

October 31, 1995

Mr. Harry Patterson Union Pacific Railroad 1416 Dodge Street, Room 930 Omaha, Nebraska 68179

RE: "Third Quarter 1995 Monitoring Report" Oakland Motor Freight Facility, 1750 Ferro Street, Oakland, California, USPCI/Laidlaw Project No. 96120-844

Dear Mr. Patterson:

Enclosed is the final copy of the "Third Quarter 1995 Monitoring Report", dated October 30, 1995, for the Union Pacific Motor Freight Facility at 1750 Ferro Street in Oakland, California.

The annual arsenic results were approximately one order of a magnitude over the results of the previous sampling events. It has been recommended that arsenic be re-sampled during the fourth quarter of 1995.

If you have any questions, please call us at (303) 938-5500.

Sincerely,

Denton Mauldin

Project Engineer

Sam Marquis

Project Hydrogeologist

cc:

Durc Klenke, ACDEH

John Amdur, Port of Oakland Philip Herden, APL Mark McCormick, USPCI/Laidlaw Ken Fossey, USPCI/Laidlaw (cover letter)

Enclosure DM/tjh

THIRD QUARTER 1995 MONITORING REPORT

UNION PACIFIC RAILROAD

UNION PACIFIC MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA

USPCI/LAIDLAW PROJECT No. 96120-844

PREPARED FOR:

UNION PACIFIC RAILROAD
ENVIRONMENTAL MANAGEMENT
1416 DODGE STREET, ROOM 930
OMAHA, NEBRASKA 68179

Prepared by:

USPCI/Laidlaw Consulting Services 5665 Flatiron Parkway Boulder, Colorado 80301

October 30, 1995

THIRD QUARTER 1995 MONITORING REPORT UNION PACIFIC RAILROAD UNION PACIFIC MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA USPCI/Laidlaw Project No. 96120-844

Prepared for:
Union Pacific Railroad
Environmental Management - Room 930
1416 Dodge Street
Omaha, Nebraska 68179

for submittal to:
 Dale Klettke
 Alameda County

Department of Environmental Health
 1131 Harbor Bay Parkway
 Alameda, California 94502

Prepared by:
USPCI/Laidlaw Consulting Services
5665 Flatiron Parkway
Boulder, Colorado 80301

Mark McCormick Environmental Assistant

Welt FOR

Sam Marquis
Project Hydrogeologist
R.G. No. 5110

October 31, 1995

TABLE OF CONTENTS

	CTION	1
1.1 Site B	ACKGROUND	1
1.2 Invest	IGATIVE PROCEDURES	2
	ESTIGATION RESULTS	
	DWATER CHARACTERISTICS	
2.2 Groun	DWATER GRADIENT	
2.3 Analy	TICAL RESULTS	3
2.4 MONIT	oring and Recovery of Non-Aqueous Phase Liquid	3
	one in a large management of the contract of t	4
3.1 Concl	USIONS	4
3.2 RECOM	IMENDATIONS	4
4. REFERENC	CES t	5
	LIST OF TABLES	
Table 1	ANALYTICAL RESULTS. GROUNDWATER MONITORING WELLS	
Table 1 Table 2	ANALYTICAL RESULTS, GROUNDWATER MONITORING WELLS FLUID LEVEL MEASUREMENT DATA	
	-	
	-	
	FLUID LEVEL MEASUREMENT DATA	
Table 2	FLUID LEVEL MEASUREMENT DATA LIST OF FIGURES SITE LOCATION MAP	
Table 2 Figure 1	Fluid Level Measurement Data LIST OF FIGURES	
Table 2 Figure 1 Figure 2	FLUID LEVEL MEASUREMENT DATA LIST OF FIGURES SITE LOCATION MAP SITE VICINITY MAP	
TABLE 2 FIGURE 1 FIGURE 2 FIGURE 3	LIST OF FIGURES SITE LOCATION MAP SITE VICINITY MAP DISSOLVED PHASE BTEX DISTRIBUTION MAP	
TABLE 2 FIGURE 1 FIGURE 2 FIGURE 3	LIST OF FIGURES SITE LOCATION MAP SITE VICINITY MAP DISSOLVED PHASE BTEX DISTRIBUTION MAP	
TABLE 2 FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4	LIST OF FIGURES SITE LOCATION MAP SITE VICINITY MAP DISSOLVED PHASE BTEX DISTRIBUTION MAP GROUNDWATER ELEVATION MAP LIST OF APPENDICES	
TABLE 2 FIGURE 1 FIGURE 2 FIGURE 3	LIST OF FIGURES SITE LOCATION MAP SITE VICINITY MAP DISSOLVED PHASE BTEX DISTRIBUTION MAP GROUNDWATER ELEVATION MAP	

1. INTRODUCTION

The 1995 Third Quarterly Monitoring Report was prepared by USPCI, a Laidlaw Company (Laidlaw) for Union Pacific Railroad (UPRR). The report was prepared in response to an April 29, 1993, Alameda County Department of Environmental Health, Hazardous Materials Division (ACDEH) request for UPRR to begin a quarterly monitoring program at the Union Pacific Motor Freight (UPMF) Ferro Street facility in Oakland, California (Figure 1). The facility was the site of a release of petroleum hydrocarbons from underground storage tanks (USTs).

The third quarterly monitoring event involved:

- Collecting fluid level measurements from all of the groundwater monitoring wells and purging and sampling eight of the ten existing monitoring wells not containing non-aqueous phase liquid petroleum hydrocarbon (product);
- Monitoring the performance of the product skimmer in recovery well RW;
- Analyzing groundwater samples for petroleum hydrocarbons from the groundwater monitoring wells where product was not measured.
- Determining the local hydraulic gradient based on the groundwater level measurements; and
- Preparation of the Third Quarterly Monitoring Report.

Product was detected in monitoring wells OKUS-W5, OKUS-W6, and recovery well RW during the Third Quarter 1995 Monitoring Event. Groundwater samples were collected from the eight remaining monitoring wells at the facility on August 9, 1995.

1.1 SITE BACKGROUND

The following describes the historical activities at the railyard and vicinity as well as the location of and access to the site.

The site is located on the southeastern end of the UPRR Oakland trailer-on-flat-car (TOFC) Yard (Figure 2), which is adjacent to the Oakland Inner Harbor or Oakland Estuary. The area surrounding the site is used for heavy to light commerce, with residential areas located approximately one half mile to the north and to the south across the Oakland Estuary. Five USTs were removed from the UPMF site from 1987 to 1990. The refueling portion of the TOFC yard, approximately 700 feet northwest of the truck repair shop, is currently undergoing groundwater remediation for recovery of

product. The limits of the diesel plume in that portion of the site were defined during previous investigations (Laidlaw, 1991), and the plume does not extend to the area of impacted groundwater at the truck repair facility in the Oakland TOFC Yard.

The site is located in the UPRR TOFC Yard at 1750 Ferro Street in the Port of Oakland on the north side of the Inner Harbor, Oakland, California. Access to the site is from the intersection of Middle Harbor Road and Ferro Street.

1.2 INVESTIGATIVE PROCEDURES

All Laidlaw and subcontractor field activities, including data recording procedures, decontamination methods, groundwater sample collection, and purge water disposal, were completed following Laidlaw's standard operating procedures previously supplied to the ACDEH. The quarterly monitoring event was conducted by Laidlaw personnel on August 9, 1995.

2. FIELD INVESTIGATION RESULTS

The continued monitoring of wells and the compilation of the field and analytical data is directed towards an understanding of groundwater and petroleum hydrocarbon migration beneath the site. The field investigation presented in this report was completed on August 9, 1995. Groundwater level measurements and samples were collected on the same day. Samples were analyzed for total petroleum hydrocarbons as diesel (TPH-D) by EPA Method 8015 Modified; TPH as gasoline (TPH-G) by EPA Method 8015 Modified; benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8020; and Arsenic by EPA method 7060 and Lead by EPA method 7241. The following subsections present the findings and activities completed during the Third Quarter field investigation.

2.1 GROUNDWATER CHARACTERISTICS

The UPRR Oakland UPMF Facility is adjacent to the Oakland Estuary, which is located in the eastern portion of the San Francisco Bay (Figure 2). No observable tidal influences have been noted to date at the site; however, the close proximity of the estuary to the site suggests that a direct hydrologic connection may exist between the estuary and the groundwater beneath the site.

2.2 GROUNDWATER GRADIENT

Static water levels measured on August 9, 1995 (Table 1) were used to produce the groundwater elevation map presented as Figure 3. A decrease in groundwater elevations was noted in most of the

monitoring wells at the site since the first and second quarter 1995 sampling events. The groundwater gradient at the site was to the east and was consistent with the gradient observed during the two previous (first and second quarters 1995) gauging and sampling events. Sample collection logs and sampling reports are presented in Appendix B.

2.3 ANALYTICAL RESULTS

Analytical results of the samples collected from the groundwater monitoring wells reveal dissolved concentrations of TPH-D, TPH-G and BTEX in samples from monitoring wells OKUS-W2, OKUS-W3, OKUS-W4, OKUS-W7, OKUS-W8, APL/UP-W1, and APL/UP-W2. Monitoring well OKUS-W1 did not exhibit dissolved BTEX concentrations above the method detection limits (MDLs) of 0.50 micrograms per liter (μ g/L). Total BTEX concentrations ranged from below the MDLs of 0.50 μ g/L in the sample collected from monitoring well OKUS-W1 to approximately 530 μ g/L in the sample collected from monitoring well OKUS-W1 to 5,300 μ g/L in the sample from OKUS-W4. TPH-D concentrations ranged from below the MDL of 50 μ g/L in the sample from OKUS-W3. The hydrocarbon plume is elongated in the net direction of groundwater flow to the east (Figure 4). Concentrations of total BTEX (< 10 μ g/L) were detected in the furthest downgradient well, APL\UP-W2. Comprehensive groundwater analytical results for the wells at the site are presented in Table 2. Analytical reports and chain of custody forms are included in Appendix A.

Lead was not detected in any of the samples from the monitoring wells. Arsenic concentrations ranged from below the MDL of 0.0050 milligrams per liter (mg/L) in APL/UP-W1 to 1.6 mg/L in OKUS-W4. Arsenic concentrations were approximately one order of magnitude higher than the concentrations during the previous sampling events.

2.4 Monitoring and Recovery of Non-Aqueous Phase Liquid

Fluid level measurement data indicated that monitoring wells OKUS-W5, OKUS-W6, and recovery well RW contained product. As indicated in Table 1, monitoring well OKUS-W5 had no measurable product during the August 1995 monitoring event. However, product was observed in the groundwater during well purging procedures and no sample was collected. Monitoring well OKUS-W6 continues to contain "bunker C" type hydrocarbon, as evidenced by the highly viscous nature of the product. An accurate determination of product thickness is not possible due to the high viscosity of the product in OKUS-W6.

A product skimming system was installed in recovery well RW on April 29, 1994 and began operation during the week of May 2, 1994. The skimmer has been out of service for the majority of the third quarter 1995 while repairs to the height adjustment mechanism are being made.

