

SECOND QUARTER 1994 MONITORING REPORT

UNION PACIFIC RAILROAD

UNION PACIFIC MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA

USPCI PROJECT No. 96120-844

PREPARED FOR:

UNION PACIFIC RAILROAD ENVIRONMENTAL MANAGEMENT 1416 DODGE STREET, ROOM 930 OMAHA, NEBRASKA 68179

Prepared by:

USPCI Consulting Services 5665 Flatiron Parkway Boulder, Colorado 80301

August 16, 1994

54 MO 19 M 2.03

SECOND QUARTER 1994 MONITORING REPORT UNION PACIFIC RAILROAD UNION PACIFIC MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA USPCI Project No. 96120-844

Prepared for:
Union Pacific Railroad
Environmental Management - Room 930
1416 Dodge Street
Omaha, Nebraska 68179

for submittal to:
Ms. Jennifer Eberle
Department of Environmental Health
Hazardous Materials Division
80 Swan Way, Room 200
Oakland, California 94621

Prepared by:
USPCI Consulting Services
5665 Flatiron Parkway
Boulder, Colorado 80301

Denton Mauldin Engineer III

Sam Marquis Project Hydrogeologist R.G. No. 5110

August 16, 1994

TABLE OF CONTENTS

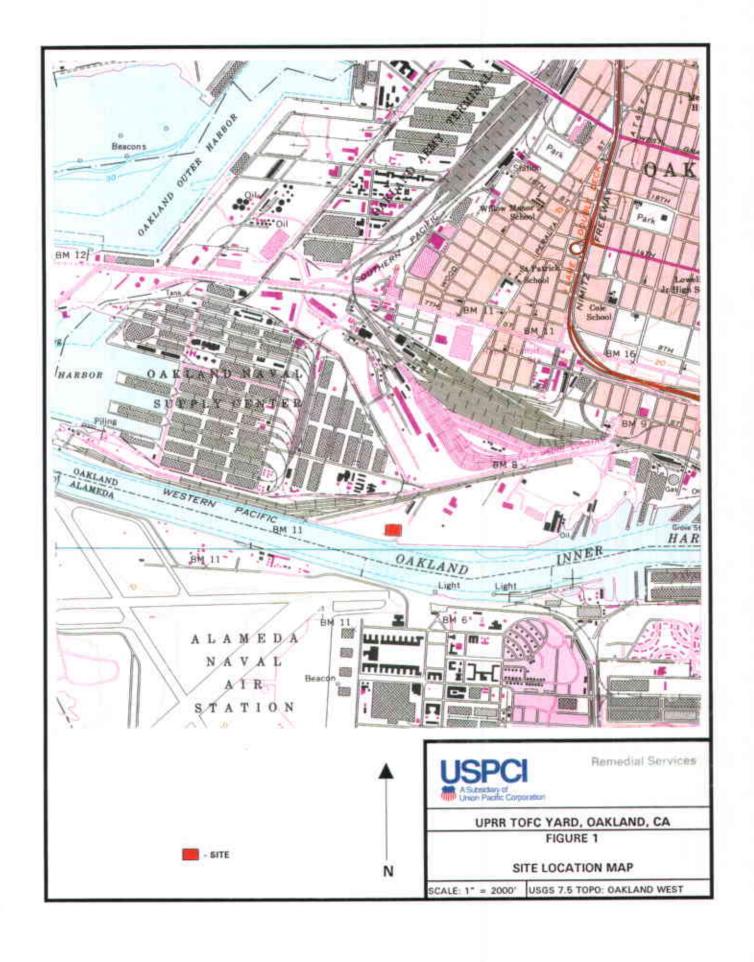
1. INTRODUC	TION	1
1.1 SITE B	ACKGROUND	1
1.1.1 0	General Description and Previous Activities	1
1.1.2 L	ocation and Access	4
1.2 INVEST	IGATIVE PROCEDURES	4
	ESTIGATION RESULTS	4
2.1 GROUN	DWATER ASSESSMENT DETERMINATIONS	4
2.1.1	Groundwater Characteristics	4
2.1.2 F	Results of Laboratory Analysis of Groundwater Samples	4
2.1.3	Analytical Results of Non-Aqueous Phase Liquid	8
	Groundwater Gradient	8
2.1.5 1	Monitoring and Recovery of Non-Aqueous Phase Liquid	8
		12
3. CONCLUS	IONS AND RECOMMENDATIONS	12
3.1 CONCL	znois	12
3.2 Recon	MENDATIONS	12
	LIST OF FIGURES	
FIGURE 1	SITE LOCATION MAP	
Figure 2	SITE VICINITY MAP	
FIGURE 3	DISSOLVED PHASE BTEX DISTRIBUTION MAP	
FIGURE 4	GROUNDWATER ELEVATION MAP	
	LIST OF TABLES	
	CUMULATIVE ANALYTICAL RESULTS OF GROUNDWATER SAMPLES	
TABLE 1 TABLE 2	CUMULATIVE FLUID LEVEL MEASUREMENT DATA	
ADDE Z		
	LIST OF APPENDICES	
A DOCKIDES A	Analytical Reports	
APPENDIX A APPENDIX B	WELL STABILIZATION AND SAMPLING REPORTS	
* ** * *** *** *** ***		

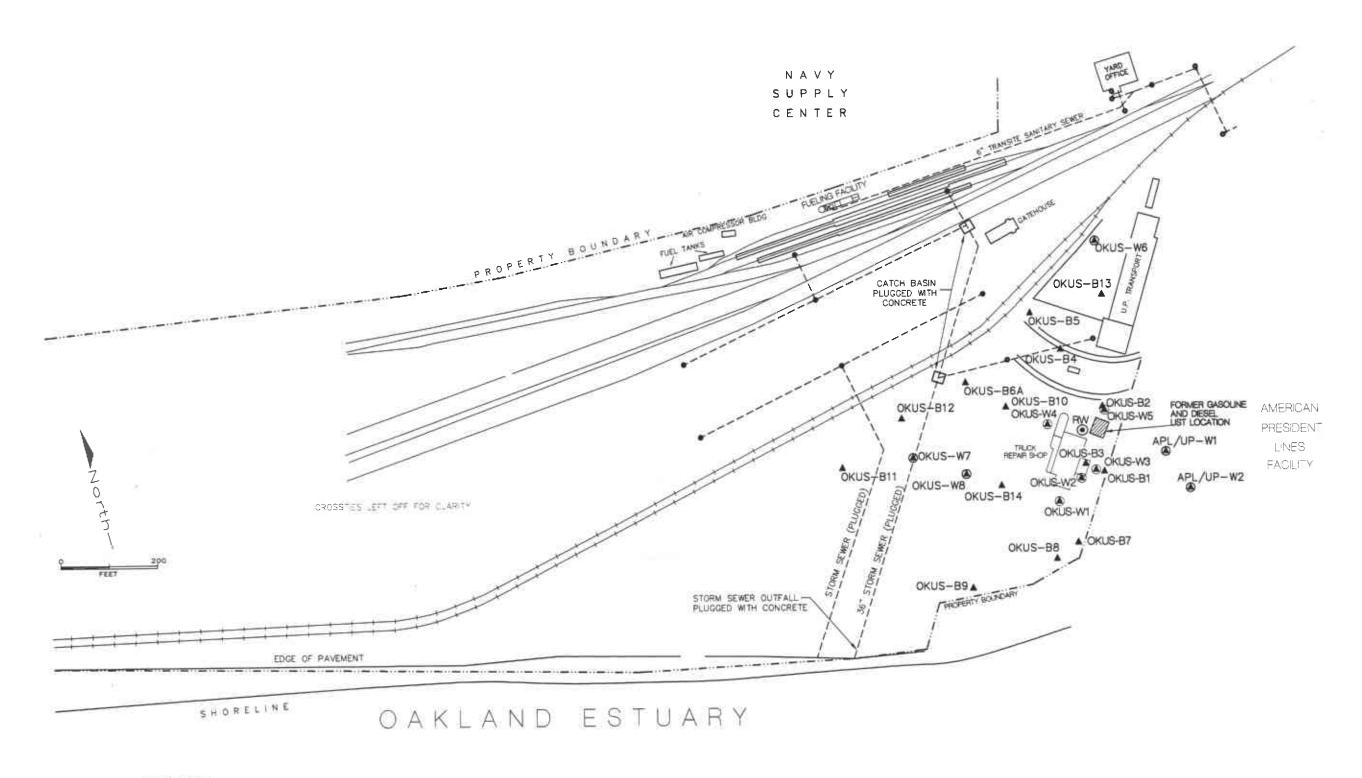
1. INTRODUCTION

This Quarterly Monitoring Report has been prepared for Union Pacific Railroad (UPRR) by USPCI in response to an April 29, 1993, Alameda County Department of Environmental Health, Hazardous Materials Division (ACDEH) request for UPRR to begin a quarterly monitoring program at the Union Pacific Motor Freight (UPMF) Ferro Street facility in Oakland, California (Figure 1). The facility was the site of a release of petroleum hydrocarbons from underground storage tanks (USTs).

The quarterly monitoring event involved:

- Measuring the static water levels, purging, and sampling the nine existing monitoring wells;
- Monitoring the performance of the product skimmer in recovery well RW and analyzing a sample of the product for a fuel fingerprint characterization;
- Analyzing groundwater samples from the monitoring wells for total petroleum hydrocarbons as diesel (TPH/D) by EPA Method 8015 Modified, TPH as gasoline (TPH/G) by EPA Method 8015 Modified; benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8020; and dissolved arsenic and lead by EPA Method 200.7;
- Determining the local hydraulic gradient based on the groundwater level measurements; and
- Preparing a Quarterly Monitoring Report.


Non-aqueous phase liquid petroleum hydrocarbon (product) was measured in monitoring well OKUS-W6 and recovery well RW during the Second Quarter 1994 Monitoring Event. Groundwater samples were collected from eight of the nine monitoring wells (i.e., all monitoring wells except OKUS-W6, which contained product) at the facility on May 3, 1994.


1.1 SITE BACKGROUND

The following subsections describe the historical activities at the railyard and vicinity as well as the location of and access to the site.

1.1.1 General Description and Previous Activities

The site is located on the southeastern end of the UPRR Oakland trailer-on-flat-car (TOFC) Yard (Figure 2), which is adjacent to the Oakland Inner Harbor or Oakland Estuary. The area surrounding the site is used for heavy to light commerce, with residential areas located inland to the east and west across the Oakland Estuary. Five USTs were removed from the UPMF site from 1987 to 1990. The refueling portion of the TOFC yard, approximately 700 feet northwest of the truck repair shop, is currently undergoing groundwater remediation for recovery of product. The limits of the diesel plume in that portion of the site was defined during previous investigations (USPCI, 1991), and the plume does not extend to the area of impacted groundwater at the truck repair facility in the Oakland TOFC Yard.

