76 | | | 1-Mar-91 | ES | 15.79 | 12.87 | 2.92 | | | 28-May-91 | ES | 15.79 | 12.21 | 3.58 | | | 1-Aug-91 | ES | 15.79 | NA
11 70 | NA
1.21 | | | 27-Jan-92 | PES | 15.79 | 11.78 | 4.01 | | | 28-Feb-92 | PES | 15.79 | 11.70 | 4.09 | | | 28-May-92 | PES | 15.79 | 11.83 | 3.96 | | | 27-Aug-92 | PES | 15.79 | 12.28 | 3.51 | | | 10-Nov-92 | PES | 15.79 | 12.40 | 3.39 | | | 18-Feb-93 | PES | 15.79 | 12.00 | 3.79 | | MW-3 | 21-Feb-90 | ES | 12.45 | 9.18 | 3.27 | | | 25-May-90 | ES | 12.45 | 9.25 | 3.20 | | | 29-Aug-90 | ES | 12.45 | 9.50 | 2.95 | | | 29-Nov-90 | ES | 12.45 | 9.80 | 2.65 | | | 1-Mar-91 | ES - | 12.43 | 9.51 | 2.92 | | | 28-May-91 | ES | 12.43 | 9.03 | 3.40 | | | 1-Aug-91 | ES | 12.43 | NA | NA | | | 27-Jan-92 | PES | 12.43 | 9.44 | 2.99 | | | 28-Feb-92 | PES | 12.43 | 8.80 | 3.63 | | | 28-May-92 | PES | 12.43 | 8.80 | 3.63 | | | 27-Aug-92 | PES | 12.43 | 9.18 | 3.25 | | | 10-Nov-92 | PES | 12.43 | 9.44 | 2.99 | | | 18-Feb-93 | PES | 12.43 | 7.59 | 4.84 | | MW-4 | 21-Feb-90 | ES | 12.24 | 8.63 | 3.61 | | | 25-May-90 | ES | 12.24 | 8.58 | 3.66 | | | 29-Aug-90 | ES | 12.24 | 8.50 | 3.74 | | | 29-Nov-90 | ES | 12.24 | 8.74 | 3.50 | | | 1-Mar-91 | ES | 12.24 | 8.65 | 3.59 | | | 28-May-91 | ES | 12.24 | 8.57 | 3.67 | | | 1-Aug-91 | ES | 12.24 | NA | NA | | | 27-Jan-92 | PES | 12.24 | 8.62 | 3.62 | | | 28-Feb-92 | PES | 12.24 | 8.52 | 3.72 | | | 28-May-92 | PES | 12.94 | 8.35 | 3.89 | | | 27-Aug-92 | PES | 12.24 | 9.00 | 3.24 | | | 10-Nov-92 | PES | 12.24 | 9.00
8.85 | 3.39 | | | 18-Feb-93 | | | | 4.07 | | | 10-140-33 | PES | 12.24 | 8.17 | 4.07 | 13101031.X01 1 of 2 Table 1. Summary of Groundwater Elevations Through February 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California | | | | (feet MSL) | (feet) | (feet MSL) | |------|-----------|-----|------------|--------|------------| | MW-5 | 21-Feb-90 | ES | 12.81 | 6.91 | 5.90 | | | 25-May-90 | ES | 12.81 | 7.58 | 5.23 | | | 29-Aug-90 | ES | 12.81 | 7.75 | 5.06 | | | 29-Nov-90 | ES | 12.81 | 8.17 | 4.64 | | | 1-Mar-91 | ES | 12.82 | 8.11 | 4.71 | | | 28-May-91 | ES | 12.82 | 7.39 | 5.43 | | | 1-Aug-91 | ES | 12.82 | NA | NA | | | 27-Jan-92 | PES | 12.82 | 7.90 | 4.92 | | | 28-Feb-92 | PES | 12.82 | 7.73 | 5.09 | | | 28-May-92 | PES | 12.82 | 7.18 | 5.64 | | | 27-Aug-92 | PES | 12.82 | 7.54 | 5.28 | | | 10-Nov-92 | PES | 12.82 | 7.90 | 4.92 | | | 18-Feb-93 | PES | 12.82 | 6.58 | 6.24 | | MW-6 | 1-Mar-91 | ES | 12.03 | 8.59 | 3.44 | | | 28-May-91 | ES | 12.03 | 8.35 | 3.68
 | | 1-Aug-91 | ES | 12.03 | NA | NA | | | 27-Jan-92 | PES | 12.03 | 8.32 | 3.71 | | | 28-Feb-92 | PES | 12.03 | 8.08 | 3.95 | | | 28-May-92 | PES | 12.03 | 8.04 | 3.99 | | | 27-Aug-92 | PES | 12.03 | 8.48 | 3.55 | | | 10-Nov-92 | PES | 12.03 | 8.52 | 3.51 | | | 18-Feb-93 | PES | 12.03 | 8.14 | 3.89 | | MW-7 | 1-Mar-91 | ES | 12.9 | 7.51 | 5.39 | | • | 28-May-91 | ES | 12.9 | 7.07 | 5.83 | | | 1-Aug-91 | ES | 12.9 | NA | NA | | | 27-Jan-92 | PES | 12.9 | 7.28 | 5.62 | | | 28-Feb-92 | PES | 12.9 | 7.04 | 5.86 | | | 28-May-92 | PES | 12.9 | 6.81 | 6.09 | | | 27-Aug-92 | PES | 12.9 | 7.12 | 5.78 | | | 10-Nov-92 | PES | 12.9 | 7.80 | 5.10 | | | 18-Feb-93 | PES | 12.9 | 6.54 | 6.36 | NOTES: Ft MSL = feet above Mean Sea Level ES = Engineering-Science, Inc. PES = PES Environmental, Inc. NA = Information not available at this date. Table 2. Summary of Analytical Results for Groundwater Samples Through February, 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California | Well
Number | Sample
Date | Sampled
by | TPH as
Gasoline | TPH as
Diesel | Benzene | Toluene | Ethyl-
Benzene | Total
Xylenes | Purgeable
Halocarbons | Lead | |----------------|----------------|---------------|--------------------|------------------|------------|-----------|-------------------|------------------|--------------------------|------------| | | | | | | MCL = 0.00 | DAL = 0.1 | MCL = 0.68 | MCL = 1.75 | | MCL = 0.00 | | MW-2 | Nov-89 | ES | 100 | NA | 8.4 | 7.4 | 2.4 | 13 | 0.015 * | 0.05 | | 101 44 - 2 | Feb-90 | ES | 54 | NA | 7.8 | 5.6 | 1.6 | 8.4 | 0.032 * | 0.021 | | | May-90 | ES | 40 | NA | 7.8 | 7.5 | 1.6 | 7.6 | 0.076 * | 0.025 | | | Aug-90 | ES | 49 | 4.6 | 9 | 8 | ND | 8.9 | 0.040 * | 0.0059 | | | Nov-90 | ES | 73 | 3.5 | 6.9 | 5.9 | 1.4 | 7.4 | NA | NA | | | Mar-91 | ES | 73
72 | 1.8 | 5.5 | 6.6 | 1 | 7.7 | NA | NA | | | May-91 | ES | 31 | ND | 8.4 | 4.7 | 1.7 | 6.3 | NA | NA | | | Aug-91 | ES | 47 | ND | 7.6 | 1.6 | 7.3 | 7.8 | NA | NA | | | Jan-92 | PES | 77 | NA | 10 | 8.7 | 2 | 7.6 | NA | NA | | | 28-Feb-92 | PES | 70 | NA | 9.1 | 6.4 | 0.53 | 7.4 | NA | NA | | | 28-May-92 | PES | 54 | NA | 8.0 | 4.8 | 2.4 | 6.2 | NA | NA | | | 27-Aug-92 | PES | 47 | NA | 2.7 | 2.9 | 3.4 | 9.2 | NA | NA | | | 10-Nov-92 | PES | 45 | < 20 | 6.6 | 4.0 | 2.0 | 5.8 | < 0.05 | NA | | | 18-Feb-93 | PES | 14 | NA | 2.3 | 0.81 | 0.67 | 1.4 | NA | NA | | MW-3 | Nov-89 | ES | 0.13 | NA | 0.0022 | ND | ND | 0.003 | ND | ND | | 101111 | Feb-90 | ES | ND | NA | 0.0025 | ND | ND | ND | NA | 0.011 | | | May-90 | ES | ND | ND | 0.002 | ND | ND | ND | ND | NA | | | Aug-90 | ES | ND | 0.8 | 0.0044 | 0.0029 | ND | 0.0054 | NA | NA | | | Nov-90 | ES | 0.9 | 0.8 | 0.0034 | ND | ND | ND | NA | NA | | | Mar-91 | ES | ND | ND | 0.025 | 0.025 | 0.0053 | 0.32 | NA | NA | | | May-91 | ES | ND | ND | 0.0026 | ND | ND | ND | NA | NA | | | Aug-91 | ES | ND | ND | 0.0019 | ND | ND | ND | NA | NA | | | Jan-92 | PES | 0.092 | NA | 0.0024 | < 0.0003 | 0.0006 | < 0.0003 | NA | NA | | | 28-Feb-92 | PES | 0.160*** | NA | 0.0028 | < 0.0003 | 0.0007 | 0.0005 | NA | NA | | | 28-May-92 | PES | < 0.05 | NA | 0.0025 | < 0.0005 | < 0.0005 | < 0.0005 | NΑ | NA | | | 27-Aug-92 | PES | 0.37 | NA | 0.004 | < 0.001 | < 0.0005 | < 0.0005 | NA | NA | | | 10-Nov-92 | PES | 0.24 | < 0.1 | 0.0042 | < 0.0003 | < 0.0003 | < 0.0006 | < 0.0003 | NA | | | 18-Feb-93 | PES | 0.14 | NA | 0.0018 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | Table 2. Summary of Analytical Results for Groundwater Samples Through February, 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California | Well
Number | Sample
Date | Sampled
by | TPH as
Gasoline | TPH as
Diesel | Benzene | Toluene | Ethyl-
Benzene | Total
Xylenes | Purgeable
Halocarbons | Lead | |----------------|----------------|---------------|--------------------|------------------|------------|-----------|-------------------|------------------|--------------------------|-------------------| | | | | | | MCL = 0.00 | DAL = 0.1 | MCL = 0.68 | MCL = 1.75 | | MCL = 0.00 | | MW-4 | Nov-89 | ES | 0.2 | NA | 0.0023 | ND | ND | ND | ND | ND | | IA! AA+ | Feb-90 | ES | ND | NA | ND | ND | ND | ND | NA | 0.006 | | | May-90 | ES | ND | ND | 0.001 | ND | ND | ND | ND | NA | | | Aug-90 | ES | ND | 0.8 | 0.0089 | 0.0071 | ND | 0.0094 | NA | NA | | | Nov-90 | ES | ND | 0.7 | 0.0027 | ND | ND | ND | NA | NA | | | Mar-91 | ES | NA | ND | 0.003 | ND | ND | ND | NA | NA | | | Maγ-91 | ES | NA
