December 15, 2000 G-R#: 180181

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 4000

San Ramon, California 94583

Mr. David Vossler CC:

Gettler-Ryan Inc. Petaluma, California

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE: Tosco (Unocal) SS #4186

1771 First Street

Livermore, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
	y e	
1	December 1, 2000	Groundwater Monitoring and Sampling Report Fourth Quarter - Event of October 2, 2000

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *December 29, 2000*, this report will be distributed to the following:

Enclosure

Ms. Eva Chu Adameda County Health Care Services \$\frac{1}{2} \text{Harbor Bay Parkway} Alameda, CA 94502

December 1, 2000 G-R Job #180181

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

Fourth Quarter 2000 Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #4186

1771 First Street Livermore, California

Dear Mr. De Witt:

This report documents the quarterly groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On October 2, 2000, field personnel monitored and sampled three wells (U-1, U-2 and U-3) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 6882

Sincerely,

Deanna L. Harding Project Coordinator

Douglas I. Lee

Senior Geologist, R.G. No. 6882

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1: Table 2: Groundwater Monitoring Data and Analytical Results
Groundwater Analytical Results - Oxygenate Compounds

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

4186.qml

Chain of Custody Document and Laboratory Analytical Reports

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

Tosco (Unocal) Service Station #4186 1771 First Street Livermore, California

PROJECT NUMBER REVIEWED BY 180181

DATE October 2, 2000 REVISED DATE

FILE NAME: P:\ENMRO\TOSCO\4186\Q00-4186.DWG | Layout Tab: Pot4

PROJECT NUMBER 180181

REVIEWED BY

(925) 551-7555

October 2, 2000

Livermore, California

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #4186 1771 First Street Livermore, California

WELL ID/	DATE	DTW	S.I.	GWE	TPH(G)	В	T	E	X	MTBE
тос*		(ft.)	(ft. bgs.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
U-1										ND.
478.27	07/13/98	23.28	14.0-34.0	454.99	ND	ND	ND	ND	ND	ND
	10/07/98	26.43		451.84	ND	ND	ND	ND	ND	ND
	01/15/99	30.42		447.85	ND	ND	ND	ND	1.1	7.3
	04/14/99	24.21		454.06	ND	ND	ND	ND	ND	160
	07/19/99	27.10		451.17	ND	ND	ND	ND	ND	92
	10/12/99	29.40		448.87	ND	ND	ND	ND	ND	37
	01/24/00	27.90		450.37	ND	ND	ND	ND	ND	28
	04/10/00	26.16		452.11	ND	ND	0.930	ND	ND	ND
	07/17/00	28.04		450.23	ND	ND	ND	ND	ND	160
	10/02/00	28.41		449.86	ND	ND	ND	ND	ND	120
U-2										
477.44	07/13/98	23.52	13.0-33.0	453.92	1,200	130	12	62	180	1,100
	10/07/98	25.31		452.13	ND	ND	ND	ND	ND	160
	01/15/99	30.22		447.22	ND	ND	ND	ND	ND	280
	04/14/99	24.50		452.94	ND	ND	ND	ND	ND	460
	07/19/99	28.54		448.90	ND	ND	ND	ND	ND	220
	10/12/99	30.48		446.96	ND	ND	ND	ND	ND	160
	01/24/00	24.52		452.92	ND	ND	ND	ND	ND	150
	04/10/00	23.68		453.76	ND	ND	ND	ND	ND	177
	07/17/00	28.35		449.09	ND	ND	ND	ND	ND	62.7
	10/02/00	28.72		448.72	ND	ND	ND	ND	ND	52
U-3					** ***	2.400	5 500	2 200	16 000	7,500
478.46	07/13/98	23.82	14.0-34.0	454.64	70,000	3,100	5,500	2,700	16,000	
	10/07/98	25.64		452.82	54,000	5,000	1,100	3,100	14,000	6,100
	01/15/99	30.92		447.54	41,000 ¹	3,100	ND^2	1,800	3,800	15,000
	04/14/99	24.48		453.98	33,000	86	290	2,200	7,800	39,000
	07/19/99	28.46		450.00	48,000	3,900	2,500	3,600	14,000	12,000/16,000 ³

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #4186 1771 First Street Livermore, California