LEGEND

⚠ OKUS-W1 MONITORING WELL LOCATION AND NUMBER

▲ OKUS-B1 BORING LOCATION AND NUMBER

CATCH BASIN FOR STORM SEWER

RW RECOVERY WELL

DATE	
9/93	
8/99	113PL.
8/17/90	
1	A Subsidiary of
	A CONTRACTOR OF THE CONTRACTOR
	Union Pacific Corporation
	9/93 9/97 1/7/64

UP	VE REPA	JPAR TOP		ARD ND, CALIFO	RNIA
			JRE 2		

		FIGURE 2		
	SITE	VICINITY	M	AP
_	ThAT	-	\neg	TWAR

SCALE T=200 DATE 9/93 DWG NO 96120-556

1.1.2 Location and Access

The site is located in the UPRR TOFC Yard at 1750 Ferro Street in the Port of Oakland on the east side of the Inner Harbor, Oakland, California. Access to the site is from the intersection of Middle Harbor Road and Ferro Street.

1.2 INVESTIGATIVE PROCEDURES

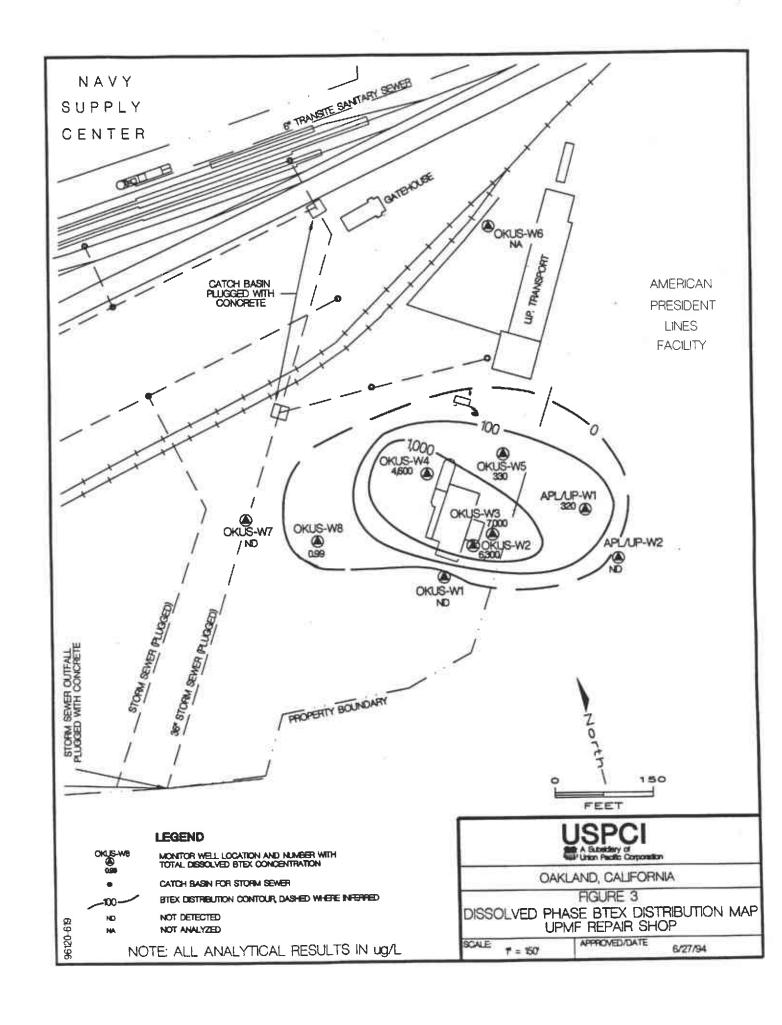
All USPCI field activities, including data recording procedures, decontamination methods, groundwater sample collection, and purge water disposal, were completed following USPCI's standard procedures previously supplied to the ACDEH.

The quarterly monitoring event was conducted by USPCI Remedial Services personnel under the direct supervision of Christopher Byerman and Richard Pollard (California Registered Geologist #4659).

2. FIELD INVESTIGATION RESULTS

The field investigation presented in this report was completed on three separate occasions during the quarter. The dates of the field investigation were April 18, May 3 and June 7, 1994. The following subsections present the findings of and activities completed during the field investigation.

2.1 GROUNDWATER ASSESSMENT DETERMINATIONS


The continued monitoring of wells and the compilation of the field and analytical data is directed towards an understanding of groundwater and petroleum hydrocarbon movement beneath the site.

2.1.1 Groundwater Characteristics

The UPRR Oakland UPMF Facility is adjacent to the Oakland Estuary, which is located in the eastern portion of the San Francisco Bay (Figure 2). The close proximity of the estuary to the site suggests that a direct hydrologic connection may exist between the estuary and the groundwater beneath the site. Tidal influences from the estuary may influence water levels in the monitoring wells at the site; however, previous studies in the San Francisco Bay Area indicate that tidal influences are generally minimal (i.e., the maximum measured tidal amplitude was approximately 0.02 feet) and are only detectable in monitoring wells in very close proximity to the Bay (usually within 200 feet; USPCI, 1991). The actual degree of influence is dependent on individual site characteristics.

2.1.2 Results of Laboratory Analysis of Groundwater Samples

Analytical results indicate elevated TPH/D, TPH/G and BTEX concentrations in groundwater at the site (Figure 3 and Table 1). Total BTEX concentrations ranged from below the method detection limit (MDL) of 2.0 micrograms per liter (μ g/L) in the samples collected from monitoring wells OKUS-W1, OKUS-W7 and APL/UP-W2 to approximately 7,000 μ g/L in the sample collected from OKUS-W3. TPH/G concentrations ranged from below the MDL of 50 μ g/L in samples collected from OKUS-W1, OKUS-W7 and APL/UP-W2 to 17,000 μ g/L in sample OKUS-W2. TPH/D concentrations ranged from 61 μ g/L in sample OKUS-W1 to 3,000 μ g/L in sample OKUS-W3.

SAMPLE LOCATION	SAMPLE ID	DATE SAMPLED	TPH/IR	TPH/D ug/L	TPH/G ug/L	BENZENE ug/L	TOLUENE ug/L	ETHYL – BENZENE ug/L	TOTAL XYLENES ug/L	TOTAL BTEX ug/L	As ma/L	Pb mg/L
				AUD	440	00		220	ND	240	ND	NI
OKUS - W1	OKUS-W1	01/14/93	ND	ND	410	20	4	220	ND	ND	ND	NI
•	•	05/12/93	80	120	ND	ND	ND	ND			ND	N
		08/25/83	ND	100	ND	ND	ND	ND	ND	ND		
		11/11/93	ND	150	91	1.1	0.88	21	1.0	24	ND	N
		02/08/94	NA.	92	<50	<0.50	< 0.50	< 0.50	< 0.50	<2.0	< 0.10	<0.0
		05/03/94	NA NA	61	<50	< 0.50	< 0.50	< 0.50	<0.5	<2.0	<0.10	<0.0
OKUS-W2	OKUS-W2	01/14/93	2.5	5400	14000	480	92	8500	ND	9100	0.030	N
OROS-WE	1	05/12/93	ND	2800	8800	220	47	4600	100	5000	0.093	N
		08/25/93	5.8	5500	22000	420	92	10000	210	11000	0.089	N
		11/11/93	3.5	7700	24000	540	150	13000	280	14000	ND	N
		02/06/94	NA	2300	4900	150	29	3000	78	3300	< 0.10	< 0.0
		05/03/94	NA	2600	17000	300	< 0.50	5800	220	6300	<0.10	<0.0
									44	2900	NA	N
OKUS-W3	OKUS -W3	01/14/93	4.5	4200	4900	230	42	2600	44			
•	•	05/12/93	1.7	4400	4600	290	60	3500	72	3900	0.14	N
		08/25/93	1,5	2700	9400	280	55	4300	41	4700	0.08	N
		11/11/93	2.3	5000	9500	390	110	5100	130	5700	0.14	N
		02/08/94	NA.	4400	17000	420	78	9800	160	10000	0.12	<0.0
		05/03/04	NA NA	3000	14000	310	61	6400	210	7000	0.14	<0,0
OKUS-W4	OKUS-W4	01/15/93	2.5	5400	8900	300	ND	4500	ND	4800	NA	N
OK03~114	0000-00	05/12/93	1.3	2900	6000	320	110	4600	230	5300	0.16	N
		08/26/93	ND	2200	6700		72	4800	130	5400	0.098	N
		11/11/93	ND	2400	5500		53	4600	140	5000	0.13	N
		02/07/94	NA.	2700	9100		< 0.50	4900	150	5300	< 0.10	< 0.0
		05/03/94	NA.	2300	6500		34	4200	140	4600	0.12	< 0.0
					****		44	180	20	250	NA	N
OKUS - W5	OKUS-W5	01/15/93	ND	2900	550		11			380	0.56	
•	•	05/12/93	130	2100	550		14 LL NOT SAN		37	360	0.00	119
		08/25/93						54	6.2	77	0.53	N
		11/11/93	2.7	1600	590					310	0.55	<0.0
		02/07/94	NA	1900	760					330	0.38	<0.0
		05/03/04	NA.	2000	820	57	9.5	240	21	330	0.36	\0. 1
OKUS-W6	OKUS-W6	07/16/93	BRK	BRK	NO	2.5	ND.			2.5	0.004	P
		08/25/93	ND	590	ND	2.6	NO	4,0	1.3	8.8	0.013	
		11/12/93	ND	610	NE	3.6	NO	3.7	1.3	8.6	ND	N.
		02/07/04	PHASE SEF	PARATED H	YDROCARE	DNS - WE	LL NOT SAL	APLED				
		05/00/04	PHASE SER	PARATED H	YDROCARE	ONS - WE	LL NOT SAA	APLED	_			
	044	ATH	18	ND	NE	2.1	NC) ND	ND.	2.1	0.009	
OKUS-W7	OKUS-W7	07/16/93		930	56						ND	
		08/25/93			NE NE					ND	ND	i
		11/12/93		1100							< 0.10	<0.
		02/07/94	NA NA	1100	NE <50					<2.0	<0.10	<0.
OKUS-WB	OKUS-W8	07/16/93	15	ND	NE						0.012	0.0
		08/27/93	ND	1100	120	1.3					ND	0.0
		11/11/93		1300	190	3,5	5 1.3				ND	1
		02/07/94		1000	120	0.0	< 0.50	< 0.50	< 0.50	0.90	< 0.10	< 0.
		05/03/04		780	79		< 0.50	< 0.50	< 0.50	0.99	< 0.10	<0