NA | ND | 0.0024 | ND | ND | ND | NA | NA | | | Aug-91 | ES | NA | ND | 0.0015 | ND | ND | ND | NA | NA | | | Jan-92 | PES | < 0.05 | NA | 0.0022 | 0.0004 | < 0.0003 | 0.0007 | NA | NA | | | 28-Feb-92 | PES | < 0.05 | NA | 0.0016 | < 0.0003 | < 0.0003 | 0.0003 | NA | NA | | | 28-May-92 | PES | < 0.05 | NA | 0.0015 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | | | 27-Aug-92 | PES | 0.08 | NA | 0.003 | < 0.001 | < 0.0005 | 0.0005 | NA | NA | | | 10-Nov-92 | PES | 0.18 | <0.1 | 0.06 | 0.0009 | < 0.0003 | < 0.0006 | < 0.0003 | NA | | | 18-Feb-93 | PES | 0.06 | NA | 0.0017 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | | MW-5 | Nov-89 | ES | ND | NA | 0.074 | ND | ND | 0.0042 | ND | ND | | | Feb-90 | ES | ND | NA | 0.2 | ND | ND | ND | NA | 0.012 | | | May-90 | ES | ND | ND | 0.11 | ND | ND | ND | ND | NA | | | Aug-90 | ES | ND | 0.7 | 0.066 | 0.0022 | ND | 0.0038 | NA | NA | | | Nov-90 | ES | 0.6 | 0.9 | 0.069 | ND | ND | ND | NA | NA | | | Mar-91 | ES | ND | 1.1 | 0.066 | 0.0023 | ND | ND | NA | NA | | | May-91 | ES | ND | ND | 0.11 | ND | ND | ND | NA | NA | | | Aug-91 | ES | ND | ND | 0.078 | 0.0021 | ИD | ND | NA | NA | | | Jan-92 | PES | 0.19 | NA | 0.09 | 0.0005 | < 0.0003 | 0.0006 | NA | NA | | | 28-Feb-92 | PES | 0.23*** | NA | 0.11 | 0.0009 | < 0.0003 | 0.0005 | NA | NA | | | 28-May-92 | PES | 0.13 | NA | 0.10 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | | | 27-Aug-92 | PES | 0.52 | NA | 0.083 | 0.002 | < 0.0005 | < 0.0005 | NA | NA | | | 10-Nov-92 | PES | 0.24 | < 0.1 | 0.074 | 0.001 | < 0.0003 | < 0.0006 | < 0.0003 | NA | | 1310103 | 18-Feb-93 | PES | 0.19 | NA | 0.056 | 0.0006 | < 0.0005 | <0.0005 | NA | NA
Page 2 of 5 | Table 2. Summary of Analytical Results for Groundwater Samples Through February, 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California | Well
Number | Sample
Date | Sampled by | TPH as
Gasoline | TPH as
Diesel | | Toluene | Ethyl-
Benzene | Total
Xylenes | Purgeable
Halocarbons | Lead | |----------------|----------------|------------|--------------------|------------------|--------------|-----------|-------------------|------------------|--------------------------|------------| | | | | <u> </u> | | MCL = 0.00 | DAL = 0.1 | MCL = 0.68 | MCL = 1.75 | | MCL = 0.00 | | | | _ | | | | ND | ND | ND | ND | ND** | | MW-6 | May-90 | ES | NA | ND | ND | ND | ND | ND | NA
NA | ND** | | | Aug-90 | ES | NA | ND | NA
0.0010 | NA | NA | NA
ND | 0.0012 | NA
NA | | | Nov-90 | ES | 1.2 | 1.4 | 0.0012 | ND | ND | ND | | | | | Mar-91 | ES | ND | ND | ND | ND | ND | ND | NA | NA | | | May-91 | ES | ND | ND | ND | ND | ND | ND | NA | NA | | | Aug-91 | ES | ND | ND | ND | ND | ND | ND | NA | NA | | | Jan-92 | PES | < 0.05 | NA | < 0.0003 | < 0.0003 | < 0.0003 | < 0.0003 | NA | NA | | | 28-Feb-92 | PES | < 0.05 | NA | < 0.0003 | < 0.0003 | < 0.0003 | < 0.0003 | NA | NA | | | 28-May-92 | PES | < 0.05 | NA | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | | | 27-Aug-92 | PES | <0.05*** | NA | < 0.0005 | < 0.001 | < 0.0005 | < 0.0005 | NA | NA | | | 10-Nov-92 | PES | < 0.050 | < 0.1 | < 0.0003 | < 0.0003 | < 0.0003 | < 0.0006 | < 0.0003 | NA | | | 18-Feb-93 | PES | < 0.050 | NA | < 0.0005 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | | MW-7 | May-90 | ES | NA | 0.6 | 0.24 | ND | ND | ND | 0.24 | ND * * | | | Aug-90 | ES | ND | ND | 0.081 | 0.0018 | ND | ND | 0.0844 | ND** | | | Nov-90 | ES | ND | 8.0 | 0.054 | ND | ND | ND | 0.054 | NA | | | Mar-91 | ES | ND | ND | 0.1 | 0.0036 | ND | ND | NA | NA | | | May-91 | ES | ND | ND | 0.12 | 0.0027 | ND | ND | NA | NA | | | Aug-91 | ES | ND | ND | 0.074 | 0.0033 | ND | ND | NA | NA | | | Jan-92 | PES | 0.27 | NA | 0.025 | 0.0005 | < 0.0003 | 0.0008 | NA | NA | | | 1-Feb-92 | PES | 0.1*** | NA | 0.033 | 0.0007 | < 0.0003 | 0.0007 | NA | NA | | | 28-May-92 | PES | 0.15 | NA | 0.021 | < 0.0005 | < 0.0005 | < 0.0005 | NA | NA | | | 27-Aug-92 | PES | 0.44 | NA | 0.011 | 0.001 | < 0.0005 | < 0.0005 | NA | NA | | | 10-Nov-92 | PES | 0.37 | < 0.1 | 0.031 | 0.0012 | < 0.0003 | 0.0012 | < 0.0003 | NA | | | 18-Feb-93 | PES | 0.27 | NA | 0.077 | 0.0013 | < 0.0005 | 0.0014 | NA | NA | Table 2. Summary of Analytical Results for Groundwater Samples Through February, 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California | Well
Number | Sample
Date | Sampled
by | TPH as
Gasoline | TPH as
Diesel | Benzene | Toluene | Ethyl-
Benzene | Total
Xylenes | Purgeable
Halocarbons | Lead | |----------------|----------------|---------------|--------------------|------------------|------------|-----------|-------------------|------------------|--------------------------|------------| | | | <u> </u> | | | MCL = 0.00 | DAL = 0.1 | MCL = 0.68 | MCL = 1.75 | | MCL = 0.00 | | | | | | | | | _ | | 0.000 | LIDES | | EW-1 | May-90 | EŞ | 20 | ND | 7.5 | 4.5 | 1 | 6.3 | 0.068 | ND * * | | | Aug-90 | ES | NA | 3.5 | 6 | 4.2 | ND | 4.6 | 0.016 * | ND** | | | Nov-90 | ES | 47 | 3.1 | 6 | 3.4 | 1 | 4.7 | NA | NA | | | 17-Dec-90 | ES | NA | NA | 11 | 7.9 | 2.2 | 10 | NA | NA | | | 19-Dec-90 | ES | NA | NA | 3.7 | 2.5 | ND | 2.3 | NA | NA | | | 21-Dec-90 | ES | NA | NA | 3.2 | 2.2 | ND | 1.7 | NA | NA | | | 27-Dec-90 | ES | NA | NA | 2.9 | 2.1 | 0.16 | 1.5 | NA | NA | | | 4-Jan-91 | ES | NA | NA | 3.2 | 2.8 | ND | ND | NA | NA | | | 11-Jan-91 | ES | NA | NA | 3 | 2.4 | 0.2 | 1.8 | NA | NA | | | 6-Feb-91 | ES | NA | NA | 0.47 | 0.23 | 0.011 | 0.39 | NA | NA | | | 13-Feb-91 | ES | NA | NA | 1.2 | 0.28 | ND | 0.36 | NA | NA | | | 15-Mar-91 | ES | NA | NA | 0.13 |
0.085 | 0.006 | 0.17 | NA | NA | | | 3-Jul-91 | €S | NA | NA | 1.3 | 0.95 | 0.22 | 1.4 | NA | NA | | | 1-Aug-91 | ES | NA | NA | 0.22 | 0.19 | 0.013 | 0.27 | NA | NA | | | 16-Aug-91 | ES | NA | NA | 0.17 | 0.16 | 0.013 | 0.19 | NA | NA | | | 13-Nov-91 | ES | NA | NA | 3.1 | 0.27 | 0.04 | 0.22 | NA | NA | | | 29-Jan-92 | PES | 2.7 | NA | 0.57 | 0.15 | 0.007 | 0.26 | NA | NA | | | 3-Mar-92 | PES | 25 | NA | 3.6 | 2.6 | 0.53 | 2.6 | NA | NA | | | 28-May-92 | PES | 16 | NA | 3.3 | 3.2 | 0.75 | 2.6 | NA | NA | | | 29-Jun-92 | PES | 7 | NA | 2.2 | 3.1 | 0.27 | 1.4 | NA | NA | | | 21-Jul-92 | PES | 1.6 | NA | 0.22 | 0.017 | < 0.0005 | 0.1 | NA | NA | | | 27-Aug-92 | PES | NS | | 23-Sep-92 | PES | 5.2 | NA | 1.1 | 0.59 | 0.1 | 1.0 | NA | NA | | | 27-Oct-92 | PES | 1.3 | NA | 0.22 | 0.06 | 0.005 | 0.11 | NA | NA | | | 24-Nov-92 | PES | 7.1 | NA | 1.4 | 1.1 | 0.12 | 0.89 | NA | NA | | | 18-Feb-93 | PES | 7.2 | NA | 1.4 | 0.93 | 0.21 | 1 | NA NA | NA | PES Environmental, Inc. # Table 2. Summary of Analytical Results for Groundwater Samples Through February, 1993 Emery Bay Plaza 1650 65th Street, Emeryville, California Concentrations expressed in milligrams per liter (mg/l) - equivalent to parts per million (ppm) | Well