WELL ID/	DATE	ĐTW	S.1.	GWE	TPH(G)	В	T	E	X	MTBE
TOC*		(ft.)	(ft. bgs.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
T1 3	10/12/00	30.39	14.0-34.0	448.07	35,000 ⁴	4,200	ND^2	2,300	1,800	22,000/8,300 ⁵
U-3	10/12/99		14.0-34.0	455.03	13,000 ⁴	260	ND^2	770	3,200	53,000/42,000 ³
(cont)	01/24/00	23.43			35,200 ⁴	1,070	241	2,820	8,850	35,600/40,900 ³
	04/10/00	23.31		455.15	29,000 ⁴		525	3,180	5,660	22,500/21,000 ³
	07/17/00	27.53 28.19		450.93 450.27	29,000 11,000 ⁴	3,570 2,100	31	2,000	7 80	25,000/28,000 ^{3,6}
	10/02/00	20.17		150121	,	-,-		·		
TRIP BLANK										
	07/13/98				ND	ND	ND	ND	ND	ND
	10/07/98			_	ND	ND	ND	ND	ND	ND
	01/15/99	*-	•		ND	ND	ND	ND	ND	ND
	04/14/99				ND	ND	ND	ND	ND	ND
	07/19/99				ND	ND	ND	ND	ND	ND
	10/12/99				ND	ND	ND	ND	ND	ND
	01/24/00				ND	ND	ND	ND	ND	ND
					ND	ND	ND	ND	ND	ND
	04/10/00				ND	ND	ND	ND	ND	ND
	07/17/00				ND	ND	ND	ND	ND	ND
	10/02/00				ND	1410	1110	112	112	- 1

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #4186 1771 First Street Livermore, California

EXPLANATIONS:

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S. I. = Screen Interval

X = Xylenes

(ft. bgs.) = Feet Below Ground Surface

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

(msl) = Mean sea level

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- TOC elevations are relative to Mean Sea Level (msl) in feet. The benchmark used was a City of Livermore survey monument at First & "Q" Streets.
- Laboratory report indicates gasoline and unidentified hydrocarbons C6-C12. ı
- 2 Detection limit raised. Refer to analytical reports.
- 3 MTBE by EPA Method 8260.
- Laboratory report indicates gasoline C6-C12.
- MTBE by EPA Method 8260 analyzed past EPA recommended holding time. 5
- Laboratory report indicates the sample was analyzed within holding time. Re analysis for confirmation or dilution was performed past the recommend holding time.

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Tosco (Unocal) Service Station #4186

1771 First Street

Livermore, California

WELL ID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE <i>(ppb)</i>	ETBE (ppb)	TAME (ppb)	EDB (ppb)	1,2-DCA <i>(ppb)</i>
U-1	10/02/00		ND		-	-	-	-	-
U-2	10/02/00		ND	-	-	-	-	-	-
U-3	07/19/99	. -		16,000		_	-		
	10/12/99			8,300	·				
	01/24/00			42,000					
	04/10/00			40,900					-
	07/17/00			21,000		•			
	10/02/00	_	62,000	28,000					

EXPLANATIONS:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

(ppb) = Parts per billion

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility # 418	36		Job#:	18018	<u> </u>	·
Address: 177	11 First st.		Date:	10-2-	00	
			Sample	r: Joe		
City:	e (mole		Oditipio			
Well ID	_U_ _	Well Conditi	ion:	0.k.		
Well Diameter	2 _{in}	Hydrocarbo Thickness:		' Amount Ba		(o=()
Total Depth	34.20 +	Volume	2" = 0.17			= 0.66
Depth to Water	28.41	Factor (VF)		6" = 1_50	12" = 5.50	
	5.79 x	VF 017 -0.9	X 3 (casa vol	ume) = Estimated Pt	urge Volume:	2 <u>10ml</u>
Purge (Equipment:	Disposable Bailer Bailer Stack Suction		Sampling Equipment:	Disposable Bailer Bailer Pressure Baile		,
	Grundfos Other:		; O:	Grab Sample ther:	-	
Starting Time: Sampling Time: Purging Flow Ra	7.'44 te: 0.5a	A water Sedim	Color: ent Description	Clear None		
Did well de-wate	er?	If yes;	Time:	Volum	ne:	; (Cal)
7:30	Volume pH (gal.)	Conductivity µmbos/cmy	Temper	(mgr)	ORP (mV)	Alkalinity (ppm)
7;33	2 7.72	9.68	66.0		<u> </u>	·
7:36	<u> </u>					
						. •
SAMPLE ID	(#) - CONTAINER		(Y INFORMAT SERV. TYPE	TION LABORATORY	ANA	LYSES
U-1	NOVE	Y	ICL	Sequoia	TPHG, BTE	X, MTBE
<u> </u>		<u> </u>	1		!	
COMMENTS:			·			
		•				·