SAMPLE LOCATION	SAMPLE ID	DATE SAMPLED	TPH/IR	TPH/D	TPH/G	BENZENE	TOLUENE	ETHYL – BENZENE	TOTAL XYLENES	TOTAL BTEX	As	Pb
LOCATION	10	SAVII ELD	mg/L	ug/L	ug/L	ug/L	ua/L	ug∕L	u a/L	ug/L	ma/L	ma/L
APL/UP-W1	APL/UP-W1	07/16/93	11	700	300	25.4	1.7	ND	3.0	30	0.011	NO
		08/26/93	ND	810	720	47	1,3	360	14.0	420	0.013	NO
		11/11/93	ND	530	560	28	ND	220	11.0	260	ND	NI
		02/07/94	NA	660	620	25	< 0.50	180	10	220	< 0.10	<0.03
		05/03/04	NA NA	590	680	48	2.0	260	9.8	320	< 0.10	<0.0
APL/UP-W2	APL/UP-W2	07/16/93	19	ND	ND	8.0	ND	ND	ND	8.0	0.016	NE
74 C,O1 11L	74 2701 112	08/26/93	ND	240	94	ND	ND	35	2.4	37.0	0.023	N
		11/11/93	ND	190	110	5.0	- ND	38	2.6	46	ND	N
		02/07/94	NA	270	120	6.6	< 0.50	38	1.8	48	< 0.10	< 0.0
		05/03/94	- NA	100	<50	<0.50	< 0.50	< 0.50	< 0.50	<2.0	<0.10	<0.03
OKUS-W5	OKUS-W6	01/15/93	ND	2800	510	50	10	170	19	250	NA	N
OKUS-W1	OKUS-W6	05/12/93	ND	140	ND	ND	ND	ND	ND	ND	ND	N
APL/UP-W1	QA/QC-1	07/16/93	12	^ ND	0.21	22.4	ND	ND	2.4	25	0.012	NO.
OKUS-W4	OKUS-W9	08/26/93	ND	2700	6200	340	78	4500	100	5000	0.1	N
OKUS-W8	OKUS-W9	11/11/93	ND	1300	120	1.3	ND	= 4	1.4	6.7	2.4	- N
OKUS-W3	QA/QC-1	02/08/94	NA	2900	15000	280	64	5800	< 0.50	6100	0.12	0.13
OKUS-W4	OKUS-QC1	05/03/94	NA	2500	5400	300	41	5200	130	5700	0.12	<0.0
UPMF	OAK-FB 1	07/16/93	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA
UPMF	OAK-TB 2	07/18/93	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA
UPMF	TB-1	08/27/93	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA
UPMF	TB-2	08/27/93	NA	NA	NA				ND	ND	NA	NA
UPME	TB-1	11/12/93	NA.	NA	NA	ND	ND	ND	ND	ND	NA.	NA_

ND - Not Detected

NA – Not Arelyzed
BRK – Sottle broken during shipment
TPH – Total Petroleum Hydrocarbons
mg/L – milligram per liter
ug/L – microgram per liter

TPH/IR — analyzed using EPA Method 418.1
TPH/ID — analyzed using EPA Method 8015 Mod.
TPH/IG — analyzed using EPA Method 8015 Mod.
BTEX — analyzed using EPA Method 8020
As — analyzed using EPA Method 7080
Pb — analyzed using EPA Method 7421

Groundwater samples were also analyzed for dissolved arsenic and lead. The analytical results indicated dissolved arsenic in samples from three of the ten monitoring wells. The detected concentrations of dissolved arsenic in groundwater samples were 0.14, 0.12, and 0.38 milligrams per liter (mg/L) in OKUS-W3, OKUS-W4, and OKUS-W5, respectively. Dissolved lead was not detected above the MDL of 0.02 mg/L in any of the wells. All of the above described analytical results are presented in Table 1. Analytical reports and chain of custody forms are included in Appendix A.

2.1.3 Analytical Results of Non-Aqueous Phase Liquid

On June 7, 1994, a sample of product was collected from recovery well RW and analyzed for a fingerprint characterization. The results indicate the sample could be motor oil mixed with diesel fuel. The analytical report and chain of custody is included in Appendix A.

2.1.4 Groundwater Gradient

Static water levels measured on May 3, 1994 (Table 2) were used to produce the groundwater elevation map presented as Figure 4. The hydraulic gradient beneath the site during the single-time groundwater level measurements collected on May 3, 1994, sloped toward the Oakland Estuary at approximately 0.67 percent. The computed gradient is consistent with past single-time groundwater level measurements. Well stabilization and sampling reports are located in Appendix B.

2.1.5 Monitoring and Recovery of Non-Aqueous Phase Liquid

As requested by the ACDEH, product thicknesses in monitoring wells OKUS-W4, and OKUS-W5, and recovery well RW have been monitored at the site since January 31, 1994, on a monthly basis at a minimum. Water level information has been collected at monitoring well OKUS-W6 on a quarterly basis. The monitoring data indicates that monitoring well OKUS-W6 and recovery well RW have had measurable amounts of product (Table 2). As discussed in the "First Quarter 1994 Monitoring Report", a sample of product was collected from monitoring well OKUS-W6 and analyzed for a fuel fingerprint characterization. The results indicated that the product could be weathered crude oil or bunker C (Fuel Oil No. 6 or 7).

As indicated in Table 2, the product thickness measurement of bunker C is difficult to perform accurately, due to the high viscosity of the liquid. Typically, the water interface probe becomes coated with bunker C as the measurement of the oil/water interface is performed. This creates a barrier between the probe and the water. Therefore, the only reliable reading is the air/oil interface.

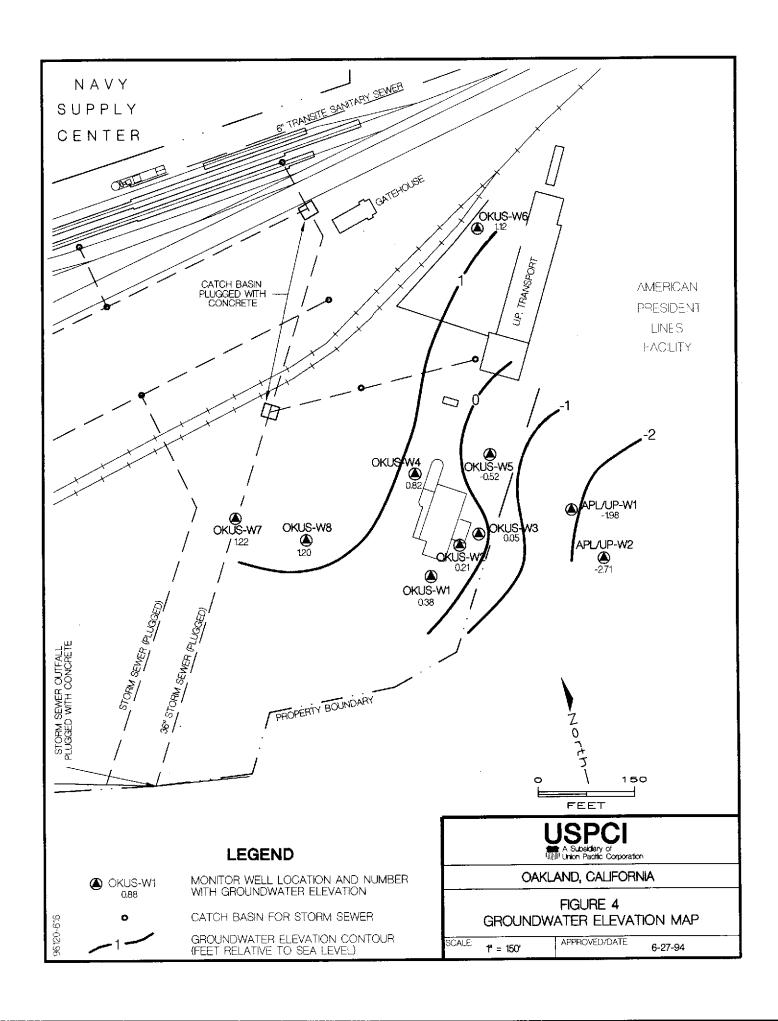
Monitoring well OKUS-W6 is located in the interpreted cross- and up-gradient directions from the site by approximately 400 feet. The presence of bunker C has not been observed during the installation of soil borings and has not been observed in any of the monitoring wells at the UPMF site. It appears that the presence of bunker C in OKUS-W6 is not related to the UPMF site.

A product skimming system was installed in recovery well RW on April 29, 1994 and began operation during the week of May 2, 1994. Since start-up, the skimming system has recovered approximately 6 gallons of total fluids. The corresponding recovery rate is approximately equal to the one gallon of product recovery per week by the previous hand bailing activities that was observed prior to installation of the skimming system.

TABLE 2 CUMULATIVE FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA USPCI PROJECT NO. 96120-844

WELL	ELEV.*	DATE	DEPTH TO	PRODUCT	PRODUCT	DEPTH TO	WATER	WATER
NO.	TOC		PRODUCT	ELEVATION	THICKNESS	WATER	ELEVATION	ELEVATION
							(UNCORR'D)	(CORR'D)
OKUS-W1	9.17	01/14/93	N/A	N/A	NP	8.42	0.75	0.75
OROG III.	9.17	01/15/93	N/A	N/A	NP	8.45	0.72	0.72
	9.17	02/18/93	N/A	N/A	NP	7.79	1.38	1.38
	9.17	05/12/93	N/A	N/A	NP	8.04	1.13	1.13
	9.17	08/25/93	N/A	N/A	NP	8.61	0.56	0.56
	9.17	11/11/93	N/A	N/A	ΝP	9.24	-0.07	-0.07
	9.17	02/08/94	N/A	N/A	NP	8.47	0.40	0.40
	9.17	05/03/94	N/A	N/A	NP	8.49	0.38	0.38
OKUS-W2	9.71	01/14/93	N/A	N/A	NP	9.08	0.63	0.63
O1100 112	9.71	01/15/93	N/A	N/A	NP	9.12	0.59	0.59
	9.71	02/18/93	N/A	N/A	NP	8.70	1.01	1.01
	9.71	05/12/93	N/A	N/A	NP	9.04	0.67	0.67
	9.71	08/25/93	N/A	N/A	NP	9.61	0.10	0.10
	9.71	11/11/93	N/A	N/A	NP	10.20	-0.49	-0.49
	9.71	02/08/94	N/A	N/A	NP	9.46	0.25	0.25
	9.71	05/03/94	N/A	N/A	NP	9.50	0.21	0.21
01/110 11/0	0.00	01/14/00	NI/A	NI/A	NP	9.39	0.41	0.41
OKUS-W3	9.80	01/14/93	N/A	N/A	NP NP	9.33	0.47	0.47
	9.80	01/15/93	N/A	N/A	NP NP	8.85	0.95	0.95
	9.80	02/18/93	N/A	N/A	NP	9.23	0.57	0.54
	9.80	05/12/93	N/A	N/A	NP NP	9.82	-0.02	-0.02
	9.80	08/25/93	N/A	N/A	NP NP	10.30	-0.50	-0.50
	9.80	11/11/93	N/A	N/A	NP	9.73	0.07	0.07
	9,80 9.80	02/08/94 05/03/94	N/A N/A	N/A N/A	NP NP	9.75	0.05	0.05
				4 - 12 - 1	115	C 40	0.92	0.92
OKUS-W4	7.35	01/14/93	N/A	N/A	NP	6.43		0.91
	7.35	01/15/93	N/A	N/A	NP	6.44	0.91	1.58
	7.35	02/18/93	N/A	N/A	NP	5.77	1.58	0.96
	7.35	05/12/93	6.39	0.96	0.01	6.40	0.95	
	7.35	08/25/93	N/A	N/A	NP	6.63	0.72	0.72 0.25
	7.35	11/11/93	N/A	N/A	NP	7.10	0.25	0.25
	7.35	02/07/94	N/A	N/A	NP	6.64	0.71	0.90
	7.35	03/07/94	N/A	N/A	NP	6.45	0.90	0.90
		04/18/94	N/A	N/A	NP	6.58	0.77	0.77
	7.35		N/A	N/A N/A	NP NP	6.55 6.62	0.82 0.73	0.82
	7.35	06/07/94	N/A	IN/A	181	0.02	0	**
OKUS-W5	9.25	01/14/93	N/A	N/A	NP	9.13		0.12
į	9.25		N/A	N/A	NP	9.15		
İ	9.25		· ·	N/A	NP	8.85		0.40
	9.25	05/12/93	9.18	0.07	0.02	9.20		
	9.25			0.43	0.02	8.84		0.16
	9.25			N/A	NP	10.15	-0.80	
	9.25		N/A	N/A	NP	9.61	-0.36	
1	9.25		N/A	N/A	NP	9.51	-0.26	
	9.25		N/A	N/A	NP	9.78		
	9.25			N/A	NP	9.77		
	9.25			N/A	NP	9.71	-0.46	