Number | Sample
Date | Sampled
by | TPH as
Gasoline | TPH as
Diesel | Benzene | Toluene | Ethyl-
Benzene | Total
Xylenes | Purgeable
Halocarbons | Lead | |----------------|----------------|---------------|--------------------|------------------|------------|-----------|-------------------|------------------|--------------------------|------------| | | | -, | | ħ | MCL = 0.00 | DAL = 0.1 | MCL = 0.68 | MCL = 1.75 | | MCL = 0.00 | NOTES: * = 1,2-Dichlorethane concentration (only 1,2-Dichloroethane detected). ** = Organic Lead *** = TPH quantified as gasoline but chromatogram pattern was not typical of gasoline. **** = Small amount of Diesel 2 was detected in sample. ES = Engineering-Science, Inc. PES = PES Environmental, Inc. NA = Not analyzed ND = Not detected above method detection limit. NS = Not sampled. < 0.0005 = Not detected above indicated method detection limit. MCL = California Maximum Contaminant level, current as of January 1991. DAL = Department of Health Services Action Levels, current as of January 1991. TPH = Total Petroleum Hydrocarbons **PES Environmental, Inc.**Engineering & Environmental Services Site Location Map 1650 65th Street Emeryville, California • JOB NUMBER 131.01.003 REVIEWED BY DATE 3/93 REVISED DATE REVISED DATE **PES Environmental, Inc.**Engineering & Environmental Services Well Location Map 1650 65th Street Emeryville, California JOB NUMBER 131.01.003 REVIEWED BY DATE 3/93 REVISED DATE REVISED DATE PES Environmental, Inc. Engineering & Environmental Services Groundwater Elevation Contours on February 18, 1993 1650 65th Street Emeryville, California 3 JOB NUMBER 131.01.003 **REVIEWED BY** DATE 3/93 REVISED DATE REVISED DATE Engineering & Environmental Services Dissolved Hydrocarbons in Groundwater on February 18, 1993 1650 65th Street Emeryville, California REVISED DATE REVISED DATE REVIEWED BY DATE 3/93 # BLAINE TECH SERVICES INC. 985 TIMOTHY DRIVE SAN JOSE, CA 95133 (408) 995-5535 FAX (408) 293-8773 February 23, 1993 PES Environmental, Inc. 1682 Novato Blvd., Suite 100 Novato, CA 94947 Attn: Paul Lowman SITE: PO Partners 1650 65th Street Emeryville, California SAMPLING EVENT: Evacuate and sample seven wells DATE: February 18, 1993 # **GROUNDWATER SAMPLING REPORT 930218-A-1** Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. does not participate in the interpretation of analytical results or become involved with the marketing or installation of remedial systems. This report deals with the groundwater well sampling performed by our firm in response to your request. Data collected in the course of our work at the site is presented in the TABLE OF WELL MONITORING DATA. This data was collected during our inspection, well evacuation, and sample collection. Measurements include the total depth of the well and depth to water. Water surfaces were further inspected for the presence of immiscibles. A series of electrical conductivity, pH, and temperature readings were obtained during well evacuation and at the time of sample collection. Recharge performance can be evaluated by comparing the anticipated three, four, or five case volume evacuation gallonage with the volume which could actually be purged. # TABLE OF WELL MONITORING DATA | Well I.D. | MW-2 | | | MW-3 | | | MW = 4 | | | MW-5 | MW-5 | | | |-------------------------------|---------|----------|-------|--------|----------|-------|----------------|-----------------|-------|-----------------|-----------------|-------|--| | Date Sampled | 02/18/9 | 3 | | 02/18/ | 93 | | 02/18/9 | 3 | | 02/18/ | 93 | | | | | | | | | | | | | | | | | | | Well Diameter (in.) | 2 | | | 4 | | | 4 | | | 4 | | | | | Total Well Depth (ft.) | 26.66 | | | 18.45 | | | 15.94 | | | 18.0 | | | | | Depth To Water (ft.) | 12.00 | | | 7,59 | | | 8.17 | | | 6.58 | | | | | Free Product (in.) | NONE | | | NONE | | | NONE | | | NONE | | | | | Reason If Not Sampled | | | | | | | | | | | | | | | 1 Case Volume (gal.) | 2,38 | | | 7.05 | | | 5.05 | | | 7.42 | | | | | Did Well Dewater? | NO | | | МО | | | NO | | | NO | | | | | Gallons Actually Evacuated | 7.5 | | | 22.0 | | | 16.0 | | | 23.0 | | | | | Gallons Accually Evacuated | 7.3 | | | 22.0 | | | 1010 | | | 2010 | | | | | Purging Device | BAILER | | | MIDDLE | BURG | | MIDDLEB | URG | | MIDDLE | BURG | | | | Sampling Device | BAILER | | | BAILER | | | BAILER | | | BAILER | i | | | | Time | 15:24 | 15:30 | 15:35 | 12:24 | 12:31 | 12:39 | 13:45 | 13;52 | 13;57 | 11:42 | 11:50 | 11:59 | | | Temperature (Fahrenheit) | 63.8 | 64.5 | 64.3 | 62.1 | 62,9 | 62.7 | 65.4 | 65.4 | 65.7 | 61.8 | 61.0 | 60.5 | | | pН | 6.8 | 6.7 | 6.B | 6.3 | 6.6 | 6.7 | 6.6 | 6.7 | 6.7 | 6.3 | 6.4 | 6.4 | | | Conductivity (micromhos/cm) | 8200 | 8400 | 8000 | 3000 | 3200 | 3300 | 5600 | 5800 | 5800 | 2800 | 2400 | 2500 | | | Nephelometric Turbidity Units | >200 | >200 | >200 | 50.4 | 53.2 | 44.6 | 32.8 | 18.5 | 14.2 | 8.5 | 12.4 | 5.82 | | | BTS Chain of Custody | 930218- | A-1 | | 930218 | -A-1 | | 930218- | A-1 | | 930218 | -A-1 | | | | BTS Sample I.D. | MW-2 | | | MW-3 | | | MW-4 | | | MW-5 | | | | | DHS HMTL Laboratory | COAST T | ባ ርባልኖጥ | | | TO COAS | т | COAST TO COAST | | | COAST TO COAST | | | | | | | S), BTEX | | | AS), BI | | | | | TPH (GAS), BTEX | | | | | Analysis | reu (ou | 31 PIEV | | ien (c | ום יורטי | . un | ren (an | TPH (GAS), BTEX | | | ten (ovel' piey | | | # TABLE OF WELL MONITORING DATA | Well I.D. | MW-6 | | | MW-7 | | | |-------------------------------|----------|---------|---------|--------|---------|-------| | Date Sampled | 02/18/93 | | | 02/18/ | 93 | | | | | | | | | | | Well Diameter (in.) | 4 | | | 4 | | | | Total Well Depth (ft.) | 18.78 | | | 18.80 | | | | Depth To Water (ft.) | 8.14 | | | 6.54 | | | | | | | | | | | | Free Product (in.) | NONE | | | NONE | | | | Reason If Not Sampled | | | | | | | | A. G. Malia Anal A | c 53 | | | 2 00 | | | | 1 Case Volume (gal.) | 6.91 | | | 7.96 | | | | Did Well Dewater? | МО | | | NO | | | | Gallons Actually Evacuated | 21.0 | | | 24.0 | | | | Purging Device | MIDDLEBU | RG | | MIDDLE | BURG | | | Sampling Device | BAILER | | | BAILER | ı | | | Time | 14:32 | 14:40 | 14:48 | 10:50 | 10:55 | 11:10 | | Temperature (Fahrenheit) | 63.8 | 64.9 | 65.3 | 59.2 | 60.0 | 59.0 | | рН | 6.5 | 6.4 | 6.4 | 7.0 | 7.0 | 6.8 | | Conductivity (micromhos/cm) | >10,000 | >10,000 | >10,000 | 1500 | 1500 | 1600 | | Nephelometric Turbidity Units | 17.3 | 16.4 | 5.8 | 32.4 | 17.8 | 21.3 | | BTS Chain of Custody | 930218-A | ·-1 | | 930216 | I-A-1 | | | BTS Sample I.D. | MW-6 | | | MW-7 | | | | DHS HMTL Laboratory | COAST TO | COAST | | COAST | TO COAS | T | | Analysis | TPH (GAS |), BTEX | | TPH (C | AS), BI | X3 | | | | | | | | | # **EQUIPMENT** # **Selection of Sampling Equipment** The determination of what apparatus is to be used on particular wells may be