Nevertheless, approximately 0.5 gallons of product was retrieved from the recovery well on August 9, 1995 by Laidlaw personnel and 0.5 gallons was recovered on September 7, 1995 by Smith/Riedel personnel.

3. CONCLUSIONS AND RECOMMENDATIONS

The following subsections present conclusions and recommendations based on the field and analytical results from the subject site.

3.1 CONCLUSIONS

The analytical results from the 1993 site assessments and current groundwater monitoring program indicate a dissolved plume of BTEX and TPH plume is more limited to the interest area surrounding the UPMF facility. An estimate of the lateral extent of the dissolved contaminant plume is presented in Figure 4. Based on the recent sampling results, the downgradient edge of the plume appears to be near monitoring well APL/UP-W2. Comparison of historical data to the most recent sampling results suggests that the dissolved BTEX plume has achieved a steady-state where downgradient concentrations are no longer increasing and the areal extent of the plume has remained relatively constant. Monitoring well OKUS-W1 continues to show results below MDLs indicating no areal increase of the plume at elevated concentrations.

Bunker C continues to be observed in monitoring well OKUS-W6.

Product has been retrieved from recovery well RW.

3.2 RECOMMENDATIONS

Based on the above conclusions, the following recommendations are made:

- To monitor the status of the dissolved petroleum hydrocarbon plume in the groundwater at the site, the quarterly monitoring program should be continued.
- The monitoring of bunker C and product near the UPMF facility should be continued.
- The product in recovery well RW should continue to be removed.
- Samples should continue to be analyzed for arsenic and lead on an annual basis. Arsenic should be re-analyzed during the Fourth Quarter 1995 sampling event to confirm the increase observed in the Third Quarter 1995 results.

4. REFERENCES

Laidlaw, 1994. "Fourth Quarter 1993, Monitoring Event, Union Pacific Railroad, May, 1994.

TABLE 1 FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

WELL NO.	ELEV.*	DATE	DEPTH TO PRODUCT	PRODUCT ELEVATION	PRODUCT THICKNESS	DEPTH TO WATER	WATER ELEVATION	CORR'D ELEVATION
OKUS-W1	9.17	01/14/93	N/A	N/A	NP	8.42	0.75	0.75
	9.17	01/15/93	N/A	N/A	NP	8.45	0.72	0.72 1.38
	9.17	02/18/93	N/A N/A	N/A N/A	NP NP	7.79 8.04	1.38 1.13	1.13
	9.17 9.17	05/12/93 08/25/93	N/A	N/A	NP	8.61	0.56	0.56
	9.17	11/11/93	N/A	N/A	NP	9.24	-0.07	-0.07
	9.17	02/08/94	N/A	N/A	NP	8.47	0.70	0.70
	9.17	05/03/94	N/A	N/A	NP	8.49	0.68	0.68
	9.17	08/24/94	N/A	N/A	NP	8.89 8.56	0.28 0.61	0.28 0.61
	9.17	11/16/94	N/A N/A	N/A N/A	NP NP	7.61	1.56	1.56
	9.17 9.17	02/22/95 06/22/95	N/A	N/A	NP	8.00	1.17	1.17
	9.17	08/09/95	N/A	N/A	NP	8.18	0.99	0.99
OKUS-W2	9.71	01/14/93	N/A	N/A	NP	9.08	0.63	0.63
	9.71	01/15/93	N/A	N/A	NP	9.12	0.59	0.59
	9.71	02/18/93	N/A	N/A	NP	8.70	1.01 0.67	1.01 0.67
	9.71	05/12/93	N/A	N/A N/A	NP NP	9.04 9.61	0.10	0.10
	9.71 9.71	08/25/93 11/11/93	N/A N/A	N/A	NP	10.20	-0.49	-0.49
	9.71	02/08/94	N/A	N/A	NP	9.46	0.25	0.25
	9.71	05/03/94	N/A	N/A	NP	9.50	0.21	0.21
	9.71	08/24/94	N/A	N/A	NP	9.74	-0.03	-0.03
	9.71	11/16/94	N/A	N/A	NP	9.74	-0.03	-0.03
	9.71	02/22/95	N/A	N/A	NP	8.49	1.22 0.81	1.22 0.81
	9.71 9.71	06/22/95 08/09/95	N/A N/A	N/A N/A	NP NP	8.90 9.09	0.62	0.62
OKUS-W3			N/A	N/A	NP	9.39	0.41	0.41
OK02-442	9.80 9.80	01/14/93 01/15/93	N/A	N/A	NP	9.33	0.47	0.47
	9.80	02/18/93	N/A	N/A	NP	8.85	0.95	0.95
	9.80	05/12/93	N/A	N/A	NP	9.23	0.57	0.57
	9.80	08/25/93	N/A	N/A	NP	9.82 10.30	-0.02 -0.50	-0.02 -0.50
	9.80	11/11/93 02/08/94	N/A N/A	N/A N/A	NP NP	9.73	0.07	0.07
	9.80 9.80	05/03/94	N/A	N/A	NP	9.75	0.05	0.05
	9.80	08/24/94	N/A	N/A	NP	9.98	-0.18	-0.18
	9.80	11/16/94	N/A	N/A	NP	9.61	0.19	0.19
	9.80	02/22/95	N/A	N/A	NP	8.76	1.04	1.04
	9.80	06/22/95 08/09/95	N/A N/A	N/A N/A	NP NP	9.15 9.41	0.65 0.39	0.65 0.39
	9.80						0.92	0.92
OKUS-W4	7.35	01/14/93	N/A	N/A N/A	NP NP	6.43 6.44	0.91	0.91
	7.35 7.35	01/15/93 02/18/93	N/A N/A	N/A	NP	5.77	1.58	1.58
	7.35	05/12/93	6.39	0.96	0.01	6.40	0.95	0.95
	7.35	08/25/93	N/A	N/A	NP	6.63	0.72	0.72
	7.35	11/11/93	N/A	N/A	NP	7.10	0.25	0.25 0.71
	7.35	02/07/94	N/A	N/A	NP NP	6.64 6.45	0.71 0.90	0.90
	7.35	03/07/94	N/A	N/A N/A	NP	6.58	0.77	0.77
	7.35 7.35	04/18/94 05/03/94	N/A N/A	N/A	NP	6.55	0.80	0.80
	7.35	06/07/94	N/A	N/A	NP	6.62	0.73	0.73
	7.35	07/29/94	N/A	N/A	NP	6.65	0.70	0.70
	7.35	08/24/94	N/A	N/A	NP	6.80	0.55	0.55
		09/01/94	N/A	N/A	NP	6.93	0.42 0.40	0.42 0.40
	7.35	09/26/94	N/A	N/A	NP NP	6.95 7.05	0.40	0.40
	7,35	10/27/94	N/A	N/A N/A	NP NP	6.71	0.64	0.64
	7.35	11/16/94 01/25/95	N/A N/A	N/A	NP	5.63	1.72	1.72
	7.35 7.35	01/25/95		N/A	NP	5.71	1.64	1.64
	7.35	06/22/95	1	N/A	NP	6.01	1.34	1.34
	7.35	07/31/95	1	N/A	NP .	5.96	1.39	1.39
	7.35	08/09/95	1	N/A	NP	6.10	1.25	1.25
	7.35	09/07/95		N/A	NP	6.36	0.99	0.99

TABLE 1 FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

	ELEV.*	DATE	DEPTH TO	PRODUCT	PRODUCT THICKNESS	DEPTH TO WATER	WATER ELEVATION	CORR'D ELEVATION
NO.	TOC		PRODUCT	ELEVATION	THICKNESS	WATEN		
					NP	9.13	0.12	0.12
OKUS-W5	9.25 9.25	01/14/93 01/15/93	N/A N/A	N/A N/A	NP NP	9.15		0.10
	9.25	02/18/93	N/A	N/A	NP	6.85	0.40	0.40
	9.25	05/12/93	9.18	0.07	0.02	9.20	0.05	0.05
	9.25	08/25/93	8.82	0.43	0.02	8.84	0.41	0.41
	9.25	11/11/93	N/A	N/A	NP	10.15	-0.90	-0,90 -0.36
	9.25	02/07/94	N/A	N/A	NP NP	9.61 9.51	-0.36 -0.26	-0.36 -0.26
	9.25	03/07/94	N/A N/A	N/A N/A	NP	9.78	-0.53	-0.53
	9.25 9.25	04/18/94 05/03/94	N/A	N/A	NP	9.77	-0.52	-0.52
	9.25	06/07/94	N/A	N/A	NP	9.71	-0.46	-0.46
	9.25	07/29/94	N/A	N/A	NP	9.83	-0.58	-0.58
	9.25	08/24/94	N/A	N/A	NP	9.93	-0.68	-0.68
	9.25	09/01/94	9.91	N/A	0.01	9.92	-0.67	-0.67
	9.25	09/26/94	N/A	N/A	NP	9.92	-0.67	-0.67 -0.89
	9.25	10/27/94	10.08	-0.83	0.06	10.14 9.81	-0.89 -0.56	-0.56
	9.25	11/16/94	9.59	-0.34 N/A	0.22 Trace	8.59	0.66	0.66
	9.25 9.25	01/25/95	N/A 8.75	N/A 0.50	0.16	8.91	0.34	0.34
	9.25	02/22/95 05/09/95	0.75 N/A	0.50 N/A	Trace	9.00	0.25	0.25
	9.25	06/22/95	N/A	N/A	Trace	9.29	-0.04	-0.04
	9.25	07/31/95	N/A	N/A	Trace	9.34	-0.09	-0.09
	9.25	08/09/95	N/A	N/A	Trace	9.75	-0.50	-0.50
	9.25	09/07/95	N/A	N/A	Trace	9.56	-0.31	-0.31
			81/4	A1/A	NP	6.20	0.82	0.82
OKUS-W6	7.02 7.02	07/16/93 08/25/93	N/A N/A	N/A N/A	NP	6.52	0.50	0.50
	7.02	11/12/93	N/A	N/A	NP	7.22	-0.20	-0.20
	7.02	02/07/94	5.89	1.13	P			
	7.02	05/03/94	5.90	1.12	P			
	7.02	08/24/94	6.27	0.75	P			
	7.02	09/26/94	6.50	0.52	P			
	7.02	10/27/94	6.68	0.34	P			
	7.02	11/16/94	5.13	1.89	P P			
	7.02	01/25/95	3.89	3.13 2.06	P			
	7.02 7.02	02/22/95 05/09/95	4.96 5.39	N/A	P			
	7.02	06/22/95	5.30	N/A	Р			j,
	7.02	07/31/95	5.60	N/A	P			
	7.02	08/09/95	5.65	N/A	Р			
	7.02	09/07/95	5.98	N/A	P			
					ND	E 70	1.10	1.19
OKUS-W7	6.91	07/16/93	N/A	N/A	NP NP	5.72 5.94	1.19 0.97	0.97
	6.91	08/25/93	N/A N/A	N/A N/A	NP	5.50	0.41	0.41
	6.91 6.91	11/12/93 02/07/94	N/A	N/A	NP	5.81	1.10	1.10
	6.91	05/03/94	N/A	N/A	NP	5.69	1.22	1.22
	6.91	08/24/94	N/A	N/A	NP	6.11	0.80	0.80
	6.91	11/16/94	N/A	N/A	NP	5.90	1.01	1.01
	6.91	02/22/95	N/A	N/A	NP	4.89	2.02	2.02
	6.91	06/22/95	N/A	N/A	NP	5.26	1.65	1.65
	6.91	08/09/95	N/A	N/A	NP	5.53	1.38	1.38
OKUS-W8	6.75	07/16/93	N/A	N/A	NP	5,56	1.19	1.19
UNUU-110	6.75	08/27/93	N/A	N/A	NP	5.88	0.87	0.87
	6.75	11/11/93	N/A	N/A	NP	6.43	0.32	0.32
	6.75	02/07/94	N/A	N/A	NP	5.59	1.16	1.16
	6.75	05/03/94	N/A	N/A	NP	5.55 5.98	1.20 0.77	0.77
	6.75	08/24/94	N/A	N/A	NP NP	5.95 5.75	1.00	1.00
	6.75	11/16/94	N/A	N/A N/A	NP NP	4.79	1.96	1.96
	6.75 6.75	02/22/95	N/A N/A	N/A N/A	NP	5.18	1.57	1.57
	6.75	08/09/95		N/A	NP _	5.32	1.43	

