HAZMAT 95 JAN 31 PH 1: 56

FOURTH QUARTER 1994 MONITORING REPORT

UNION PACIFIC RAILROAD

UNION PACIFIC MOTOR
FREIGHT FACILITY
OAKLAND, CALIFORNIA
USPCI PROJECT No. 96120-844

PREPARED FOR:
UNION PACIFIC RAILROAD
ENVIRONMENTAL MANAGEMENT
1416 DODGE STREET, ROOM 930
OMAHA, NEBRASKA 68179

Prepared by: USPCI Consulting Services 5665 Flatiron Parkway Boulder, Colorado 80301

January 27, 1995

Consulting Services

January 30, 1995

Mr. Harry Patterson Union Pacific Railroad 1416 Dodge Street, Room 930 Omaha, Nebraska 68179

RE: "Fourth Quarter 1994 Monitoring Report" Oakland Motor Freight Facility, Oakland, California

Dear Harry:

Enclosed is the final "Fourth Quarter 1994 Monitoring Report", dated January 24, 1995 for the Union Pacific Motor Freight (UPMF) Facility at 1750 Ferro Street in Oakland, California.

Based on the information obtained during the most recent monitoring event, the following recommendations are included in the report:

- The quarterly monitoring program should be continued.
- The monitoring of bunker C and product near the Union Pacific Motor Freight facility should be continued.
- The operation and monitoring of the product skimming system in recovery well RW should be continued.

Mr. Harry Patterson January 30, 1995 Page 2

If you have any questions, please call me at (303) 938-5539.

Sincerely,

Denton Mauldin Engineer III

00

John Amdur, Port of Oakland
Philip Herden, APL
Sam Marquis, USPCI
K. Fossey, USPCI
Mark McCormick, USPCI

Enclosures DM/tjh

FOURTH QUARTER 1994 MONITORING REPORT UNION PACIFIC RAILROAD UNION PACIFIC MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA USPCI Project No. 96120-844

Prepared for:
Union Pacific Railroad
Environmental Management - Room 930
1416 Dodge Street
Omaha, Nebraska 68179

for submittal to:
Ms. Jennifer Eberle
Department of Environmental Health
Hazardous Materials Division
80 Swan Way, Room 200
Oakland, California 94621

Prepared by:
USPCI Consulting Services
5665 Flatiron Parkway
Boulder, Colorado 80301

Denton Mauldin Engineer III

Sam Marquis, R.G. 5110, P.G. 2477
Project Hydrogeologist

January 27, 1995

TABLE OF CONTENTS

	ON
1.1 SITE BACK	GROUND 1
1.2 Investiga	TIVE PROCEDURES 2
2 EIEI D INVEST	rigation results 2
	ATER CHARACTERISTICS
	AL RESULTS
	ATER GRADIENT
	NG AND RECOVERY OF NON-AQUEOUS PHASE LIQUID
2,4 MONITORII	NO AND RECOVERT OF MON-AQUEOUS THASE ENQUIS
3. CONCLUSION	S AND RECOMMENDATIONS
3.1 Conclusion	DNS 4
3.2 RECOMME	NDATIONS
4. REFERENCES	**************************************
	LIST OF TABLES
TABLE 1	Analytical Results, Groundwater Monitoring Wells
Table 2	FLUID LEVEL MEASUREMENT LEVEL DATA
Œ	LIST OF FIGURES
Figure 1	SITE LOCATION MAP
FIGURE 2	SITE VICINITY MAP
FIGURE 3	DISSOLVED PHASE BTEX DISTRIBUTION MAP
FIGURE 4	GROUNDWATER ELEVATION MAP
	LIST OF APPENDICES
APPENDIX A	Analytical Reports
APPENDIX B	WELL STABILIZATION AND SAMPLING REPORTS
and a section of his	

1. INTRODUCTION

The Fourth Quarter 1994 Monitoring Report has been prepared for Union Pacific Railroad (UPRR) by USPCI in response to an April 29, 1993, Alameda County Department of Environmental Health, Hazardous Materials Division (ACDEH) request for UPRR to begin a quarterly monitoring program at the Union Pacific Motor Freight (UPMF) Ferro Street facility in Oakland, California (Figure 1). The facility was the site of a release of petroleum hydrocarbons from underground storage tanks (USTs).

The fourth quarterly monitoring event involved:

- Gauging the static water levels, purging, and sampling the nine existing monitoring wells;
- Monitoring the performance of the product skimmer in recovery well RW;
- Collecting and analyzing groundwater samples from the monitoring wells where non-aqueous
 phase liquid petroleum hydrocarbon (product) was not measured. Samples were analyzed for
 total petroleum hydrocarbons as diesel (TPH-G) by EPA Method 8015 Modified, TPH as
 gasoline (TPH-G) by EPA Method 8015 Modified; and benzene, toluene, ethylbenzene and
 xylenes (BTEX) by EPA Method 8020;
- Determining the local hydraulic gradient based on the groundwater level measurements; and
- Preparing the Fourth Quarter 1994 Monitoring Report.

Product was measured in monitoring wells OKUS-W5, OKUS-W6 and recovery well RW during the Fourth Quarter 1994 Monitoring Event. Groundwater samples were collected from the seven remaining monitoring wells at the facility on November 15 and 16, 1994.

1.1 SITE BACKGROUND

The following describes the historical activities at the railyard and vicinity as well as the location of and access to the site.

The site is located on the southeastern end of the UPRR Oakland trailer-on-flat-car (TOFC) Yard (Figure 2), which is adjacent to the Oakland Inner Harbor or Oakland Estuary. The area surrounding the site is used for heavy to light commerce, with residential areas located approximately one half mile away to the north and to the south across the Oakland Estuary. Five USTs were removed from the UPMF site from 1987 to 1990. The refueling portion of the TOFC yard, approximately 700 feet northwest of the truck repair shop, is currently undergoing groundwater remediation for recovery of

product. The limits of the diesel plume in that portion of the site was defined during previous investigations (USPCI, 1991), and the plume does not extend to the area of impacted groundwater at the truck repair facility in the Oakland TOFC Yard.

The site is located in the UPRR TOFC Yard at 1750 Ferro Street in the Port of Oakland on the north side of the Inner Harbor, Oakland, California. Access to the site is from the intersection of Middle Harbor Road and Ferro Street.

1.2 INVESTIGATIVE PROCEDURES

All USPCI field activities, including data recording procedures, decontamination methods, groundwater sample collection, and purge water disposal, were completed following USPCI's standard operating procedures (USPCI, 1994) previously supplied to the ACDEH. The quarterly monitoring event was conducted by USPCI Consulting Services personnel under the direct supervision of Christopher Byerman, Geologist I.

2. FIELD INVESTIGATION RESULTS

The continued monitoring of wells and the compilation of the field and analytical data is directed towards an understanding of groundwater and petroleum hydrocarbon migration beneath the site. The field investigation presented in this report was completed on four separate occasions during the fourth quarter. The dates of the field investigation were October 27, November 15 and 16, and December 8, 1994. Groundwater level measurements and samples were collected on November 15 and 16, 1994. Product level monitoring was performed on October 27, 1994 and the skimming system was checked on December 8, 1994. The following subsections present the findings and activities completed during the fourth quarter field investigation.

2.1 GROUNDWATER CHARACTERISTICS

The UPRR Oakland UPMF Facility is adjacent to the Oakland Estuary, which is located in the eastern portion of the San Francisco Bay (Figure 2). No observable tidal influences have been noted to date at the site; however, the close proximity of the estuary to the site suggests that a direct hydrologic connection may exist between the estuary and the groundwater beneath the site.