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility # 418	6	 -	Job#:	180181						
	1 First st.		Date:	10-2-0	<i>o o</i>					
	e (mo(e		Sampler	Sampler:						
Well ID	U-2	Well Condition	n:	0.k.						
Well Diameter	2 _{in}	Hydrocarbon Thickness: _	0_	Amount Bai		<u>(gel)</u>				
Total Depth	33.20	Volume	2" = 0.17	3" = 0.38).66 .				
Depth to Water	28.72	Factor (VF)		6" = 1.50	12 = 5.50					
		of 0.17 -6.76		ime) = Estimated Pu	nge Volume:	S(cal.)				
Purge (Equipment:	Disposable Bailer Bailer Stack Suction		ampling juipment:	Disposable Bailer Bailer Pressure Baile		•				
	Grundfos Other:	•**	. Od	Grab Sample her:	•					
Starting Time: Sampling Time: Purging Flow Rat Did well de-wate	7:04 7:23A e: 0.	water C Sedimer	n Description		Odor: MOM	<u>د</u> (جعل)				
7:10	Volume pH (g=1) 0.5 7.7/ 1 7.47 2.5. 7.41	Conductivity mhos/cm x 7-56	•	ture D.O. (mg/L)	_	Alkalinity (ppm)				
SAMPLE ID U-2	(#) - CONTAINER 3 YOA	LABORATORY REFRIG. PRESE Y HC	RV. TYPE	ION LABORATORY Sequoia	ANALYS TPHG, BTEX,					
COMMENTS: .		•								