TABLE 1 FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

WELL	ELEV.*	DATE	DEPTH TO	PRODUCT	PRODUCT	DEPTH TO	WATER	CORR'D
NO.	TOC	E40855	PRODUCT	ELEVATION	THICKNESS	WATER	ELEVATION	ELEVATION
						40.00	1.90	-1.90
APL/UP-W1	8.12	07/16/93	N/A	N/A	NP	10.02 9.93	-1.81	- 1.81
	8.12	08/26/93	N/A	N/A	NP	10.25	-2.13	-2.13
	8.12	11/11/93	N/A	N/A	NP		-2.13 -1.59	-1.59
	8.12	02/07/94	N/A	N/A	NP	9.71		-1.98
	8.12	05/03/94	N/A	N/A	NP	10.10	-1.98	
	8.12	08/24/94	N/A	N/A	NP	10.25	-2.13	-2.13
	8.12	11/15/94	N/A	N/A	NP	10.08	-1.96	-1.96
	8.12	02/22/95	N/A	N/A	NP	9.76	-1.64	-1.64
	8.12	06/22/95	N/A	N/A	NP	10.25	-2.13	-2.13
	8.12	08/09/95	N/A	N/A	NP	10.01	-1.89	-1.89
							0.07	0.07
APL/UP-W2	7.31	07/16/93	N/A	N/A	NP	9.38	-2.07	-2.07
	7.31	08/26/93	N/A	N/A	NP	9.20	-1.89	-1.89
	7.31	11/11/93	N/A	N/A	NP	9.65	-2.34	-2.34
	7.31	02/07/94	N/A	N/A	NP	8.85	-1.54	-1.54
	7.31	05/03/94	N/A	N/A	NP	10.02	-2.71	-2.71
	7.31	08/24/94	N/A	N/A	NP	9.13	-1.82	-1.82
	7.31	11/15/94	N/A	N/A	NP	9.40	-2.09	-2.09
	7.31	02/22/95	N/A	N/A	NP	8.85	-1.54	-1.54
	7.31	06/22/95	N/A	N/A	NP	9.42	-2.11	-2.11
	7.31	08/09/95	N/A	N/A	NP	9.42	-2.11	-2.11
						40.44		
RW	- -	01/31/94	10.31		0.10	10.41		
		02/07/94	10.26		0.10	10.36		
		02/17/94	10.11		0.07	10.18		
		02/23/94	10.01		0.09	10,10 9.99		
		03/01/94	9.96		0.03	9.96		
		03/07/94	9.92		0.04	9.99		
		03/16/94	9.92		0.07	9.99		l
		03/23/94	9.93		0.06	10.05		
		03/30/94	10.00		0.05	10.03		
		04/05/94	10.02		0.01 0.01	10.03		
		04/11/94	10.02		0.01	10.03		
		04/18/94	10.07		0.02	10.03		
		04/26/94	10.07		0.07	9.97		
		06/07/94	9.94			10.20		
		07/29/94	10.19		0.01			
		09/01/94	9.71		0.09	9.60		
		09/26/94	9.78		0.06	9.84		
		10/27/94	9.81		0.05	9.86		
		11/22/94						
		12/20/94						
		01/25/95	8.35		0.12	8.47	- -	
		02/22/95	8.35		0.14	8.49		
		05/09/95	8,41		0.11	8.52		
		06/22/95	8.72		0.10	8.82		
		07/31/95	8,94		0.04	8.98		
		08/09/95	9.07		0.03	9.10		I
		09/07/95	9.18		0.01	9.19		

^{*} All well casings measured to mean sea level (MSL).

-- Information not available or inaccurate.

P - Product (bunker C) was encountered but the oil/water interface could not be found.

TABLE 2 ANALYTICAL RESULTS - GROUNDWATER MONITORING WELLS UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

SAMPLE	SAMPLE	DATE SAMPLED	TPH/IR (mg/l)	TPH/D (ug/l)	TPH/G (ug/l)	B (ug/l)	(ug/l)	(ug/l)	(ug/l)	BTEX (ug/l)	As (mg/l)	Pb (mg/l
01/1/0 11/4	0/4/0 1/4	24/14/02	ND	ND	410	20	4	220	ND	240	ND	NI
OKUS-W1	OKUS-W1	01/14/93 05/12/93	80	120	ND	ND	ND	ND	ND	ND	ND	N
		08/25/83	ND	100	ND	ND	ND	ND	ND	ND	ND	N
		11/11/93	ND	160	91	1.1	0.88	21	1.6	24	ND	N
		02/08/94	NA	92	<50	< 0.50	< 0.50	< 0.50	<0.50	ND	<0.10	< 0.0
		05/03/94	NA	61	<50	< 0.50	<0.50	< 0.50	< 0.50	ND	<0.10	< 0.0
		08/24/94	NA	86	<60	< 0.50	<0.50	< 0.50	< 0.50	ND	<0.10	N/
		11/16/94	NA	51	<50	< 0.50	< 0.50	< 0.50	<0.50	ND	NA	N/
		02/22/95	NA	120	<50	< 0.50	<0.50	<0.50	< 0.50	ND	NA	N/
		06/22/95	NA	<50	<50	< 0.50	<0.50	< 0.50	< 0.50	ND	NA	N/
		08/09/95	NA	<50	<50	< 0.50	<0.50	<0.50	<0.50	ND	0.040	<0.05
OKUS-W2	OKUS-W2	01/14/93	2.5	5400	14000	480	92	8500	ND	9100	0.036	N
	•	05/12/93	ND	2800	8800	220	47	4600	100	5000	0.093	N
		08/25/93	5.8	6500	22000	420	92	10000	210	11000	0.089	N
		11/11/93	3.5	7700	24000	540	150	13000	280	14000	ND	NI
		02/08/94	NA	2300	4900	150	29	3000	78	3300	<0.10	<0.0
		05/03/94	NA	2600	17000	300	<0,50	5800	220	6300	<0.10	<0.03 N/
		08/24/94	NA	8200	11000	320	67	7500	250	8100	<0.10 NA	N.
		11/16/94	NA	5500	10000	290	79	130	160 66	660 1800	NA NA	N.
		02/22/95	NA	2000	3500	100	18	1600	_110	430	NA	N.
		06/22/95	NA	3200	13000	260	52 -28 5	< 0.50	200	-309	0.02	<0.05
		08/09/95	NA_	1.2900 4	. 14806	180	28	<0.50	malo 1	- Alberton		
OKUS-W3	OKUS-W3	01/14/93	4.5	4200	4900	230	42	2500	44	2900	NA	N
OKO2-143	OKO2-W3	05/12/93	1.7	4400	4600	290	60	3500	72	3900	0.14	N
		08/25/93	1.5	2700	9400	280	55	4300	41	4700	0.08	N
		11/11/93	2.3	5000	9500	390	110	5100	130	5700	0.14	N
		02/08/94	NA.	4400	17000	420	78	9800	160	10000	0.12	<0.0
		05/03/94	NA	3000	14000	310	61	6400	210	7000	0.14	<0.0
		08/24/94	NA	4500	10000	350	78	7300	170	7900	<0.10	N.
		11/16/94	NA	4700	9100	250	64	95	< 0.50	420	NA	N.
		02/22/95	NA	2400	7400	250	51	4400	150	4900	NA	N.
		06/22/95	NA	3300	8100	250	53	< 0.50	76	380	NA	N/
		08/09/95	NA	5100 4	* 5200	F260 /	39 (<0.50	. 140	- 750	1.5 #	<0.05
OKUS-W4	OKUS-W4	01/15/93	2.5	5400	8900	300	ND	4500	ND	4800	NA	N
OV02-444	0103-114	05/12/93	1.3	2900	6000	320	110	4600	230	5300	0.16	N
		08/26/93	ND	2200	6700	350	72	4800	130	5400	0.098	N
		11/11/93	ND	2400	5500	250	53	4600	140	5000	0.13	N
		02/07/94	NA	2700	9100	250	< 0.50	4900	150	5300	<0.10	<0.0
		05/03/94	NA	2300	6500	240	34	4200	140	4600	0.12	< 0.0
		08/24/94	NA	2900	5200	200	41	3600	190	4000	0.11	N
		11/16/94	NA	2500	5500	320	52	< 0.50	120	490	NA	N
		02/22/95	NA	2000	4300	250	47	2900	160	3400	NA	N
		06/22/95	NA NA	2700	4900	280 /	38	5200	140	5700	NA	N
		08/09/95	NA NA	2800	5300	270	". 54	<0.50	: 210	530	1.3 •	<0.0
OKUS-W5	OKUS-W5	01/15/93	ND	2900	550	53	11	180	20	260	NA	N
OKU3-445	0003-113	05/12/03	130	2100	550	61	14	250	37	380	0.56	N
		08/25/93	PHASE SEPA	RATED HY	DROCARB	INS - WELL	NOT SAMPL	ED				
		11/11/93	2.7	1600	590	14	3.1	54	5.2	77	0.53	N
		02/07/94	NA.	1900	760	54	9.4	220	24	310	0.55	<0.0
		05/03/94	NA	2000	620	57	9.5	240	27	330	0.38	<0.0
		08/24/04	NA	1700	910	55	14	8.5	18	96	0.45	, l
		11/18/04	PHASE SEPA	RATED HY	DROCARB	ONS - WELL	NOT SAMPL	ED				
		09/99/95	PHASE SEPA	RATED HY	DROCARBI	DNS - WELL	NOT SAMPL	ED				
		06/22/95	PHASE SEPA	RATED HY	DROCARBI)NS – WELL	NOT SAMPL	ED .				
		08/09/95	PHASE SEPA	RATED HY	DROCARB	ONS - WELL	NOT SAMPL	ED				_
04/10 11/0	OVUA INC	03/46/05	BDV	BRK	ND	2.5	ND	ND	ND	2.5	0.004	N
OKUS-W6	OKUS-W6	07/16/93	BRK	590	ND	2.6	ND	4.9	1.3	8.8	0.013	l.
•	•	08/25/93	ND ND	510	ND	3.6	ND	3.7	1.3	8.6		
		11/12/93	PHASE SEPA	BATED HA	DROCARR							
		02/07/94	PHASE SEPA	BATED HY	DROCARRI	INS - WELL	NOT SAMPL	ED.				
		08/94/04	PHASE SEPA	RATED HY	DROCARBI)NS - WELL	. NOT SAMPL	.ED				
		11/18/04	PHASE SEPA	BATED HY	DROCARR	DNS - WELL	NOT SAMPL	ED				
		02/22/05	PHASE SEPA	VRATED HY	DROCARBI	DNS - WELL	, not sampl	ED				
		08/22/90	PHASE SEPA	RATED HY	DROCARR	DNS - WELL	NOT SAMPL	£D.				
		00/22/90	TO DO OF OF A	* 0.01 PR 111	J. 14-07-0 (D	DNS - WELL	ALONE GALADI					

