TRANSMITTAL

September 20, 2000 G-R #: 180181

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 4000

San Ramon, California 94583

CC:

Mr. David Vossler

Gettler-Ryan Inc.

Petaluma, California

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE:

Tosco (Unocal) SS #4186

1771 First Street

Livermore, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
i	September 18, 2000	Groundwater Monitoring and Sampling Report Third Quarter - Event of July 17, 2000

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *October 3*, 2000, this report will be distributed to the following:

Enclosure

cc.

Ms. Eva Chu

Alameda County Health Care Services

1131 Harbor Bay Parkway

Alameda, CA 94502

trans/4186.dbd

September 18, 2000 G-R Job #180181

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE:

Third Quarter 2000 Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #4186

1771 First Street Livermore, California

Dear Mr. De Witt:

This report documents the quarterly groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R). On July 17, 2000, field personnel monitored and sampled three wells (U-1, U-2 and U-3) at the above referenced site.

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 6882

OF CAL

Sincerely,

Deanna L. Harding Project Coordinator

Douglas I Lee

Senior Geologist, R.G. No. 6882

Figure 1:

Potentiometric Map

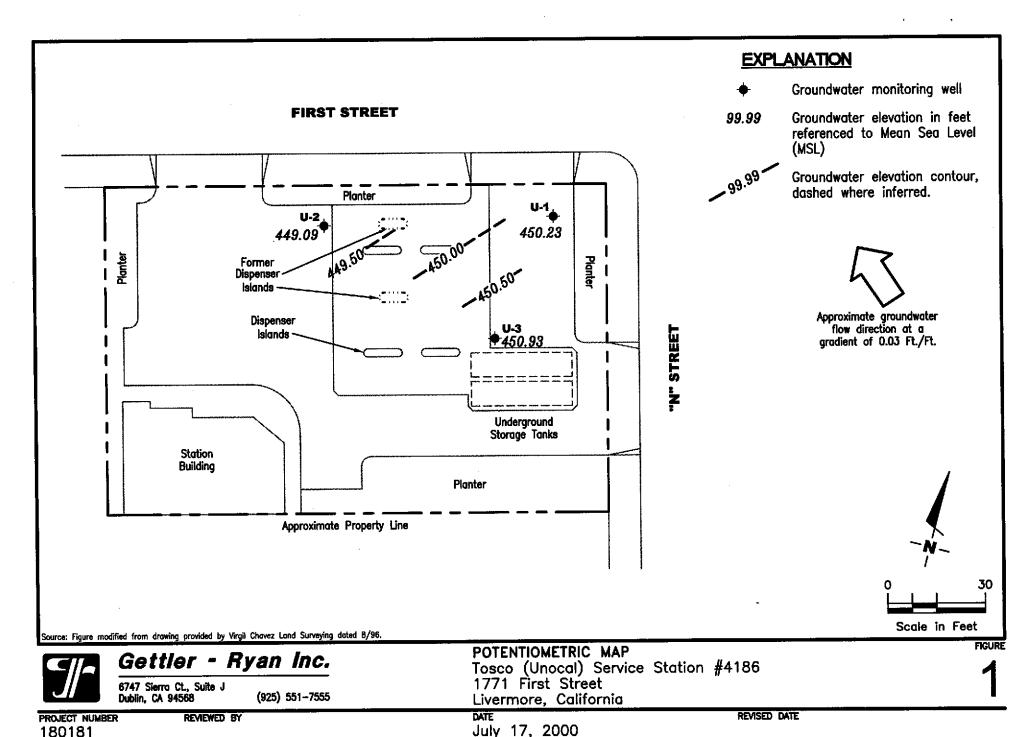
1. Hardin

Figure 2:

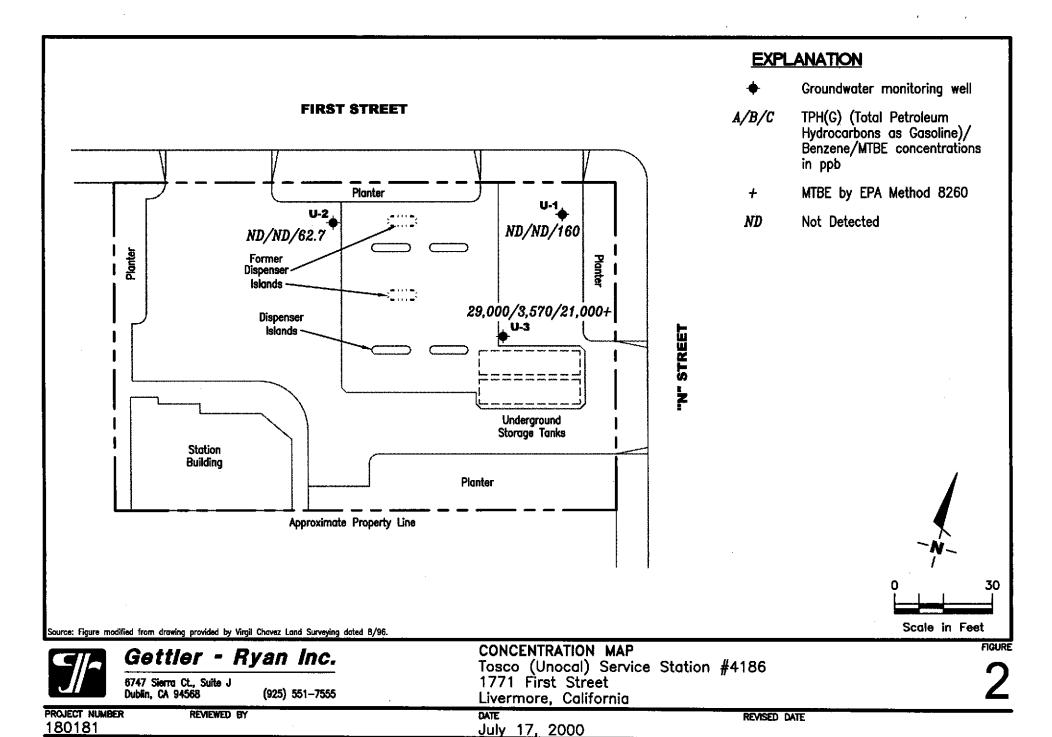
Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results


Table 2:

Groundwater Analytical Results - Oxygenate Compounds Standard Operating Procedure - Groundwater Sampling


Attachments: Standard Operation Field Data Sheets

4186.gml

Chain of Custody Document and Laboratory Analytical Reports

FILE NAME: P:\ENVIRO\TOSCO\4186\QOO-4186.DWG | Layout Tab: Pot3

FILE NAME: P:\ENVIRO\TOSCO\4186\QOO-4186.DWG | Layout Tab: Con3

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #4186 1771 First Street Livermore, California

WELL ID/	DATE	DTW	S.I.	GWE	TPH(G)	В	T	16	X	MTBE
тос*		(ft.)	(ft. bgs.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
		-								
U-1										
478.27	07/13/98	23.28	14.0-34.0	454.99	ND	ND	ND	ND	ND	ND
	10/07/98	26.43		451.84	ND	ND	ND	' ND	ND	ND
	01/15/99	30.42		447.85	ND	ND	ND	ND	1.1	7.3
	04/14/99	24.21		454.06	ND	ND	ND	ND	ND	160
	07/19/99	27.10		451.17	ND	ND	ND	ND	ND	92
	10/12/99	29.40		448.87	ND	ND	ND	ND	ND	37
	01/24/00	27.90		450.37	ND	ND	ND	ND	ND	28
	04/10/00	26.16		452.11	ND	ND	0.930	ND	ND	ND
	07/17/00	28.04		450.23	ND	ND	ND	ND	ND	160
U-2										
477.44	07/13/98	23.52	13.0-33.0	453.92	1,200	130	12	62	180	1,100
777,77	10/07/98	25.31	15.0-55.0	452.13	ND	ND	ND	ND	ND	160
	01/15/99	30.22		447.22	ND	ND	ND	ND	ND	280
	04/14/99	24.50		452.94	ND	ND	ND	ND	ND	460
	07/19/99	28.54		448.90	ND	ND	ND	ND	ND	220
	10/12/99	30.48		446.96	ND	ND	ND	ND	ND	160
	01/24/00	24.52		452.92	ND	ND	ND	ND	ND	150
	04/10/00	23.68		453.76	ND	ND	ND	ND	ND	177
	07/17/00	28.35		449.09	ND	ND	ND	ND	ND	62.7
U-3										
478.46	07/13/98	23.82	14.0-34.0	454.64	70,000	3,100	5,500	2,700	16,000	7,500
	10/07/98	25.64		452.82	54,000	5,000	1,100	3,100	14,000	6,100
	01/15/99	30.92		447.54	41,0001	3,100	ND ²	1,800	3,800	15,000
	04/14/99	24.48		453.98	33,000	86	290	2,200	7,800	39,000
	07/19/99	28.46		450.00	48,000	3,900	2,500	3,600	14,000	12,000/16,000 ³
	10/12/99	30.39		448.07	35,000 ⁴	4,200	ND^2	2,300	1,800	22,000/8,300 ⁵