TABLE 2 CUMULATIVE FLUID LEVEL MEASUREMENT DATA UNION PACIFIC RAILROAD MOTOR FREIGHT FACILITY OAKLAND, CALIFORNIA USPCI PROJECT NO. 96120-844


WELL NO.	ELEV.* TOC	DATE	DEPTH TO PRODUCT	PRODUCT ELEVATION	PRODUCT	DEPTH TO WATER	WATER ELEVATION	WATER ELEVATION
110.	,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				(UNCORR'D)	(CORR'D)
								
OKUS-W6	7.02	07/16/93	N/A	N/A	NP	6.20	0.82	0.82
	7.02	08/25/93	N/A	N/A	NP	6.52	0.50	0.50
	7.02	11/12/93	N/A	N/A	NP .	7.22	-0.20	-0.20
	7.02	02/07/94	5.89	1.13	See S			
	7.02	05/09/94	5.90	1.12				
OKUD MO	6.01	07/16/02	N/A	N/A	NP	5.72	1.19	1.19
OKUS-W7	6.91	07/16/93	N/A N/A	N/A N/A	NP NP	5.94	0.97	0.97
	6.91 6.91	08/25/93 11/12/93	N/A N/A	N/A	NP	6.50	0.39	0.39
	6.91	02/07/94	N/A	N/A	NP	5.81	1.10	1.10
	6.91	05/03/94	N/A	N/A	NP	5.69	1.22	1.22
	0.51	- 	13/7		1 41			•
OKUS-W8	6.75	07/16/93	N/A	N/A	NP	5.56	1.19	1.19
01100 110	6.75	08/27/93	N/A	N/A	NP	5.88	0.87	0.87
	6.75	11/11/93	N/A	N/A	NP	6.43	0.33	0.33
	6.75	02/07/94	N/A	N/A	NP	5.59	1.16	1.16
	6.75	05/03/94	N/A	N/A	NP	5.55	1.20	1.20
				A17A	ND	10.02	-1.90	-1.90
APL/UP-W1	8.12	07/16/93	N/A	N/A	NP NB	9.93	-1.81	-1.81
	8.12	08/26/93	N/A	N/A	NP NP	10.25	-2.13	-2.13
	8.12	11/11/93	N/A	N/A N/A	NP	9.71	-1.59	-1.59
	8.12 8.12	02/07/94 05/03/94	N/A N/A	N/A	NP	10.10	-1.98	-1.98
	0.12	03/00/37		14/14				
APL/UP-W2	2 7.31	07/16/93	N/A	N/A	NP	9.38	-2.07	-2.07
, , , , , , , , , , , , , , , , , , ,	7.31	08/26/93	N/A	N/A	NP	9.20	-1.89	-1.89
	7.31	11/11/93	N/A	N/A	NP	9.65	-2.34	-2.34
	7.31	02/07/94	N/A	N/A	NP	8.85	-1.54	-1.54
	7.31	05/03/94	N/A	N/A	NP_	10.02	-2.71	-2.71
514		04 104 104	10.01		0.10	10.41		- -
RW		01/31/94	10.31 10.26		0.10			
		02/07/94	10.20	. <u></u>	0.10	10.18		
		02/17/94 02/23/94	10.11		0.09	10.10		
		02/23/94	9.96		0.03	9.99		
		03/07/94	9.92		0.04	9.96		
		03/16/94	9.92		0.07	9.99		
		03/23/94	9.93		0.06	9.99		
į		03/30/94			0.05		- -	
		04/05/94			0.01	10.03		_ _
		04/11/94			0.01	10.03		
		04/18/94			0.02		- -	
1		04/26/94			0.07			
		06/07/94			0.03	9.97		

^{*} All well casings measured to mean sea level (MSL).

Information not available or inaccurate.

N/A Non Applicable NP - No Product

P - Product (bunker C) was encountered but the oil/water seperator interface could not be found.

3. CONCLUSIONS AND RECOMMENDATIONS

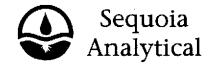
The following subsections present conclusions and recommendations based on the field and analytical results from the subject site.

3.1 CONCLUSIONS

The analytical results from the 1993 site assessments and groundwater monitoring program indicate a dissolved plume of BTEX and TPH which is not limited to the immediate area surrounding the UPMF facility. An estimate of the lateral extent of the dissolved contaminant plume is presented on Figure 3. Based on the most recent sampling results, the downgradient edge of the plume appears to be between monitoring wells APL/UP-W1 and APL/UP-W2. It appears that the dissolved BTEX plume has not migrated or increased in areal extent.

The concentrations of dissolved arsenic exceeded the MDL of 0.050 mg/L in groundwater samples from three of ten wells. In the past, arsenic and lead concentrations have remained at or near the MDLs. Based on the consistently low historical dissolved arsenic and lead concentrations a less frequent sampling schedule or the elimination of these analytes from the sampling program is warranted.

Bunker C has been observed in monitoring well OKUS-W6 and it appears that this occurrence is not related to the UPMF site.


The product skimming system has continued to remove product from recovery well RW at a rate equal to that observed from bailing activities.

3.2 RECOMMENDATIONS

Based on the above conclusions, the following recommendations are made:

- To monitor the status of the dissolved petroleum hydrocarbon plume in the groundwater at the site, the quarterly monitoring program should be continued.
- The collection and analysis of arsenic and lead groundwater samples should be discontinued.
- The monitoring of bunker C and product near the UPMF facility should be continued.
- The operation and monitoring of the product skimming system in recovery well RW should be continued.

APPENDIX A ANALYTICAL REPORTS

680 Chesapeake Drive 1900 Bates Avenue, Suite L. 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301

Attention: Denton Mauldin

Client Project ID: #96120-844/UPMF Oakland

Sample Matrix: Water

Analysis Method:

EPA 5030/8015/8020

405-0062 First Sample #:

Sampled: May 3, 1994 Received:

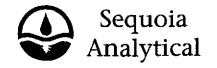
Reported:

May 4, 1994 May 18, 1994

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 405-0062 OKUS-W1	Sample I.D. 405-0063 OKUS-W2	Sample I.D. 405-0064 OKUS-W3	Sample I. D. 405-0065 OKUS-W4	Sample I.D. 405-0066 OKUS-W5	Sample I.D. 405-0067 OKUS-W7
Purgeable Hydrocarbons	50	N.D.	17,000	14,000	6,500	820	N.D.
Benzene	0.5	N.D.	300	310	240	57	N.D.
Toluene	0.5	N.D.	N.D.	61	34	9.5	N.D.
Ethyl Benzene	0.5	N.D.	5,800	6,400	4,200	240	N.D.
Total Xylenes	0.5	N.D.	220	210	140	27	N.D.
Chromatogram Pat	tern:		Gasoline	Gasoline	Gasoline	Gasoline	.

Quality Control Data


Report Limit Multiplication Factor:	1.0	100	100	50	5.0	1.0
Date Analyzed:	5/11/94	5/11/94	5/11/94	5/12/94	5/12/94	5/12/94
Instrument Identification:	HP4	HP4	HP4	HP4	HP4	HP4
Surrogate Recovery, %: (QC Limits = 70-130%)	98	101	98	93	92	91

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301

Attention: Denton Mauldin

Client Project ID: #96120-844/UPMF Oakland

Sample Matrix: Water

Analysis Method: First Sample #:

EPA 5030/8015/8020

405-0068

Sampled:

May 3, 1994 May 4, 1994

Received: Reported:

May 18, 1994

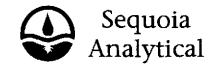
TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 405-0068 OKUS-W8	Sample I.D. 405-0069 APL-W1	Sample I.D. 405-0070 APL-W2	Sample i.D. 405-0071 OKUS-QC1	
Purgeable Hydrocarbons	50	79	680	N.D.	5,400	
Benzene	0.5	0.99	48	N.D.	300	
Toluene	0.5	N.D.	2.9	N.D.	41	
Ethyl Benzene	0.5	N.D.	260	N.D.	5,200	
Total Xylenes	0.5	N.D.	9.8	N.D.	130	
Chromatogram Par	ttern:	Unidentified Hydrocarbons >C10	Gasoline		Gasoline	

Quality Control Data

Report Limit Multiplication Factor:	1.0	2.0	1.0	20
Date Analyzed:	5/16/94	5/16/94	5/16/94	5/16/94
Instrument Identification:	HP2	HP4	HP4	HP2
Surrogate Recovery, %: (QC Limits = 70-130%)	103	99	86	98

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.


SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

Please Note:

REVISED REPORT 7/6/94

4050062.USP <2>

680 Chesapeake Drive 1900 Bates Avenue, Suite L. 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301

Attention: Denton Mauldin

Client Project ID: #96120-844/UPMF Oakland

__Water Sample Matrix:

First Sample #:

Analysis Method: EPA 3510/3520/8015

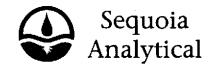
405-0062

May 3, 1994 Sampled: Received: May 4, 1994

Reported: May 18, 1994

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 405-0062 OKUS-W1	Sample I.D. 405-0063 OKUS-W2	Sample I.D. 405-0064 OKUS-W3	Sample I.D. 405-0065 OKUS-W4	Sample I.D. 405-0066 OKUS-W5	Sample I.D. 405-0067 OKUS-W7
Extractable Hydrocarbons	50	61	2,600	3,000	2,300	2,000	1,300
Chromatogram Pattern:		Diesel & Unidentified Hydrocarbons > C20	Diesel & Unidentified Hydrocarbons < C14; > C20	Diesel & Unidentified Hydrocarbons <c14;>C20</c14;>	Diesel & Unidentified Hydrocarbons <c14;>C20</c14;>	Diesel & Unidentified Hydrocarbons < C14; > C20	Diesel & Unidentified Hydrocarbons > C20


Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Extracted:	5/10/94	5/10/94	5/10/94	5/10/94	5/10/94	5/10/94
Date Analyzed:	5/13/94	5/13/94	5/13/94	5/13/94	5/13/94	5/13/94
Instrument Identification:	НРЗА	НРЗА	НРЗА	НРЗА	НР3А	НР3А

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: Sample Matrix:

First Sample #:

#96120-844/UPMF Oakland

Water EPA 3510/3520/8015

Analysis Method: 405-0068

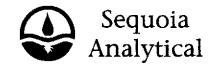
Sampled: May 3, 1994 May 4, 1994 Received:

Reported: May 18, 1994

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 405-0068 OKUS-W8	Sample I.D. 405-0069 APL-W1	Sample I.D. 405-0070 APL-W2	Sample I.D. 405-0071 OKUS-QC1	
Extractable Hydrocarbons	50	780	590	100	2,500	
Chromatogram Pa	ttern:	Diesel & Unidentified Hydrocarbons > C20	Diesel & Unidentified Hydrocarbons > C14; > C20	Diesel	Diesel & Unidentified Hydrocarbons <c14;>C20</c14;>	

Quality Control Data


Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0
Date Extracted:	5/10/94	5/10/94	5/10/94	5/10/94
Date Analyzed:	5/13/94	5/13/94	5/13/94	5/13/94
Instrument Identification:	HP3B	HP3B	HP3B	НР3В

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

4050062.USP < 4 >

680 Chesapeake Drive 1900 Bates Avenue, Suite L. Concord, CA 94520 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: #96120-844/UPMF Oakland

Sample Descript: Water

Dissolved Arsenic Analysis for:

405-0062 First Sample #:

Sampled: Received: May 3, 1994 May 4, 1994

Extracted: Analyzed:

May 5, 1994 May 5, 1994

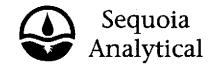
Reported: May 18, 1994

LABORATORY ANALYSIS FOR:

Dissolved Arsenic

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
405-0062	OKUS-W1	0.10	N.D.
405-0063	OKUS-W2	0.10	N.D.
405-0064	OKUS-W3	0.10	0.14
405-0065	OKUS-W4	0.10	0.12
405-0066	OKUS-W5	0.10	0.38
405-0067	OKUS-W7	0.10	N.D.
405-0068	OKUS-W8	0.10	N.D.
405-0069	APL-W1	0.10	N.D.
405-0070	APL-W2	0.10	N.D.
405-0071	OKUS-QC1	0.10	0.12

Analytes reported as N.D. were not present above the stated limit of detection.