TABLE 2 ANALYTICAL RESULTS - GROUNDWATER MONITORING WELLS UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

		DATE	TRUID	7000			T	E	×	BTEX	As	Pb
SAMPLE LOCATION	SAMPLE ID	DATE: SAMPLED	TPH/IR (mg/l)	TPH/D (ug/l)	TPH/G (ug/l)	B (ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(mg/l)	(mg/
LOCATION	10	COUNT LLES	(1118)-7	(-8/7)	(-8,4)	(-0.7						
	01010 110	AT (4 6 10 0	4.0	ND	ND	2.1	ND	ND	ND	2.1	0.009	NI
OKUS-W7	OKUS-W7	07/16/93	16 ND	930	56	2.9	ND	1.2	ND	4.1	ND	NI
-	-	06/25/93 11/12/93	ND	1100	ND	ND	ND	ND	ND	ND	ND	NI
		02/07/94	NA NA	1100	ND	0.7	< 0.50	< 0.50	< 0.50	0.7	< 0.10	< 0.0
		05/03/94	NA.	1300	<50	< 0.50	< 0.50	< 0.50	< 0.50	ND	< 0.10	<0.0
		08/24/94	NA	910	<50	2.5	0.54	< 0.50	< 0.50	3.0	<0.10	N.
		11/16/94	NA	820	<50	0.62	< 0.50	< 0.50	< 0.50	0.6	NA	N.
		02/22/95	NA	830	<50	0.54	< 0.50	< 0.50	< 0.50	0.5	NA	N
		08/22/95	NA	850	<50	2.4	< 0.50	0.52	< 0.50	2.9	NA	N
		08/09/95	NA	(1)	7#	4.2	<0.50	1.2	1,2	Ø.o	0.074	<0.05
OKUS-W8	OKUS-W8	07/16/93	15	ND	ND	ND	ND	ND	ND	ND	0.012	0.00
0003-110	0000-110	08/27/93	ND	1100	120	1.3	ND	ND	0.85	2.2	ND	0.00
		11/11/93	ND	1300	190	3.5	1.3	46	4.9	55.7	ND	N
		02/07/94	NA	1000	120	0.9	< 0.50	< 0.50	< 0.50	0.9	<0.10	< 0.0
		05/03/94	NA	780	79	0.99	<0.50	< 0.50	< 0.50	1.0	<0.10	<0.0
		08/24/94	NA	700	100	1.4	< 0.50	< 0.50	< 0.50	1.4	<0.10	N
		11/15/94	NA	830	110	0.77	< 0.50	<0.50	< 0.50	0.8	NA	N
		02/22/95	NA	370	150	0.96	< 0.50	< 0.50	1.2	2.2	NA	N N
		06/22/95	NA	870	76	0.92	< 0.50	< 0.50	< 0.50	0.9	NA Haraka	< 0.05
		08/09/95	NA_	1100	- 98	ala 🔭	< 0.50	<0.50	*1.5		2000	V0.00
APL/UP-W1	APL/UP-W1	07/16/93	11	700	300	25.4	1.7	ND	3.0	30	0.011	N
ALDOL -MI	ALDOL —MI	08/26/93	ND	810	720	47	1.3	360	14.0	420	0.013	N
		11/11/93	ND	530	560	26	ND	220	11.0	260	ND	N
		02/07/94	NA	660	620	25	< 0.50	180	10	220	<0.10	<0.0
		05/03/94	NA	590	680	48	2.9	260	9,6	320	<0.10	<0.0
		08/24/94	NA	420	830	48	4.8	12	3.2	68	<0.10	N
		11/15/94	NA	480	470	36	3.5	9.6	12	61	NA	N
		02/22/95	NA	510	470	33	2.8	170	9	210	NA NA	N N
		06/22/95	NA	320	160	12	0,82 <0.50	3.5 <0.50	2.4	19	<0.0050	<0.05
		08/09/95	NA	100	-09		VO.50	40,00	2 3.30			
APL/UP-W2	APL/UP -W2	07/16/93	19	ND	ND	8,0	ND	ND	ND	8	0.016	N
4	•	08/26/93	ND	240	94	ND	ND	35	2.4	37	0.023	N
		11/11/93	ND	190	110	5.0	ND	38	2.5	46	ND	N
		02/07/94	NA	270	120	6.6	< 0.50	38	1.8	46	<0.10	<0.0 <0.0
		05/03/94	NA	100	<50	< 0.50	< 0.50	< 0.50	< 0.50	ND 20	<0.10 <0.10	N N
		08/24/94	NA	330	220	13.0	0.77	3.5	3.1 5.4	79	NA	N
		11/15/94	NA	320	190	11.0	< 0.50	63.0 100	9.5	130	NA	N
		02/22/95	NA	550	320	19.0	<0.50 62	2.2	2.3	76	, NA	N
		06/22/95 08/09/95	NA NA	300	170	10.0	<0.50	< 0.50			(0.00m)	< 0.05
		00/03/03	110								414	
OKUS-W5	QKUS-W6	01/15/93	ND	2600	510	50	10	170	19	250	NA ND	N
OKUS-W1	OKUS-W6	05/12/93	ND	140	ND	ND	ND	ND	ND	ND	ND	N
APL/UP-W1	QA/QC~1	07/16/93	12	ND	0.21	22.4	ND	ND	2.4	25	0.012	N
OKUS-W4	OKUS-W9	08/26/93	ND	2700	6200	340	78	4500	100	5000 7	0.1 2.4	N
OKUS-W8	OKUS-W9	11/11/93	ND	1300	120	1.3	ND	4	1.4 <0.50	6100	0.12	0.1
OKUS-W3	QA/QC-1	02/08/94	NA	2900	15000	280	64	5800 5200	130	5700	0.12	<0.
OKUS-W4	OKUS-QC1	05/03/94	NA	2500	5400	300	41 <0.50	< 0.50	< 0.50	2	<0.10	1
OKUS-W8	OKUS-QC1	08/24/94	NA	950	92	1,6 10	< 0.50	62	4.7	77	NA	Ň
APL/UP -W2	OKUS-QC1	11/16/94	NA	310 490	190 360	20	< 0.50	110	5.7	140	NA.	
APL/UP – W2 APL/UP – W2	APL-W12 APL-W12	02/22/95	NA NA	18.00E	***	- T	< 0.50	< 0.50	-			<0.0
-112	AL-WIZ	22,0800	1101								NA	B.F.A.
UPMF	OAK-FB 1	07/16/93	NA	NA	NA	ND	ND	ND	ND	ND	NA NA	NA
UPMF	OAK-TB 2	07/16/93	NA	NA	NA	ND	ND	ND	ND	ND	NA NA	NA NA
UPMF	TB-1	08/27/93	NA	NA	NA	ND	ND	ND	ND	ND	NA NA	NA NA
UPMF	TB-2	08/27/93	NA	NA	NA	ND	ND	ND	ND ND	ND ND	NA NA	NA
UPMF	TB-1	11/12/93	NA	NA NA	NA	ND ND	ND	ND ND	ND	ND	NA NA	NA
UPMF	TB-1	08/24/94	NA	NA	NA NA	ND NA	ND NA	NA NA	NA.	NA.	NA NA	NA
UPMF	TB-1	11/16/94	NA NA	= NA	NA ND	NA ND	ND	ND	ND	ND	NA.	NA
UPMF UPMF	TB - 1 TB - 1	02/22/95 05/22/95	NA NA	NA NA	ND	ND	ND	ND	ПD	ND	NA	NA
	165 - 1	UEVZZZNAS	NA.	INA	(192	110	.,,		ND	ND	NA	NA

ND - Not Detected

NA - Not Analyzed

BRK - Bottle broken during shipment

TPH - Total Petroleum Hydrocarbons

mg/L - milligram per liter ug/L - microgram per liter

TPH/IR — analyzed using EPA Method 418.1
TPH/ID — analyzed using EPA Method 8015 Mod.
TPH/IG — analyzed using EPA Method 5015 Mod.
BTEX — analyzed using EPA Method 8020
As — analyzed using EPA Method 7060
Pb — analyzed using EPA Method 7421

BORING LOCATION AND NUMBER • CATCH BASIN FOR STORM SEWER

RW RECOVERY WELL

ENVIRONMENTAL SERVICES

UPRR TOFC RAILYARD UPMF REPAIR SHOP, OAKLAND, CALIFORNIA FIGURE 2

SITE VICINITY MAP DWG. NO.