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #4186 1771 First Street

Livermore, California

WELL ID/	DATE	DTW	S.I.	GWE	TPH(G)	В	1	E	X	MTBE
TOC*		(ft.)	(ft. bgs.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
U-3	01/24/00	23.43	14.0-34.0	455.03	13,000 ⁴	260	ND^2	770	3,200	53,000/42,000 ³
	04/10/00	23.31	14.0 54.0	455.15	35,200 ⁴	1,070	241	2,820	8,850	35,600/40,900 ³
(cont)	07/17/00	27.53		450.93	29,000 ⁴	3,570	525	3,180	5,660	22,500/21,000 ³
Trip Blank								MD	NTD	ND
TB-LB	07/13/98				ND	ND	ND	ND	ND	
	10/07/98				ND	ND	ND	ND	ND	ND
	01/15/99				ND	ND	ND	ND	ND	ND
	04/14/99				ND	ND	ND	ND	ND	ND
	07/19/99				ND	ND	ND	ND	ND	ND
	10/12/99				ND	ND	ND	ND	ND	, ND
	01/24/00				ND	ND	ND	ND	ND	ND
					ND	ND	ND	ND	ND	ND
	04/10/00 07/17/00			**	ND	ND	ND	ND	ND	ND
	0//1//00									

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #4186 1771 First Street Livermore, California

EXPLANATIONS:

TOC = Top of Casing

B = Benzene

ppb = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S. I. = Screen Interval

X = Xylenes

(ft. bgs.) = Feet Below Ground Surface

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

(msl) = Mean sea level

TPH(G) = Total Petroleum Hydrocarbons as Gasoline

- TOC elevations are relative to Mean Sea Level (msl) in feet. The benchmark used was a City of Livermore survey monument at First & "Q" Streets.
- 1 Laboratory report indicates gasoline and unidentified hydrocarbons C6-C12.
- 2 Detection limit raised. Refer to analytical reports.
- 3 MTBE by EPA Method 8260.
- Laboratory report indicates gasoline C6-C12.
- 5 MTBE by EPA Method 8260 analyzed past EPA recommended holding time.

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Tosco (Unocal) Service Station #4186

1771 First Street

Livermore, California

WELL ID	DATE	ETHANOL (ppb)	TBA (ppb)	MTBE (ppb)	DIPE (ppb)	ETBE (ppb)	ТАМЕ (ppb)	EDB (ppb)	1,2-DCA (ppb)
U-3	07/19/99			16,000					
	10/12/99			8,300					
	01/24/00			42,000					
	04/10/00		e	40,900					
	07/17/00			21,000			**		

EXPLANATIONS:

ANALYTICAL METHOD:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-Dichloroethane