2.2 ANALYTICAL RESULTS

Analytical results of the samples collected from the groundwater monitoring wells demonstrate dissolved concentrations of TPH-D, TPH-G and BTEX in groundwater samples from monitoring wells OKUS-W2 through APL/UP-W2. Only monitoring well OKUS-W1 did not exhibit dissolved concentrations above the detection limits. (Table 1 and Figure 3). Total BTEX concentrations ranged

from below the detection limit in the samples collected from monitoring wells OKUS-W1 to approximately 660 micrograms per liter (μ g/L) in the sample collected from OKUS-W2. TPH-G concentrations ranged from below the method detection limit (MDL) of 50 μ g/L in samples collected from OKUS-W1 and OKUS-W7 to 10,000 μ g/L in sample OKUS-W2. TPH-D concentrations ranged from 51 μ g/L in sample OKUS-W1 to 5500 μ g/L in sample OKUS-W2. Analytical results appear to be consistent with previous monitoring events, with the exception of decreases in BTEX for monitoring wells OKUS-W2, -W3 and -W4. Analytical results are presented in Table 1. Analytical reports and chain of custody forms are included in Appendix A.

2.3 GROUNDWATER GRADIENT

Static water levels measured on November 15 and 16, 1994 (Table 2) were used to produce the groundwater elevation map presented as Figure 4. A decrease in groundwater elevations was noted throughout most of the site since the second quarter 1994 sampling. The groundwater gradient at the site was to the east and was consistent with the gradient observed during the previous (Third Quarter 1994) gauging and sampling event. Well stabilization and sampling reports are presented in Appendix B.

2.4 MONITORING AND RECOVERY OF NON-AQUEOUS PHASE LIQUID

As requested by the ACDEH, product thicknesses in monitoring wells OKUS-W4, and OKUS-W5, and recovery well RW have been monitored at the site since January 31, 1994, on a monthly basis at a minimum. Water level information has been collected at monitoring well OKUS-W6 on a quarterly basis. The monitoring data indicates that monitoring wells OKUS-W5, OKUS-W6 and recovery well RW have had measurable amounts of product (Table 2).

As indicated in Table 2, monitoring well OKUS-W5 had 0.06 and 0.22 feet of product during the October and November 1994 monitoring events. Monitoring well OKUS-W6 continues to contain bunker C.

A product skimming system was installed in recovery well RW on April 29, 1994 and began operation during the week of May 2, 1994. Operation of the skimmer system was checked on September 26, October 27 and December 8, 1994. Between the September and December monitoring events, approximately 27 gallons of product was recovered by the skimming system. The corresponding recovery rate is approximately equal to two gallons of product recovery per week, which is greater rate than the amount of product recovered by the previous hand bailing activities.

3. CONCLUSIONS AND RECOMMENDATIONS

The following subsections present conclusions and recommendations based on the field and analytical results from the subject site.

3.1 CONCLUSIONS

Based on the results from the Fourth Quarter 1994 monitoring event, the following conclusions have been reached:

- The analytical results from the 1993 site assessments and current groundwater monitoring program indicate a dissolved plume of BTEX and TPH which is not limited to the immediate area surrounding the UPMF facility. Based on the recent sampling results, the downgradient edge of the plume appears to be near monitoring well APL/UP-W2. Comparison of historical data to the most recent sampling results suggests that the dissolved BTEX plume has not migrated or increased in areal extent. A decrease in BTEX concentrations for wells near the previous source area was observed.
- Bunker C continues to be observed in monitoring well OKUS-W6.
- The product skimming system has continued to remove product from recovery well RW.

3.2 RECOMMENDATIONS

Based on the above conclusions, the following recommendations are made:

- To monitor the status of the dissolved petroleum hydrocarbon plume in the groundwater at the site, the quarterly monitoring program should be continued.
- The monitoring of bunker C and product near the UPMF facility should be continued.
- The operation and monitoring of the product skimming system in recovery well RW should be continued.

4. REFERENCES

USPCI, 1994. "Fourth Quarter 1993, Monitoring Event, Union Pacific Railroad, May 4, 1994.

TABLE 1 ANALYTICAL RESULTS – GROUNDWATER MONITORING WELLS UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

SAMPLE LOCATION	SAMPLE DATE	TPH/IR (mg/l)		TPH-G (ug/l)	/	T (ug/l)	E (ug/l)	X (ug/l)	BTEX (ug/l)	As (mg/l)	Pb (mg/l)
OKUS-W1	01/14/93 05/12/93 08/25/83 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	ND 80 ND ND NA NA NA	ND 120 100 160 92 61 86	410 ND ND 91 <50 <50 <50	20 ND ND 1.1 <0.50 <0.50 <0.50 <0.50	ND ND 0.88 <0.50 <0.50 <0.50	220 ND ND 21 <0.50 <0.50 <0.50 <0.50	ND ND 1.6 <0.50 <0.50 <0.50	240 ND ND 24 ND ND ND	ND ND ND V0.10 <0.10 <0.10 NA	ND ND ND VD <0.02 <0.02 NA NA
OKUS-W2	01/14/93 05/12/93 08/25/93 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	2.5D 5.5 3.5A NA NA	5400 2800 6500 7700 2300 2600 8200 5500	14000 8800 22000 24000 4900 17000 10000	480 220 420 540 150 300 320 290	92 47 92 150 29 <0.50 67 79	8500 4600 10000 13000 3000 5800 7500 130	ND 100 210 280 78 220 250 160	5000	0.036 0.093 0.089 ND <0.10 <0.10 <0.10 NA	ND ND ND ND <0.02 <0.02 NA NA
OKUS-W3	01/14/93 05/12/93 08/25/93 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	4.5 1.7 1.5 2.3 NA NA NA NA	4200 4400 2700 5000 4400 3000 4500 4700	4900 4600 9400 9500 17000 14000 10000 9100	230 290 280 390 420 310 350 260	42 60 55 110 78 61 78 64	2600 3500 4300 5100 9800 6400 7300 95	44 72 41 130 160 210 170 <0.50	2900 3900 4700 5700 10000 7000 7900 420	NA 0.14 0.08 0.14 0.12 0.14 <0.10 NA	ND ND ND ND <0.02 <0.02 NA NA
OKUS-W4	01/15/93 05/12/93 08/26/93 11/11/93 02/07/94 05/03/94 08/24/94 11/16/94	2.5 1.3 ND ND NA NA NA	5400 2900 2200 2400 2700 2300 2900 2800	8900 6000 6700 5500 9100 6500 5200	300 320 350 250 250 240 200 320	ND 110 72 53 <0.50 34 41 52	4500 4600 4800 4600 4900 4200 3600 <0.50	ND 230 130 140 150 140 190 120	4800 5300 5400 5000 5300 4600 4000 490	NA 0.16 0.098 0.13 <0.10 0.12 0.11 NA	ND ND ND ND <0.02 <0.02 NA NA
OKUS-W5	01/15/93 05/12/93 08/25/93 11/11/93 02/07/94 05/03/94 08/24/94 11/16/94	2.7 NA NA	1600 1900 2000 1700	590 760 820 910	53 81 YDROCA 14 54 57 55 YDROCA	3.1 9.4 9.5 14	54 220 240 8.5	6.2 24 27 18	310 330 96	0.53 0.55 0.38 0.45	ND ND <0.02 <0.02 NA
OKUS-W6	07/16/93 08/25/93 11/12/93 02/07/94 05/03/94 08/24/94 11/16/94	PHASE	SEPAR,	ATED H ATED H	2.5 2.6 3.6 YDROCA YDROCA YDROCA	RBONS	– WEL	L NOT S L NOT S	8.8 8.6 AMPLE AMPLE AMPLE	000	ND ND ND
OKUS-W7	07/16/93 08/25/93 11/12/93 02/07/94 05/03/94 08/24/94 11/16/94	16 ND ND NA NA NA	ND 930 1100 1100 1300 910 820	ND 56 ND ND 50 50 50	2.1 2.9 ND 0.7 <0.50 2.5 0.62	ND ND ND <0.50 <0.50 0.54 <0.50	ND 1.2 ND <0.50 <0.50 <0.50 <0.50	ND ND ND <0.50 <0.50 <0.50 <0.50	2.1 4.1 ND 0.70 ND 3 0.62	0.009 ND ND <0.10 <0.10 <0.10 NA	< 0.02