SCALE

96120-556

APPENDIX A ANALYTICAL REPORTS

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: Sample Matrix:

UPMF - Oakland: 96120-844

Sampled: Received:

Aug 9, 1995 Aug 10, 1995

Analysis Method:

Water EPA 5030/8015 Mod./8020

Reported:

Aug 23, 1995

First Sample #:

508-0597

GC082195

QC Batch Number:

GC082095

GC082095

GC082095 GC082095 GC082095

802002A

802002A 802002A 802002A 802002A TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 508-0597 APL-W2	Sample I.D. 508-0598 APL-W12	Sample I.D. 508-0599 APL-W1	Sample I.D. 508-0600 OKUS-W8	Sample I.D. 508-0601 OKUS-W7	Sample I.D. 508-0602 OKUS-W4
Purgeable Hydrocarbons	50	62	71	69	90	71	5,300
Benzene	0.50	3.5	3.4	4.2	1.1	4.2	270
Toluene	0.50	N.D.	N.D.	N.D.	N.D.	N.D.	54
Ethyl Benzene	0.50	N.D.	N.D.	N.D.	N.D.	1.2	N.D.
Total Xylenes	0.50	2.3	2.2	2.3	1.3	1.2	210
Chromatogram Pa	ttern:	Gasoline and Unidentified Hydrocarbons	Gasoline and Unidentified Hydrocarbons	Gasoline and Unidentified Hydrocarbons	Gasoline and Unidentified Hydrocarbons >C9	Gasoline and Unidentified Hydrocarbons > C9	Gasoline and Unidentified Hydrocarbons
Quality Control D	ata						
Report Limit Multip	olication Factor:	1.0	1.0	1.0	1.0	1.0	50
Date Analyzed:		8/20/95	8/20/95	8/20/95	8/20/95	8/20/95	8/21/95
Instrument Identifi	cation:	HP-2	HP-2	HP-2	HP-2	HP-2	HP-2
Surrogate Recove (QC Limits = 70-1		105	99	106	110	106	108

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

5080597.USP <1>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301

Client Project ID:

UPMF - Oakland: 96120-844 Water

Sampled:

Aug 9, 1995 Aug 10, 1995

Attention: Denton Mauldin

Sample Matrix: Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020 508-0603

GC082195

Received: Reported: Aug 23, 1995

QC Batch Number:

GC082095

GC082095

GC082195

802002A 802002A TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 508-0603 Trip Blank	Sample I.D. 508-0604 OKUS-W1	Sample I.D. 508-0605 OKUS-W2	Sample I.D. 508-0606 OKUS-W3	
Purgeable Hydrocarbons	50	N.D.	N.D.	4,800	5,200	
Benzene	0.50	N.D.	N.D.	160	200	
Toluene	0.50	N.D.	N.D.	28	39	
Ethyl Benzene	0.50	N.D.	N.D.	N.D.	N.D.	
Total Xylenes	0.50	N.D.	N.D.	200	140	
Chromatogram Pa	ttern:			Gasoline and Unidentified Hydrocarbons	Gasoline and Unidentified Hydrocarbons	
Quality Control D	ata					
Report Limit Multip	lication Factor:	1.0	1.0	50	40	
Date Analyzed:		8/20/95	8/20/95	8/21/95	8/21/95	
Instrument Identific	cation:	HP-2	HP-2	HP-4	HP-4	

99

102

106

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

99

SEQUOIA ANALYTICAL, #1271

vin Van Slambrook Project Manager

Surrogate Recovery, %:

(QC Limits = 70-130%)

5080597.USP <2>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

SP081295

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301

QC Batch Number:

Client Project ID: Sample Matrix: Analysis Method: UPMF - Oakland: 96120-844 Water

Sampled: Received: Reported:

Aug 9, 1995 Aug 10, 1995 Aug 23, 1995

Attention: Denton Mauldin

First Sample #:

SP081295

EPA 3510/8015 Mod. 508-0597

SP081295

SP081295 8015EXB

SP081295 8015EXB

8015EXB 8015EXB 8015EXB 8015EXB TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

SP081295

Analyte	Reporting Limit μg/L	Sample I.D. 508-0597 APL-W2	Sample I.D. 508-0598 APL-W12	Sample I.D. 508-0599 APL-W1	Sample I.D. 508-0600 OKUS-W8	Sample I.D. 508-0601 OKUS-W7	Sample I.D. 508-0602 OKUS-W4
Extractable Hydrocarbons	50	180	160	160	1,100	640	2,900
Chromatogram Pa	ttern:	Diesel	Diesel	Diesei	Diesel	Diesel	Diesel

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Extracted:	8/12/95	8/12/95	8/12/95	8/12/95	8/12/95	8/12/95
Date Analyzed:	8/14/95	8/14/95	8/14/95	8/14/95	8/14/95	8/14/95
Instrument Identification:	HP-3B	HP-3B	HP-3B	HP-3B	HP-3B	HP-3B
	••					

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

5080597.USP <3>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301

Client Project ID:

UPMF - Oakland: 96120-844

Sampled:

Aug 9, 1995 Aug 10, 1995

Attention: Denton Mauldin

Sample Matrix: Analysis Method: First Sample #: Water EPA 3510/8015 Mod. Received: Reported:

Aug 23, 1995

QC Batch Number:

SP081295

SP081295 SF

508-0604

5 SP081295

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 508-0604 OKUS-W1	Sample I.D. 508-0605 OKUS-W2	Sample I.D. 508-0606 OKUS-W3
Extractable Hydrocarbons	50	N.D.	2,900	3,100
Chromatogram Pa	ttern:		Diesel and Unidentified Hydrocarbons < C15	Diesel and Unidentified Hydrocarbons < C15

Quality Control Data

Report Limit Multiplication Factor: 1.0 1.0 1.0 Date Extracted: 8/12/95 8/12/95 8/12/95 Date Analyzed: 8/14/95 8/14/95 8/14/95 Instrument Identification: HP-3B HP-3B HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard.

Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301

Client Project ID: Sample Descript: UPMF - Oakland: 96120-844

Sampled: Aug Received: Aug Extracted: Aug

Aug 9, 1995 Aug 10, 1995

Attention: Denton Mauldin

Analysis for: First Sample #: Water Lead 508-0597

Extracted: Aug 16, 1995 Analyzed: Aug 17, 1995 Reported: Aug 23, 1995

LABORATORY ANALYSIS FOR:	Lead

		· · · · · · · · · · · · · · · · · · ·			
Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L	QC Batch Number	Instrument ID
508-0597	APL-W2	0.050	N.D.	ME0816952007MDC	MV-1
508-0598	APL-W12	0.050	N.D.	ME0816952007MDC	MV-1
508-0599	APL-W1	0.050	N.D.	ME0816952007MDC	MV-1
508-0600	OKUS-W8	0.050	N.D.	ME0816952007MDC	MV-1
508-0601	OKUS-W7	0.050	N.D.	ME0816952007MDC	MV-1
508-0602	OKUS-W4	0.050	N.D.	ME0816952007MDC	MV-1
508-0603	OKUS-W1	0.050	N.D.	ME0816952007MDC	MV-1
508-0604	OKUS-W2	0.050	N.D.	ME0816952007MDC	MV-1
508-0605	OKUS-W3	0.050	N.D.	ME0816952007MDC	MV-1

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

5080597.USP <5>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301 Attention: Denton Mauldin

Client Project ID: Sample Descript:

Analysis for:

First Sample #:

UPMF - Oakland: 96120-844

ipt: Water

Arsenic by Hydride 508-0597

Sampled:
Received: A
Extracted: A
Analyzed: A

Aug 9, 1995 Aug 10, 1995 Aug 15, 1995

Reported:

Aug 16, 1995 Aug 23, 1995

LABORATORY ANALYSIS FOR: Arsenic by Hydride Sample Sample Sample QC Batch Instrument Number Description **Detection Limit** Resuit Number ID mg/L mg/L 508-0597 APL-W2 0.0050 0.22 ME0815952703MDA MV-1 508-0598 APL-W12 0.0050 0.20 ME0815952703MDA MV-1 508-0599 APL-W1 N.D. MV-1 0.0050 ME0815952703MDA 508-0600 OKUS-W8 0.0050 0.078 ME0815952703MDA MV-1 508-0601 OKUS-W7 0.0050 ME0815952703MDA MV-1 0.074 508-0602 OKUS-W4 0.0050 1.3 ME0815952703MDA MV-1 508-0603 OKUS-W1 0.0050 0.040 ME0815952703MDA MV-1 508-0604 OKUS-W2 0.92 ME0815952703MDA MV-1 0.0050

1.6

ME0815952703MDA

Analytes reported as N.D. were not present above the stated limit of detection.

OKUS-W3

0.0050

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager

508-0605

MV-1

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301 Client Project ID: UPMF - Oakland: 96120-844

Matrix: Liquid

Attention: Denton Mauldin QC Sample Group: 5080597-606

Reported: Aug 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	Diesel	Arsenic	Lead
			Benzene				
QC Batch#:	GC082095	GC082095	GC082095	GC082095	SP081295	ME081595	ME081695
	802002A	802002A	802002A	802002A	8015EXB	2703MDA	2007MDC
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015 M	EPA 7061	EPA 7420
Prep. Method:	-	-	_	-	EPA 3510	EPA 7061	EPA 3010
Analyst:	J. Fontecha	J. Fontecha	J. Fontecha	J. Fontecha	J. Dinsay	•	T. Le
MS/MSD #:	5080601	5080601	5080601	5080601	BLK081295	-	5080597
Sample Conc.:	4.2 μg/L	N.D.	1.2 µg/L	1.2 μg/L	N.D.		N.D.
Prepared Date:	8/20/95	8/20/95	8/20/95	8/20/95	8/12/95	•	8/16/95
Analyzed Date:	8/20/95	8/20/95	8/20/95	8/20/95	8/14/95		8/17/95
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	GCHP-3B	-	MV-1
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	300 μg/L	-	1.0 mg/L
Result:	22	22	23	68	280	•	0.92
MS % Recovery:	110	110	115	113	93	•	92
Dup. Result:	23	23	24	69	290	-	0.87
MSD % Recov.:	115	115	120	115	97	•	87
RPD:	4.4	4.4	4.3	1.5	3.5	_	5.6
RPD Limit:	0-20	0-20	0-20	0-20	0-20	•	0-2 0
LCS #:	1LCS082095	1LCS082095	1LCSJ82095	1LCS082095	BLK081295	BLK081595	BLK081695
Prepared Date:	8/20/95	8/20/95	8/20/95	8/20/95	8/12/95	8/15/95	8/16/95
Analyzed Date:	8/20/95	8/20/95	8/20/95	8/20/95	8/14/95	8/16/95	8/17/95
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	GCHP-3B	MV-1	MV-1
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	300 μg/L	0.20 mg/L	1.0 mg/L
LCS Result:	22	22	23	68	280	0.23	0.89
LCS % Recov.:	111	109	113	114	93	115	89
MS/MSD LCS	74.400	70.400	70.400	74.400	20.400		75 405
Control Limits	71-133	72-128	72-130	71-120	38-122	75-125	75-125

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301 Client Project ID: UPMF - Oakland: 96120-844

Matrix: Liquid

Attention: Denton Mauldin

QC Sample Group: 5080597-606

Reported: Aug 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
QC Batch#:	GC082195	GC082195	GC082195	GC082195	
	802002A	802002A	802002A	802002A	
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	-	•	-	-	
Analyst:	K. Nill	K. Nill	K. Nili	K. Nill	
MS/MSD #:	5080459	5080459	5080459	5080459	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	8/21/95	8/21/95	8/21/95	8/21/95	
Analyzed Date:	8/21/95	8/21/95	8/21/95	8/21/95	
nstrument I.D.#:	HP-2	HP-2	HP-2	HP∙2	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Result:	22	22	23	69	
MS % Recovery:	110	110	115	115	
Dup. Result:	22	22	24	70	
MSD % Recov.:	110	110	120	117	
RPD:	0.0	0.0	4.3	1.4	
RPD Limit:	0-20	0-20	0-20	0-20	

LCS #:	1LCS082195	1LCS082195	1LCS082195	1LCS082195	
Prepared Date:	8/21/95	8/21/95	8/21/95	8/21/95	
Analyzed Date:	8/21/95 .	8/21/95	8/21/95	8/21/95	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
Conc. Spiked:	20 μg/L	20 μg/L	20μ g/L	60 µg/L	
LCS Result: LCS % Recov.:	22 108	21 106	23 114	66 110	
MS/MSD LCS Control Limits	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager Please Note