ppb = Parts per billion

-- = Not Analyzed

EPA Method 8260 for Oxygenate Compounds

Detection limit raised. Refer to analytical reports.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility #_4\8	36		Job#:	180181	
	11 First st.		Date:	7-17-0	00
	vermoce, CA		Samp	ler: <u>Joe</u>	
Well ID	<u>U-1</u>	Well	Condition:	o.k.	
Well Diameter	2 in	-	rocarbon	Amount Ba	
Total Depth	34,20 #		kness:	.17 3" = 0.38	4" = 0.66
Depth to Water	28.04 5	Fac	tor (VF)	6" = 1.50	12* = 5.80
	6.16 x	vf <u>e.17</u>	=/.05 X 3 (case	volume) = Estimated Pu	irge Volume: 3.5 (pal.)
Purge Equipment:	Risposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment	: Qisposable Ba Bailer Pressure Baile Grab Sample Other:	
Starting Time: Sampling Time: Purging Flow Rate Did well de-wate	8,31 \$9:0 e: •.Sar		_		
	70iume pH (gal.) 1 7.58 2 7.41 3.5 7.44)	ductivity (OTemphos/cm) .96 .05 .09	Erature D.O. (mg/L) G. 2 G. 4	ORP Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABO REFRIG.	RATORY INFORM. PRESERV. TYPE	ATION LABORATORY	ANALYSES
U	3 Vc A	Υ	HCL	Sequoia	TPHG, BTEX, MTBG
`		<u> </u>			
COMMENTS: _					

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility #_418	86		Job:	#: <u> 18018</u>	31	
Address: 17	71 First st	•	Date	: <u>7-17-</u>	-00	•
						
City:	Vermora, C	· ·	580	pler: <u>Sø e</u>		
Well ID	<u>U-2</u>	We	Il Condition: _	o.k.		
Well Diameter	2 in	-	drocarbon ckness:	Amount in (product/v		
Total Depth	33.20 +			2.17 3" = 0.1		
Depth to Water	28.35	I -		e = 1.50		
	_4.86 x	vf 0.17	=0.82 x 3 (case	volume) = Estimated	Purge Volume: 2.5	<u>losl_1</u> '
Purge Equipment:	Disposable Bailer Bailer Stack	• .	Sampling Equipment	t: Qisposable E	lailer	1
	Suction	•		Pressure Bai	ler,	
	Grundfos	÷		Grab Sample	₽	
	Other:			Other:		
Purging Flow Rate	9:30) e: 0.50	pm_	Sediment Descrip	clear orion: <u>worke</u> Volu		e loal 1
	olume pH	Con μπι	ductivity ((Temp	perature D.O. (mg/L)		calinity (ppm)
9.16	7.67	6	.42 60	6.3		
9:19	2 7-38	6	<u>CK</u> _6			
1:21	<u>7.35</u>		.55 _6	6.5	<u> </u>	
			<u> </u>		-	
		<u> </u>	<u>. </u>	· · ·	- 	<u> </u>
		* .				
	4.4		RATORY INFORMA			
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV, TYPE	LABORATORY	ANALYSES	
V- 2	3 VeA	Υ	HCL	Sequoia	TPHG, BTEX, MT	86
				 		
COMMENTS:						
				·		
		•		·	<u></u>	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ acility # <u>418</u>	86		Job#:	180181		-
Address: 17	11 First st.	·	Date: _	7-17-0	00	
ity: Li	vermore, Ch.		Sampler: _	Joe		-
Well ID	11-3	Well Condition	o.k	<u> </u>		-
Vell Diameter	2 _{in}	Hydrocarbon	0	Amount Ba		
Total Depth	33.40 +	Thickness:	2" = 0.17	(product/wat 3" = 0.38	4" = 0.66	<u> </u>
epth to Water	27.53 4.	Factor (VF)	೯ -	1.50	12" = 5.80	
	<u>\$.87</u> x vf	0.17 - 1:00	(3 (case volume)	= Estimated Pu	rge Volume: <u>3 (onl.)</u>	1 .
Purge Equipment:	Disposable Bailer Bailer		npling sipment: 6	isposable Ba	iler ,	
	Stack ·		В	ailer ressure Baile		
·	Suction Grundfos			ressure balle irab Sample		
	Other:	.;		•		
	<u> </u>		·			-
Starting Time:	9:40		Conditions:	clear		-
Sampling Time:	10:05 A.W	Water Co	lor:	ear	Odor: 4 C S	-
Purging Flow Rate	8:	Sediment	Description: _	MORE		_
Did well de-water	?	if yes; T	ime:	Volum	e:	Ħ
•	olume pH (gal.)	Conductivity (Conductivity (Co	Premperature	D.O. (mg/L)	ORP Alkalinity (mV) (ppm)	
9:47	2 (8)	137	66.0	. 		-
9:53	3 (21)	1.44	66.1			
						_
						_
						1
		LABORATORY II			bg	
SAMPLE ID		FRIG. PRESERV		ORATORY 400ia	TPHG, BTEX, MTBG-	70
U-3	3 YeA	/ HCL	. 30	quoia	TING, DIEX, MISE	70
						4
						-
				* * * * * * * * * * * * * * * * * * *	<u>i</u>	_1
			_	¥.		
COMMENTS:						