SEQUOIA ANALYTICAL, #1271

Please Note:

*Samples filtered in field

Karen L. Enstrom Project Manager

4050062.USP <5>

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: Sample Descript: #96120-844/UPMF Oakland

Water

Analysis for: First Sample #:

Dissolved Lead 405-0062

Sampled: Received:

May 3, 1994 May 4, 1994

Extracted: Analyzed:

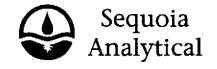
May 5, 1994 May 6, 1994

Reported: May 18, 1994

LABORATORY ANALYSIS FOR:

Dissolved Lead

			••••	_
Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L	
405-0062	OKUS-W1	0.020	N.D.	
405-0063	OKUS-W2	0.020	N.D.	
405-0064	OKUS-W3	0.020	N.D.	
405-0065	OKUS-W4	0.020	N.D.	
405-0066	OKUS-W5	0.020	N.D.	
405-0067	OKUS-W7	0.020	N.D.	
405-0068	OKUS-W8	0.020	N.D.	
405-0069	APL-W1	0.020	N.D.	
405-0070	APL-W2	0.020	N.D.	
405-0071	OKUS-QC1	0.020	N.D.	


Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Karen L. Enstrom Project Manager

Please Note:

*Samples Filtered in field

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834 (415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway

Boulder, CO 80301 Attention: Denton Mauldin Client Project ID: #96120-844/UPMF Oakland

Matrix: __Liquid

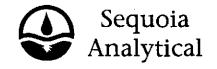
QC Sample Group: 4050062-71

Reported: Ma

May 18, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	Diesel	
Method: Analyst:	EPA 8020 J.Fontecha	EPA 8020 J.Fontecha	EPA 8020 J.Fontecha	EPA 8020 J.Fontecha	EPA 8015 Mod K.Wimer	
MS/MSD Batch#:	4050401	4050401	4050401	4050401	Blk050994	
Date Prepared: Date Analyzed: Instrument I.D.#: Conc. Spiked:	5/11/94 5/11/94 HP-4 20 µg/L	5/11/94 5/11/94 HP-4 20 µg/L	5/11/94 5/11/94 HP-4 20 µg/L	5/11/94 5/11/94 HP-4 60 µg/L	5/9/94 5/10/94 HP3A 300 μg/L	× .
Matrix Spike % Recovery:	70	90	95	95	88	
Matrix Spike Duplicate % Recovery:	70	85	90	95	91	
Relative % Difference:	0.0	5.7	5.4	2.1	3.7	·


LCS Batch#:	21CS051194	21CS051194	21CS051194	21CS051194	BLK050994		
Date Prepared:	5/11/94	5/11/94	5/11/94	5/11/94	5/9/94		
Date Analyzed:	5/11/94	5/11/94	5/11/94	5/11/94	5/10/94		
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	HP3A		
LCS %							
Recovery:	71	88	93	95	88		
% Recovery						<u>-</u>	
Control Limits:	71-133	72-128	72-130	71-120	28-122		

SEQUOIA ANALYTICAL, #1271

Green Curbin

Karen L. Enstrom Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

680 Chesapeake Drive 1900 Bates Avenue, Suite L 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Concord, CA 94520 Sacramento, CA 95834

(415) 364-9600 (510) 686-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 686-9689 FAX (916) 921-0100

U.S.P.C.I.

5665 Flatiron Parkway Boulder, CO 80301

Attention: Denton Mauldin

Client Project ID: #96120-844/UPMF Oakland

Matrix:

Liquid

QC Sample Group: 4050062-71

Reported:

May 18, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Lead	Arsenic	Benzene	Toluene	Ethyl	Xylenes	
Method:	EPA 200.7	EPA 200.7	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J. Dinsay	J. Dinsay	J. Fontecha	J. Fontecha	J. Fontecha	J. Fontecha	
MS/MSD							
Batch#:	4050057	4050057	4050379	4050379	4050379	4050379	
Date Prepared:	5/5/94	5/5/94	5/16/94	5/16/94	5/16/94	5/16/94	
Date Analyzed:	5/6/94	5/6/94	5/16/94	5/16/94	5/16/94	5/16/94	
nstrument l.D.#:	Liberty-100	Liberty-100	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	1.0 mg/L	1.0 mg/L	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Matrix Spike							
% Recovery:	85	98	90	95	90	93	
Matrix Spike							
Duplicate %							
Recovery:	85	104	90	90	90	92	
Relative %							
Difference:	0.0	5.9	0.0	5.4	0.0	1.1	

LCS Batch#:	BLK050594 ms	BLK050594 ms	2LCS051694	2LCS051694	2LCS051694	2LCS051694	
Date Prepared: Date Analyzed: Instrument I.D.#:	5/5/94 5/6/94 Liberty-100	5/5/94 5/16/94 5/6/94 5/16/94 Liberty-100 HP-4		5/16/94 5/16/94 HP-4	5/16/94 5/16/94 HP-4	5/16/94 5/16/94 HP-4	
LCS % Recovery:	81	93	92	92	92	94	
% Recovery Control Limits:	75-125	75-125	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents. preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

A Subsidiary of Union Pacific C Ship To: USPCI Ar 1322 South 49th Wo Fulsa, OK 74107 918) 446-1162	Corporation alytical Services	S R ADI	DRESS	566 wor	5	FL	47.2 _ st	<u>Co</u> 2	11P_36	<u> </u>	<u>t</u>	B L L T O	ADDRES	SS	 }		ST	ZIP	
						CHA	ін о	F CU	STOD	YR	ECO	RD	······		 				
PROJ. NO. ——			סי	# CONT		8315	8015	م مردیات								RUSH		JRNAROUND	<u> </u>
SAMPLERS (SIGNATURE)	<u>C</u> 4.	1, 1. By		A I N E R	756 8020	2-41/	8 0-701	As . Ps			:							1 of 4	
CUSTOMER SAMPLE I.D.	DATE	TIME	MATRIX	s	B7	1/3	1	0					1 1				LE I.D.	REMAR	IKS
0KU5-W1	5-3-44	1430	14,0		L											4050	062A	D	
JKUT-WI			1	l		<u></u>									 				
UKNJ. NI			.	<u> </u>			4											m 1 1. C	
OKUT. WIL				l				4					-					Molals for	<u>. 18</u>
UKU5-W2	`	1500			\angle					-		···-				00	063A	-D	
JK45-67				1		1													
okus-lol				1			X						1		 				
JUJ- 62		<u> </u>		1				人								_			
okus-D}		1505		1	1											V00	764	A-D	
0 KUJ- W}						7									 				
0KU5-W3)			/								 	· · · · · ·			
OKUS-W3		$ \ \ \ $	V	\				X							 		20115157		
RELINATOISMED BY	By-		5-4	DATE/TI	(S=		CEIVED I	444	_ C1	Ju	ala)	L		5/4	TIME 3	0an	COURIER).	

ウントして	E P	COMPA	NY	U	spc	<u></u>						В	COMPA	ANY			/_		
A Subsidiary of Union Pacific Corporation	ervices R	ADDRES	SS	56	65	6	-21-	77/20	s P	Luy			ADDRE	ss _			_		
Ship To: USPCI Analytical S 4322 South 49th West Avenu Tulsa, OK 74107 (918) 446-1162	ervices 7	CITY	Bou	Lne	<u> </u>		. ST.	: <u>د</u>]	ZIP 餐	O 3→		TO	CITY _				4	S1	T ZIP
· - 1 10						CHA	IN O	F CL	STO	DY F	ECO	RD							
PROJ. NO96	1120-89	14		# C O		30,5	805	Motor									STA	ANDARD TU	JRNAROUND _
PROJECT NAME	ME DAI	~LM0		N	3	K	N	8										SH TURNAF	
SAMPLERS (SIGNATURE)	9-51.	3		A I N E	1	1	O- H/L	1.0352000 As Az	k								(sp	•	of 4
CUSTOMER SAMPLE I.D. DAT	E TIM	IE M	ATRIX	R S	B72A	HOL-	12	9										ORATORY MPLE I.D.	REMARKS
Deur. Wa 5-3	44 112	5 1	7,5	1	1							·					405	50065F	D
0405·w 4			\bot	1		X											- -	····	
Duur. W4				(人	ļ						L					
OKUT-WA				1	1			\prec								·			matur fillowly, Field
OKUT-WS	1150	0			X	2/2	8								_		₩,	0066A	D
0×05-45				1			<u> </u>												
OKUSLUS								У										·	
0403-125				(X													
OUUT-DU			A	1	5		\mathcal{A}		1	7) -		$\overline{}$		\bigcap	1	7		03	MET STYLED
Urus-W(\mathbb{H}	1		K	/_	X	/	<u> </u>		_				/	1	X	Duc 73 P.54
UKYS -W6			14	1		//	6		/				Y		$\backslash\!\!/\!\!/$		<u>V</u> _		IN WELL.
Jun - 6 mois.		<u> </u>	1		<u></u>			1	<u>/</u>	Ű					1			/ \	C3
RELINCIPISHED BY			5-4-4		ړوی		CEIVED I	بصمد	<u>. ()</u>	Jux	W_			5/			:304	COURIER	
RELINQUISHED BY				DATE / T	IME	RE	CÉIVED (BY							DATE	/ TIME		AIRBILL NO	,

COMPANY COMPANY ADDRESS 5665 FLATORA PKLY O R T Union Pacific Corporation ADDRESS _____ Ship To: USPCI Remedial Services CITY BOURS ST. CO ZIP BUSSI T 24125 Aldine Westfield PHONE 3-1-938 1559 FAX 303-938-8520 Spring, TX 77373 PHONE _____ (713) 350-7240 **CHAIN OF CUSTODY RECORD** PROJ. NO. 96/20-844 8015 Ō N T PROJECT NAME DIME OAKLAND