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate. RPD = Relative % Difference

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

U.S.P.C.I. / Laidlaw 5665 Flatiron Pkwy. Boulder, CO 80301

Client Project ID: UPMF - Oakland: 96120-844

Matrix: Liquid

Attention: Denton Mauldin QC Sample Group: 5080597-606 Reported: Aug 23, 1995

QUALITY CONTROL DATA REPORT

Analyte:	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
QC Batch#:	GC082195	GC082195	GC082195	GC082195	
*	802004A	802004A	802004A	802004A	
Analy. Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Prep. Method:	-	•	-	-	
Analyst:	K. Nili	K. Nill	K. Nill	K. Nill	
MS/MSD #:	5080615	5080615	5080615	5080615	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Prepared Date:	8/21/95	8/21/95	8/21/95	8/21/95	
Analyzed Date:	8/21/95	8/21/95	8/21/95	8/21/95	
strument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L [*]	20 μg/L	$20\mu\mathrm{g/L}$	60 μg/L	
Result:	19	19	19	58	
MS % Recovery:	95	95	95	97	
Dup. Result:	17	18	18	56	
MSD % Recov.:	85	90	90	93	
RPD:	11	5.4	5.4	3.5	
RPD Limit:	0-20	0-20	0-20	0-20	

ſ				
LCS #:	2LCS082195	2LCS082195	2LCS082195	2LCS082195
Prepared Date:	8/21/95	8/21/95	8/21/95	8/21/95
Analyzed Date:	8/21/95	8/21/95	8/21/95	8/21/95
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L
LCS Result:	20	21	21	63
LCS % Recov.:	101	105	106	106
11671160				
MS/MSD LCS Control Limits	71-133	72-128	72-130	71-120

SEQUOIA ANALYTICAL, #1271

Kevin Van Slambrook Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

** MS = Matrix Spike, MSD = MS Duplicate, RPD = Relative % Difference

717	SECTO!	AM	RLYTTE	A
**	CHAIN	OF C	USTOD	Υ

Hespericke Dead Remarks Canada 9 (4 64-9 64-9 FAX 5) 3 (23 1 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100 404 N. Wiget Lane • Walnut Creek, CA 94598 • (510) 988-9600 FAX (510) 988-9673

		_															
Company Name: いろ	PCI/LAID.	LAn	,		Р	roject i	lame:	U	PN	F.	-00	ikle	anc	1590	6120	044	
	Address: 5665 FLATIRON PKWY. Billing Address (if different):																
City: BOULDE		CC)	Zip Code: {	30301-		7/	5 AV	ME	•							
Telephone: (303)	938-5	500	FAX #:(303)9	38-5520	.O. #:		•									Client
Report To: Denta	n Mauldin	Sampler	: Mai	LAME C	Cornicko	C Data	ı: 🖸 L	evel D	(Stand	lard)	XLev	el C	01	_evel E	0	Level A	<u>\</u> \bar{\cdot}
Turnaround 🛄 10 Wo				□ 2 - 8 Hc								ses Re	quest	ed	,		! ¥
,		2 Working 24 Hours	g Days		Ø Wa Ø Oth		ter	**************************************		though C	200	o\/					
Client Sample I.D.	Date/Time Sampled	Matrix Desc.	# of Cont.	Cont. Type	Sequoia's Sample#	\d		200	3,00	1402 1410						Comments	
, APL-WZ	8/9/95	AQU.	3	VOA		X		X				080		=			ioi
2.	09:57		_	IL AMB,			X					,				4	Sequoia
3.	1		. 1	Metal &		પૈકા	7 2	1	×X	ıΧ	. :				Fig	sed 17	<u>(e)</u> §
4. APL-WIZ	6/9/95		B	VOA		X		X		T. T.		080	59 8	A-4	<u> </u>		
5.	10:17		<u> </u>	IL AMB.	,	i ding	X	P 1	神経の	₫F (<u> </u>				<u> </u>		
6.	1		1	Metals				11 car	X	×	i.	, d.,	·	:-	Filter	1.454	د
7. APL-WI	10:2884	5	Ŋ	VOA		X		X	1000	18.5	5	080	599	N-F			— jejo
8.	10,28		1	IL AMB			X	sacionis.	77 gg	# 1 19 *			,			· · · · ·	Sequoia
9.	1		1	Metals					×	×	1				Filte	red in	White 'e
10.	,	T															₹
Relinquished By:	Mar IMA	1	Date	8/10/95	Time: 15:40	Rece	eived E	3v:				П	ate:		Time:		
1	/my / /. //n//	ony					eived E	· · · · · ·					ate:		Time:		
Relinquished By:			Date		Time:				11	25	A			1.1-		احلام	
Relinquished By:			Date		Time:			By Lat		CNL.	بمطه	171	vate: 8	1/6/9		<u>1540</u>	
Were Samples Received	d in Good Conditi	ion? Ye	s 🗆 No	San	ples on Ice?	Yes C) No	Metho	od of S	Shipme	nt_ 5 /	<u>e1+</u>		_	Page	1013	

A SEGUOIR AIVALYTICAL CHAIN OF CUSTODY

☐ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100 404 N. Wiget Lane • Walnut Creek, CA 94598 • (510) 988-9600 FAX (510) 988-9673

Company Name: USPCI/LAID LAW Project Name: UPMF-Oakland: 96120 844									
Address: 5665 FLATIAON PKWY Billing Address (if different):									
City: Boulder State: CO Zip Code: 80301 -> Same									
Telephone: (303) 938-5500 FAX #:(303) 938-5520 P.O. #:									
Benort To: Den tola Mark Missampler: Mark McCornick OC Data: Devel D (Slandard) Klevel C D Level B D Level A									
Turnaround 10 Working Days 3 Working Days 2 - 8 Hours Drinking Water Analyses Requested									
Time: 1277 Working Days 12 Working Days 12 Waste Water 1270 1270 1270 1270 1270 1270 1270 1270									
☐ 5 Working Days ☐ 24 Hours ☐ Other ☐ Other ☐ Other ☐ ☐ Other ☐ ☐ Other ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐									
Client Sampled Desc. Cont. Type Sample # 00 10 10 10 10 10 10 10 10 10 10 10 10									
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
2. 13:32 1 1 1 1 1 1 1 1 1									
3. I Metals Fritered, in L. Fritered, in L. Fritered, in L. Fritered, in L. Frield W, 45 ML									
4 OKUS-W7 8/9/95 6 VOA XX 5080601 AI WE FORD									
5. 14:40 1. AMR X 4 MODBOS-G									
6. I I netals X4 X Filtered In X4 X Field W 154									
5080602 1									
8. 15.50 1 L AMB. " X X X X X X X X X X X X X X X X X X									
10. Trip Blank (TB) - 1 3 WA XX 5080603 AGTrip Blank									
Relinquished By: M. M. M. Date: 8/10/55 Time: 15:40 Received By: Date: Time:									
Relinquished By: Date: Time: Received By: Date: Time:									
Relinquished By: Date: Time: Received By Lab. Lab. Date: 8/10/95me: 1540									

1 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100 404 N. Wiget Lane • Walnut Creek, CA 94598 • (510) 988-9600 FAX (510) 988-9673

Company Name: USPCI/LAIDLAW Project Name: UPMF-Dakland: 96120-844									
Address: 5665 FLATIRUN PKWY Billing Address (if different):									
City: BOULDER State: CO Zip Code: 80301 -> SAME									
Telephone: (303) 938 - 5500 FAX #: (303) 938 - 6520 P.O. #:									
Report To: Denton Mauldin Sampler: Mark McComick QC Data: Q Level D (Standard) Level C Q Level B Q Level A									
Turnaround 10 Working Days 3 Working Days 2 - 8 Hours Drinking Water Analyses Requested									
Times Star Working Days 51 a.W. Use Days									
Client Sampled Desc. Cont. Type Sample # Sample # Comments									
1. OKUG-W1 8/9/95 AQU 3 VOA XX 5080604 AF									
2. TILAMB. X									
3. I Metals Filtered in Filter									
4 OKUS-WZ 8/9/95 3 VOA XXX 5080605 AE									
5. T. I. LAMB. X									
6. I Plastic & I XIX X Filtered in Relaw 454									
7 OKUS-W3 8/1/25 3 VOA XX 5080606 AE									
8. I I LAMR STEEL									
9. I I Metals X X Field w/ 4EM									
10.									
Relinquished By: Why W. M. Date: 9/0/95 Time: 15740 Received By: Date: Time:									
Relinquished By: Date: Time: Received By: Date: Time:									
Relinquished By: Date: Time: Received By Lab: Date: 8/10/9 STime: 1540									

APPENDIX B

HYDRODATA AND SAMPLE COLLECTION LOGS

Date: 7/31/95

Proj	ECT: UPRR-MF	TOFC I	EVENT:	JULY	Hzolere	sovet S	AMPLER: CHRISM PATRICK		
				Time			Comments		
No.	Well or Location	Date	Hr.	Min.	Measurement OTP 10TU		Comments		
1	RW-1	7/3/195			8.94	8.98	.oh' PRUDUCT		
2	0 KUS-W4	7/3/195				5,96'	NO PRODUCT		
3	0405-25								
4	0KU5-W6	. e		l 	` <u> </u>	5,60	≈,05'		
5	OMW-1	*				6.43	NO PRODUCT P. PACKER LOADING TRAFFER		
6	OMW-Z					\times	P, PACKED TO HOTH RESISTED		
7	omu-3	•		·		5.22	WATER BULS (LICE?)		
8	Draw- 4				5.78	6.991	1.21' PROCULT		
9	0mw-5		><	<u> </u>		\sim	CONERED (DEPOSETS?		
., 10	i						NO PRODUCT		
² 11	OMW-7				5.61	18.83	3.22' PRUDUCT		
12	0m W-8					5,70			
13	0mw-9	<u> </u>			6.07	8,46	2.39' PRODUCT		
14	0mW-10	1	<u></u>				LOVERED (ROAD RASE?)		
15	0 e w - 1			<u> </u>	4.35'	10.55	2.20' PRODUCT -APPROXIMATE		
16	ORW-2				9.30	9.45'	APPROVEMATE - DURING PUMPING		
17	0EW-3					9.68'			
18	NFN MW - ORUZ +3				5.23				
li	NEW MM- DEN 1 +2	•		<u> </u>	5,32'	8.46	3.14 PRODUCT		
20						<u> </u>			

All levels are depth from inner casing - describe any other reference points in comments column; when in doubt, describe reference point. Note in comments column if well is not: properly labeled, locked, or able to be locked. Describe corrective action. Note flooding of vault box, odor, access problems.

NOTE - ORW'S MEASUREMENTS CETAZINEO APPROYEMITLY AT CYCLE ENO.