TOSO These Markeday 2008 Core Carpen San Farma, Colle		Con	Foot eukant P eukont H Address_	lity Addre roject Hi armo_G 6747_: ontact (I	umber ettler Sierra Nome)	OCAL SS# 1 FIRST 1801 -Ryan In Court. eanna L. 0-551-75	STREE 81.85 c. (G Suite Hard	-R Ir Ins	(VERM	ore,	CA \ 9451	1 5.8 1	Loborolo Loboralo	ry Nam ry Roles Collecto 1 Date _	(Phone Se Num	o) (quo1 ber (iome) (925) a Ana	277-2321 alytical OE ATEMIAN				
Sampie Number	Lob Sample Number	Number of Containers	Matrix S = Solf A = Ar W = Voter C = Charcool	Type C = Grab C = Composite D = Discrete	ě	. Sample Preservation	liced (Yee or No)	TPH Ga+ STEX WATTE TROUBLE TROUBLE	TPH Diesed (8015)	Oil and Great	Purpeable Holocarbors (8010)	Purpeable Aromatics (8020)	Puryeable Organics 35 (82.40)	iğ .	CLC-Pb_Zn_Mi						DO NOT BILL TB-LB ANALYSIS Remarks	
TB-LB		V34	W	Ċ	-	HCL	Υ						ļ			<u> </u>				<u> </u>	* confirm	
V-1		10A	1	_	9:05	/	1									<u> </u>	ļ		٠٠.	ــــــ	MTBE by 8260 on U-3	
U-2		*	,	1	9:30					ļ	<u> </u>		ļ <u> </u>		<u> </u>					 	8260 on U-3	
U-3		1,		_	10:05		1	<u> </u>				<u> </u>		<u> </u>			ļ	 	ļ		paly.	
								ļ				<u> </u>	<u> </u>	<u> </u>	<u> </u>			ļ		 		
				• • •		- <u></u> -									ļ <u>.</u>			ļ			· · - · · · · · · · · · · · · · · · · 	
						•							<u> </u>			<u> </u>	1		ļ	 		
						<u> </u>		<u> </u>	<u> </u>				<u> </u>					ļ		 		
				<u> </u>		·		<u> </u>		<u> </u>			ļ						-			
														<u> </u>			<u> </u>		<u> </u>	<u> </u>		
												_	<u> </u>		<u> </u>			<u> </u>	<u> </u>			
							<u> </u>	.	<u> </u>	<u> </u>		·	<u> </u>		<u> </u>		<u> </u>			<u> </u>		
					: /:	·					-		<u> </u>					<u> </u>	ļ			
							<u> </u>		<u> </u>				<u> </u>			<u> </u>	<u> </u>			<u> </u>	<u> </u>	
	Signature) Out Signature)	·	G-	nization R Inc	• 7	ote/Time 7 (** - 17-00 ote/Time		pelved By	Ni	(De	<u>a</u>		rganizal Prganizal		_[2/_	/Ilme //Os /Ilme	(5a)		Turn Ar	24 46	me (Cirole Cholos) Hre. Hre. Doys	
bi (Signature)		Orgo	enizotion	D	ete/Time	Rec	ileved Fi	or Labor	atory D	y (Slgna	lure)			Dale	/Tim•				10_	Doys ntracted	

August 1, 2000

PERFE

Deanna Harding Gettler-Ryan/Geostrategies(1) 6747 Sierra Court, Suite J Dublin, CA 94568

RE: Tosco(4)/L007118

Dear Deanna Harding:

GPO LOKER FAIR EMO.