TABLE 1 (cont) ANALYTICAL RESULTS - GROUNDWATER MONITORING WELLS UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

SAMPLE LOCATION	SAMPLE DATE	TPH/IR (mg/l)	TPH-D' (ug/l)	TPH-G (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	BTEX (ug/l)	As (mg/l)	Pb (mg/l)
OKU\$~W8	07/16/93 08/27/93 11/11/93 02/07/94 05/03/94 08/24/94 11/16/94	15 ND ND NA NA NA	ND 1100 1300 1000 780 700 830	ND 120 190 120 79 100 110	ND 1.3 3.5 0.9 0.99 1.4 0.77	ND ND 1.3 <0.50 <0.50 <0.50	ND ND 46 <0.50 <0.50 <0.50	ND 0.85 4.9 <0.50 <0.50 <0.50	ND 2.15 55.70 0.90 0.99 1.40 0.77	0.012 ND ND <0.10 <0.10 <0.10 NA	0.003 0.005 ND <0.02 <0.02 NA NA
APL/ UP-W1	07/16/93 08/26/93 11/11/93 02/07/94 05/03/94 08/24/94 11/15/94	11 ND NDA NA NA	700 810 530 660 590 420	300 720 560 620 680 830 470	25.4 47 26 25 48 48 36	1.7 1.3 ND <0.50 2.9 4.8 3.6	ND 360 220 180 260 12 9.6	3.0 14.0 11.0 10 9.8 3.2 12	30 420 260 220 320 68 61	0.011 0.013 ND <0.10 <0.10 <0.10 NA	ND ND ND <0.02 <0.02 NA NA
APL/ UP-W2	07/16/93 08/26/93 11/11/93 02/07/94 05/03/94 08/24/94 11/15/94	19 ND ND NA NA NA	ND 240 190 270 100 330 320	ND 94 110 120 <50 220 190	8.0 ND 5.0 6.6 <0.50	ND ND ND <0.50 <0.50 0.77 (<0.50	ND 35 38 38 <0.50 3.5 63	ND 2.4 2.6 1.8 <0.50 3.1 5.4	8.0 37.0 46 46 ND 20 79	0.016 0.023 ND <0.10 <0.10 <0.10 NA	ND ND ND <0.02 <0.02 NA NA
DUPLICATES OKUS-W5 OKUS-W1 APL/UP-W1 OKUS-W4 OKUS-W8 OKUS-W3 OKUS-W4 OKUS-W4 OKUS-W4	01/15/93 05/12/93 07/16/93 08/26/93 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	ND 12 ND 12 ND NA NA NA NA NA	2800 140 ND 2700 1300 2900 2500 950 310	510 ND 0.21 6200 120 15000 5400 92 190	50 ND 22.4 340 1.3 280 300 1.6	10 ND ND 78 ND 64 41 <0.50 <0.50	170 ND ND 4500 4 5800 5200 <0.50 62	19 ND 2.4 100 1.4 <0.50 130 <0.50 4.7	250 ND 25 5000 6.7 6100 5700 1.6 77	NA ND 0.012 0.1 2.4 0.12 0.12 <0.10 NA	NA ND ND ND 0.12 <0.02 NA NA
TRIP BLANKS UPMF UPMF UPMF UPMF UPMF UPMF	07/16/93 07/16/93 08/27/93 08/27/93 11/12/93 08/24/94 11/16/94	NA NA NA NA NA NA	2444 2444 2444 2444	NA N	22222 222222 222222	DDDDDDDDD	222222 222222 222222	DDDDDD000A	ND ND ND ND ND ND	NA NA NA NA NA NA	NA NA NA NA NA NA

TPH – TPH is total petroleum hydrocarbons. TPH/IR is a semi-quantitative analysis by infared radiation for TPHd it total petroleum hydrocarbons as diesel and TPHg is total petroleum hydrocarbons as gaso BTEX – Benzene (B), Toluene (T), Ethylbenzene (E) and Xylenes (X); BTEX is the summation of the B, T, As – Arsenic and Pb is Lead.

mg/L – milligram per liter

ND – Not Detected NA – Not Analyzed

TABLE 2 FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

WELL NO.	ELEV.* TOC	DATE	DEPTH TO PRODUCT	PRODUCT ELEVATION	PRODUCT THICKNESS	DEPTH TO WATER	WATER ELEVATION	CORR'D ELEVATION
OKUS-W1	9.17	01/14/93 01/15/93 02/18/93 05/12/93 08/25/93 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	N/A N/A N/A N/A N/A N/A N/A	N/A A A A A A A A N/A N/A	<u> </u>	8.42 8.45 7.79 8.04 8.61 9.24 8.49 8.89 8.56	0.75 0.72 1.38 1.13 0.56 -0.07 0.70 0.68 0.28 0.61	0.75 0.72 1.38 1.13 0.56 -0.07 0.70 0.68 0.28 0.61
OKUS-W2	9.71	01/14/93 01/15/93 02/18/93 05/12/93 08/25/93 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	22222222 2222222222 222222222222222222	9.08 9.12 8.70 9.04 9.61 10.20 9.46 9.50 9.74 9.74	0.63 0.59 1.01 0.67 0.10 -0.49 0.25 0.21 -0.03 -0.03	0.63 0.59 1.01 0.67 0.10 -0.49 0.25 0.21 -0.03
OKUS-W3	9.80	01/14/93 01/15/93 02/18/93 05/12/93 08/25/93 11/11/93 02/08/94 05/03/94 08/24/94 11/16/94	N/A A A A A A A A A A A A A A A A A A A	N/A N/A N/A N/A N/A N/A N/A N/A	\$\$\$\$\$\$\$\$\$\$	9.39 9.33 8.85 9.23 9.82 10.30 9.73 9.75 9.98 9.61	0.41 0.47 0.95 0.57 -0.02 -0.50 0.07 0.05 -0.18 0.19	0.41 0.47 0.95 0.57 -0.02 -0.50 0.07 0.05 -0.18 0.19
OKUS-W4	7.35	01/14/93 01/15/93 02/18/93 05/12/93 08/25/93 11/11/93 02/07/94 03/07/94 04/18/94 05/03/94 06/07/94 07/29/94 08/24/94 09/01/94 09/26/94 10/27/94 11/16/94	N/A 6,39 N/A 6,39 N/A A A A A A A A A A A A A A A A A A A	N/A 96 N/A 0.9 N/A N/A A N/A N/A N/A N/A N/A N/A N/A N/	<u> </u>	6.43 6.44 5.77 6.40 6.63 7.10 6.45 6.55 6.62 6.80 6.93 6.95 7.05 6.71	0.92 0.91 1.58 0.95 0.72 0.25 0.71 0.90 0.77 0.80 0.73 0.70 0.55 0.40 0.30 0.64	0.92 0.91 1.58 0.95 0.72 0.25 0.71 0.90 0.77 0.80 0.73 0.70 0.55 0.42 0.40 0.30 0.64
OKUS-W5	9.25	01/14/93 01/15/93 02/18/93 05/12/93 08/25/93 11/11/93 02/07/94 03/07/94 04/18/94 05/03/94 06/07/94 07/29/94 08/24/94 09/01/94 09/26/94 10/27/94 11/16/94	N/A N/A N/A 9.18 8.82 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 0.07 0.43 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	NP NP 0.02 0.02 NP NP NP NP NP NP NP NP NP NP NP NP NP	9.13 9.15 8.85 9.20 8.84 10.15 9.61 9.78 9.77 9.71 9.83 9.93 9.92 10.14 9.81	0.12 0.10 0.40 0.05 0.41 -0.90 -0.36 -0.52 -0.52 -0.58 -0.68 -0.67 -0.67 -0.89 -0.56	0.12 0.10 0.40 0.05 0.41 -0.90 -0.36 -0.53 -0.52 -0.58 -0.68 -0.68 -0.67 -0.67 -0.89 -0.56