made by the property owner, but is usually made by the professional consultant directing the performance of the monitoring on the property owner's behalf. When no specific requirement is made, our personnel will select equipment that will accomplish the work in the most efficient manner. Our personnel are equipped with a variety of sampling devices that include USGS/Middleburg pumps, down hole electric submersible pumps, air lift pumps, suction pumps, and bailers made of both Teflon and stainless steel. USGS/Middleburg pumps and bailers were selected for the collection of samples at this site. USGS/Middleburg Positive Displacement Sampling Pumps: USGS/Middleburg positive displacement sampling pumps are EPA approved pumps appropriate for use in wells down to two inches in diameter and depths up to several hundred feet. The pump contains a flexible Teflon bladder which is alternately allowed to fill with well water and then collapsed. Actuation of the pump is accomplished with compressed air supplied by a single hose to one side of the Teflon membrane. Water on the other side of the membrane is squeezed out of the pump and up a Teflon conductor pipe to the surface. Evacuation and sampling are accomplished as a continuum. The rate of water removal is relatively slow and loss of volatiles almost non-existent. There is only positive pressure on the water being sampled and there is no impeller cavitation or suction. The pumps can be placed at any location within the well, can draw water from the very bottom of the well case, and are virtually immune to the erosive effects of silt or lack of water which destroy other types of pumps. Disadvantages associated with Middleburg pumps include their high cost, low flow
rate, temperamental operation, and cleaning requirements which are both elaborate and time consuming. Bailers: A bailer, in its simplest form, is a hollow tube which has been fitted with a check valve at the lower end. The device can be lowered into a well by means of a cord. When the bailer enters the water, the check valve opens and liquid flows into the interior of the bailer. The bottom check valve prevents water from escaping when the bailer is drawn up out of the well. Two types of bailers are used in groundwater wells at sites where fuel hydrocarbons are of concern. The first type of bailer is made of a clear material such as acrylic plastic and is used to obtain a sample of the surface and the near surface liquids in order to detect the presence of visible or measurable fuel hydrocarbon floating on the surface. The second type of bailer is made of Teflon or stainless steel and is used as an evacuation and/or sampling device. PES Environmental, Inc. Bailers are inexpensive and relatively easy to clean. Because they are manually operated, variations in operator technique may have a greater influence than would be found with more automated sampling equipment. Also where fuel hydrocarbons are involved, the bailer may include near surface contaminants that are not representative of water deeper in the well. #### STANDARD PRACTICES #### **Evacuation** Groundwater well sampling protocols call for the evacuation of a sufficient volume of water from the well to insure that the sample is collected from water than has been newly drawn into the well from the surrounding geologic formation. The protocol used on these wells called for a volumetric removal of three case volumes with stabilization of standard water parameters. There are situations where up to ten case volumes of evacuation may be removed, especially when attempting to stabilize turbidity in undeveloped wells. Different professional consultants may specify different levels of evacuation prior to sampling or may request that specific parameters be used to determine when to collect the sample. Our personnel use several standard instruments to record the changes in parameters as the well is evacuated. These instruments are used regardless of whether or not a specific volumetric standard has been called for. As a result, the consultant will always be provided with a record of the pH, EC, and temperature changes that occurred during the evacuation process. Additional information obtained with different types of instruments (such as dissolved oxygen and turbidity meters) can also be collected if requested in advance. #### **Effluent Materials** The evacuation of purge water creates a volume of effluent water which, in most cases, must be contained. Blaine Tech Services, Inc. will place this water in appropriate containers of the client's choice or bring new DOT 17 E drums to the site which are appropriate for the containment of the effluent materials. The determination of how to properly dispose of the effluent water must usually await the results of laboratory analyses of the sample collected from the groundwater well. #### **Observations and Measurements** Included in the scope of work are routine measurements and investigative procedures which are intended to determine if the wells are suitable for evacuation and sampling. These include measurement (from the top of the well case) of the total depth of the well; the depth to water, and the thickness of any free product zone (FPZ) encountered. The presence of a significant free product zone may interfere with efforts to collect a water sample that accurately reflects the condition of groundwater lying below the FPZ. This interference is caused by adhesion of petroleum to any device being lowered through the FPZ and the likelihood that minute globules of petroleum may break free of the sampling device and be included in the sample. Accordingly, evaluation of analytical results from wells containing any amount of free petroleum should take into account the possibility that positive results have been skewed higher by such an inclusion. The decision to sample or not sample such wells is left to the discretion of our field personnel at the site and the consultant who establishes sampling guidelines based on the need for current information on groundwater conditions at the site. # Sampling Methodology Samples were obtained by standardized sampling procedures that follow an evacuation and sample collection protocol. The sampling methodology conforms with State and Regional Water Quality Control Board standards and specifically adheres to EPA requirements for apparatus, sample containers and sample handling as specified in publication SW 846 and the T.E.G.D. which is published separately. # Sample Containers Sample material is collected in specially prepared containers appropriate to the type of analyses intended. Our firm uses new sample containers of the type specified by either EPA or the RWQCB. Often times analytical laboratories wish to supply the sample containers because checks