Enclosed are the revised results for sample(s) received by the laboratory on July 17, 2000. The sample IDs have been changed from "V" to "U." If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Wayne Stevenson Project Manager

CA ELAP Certificate Number I-2360

Project: Tosco(4) Project Number: Unocal SS#4186

Sampled:

7/17/00 Received: 7/17/00

Project Manager: Deanna Harding

8/1/00 Reported:

ANALYTICAL REPORT FOR L007118

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
TB-LB	L007118-01	Water	7/17/00
U-1	L007118-02	Water	7/17/00
U-2	L007118-03	Water	7/17/00
U-3	L007118-04	Water	7/17/00

Project: Tosco(4)

Unocal SS#4186 Project Number:

Sampled: 7/17/00 Received: 7/17/00

Project Manager: Deanna Harding

Reported: 8/1/00

Sample Description:

Laboratory Sample Number:

TB-LB L007118-01

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
		Sequ	oia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C	12), BTEX ar	id MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0070115	7/27/00	7/28/00		50.0	ND	ug/l	
Benzene	41	H	11		0.500	ND	Ħ	
Toluene	17	*1	n ·		0.500	ND	n	
= ==:::	п	n	н		0.500	ND	11	
Ethylbenzene			11		0.500	ND	н	•
Xylenes (total)			11		5.00	ND	н	
Methyl tert-butyl ether		41			3.00		0/	
Surrogate: a,a,a-Trifluorotoluene	п	n	n	<i>70.0-130</i>		109	%	

Project:

Tosco(4)

Sampled:

7/17/00

Dublin, CA 94568

Project Number: Unocal SS#4186 Project Manager:

Deanna Harding

Received: 7/17/00 Reported: 8/1/00

Sample Description:

Laboratory Sample Number:

U-1

L007118-02

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
		Seque	oia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C	12), BTEX at	nd MTBE by	DHS LUFT					
Purgeable Hydrocarbons as Gasoline	0070115	7/27/00	7/28/00		50.0	ND	ug/l	
Benzene	11	H	n		0.500	ND	н	
Toluene	#	n	н		0.500	ND	н	
Ethylbenzene	ti	e			0.500	ND	'n	
Xylenes (total)	11	11	#		0.500	ND	н	
Methyl tert-butyl ether	11	11	п		5.00	160	н	
Surrogate: a,a,a-Trifluorotoluene	"	п	"	70.0-130		112	%	•

Project: Tosco(4)

Project Number: Unocal SS#4186 Project Manager: Deanna Harding

Sampled:

7/17/00 Received: 7/17/00

Reported: 8/1/00

Sample Description:

Laboratory Sample Number:


Sequoia Analytical - San Carlos

U-2

L007118-03

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method/ Surrogate Limits	Reporting Limit	Result	Units	Notes*
		Sequ	oia Analytica	l - San Carlos				
Total Purgeable Hydrocarbons (C6-C	12), BTEX at							
Purgeable Hydrocarbons as Gasoline	0070125	7/28/00	7/28/00		50.0	ND	ug/l	
Benzene	#	N	11		0.500	ND	H	
	11	91	117		0.500	ND	Ħ	
Toluene	19	#1	11		0.500	ND	tt	
Ethylbenzene		11	**		0.500	ND	**	
Xylenes (total)			11		5.00	62.7	11	
Methyl tert-butyl ether	17	17			3.00		0/	
Surrogate: a,a,a-Trifluorotoluene	W	**	"	70.0-130		126	%	

Project: Tosco(4)

Project Number: Unocal SS#4186

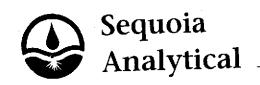
Sampled: 7/17/00 Received:

7/17/00

Dublin, CA 94568

Project Manager: Deanna Harding

8/1/00 Reported:


Sample Description:

Laboratory Sample Number:

U-3

L007118-04

	Batch	Date	Date	Specific Method/	Reporting			
Analyte	Number	Prepared	Analyzed	Surrogate Limits	Limit	Result	Units	Notes*
		Seque	oia Analytica	l - San Carl <u>os</u>				
Total Purgeable Hydrocarbons (C6-C1)	2), BTEX an							
Purgeable Hydrocarbons as Gasoline	0070125	7/28/00	7/28/00		5000	29000	ug/l	1
Benzene	11	11	н		50.0	3570	17	
Toluene	67	n ,	H		50.0	525	17	
Ethylbenzene	11	It	IT		50.0	3180	**	
Xylenes (total)	n'	IT	н		50.0	5660	n	
Methyl tert-butyl ether	77	n	n		500	22500	10	
Surrogate: a,a,a-Trifluorotoluene	n	*	"	70.0-130		109	%	
MTBE by EPA Method 8260A								
Methyl tert-butyl ether	0070137	7/31/00	7/31/00		500	21000	ug/l	
Surrogate: 1,2-Dichloroethane-d4	"	n	n	76.0-114		96.4	%	