STANDARD TURNAROUND RUSH TURNAROUND ---(specify required date) SAMPLERS _ Ch. 1 1 Rp 3.f4 (SIGNATURE) LABORATORY **CUSTOMER** REMARKS MATRIX DATE TIME SAMPLE I.D. SAMPLE I.D. 5-3-94 /325 4050067AD DKU5-47 12KUT-107 UKU5-67 Melals filled in UKUT-W7 V 0008AD 13 45 OKNT-W8 OKUT- WA UKUT-WB DKUS-WB COURIER RELINCALISHED BY DATE / TIME RECEIVED BY melina Creusere 5-9-99 0930 AIRBILL NO. RECEIVED BY RELINQUISHED BY DATE / TIME

A Subsidiary of Union Pacific (Ship To: USPCI At 4322 South 49th Wo Tulsa, OK 74107 (918) 446-1162	alytical Services	O ADI	MPANY DRESS Y ONE	560 suz	P- 58	F-0	ST FAX	<u>ය</u> z	1P <u>8</u> 3-41	3-3	2 <u> </u> \$< 20	B L L T O	CITY	IESS					ZIP
	96123 E 29MF 29.4	<u> </u>	MATRIX	#CONTA-NERS	Brox 80	7) rd - 7 821L	SIC8 <1- HJL	DISSELUCY METAL									RUS (spec	H TURNAF	F4
Arl-wi	5-3-44	1735	17,0		X	1											4050	0069A	D
10-101 10-101				1 (Z	く											mutals filled
NPL·WZ		1725		1	人									·			C	070 A	
Aprinz Aprinz				1			7	7											
OKUT-26:1		1205		1	*	1											↓ a	0071A	D
' okus-961				1			ECEIVED	4							Dat	E/TIME		COURIER	
RELINOUISHED BY	1B		5-9-4	DATE/T DATE/T	053	บ	ECEIVED	LNA	<u> ()</u>	Mus	ille.			_5/	4/84	F/TIME	:300	AIRBILL NO	

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: June 14, 1994 Date Received: June 13, 1994

Project: UPRR UPMF

Date Samples Extracted: June 13, 1994

RESULTS FROM THE ANALYSIS OF THE PRODUCT SAMPLE FOR FINGERPRINT CHARACTERIZATION BY CAPILLARY GAS CHROMATOGRAPHY USING A FLAME IONIZATION DETECTOR (FID) AND ELECTRON CAPTURE DETECTOR (ECD)

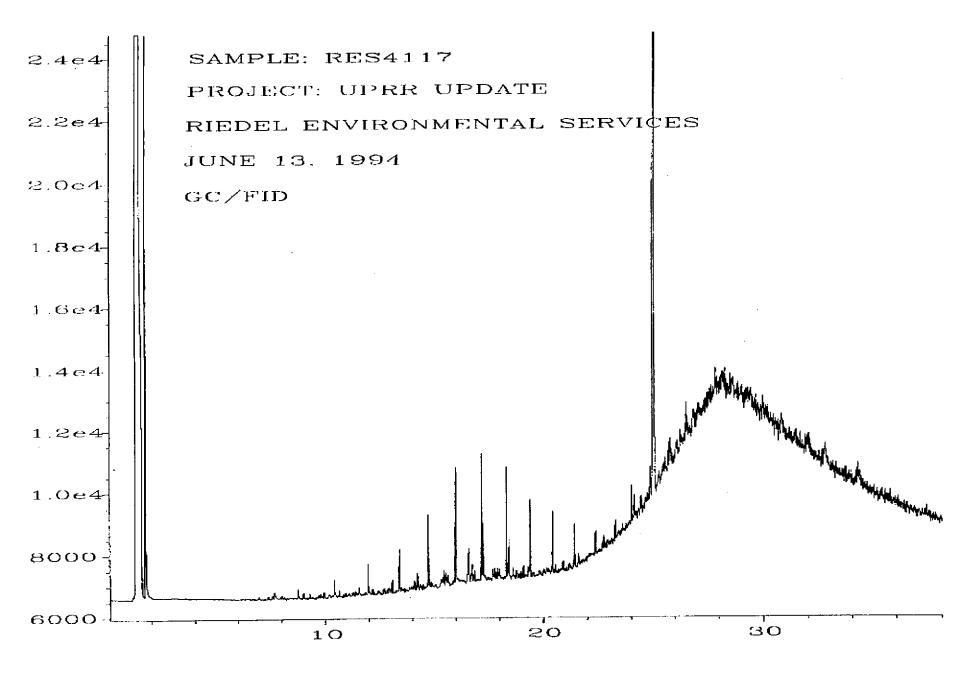
Sample ID

RES 4117

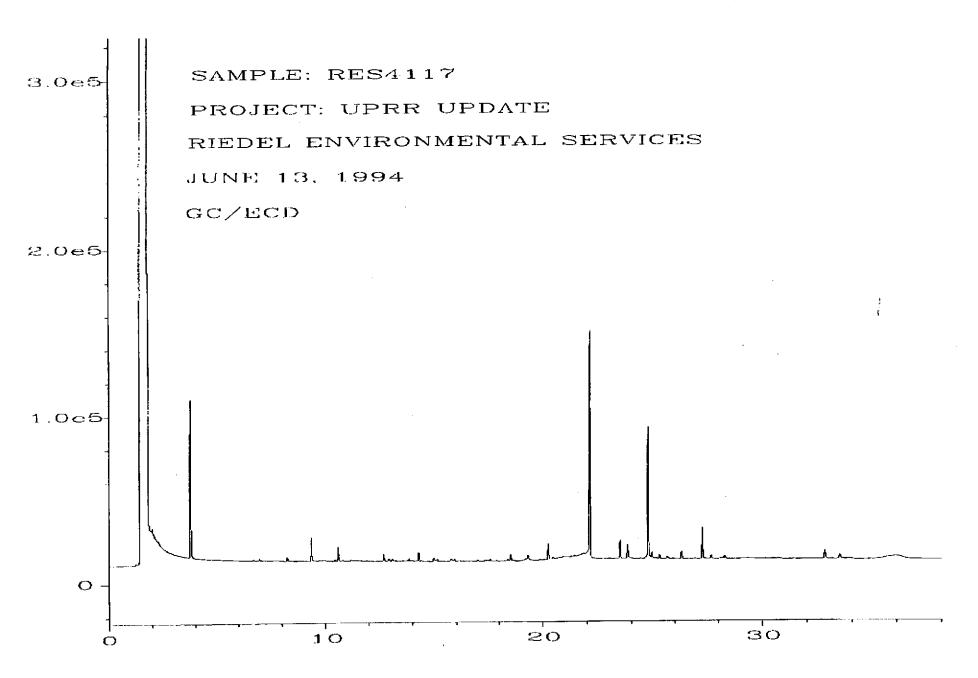
GC Characterization

The GC trace using the flame ionization detector (FID) showed the presence of medium and high boiling compounds. The patterns displayed by these peaks are indicative of diesel fuel and motor oil.

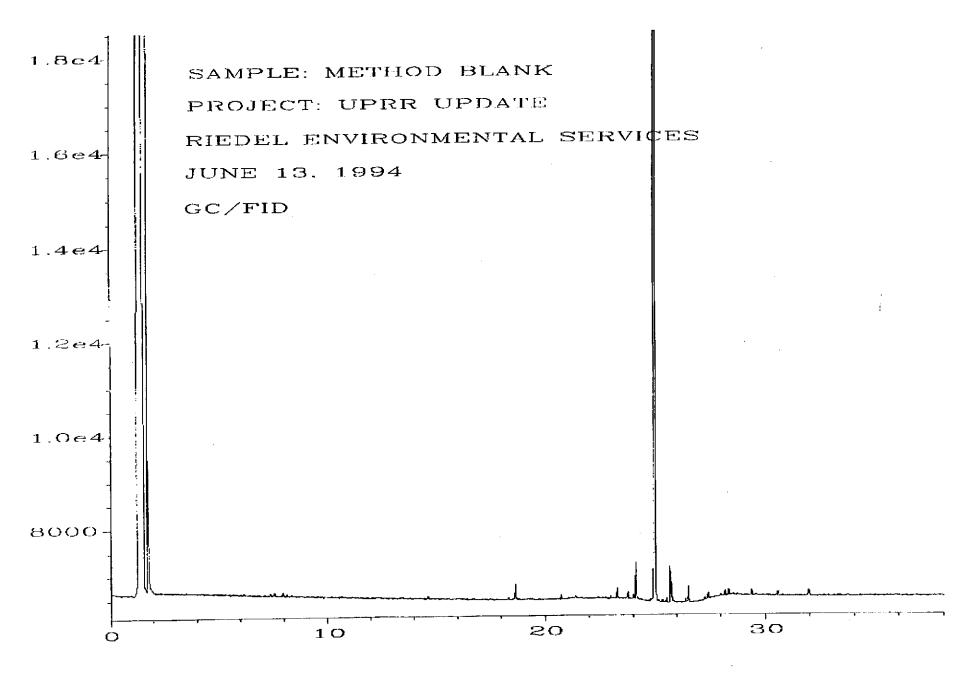
The medium boiling compounds appeared as a regular pattern of peaks eluting from $n\text{-}C_{10}$ to $n\text{-}C_{22}$ showing a maximum near $n\text{-}C_{17}$. A regular pattern of the n- alkanes is seen for the medium boiling product. The high boiling compounds appeared as a pattern of peaks eluting from $n\text{-}C_{23}$ to $n\text{-}C_{34}$ showing a maximum near $n\text{-}C_{28}$.

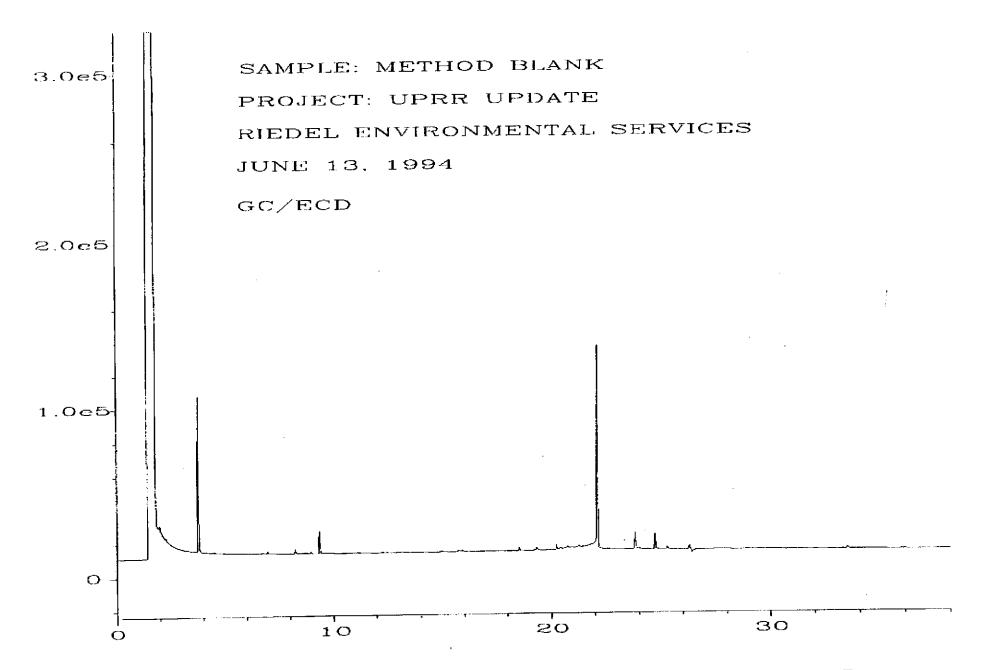

The large peak seen near 25 minutes on the GC/FID trace is pentacosane, added as a quality assurance check for this GC analysis.