performed on these bottles are often part of a comprehensive laboratory QC program. In cases where the laboratory does not supply sample containers our personnel collect water samples in new containers that are appropriate to the type of analytical procedure that the sample is to receive. For example, 40 ml volatile organic analysis vials (VOAs) are used when analysis for gasoline and similar light volatile compounds is intended. These containers are prepared according to EPA SW 846 and will usually contain a small amount of preservative when the analysis is for TPH as gasoline or EPA 602. Vials intended for EPA 601 analysis and EPA 624 GCMS procedures are not preserved. The closure of volatile organic analysis water sample containers is accomplished with an open headed (syringe accessible) plastic screw cap brought down on top of a Teflon faced septum which is used to seal the sample without headspace. Water samples intended for semivolatile and nonvolatile analysis such as total oil and grease (TOG) and diesel (TPH HBF) are collected and transported in properly prepared new glass liter bottles. Dark amber glass is used in the manufacture of these bottles to reduce any adverse effect on the sample by sunlight. Antimicrobial preservative may be added to the sample liquid if a prolonged holding time is expected prior to analysis. Closure is accomplished with a heavy plastic screw cap. Groundwater well samples intended for metals analysis are transported in new plastic bottles and preserved with nitric acid. Our personnel can field filter the sample liquid prior to placing it in the sample container if instructed to perform this procedure. # Sample Handling Procedures Water samples are collected in any of several appropriate devices such as bailers, Coliwasas, Middleburg sampling pumps etc. which are described in detail only as warranted by their employment at a given site. Sample liquid is decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA procedures for handling volatile organic and semi-volatile compounds. Groundwater samples that are to receive metals analyses can be filtered prior to being placed in the plastic sample bottles that contain the nitric acid preservative. The filtration process employs new glass containers which are discarded and laboratory quality disposable filtering containers which are also discarded. A frequently used filtering procedure employs a vacuum pump to draw sample material through a 0.45 micron filter. The 0.45 micron pore size is standard, but the amount of filter available varies with the type of package selected. Filters are selected on the basis of the relative turbidity of the water sample. Samples which are relatively clean can be efficiently filtered with relatively inexpensive filters while very turbid water will require a very large filter with a high tolerance for sediments. One of several such filters our firm uses are the Nalgene Type A filters in which an upper and lower receptacle chamber are affixed to the filter. Sample material is poured into the upper chamber and a vacuum pump attached to the lower chamber. Simple actuation of the vacuum pump induces the flow of water through the filter and into the lower chamber. The sample is then decanted into the laboratory container and the filter assembly discarded. Cartridge type flow-through filters are more expensive but can be fitted directly to the discharge line of most sampling pumps (USGS/Middleburg pumps) and electric submersible pumps. Following collection, samples are promptly placed in an ice chest containing prefrozen blocks of an inert ice substitute such as Blue Ice or Super Ice. The samples are maintained in either an ice chest or a refrigerator until delivered into the custody of the laboratory. # Sample Designations All sample containers are identified with both a sampling event number and a discrete sample identification number. Please note that the sampling event number is the number that appears on our chain of custody. It is roughly equivalent to a job number, but applies only to work done on a particular day of the year rather than spanning several days as jobs and projects often do. # **Chain of Custody** Samples are continuously maintained in an appropriate cooled container while in our custody and until delivered to the laboratory under our standard chain of custody. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the chain of custody (time, date, and signature of the person releasing the samples followed by the time, date and signature of the person accepting custody of the samples). # **Hazardous Materials Testing Laboratory** The samples obtained at this site were transported in
cooled ice chest to the office of Blaine Tech Services, Inc. to be stored in a refrigerator overnight. The following day, the samples were released into the custody of a courier for delivery to Coast to Coast Analytical Services. # Personnel All Blaine Tech Services, Inc. personnel receive 29 CFR 1910.120(e)(2) training as soon after being hired as is practical. In addition, many of our personnel have additional certifications that include specialized training in level B supplied air apparatus and the supervision of employees working on hazardous materials sites. Employees are not sent to a site unless we are confident they can adhere to any site safety provisions in force at the site and unless we know that they can follow the written provisions of an SSP and the verbal directions of an SSO. In general, employees sent to a site to perform groundwater well sampling will assume an OSHA level D (wet) environment exists unless otherwise informed. The use of gloves and double glove protocols protects both our employees and the integrity of the samples being collected. Additional protective gear and procedures for higher OSHA levels of protection are available. #### Decontamination All apparatus is brought to the site in clean and serviceable condition. The equipment is decontaminated after each use and before leaving the site. Decontamination procedures include complete disassembly of the device to a point where a jet of steam cleaner water can be directed onto all the internal surfaces. Blaine Tech Services, Inc. frequently modifies apparatus to allow complete disassembly and proper cleaning. Please call if we can be of any further assistance. Richard C. Blaine RCB/kkl attachments: chain of custody | BLAINE | 1370 TULLY
SA | ROAD., SUII
N JOSE, CA | | _ | CONI | DUCTA | NALY: | SIS TO | DETECT | | | tte | | | |-------------------|---------------------|--|--------------|----------|-----------|--------|----------|--------|--------------|----------|--|------------------------|--|---------------------| | ECH SERVICES IN |). | (408) 99 | 5 5535 | | | | | | | į | ALL ANALYSES MUST
SET BY CALIFORNIA | MEET SPECIF