WELL MONITORING/SAMPLING FIELD DATA SHEET

Well ID Well Diameter Total Depth Depth to Water Purge Equipment: Starting Time: Sampling Time: Purging Flow Rate: Did well de-water? Well Condition: Hydrocarbon Thickness: Volume Factor (VF) Purge Sampling Sampling Equipment Starting Time: Purging Flow Rate: Purging Flow Rate: Did well de-water? Time Volume (gal) 1.20 4.07 1.20 4.124	: 10-2-00 pler: 50 e
Well ID Well Diameter Zin Hydrocarbon Thickness: Total Depth Depth to Water Sampling Equipment: Starting Time: Purging Flow Rate: Did well de-water? Time Volume Starting Starting Flow Water Color: Purging Flow Rate: Did well de-water? Time Volume pH Conductivity for Conductivity for Conductivity for LABORATORY INFOI REFRIG. PRESERV. TYP	oler: Do e
Well ID Well Diameter Zin. Hydrocarbon Thickness: Growth to Water Septh to Water Stack Suction Grundfos Other: Sampling Time: Purging Flow Rate: Stack Did well de-water? Starting Time: Stack Suction Grundfos Other: Sediment Description of the sedim	F
Vell Diameter 2 in. Hydrocarbon Thickness: Volume 2 = 28.19 in. Volume 2 = 28.10 in. Volume	
Thickness: Volume 28.19	0.k
Depth to Water 28.19	Amount Bailed in (product/water):
Purge Disposable Bailer Sampling Equipment: Bailer Stack Suction Grundfos Other: Starting Time: Purging Flow Rate: Did well de-water? Time Volume pH Conductivity O Tourn (gal.) 1 124 (gal.) SAMPLE ID 19 - CONTAINER REFRIG. PRESERV. TY	0.17 3" = 0.38 4" = 0.66
Purge Disposable Bailer Sampling Equipment: Stack Suction Grundfos Other: Starting Time: Starting Time: Sampling Time: Purging Flow Rate: Purging Flow Rate: Did well de-water? Time Volume (gal.) 1.20 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.20 1.24 1.24 1.20 1.20 1.24 1.20	6° = 1.50 12° = 5.50
Equipment: Bailer Equipment: Stack Suction Grundfos Other:	e volume) = Estimated Purge Volume: 3 1cal 1
Stack Suction Grundfos Other: Starting Time: Starting Time: Sampling Time: Purging How Rate: Did well de-water? Time Volume (gal.) 1.20 1.24 2.10 SAMPLE ID (3) - CONTAINER REFRIG. PRESERV. TYPE Weather Condition Water Condition Water Color: Sediment Description Water Condition Water Condition Water Condition Water Color: A condition Water Condition Water Color: A condition Water Condition Water Condition Water Color: A condition Water Color: A condition Water Condition Water Color: A con	nt: Disposable Bailer
Grundfos Other: Starting Time: Sampling Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Volume (gal.) 1	Bailer Pressure Bailer
Starting Time: Sampling Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Volume (gal.) 1.20 1.24 2.10 SAMPLE ID (9-container Refrig. PRESERV. TYPE Weather Condition Water Color. Sediment Description For Conductivity 1.20 6.81 1.24 1.24 1.21 GRAPLE ID (9-container Refrig. PRESERV. TYPE LABORATORY INFORMATION LABORATORY INFORM	Grab Sample
Sampling Time: Sampling Time: Purging Flow Rate: Did well de-water? Time Volume (gal.) 1.20 1.24 2.10 3.62 LABORATORY INFORM SAMPLE ID (3) - CONTAINER REFRIG. PRESERV. TYPE Water Color: Sediment Description: Sediment Description: Sediment Description: Sediment Description: A post of the preserve of	Other:
Sampling Time: Sampling Time: Purging How Rate: Did well de-water? Time Volume (gal.) 1.20 1.24 2.10 3.687 LABORATORY INFORM SAMPLE ID (10) - CONTAINER REFRIG. PRESERV. TYPE Water Color: Sediment Description: Sediment Description: Sediment Description: A yes; Time: Conductivity: A yes; Time: LABORATORY INFORM LABORATORY INFORM SAMPLE ID (10) - CONTAINER REFRIG. PRESERV. TYPE	ions: Hot
Purging Flow Rate:	Al. A. UAC
Did well de-water? Time Volume pH Conductivity of Temphos/cmy 1	•
Time Volume pH Conductivity of Temphos/cmy 1	Volume:
SAMPLE ID (3) - CONTAINER REFRIG. PRESERV. TY	•
\$:05 (.77 1.20 6.81 1.24 6.81 1.24 6.82 1.21 1.22 1.21 1.22 1.21 1.22 1.	mperature D.O. ORP Alkalinity (mg/L) (mV) (ppm)
1.07 2 6.81 1.24 6.82 7.21 6.82 7.21 6.82 6.82 7.21 7.21 7.2	63
SAMPLE ID (3) - CONTAINER REFRIG. PRESERV. TY	<u> </u>
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TY	6.4
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TY	
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TY	
SAMPLE ID (#) - CONTAINER REFRIG. PRESERV. TY	
SAMPLE ID 197 - CONTAINED	
U- 9 310A 1	Sequoia TPHG, BTEX, MTBG
COMMENTS:	