Gettler-Ryan/Geostrategies(1) Project: Tosco(4) Sampled: 7/17/00
6747 Sierra Court, Suite J Project Number: Unocal SS#4186 Received: 7/17/00
Dublin, CA 94568 Project Manager: Deanna Harding Reported: 8/1/00

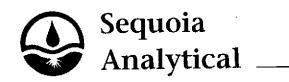
T. ID.	. Undergeschi	me 10KL	12A RTEX	and MIBE	by DE	S RUHIV(e)trahiy	onice.		CQ PASS	
Hole and the second second	e Profit ocasion	Sequoi	a Analytical	- San Carl		ari wasani a				
						Reporting Limit	Recov	RPD	RPD	
	Date	Spike	Sample	QC	Timita	Recov. Limits	%	Limit	% N	Votes
nalyte	Analyzed	Level	Result	Result	Units	Recov. Danies				
-	D . D		nA.		Extrac	tion Method: EPA	5030B	P/T]		
atch: 0070115	Date Prepar		<u> </u>							
lank	0070115-BL	<u>KI</u>	-	ND	ug/l	50.0				
urgeable Hydrocarbons as Gasoline	7/27/00			ND	11 C-G-1	0.500				
senzene	n .			ND	rt	0.500				
`oluene	# 			ND	n	0.500				
thylbenzene	#			ND	#1	0.500				
(ylenes (total)	H				11	5.00				
fethyl tert-butyl ether	TI			ND 0.72	-	70.0-130	97.2			
urrogate: a,a,a-Trifluorotoluene	п	10.0		9.72		70.0-150	<i>,,,</i> ,_			
	0070115-BS	:1								
<u>.CS</u>	7/27/00	10.0		9.92	ug/l	70.0-130	99.2			
Benzene	1/2//00	10.0		9.16	H	70.0-130	91.6			
l'olu e ne	-	10.0		9.21	u	70.0-130	92.1			
Ethylbenz e ne	11	30.0		28.2	#	70.0-130	94.0			
Xylenes (total)	"			11.2	м	70.0-130	112			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		12.4						
LCS	0070115-B	<u>52</u>				=0.0.100	00.0			
Purgeable Hydrocarbons as Gasoline	7/27/00	250		245	ug/l	70.0-130	98.0			
Surrogate: a,a,a-Trifluorotoluene	п	10.0		10.0	п	70.0-130	100			
_	00E011F 34	rea 1	<u> </u>			•				
Matrix Spike	0070115-M		ND	244	ug/l	60.0-140	97.6			
Purgeable Hydrocarbons as Gasoline	7/28/00	250	1412	10.1	n .	70.0-130	101			-
Surrogate: a,a,a-Trifluorotoluene	н	10.0		10.1						
Matrix Spike Dup	0070115-M	ISD1	L007108-07			<0.0.140	101	25.0	3.42	
Purgeable Hydrocarbons as Gasoline	7/28/00	250	ND_	252	ug/l_	60.0-140		23.0	3.42	
Surrogate: a,a,a-Trifluorotoluene	H	10.0		11.3	#	70.0-130	113			
			3 (AA		Extr	action Method: EF	A 5030E	[P/T]		
Batch: 0070125	Date Prepa		<u> </u>		Date			·		
<u>Blank</u>	<u>0070125-B</u>	<u>LK1</u>		ND	ug/l	50.0	1			
Purgeable Hydrocarbons as Gasoline	7/28/00			ND	u GE/1	0.500)			
Benzene	Ħ				н	0.500				
Toluene	н			ND	11	0.500				
Ethylbenzene	11			ND	n	0.500				
Xylenes (total)	*1			ND		5.00				
Methyl tert-butyl ether	н			ND		70.0-130				
Surrogate: a,a,a-Trifluorotoluene	n .	10.0		12.3	,,	/0.0-130	127			
1.05	0070125-1	BS1								
LCS	7/28/00	10.0	1	8.42	ug/l	70.0-130				
Benzene	1/20/00	10.0		8.07	Ħ	70.0-130	80.7	7		
Toluene		10.0	•							