TABLE 2 (cont) FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD OAKLAND MOTOR FREIGHT FACILITY

WELL I	TOC	DATE	DEPTH TO I	PRODUCT	PRODUCT THICKNESS		WATER LEVATION	CORR'D ELEVATION
OKUS-W6	7.02	07/16/93 08/25/93 11/12/93 02/07/94 05/03/94 08/24/94 09/26/94 10/27/94 11/16/94	N/A N/A N/A 5.89 5.90 6.27 6.50 6.68 5.13	N/A N/A N/A 1.13 1.12 0.75 0.52 0.34 1.89		6.20 6.52 7.22 	0.82 0.50 -0.20	0.82 0.50 -0.20
OKUS-W7	6.91	07/16/93 08/25/93 11/12/93 02/07/94 05/03/94 08/24/94 11/16/94	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	<u> </u>	5.72 5.94 6.50 5.81 5.69 6.11 5.90	1.19 0.97 0.41 1.10 1.22 0.80 1.01	1.19 0.97 0.41 1.10 1.22 0.80 1.01
OKUS-W8	6.75	07/16/93 08/27/93 11/11/93 02/07/94 05/03/94 08/24/94 11/16/94	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	22222 22222 202222	5.56 5.88 6.43 5.59 5.55 5.98 5.75	1.19 0.87 0.32 1.16 1.20 0.77 1.00	1.19 0.87 0.32 1.16 1.20 0.77 1.00
APL/UP-W1	8.12	07/16/93 08/26/93 11/11/93 02/07/94 05/03/94 08/24/94 11/15/94	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	22 22 22 22 22 22 22 22 22 22	10.02 9.93 10.25 9.71 10.10 10.25 10.08	-1.90 -1.81 -2.13 -1.59 -1.98 -2.13 -1.96	-1.90 -1.81 -2.13 -1.59 -1.98 -2.13 -1.96
APL/UP-W2	7.31	07/16/93 08/26/93 11/11/93 02/07/94 05/03/94 08/24/94 11/15/94	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	2P 2P 2P 2P 2P 2P	9.38 9.20 9.65 8.85 10.02 9.13 9.40	-2.07 -1.89 -2.34 -1.54 -2.71 -1.82 -2.09	-2.07 -1.89 -2.34 -1.54 -2.71 -1.82 -2.09
RW		01/31/94 02/07/94 02/17/94 02/23/94 03/01/94 03/07/94 03/16/94 03/23/94 04/05/94 04/11/94 04/18/94 04/26/94 06/07/94 07/29/94 09/26/94 10/27/94	10.31 10.26 10.11 10.01 9.96 9.92 9.93 10.00 10.02 10.02 10.07 10.07 9.94 10.19 9.71 9.78 9.81		0.10 0.10 0.07 0.09 0.03 0.04 0.07 0.05 0.01 0.01 0.02 0.07 0.03 0.01 0.09	10.36 10.18 10.10 9.99 9.96 9.99 10.05 10.03 10.03 10.09 10.14 9.97 10.20 9.80 9.84		

^{*} All well casings measured to mean sea level (MSL). N/A Not Applicable
-- Information not available or inaccurate. NP - No Product
P - Product (bunker C) was encountered but the oil/water interface could not be found.

LEGEND

● OKUS-WI MONITORING WELL LOCATION AND NUMBER

▲ OKUS-B1 BORING LOCATION AND NUMBER

CATCH BASIN FOR STORM SEWER

BY DATE

DAMA BILL 9/93

CHEASE

AMAGE

AMAG

UPRR TOFC RAILYARD UPMF REPAIR SHOP, OAKLAND, CAUFORNIA

FIGURE 2
SITE VICINITY MAP

SCALE

T=200' 9/93 DWG NO. 96120-556

APPENDIX A ANALYTICAL REPORTS

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flat Iron Parkway Boulder, CO 80301

Attention: Denton Mauldin .

Client Project ID:

96120-844, UPMF Oakland

Sample Matrix: Water

Analysis Method: EPA 5030/8015/8020

First Sample #: 411-0783

Sampled: Nov 15-16, 1994

Received: Nov 16, 1994 Reported: Dec 2, 1994

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 411-0783 okus-wi	Sample I.D. 411-0784 OKUS-W2	Sample I.D. 411-0785 OKUS-W3	Sample I.D. 411-0786 OKUS-W4	Sample I.D. 411-0787 APL-W1	Sample I.D. 411-0788 APL-W2
Purgeable Hydrocarbons	50	N.D.	10,000 /	9,100 <	5,500	470	190
Benzene	0.50	N.D.	290 /	260	320	36	11/
Toluene	- 0.50	N.D. /	79	64	52	3.6	N.D.
Ethyl Benzene	0.50	N.D.	130	95	N.D.	9.6	63
Total Xylenes	0.50	N.D.	160	N.D.	120	12	5.4
Chromatogram Pat	tern:		Gasoline	Gasoline	Gasoline	Gasoline	Gasoline

Quality Control Data

Report Limit Multiplication Factor:	1.0	20	40	20	1.0	1.0
Date Analyzed:	11/21/94	11/21/94	11/21/94	11/21/94	11/21/94	11/21/94
Instrument Identification:	HP-5	HP-5	HP-5	HP-5	HP-5	HP-4
Surrogate Recovery, %: (QC Limits = 70-130%)	91	90	88	87	83	94

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flat Iron Parkway Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: Sample Matrix:

96120-844, UPMF Oakland

Water

EPA 5030/8015/8020 Analysis Method: First Sample #: 411-0789

Sampled:

Nov 16, 1994

Received: Nov 16, 1994 Reported:

Dec 2, 1994

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 411-0789 OKUS-W7	Sample I.D. 411-0790 OKUS-W8	Sample I.D. 411-0791 OKUS-QC1
Purgeable Hydrocarbons	50	N.D.	110	190
Benzene	0.50	0.62	0.77 /	10
Toluene	0.50	N.D.	N.D.	N.D.
Ethyl Benzene	0.50	N.D.	N.D.	62
Total Xylenes	0.50	N.D.	N.D.	4.7
Chromatogram Pat	tern:		Unidentified Hydrocarbons > C9	Gasoline

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0
Date Analyzed:	11/21/94	11/21/94	11/21/94
Instrument Identification:	HP-4	HP-4	HP-4
Surrogate Recovery, %: (QC Limits = 70-130%)	89	87	92

€₿

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flat Iron Parkway Boulder, CO 80301

Client Project ID:

96120-844, UPMF Oakland

Sampled: Nov 16, 1994 Nov 16, 1994

Attention: Denton Mauldin

Sample Matrix: Analysis Method:

Water EPA 3510/8015 Received: Reported:

Dec 2, 1994

First Sample #: 411-0783

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 411-0783 okus-wi	Sample I.D. 411-0784 OKUS-W2	Sample I.D. 411-0785 OKUS-W3	Sample I.D. 411-0786 OKUS-W4	Sample I.D. 411-0787 APL-W1	Sample I.D. 411-0788 APL-W2
Extractable Hydrocarbons	50	51 /	5,500 /	4,700 /	2,800 /	480	320
Chromatogram Pa	ttern:	Unidentified Hydrocarbons > C20	Diesel and Unidentified Hydrocarbons < C16	Diesel and Unidentified Hydrocarbons < C16	Diesel and Unidentified Hydrocarbons <c16< td=""><td>Diesel and Unidentified Hydrocarbons < C16 & > C20</td><td>Diesel and Unidentified Hydrocarbons < C16 & > C20</td></c16<>	Diesel and Unidentified Hydrocarbons < C16 & > C20	Diesel and Unidentified Hydrocarbons < C16 & > C20