and By (Ma	polery)		Or (pani se t or	1	Sale/lime	Re	olived f	or Labo	rotory i	ly (Signa	tere)			Del	o/Bino	•		(_	Properties
red Fifty (State	netiev)		On		,	Date/How	Re	calud A	y (Men	ature)		•	hperito	les.	346	e/Tires				•	Fire. Baye
yd By (Sip	netura)			relbalen og I <i>R</i> -		Sate/Ame 10-72-207		orlyed B	1	olure)		≲	Squis	214	10.	1 / 1/57			Two A		me (Circle Chalce) No.
												<u> </u>	1	<u> </u>	1			<u></u>	<u>!</u>		
	_																				
}-			-		1	- 	1	-													AN 10/12/00
			-	 	 		1	 					1-	1.	 	T -	 				to ALL WELL
				 	+-	 	 	 	-	-				 		-			1	1	TBA Analysis
				-	 	 	+	-	-	 					+-	 	-	-	-		coc addig
				<u> </u>	 	 	 	 					-	 	 				-	├─	* Amounto A
			ļ <u> </u>		-		 	├		_			-		 				 		
	•		<u></u>		-	 	-	 		 					 	-		-	+-	 	
>		ን	<u>, </u>	.,	8,50	/	1.	\leq	 -					-		K	 		-		paly 0
		3	,	/	7:23		/	<u>~</u>							ļ. <u>.</u>	-/		 	 	-	8260 on U-3
2-		3	,	1	7:44	,	1	7							<u> </u>				<u> </u>		MTOF by
-		1	W	G	-	HCL	Y	√								聚					# confirm
	3	1	Took	Å	Ě	1	1	Fig	¥ 5	(8520 (8520	(3010)		000	(SE270)	SCI	3	٠.				Remorks
1		3	40	111	<u> </u>		1	1	N N	70	₹ 1 <u>2</u>	₹ Žg	δ 30	3	3.3	<u> </u>	م		_	-	
		Abba	26	Company Charte		1 P	Ŷ	LACTE HERE		1		Petroff.	12	3	 	2	260				
- 1		•	I			1		<u></u>			7	-	Anoly	es 70 I	Pe Perfe	Filler C	Γ.	<u> </u>	1] : 	DO NOT BILL TB-LB ARALYSIS
						10-55175			1510	-551-	7088	1									
hahira Comp policy and A pol _c College M		4				Deanna L.							- Heelle	. Dole .	10.	2-0	v v				
osco	, , ,	1				r-Ryan In				n. C/	9456	_ t	obstate colorer	ry Roles Jacobson	od by (t	her James	~~	5 A	ZEI	MIA	pJ
				rajest ik			B1.85				· · · · · · · · · · · · · · · · · · ·	1		_	<u>Se</u>			lyti	cal		
		1	For	uly As a -	<u> /</u>	71 FIRST	SINCE	1, 1,1	V F. KLT	UKB,	CA	→ [·				<u>) (</u>					· · · · · · · · · · · · · · · · · · ·

9 November, 2000

Deanna L. Harding Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Unocal Sequoia Report W010034

Enclosed are the results of analyses for samples received by the laboratory on 02-Oct-00 16:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater , Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding Reported:

09-Nov-00 18:08

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	W010034-01	Water	02-Oct-00 00:00	02-Oct-00 16:20
U-1	W010034-02	Water	02-Oct-00 07:44	02-Oct-00 16:20
U-2	W010034-03	Water	02-Oct-00 07:23	02-Oct-00 16:20
U-3	W010034-04	Water	02-Oct-00 08:20	02-Oct-00 16:20

Sequoia Analytical - Walnut Creek

Charlie Westwater, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding **Reported:** 09-Nov-00 18:08

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT
Sequoia Analytical - Walnut Creek

•	Seque								
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (W010034-01) Water	Sampled: 02-Oct-00 00:0	0 Receive	d: 02-Oc	t-00 16:20					
Purgeable Hydrocarbons	ND	50	ug/l	1	0Ј30023	14-Oct-00	14-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	10			*	Ħ	М	
Toluene	ND	0.50	77	17	**	. "	"	•	
Ethylbenzene	ND	0.50	н	**	#	Ħ	11	41	
Xylenes (total)	ND	0.50	n	**	n		IF	Ħ	
Methyl tert-butyl ether	ND	2.5			•		w.	H	
Surrogate: a,a,a-Trifluorotolu	ene	103 %	70	-130	"	"	"	"	
U-1 (W010034-02) Water S		Received: (12-Oct-0	0 16:20					
Purgeable Hydrocarbons	ND	50	ug/l	1	0J30023	14-Oct-00	14-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	**	н	n	π	11	i v	
Toluene	ND	0.50		**	**	H	н	н .	
Ethylbenzene	ND	0.50	**		iT	#	"		
Xylenes (total)	ND	0.50	**	Ħ	n	*	H	91	
Methyl tert-butyl ether	120	2.5	#	n	**	**	•	**	CC-3
Surrogate: a,a,a-Trifluorotols	iene	96.7 %	70	-130	п	#	"	"	
U-2 (W010034-03) Water		Received:	02-Oct-(0 16:20					
Purgeable Hydrocarbons	ND	50	ug/l	1	0Ј30023	14-Oct-00	14-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	Ħ				н	n ,	
Toluene	ND	0.50	п		Ħ	#	н	н	
Ethylbenzene	ND	0.50	*	#	11	# .	, "	Ħ	
Xylenes (total)	ND	0.50	**	н	- 11	n	*	и	
Methyl tert-butyl ether	52	2.5	п	17	•		н	n 	CC-3
Surrogate: a,a,a-Trifluorotol		105 %	70	0-130	н	,,	n	"	