FRIEDMAN & BRUYA, INC. -3012 16th Avenue West RIEDEL RICHMOND


06-Ama-A 06/13/94

Seattle, WA 98119-2029 (206) 285-8282 SAMPLE CHAIN OF CUSTODY


Send Report To:	2	1, 6-	من گرويم	Contact	M e		••
Address 4138 La	trainle Du	A STATE OF THE STA		Contact		20110	
City, State, Zip Kick Phone # (5/0) 22	mond 94.8	٥٠٠٠	,				
10000 1 (210) 42	mile Carlo	· ·		Date	6/13/9		
SITE NO.			CT NAME		P(IRCHASE ORDER	
	110	PRR U	110 r	., h			
SAMPLERS (signature)	1. 0	PR U	(P PY)	<u> </u>	PF	OJECT LOCATION	
	14 mar 24 ma 14 mar 24 mar	,	• ,				
REMARKS				<u></u>	G MIDT D	DISPOSAL INFORM	IATION
No COC, intia	ted by labil	13/94 /	<u> </u>			pose after 30 days	Allon
				}	☐ Rei	turn Samples	İ
					Cal	I for Instructions	
Sample #	Date/Time Sampled	Type of Sample	# of Jars	Lab Sample #	•	Analyses Requested	
RES 4/17	4/194/14:00 P	roduct	1	50271		el Elmero	rept
						, ,	
	1 2						
• '	2.5	*					
	,						
		. 161 4					
		•					- ,
					· · · · · · · · · · · · · · · · · · ·		
	7: 15.1mg			 		<u></u> .	<u> </u>
	2.1		-				
	of the last						
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
				<u> </u>			
		·'	 	<u> </u>			
SIGNATURE	PRI	JP NAMES	<u> </u>	COMPAN	10	Date	Time
	-2UV-94	or a sure	1	RIEDET.	11	Date_	ı nuc
Repaived by:	illy Koth	Mille	1	¬BI	· 	6/13/94	9:35
Relinquished by:	19 A					' '	
Received by:		ang di malaka salah Majarahan salah salah	•	 			


Sig. 1 in C:\HPCHEM\4\DATA\06-13-94\012F0501.D

Sig. 2 in C:\HPCHEM\4\DATA\06-13-94\012R0501.D

Sig. 1 in C:\HPCHEM\4\DATA\06-13-94\011F0501.D

Sig. 2 in C:\HPCHEM\4\DATA\06-13-94\011R0501.D

APPENDIX B

WELL STABILIZATION AND SAMPLING REPORTS

USPCI Project N	lame: UPMF (akland Facility (uarterly Monitorin	g USPCI I	Project Number: 96120-5	44
Measuring Point	(MP) Location	Top of Casing		Well	No. OKUS-W1	
Well Depth: (Be	low MP): 22.05	5				
Casing diameter	2 Inches				Sampling Date: 5/3	/94
Depth To Groun	d Water (Below	MP): 8.49 Feet			Sample ID No. OK	US-W1
Method Of Wel	li Development:				Time: 14:05	
□ Тар □	Submersible Pu	mp 🗆 Bladder	Pump		Riser Elevation (MP): 9.17
■ Bailer □	Centrifugal Pun	np 🗆 Other			Top of Screen Eleva	tion: 6.85 Feet
Sampling Colle	ction Method:			Sample	Appearance: slight turbic	lity
☐ Tap ☐ Subi	mersible Pump	☐ Bladder	Pump Sample	Odor: n	o odor	
■ Bailer Type		n 🔘 Stainless Ste	el	Samplin	g Problems (if any):	
C) ABS Plastic () PVC ■HDPE P	lastic Disposable			
Pump Intake Or	Bailer Set At _	Feet Bel	ow MP	Deconts	mination Performed:	
Tubing Type (if	Used):					
Tubing Used for	r: 🗆 Sample C	Collection We	ll Development/Fiel	d Tests Samples	Collected: BTEX,TPH/	G,TPH/D,As,Pb
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
14:15	7.5	1150	16		2.5	
14:18	7.6	1100	16		5.0	
14:29	7.7	1300	16	<u> </u>	7.5	
samples	collected at	14:30				
-	Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs
Comments:			<u></u>			
<u></u>						
			<u> </u>		[Comme	nts may continue on back
Form Complete	d By: Tracey I	Haskell		Witnessed By: Dentor	n Mauldin	

USPCI Project N	Name: UPMF (Dakland Facility C	uarterly Monitoria	ng USPCI	Project Number: 96120-8	44
Measuring Point	(MP) Location	Top of Casing		Wel	l No. OKUS-W2	2
Well Depth: (Be	low MP): 22.50)			<u> </u>	,;
Casing diameter	: 2 Inches				Sampling Date: 5/3	/94
Depth To Groun	d Water (Below	MP): 9.50 Feet			Sample ID No. Ok	IUS-W2
Method Of We	ll Development:				Time: 14:25	
□ Tap □	Submersible Pu	mp 🗆 Bladder	Pump		Riser Elevation (MI	່ງ: 9.71
■ Bailer □	Centrifugal Pun	np 🗆 Other			Top of Screen Eleve	ation: 7.05 Feet
Sampling Colle	ction Method:			Sample	Appearance: slightly turl	bid
☐ Tap ☐ Subi	mersible Pump	☐ Bladder	Pump Sample	Odor:	strong petroleum odor	
Bailer Type	: O Teflo	n O Stainless Ste	el	Sampli	ng Problems (if any):	
) PVC ■HDPE P	lastic Disposable			
Pump Intake Or	Bailer Set At _	Feet Bel	ow MP	Decon	tamination Performed:	
Tubing Type (if						
Tubing Used for	r: 🗆 Sample C	Collection	ll Development/Fiel	d Tests Sample	es Collected: BTEX,TPH	/G,TPH/D,As,Pb
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
14:35	7.7	3300	16		2.5	
14:45	7.6	3600	16		5.0	
14:52	7.6	3600	16		7.5	
sample	collected at	15:00				
At Least 3 Well Comments:	Bore Volumes	Were Evacuated Bo	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs
					Comme	nts may continue on back
Form Complete	d By: Tracey F	laskell		Witnessed By: Dente	n Mauldin	

USPCI Project Name: UPMF	Oakland Facility (Quarterly Monitorin	g USP	CI Project l	Number: 96120-8	14
Measuring Point (MP) Location	Top of Casing		w	ell No.	OKUS-W3	
Well Depth: (Below MP): 22.3	8 Feet					
Casing diameter: 2 Inches				Sa	mpling Date: 5/3/	94
Depth To Ground Water (Belov	v MP): 9.75 Feet			Sa	mple ID No. OK	US-W3
Method Of Well Development	:			Ti	me: 14:38	
□ Tap □ Submersible P	ump Bladder	Pump		Ri	ser Elevation (MP)	9.80
■ Bailer ☐ Centrifugal Pu	mp 🗆 Other			To	op of Screen Eleva	tion: 6.55 Feet
Sampling Collection Method:			Sam	ple Appear	ance: Slight turbic	lity
☐ Tap ☐ Submersible Pump	☐ Bladder	Pump Sample	Odo	r: strong p	etroleum odor	
■ Bailer <u>Type:</u> ○ Tefl	on O Stainless Ste	el	Sam	pling Probl	ems (if any):	
ABS Plastic	OPVC HDPE	Plastic Disposabl	e			
Pump Intake Or Bailer Set At	Feet Bel	low MP	Dec	ontaminatio	n Performed:	· · · · · · · · · · · · · · · · · · ·
Tubing Type (if Used):						
Tubing Used for: Sample	Collection We	ell Development/Fiel	d Tests Sam	ples Collec	ted: BTEX,TPH/	G,TPH/D,As,Pb
Time pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft		of Water of Water oved From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
14:41 7.6	3300	17			2.0	
14:50 7.6	3600	17			4.0	
14:55 7.6	3800	17			6.0	
sample collected at	15:05					
						
At Least 3 Well Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM	x 0.00223 =	cfs
Comments:		<u> </u>				
			<u> </u>			
			<u></u>			
		<u> </u>			[Commer	nts may continue on back)
Form Completed By: Tracey	Haskell		Witnessed By: De	nton Maul	din	

USPCI Project	Name: UPMF (akland Facility (Quarterly Monitoria	uspci	Project Number: 96120-8	344
Measuring Poin	t (MP) Location	Top of Casing		Wel	No. OKUS-W4	1
Well Depth: (B	elow MP): 20.92	2 Feet				
Casing diamete	r: 2 Inches				Sampling Date: 5/3	/94
Depth To Grou	and Water (Below	MP): 6.55 Feet			Sample ID No. OK QC1	US-W4/OKUS-
Method Of W	ell Development:	,			Time: 10:57	
☐ Tap] Submersible Pu	mp 🗆 Bladder	Pump		Riser Elevation (MI	P): 7.35
■ Bailer □	Centrifugal Pun	np 🗆 Other			Top of Screen Eleve	ation: 6.08 Feet
Sampling Coll	ection Method:			Sample	Appearance: slight turbic	dity
☐ Tap ☐ Sub	omersible Pump	☐ Bladder	Pump Sample	Odor: s	trong petroleum odor	
■ Bailer Typ	e; (Teflo	n O Stainless Ste	el	Samplin	ng Problems (if any):	
(ABS Plastic (PVC HDPE	Plastic Disposabl	е		
Pump Intake O	r Bailer Set At _	Feet Bel	ow MP	Decont	amination Performed:	
Tubing Type (i	if Used):					
Tubing Used for	or: Sample C	Collection 🗆 We	ell Development/Fiel	ld Tests Sample	s Collected: BTEX,TPH	/D,TPH/G,As,Pb
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
11:01	8.1	3100	15.0		2.5	
11:12	8.2	3200	16.0		5.0	
11:22	8.2	3200	16.5		7.5	
samples	collected at	11:25				
	ll Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs
Comments:						
					Comme	ents may continue on back]
Form Complet	ed By: Tracey I	Iaskell		Witnessed By: Dento	n Mauldin	