DHS AND | FICATIONS AN | ED DETECTION LIMITS | | CHAIN OF CUSTODY | | | \neg | | | | | | | | □ EPA
□ LIA | | □RWO | ICB REGION | | CLIENT PES | | | <u> </u> | | 1 | | - | | | | OTHER | <u> </u> | | | | SITE PO PARTNE | RS | | SAS SANATAGO | 18 | ļ. | | | | | | SPECIAL INSTRUCTION | DNS | | | | 1650 6573 | AVE | | | 1 | | | | | | | | | | | | <u> KANELYUIU</u> | MATRIX | CONTAINE | RS | | 1 | | | | | | | | | | | | S = SOIL
W = H2O | , | 2 | | | | | | i | | | | 1 | | | SAMPLE I.D. | | TOTAL | - | <u> </u> | * | | \dashv | | - | | ADD'L INFORMATION | STATUS | CONDITION | LAB SAMPLE # | | <u>mwz</u> | W | 3 Va | 15 | - - | / | | \dashv | | | | | | | | | <u>mw 3</u> _ | | 3 1 | | 1 | <u>/_</u> | | | | | _ | | | <u> </u> | | | <u>mw4</u> |] | 3 | | 14 | <u> </u> | | | | | | | | | | | mu5 | | 3 | | | <u> </u> | | | | | | | | | | | mule | | 3 | | 1 | / | | | | | | | | | | | how 7 | 19/ | 3 7 | | 77 | | | | | | | | | | | | | <u> </u> | | | 1 | \top | | | | 十一 | | | | | | | | | - | | - | + | | | | _ | | 1 | | | | | | | | | ╌┼╌ | + | | - | - | + | ├ | | | + | | | | | | -+ | - - | + | | | | - | ╁ | | | - | | | AMPLING DATE TIME | SAMP | LING
ORMED BY | | 1 | | ' | ! | | | <u> </u> | RESULTS NEEDED
NO JATER/THAN | Post | | 1 | | RELEASED BY 1 | OO PERF | | IPATE/ | 43 | TIM | IE, I | | REC | (VED/BY | 4 | 1/101 | - | IDATE | TIME | | Just Wills | | | ١٠٠٠ | 190 | | E115 | Ω | 7 | Mu | ч | 16 th 17 | | | 9/93 16:4 | | REVEASED BY | | | DATE | |] TIM | IE. | j | REC | XYED BY | | 0 1/ | | DATE | ' TIME | | RELEASED BY | · | | DATE | | TIM | IE | | REE | IVED BY | | | | DATE | TIME | | SHIPPED VIA | | | DATE | SENT | TIN | IE SEN | T | COOLI | R# | | <u> </u> | | | | • San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 CLIENT: PES Environmental Inc 1682 Novato Boulevard, Suite 100 Novato, CA 94947 Lab Number : JJ-0150-1 Project : PO Partners Analyzed : 03/01/93 Analyzed by: ON Method : As Listed REPORT OF ANALYTICAL RESULTS Page l of l | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMPLED DATE RECEIVE | | | | |--|---------------------|-------------|-----------------------------------|--|------------|--| | Mw2 | Monitoring
Water | Jeff Curtis | 02/18/9 | | 3 02/19/93 | | | CONSTITUENT | | (CAS RN) | ≭PQL
μg/L | RESUL
µg/L | | | | FUEL FINGERPRINT ANALYSIS Benzene Toluene Ethylbenzene Xylenes Total Petroleum Hydrocarbons (Gasoline Percent Surrogate Recovery | 3) | | 20.
20.
20.
30.
2000. | 2300.
810.
670.
1400.
14000. | 1,2 | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P80A MC/mcc/jst MSD1-0301 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 CLIENT: PES Environmental Inc 1682 Novato Boulevard, Suite 100 Novato, CA 94947 Lab Number : JJ-0150-2 Project : PO Partners Analyzed : 03/01/93 Analyzed by: ON Method : As Listed REPORT OF ANALYTICAL RESULTS Page l of l | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMPLED DATE RECEIVED | | | | | |--------------------------------------|---------------------|-------------|-----------------------|----------------|------|--|--| | MW3 | Monitoring
Water | Jeff Curtis | 02 | 02/19/93 | | | | | CONSTITUENT | | (CAS RN) | ≭PQL
μg/L | RESULI
µg/L | NOTE | | | | FUEL FINGERPRINT ANALYSIS | | | | | 1,2 | | | | Benzene | | | 0.5 | 1.8 | | | | | Toluene | | | 0.5 | ND | | | | | Ethylbenzene | | | 0.5 | ND | | | | | Xylenes | | | 0.5 | ND | | | | | Total Petroleum Hydrocarbons (Gasoli | .ne) | | 50. | 140. | | | | | Percent Surrogate Recovery | - | | | 97. | | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P81A MC/mcc/jst MSD1-0301 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 CLIENT: PES Environmental Inc 1682 Novato Boulevard, Suite 100 Novato, CA 94947 Lab Number : JJ-0150-3 Project : PO Partners Analyzed : 03/01/93 Analyzed by: ON Method : As Listed REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAME | RECEIVED | | | |--|---------------------|-------------|--------------|----------------|----------|--| | MWZ. | Monitoring
Water | Jeff Curtis | 02 | /18/93 | 02/19/93 | | | CONSTITUENT | | (CAS RN) | *PQL
µg/L | RESULI
µg/L | r note | | | FUEL FINGERPRINT ANALYSIS | | | | | 1,2 | | | Benzene | | | 0.5 | 1.7 | | | | Toluene | | | 0.5 | ND | | | | Ethylbenzene | | | 0.5 | ND | | | | Xylenes | | | 0.5 | ND | | | | Total Petroleum Hydrocarbons (Gasoline | :) | | 50. | 60. | | | | Percent Surrogate Recovery | | | | 95. | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P82A MC/mcc/jst MSD1-0301 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. Marissa Coronel Laboratory Director San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 CLIENT: PES Environmental Inc 1682 Novato Boulevard, Suite 100 Novato, CA 94947 Lab Number : JJ-0150-4 Project : PO : PO Partners Analyzed : 03/01/93 Analyzed by: ON Method : As Listed REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMPLED DATE RECEIVED | | | | | |--------------------------------------|---------------------|-------------|-----------------------|----------------|----------|--|--| | MW5 | Monitoring
Water | Jeff Curtis | 02 | 2/18/93 | 02/19/93 | | | | CONSTITUENT | | (CAS RN) | *PQL
μg/L | RESULI
µg/L | NOTE | | | | FUEL FINGERPRINT ANALYSIS | | | | 1,2 | | | | | Benzene | | | 0.5 | 56. | | | | | Toluene | | | 0.5 | 0.6 | | | | | Ethylbenzene | | | 0.5 | ND | | | | | Xylenes | | | 0.5 | ND | | | | | Total Petroleum Hydrocarbons (Gasoli | ne) | | 50. | 190. | | | | | Percent Surrogate Recovery | | | | 103. | | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P83A MC/mcc/jst MSD1-0301 Respectfully submitted,
COAST-TO-COAST ANALYTICAL SERVICES, INC. San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 CLIENT: PES Environmental Inc 1682 Novato Boulevard, Suite 100 Novato, CA 94947 Lab Number: JJ-0150-5 Project : PO Partners Analyzed : 03/01/93 Analyzed by: ON Method : As Listed # REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMPLED DATE RECEIVED | | | | | |--|---------------------|-------------|---------------------------------|----------------------------|------|--|--| | MW6 | Monitoring
Water | Jeff Curtis | 02 | 02/19/93 | | | | | CONSTITUENT | | (CAS RN) | *PQL
μg/L | RESULT
µg/L | NOTE | | | | FUEL FINGERPRINT ANALYSIS Benzene Toluene Ethylbenzene Xylenes Total Petroleum Hydrocarbons (Gasoli Percent Surrogate Recovery | ne) | | 0.5
0.5
0.5
0.5
50. | ND
ND
ND
ND
ND | 1,2 | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P72A MC/mcc/jst MSD1-0301 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. Marissa Coronel Laboratory Director San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 CLIENT: PES Environmental Inc 1682 Novato Boulevard, Suite 100 Novato, CA 94947 Lab Number : JJ-0150-6 Project : PO Partners Toject . Fo Farther Analyzed : 03/01/93 Analyzed by: ON Method : As Listed REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMPLED DATE RECEIVED | | | | | |--|---------------------|-------------|-----------------------|----------------|------|--|--| | Mw7 | Monitoring