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding Reported: 09-Nov-00 18:08

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-3 (W010034-04) Water	Sampled: 02-Oct-00 08:20	Received: ()2-Oct-0	0 16:20				_	P-01
Purgeable Hydrocarbons	11000	1000	ug/l	20	0Ј16031	16-Oct-00	16-Oct-00	EPA 8015M/8020	
Benzene	2100	10	"	"	41	"		w	
Toluene	31	10		"	44	u		n	
Ethylbenzene	2000	10	н.	#	Ħ	11		n	
Xylenes (total)	780	10		н	н	"	*	. "	
Surrogate: a,a,a-Trifluoroto	luene	83.0 %	70-	-130	#	п	"	"	
U-3 (W010034-04RE1) Wa	ter Sampled: 02-Oct-00 0	8:20 Receiv	ed: 02-C	oct-00 16:20	D .				P-01
Methyl tert-butyl ether	25000	500	ug/l	200	0J16031	16-Oct-00	17-Oct-00	EPA 8015M/8020	CC-3
Surrogate: a,a,a-Trifluoroto	luene	102 %	70	-130	#	п	"	"	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding Reported:

09-Nov-00 18:08

MTBE Confirmation by EPA Method 8260A

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-3 (W010034-04) Water	Sampled: 02-Oct-00 08:20	Received: ()2-Oct-00	16:20					A-03
Methyl tert-butyl ether	28000	200	ug/l	100	0J26016	24-Oct-00	24-Oct-00	EPA 8260B	
Surrogate: Dibromofluorom Surrogate: 1,2-Dichloroetho		100 % 98.0 %	= -	150 150	"	H	W	#	

€₿

Page 4 of 11

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding Reported:

09-Nov-00 18:08

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (W010034-02) Water	Sampled: 02-Oct-00 07:44	Received:	02-Oct-0	D 16: 20					
tert-Butyl alcohol	ND	50	ug/l	1	0J13023	14-Oct-00	14-Oct-00	EPA 8260B	
Surrogate: Dibromofluoron	rethane	110 %	50-	150	н	*	"	н	
U-2 (W010034-03) Water	Sampled: 02-Oct-00 07:23	Received:	02-Oct-0	0 16:20					
tert-Butyl alcohol	ND	50	ug/l	1	0J13023	14-Oct-00	14-Oct-00	EPA 8260B	
Surrogate: Dibromofluoron	1ethane	94.0 %	50-	-150	"	"	"	н	
Surrogate: 1,2-Dichloroeth	ane-d4	132 %	50-	-150	"	"	"	#	
U-3 (W010034-04) Water	Sampled: 02-Oct-00 08:20	Received:	02-Oct-0	0 16:20					
tert-Butyl alcohol	63000	5000	ug/l	100	0J13023	14-Oct-00	15-Oct-00	EPA 8260B	
Surrogate: Dibromofluoron	nethane	124 %	50-	-150	. "	"	"	r	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding Reported:

09-Nov-00 18:08

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J16031 - EPA 5030B [P/T]						·				
Blank (0J16031-BLK1)				Prepared	& Analyz	ed: 16-Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	** .							
Toluens	ND	0.50	#							
Ethylbenzene	ND	0.50	"							
Kylenes (total)	ND	0.50	n							
Methyl tert-butyl ether	ND	2.5	-						•	
Surrogate: a, a, a-Trifluorotoluene	27.0		#	30.0		90.0	70-130			
LCS (0J16031-BS1)				Prepared	& Analyz	ed: 16-Oc	t-00			
Benzene	19.3	0.50	ug/l	20.0		96.5	70-130			
l'oluene	19.9	0.50	н	20.0		99.5	70-130			
Ethylbenzene	20,5	0.50	и	20.0		103	70-130			
Xylenes (total)	58.4	0.50	*	60.0		97.3	70-130			
Surrogate: a,a,a-Trifluorotoluene	29.0		n	30.0		96.7	70-130			
Matrix Spike (0J16031-MS1)	Se	ource: W0100	81-04	Prepared	& Analyz					
Benzene	20.1	0.50	ug/l	20.0	ND	101	70-130			
Tohiene	21.2	0.50	-	20.0	0.68	103	70-130			
Ethyibenzene	21.0	0.50	*	20.0	ND	105	70-130			
Xylenes (total)	60.7	0.50	Ħ	60.0	0.89	99.7	70-130			•
Surrogate: a, a, a-Trifluorotoluene	29.0		"	30.0		96.7	70-130			
Matrix Spike Dup (0J16031-MSD1)	Source: W010081-04			Prepared	& Analyz	ed: 16-00				
Benzene	20.0	0.50	ug/l	20.0	ND	100	70-130	0.995	20	
Toluene	20.6	0.50	•	20.0	0.68	99.6	70-130	3.36	20	
Ethylbenzene	21.0	0.50	*	20.0	ND	105	70-130	0	20	
Xylenes (total)	59.0	0.50	Ħ	60.0	0.89	96.9	70-130	2.85	20	
Surrogate: a, a, a-Trifluorotoluene	29.5	· · · ·	it .	30.0		98.3	70-130			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Project: Unocal