Quality Control Data

Report Limit Multiplication Factor:	1.0	20	20	10	1.0	1.0
Date Extracted:	11/23/94	11/23/94	11/23/94	11/23/94	11/23/94	11/23/94
Date Analyzed:	11/30/94	12/1/94	12/1/94	12/1/94	11/30/94	11/30/94
Instrument Identification:	HP-3A	НР-ЗА	НР-ЗА	HP-3A	HP-3A	HP-3A

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

680 Chesapeake Drive 1900 Bates Avenue, Suite L. 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flat Iron Parkway Boulder, CO 80301 Attention: Denton Mauldin Client Project ID:

96120-844, UPMF Oakland

Water

Sample Matrix: Analysis Method: EPA 3510/8015 First Sample #: 411-0789

Sampled: Nov 15-16, 1994

Received: Nov 16, 1994 Dec 2, 1994 Reported:

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 411-0789 OKUS-W7	Sample I.D. 411-0790 okus-wa	Sample I.D. 411-0791 OKUS-QC1	
Extractable Hydrocarbons	50	820	830 /	310	,
Chromatogram Pa	ittern:	Diesel and Unidentified Hydrocarbons	Diesel and Unidentified Hydrocarbons	Diesel and Unidentified Hydrocarbons	

Quality Control Data

Report Limit Multiplication Factor:	5.0	5.0	1.0
Date Extracted:	11/23/94	11/23/94	11/23/94
Date Analyzed:	12/1/94	12/1/94	11/30/94
Instrument Identification:	HP-3B	HP-3B	HP-3A

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flat Iron Parkway Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: 96120-844, UPMF Oakland

Matrix: Liquid

QC Sample Group: 4110783-791

Reported: Dec 12, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	Diesel	
Method: Analyst:	EPA 8020 AT	EPA 8020 AT	EPA 8020 AT	EPA 8020 AT	EPA 8015 Mod KVS	
MS/MSD Batch#:	4110778	4110778	4110778	4110778	BLK112394	
Date Prepared:	11/21/94	11/21/94	11/21/94	11/21/94	11/23/94	
Date Analyzed:	11/21/94	11/21/94	11/21/94	11/21/94	11/28/94	
nstrument I.D.#:	HP-5	HP-5	HP-5	HP-5	HP-3A	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	300 μg/L	
Matrix Spike	400	405	105	102	93	
% Recovery:	100	105	105	102	93	
Matrix Spike Duplicate %						
Recovery:	100	105	105	100	87	
Relative %						
Difference:	0.0	0.0	0.0	1.9	6.7	

LCS Batch#:	3LCS112194	3LCS112194	3LCS112194	3LCS112194	BLK112394		
Date Prepared:	11/21/94	11/21/94	11/21/94	11/21/94	11/23/94		
Date Analyzed:	11/21/94	11/21/94	11/21/94	11/21/94	11/28/94		
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	HP-3A		
LCS %							
Recovery:	93	99	99	96	93		
% Recovery Control Limits:	71-133	72-128	72-130	71-120	28-122		

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

A Subsidiary of Union Pacific Corol ration Ship To: USPCI Remedial Services 24125 Aldine Westfield

Spring, TX 77373

R CONTACT 172 ~ 700 / 1901. PROPERTY OF COMPANY USPC | BID OF COMPANY USPC | BID OF COMPANY | CITY SOULD COMPANY | ST. COZIP 3030 | TO PHONE 303-438-5535 | FAX 303-438-5530

CONTACT //	IV V	Ĺ
COMPANY		
ADDRESS		
CITY	ST ZIP	_
PHONE	PO#	

(713) 350-7240		О РНО	ONE <u> </u>	118-	2737		_ FAX .	301-	4.4 %	- >1 C			PHONE				PO	#	• • • • • • • • • • • • • • • • • • • •
	·			•		CHA	IN OF	CUS	STO	DY R	ECO	RD							
PROJ. NO	96120-8	144		# C O		ۍ	لم									ST	ANDARD TUI	- DNUORANF	
PROJECT NAM	EUPME	DAKLA	-n	NT	3.5	245	كالمظو			,							SH TURNAR ecify required		······································
SAMPLERS (SIGNATURE)_	Muy	Tallo	uf	-NERS	١,	7/214-6	O-Mdh							ļ			1	263	1,
CUSTOMER SAMPLE I.D.	DATE	TIME	MATRIX	S	822	1	7					·					ORATORY MPLE I.D.	REM	ARKS
OKU-WI	11-16-4	12:25	lad	1	1											411	0783	A-C	
okus - wi				١		ム				;									
JULY- N		1		1			7												
okus- Wz		12:55		1	へ						···					411	0784	A-C	
vus- WZ				1		٨											. -		
acus-wz		4		1			<											J. 1841-1841-1	:
ven- wz		13:05		1	1											411	10785	A-C	
yeus- 623						٨													
onus-W3				Ĺ			×			·	!						<u>-</u>		
deur-wg		11:35		(4						·	į				411	บวลย	A-C	
veus - WA				1		4													
0445 - 174	4		V	\			人												
RELINQUES BY	LB.		1	DATE 1		s	CEIVÊD B								DATE /	TIME	COURIER		
RECINQUISHED BY	y			DATE / 1) <i>5[.</i> IIME	RE	CEIVED	h K	el	Oay				11/	16/9	TIME	AIRBILL NO.	3:16 p	n

USPCI A Subsidiary of Union Pacific Corporation

Ship To: USPCI Remedial Services 24125 Aldine Westfield

Spring, TX 77373 (713) 350-7240 CONTACT - ENTON NIAULUM

COMPANY USPCI

ADDRESS 5665 FLATIRON PRWY

CITY RUULIER ST. O ZIP 80301

PHONE 303938 5500 FAX 938 5:520

CONTACT USPCI
COMPANY USPCI
ADDRESS SUBS FLATIKON AKWIY
CITY BOULDER STCD ZIP BU 301
PHONE 303 938 5500 PO#

						CHA	IN OF	CUSTO	DY R	ECOF	RD.				
PROJECT NAM SAMPLERS (SIGNATURE)	961 EUPMF Luf 46		_	#CONTA-NER	07.PG x	SP8 9-11/2	704-10 801S							RUSH TURNA (specify require	ZoF3
CUSTOMER SAMPLE I.D.	DATE	M ME	MATRIX	S	Bruk	12	1							LABORATOR' SAMPLE I.D.	REMARKS
APLW-1	11-15-44	1800	1,0	1	4									1110787	A-C
APL-W/	, <u> </u>			1		ム									
apl-UI		$\sqrt{}$		١			KI]						
APL-WZ		1725		1	Y							 		1110798	A-C
112-02						人									
APL-UZ	→						X								
0kus-607	11-16-99	1705			<									4110799	A-C
i w7					_ `	Z						 			
رس ا				1			1								
" 618		1830		1	1									4110790	A-C
, m3				1		<									
8W "	1		V	1											
RELINQUISHED BY	Br		1	DATE/T			ECEIVED B					DA	TE/TIME	COURIEF	· Â
RELINQUISHED/SY	1		11-10	DATE / T	IME	RE	ECEINED A	Kell	and			11/10	TE / TIME	AIRBILL N	3:10 pm
L	<u></u>		<u> </u>						-			 			44.