14:36

HYDRODATA

Date: 9/7/95

Proj	ECT: UPRR - TO	, FCE	Event: V	JELL DI	ATA	SA	AMPLER: CM/LS
No.	Well or	Date	Tin	ne		rement	Comments
	Location		Hr.	Min.	OTP	WTW	1- 20.0.10
1	0KUS - 4	9/7/95	//	41			NO PRODUCT
2	0445 -5	9/7/95	//	36		.,	THEN FILM BUNKER (OBSCIRES OIOZ BUNKER (PROBE)
3	OK05 - 6	9/7/95	11	47	5,98		- BASIED 2
4	RW	9/7/95	01/23	/3	9.18	9,19'	OI PRODUCT SCALOEL
NOTES	ORW.1		13	44	5,55	11.03'	
6	ORW-2		13_	41	9.45	9.60	2.05' PROPUCT
7			13	315	9.57	9.60	2.03' PRODUCT
8	omw-1		13	20		6.861	No product
9			12	55		4.35	NO PRODUCT
10	- 		413	01		5.64	NO PRODUCT - BUGS IN 160
	Omw-4		13	28	6.01	6.92'	191' PRODUCT
1	om w - 5	-	12	30		5.85	NO PRODUCT (FOUND! AND)
	DMW-6		11	59		5.51	NO PRODUCT BALLED E
14	- 	1-1-	13	50	5.90	7.97	2.17' PRODUCT CAL
<u> </u>	5 0 mill -8	1	13	24		5.99	No PRODUCT
	5 0mw-9	+	13	54	5,23	6.89	1.66 PRODUCT
	7 Omw-10	-	14	20		6.02	NO PRODUCT (FOUND: CLOSE TO
			14	02		6.13	
1	8 GP - 1		12	39	6.04		I A I PRODUCT
! <u> </u>	9 08-2		14	08	5.16	. 	BALED
2	0 01-3		/7	100			

All levels are depth from inner casing - describe any other reference points in comments column; when in doubt, describe reference point.

Note in comments column if well is not: properly labeled, locked, or able to be locked. Describe corrective action.

Note flooding of vault box, odor, access problems.

NOTE- ADJUSTED ORANDOWN TO \$ 11.16

USPCI Project Name: UPMF Oakland						USPCI Project Number: 96120-844		
Measuring Poi	nt (MP) Location	Top of casing	w	ell No.	OKUS-W1			
Well Depth: (H	Below MP): 18.70) Feet						
Casing diamete	er: 2 Inches		···		Sai	mpling Date: 08/	09/95	
Depth To Grou	und Water (Below	MP): 8.18 Feet		Sai	mple ID No. OK	US-WI		
Method Of W	ell Development:				Tir	ne: 16:55		
☐ Tap [☐ Submersible Pu	mp 🗆 Bladder	Pump		Ris	ser Elevation (MP): 9.17 Feet	
■ Bailer 〔	☐ Centrifugal Pur	np 🗆 Other			To	p of Screen Eleva	tion: 6.85 Feet	
Sampling Col	lection Method:			Sam	ple Appeara	nce: Clear		
	bmersible Pump	☐ Bladder :	Pump Sample	Odos	r: None			
■ Bailer Typ		n O Stainless Ste		Sam	pling Proble	ms (if any):		
			plastic disposable					
		Feet Bele		Dece	ontamination	n Performed: Pre	be and filter	
Tubing Type (· · · · · ·					
		Collection	ll Development/Fiel	ld Tests Sam	ples Collect	ed: TPH-Gasolin 8020 BTEX, P		
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.) Remo	ulative Volume of Water oved From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)	
_16:28	Begin well							
16:34	7,9	700	23.0			1.75		
16:40	7.9	700	23.0			3.50		
16:44 16:55	7.9 Sample well	800	22.5			5.25		
At Least 3 Wo	ell Bore Volumes	Were Evacuated Be	efore Sampling	Discharge Rate =	GPM	x 0.00223 =	cfs	
		th .45 micron filte		<u>-</u>				
(18.70 - 8.18)	* 0.16 = 1.683	or 1.75 gallons pe	r volume					
						[Commer	its may continue on back	
Form Comple	ted By: Mark M	cCormick		Witnessed By:				

USPCI Project Name: UP	MF Oakland	USPCI F	USPCI Project Number: 96120-844		
Measuring Point (MP) Loc	cation Top of casing	Well	No. OKUS-W2	2	
Well Depth: (Below MP):					
Casing diameter: 2 Inches			Sampling Date: 08/	09/95	
Depth To Ground Water (I	Below MP): 9.09 Feet			Sample ID No. OK	US-W2
Method Of Well Develop	ment;			Time: 17:40	
☐ Tap ☐ Submersi	ble Pump 🔲 Bladder	Pump		Riser Elevation (MP): 9.71 Feet
■ Bailer □ Centrifug	al Pump		· _	Top of Screen Eleva	tion: 7.05 Feet
Sampling Collection Met	hod:		Sample .	Appearance: Clear	
☐ Tap ☐ Submersible P	ump 🗆 Bladder	Pump Sample	Odor: M	loderate	
■ Bailer Type:	Teflon O Stainless Ste	cel	Samplin	g Problems (if any):	
	stic OPVC HDI	PE plastic disposable			
Pump Intake Or Bailer Se		low MP	Deconta	mination Performed: Pr	obe and filter
Tubing Type (if Used):					
Tubing Used for: San	mple Collection 🗆 W	ell Development/Fiel	d Tests Samples	Collected: TPH-Gasolii 8020 BTEX, F	
Time pH (Unit		Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
17:11 Begin v	well				
17:18 7.9	2500	23.0		2.25	
17:23 7.8		22,5		4.50	
17:28 7.6		22.0		6.75	
17:40 Sample	well				
 					
At Least 3 Well Bore Vol	lumes Were Evacuated I	Sefore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs
Comments: Metals filter	ed with .45 micron file	ter			
(22.00 - 9.09) * 0.16 =	2.066 or 2.25 gallons p	er volume		<u> </u>	
				Comme	nts may continue on back
Form Completed By: M.	ark McCormick		Witnessed By:		

USPCI Project	Name: UPMF 0)akland		USPCI	Project Number: 96120-8	44	
Measuring Poin	nt (MP) Location	Top of casing	Well	Well No. OKUS-W3			
Well Depth: (B	clow MP): 21.5	Feet					
Casing diamete	r: 2 Inches				Sampling Date: 08/	09/95	
Depth To Grou	ind Water (Below	MP): 9.41 Feet		Sample ID No. OK	US-W3		
Method Of W	ell Development:	<u> </u>		Time: 18:25			
□ Тар □	Submersible Pur	mp 🗆 Bladder	Pump		Riser Elevation (MP): 9.80 Feet	
■ Bailer [☐ Centrifugal Purr	np 🗆 Other			Top of Screen Eleva	tion: 6.55 Feet	
Sampling Coll	ection Method:	· · · · · · · · · · · · · · · · · · ·		Sample	Appearance: Slightly turl	oid	
	omersible Pump	☐ Bladder	Pump Sample	Odor: N	loderate		
Bailer Type		n O Stainless Ste		Samplin	g Problems (if any): Wat	er is reactive	
			E plastic disposable				
		Feet Bel		Deconta	mination Performed: Pr	obe and filter	
Tubing Type (i							
		Collection We	ell Development/Fiel	ld Tests Samples	Collected: TPH-Gasolin 8020 BTEX, P		
Time	pH (Units)	Temperature Corrected Conductance (umbo/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)	
17:55	Begin well						
18:03	7.8	2400	22.5		2.0		
18:09	7.8	2500	22.5		4.0		
18:14	7.7	2400	22.0		6.0		
18:25	Sample well						
	 						
		Were Evacuated B		Discharge Rate =	GPM x 0.00223 =	cfs	
Comments: II	eavy bacteria lev	vel obscuring water	er/air interface.				
	filtered with .45						
(21.50 - 9.41)	* 0.16 = 1.934	or 2.0 gallons per	volume			,	
					[Comme	nts may continue on back	
Form Complet	ed By: Mark Me	cCormick		Witnessed By:			

USPCI Project	Name: UPMF ()akland	USPCI Project Number: 96120-844				
Measuring Poin	nt (MP) Location	Top of casing		Wel	No. OKUS-W	4	
Well Depth: (B	elow MP): 20.69) Feet					
Casing diamete	r: 2 Inches				Sampling Date: 08	/09/95	
Depth To Grou	nd Water (Below	MP): 6.10 Feet		·	Sample ID No. Ol	KUS-W4	
Method Of W	ell Development:	· · · · · · · · · · · · · · · · · · ·			Time: 15:50		
☐ Tap □	Submersible Pu	mp Bladder	Pump		Riser Elevation (M	P): 7.35 Feet	
■ Bailer [Centrifugal Pun	np 🗆 Other			Top of Screen Elev	ation: 6.08 Feet	
Sampling Coll	ection Method:			Sample	Appearance: Clear - v. s	slighly turbid	
	omersible Pump	☐ Bladder	Pump Sample	Odor: N	Aoderate		
■ Bailer Type	_	n O Stainless Ste		Samplin	g Problems (if any):		
			3 plastic disposable				
<u> </u>		Feet Bel		Deconta	mination Performed: P	robe and filter	
Tubing Type (i		1 000 1001					
		Collection	ell Development/Fiel	eld Tests Samples Collected: TPH-Gasoline, TPH-Diesel 8020 BTEX, Pb, As			
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)	
15:18	Begin well						
15:27	7.7	2200	23.5		2.5		
15:33	7.7	2400	23,0		5.0		
15:39	7.7	2400	23.0		7.5		
15:50	Sample well						
:							
At Least 3 We	ll Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cís	
		ered with .45 mic = 2.334 or 2.5 ga					
	·				[Comm	ents may continue on back)	
Form Complet	ed By: Mark M	cCormick		Witnessed By:			
Torni Complet	OLDY. WHEE IT	- COI MINER			, . <u></u>		

USPCI Project 1	Name: UPMF (Dakland	USPCI Project Number: 96120-844					
Measuring Point	(MP) Location	Top of casing		Well	No. OKUS-W	5		
Well Depth: (Be	elow MP): 21.0	0 Feet						
Casing diameter	: 2 Inches				Sampling Date: 08/	09/95		
Depth To Groun	ıd Water (Below	MP): 9.75 Feet	•		Sample ID No. N/A	1		
Method Of We	ll Development:				Time: 12:30			
☐ Tap ☐	Submersible Pu	mp Bladder	Pump		Riser Elevation (MF): 9.25 Feet		
☐ Bailer ☐	Centrifugal Pur	np 🗌 Other			Top of Screen Eleve	ation: 5.95 Feet		
Sampling Colle	ction Method:			Sample	Appearance:			
☐ Tap ☐ Subs	mersible Pump	☐ Bladder	Pump Sample	Odor: N	loderate			
☐ Bailer Type	: O Teflo	n O Stainless Ste	el	Samplin	g Problems (if any):			
С	ABS Plastic () PVC						
Pump Intake Or	Bailer Set At _	Feet Bel	ow MP	Deconta	mination Performed: Pr	obe		
Tubing Type (if	Used):							
Tubing Used for	r: 🗆 Sample (Collection	ell Development/Fiel	d Tests Samples	Collected: None			
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)		
WELL NOT	SAMPLED							
			<u></u>					
	· · · · · · · · · · · · · · · · · · ·							
								