Project: Tosco(4)

Project Number: Unocal SS#4186
Project Manager: Deanna Harding

Sampled: 7/17/00 Received: 7/17/00 Reported: 8/1/00

Total Purgeal	le Hydrocard	When the same of t	(12), (B)(b); n Analytica	The second secon	Committee of the second	IKAPUSI/Omilia	Zeont.			
	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit		Notes*
LCS (continued)	0070125-B5	81								
Ethylbenzene	7/28/00	10.0		7.79	ug/l	70.0-130	77.9			
Xylenes (total)	H	30.0		23.7	11	70.0-130	79.0			
Surrogate: a,a,a-Trifluorotoluene	*	10.0		12.0	Ħ	70.0-130	120			
LCS	0070125-BS	52				•				
Purgeable Hydrocarbons as Gasoline	7/28/00	250		215	ug/l	70.0-130	86.0			
Surrogate: a,a,a-Trifluorotoluene	#	10.0		11.4	n n	70.0-130	114			
Matrix Spike	0070125-M	S1 1.4	007126-06			•				
Benzene	7/28/00	10.0	ND	9.81	ug/l	60.0-140	98.1			
Toluene	H	10.0	ND	9.57	H .	60.0-140	95.7			
Ethylbenzene	n	10.0	ND	9.12	# .	60.0-140	91.2			
Xylenes (total)	n	30.0	ND	27.7	н	60.0-140	92.3			
Surrogate: a,a,a-Trifluorotoluene	н	10.0		10.6	н	70.0-130	106			
Matrix Spike Dup	0070125-M	SD1 La	007126-06							
Benzene	7/29/00	10.0	ND	9.56	ug/l	60.0-140	95.6	25.0	2.58	
Toluene		10.0	ND	9.34	n .	60.0-140	93.4	25.0	2.43	
Ethylbenzene	н	10.0	ND	8.99	н	60.0-140	89.9	25.0	1.44	
Xylenes (total)	н .	30.0	ND	27.2		60.0-140	90.7	25.0	1.75	
Surrogate: a,a,a-Trifluorotoluene	"	10.0		10.5	#	70.0-130	105			


Project: Tosco(4)
Project Number: Unocal SS#4186
Project Manager: Deanna Harding

Sampled: 7/17/00 Received: 7/17/00 Reported: 8/1/00

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	<u>%</u> _	Limit	%	Notes
Batch: 0070137	Date Prepa		<u>)0</u>		Extrac	tion Method: EP	A 5030B	[P/T]		
Blank	<u>0070137-B</u>] 7/31/00	<u>.K1</u>		ND	ug/l	2.00				
Methyl tert-butyl ether Surrogate: 1,2-Dichloroethane-d4	#	50.0		48.3	"	76.0-114	96.6			
<u>LCS</u>	0070137-BS	<u>81</u>						·		
Methyl tert-butyl ether	7/31/00	50.0		50.1	ug/l	70.0-130	100			
Surrogate: 1,2-Dichloroethane-d4	н	50.0		50.0	77	76.0-114	100			-
Matrix Spike	0070137-M	<u>S1</u> L	<u>007217-03</u>							
Methyl tert-butyl ether	7/31/00	50.0	ND	49.0	ug/l	60.0-140	98.0			
Surrogate: 1,2-Dichloroethane-d4	H	50.0		49.7	#	76.0-114	99.4	•		
Matrix Spike Dup	0070137-M	SD1 L	007217-03							
Methyl tert-butyl ether	7/31/00	50.0	ND	48.7	ug/l	60.0-140		25.0	0.614	
Surrogate: 1,2-Dichloroethane-d4	n n	50.0		50.8	n	76.0-114	102			

Page 8 of 9

RPD

Project: Tosco(4)

Project Manager: Deanna Harding

Project Number: Unocal SS#4186

Sampled: 7/17/00 Received: 7/17/00

8/1/00 Reported:

Notes and Definitions

#	Note
1	Chromatogram Pattern: Gasoline C6-C12
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery

Relative Percent Difference

00 001 - F by 3: 52