CONTACT COMPANY LAPON

COMPANY LAPON

COMPANY LAPON

COMPANY LAPON

CITY BOOLAR ST. Cu ZIP SCN 3.1 CONTACT MILE IN UNITABLE ADDRESS _____ Ship To: USPCI Remedial Services CITY ______ ST.___ ZIP____ 24125 Aldine Westfield Spring, TX 77373 PHONE 3-3-938-5539 FAX 103-958-5526 PHONE ______ PO #_____ (713) 350-7240 **CHAIN OF CUSTODY RECORD** PROJ. NO. 96120-844

PROJECT NAME UPMF-DAKUND

SANADI EDS PLLB 75/5 (SIGNATURE)

STANDARD TURNAROUND 4 **RUSH TURNAROUND** (specify required date) LABORATORY CUSTOMER REMARKS DATE TIME MATRIX SAMPLE I.D. SAMPLE I.D. 4110791 A-C ocus och 71-1844 1200 DATE / TIME RECEIVED BY DATE / TIME COURIER RELINQUISHED BY 11-164 155 RECEIVED BY Kelley

APPENDIX B

WELL STABILIZATION AND SAMPLING REPORTS

USPCI Project	Name:	UPMF Oakland	Facility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Poir	nt (MP)	Top of casing			Well No.	OKUS-W1
Well Depth: (E	lelow MP):	18.70	Feet			
Casing diamete	er:	2	Inches		Sampling Date:	11/16/94
	nd Water (Below I	MP): 8.56	Feet		Sample ID No.	OKUS-W1
1	uct (Below MP); I				•	
Method Of We				Time:	1118	
[] Tap	[] Submersible i	² ump	[] Inertia Pump		Riser Elevation (MP):	9.17
[X] Bailer	[] Centrifugal Ρι	ımp	[] Other	Top of Screen Elevation:	6,85	Feet
Sampling Colle	ction Method:		<u> </u>	Sample Appearance:	slightly turbid	
[] Tap	[] Submersible [^D ump	[] Inertia Pump:	Odor:	none	
[X] Bailer	Type:	[] Teflon	[] Stainless Steel	Sampling Problems (if any):	
	[X] HDPE Plastic		[] PVC	[X] Disposable	•	· :
Pump Intake O	r Bailer Set At:		Feet Below MP	Decontamination Performe	ed:	
Tubing Type (if	Used):					
Tubing Used fo		[]SampleCollection	[] Well Developme	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
					<u>'</u>	
		Temperature			Cumulative Volume	Pumping Rate
Time	pН	Corrected	Temperature	Water Level	of Water	in
	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
	,	(umho/cm)	, out and a	(1.02.001.010.1.1,	(Gallons)	(GPM)
Begin purge at	1211					
1215	7.9	1800	18.5		2.0	
1218	7.7	1800	18.5		4.0	
1221	7.8	2100	18.0		6.0	
Samples collec	ted at 1225					
					· <u>-</u>	
	· · · · · · · · · · · · · · · · · · ·					
		<u> </u>	_			
				<u> </u>		<u> </u>
At Least	3	Well Bore Volumes We	ere Purged Before Samp	Discharge Rate =	GPM x 0.00223 =	cfs
Comments:	groundwater pho	oto sensitive, modera	ite bacteria level			
	total depth has o	change from 21.75 to	18.7 feet			
Form Complete	а ву:	C. Byerman		Witnessed By:	M. McCormick	

Measuring Point	lame:	UPIVIF Cakiand I	Facility Quarterly	Monitoring	USPCI Project Number:	96120-844
Wicasumig i dim	t (MP)	Top of casing			Well No.	OKUS-W2
Well Depth: (Be	elow MP):	22.00	Feet			
Casing diameter	r:	2	Inches		Sampling Date:	11/16/94
Depth To Groun	nd Water (Below N	ИР): 9.74	Feet		Sample ID No.	OKUS-W2
Depth To Produ	ct (Below MP): N	/A				
Method Of Well	Development			Time:	1123	
] Tap	[] Submersible P	ump	[] Inertia Pump		Riser Elevation (MP):	9.71
[X] Bailer	[] Centrifugal Pu	mp	[] Other	Top of Screen Elevation:	7.05	Feet
Sampling Collec	tion Method:			Sample Appearance:	clear	· · · · · · · · · · · · · · · · · · ·
[]Tap	[] Submersible P	ump	[] Inertia Pump:	Odor:	modorate to strong	<u></u>
[X] Bailer	Type:	[] Teflon	[] Stainless Steel	Sampling Problems (if any	v):	
	[X] HDPE Plastic		[] PVC	[X] Disposable		
Pump Intake Or	Bailer Set At:		Feet Below MP	Decontamination Performe	ed:	
Tubing Type (if	Used):					
Tubing Used for	•	[]SampleCollection	[] Well Developme	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
		,		· · · · ·	·	
		Temperature			Cumulative Volume	Pumping Rate
Time	рH	Corrected	Temperature	Water Level	of Water	in
Time	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
	,	(umho/cm)	(00),g. 200,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Gallons)	(GPM)
Begin purge at '	1230					
ocgiii paigo at						
1235	7.4	4900	18.5		2.0	
	T	4900 5000	18.5 19.0		2.0 4.0	
1235 1244 1250	7.4 7.4 7.4					
1235 1244	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	
1235 1244 1250	7.4 7.4 7.4	5000	19.0		4.0	

USPCI Project N	lame:	UPMF Oakland I	acility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Point	t (MP)	Top of casing			Well No.	OKUS-W3
Well Depth: (Be	elow MP):	21.50	Feet			
Casing diameter	r:	2	Inches		Sampling Date:	11/16/94
Depth To Groun	d Water (Below N	MP): 9.61	Feet		Sample ID No.	OKUS-W3
Depth To Produ	ct (Below MP): N	/A				
Method Of Well	<u>Development</u>			Time:	1121	
_	[] Submersible P		[] Inertia Pump		Riser Elevation (MP):	9.80
[X] Bailer	[] Centrifugal Pu	mp	[] Other	Top of Screen Elevation:	6,55	Feet
Sampling Collec	tion Method:			Sample Appearance:	slightly turbid	
() Tap	[] Submersible P	ump	[] Inertia Pump:	Odor:	modorate	
[X] Bailer	Ťγpe:	[] Teflon	[] Stainless Steel	Sampling Problems (if any):	
	[X] HDPE Plastic		[] PVC	[X] Disposable		
Pump Intake Or	Bailer Set At:		Feet Below MP	Decontamination Performe	ed:	
Tubing Type (if						
Tubing Used for		[]SampleCollection	[] Well Developmen	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
		Temperature			Cumulative Volume	Pumping Rate
Time	рH	Corrected	Temperature	Water Level	of Water	in
	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
	,	(umho/cm)			(Gallons)	(GPM)
Begin purge at	1234					
1242	7.5	4800	18		2.0	
1248	7.5	4500	17		4.0	
1252	7.8	4700	17		6.0	
Samples collect	ed at 1305					
	\ <u></u>					
		<u> </u>			<u> </u>	
	·					
					<u> </u>	
	<u> </u>					
At Least	3	Well Bore Volumes We	re Purged Before Samp	Discharge Rate =	GPM x 0.00223 =	cfs
Comments:	<u>.</u>	·			••••	
			•	LO - VEC-VOIR-T		
C 0 1 1	ul D	O B		Milesana d Don	M MaCarrial	
Form Completes	а ву:	C. Byerman		Witnessed By:	M. McCormick	

	lame:	UPMF Oakland I	acility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Poin	t (MP)	Top of casing			Well No.	OKUS-W4
Well Depth: (B	elow MP):	20.69	Feet			
Casing diamete	r:	2	Inches		Sampling Date:	11/16/94
	nd Water (Below N	MP): 6.71	Feet		Sample ID No.	OKUS-W4
Depth To Produ	ct (Below MP): N	I/A				
Method Of Wel	Development			Time	: 0930	
[] Тар	[] Submersible F	ump	[] Inertia Pump		Riser Elevation (MP):	7.35
[X] Bailer	[] Centrifugal Pu	ımp	[] Other	Top of Screen Elevation:	6.08	Feet
Sampling Collec	ction Method:			Sample Appearance:	slightly turbid	
[] Tap	[] Submersible F	Pump	[] Inertia Pump:	Odor:	moderate	
[X] Bailer	Түре:	[] Teflon	[] Stainless Steel	Sampling Problems (if any	· y):	
	[X] HDPE Plastic		[] PVC	[X] Disposable		
Pump Intake Or		——————————————————————————————————————	Feet Below MP	Decontamination Perform	ed:	 -
		, <u>, , , , , , , , , , , , , , , , , , </u>				
Tubing Type (if		£10 1 0 " ·	T. Y. M. J. P		C	PTEV TRUIC TRUIC
Tubing Used fo	r:	[]SampleCollection	[] Well Developme	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
	1		1	Т		T
		Temperature			Cumulative Volume	Pumping Rate
Time	рН	Corrected	Temperature	Water Level	of Water	in
	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
		(umho/cm)		<u></u>	(Gallons)	(GPM)
Begin purge at	T'					,
1121	7.8	4000	18.5		2.5	
1125	7.8	3700	18.0		5.0	
1130	7.7	4000	18.0		7.5	
Samples collec	ted at 1135	<u> </u>			 	
						·
						<u> </u>
		 				