At Least V	Vell Bore Volun	nes Were Evacuate	d Before Sampling	Discharge Rate =	GPM x 0.00223 =	cfs		
Comments: * N	lo Oil/Water in	terface detected,	but product noted (coating probe and in ba	iler, noted as diesel fuel	·		
Well n	Well not sampled because of phase separated hydrocarbons.							
[Comments may continue on back]								
Form Completed	d By: Mark M	cCormick		Witnessed By:				

USPCI Project Name: UPMF Oakland					USPCI Project Number: 96120-844		
Measuring Point (MP) Location Top of casing				We	il No. OKUS-W	6	
Well Depth: (Be	elow MP): 16.3	0 Feet					
Casing diameter	: 2 Inches				Sampling Date: 08	/09/95	
	nd Water (Below et (Below MP):	MP): 6.10 Feet 5.65 Feet			Sample ID No. N/.	A	
Method Of We	ll Development				Time: 12:12		
□ Тар □	Submersible Pu	ımp 🗆 Bladder	Pump		Riser Elevation (MI	?): 7.29 Feet	
☐ Bailer ☐	Centrifugal Pur	mp 🗆 Other			Top of Screen Elev	ation: 2.29 Feet	
Sampling Colle	ction Method:			Sampl	e Appearance:		
☐ Tap ☐ Sub	mersible Pump	☐ Bladder	Pump Sample	Odor:	Strong		
☐ Bailer <u>Type</u>	Teflo	on O Stainless Ste	el	Sampl	ing Problems (if any):		
	ABS Plastic () PVC					
Pump Intake Or	Bailer Set At _	Feet Bei	ow MP	Decor	ntamination Performed: Pr	obe	
Tubing Type (if	Used):		<u> </u>				
Tubing Used fo	r: 🗆 Sample (Collection	ll Development/Fiel	d Tests Sampl	es Collected: None		
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)	
WELL NOT	SAMPLED						
· · · · · · · · · · · · · · · · · · ·						<u>-</u>	
	<u>.</u>						
			-				
-							
	<u> </u>						
						<u></u>	
At Least	Well Bore Volum	nes Were Evacuate	d Before Sampling	Discharge Rate =	GPM x 0.00223 =	cfs	
Comments: Me product/water	easurement only interface. A ba	y to product/air in ailer was inserted	terface, viscosity of downhole and proc	f "bunker C" type hyd luct thickness was me	drocarbon completely obsta asured by appearance on	res the bailer.	
			<u> </u>				
					[Comme	nts may continue on back	
Form Complete	d By: Mark M	lcCormick		Witnessed By:		<u>-</u> .	

USPCI Project	Name: UPMF ()akland	USPCI	USPCI Project Number: 96120-844			
Measuring Poir	nt (MP) Location	Top of casing		Well	No. OKUS-W	7	
Well Depth: (E	Below MP): 19.78	8 Feet				······································	
Casing diamete	er: 2 Inches				Sampling Date: 08/	09/95	
Depth To Grou	und Water (Below	MP): 5.53 Feet			Sample ID No. OK	CUS-W7	
Method Of W	ell Development:				Time: 14:40		
□ Tap □	Submersible Pu	mp Bladder	Pump		Riser Elevation (MI	P): 7.4 Feet	
■ Bailer [☐ Centrifugal Pun	np 🗆 Other			Top of Screen Eleva	ation: 2.4 Feet	
Sampling Col	lection Method:			Sample	Appearance: Slightly tur	bid, yellow	
☐ Tap ☐ Su	bmersible Pump	☐ Bladder	Pump Sample	Odor: L	ight - moderate		
■ Bailer Typ		n O Stainless Ste		Samplin	g Problems (if any):		
			E plastic disposable				
	or Bailer Set At _			Deconta	amination Performed: Pr	obe and filter	
Tubing Type (_					
		Collection	ell Development/Fie	ld Tests Samples	s Collected: TPH-Gasoli 8020 BTEX, I		
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)	
14:05	Begin well					-	
14:14	7.7	2100	22.0		2.50		
14:21	7.8	2000	22.0	<u> </u>	4.75		
14:28	7.7	2100	22.0		7.50		
14:40	Sample well						
	 						
At Least 3 We	ell Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs	
Comments: M	Aetals sample filt	ered with .45 mic	ron filter				
(19.78 - 5.53)	* 0.16 = 2.28 o	r 2.25 gallons per	volume				
Samples doub	oled for MS/MSI) for TPH and B	ГЕХ			.,	
					[Comme	nts may continue on back	
Form Comple	ted By: Mark M	lcCormick		Witnessed By:			
<u> </u>	-						

USPCI Project Name: UPMF Oakland					USPCI Project Number: 96120-844		
Measuring Point (MP) Location Top of casing					Well No.	OKUS-W8	
Well Depth: (B	elow MP): 14.87	Feet					
Casing diamete	r: 2 Inches			Sampling Date: 08/09/95			
Depth To Ground Water (Below MP): 5.32 Feet						ample ID No. OK	US-W8
	ell Development:			·	Т	ime: 13:32	
] Submersible Pur		Pump		R	iser Elevation (MP): 7.11 Feet
	Centrifugal Pun				Т	op of Screen Eleva	tion: 2.11 Feet
··	ection Method:			S	ample Appear	ance: Lightly turb	oid, bright yellow
	omersible Pump	□ Rladder	Pump Sample		Odor: Light		
■ Bailer Typ	-	n O Stainless Ste				lems (if any):	
		PVC HDPE				<u> </u>	
				<u></u> .	Decontaminatio	on Performed: Pr	obe and filter
		Feet Bele	OW MII				
Tubing Type (Tubing Used f		Collection	il Development/Fic	ld Tests S	Samples Colle	cted: TPH-Gasolin	
		 [1		8020 BTEX, P	
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Leve (Nearest 0.01	el	nulative Volume of Water noved From well (Gallons)	Pumping Rate in Gailons/Minute (GPM)
13:06	Begin well	(=======					
13:14	7,4	3400	23.5			1.50	
13:18	7.5	3600	23.0			3.25	
13:22	7.5	3500	23.0	<u> </u>		4.75	
13:32	Sample well			<u> </u>			
	1	·					
-							
							1
					<u> </u>		<u> </u>
At Least 3 We	ll Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate	= GPN	1 x 0.00223 =	cfs
Comments: M	letals sample filt	ered with .45 mic	ron filter.			··· ·	
(14.87 - 5.32)	* 0.16 = 1.528	or 1.5 to 1.75 gal	lons per volume		_		<u> </u>
						[Comme	nts may continue on back
			_,·	Witnessed By:			
Form Comple	ted By: Mark M	CCOFMICK		Trinicascu Dy.			

USPCI Project	Name: UPMF C	akland		USPCI Project Number: 96120-844			
Measuring Poi	nt (MP) Location	Top of casing		Well	No. APL-W1		
Well Depth: (I	Below MP): 21.87	7 Feet					
Casing diamet	er: 2 Inches				Sampling Date: 08/	09/95	
Depth To Gro	und Water (Below	MP): 10.01 Feet			Sample ID No. AP	L-W1	
Method Of W	ell Development:				Time: 10:28		
☐ Tap	Submersible Pu	mp Bladder	Pump		Riser Elevation (MF	P): 7.11 Feet	
Bailer	☐ Centrifugal Pun	np 🗆 Other	<u> </u>		Top of Screen Eleva	ation: 2.11 Feet	
	lection Method:	<u>-</u>		Sample	Appearance: Clear		
	bmersible Pump	☐ Bladder	Pump Sample	Odor: I	ight		
■ Bailer Typ	-	n O Stainless Ste		Samplin	g Problems (if any):		
	ABS Plastic (
	Or Bailer Set At _			Deconta	mination Performed: Prob	be and filter	
Tuhing Type				<u> </u>			
		Collection	ell Development/Fie	ield Tests Samples Collected: TPH-Gasoline, TPH-Diesel, 8020 BTEX, Pb, As			
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)	
08:59	Gauge well						
09:18	Begin well	purging					
09:21	7.8	1300	21.0		2.00		
09:25	7.8	1400	21.0		4.00		
09:30	7.8	1400	21.0	<u> </u>	6.00		
10:28	Sample well						
					<u> </u>	<u> </u>	
<u></u>						<u> </u>	
At Least 3 V	Vell Bore Volume	Were Evacuated	Before Sampling	Discharge Rate =	GPM x 0.00223 =	cfs	
Comments: N	Aetals sample filt	ered with .45 mic	ron filter				
(21.87 - 10.01	1) * 0.16 = 1.898	or 2.0 gallons pe	er volume				
					[Comme	nts may continue on back	
Form Comple	ted By: Mark M	cCormick		Witnessed By:			
- Torni Compic	ALL Dy. WHIR M	- COLIMICA		<u> </u>			

USPCI Project l	Name: UPMF ()	akland	USPCI F	USPCI Project Number: 96120-844					
Measuring Point	(MP) Location	Top of casing	Well	No.	APL-W2				
Well Depth: (Below MP): 11.17 Feet									
Casing diameter	: 2 Inches			Sar	npling Date: 08/0	09/95			
Depth To Groun	nd Water (Below	MP): 9.42 Feet			Sar	nple ID No. API	L-W2		
Method Of We	ll Development:				Tin	ne: 09:57			
☐ Tap	Submersible Pur	mp 🗆 Bladder	Pump		Ris	er Elevation (MP): 7.62 Feet		
■ Bailer □	Centrifugal Pun	p 🗆 Other			To	p of Screen Eleva	tion: 2.62 Feet		
Sampling Colle		<u></u>		Sample a	Appeara	nce: Clear			
☐ Tap ☐ Sub		☐ Bladder	Pump Sample	Odor: N	one				
■ Bailer Type		n O Stainless Ste	æl	Samplin	g Proble	ms (if any):			
		PVC HDPI				·-			
		Feet Bel	·	Deconta	mination	Performed: Prob	e and filter		
Tubing Type (if				-					
	r: Sample C	collection	ell Development/Fiel	d Tests Samples	Collect	ed: TPH-Gasolic 8020 BTEX,			
Time	pH (Units)	Temperature Corrected Conductance (umbo/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Remo	ulative Volume of Water oved From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)		
08:57	Gauge well								
09:04	Begin well	purging	,		ļ				
09:06	7.9	1400	21.0		 	0.33			
09:08	7.8	1500	21.0		 	0.66			
09:10	7.8	1500	21.0		 	1.00			
09:57	Sample well					_			
		_							
						· · · · ·			
		<u> </u>				<u></u>			
		s Were Evacuated		Discharge Rate =	GPM	x 0.00223 =	cfs		
Comments: Du	iplicate sample	= APL-W12 at 1	0:17						
	filtered with .4								
(11.17 - 9.42)	* 0.16 = 0.28 o	r .33 gallons per	volume						
				, <u>,</u> <u>,</u>		[Comme	nts may continue on back]		
Form Complete	ed By: Mark M	cCormick		Witnessed By:					