USPCI Project l	Name: UPMF (akland Facility (Quarterly Monitorin	g USPCI F	roject Number: 96120-8	44			
Measuring Point	t (MP) Location	Top of Casing		Well	No. OKUS-W5	;			
Well Depth: (Be	elow MP): 20.68	8 Feet							
Casing diameter	: 2 Inches			Sampling Date: 5/3/94					
Depth To Groun	nd Water (Below	MP): 9.77 Feet		Sample ID No. OKUS-W5					
Method Of We	<u>ll Development:</u>				Time: 10:31	■АМ, □РМ			
□ Tap □	Submersible Pu	mp 🗆 Bladder	Pump		Riser Elevation (MP): 9.25			
■ Bailer □	Centrifugal Pun	np 🗆 Other			Top of Screen Eleva	tion: 5.95			
Sampling Colle	ction Method:			Sample A	Appearance: slight turbic	lity			
☐ Tap ☐ Sub	mersible Pump	☐ Bladder	Pump Sample	Odor: st	rong petroluem odor				
■ Bailer Type	z O Teflo	n O Stainless Ste	el	Samplin	g Problems (if any):				
) ABS Plastic (PVC HDPE	Plastic ■Disposable	·					
Pump Intake Or	Bailer Set At _	Feet Bel	ow MP	Deconta	mination Performed:				
Tubing Type (if	f Used):								
Tubing Used fo	r: 🗆 Sample C	Collection 🗆 We	ell Development/Fiel	d Tests Samples	Collected: BTEX,TPH	G,TPH/D,As,Pb			
Time	pH (Units)	Temperature Corrected Conductance (umbo/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)			
10:35	7.6	3900	16		2.0				
10:39	7.7	3700	16		4.0				
10:45	7.7	3600	16		6.0				
samples	collected at	11:50							
						-			
At Least 3 Well	l Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs			
Comments:		<u> </u>				<u></u>			
					[Commo	nts may continue on back]			
Form Complete	d By: Tracey I	laskell	-	Witnessed By: Denton	Mauldin				

USPCI Project N	ame: UPMF (Dakland Facility (Quarterly Sampling	USPCI I	Project Number: 96120-8	44			
Measuring Point	(MP) Location	Top of Casing		Well	No. OKUS-W6				
Well Depth: (Bel	ow MP): 16.30) Feet							
Casing diameter:	2 Inches			, Sampling Date: 5/3/94					
Depth To Ground	d Water (Below	MP): 5.91 Feet		Sample ID No. OKUS-W6					
Method Of Wel	l Development:				Time: 17:25				
□ Tap □	Submersible Pu	mp 🗆 Bladder	Pump		Riser Elevation (MP): 7.29			
O Bailer 🗆	Centrifugal Pur	np 🗆 Other			Top of Screen Eleva	tion: 2.29 Feet			
Sampling Collec	tion Method:			Sample	Appearance:				
☐ Tap ☐ Subm	□ Tap □ Submersible Pump □ Bladder Pump Sample				no odor				
Bailer Type:	○ Teflo	n O Stainless Ste	el	Samplin	g Problems (if any):				
0	ABS Plastic () PVC							
Pump Intake Or	Bailer Set At _	Feet Bel	ow MP	Deconta	mination Performed:				
Tubing Type (if	Used):								
Tubing Used for	: 🗆 Sample C	Collection D We	ell Development/Fiel	d Tests Samples	s Collected:				
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)			
Free product									
			<u> </u>						
	·								
			<u> </u>						
		Were Evacuated B		Discharge Rate =	GPM x 0.00223 =	cfs			
		TV: Sec Proc.		**	as removed from the we	II. The water/oil			
interpl	ase probe did	not pick up the p	etroleum product v	when the water level wa	s-measured.				
						nts may continue on back]			
Form Complete	d By: Tracey l	Haskell		Witnessed By: Dentor	n Mauldin				

USPCI Project l	Name: UPMF C	akland Facility (Quarterly Monitorin	uspci p	roject Number: 96120-8	44
Measuring Point	t (MP) Location	Top of Casing		Well	No. OKUS-W7	,
Well Depth: (Be	low MP): 20.50) Feet				
Casing diameter	: 2 Inches	<u></u> -			Sampling Date: 5/3	/94
Depth To Groun	nd Water (Below	MP): 5.69 Feet			Sample ID No. OK	US-W7
Method Of We	ll <u>Development:</u>				Time: 13:00	
□ Tap □	Submersible Pu	mp 🗌 Bladder	Pump		Riser Elevation (MP): 7.4
■ Bailer □	Centrifugal Pun	np 🗆 Other			Top of Screen Eleva	tion: 2.4 Feet
Sampling Colle	ection Method:			Sample A	Appearance: slight turbic	lity
☐ Tap ☐ Sub	mersible Pump	☐ Bladder	Pump Sample	Odor: ne	o odor	
■ Bailer Type	: O Teflo	n O Stainless Ste	el	Sampling	Problems (if any):	
C	ABS Plastic) PVC ■ HDPE	Plastic Disposabl	e		
Pump Intake Or	r Bailer Set At _	Feet Bel	ow MP	Deconta	mination Performed:	
Tubing Type (it	f Used):	<u> </u>				
Tubing Used fo	r: 🗌 Sample C	Collection 🗆 We	ell Development/Fiel	d Tests Samples	Collected: BTEX,TPH	D,TPH/G,As, Pb
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
13:06	8.1	2600	16		3.0	
13:12	8.1	2700	16		6.0	
13:19	8.1	2600	16		9.0	
samples	collected at	13:25				
 	<u> </u>					
<u> </u>						
At Least 3 Wel	l Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs
Comments:						
			<u></u>			
	<u> </u>	<u> </u>			[Comme	nts may continue on back
		v v 11		Witnessed By: Denton		Annual Annual and Annual
Form Complete	ed By: Tracey I	iaskell		witnessed by: Denton	1114UKIII	

USPCI Project Name: UPMF O	akland Facility (uarterly Monitorin	g U	SPCI Project	Number: 96120-8	14		
Measuring Point (MP) Location	Top of casing	·		Well No	. OKUS-W8			
Well Depth: (Below MP): 15.30	Feet							
Casing diameter: 2 Inches					Sampling Date: 5/3/	94		
Depth To Ground Water (Below I	MP): 5.55 Feet		Sample ID No. OKUS-W8					
Method Of Well Development:				7	Γime: 13:32			
☐ Tap ☐ Submersible Pun	np 🗆 Bladder	Pump		1	Riser Elevation (MP	: 7.11		
■ Bailer □ Centrifugal Pum	p 🗆 Other	<u> </u>			Top of Screen Eleva	tion: 2.11 Feet		
Sampling Collection Method:			S	ample Appea	rance: slightly turb	id		
☐ Tap ☐ Submersible Pump	☐ Bladder	Pump Sample	0	dor: no odo	r			
■ Bailer <u>Type:</u> O Teflon	Stainless Ste	el	S	ampling Prol	olems (if any):			
ABS Plastic	PVC HDPE	Plastic Disposable						
Pump Intake Or Bailer Set At	Feet Bel	ow MP	<u>D</u>	econtaminat	ion Performed:			
Tubing Type (if Used):			<u> </u>					
Tubing Used for: Sample Co	ollection	ll Development/Fiel	d Tests S	amples Colle	ected: BTEX,TPH/	D,TPH/G,As,Pb		
Time pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Leve (Nearest 0.01	d	mulative Volume of Water moved From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)		
13:37 7.6	3700				2.0			
13:40 7.5	3800	17			4.0			
13:43 7.6	3900	17			6.0			
samples collected at	13:45	<u> </u>						
	<u> </u>							
			D. 1	(10)	M x 0.00223 =	cfs		
At Least 3 Well Bore Volumes V	Vere Evacuated B	efore Sampling	Discharge Rate	= GP	WI X 0.00223 —			
Comments:	<u></u>							
					[Comme	nts may continue on back]		
Form Completed By: Tracey H	askell		Witnessed By:	Denton Mau	ıklin	<u> </u>		

USPCI Project l	Name: UPMF (akland Facility (uspci F	USPCI Project Number: 96120-844					
Measuring Poin	t (MP) Location	Top of casing	Well	No. APL/UP-V	V1				
Well Depth: (Be	elow MP): 22.00) Feet							
Casing diameter	: 2 Inches				Sampling Date: 5/3	/94			
Depth To Groun	nd Water (Below	MP): 10.10 Feet		Sample ID No. APL-W1					
Method Of We	ll Development:				Time: 17:06				
□ Tap □	Submersible Pu	mp 🗌 Bladder	Pump		Riser Elevation (MP): 7.11			
■ Bailer □	Centrifugal Pun	np 🗆 Other			Top of Screen Eleva	tion: 2.11 Feet			
Sampling Colle	ection Method:			Sample A	Appearance: clear				
☐ Tap ☐ Sub	mersible Pump	☐ Bladder	Pump Sample	Odor: no	o odor				
■ Bailer Type	: O Teflo	n O Stainless Ste	el	Samplin	g Problems (if any):				
) ABS Plastic (PVC HDPE	Plastic I Disposabl	e					
Pump Intake Or	Bailer Set At _	Feet Bel	ow MP	Deconta	mination Performed:				
Tubing Type (if	f Used):								
Tubing Used fo	r: 🗆 Sample C	Collection We	ell Development/Fiel	d Tests Samples	Collected: BTEX,TPH	D,TPH/G,As,Pb			
Time	pH (Units)	Temperature Corrected Conductance (umho/cm)	Temperature (Centigrade)	Water Level (Nearest 0.01 Ft.)	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)			
17:10	8.1	1600	16.0		2.0				
17:12	8.2	1600	16.0		4.0				
17:13	8.2	1600	16.0		6.0				
sample	collected at	17:35							
			· ·						
				-					
At Least 3 Well	Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate =	GPM x 0.00223 =	cfs			
Comments:									
						 			
	 -								
	<u> </u>				Comme	nts may continue on back]			
Form Complete	d By: Tracey I	laskell	·	Witnessed By: Denton	Mauldin	<u></u>			

USPCI Project Name: UPMF	Oakland Facility (Quarterly Monitorin	ng U	JSPCI Proj	ect Number: 96120-8	44
Measuring Point (MP) Location	Top of Casing			Well N	lo. APL/UP-V	V2
Well Depth: (Below MP): 17.	30 Feet					
Casing diameter: 2 Inches					Sampling Date: 5/3	/94
Depth To Ground Water (Below	v MP): 10.02 Feet				Sample ID No. AP	L-W2
Method Of Well Developmen	<u> </u>			_	Time: 17:06	
☐ Tap ☐ Submersible P	ump 🗌 Bladder	Pump			Riser Elevation (MP): 7.62
■ Bailer ☐ Centrifugal Pu	mp 🗆 Other				Top of Screen Eleva	tion: 2.62 Feet
Sampling Collection Method:			S	sample Ap	pearance: slightly turb	id
☐ Tap ☐ Submersible Pump	☐ Bladder	Pump Sample		Odor: no o	dor	
■ Bailer <u>Type:</u> ○ Tefl	on O Stainless Ste	æl	S	Sampling P	roblems (if any):	
O ABS Plastic	OPVC HDPE	Plastic Disposal				
Pump Intake Or Bailer Set At	Feet Bel	ow MP	I	Decontami	nation Performed:	
Tubing Type (if Used):						
Tubing Used for: Sample	Collection	ell Development/Fiel	d Tests S	Samples C	ollected: BTEX,TPH/	G,TPH/D,As,Pb
Time pH (Units)	Temperature Corrected Conductance (umbo/cm)	Temperature (Centigrade)	Water Leve (Nearest 0.01	el	Cumulative Volume of Water Removed From well (Gallons)	Pumping Rate in Gallons/Minute (GPM)
17:09 8.1	1700	17			1,5	
17:14 8.0	1900	16			3.0	
17:19 8.0	1900	17		_ +	4.5	
samples collected at	17:25					
						
At Least 3 Well Bore Volumes	Were Evacuated B	efore Sampling	Discharge Rate	= (GPM x 0.00223 =	cfs
Comments:					***	
					Comme	nts may continue on back]
Form Completed By: Tracey	Haskell		Witnessed By:	Denton M	<u> </u>	