Water | Jeff Curtis | 0: | 02/19/93 | | | | | CONSTITUENT | | (CAS RN) | *PQL
μg/L | RESULT
µg/L | NOTE | | | | TUEL FINGERPRINT ANALYSIS | | <u> </u> | | - | 1,2 | | | | Benzene | | | 0.5 | 77. | | | | | Toluene | | | 0.5 | 1.3 | | | | | Ethylbenzene | | | 0.5 | ND | | | | | Xylenes | | | 0.5 | 1.4 | | | | | Total Petroleum Hydrocarbons (Gasoline | e) | | 50. | 270. | | | | | Percent Surrogate Recovery | | | | 97. | | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P84A MC/mcc/jst MSD1-0301 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 QC Batch ID: MSD1-0301 CLIENT: Coast-to-Coast Analytical Services, Inc. Analyzed : 03/01/93 Analyzed by: ON Method : : As Listed METHOD BLANK REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMPLED DATE RECEIVED | | | | |----------------------------|---------|------------|-----------------------|----------------|------|--| | METHOD BLANK | Aqueous | | | | | | | CONSTITUENT | | (CAS RN) | *PQL
μg/L | RESULT
µg/L | NOTE | | | FUEL FINGERPRINT ANALYSIS | | | | | 1,2 | | | Benzene | | | 0.5 | ND | | | | Toluene | | | 0.5 | ND | | | | Ethylbenzene | | | 0.5 | ND | | | | Xylenes | | | 0.5 | ND | | | | Percent Surrogate Recovery | | | | 99. | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P72A MC/mcc/jst JJ0150-5 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 QC Batch ID: MSD1-0301 CLIENT: Coast-to-Coast Analytical Services, Inc. : 03/01/93 Analyzed Analyzed by: ON Method : As Listed QC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED I | SAMPLED BY | | SAMPLED DATE RECEIVE | | | | |---------------------------------|----------|--------------|-----------------|----------------|----------------------|------|--|--| | QC SPIKE | Aqueous | | | | | | | | | CONSTITUENT | | *PQL
μg/L | SPIKE
AMOUNT | RESULT
µg/L | %REC | NOTE | | | | FUEL FINGERPRINT ANALYSIS | | · | | | | 1,2 | | | | Benzene | | 0.3 | 10. | 8.2 | 82. | | | | | Toluene | | 0.3 | 10. | 8.7 | 87. | | | | | Ethylbenzene | | 0.3 | 10. | 9.8 | 98. | | | | | Xylenes | | 0.6 | 10. | 8.1 | 81. | | | | | Total Petroleum Hydrocarbons (G | asoline) | 50. | 250. | 210. | 84. | | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P74A/1P78A MC/mcc/jst JJ0150-5 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. Marissa Coronel Laboratory Director San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (San Jose Laboratory) 2059 Junction Ave. San Jose, CA 95131 (408) 955-9077 QC Batch ID: MSD1-0301 CLIENT: Coast-to-Coast Analytical Services, Inc. Analyzed : 03/01/93 Analyzed by: ON : As Listed Method QC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SA | SAMPLED BY | | SAMPLED DATE RECEIVED | | | | |--|---------|--------------|-----------------|----------------|-----------------------|-------|------|--| | QC SPIKE DUPLICATE | Aqueous | | | | | | | | | CONSTITUENT | | ≭PQL
μg/L | SPIKE
AMOUNT | RESULT
µg/L | %REC | %DIFF | NOTE | | | FUEL FINGERPRINT ANALYSIS | | | - | | | | 1,2 | | | Benzene | | 0.3 | 10. | 9.5 | 95. | 15. | | | | Toluene | | 0.3 | 10. | 10. | 100. | 14. | | | | Ethylbenzene | | 0.3 | 10. | 12. | 120. | 20. | | | | Xylenes | | 0.6 | 10. | 10. | 100. | 21. | | | | Total Petroleum Hydrocarbons (Gasoline |) | 50. | 250. | 220. | 88. | 4.7 | | | San Jose Lab Certifications: CAELAP #1204 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (2) EXTRACTED by EPA 5030 (purge-and-trap) 03/02/93 MSD1/1P76A/1P77A MC/mcc/jst JJ0150-5 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. Marissa Coronel Laboratory Director | | BLAINE
ECH SERVICE | Ξ. | | N JOS | ., SŲITE 509
E, CA 95122
08) 995 5539 | 2 | | CONI | DUCT | Z
Z | SIS TO | DET | | 9 | ALL ANALYSES MUSSET BY CALIFORNIA | T MEET SPECIFI
DHS AND | | IDHS #' ND DETECTION LIMITS QCB REGION | |----------|--------------------------------|--------|--------------|---------------|---|--|--------------|------------|------------|----------|--------|-------|--------------|---|-----------------------------------|---------------------------|-----------|--| | - [| CHAIN OF CUSTODY | 3/ | | | | s | ل | | 60 | , | Mr. C | 8 | | J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | LIA. | | _ | | | L | CLIENT PES | | | <u> </u> | · | CONTAINERS | 14 | | | £., | | | | | SPECIAL INSTRUCTI | ONS | | | | | 1650 65 | VER 2 | RIE | | · · · · · · · · · · · · · · · · · · · | ALL CON | 2 | | | | | | 4. | | | W., | Ň | | | t | KANELYV | ME | ·
 | | | | 0 | | | ì | , | | | | ± | ! | | | | | | | MATRIX | CO | NTAINERS | COMPOSITE | 17/1 | | | | | | | , | <u> </u> | 1 | 1 | | | _ | SAMPLE I.D. 418193 | 3 1640 | 1 7 | TOTAL | Voas | <u>ة</u> | 1 | | _ | 1 | Ì | | | - | ADD'L INFORMATION | STATUS | CONDITIO | JJ0150-1 | | - | MW 3 | 1245 | 1 | 3 | 1 | | - | | | | | | | | | 1 | | -2 | | - | mu ⁴ | 1400 | | 3 | | | / | | | 1 | | | · | | , | 8 | , | -3 | | | mu5 | 1205 | | 3 | | | | _ | | | Ţ | | | | | 6 | 1 | -4 | | • | mub | 1450 | П | 3 | | | Ľ | / | | | | ., . | | | | | ; | -5 | | • | mw7 | 1115 | 1 | 3 | 7 | <u> </u> | | | - | + | - | | | { | | | 147 | -6 | | | | | \vdash | _ | | - | + | | ļ <u>.</u> | | ' | | | | | | <u> </u> | | | • | | | | ļ. <u> </u> | | ╫ | + | | 1 | ٨ | 1 | 1 | | - 4 | 5 5 | | | 1 | | • | | | | | | T | | | 1 | Ç | 7 | | | 7 | A 6 | | | | | | SAMPLING DATE COMPLETED 2.18.9 | TIME | SAMP
PERF | LING
ORMED | BY | | | • | | | Ġ. | V | 涿 | , | RESULTS NEEDED
NO LATER THAN | Konti | | | | 1 | RELEASED BY WILL | ما | | | Z. | [F]. | 43 | TIM | E v | Ê | ■. | () (| PX | ~ | The State of | <u></u> | | 19/93 16:4 | | /۱ | REJEAN BY | A | -) | | DA | | 9-9 | TIM
316 | | <u>-</u> | ₽ PE | EY | rel | li | Hout | | DATE 2/19 | 193 1655 | | <i>\</i> | RELEASED BY | J'm | | | DA | | <u> </u> | TIM | E (| 10 | RE | | D BY | 0 | | | DATE | TIME | | // | SHIPPED VIA | / | | | DA | TE S | ENT | TIN | AE SEN | | coo | LER # | * | | í: | | | | CLIENT: Andrew Briefer PES Environmental Inc Novato, CA
94947 1682 Novato Boulevard, Suite 100 # Air, Water & Hazardous Waste Sampling, Analysis & Consultation Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (Benicia Laboratory) 6006 Egret Court, Benicia, California 94510 (707) 747-2757 FAX (707)747-2765 Lab Number: BJ-0106-1 Project : 131.01.002 P.O. Partners Analyzed : 02/23/93 Analyzed by: HC Method : EPA 8260 # REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SAMPLED BY | SAMI | 02/19/93 | | |---|------------|---------------------------------|-----------------------|---|--------| | 93049A | Aqueous | Paul Lohman | 02/18/93 | | | | CONSTITUENT | | (CAS RN) | *PQL
µg/L | RESUL1
µg/L | r NOTE | | BTEX + TPH (Gasoline) Benzene Toluene Ethylbenzene Xylenes, Total Total Petroleum Hydrocarbons (Gasoline) | e) | (71432)
(108883)
(100411) | 5.