				<u> </u>	1	
		 				1
		<u> </u>				
	J					
		1	•			
						· · · · · · · · · · · · · · · · · · ·

USPCI Project	Name:	UPMF Oakland I	acility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Poir	nt (MP)	Top of casing			Well No.	OKUS-W5
Well Depth: (B	Below MP):	21.00	Feet			
Casing diamete	er:	2	Inches		Sampling Date:	11/16/94
Depth To Grou	nd Water (Below	MP): 9.81	Feet		Sample ID No.	N/A
Depth To Produ	uct (Below MP):	9.59				
Method Of We	Il Development			Time	: 0935	
[]Tap	[] Submersible	Pump	[] Inertia Pump		Riser Elevation (MP):	9.25
[] Bailer	[] Centrifugal P	ump	[] Other	Top of Screen Elevation:	5.95	Feet
Sampling Colle	ction Method:			Sample Appearance:	PSH on probe	
[] Тар	[] Submersible	Pump	[] Inertia Pump:	Odor:	moderate	
[] Bailer	<u>Туре:</u>	[] Teflon	[] Stainless Steel	Sampling Problems (if any	<i>(</i>):	
	[] HDPE Plastic		[] PVC	[] Disposable		
Pump Intake O	r Bailer Set At:		Feet Below MP	Decontamination Perform	ed:	
Tubing Type (if	f Used):					
Tubing Used fo	or:	[]SampleCollection	[] Well Developmen	nt/Field Tests	Samples Collected:	none
						-
		Temperature			Cumulative Volume	Pumping Rate
Time	рН	Corrected	Temperature	Water Level	of Water	in
	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
		(umho/cm)			(Gallons)	(GPM)
PSH IN WELL					- 	<u> </u>
WELL NOT SA	MPLED			<u> </u>	<u> </u>	
TILLE NOT OA				""		
		1				
<u></u>	 					
		<u> </u>		<u> </u>		
	1		-		-	
· /•						
	1	1	, , , , , , , , , , , , , , , , , , ,			
	+		 		-	
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	1
At Least	3	Well Bore Volumes Wa	re Purged Before Samp	l Discharge Rate =	GPM x 0.00223 =	cfs
Comments:		H measured in well	argos pototo camp	· continue image —		
Form Complete	ed By:	C. Byerman		Witnessed By:	M. McCormick	

USPCI Project N	lame:	UPMF Oakland I	Facility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Point	t (MP)	Top of casing			Well No.	OKUS-W6
Well Depth: (Be	elow MP):	16.30	Feet			
Casing diameter	r:	2	Inches		Sampling Date:	11/16/94
Depth To Groun	nd Water (Below M	1P): 5.17	Feet		Sample ID No.	N/A
Depth To Produ	ct (Below MP): 5	.13				
Method Of Well	Development			Time:	1320	
[]Tap	[] Submersible P	ump	[] Inertia Pump		Riser Elevation (MP):	7.29
[]Bailer	[] Centrifugal Pu	mp	[] Other	Top of Screen Elevation:	2.29	Feet
Sampling Collec	tion Method:			Sample Appearance:	PSH on probe	12.12
[] Tap	[] Submersible P	ump	[] Inertia Pump:	Odor:	slight	
[] Bailer	Type:	[] Teflon	[] Stainless Steel	Sampling Problems (if any):	
	[] HDPE Plastic		[] PVC	[] Disposable		
Pump Intake Or	Bailer Set At:		Feet Below MP	Decontamination Performe	ed:	
Tubing Type (if	Used):					
Tubing Used for	r:	[]SampleCollection	[] Well Developmen	nt/Field Tests	Samples Collected:	none
				<u> </u>		
		Temperature			Cumulative Volume	Pumping Rate
Time	рН	Corrected	Temperature	Water Level	of Water	in
	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
		(umho/cm)			(Gallons)	(GPM)
PSH IN WELL		"				
WELL NOT SAN	ADI ED					
WELE NOT GAIL						
	<u> </u>					
						-
				·		
<u> </u>	<u> </u>	<u> </u>		<u></u>	1	İ.
At Least	3	Well Bore Volumes We	ire Purged Before Samp	Discharge Rate =	GPM x 0.00223 =	cfs
Comments:			ed in the field as a Bu			
				· · · · · · · · · · · · · · · · · · ·		
Form Completes	d By:	C. Byerman		Witnessed By:	M. McCormick	

o: MP): sater (Below M	Top of casing 19.78	Feet		Well No.	OKUS-W7
		Feet		reconstant.	OK02-W/
ster (Relow M	2				
ster (Below M		Inches		Sampling Date:	11/16/94
T(01 (00)041 11	MP): 5.90	Feet		Sample ID No.	OKUS-W7
Below MP): N	/A				
elopment			Time:	1025	14-111
Submersible P	ump	[] Inertia Pump		Riser Elevation (MP):	7.4
Centrifugal Pur	mp	[] Other	Top of Screen Elevation:	2.4	Feet
Method:			Sample Appearance:	slightly turbid	
Submersible P	ump	[] Inertia Pump:	Odor:	none	
e:	[] Teflon	[] Stainless Steel	Sampling Problems (if any	·):	
HDPE Plastic		[] PVC	(X) Disposable		•
		Feet Below MP	· · · · · · · · · · · · · · · · · · ·	ed:	
	[]SampleCollection	I I Well Davelopme	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
	1 ISampleCollection	1) well Developme	nt/rieid Tests	Sanspies Collected.	BILK, ITTI/G, ITTI/D
	l _		<u> </u>		D
	Temperature				Pumping Rate
рН	Corrected	Temperature	Water Level		in
(Units)		(Centigrade)	(Nearest 0.01 Ft.)		Gallons/Minute
	(umho/cm)			(Gallons)	(GPM)
	•	+			
	1	}			
	3400	18,0		7.5	
1 105		,		<u> </u>	
	1				1
				<u> </u>	
					<u> </u>
			<u> </u>		
				<u> </u>	
	<u> </u>				
				<u> </u>	<u> </u>
	Centrifugal Pu Method: Submersible P ee: HDPE Plastic er Set At: d):	Submersible Pump Centrifugal Pump Method: Submersible Pump e: [] Teflon HDPE Plastic er Set At: d): []SampleCollection Temperature [Units] Conductance [umho/cm] 7.6 3500 7.7 3700 7.9 3400	Submersible Pump [] Inertia Pump Centrifugal Pump [] Other Method: Submersible Pump [] Inertia Pump: e: [] Teflon [] Stainless Steel HDPE Plastic [] PVC er Set At: Feet Below MP d): []SamplaCollection [] Well Developme Temperature [(Units) Conductance (Centigrade)	Submersible Pump [] Inertia Pump Centrifugal Pump [] Other Top of Screen Elevation: Method: Sample Appearance: Submersible Pump [] Inertia Pump: Odor: EE: [] Teflon [] Stainless Steel Sampling Problems (if any HDPE Plastic [] PVC [X] Disposable Ber Set At: Feet Below MP Decontamination Performed): [] SampleCollection [] Well Development/Field Tests Temperature [Units] Conductance (Centigrade) (Nearest 0.01 Ft.) [] Temperature [Units] Conductance (Centigrade) (Nearest 0.01 Ft.) Submersible Pump [] Inertia Pump Riser Elevation (MP): Centrifugal Pump [] Other Top of Screen Elevation: 2.4 Method: Sample Appearance: slightly turbid Submersible Pump [] Inertia Pump: Odor: none Let: [] Teflon [] Stainless Steel Sampling Problems (if any): HDPE Plastic [] PVC [X] Disposable Let Set At: Feet Below MP Decontamination Performed: Let Corporate Temperature (Nearest 0.01 Ft.) Temperature (Units) Conductance (Centigrade) (Nearest 0.01 Ft.) Let Corporate Temperature (Mater Level (Meanument)) Temperature (Conductance (Centigrade)) Temperature (Nearest 0.01 Ft.) Temperature (Aumho/cm) (Sallons) Temperature (Sallons)	