Project Number: Unocal # 4186

Reported: 09-Nov-00 18:08

Dublin CA, 94568

Project Manager: Deanna L. Harding

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J30023 - EPA 5030B [P/T]			_							
Blank (0J30023-BLK1)				Prepared	& Analyz	ed: 14-Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	**							
Toluene	ND	0.50	π							
Ethylbenzene	ND	0.50	**							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	"							
Surrogate: a,a,a-Trifluorotoluene	28.8		Ħ	30.0		96.0	70-130			
Blank (0J30023-BLK2)				Prepared	& Analyz	ed: 15-Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	Ħ							
Toluene	ND	0.50	H					٠.	*	Ē
Ethylbenzene	ND	0.50	-							
Xylenes (total)	ND	0.50	#							
Methyl tert-butyl ether	ND	2.5	-							
Surrogate: a,a,a-Trifluorotoluene	29.8		N.	30.0		99.3	70-130			
LCS (0J30023-BS1)				Prepared	l & Analyz	zed: 14-00	ct-00			
Benzene	20.1	0.50	ug/l	20.0		. 101	70-130			
Toluene	20.5	0.50	P	20.0		103	70-130			
Ethylbenzene	21.4	0.50	**	20.0		107	70-130			
Xylenes (total)	63.7	0.50	n	60.0		106	70-130			
Surrogate: a,a,a-Trifluorotoluene	29.4		n	30.0		98.0	70-130	•		
LCS (0J30023-BS2)				Prepared	i & Analy	zed: 15-O	ct-00			
Benzene	18.5	0.50	ug/l	20.0		92.5	70-130			
Toluene	19.0	0.50	**	20.0		95.0	70-130	•		
Ethylbenzene	. 19.1	0.50	#	20.0	-	95.5	70-130			
Xylenes (total)	58.1	0.50	н	60.0		96.8	70-130	•		
Surrogate: a,a,a-Trifluorotoluene	30.5	<u></u>	"	30.0		102	70-130			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding **Reported:** 09-Nov-00 18:08

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J30023 - EPA 5030B [P/T]	-									
Matrix Spike (0J30023-MS1)	So	urce: W0100	37-09	Prepared	& Analyz	ed: 15-Oc	t-00			
Benzene	18.6	0.50	ug/l	20.0	ND	93.0	70-130			
Toluene	19.0	0.50	H	20.0	ND	95.0	70-130			
Ethylbenzene	19.3	0.50	**	20.0	ND	96.5	70-130			
Xylenes (total)	58.0	0.50	n	60.0	ND	96.7	70-130			
Surrogate: a,a,a-Trifluorotoluene	30.5		Ħ	30.0		102	70-130			
Matrix Spike Dup (0J30023-MSD1)	S	ource: W0100	37-09	Prepared	& Analyz	ed: 15-Oc	t-00			
Benzene	18.2	0.50	ug/l	20.0	ND	91.0	70-130	2.17	20	
Toluene	18.7	0.50	n	20.0	ND	93.5	70-130	1.59	20	
Ethylbenzene	18.9	0.50	•	20.0	ND	94.5	70-130	2.09	20	
Xylenes (total)	57.3	0.50	#	60.0	ND	95.5	70-130	1.25	20	
Surrogate: a, a, a-Trifluorotoluene	30.5	<u> </u>	n	30.0		102	70-130			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Unocal