10.
5.
5. | 1400.
930.
210.
1000.
7200. | 1,2,3 | Benicia Lab Certifications: CAELAP #1719; L.A.Co.CSD #10185 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) - (1) EXTRACTED by EPA 5030 (purge-and-trap) - (2) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) - (3) High concentration of some analytes caused the sample to be run diluted resulting in raised Practical Quantitation Limits for analytes. Refer to instrument blank for undiluted Practical Quantitation Limits. 02/25/93 INCOS 50-387 MC/dpo/htc BJB23I1 Respectfully submitted, COAST TO-COAST ANALYTICAL SERVICES, INC. Emma P. Popek, CHMM, Laboratory Manager San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (Benicia Laboratory) 6006 Egret Court, Benicia, California 94510 (707) 747-2757 FAX (707)747-2765 QC Batch ID: BJB23I1 CLIENT: Coast-to-Coast Analytical Services, Inc. Analyzed : 02/23/93 Analyzed by: HC Method: EPA 8260 QC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX SAMPLED | | Y | SAMPLED DA | TE RECE | IVED | |------------------------------------|----------------|--------------|-----------------|----------------|---------|------| | QC SPIKE | Aqueous | | | | | | | CONSTITUENT | | *PQL
μg/L | SPIKE
AMOUNT | RESULT
µg/L | *REC | NOTE | | BTEX + TPH (Gasoline) | | | | | | 1,2 | | Benzene | | 0.5 | 14. | 13. | 93. | | | Toluene | | 1. | 60. | 61. | 102. | | | Ethylbenzene | | 0.5 | 17. | 17. | 100. | | | Xylenes, Total | | 0.5 | 80. | 81. | 101. | | | Total Petroleum Hydrocarbons (Gase | oline) | 50. | 710. | 620. | 87. | | Benicia Lab Certifications: CAELAP #1719; L.A.Co.CSD #10185 *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) (1) EXTRACTED by EPA 5030 (purge-and-trap) (2) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) 02/25/93 INCOS 50-387 MC/dpo/htc BJ0106-1 Respectfully submitted, COAST TO COAST ANALYTICAL SERVICES, INC. Emma P. Popek, CHMM, Laboratory Manager San Luis Obispo, CA • Benicia, CA • Camarillo, CA • San Jose, CA • Goleta, CA Anaheim, CA • Tempe, AZ • Valparaiso, IN • Westbrook, ME • Indianapolis, IN NorCal Division (Benicia Laboratory) 6006 Egret Court, Benicia, California 94510 (707) 747-2757 FAX (707) 747-2765 QC Batch ID: BJB23I1 CLIENT: Coast-to-Coast Analytical Services, Inc. Analyzed : 02/23/93 Analyzed by: HC Method: EPA 8260 QC SPIKE REPORT OF ANALYTICAL RESULTS Page 1 of 1 | SAMPLE DESCRIPTION | MATRIX | SA | SAMPLED BY | | SAMPLED DATE RECEIVED | | | | |--|---------|--------------|-----------------|----------------|-----------------------|-------|------|--| | QC SPIKE DUPLICATE | Aqueous | | | | | | | | | CONSTITUENT | | *PQL
μg/L | SPIKE
AMOUNT | RESULT
µg/L | %REC | *DIFF | NOTE | | | BTEX + TPH (Gasoline) | | | | | | | 1,2 | | | Benzene | | 0.5 | 14. | 15. | 107. | 14. | | | | Toluene | | 1. | 60. | 63. | 105. | 3.2 | | | | Ethylbenzene | | 0.5 | 17. | 17. | 100. | 0. | | | | Xylenes, Total | | 0.5 | 80. | 83. | 104. | 2.4 | | | | Total Petroleum Hydrocarbons (Gasoline | ₽) | 50. | 710. | 750. | 106. | 19. | | | Benicia Lab Certifications: CAELAP #1719; L.A.Co.CSD #10185 (1) EXTRACTED by EPA 5030 (purge-and-trap) 02/25/93 INCOS 50-387 MC/dpo/htc BJ0106-1 Respectfully submitted, COAST-TO-COAST ANALYTICAL SERVICES, INC. Emma P. Popek, CHMM, Laboratory Manager ^{*}RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit) ⁽²⁾ ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS) # CHAIN OF CUSTODY RECORD Novato, California 94947 (415) 899-1600 FAX (415) 899-1601 | | SAMPLERS: 1 | PAUL LOHMAN | · | ANALYSIS REQUE | ESTED | -4- | |---|---|--|--------------------|---|----------|----------| | NAMERICATION: P.O. PARTNERS PROJECT MANAGER: ANDREW BRIEFER | BECORDER: | Jul ROP | | nt Metals
nne/Xylene
/drocarb. | | | | | 1731 | 비원입니 IN L | COL QA
MTD CODE | EPA 601/8010 EPA 602/8020 EPA 624/8240 EPA 625/8270 Priority Pollutant Metals Berzene/Tollene/Xytene Total Petrol. Hydrocarb. | BTEX | | | | SOUR CODE Soli Soli Oil Unpre Unpre HzSO. | FEET STATE OF O | | | | + | | 930218134093049A | X | 3 3 | | | X | | | NOTES | | | CHAIN OF CUS | <u> </u> | | | | | | RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) | - 19 | EVED BY: (Signature) | DATE TIM | IE
VE | | | | RELINQUISHED BY: (Signature) | REC | EIVED BY: (Signature) | DATE TIM | 1E | | | | RELINQUISHED BY: (Signature) | REC | EIVED BY: (Signature) | DATE TIM | 1E | | | | DISPATCHED BY: (Signature) | DATE TIME | RECEIVED FOR LAB BY:
(Signature) | DATE TIM | ΙE | | | | METHOD OF SHIPMENT: | | <u></u> | 1 | | | | Laboratory Copy Pro
White | ect Office Copy Field or Of
Yellow Pir | ffice Copy
nk | | | |