USPCI Project N	lame:	UPMF Oakland F	acility		USPCI Project Number:	96120-844
Measuring Point	(MP)	Top of casing			Well No.	OKUS-W8
Well Depth: (Be		14.87	Feet			
Casing diameter		2	Inches		Sampling Date:	11/16/94
	d Water (Below M		Feet	<u> </u>	Sample ID No.	OKUS-W8
-	ct (Below MP): N					
Method Of Well	Development			Time:	1012	
ГТар	[] Submersible P	ump	[] Inertia Pump		Riser Elevation (MP):	7.11
[X] Bailer	[] Centrifugal Pu	mp	[] Other	Top of Screen Elevation:	2.11	Feet
Sampling Collec	tion Method:			Sample Appearance:	slightly turbid	
[] Tap	[] Submersible P	ump	[] Inertia Pump:	Odor:	none	
[X] Bailer	Type:	[] Teflon	[] Stainless Steel	Sampling Problems (if any):	
	[X] HDPE Plastic		[] PVC	[X] Disposable		_
Pump Intake Or	Bailer Set At:		Feet Below MP	Decontamination Performe	ed:	
Tubing Type (if						
Tubing Used for		I ISampleCollection	[] Well Developmen	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
Tubing Cocc for		1 Journal of March	() Trail Baratapiner	KAT TOTAL TOTAL		
	/ -	Т	-		Cumulative Volume	Pumping Rate
Time	pH	Temperature Corrected	Temperature	Water Level	of Water	in
IIIIe	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
	(Onita)	(umho/cm)	(Centificate)	(recurest 5.5 / tt.)	(Gallons)	(GPM)
Begin purge at	1015	(dilito) dili			, , , , , , , , , , , , , , , , , , , ,	
1018	7.8	5600	18		1.5	
1023	7.8	5900	17		3.0	
1027	7.8	5500	17		4.5	
Samples collect	ed at 1030					
		<u> </u>				
					<u> </u>	
	i					
At Least Comments:	3	Well Bore Volumes We	ere Purged Before Samp	l Discharge Rate =	GPM x 0.00223 =	cfs
						<u> </u>
Form Complete	d By:	C. Byerman		Witnessed By:	M. McCormick	

USPCI Project i	lame:	UPMF Oakland F	acility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Poin	t (MP)	Top of casing		···	Well No.	APL-W1
Well Depth: (B	elow MP):	21.87	Feet			
- Casing diamete	r:	2	Inches		Sampling Date:	11/15/94
Depth To Grou	nd Water (Below I	MP): 10.08	Feet		Sample ID No.	APL-W1
Depth To Produ	ct (Below MP): N	N/A				
Meth <u>od Of Wel</u>	Development			Time	1740	
] Tap	[] Submersible F	ump	[] Inertia Pump		Riser Elevation (MP):	7.11
X] Bailer	[] Centrifugal Pu	ımp	[] Other	Top of Screen Elevation:	2.11	Feet
ampling Collec	tion Method:	. 		Sample Appearance:	slightly turbid	
] Тар	[] Submersible F	ump	[] Inertia Pump:	Odor:	slight to moderate	
X] Bailer	Тура:	[] Teflon	[] Stainless Steel	Sampling Problems (if any):	
	[X] HDPE Plastic	:	[] PVC	[X] Disposable		
Pump Intake Or	Bailer Set At:		Feet Below MP	Decontamination Perform	ed:	
Tubing Type (if	Used):					
Tubing Used fo		[]SampleCollection	[] Well Developmen	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
		 	•	·		
		Temperature			Cumulative Volume	Pumping Rate
Time	pH	Corrected	Temperature	Water Level	of Water	in
11116	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
	(0)11(8)	(umho/cm)	(Centugrade)	(Neurest G.O / Tt.)	(Gallons)	(GPM)
Begin purge at	1745	(Zimio/cin)			(Cameria)	, , , , , , , , , , , , , , , , , , , ,
1750	7.4	3100	17		2.0	
1753	7.4	3000	17		4.0	
1756	7.4	3100	17		6.0	
Samples collec	ted at 1800					
	-				, , , , , , , , , , , , , , , , , , , ,	
						ļ
 		1				<u> </u>
						<u> </u>
·	-		-			
At Least	3	Well Bore Volumes We	re Purged Before Samp	l Discharge Rate =	GPM x 0.00223 =	cfs
Comments:						· · ·
	w ·					
Form Complete	d By:	C. Byerman		Witnessed By:	M. McCormick	

USPCI Project I	lame:	UPMF Oakland	Facility Quarterly	Monitoring	USPCI Project Number:	96120-844
Measuring Poin		Top of casing			Well No.	APL-W2
Well Depth: (B		11.17	Feet		1	
Casing diamete		2	Inches		Sampling Date:	11/15/94
	nd Water (Below M		Feet		Sample ID No.	APL-W2
•	ict (Below MP): N				_	
Method Of Wel				Time	: 1712	
[] Tap	[] Submersible Pu	тшр	[] Inertia Pump		Riser Elevation (MP):	7.62
[X] Bailer	[] Centrifugal Pur	mp	[] Other	Top of Screen Elevation:	2.62	Feet
Sampling Colle	ction Method:		· · · ·	Sample Appearance:	very slightly turbid	
[]Tap	[] Submersible Po	ump	[] Inertia Pump:	Odor:	slight	
[X] Bailer	Түре:	[] Teflon	[] Stainless Steel	Sampling Problems (if an	y):	
	[X] HDPE Plastic		[] PVC	[X] Disposable		·
Pump Intake O			Feet Below MP	Decontamination Perform	ned:	
Tubing Type (if						
Tubing Used fo		[]SampleCollection	[] Well Developme	nt/Field Tests	Samples Collected:	BTEX,TPH/G, TPH/D
-						
	Ţ	Temperature	T		Cumulative Volume	Pumping Rate
Time	рН	Corrected	Temperature	Water Level	of Water	in
ime	(Units)	Conductance	(Centigrade)	(Nearest 0.01 Ft.)	Removed From Well	Gallons/Minute
	(Onits)	(umho/cm)	(oemigrade)	1,770,000 0,000	(Gallons)	(GPM)
Begin purge at	1716	(dillionil)				
1718	7.5	3000	17		0.5	
1720	7.5	3000	16		1.0	
1722	7.6	3000	17		1.5	
Samples collec	ted at 1725		-			
						<u> </u>
						, , , , , , , , , , , , , , , , , , , ,
 						
						
·	-			 		
<u></u>						
				 		
						
			-		<u> </u>	
	-					
At Least	3	Well Bore Volumes W	ere Purged Before Sam	pl Discharge Rate =	GPM x 0.00223 =	cfs
Comments:				ype of obstacle in the bott	om of well	
	duplicate sample	collected at this we	il labeled OKUS-QC1			
				<u></u>		
Form Complete	ed By:	C. Byerman		Witnessed By:	M. McCormick	