Project Number: Unocal # 4186
Project Manager: Deanna L. Harding

Reported: 09-Nov-00 18:08

MTBE Confirmation by EPA Method 8260A - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J26016 - EPA 5030B [P/T]			-							
Blank (0J26016-BLK1)				Prepared	& Analyz	ed: 23-Oc	t-00			
Methyl tert-butyl ether	ND	2.0	ug/l							
Surrogate: Dibromofluoromethane	50.0	··· · · · · · · · · · · · · · · · · ·	"	50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	46.0		#	50.0		92.0	50-150			
Blank (0J26016-BLK2)				Prepared	& Analyz	ed: 24-Oc	t-00			
Methyl tert-butyl ether	ND	2.0	ug/l							
Surrogate: Dibromofluoromethane	49.0		17	50.0		98.0	50-150		•	
Surrogate: 1,2-Dichloroethane-d4	46.0		tt	50.0		92.0	50-150			
LCS (0J26016-BS1)		Prepared & Analyzed: 23-Oct-00								
Methyl tert-butyl ether	42.3	2.0	ug/l	50.0		84.6	70-130			
Surrogate: Dibromofluoromethane	49.0	•	"	50.0	-	98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	45.0		"	50.0		90.0	50-150			
LCS Dup (0J26016-BSD1)				Prepared	& Analyz	ed: 24-Oc	t-00			
Methyl tert-butyl ether	53.0	2.0	ug/l	50.0		106	70-130	22.5	25	
Surrogate: Dibromofluoromethane	49.0			50.0		98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	48.0		"	50.0		96.0	50-1 <i>5</i> 0			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal

Project Number: Unocal # 4186 Project Manager: Deanna L. Harding Reported: 09-Nov-00 18:08

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J13023 - EPA 5030B [P/T]										
Blank (0J13023-BLK1)				Prepared:	13-Oct-0	0 Analyze	d: 14-Oct-	00		
Ethanol	ND	500	ug/l		-					
iert-Butyl alcohol	ND	50	n .							
Methyl tert-butyl ether	ND	2.0	н							
Di-isopropyl ether	ND	2.0	n							
Ethyl tert-butyl ether	ND	2.0	**							
tert-Amyl methyl ether	ND	2.0	***							
1,2-Dichloroethane	ND	2.0	n							
Ethylene dibromide	ND	2.0								
Surrogate: Dibromofluoromethane	50.0			50.0		100	50-150	<u> </u>		
Surrogate: 1,2-Dichloroethane-d4	86.0		at.	50.0		172	50-150			Q-01
LCS (0J13023-BS1)				Prepared	& Analyz					
Methyl tert-butyl ether	53.0	2.0	ug/l	50.0		106	70-130			
Surrogate: Dibromoftuoromethane	43.0			50.0		86.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	57.0		"	50.0		114	50-150			
LCS (0J13023-BS2)				Prepared & Analyzed: 14-Oct-00						
Methyl tert-butyl ether	60.6	2.0	ug/l	50.0		121	70-130			
	45.0			50.0		90.0	50-150			
Surrogate: Dibromofluoromethane Surrogate: 1,2-Dichloroethane-d4	60.0		#	50.0		120	50-150			
Matrix Spike (0J13023-MS1)		ource: W010	090-05	Prepared & Analyzed: 13-Oct-00						
Methyl tert-butyl other	61.2	2.0	ug/l	50.0	7.2	108	60-150			
				50.0		84.0	50-150			
Surrogate: Dibromofluaromethane	42.0		"	50.0 50.0		108	50-150			
Surrogate: 1,2-Dichloroethane-d4	54.0		••				•			0
Matrix Spike Dup (0J13023-MSD1)	Source: W010090-05		Prepared & Analyzed: 13-							
Methyl tert-butyl ether	64.5	2.0	ng/l	50.0	7.2	115	60-150	5.25	25	
Surrogate: Dibromofluoromethane	45.0		м	50.0		90.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	55.0		#	50.0		110	50-150			

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Unocal
Project Number: Unocal # 4186
Project Manager: Deanna L. Harding

Reported: 09-Nov-00 18:08

Notes and Definitions

A-03	This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
CC-3	Continuing Calibration indicates that the quantitative result for this analyte includes a greater than 15% degree of uncertainty. The value as reported is within method acceptance.
P-01	Chromatogram Pattern: Gasoline C6-C12
Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED

DEI Allalyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference