5710 / RO 295/433

March 7, 2002

Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Risk-Based Corrective Action Report

Former Shell Service Station 1230 14th Street Oakland, California Incident #97088250 Cambria Project #244-0233

Dear Mr. Chan:

Cambria Environmental Technology, Inc. (Cambria) is submitting this Risk-Based Corrective Action Report on behalf of Equiva Services LLC. The purpose of the current risk-based corrective action (RBCA) analysis is to evaluate the health risk posed by site hydrocarbons and to determine whether more active remedial activities are warranted to expedite environmental case closure for the site. Cambria's analysis is based on RBCA guidelines for petroleum release sites provided by the American Society for Testing and Materials (ASTM) Designation E-1739-95¹ and the Oakland Risk-based Corrective Action: Technical background Document². Descriptions of the site, surrounding area and previous site environmental activities, and results and conclusions of the RBCA analysis are presented below.

SITE BACKGROUND

Site Location: This former Shell-branded service station is located at the northeast corner of the intersection of 14th Street and Union Street in Oakland (Figures 1 and 2). There is an abandoned station building and a pump island canopy on the site, and much of the property is unpaved. Gas station operations at the site ceased in 1993. The surrounding area is primarily residential.

Oakland, CA San Ramon, CA Sonoma, CA

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

Oakland Risk-Based Correction Action: Technical Background Document, May 17, 1999: City of Oakland Environmental Services Division, 250 Frank H. Ogawa Plaza, Suite 5301, Oakland CA 94612.

Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, E 1739-95 (Revised December 1996): American Society of Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

February 1991 Soil Borings: On February 2, 1991, Tank Protect Engineering (TPE) of Northern California advanced soil borings SB-1, SB-2, and SB-3. Maximum concentrations of 1,600 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPHg) and 18 ppm benzene were detected in the soil sample collected at 10.5 feet below grade (fbg) in boring SB-3, located immediately downgradient of the gasoline underground storage tanks (USTs).

August 1993 Tank Removal and Sampling: On August 24, 1993, TPE supervised the removal of two 7,500-gallon unleaded UST's, one 7,500-gallon leaded UST, one 8,000-gallon leaded UST, and one 550-gallon waste-oil tank from the site. Soil samples were collected at depths ranging from 8.5 to 12.0 fbg from the floor of the excavation and from beneath the fill end of the waste oil tank. TPHg and benzene were detected at concentrations ranging from 1.3 milligrams per kilogram (mg/kg) to 18,000 mg/kg and from <5.0 mg/kg to 11,000 mg/kg, respectively. Total petroleum hydrocarbons as diesel (TPHd) and oil and grease were detected in the waste-oil tank pit at 1,200 ppm and 7,700 ppm, respectively. Maximum concentrations of 13 ppm TPHg and 0.007 ppm benzene were detected in soil samples collected beneath the product dispensers. On September 17, 1993, a UST Unauthorized Release Form was filed by TPE.

November 1995 Piping Removal and Tank Pit Re-Sampling: On November 27, 1995, Cambria collected eight soil samples from the open tank pit at the ends of the former USTs and six soil samples beneath the former product piping. TPHg was detected in all tank pit samples at concentrations ranging from 570 mg/kg to 5,600 mg/kg. Product was detected in the tank pit samples at concentrations ranging from <0.5 mg/kg to 72 mg/kg. TPHg was detected in two product piping samples at concentrations of 46 mg/kg and 3,100 mg/kg, and benzene was detected at concentrations ranging from <0.005 mg/kg to 30 mg/kg.

March 1996 Subsurface Investigation: On March 6 - 8, 1996, Cambria advanced 11 soil borings on site. Four borings were converted to groundwater monitoring wells (MW-1 through MW-4), two borings were converted to combined air-sparge and soil-vapor-extraction (SVE) wells (VW/AS-1, VW/AS-3), and two borings were converted to combined SVE and groundwater monitoring wells (VW/MW-2, VW/MW-4). The remaining borings were backfilled with neat cement.

1997 Oxygen Releasing Compound (ORC) Installation: Cambria installed ORCs in wells MW-1, VW/MW-2, and VW/MW-4 on March 25, 1997.

October 2000 SVE Testing: On October 16, 2000, Cambria performed SVE testing to determine the viability of SVE at the site. Although groundwater interfered with the SVE testing, Cambria concluded that SVE may be an effective method to remove hydrocarbons from soils above the groundwater table. The lack of detectable vacuum in observation wells during the SVE testing

may have been the result of short-circuiting through the former tank complex. Because of this, a radius of influence for SVE was not estimated. To more accurately determine whether SVE is a viable remedial alternative at the site, additional testing with a more appropriately constructed well or wells would be required.

December 2000 Subsurface Investigation: On December 11, 2000, Cambria advanced five soil borings (GP-1 through GP-5) to depths ranging from 16 to 20.5 fbg. Soil samples were collected from each boring at 5-foot intervals, and groundwater samples were collected when it was encountered. No TPHg, benzene, or methyl tertiary butyl ether (MTBE) was collected in any of the soil samples. TPHg was detected in groundwater samples from GP-1 and GP-3 at concentrations of 11 and 4,400 parts per billion (ppb), respectively. Benzene was detected in groundwater from GP-1 and GP-3 at concentrations of 11 and 4,400 ppb, respectively. MTBE was only detected in groundwater collected from boring GP-1 at 0.067 ppb (EPA Method 8260).

September 2001 Subsurface Investigation: On September 27, 2001, Cambria installed three monitoring wells (MW-5 through MW-7) each to a depth of 20 feet. Two soil samples were collected from the tank pit boring (MW-5) for chemical analysis. TPHg was detected at concentrations of 3.9 ppm and 790 ppm at depths of 9.5 and 14.5 feet. Benzene was detected at a concentration of 2.7 ppm at a depth of 14.5 feet. Groundwater samples were collected from the new wells during the regularly scheduled quarterly monitoring event on December 6, 2001. TPHg was detected at concentrations of 31,000 ppb, 76 ppb and 1800 ppb in wells MW-5, MW-6, and MW-7, respectively. Benzene was detected at concentrations of 3,000 ppb, 5.7 ppb and 390 ppb in the respective wells. No MTBE was detected in any of the soil or groundwater samples from the new wells.

SITE CONDITIONS

Groundwater: Groundwater depth beneath the site ranges from 4.8 to 13.9 fbg. The average depth to groundwater in 2001 was 11.4 fbg. The groundwater flow direction, as calculated from depth to water measurements in onsite monitoring wells, is typically to the northeast.

Lithology: Subsurface materials encountered at the site consist primarily of silty sand, silty gravel, and sand to the total explored depth of 22.5 feet. Boring/well logs are presented as Attachment A.

Hydrocarbon Distribution in Soil: Residual hydrocarbon impact in soil appears to be concentrated in the former UST complex and dispenser islands. No MTBE has been detected in soil, although samples collected prior to 2000 were not analyzed for that chemical. The highest

benzene concentration detected in soil on site was 30 ppm from 3.0 fbg in a dispenser piping sample collected 1995. The highest concentration detected in the former tank pit samples was 18 ppm from a 10.5 fbg sample SB-3. Samples collected in September 2001 from boring MW-5 in the former tank pit indicate lower residual hydrocarbon concentrations in the eastern portion of the tank pit than were encountered during either the August 1993 or November 1995 soil sampling events. The aeration and oxygenation of impacted soils that occurred when the tank pit remained open for over two years following UST removal, likely contributed to the remediation of these soils. Historical soil and groundwater analytical results tables are presented as Attachment B.

Hydrocarbon Distribution in Groundwater: Hydrocarbons are typically not detected in monitoring wells MW-2, MW-3, and MW-4. Currently, the highest concentrations of benzene are detected in monitoring wells in and nearest the former UST complex. Groundwater monitoring data collected since 1996 indicate that hydrocarbon concentrations decrease with time and distance from the tank complex. The decreasing benzene concentration trend in MW-1, located downgradient of the tank complex, is shown in Figure 3. As shown in Figure 5, benzene concentrations in wells VW/AS-3 (located between the tank complex and dispenser islands) and VW/AS-1 (located between the tank complex and MW-1) are also decreasing with time. The decrease in benzene concentration with distance from the tank complex is illustrated in Figure 6 which shows the most recently available data for MW-5 (located in the former tank pit) and MW-1 and MW-7 (located near the downgradient boundary of the site).

RISK ASSESSMENT

To evaluate the potential health risk to onsite and offsite occupants, Cambria conducted a human health risk assessment using Oakland's RBCA spreadsheet. Oakland's RBCA approach is consistent with the ASTM-RBCA and general U.S. Environmental Protection Agency (USEPA) risk assessment guidance. Similar to USEPA or ASTM guidelines, the City of Oakland has established risk-based screening levels (RBSLs) for contaminants based on Oakland's review of toxicological evidence and local site conditions. A completed eligibility checklist for Oakland's RBCA is presented as Attachment C. The checklist was completed based on Cambria's understanding of known site characteristics and an assumption that existing or future onsite structures comply, or will comply, with Uniform Building Code standards. Cambria's risk assessment consists of a conceptual site model (CSM) (Table A) and a Tier 2 RBCA analysis.

CSM

A CSM describes the relationship between the impacted sources and receptors that may be exposed to chemicals originating from the site. Cambria developed the CSM for the site and offsite properties based on review of available geological and analytical data and on evaluation of potential transport and exposure pathways. The following information is included in the CSM:

(a) chemical sources and impacted media, (b) representative chemical of concern (COC) concentrations, (c) the protective target risk selected for the analysis. Our conceptual model for this RBCA analysis is summarized in Table A. Potentially exposed receptors and exposure pathways are summarized in Figure 6.

Chemical Sources and Impacted Media: Analytical data collected since 1996 indicate that soil and groundwater at the former Shell site are impacted with petroleum hydrocarbons. The source of the hydrocarbons was probably the USTs and possibly the product piping and/or dispensers that were all removed in 1993. Benzene, toluene, ethlybenzene and xylene isomers (BTEX) are addressed in this RBCA analysis. No BTEX has been detected in onsite downgradient soil samples, however these COCs have been detected in downgradient groundwater samples. Current groundwater monitoring data suggest that the COCs are attenuating; however, offsite migration cannot be ruled out.

Table A: Conceptual Site Model for Risk Assessment

l he m	Selected Value	Comment
Contaminant Source Media:	Soil and Groundwater	Hydrocarbons have been detected in soil and groundwater beneath the site.
Chemicals of Concern (COCs):	Benzene, Toluene, Ethylbenzene, Xylenes	These chemicals were detected in representative soil and/or groundwater samples.
Representative Source Concentrations in Subsurface Soil (mg/kg):	Benzene: 0.14 Toluene: 0.27 Ethylbenzene: 0.22 Xylenes: 1.0	Upper 90% confidence level based on 13 representative soil samples collected between February 1991 and September 2001.
Representative Source Concentrations in Groundwater (mg/L):	Benzene: 0.95 Toluene: 0.25 Ethylbenzene: 0.059 Xylenes: 0.19	Upper 90% confidence level based on 14 groundwater samples collected since December 2000.
Representative Source Concentrations in Surface Soil (mg/kg)	Benzene: 0.57 toluene: 0.0097 ethylbenzene: 0.49 xylenes: 9.9	Mean value, based on two dispenser samples collected in February 1991.
Target Carcinogenic Risk Level	Commercial - 1 x 10 ⁻⁵ Residential - 1 x 10 ⁻⁵	Target risk level routinely accepted by the USEPA and Cal-EPA. 1 x 10 ⁻⁵ is also the default target risk level for Oakland Tier 2 RBCAs. Residential receptor is conservative given the expected future commercial site use.
Non-Carcinogenic Hazard Quotient:	1.0	Consistent with ASTM default value.
Cancer Slope Factor:	0.01 (mg/kg/day) ⁻¹	Defined by Cal-EPA.

Potentially Exposed Receptors and Exposure Pathways

For this analysis, it was assumed that COCs may volatilize from the impacted underlying soil and groundwater, and migrate to ambient and indoor and outdoor air. Potentially exposed receptors of concern include future onsite commercial occupants and offsite residential occupants. However, Cambria conservatively used onsite residential exposure RBSLs in this analysis. Applicable exposure pathways are summarized in Figure 6.

Shallow onsite groundwater is not currently used. For the purposes of this RBCA, it is assumed that no drinking water wells intercept impacted groundwater from the site. Cambria is conducting a well receptor survey to identify potential receptors downgradient of the site. If any drinking water receptors are identified near the site, the RBCA results will be modified accordingly. If construction were performed onsite, there is potential for dermal exposure to, and ingestion of, hydrocarbon-impacted soil and inhalation of hydrocarbon vapors from soil in the

vicinity of the former dispenser islands. Outside of this area, dermal exposure is not likely, given the lack of any other known source of shallow soil impact.

Soil Parameters

Oakland's RBCA guidance provides "soil-specific transport parameter" values that reflect characteristics of three predominant soil types found in Oakland. RBSLs are calculated using parameter values established for the particular soil types. The three soil types identified by Oakland are Merritt sands, sandy silts and clayey silts. Based on the predominantly sand/sandy silt/silty-sand stratigraphy observed in soil borings drilled at the site (Attachment A), Cambria

selected the "sandy silts" soil type option for input for the analysis.

According to Oakland's guidance document, "Sandy silts are found throughout Oakland. They are made up of unconsolidated, moderately-sorted sand, silt, and clay sediments, with both fine-grained and course-grained materials. Sandy silts have a medium moisture content and moderate permeability."

Representative COC Concentrations

COCs in Subsurface Soil: To assess the risk to onsite and offsite occupants resulting from inhalation of hydrocarbon vapors, Cambria calculated the 95% upper confidence level (UCL) for BTEX compounds using all vadose-zone soil samples in which detectable levels of benzene were found. Because depth to groundwater has been less than 14 feet since monitoring began in 1996, soil samples collected from below 14 feet are not considered representative of unsaturated soil conditions and therfore are not used in this analysis. The 95% UCL was calculated using Groundwater Services, Inc. Tier 1 and Tier 2 RBCA Spreadsheet System, version 1.0.1. Results of these calculations are presented in Attachment D and representative concentrations used in this analysis are summarized in Table A.

COCs in Surface Soil: To assess the risk to construction workers by dermal exposure, ingestion and inhalation of vapors and particulates, the hydrocarbon impact to surface soils (0 to 3 fbg) was evaluated. The only samples collected between 0 to 3 fbg were six confirmation samples collected beneath dispensers and piping which were removed in November 1995. Benzene was detected in only 2 of these samples. The concentrations of BTEX compounds in these two samples were averaged for this analysis. The representative concentrations are presented in Table A.

COCs in Groundwater: For this analysis, Cambria used the 95% UCL for hydrocarbon concentrations detected in groundwater from soil borings GP-1 and GP-3 and from several site wells since December 2000 to represent onsite groundwater concentrations. Results of these calculations are presented in Attachment D. Representative concentrations used in this analysis are summarized in Table A.

Tier 2 Analysis

The final step in the Tier 2 analysis was to evaluate the exposure scenarios by comparing the calculated representative concentrations to Oakland's "sandy silts" RBSLs. The results of our Tier 2 analysis are summarized in Table B. Oakland's RBSLs for sandy silts are presented in Attachment D along with tables of sample results used to calculate representative chemical concentrations.

Table B - Results of Tier 2 Analysis

				CONTRACTOR STREET, CONTRACTOR ST				
Exposure Pathway	Receptor Scenario	Target Risk Level	Cakland RBSL for Sandy Silts (ppm)	Representative Concentrations (ppm)	Repres∋ntative Concentration vs. SSTL			
					Exceed	Below		
			B: 8.5 x 10 ¹	B: 5.7 x 10 ⁻¹ 🔻	- 30	х		
Ingestion, dermal exposure and	Commercial	4 40-5	T: 5.6 x 10⁴	T: 9.7 x 10 ⁻³		x		
inhalation of BTEX from surface soil	(construction worker)	1 x 10 ⁻⁵	E: 3.3 x 10 ⁴	E: 4.9 x 10 ⁻¹		х		
nom sanace son			X: 3.1 x 10 ⁵	X: 3.1		x		
	. ="		B: 2.0 x 10 ¹	B: 1.6 x 10 ⁻¹ 3°		Х		
Volatilization of BTEX from subsurface soil to	Residential	1 x 10 ⁻⁵	T: SAT	T: 2.9 x 10 ⁻¹		х		
outdoor air			E: SAT	E: 2.4 x 10 ⁻¹		x		
			X: SAT	X: 1.2		×		
			B: 1.1	B: 1.6 x 10 ⁻¹ 7 ≥		Х		
Volatilization of BTEX		1 x 10 ^{.5}	T: 5.7 x 10 ²	T: 2.9 x 10 ⁻¹		×		
from subsurface soil to indoor air	Residential		E: SAT	E: 2.4 x 10 ⁻¹		×		
			X: SAT	X: 1.2		х		
_			B: 1.0 x 10 ³	B: 9.5 x 10 ⁻¹	- 3000	Х		
Volatilization of BTEX from groundwater to	Residential	1 x 10 ⁻⁵	T: >Sol	T: 5.9 x 10 ⁻²		х		
outdoor air	Residential	1 1 10	E: >Sol	E: 2.5 x 10 ⁻¹		×		
			X: >Sol	X: 1.9 x 10 ⁻¹		Х		
			B: 3.4	B: 9.5 x 10 ⁻¹		х		
Volatilization of BTEX		_	T: >Sol	T: 5.9 x 10 ⁻²		х		
from groundwater iπto indoor air	Residential	1 x 10 ⁻⁵	E: >Sol	E: 2.5 x 10 ⁻¹		×		
			X: >Sol	X: 1.9 x 10 ⁻¹		Х		

BTEX: Benzene, Toluene, Ethylbenzene, Xylenes

SAT = RBSL exceeds saturated soil concentration of chemical

>Sol = RBSL exceeds solubility of chemical in water

All concentrations in ppm.

SSTL = Site-specific target level.

For Benzene, only the carcinogenic (most conservative) RBSL is listed. For Toluene, Ethylbenzene and Xylenes, the RBSL is Based on a hazard quotient of 1.0.

CONCLUSIONS

Although this risk evaluation incorporated conservative calculation of representative hydrocarbon concentrations in soil and groundwater and the conservative assumption of residential site use, the results indicate that residual hydrocarbons at this site do not pose a significant health risk to onsite or offsite occupants.

(3)

Hydrocarbon concentrations in groundwater are decreasing with time and distance from the former UST complex, which indicates that the plume in groundwater is collapsing due to natural attenuation. Natural attenuation of the residual hydrocarbons will continue to occur over time, which will further reduce the carcinogenic health risk.

We believe that the distribution of hydrocarbons onsite has been adequately defined and that no additional investigation or corrective action is necessary. Upon completion of the well survey and confirmation that no drinking water wells intercept impacted groundwater from the site, Cambria will submit a request for environmental case closure based on San Francisco Bay Regional Water Quality Control Board criteria for a low-risk fuel site.

CLOSING

We appreciate the opportunity to work with you on this project. Please call Melody Munz at (510) 420-3324 if you have any questions or comments.

Sincerely.

Cambria Environmental Technology, Inc.

Melody Munz Project Engineer

Stephan A. Bork, C.E.G., C.HG. Associate Hydrogeologist

Figures:

1 - Vicinity Map

2 - Soil Boring Locations Map

3 - Benzene Concentrations in Groundwater - MW-1

4 - Time-Attenuation – Benzene (MW-1 and VW/AS/3)

5 - Distance-Attenuation – Benzene

6 - Conceptual Site Model Exposure Pathways

Attachments:

A - Boring/Well Logs

B - Historical Soil and Groundwater Analytical Results

C - Oakland RBCA Eligibility Checklist

D - Oakland RBCA RBSLs for Sandy Silts and Representative Concentration

No. EG 2058 CERTIFIED

ENGINEERING

Calculations

cc:

Karen Petryna, Equiva Services LLC, P.O. Box 7869, Burbank, California 91510-7869 Tom Saberi, 1045 Airport Boulevard, Suite 12, South San Francisco, CA 94080 Matthew Dudley, Sedgwick, Detert, Moran, & Arnold, 1 Embarcadero Center, 16th Floor, San Francisco, CA 94111-3628

G:\Oakland 1230 14th\RBCA\1230 14th Oakland RBCA - Oakland Stds.doc

Former Shell Service Station

1230 14th Street Oakland, California Incident #97088250

Vicinity Map

CAMBRIA

Benzene Concentration in Groundwater 1230 14th Street, Oakland MW-1

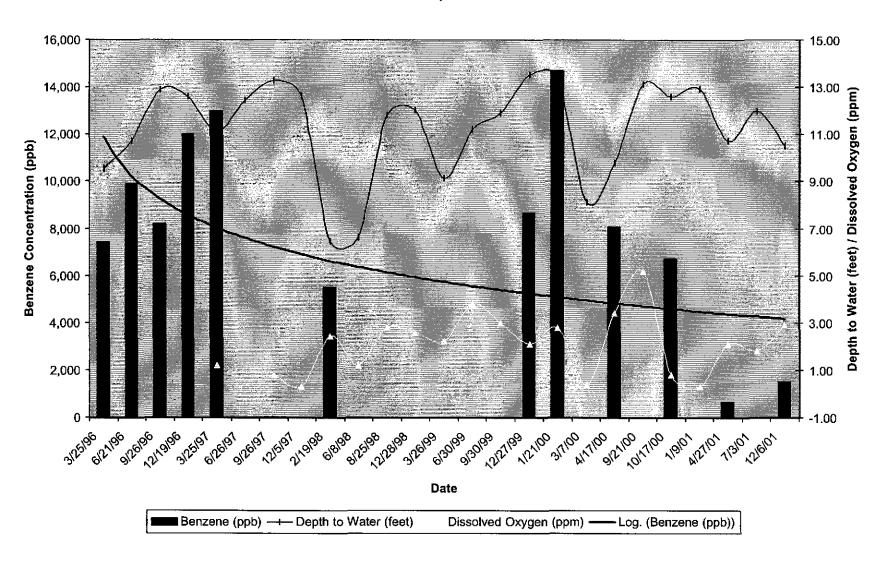
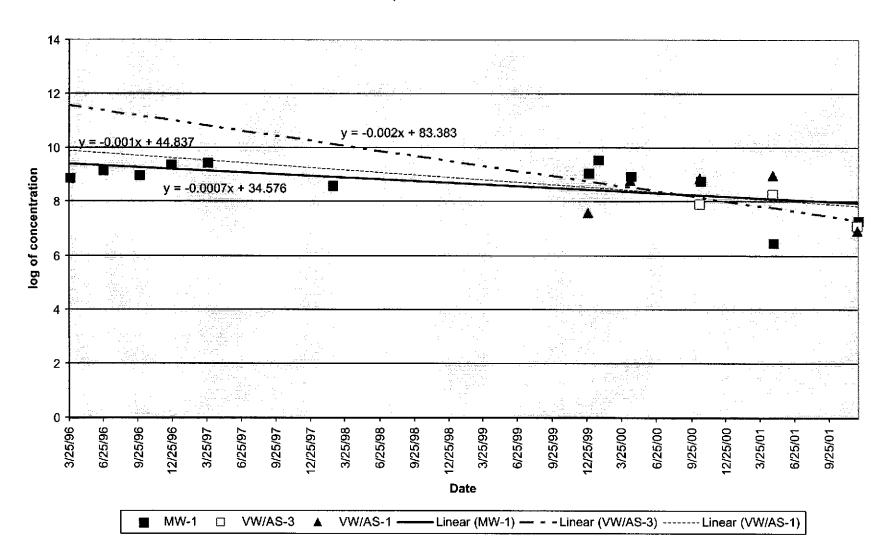
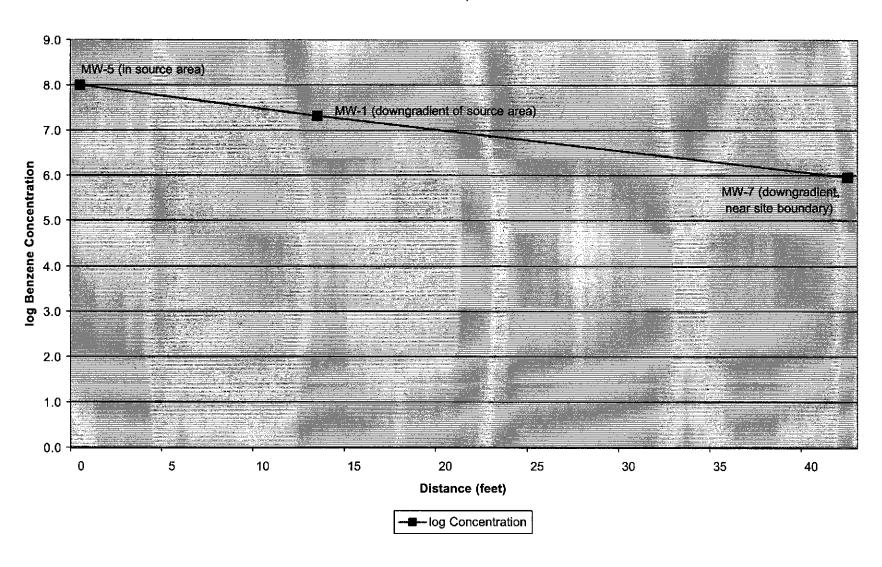




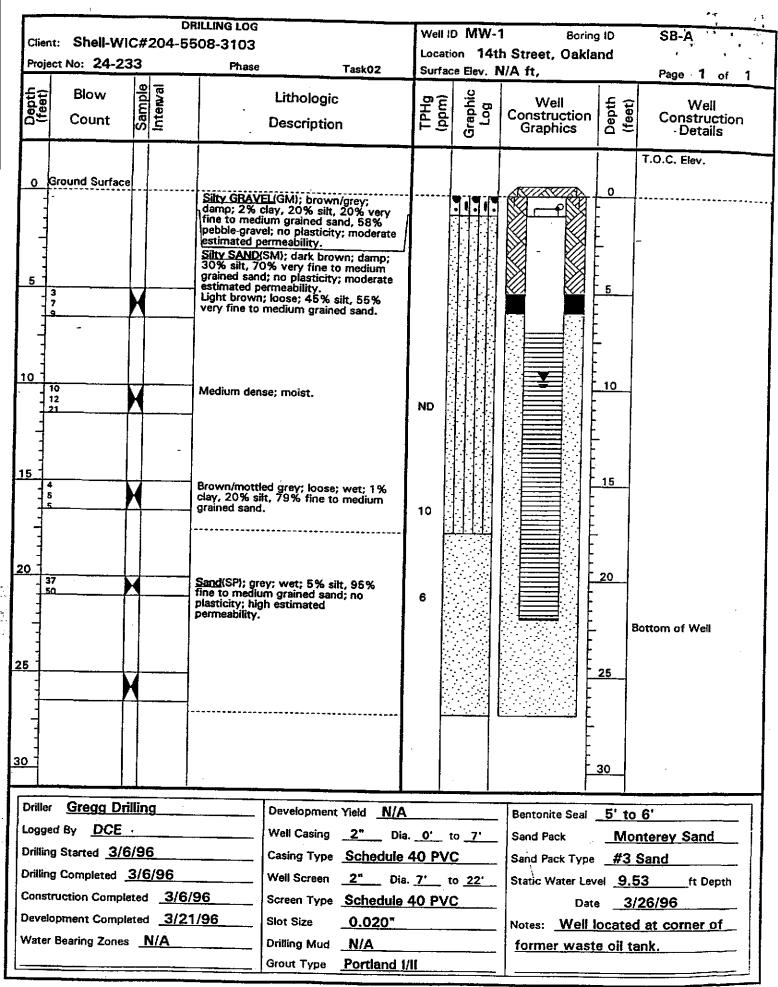
Figure 3

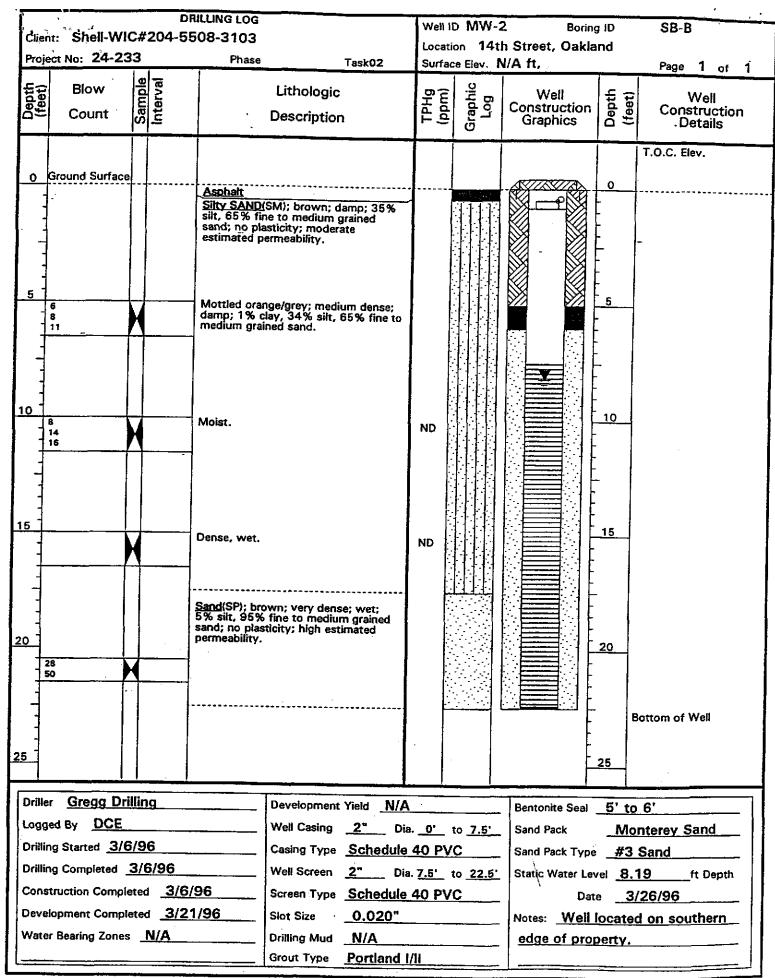
Time-Attenuation - Benzene 1230 14th Street, Oakland - MW-1 and VW/AS-3

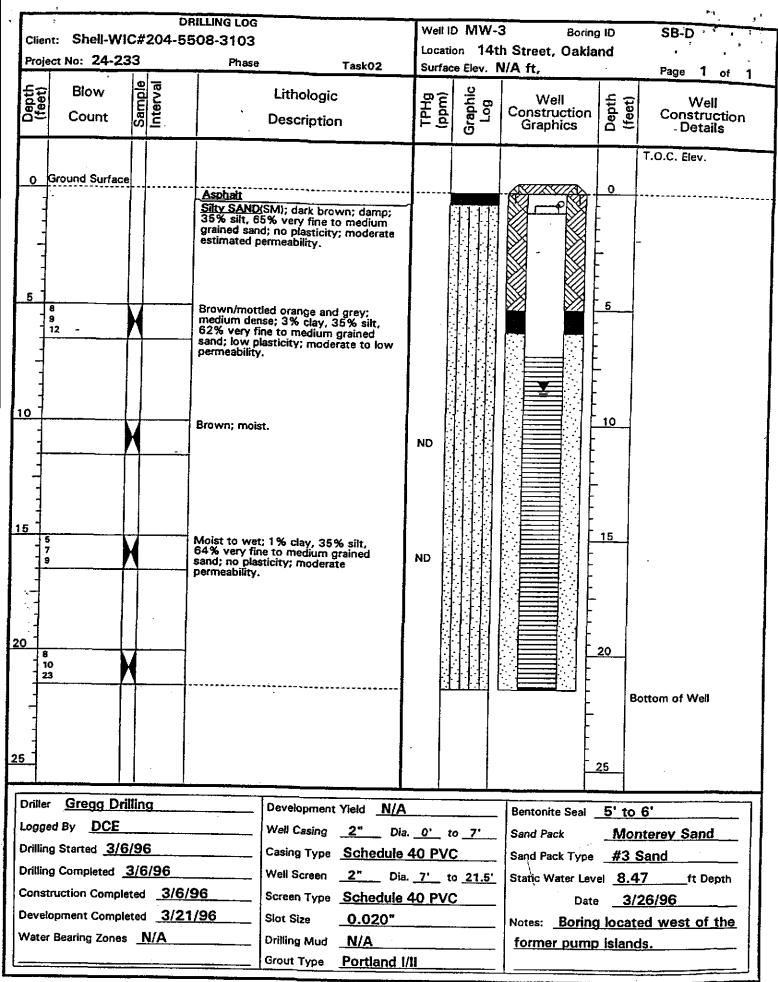
Distance-Attenuation - Benzene 1230 14th Street, Oakland

Former Shell Service Station

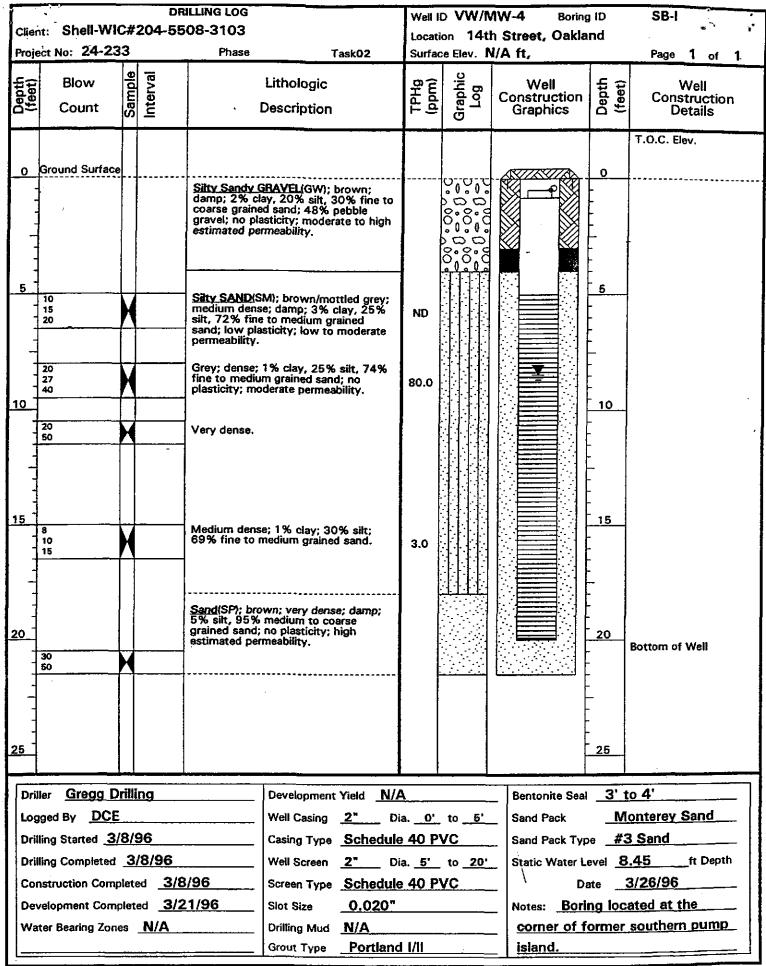
1230 14th Street Oakland, California Incident #97088250


14TH\FIGURES\PDF\CNCPT-CHART.PDF

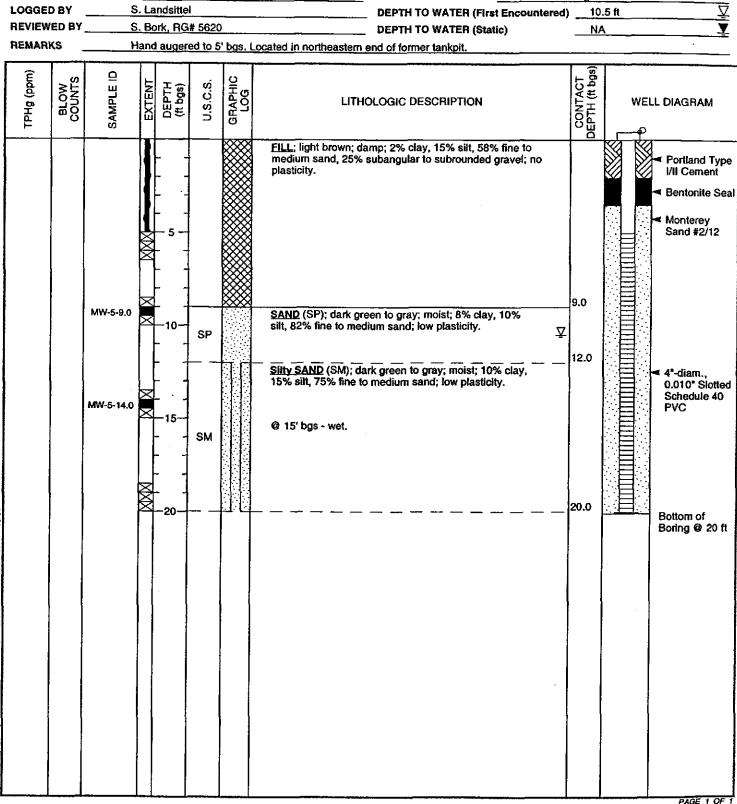



CAMBRIA

Conceptual Site Model Exposure Pathways ATTACHMENT A


Boring/Well Logs

DRILLING LOG Client: Shell-WIC#204-5508-3103								vW/N on 14th		Boring Oakla		SB-G
Project No: 24-233 Phase					Tas	k02	1	e Elev. N				Page 1 of 1
Depth (feat)	Blow	Sample	Interval		Lithologic Description		TPHg (ppm)	Graphic Log	We Constr Grap	uction	Depth (feet)	Well Construction Details
10 15 20	Ground Surface 4 5 6 4 8 13 20 25 29	X		damp; 2% clamedium gravel; no platestimated per stimated	RAVEL(GW); broay, 20% silt, 30% ed sand; 48% posticity; moderate meability. The blocked by room in grained sand; mated permeability mated permeability in grained sand; in grained s	K fine to ebble to high to high with the high with high with the high with high with the high with high					10	Bottom of Well
	Driller Gregg Drilling Development Yield N//								_	nite Seal		· · · · · · · · · · · · · · · · · · ·
	Logged By DCE Well Casing 2" D							•		· ·	lonterey Sand	
D	Drilling Started 3/7/96 Casing Type Schedul				Schedule	40 P	VC				3 Sand	
D	rilling Completed	3	7/96		Weil Screen	2" Di	ia. <u>6'</u>	to <u>22'</u>	Static	Water L		•
c	onstruction Com	olete	ed <u>3/7</u>	<u>'/96</u>	Screen Type	<u>Schedule</u>	40 P	VC	- '	_	·	3/26/96
D	evelopment Com	plete	ed <u>3/2</u>	1/96	Slot Size _	0.020"			_ Notes	: <u>Wel</u>	l locat	ted at the center
Water Bearing Zones N/A D					Drilling Mud _	N/A Portland	of the property.					


WELL LOG (SHELL) G:YOAKLAN-ZIGINTIOK-1230,GPJ DEFAULT,GDT

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700

Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME Equiva Services LLC MW-5 **BORING/WELL NAME JOB/SITE NAME** Shell-branded Service Station **DRILLING STARTED** 27-Sep-01 LOCATION 1230 14th Street, Oakland, California DRILLING COMPLETED 27-Sep-01 PROJECT NUMBER 243-0233 WELL DEVELOPMENT DATE (YIELD) DRILLER Gregg Drilling Not Surveyed **GROUND SURFACE ELEVATION** DRILLING METHOD Hollow-stem auger TOP OF CASING ELEVATION NA BORING DIAMETER 10° SCREENED INTERVAL S. Landsittel LOGGED BY DEPTH TO WATER (First Encountered) ___10.5 ft REVIEWED BY_ S. Bork, RG# 5620 **DEPTH TO WATER (Static)** NΑ REMARKS

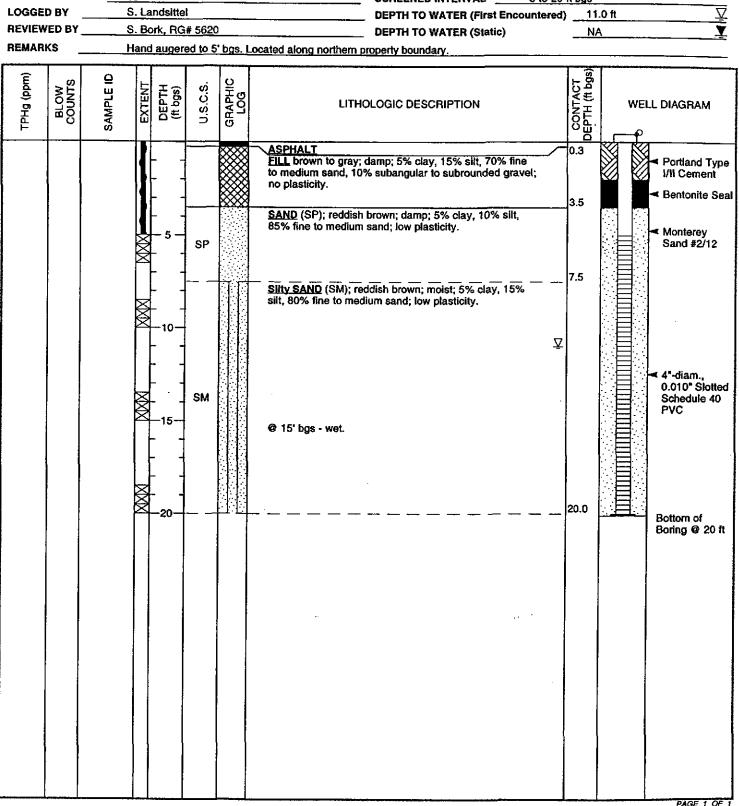
Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

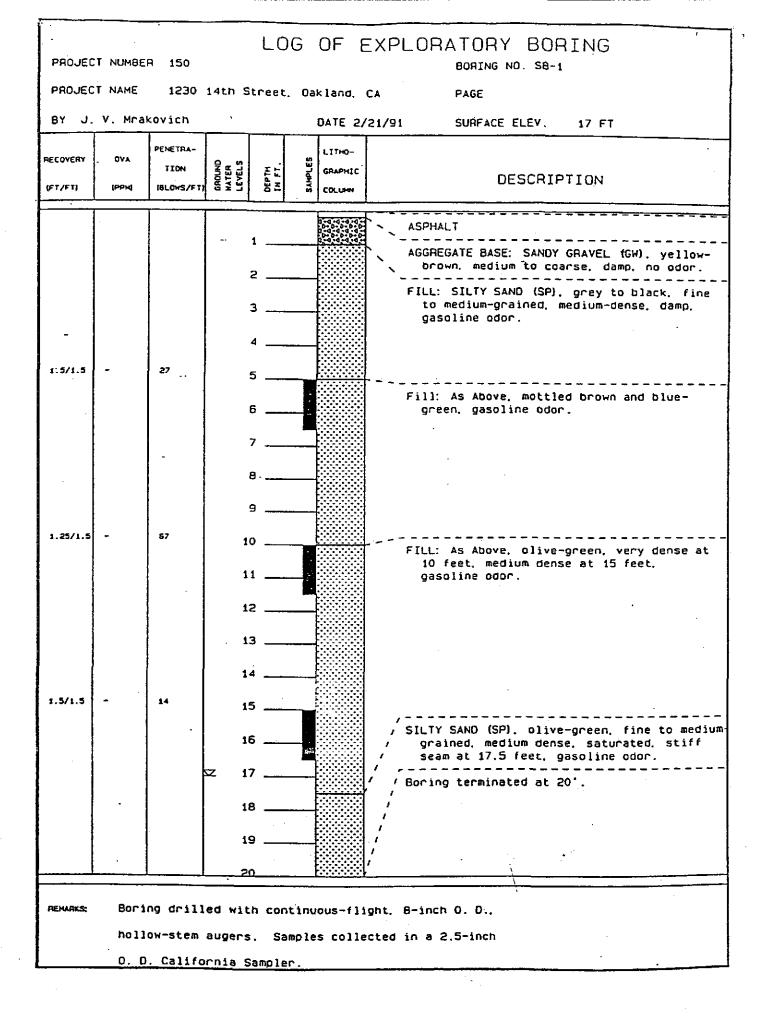
BORING/WELL LOG

PAGE 1 OF

CLIENT NAME Equiva Services LLC MW-6 BORING/WELL NAME JOB/SITE NAME 27-Sep-01 Shell-branded Service Station DRILLING STARTED 1230 14th Street, Oakland, California DRILLING COMPLETED 27-Sep-01 LOCATION WELL DEVELOPMENT DATE (YIELD) PROJECT NUMBER _ 243-0233 NA Gregg Drilling Not Surveyed DRILLER **GROUND SURFACE ELEVATION** DRILLING METHOD __ Hollow-stem auger TOP OF CASING ELEVATION __NA BORING DIAMETER ___ SCREENED INTERVAL 5 to 20 ft bgs S. Landsittel LOGGED BY DEPTH TO WATER (First Encountered) 11.0 ft S. Bork, RG# 5620 **DEPTH TO WATER (Static)**

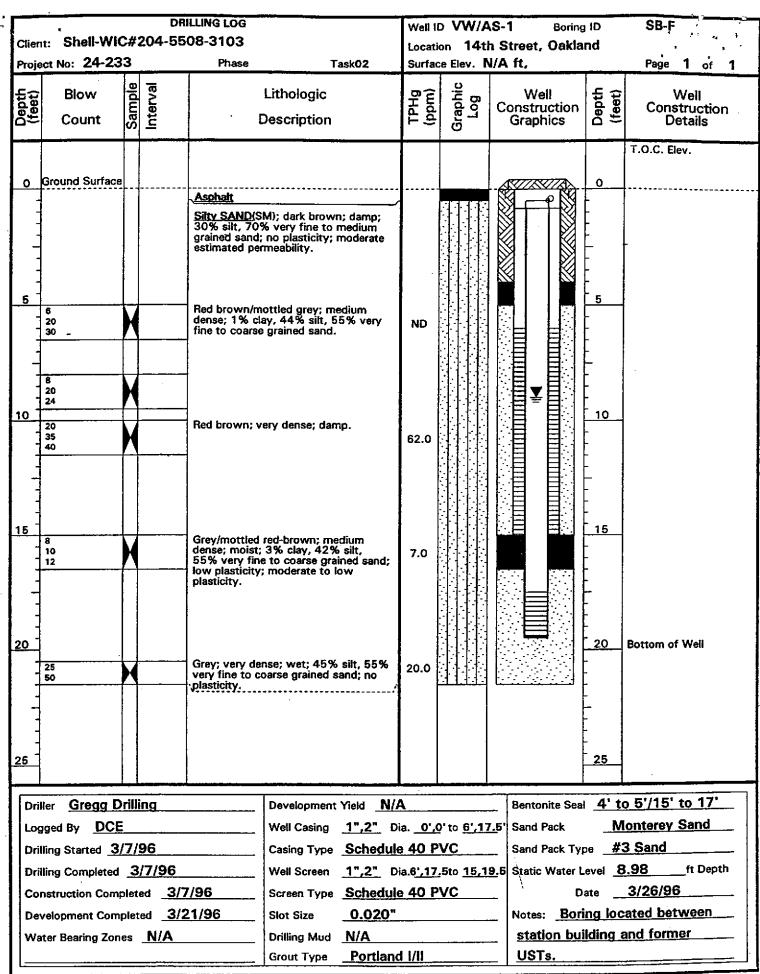
REVIEWED BY REMARKS Hand augered to 5' bgs. Located along eastern property boundary. CONTACT DEPTH (# bgs) (mdd) BLOW GRAPHIC LOG U.S.C.S. DEPTH (ft bgs) EXTENT SAMPLE TPHg (LITHOLOGIC DESCRIPTION **WELL DIAGRAM** ASPHALT
Silty SAND (SM); brown; damp; 5% clay, 15% silt, 80% 0.3 Portland Type fine to medium sand; low plasticity. I/II Cement Bentonite Seal Monterey Sand #2/12 @ 8.5' bgs - moist. SM Δ 4 -diam., 0.010" Slotted Schedule 40 PVC @ 14.5' bgs - reddish brown; wet; 8% clay, 15% silt, 77% fine to medium sand. @ 19' bgs - reddish brown; 10% clay, 15% silt; 75% fine to 20.0 20 Bottom of Boring @ 20 ft

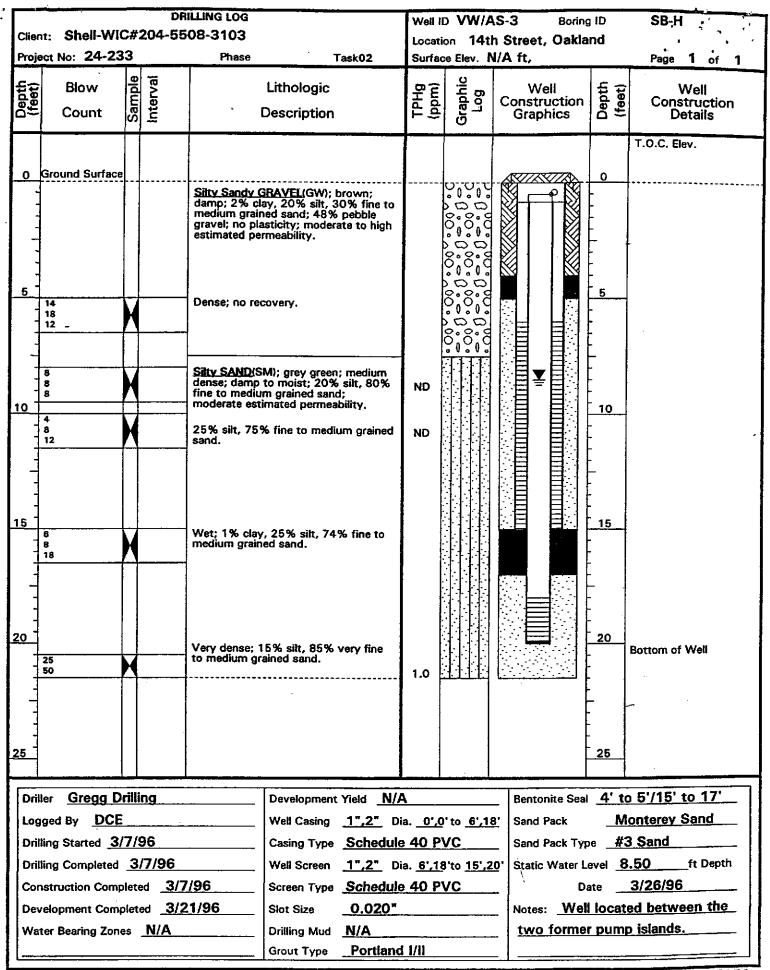



WELL LOG (SHELL) G:OAKLAN-ZIGINTIOK-1230.GPJ DEFAULT.GDT 11/5/01

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

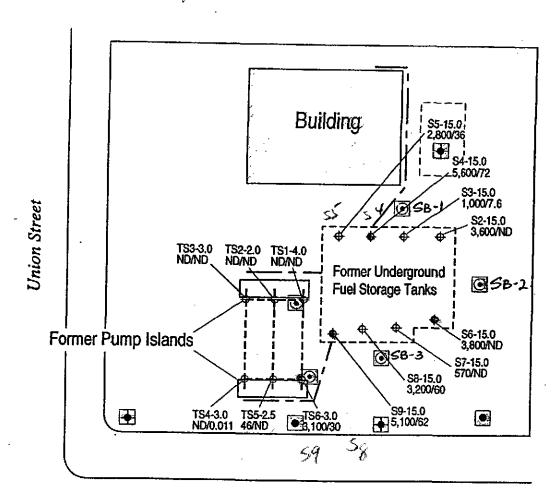

CLIENT NAME Equiva Services LLC **BORING/WELL NAME** MW-7 JOB/SITE NAME Shell-branded Service Station **DRILLING STARTED** 27-Sep-01 1230 14th Street, Oakland, California LOCATION DRILLING COMPLETED 27-Sep-01 PROJECT NUMBER 243-0233 WELL DEVELOPMENT DATE (YIELD) DRILLER Gregg Drilling Not Surveyed **GROUND SURFACE ELEVATION DRILLING METHOD** Hollow-stem auger TOP OF CASING ELEVATION NA BORING DIAMETER 10" SCREENED INTERVAL 5 to 20 ft bgs S. Landsittel DEPTH TO WATER (First Encountered) 11.0 ft S. Bork, RG# 5620 **DEPTH TO WATER (Static)** NA



LOG OF EXPLORATORY BORING PROJECT NUMBER 150 BORING NO. SB-2 PROJECT NAME 1230 14th Street, Oakland, CA PAGE BY J. V. Mrakovich DATE 2/21/91 SURFACE ELEV. 17 FT PENETRA-LITHO-DVA RECOVERY TION GRAPHIC - " DESCRIPTION (FT/FT) (PPH) (BLOWS/FT) COLUMN **ASPHALT** FILL: SAND (SP), brown, fine to mediumgrained, medium dense, damp, musty odor. 1.25/1.5 22 FILL: CLAYEY, SILTY SAND (SP), red-brown, 5% fine gravel, organics, damp, musty odor. FILL: SILTY SAND (SP). olive-green, fine to medium-grained, dense, damp, gasoline odor 1.5/1.5 13 . Boring terminated at 15'; sampled to 16.5'. 1.5/1.5 15 Boring drilled with continuous-flight. 8-inch O. D.. REMARKS: hollow-stem augers. Samples collected in a 2.5-inch O. D. California Sampler.

LOG OF EXPLORATORY BORING PROJECT NUMBER BORING NO. SB-3 PROJECT NAME 1230 14th Street, Oakland, CA PAGE BY J. V. Mrakovich DATE 2/21/91 SURFACE ELEV. 17 FT PEHETRA-LITHO-RECOVERY OVA TION DEPTH IN FT. GRAPHIC DESCRIPTION (FT/F1) (PPH) (BLOWS/FT) COLUMN **ASPHALT** AGGREGRATE BASE AND FILL: GRAVELLY SAND (SP) yellow-brown first 3-inches, then grey. fine to coarse-grained, red brick fragments, damp, strong gasoline odor; SILTY SAND (SP), olive-green, fine to medium-grained, dense, damp, strong 1.5/1.5 34 gasoline odor. FILL: As Above, mottled red-brown and grey. gasoline odor. FILL: As Above, brown, minor clay, very dense at 10 feet, dense and saturated at 15 feet, gasoline odor. 1.5/1.5 65 10 12 13 Boring terminated at 15': sampled to 16.5'. 1.5/1.5 32 15 15 . REHARKS: Boring drilled with continuous-flight. 8-inch O. D.. hollow-stem augers. Samples collected in a 2.5-inch O. O. California Sampler.

BORING LOG Client: Shell-WIC#204-5508-3103										SB-J				
	ject No: 24-2:		ے.	.U -51	Phase	Ta	sk	02	Location 14th Street, Oakland , Surface Elev. N/A ft, Page					Page 1 of 1
Depth	Blow	Sample		Interval		Lithologic Description		- ·	TPHg (apm)		i	Boring Completion Graphics	Depth	
0	Ground Surfa	ce			Asphalt Silty SAND(3) 30% silt, 70 grained sand estimated pe	SM); dark brown; % very fine to fir ; no plasticity; m rmeability.	dai ne ode	mp; erate			TING TIROTTRATTA		0	
5	10 10 13	X			fine to fine o	t <u>y SAND(</u> SM); reced grey; medium clay, 20% silt, 68 rained sand; low vestimated perm	1%	very			SATUSATUS ATTICA		5	
10	20 20 25	X			Sitty SAND(S tan; dense; d 79% fine to i plasticity; mo	M); Red/brown/π amp; 1% clay, 20 nedium grained s derate permeabili	nott 0% and ity.	led silt, l; no	ND		TING THE TOTAL STATE OF THE TANK THE THE TANK TH		10	
15	10 20 70	X			Brown; wet; ; medium grain	20% silt, 80% fir ed sand.	ne to	o					15	Bottom of Boring
20									-			:	20	
Dril	ler Gregg D	rilli	ng	9		Drilling Started	3/	8/96				Notes: Bo	ring loc	eated on
Log	ged By <u>DCE</u>					Drilling Complet	ed	3/8/9	96		_			
Wa	ter-Bearing Zone	I/A			Type Portland I/II					property.				

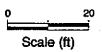

BORING LOG								Boring ID SB-E								
Clie	Client: Shell-WIC#204-5508-3103							Location 14th Street, Oakland							*	
Proj	Project No: 24-233 Phase Task 02							Surface Elev. N/A ft, Page 1 of							of '	1
Depth Feet	Blow	Sample	Interval	·	Lithologic Description			TPHg (ppm)	Graphic Log	Borin Comple Graph	tion	Depth Feet		ditior nmer	nal	
5	Ground Surface	**************************************		permeasurcy	SM); dark brow % silt; 56% fir ned sand; low trate estimated nottled grey; m ; 3% clay, 379 medium graine city; moderate							5				
10	11 14 21	X		Brown: 35%	silt, 65% fine ; no plasticity.			ND				10				,
15	4 4 6	X		i to medium ai	lay, 34% silt, 6 rained sand; mo d permeability.	oderate :	to	ND				15				
20	11 19 22	X	: 	Medium dens fine to mediu moderate esti	e; wet; 35% si m grained sand imated permeal	iit, 65% i; bility.						20	Bottom of	Borin	g	
25			. = 10/2/10									25		·		
Dril	ier <u>Gregg Dr</u>	jlli	ng		Drilling Starte	d 3/6	/96			Notes:	Boris	na loc	ated on	the		
1				-						-						
Log	iged By <u>DCE</u>	-			Drilling Comp	leted 🚨	3/6/9	16		_ <u>north</u>	easter	n cori	ner of th	<u>e</u>		
Water-Bearing Zones N/A Grout Type Portland I/I							/11		prope	rty.						

	BORING LOG							Boring ID SB-C					
Clie	Client: Shell-WIC#204-5508-3103						Location 14th Street, Oakland						
Proj	Project No: 24-233 Phase Task 02												
Depth Feet	Blow Count	Sample	Interval		Lithologic Description	TPHg		Graphic Log	Boring Completion Graphics	Depth	Page 1 of 1 Additional Comments		
5	Ground Surface	**************************************		1 43 70 SHL. A	2(SM); dark brown; damp; 75% fine to medium graine lasticity; moderate permeability. Occasional /4".	d				5	-		
	10 17 16			Medium der	nse.	ND				10			
15	5	1		Sandy SILT(5% clay, 50 medium grai low permeat	ML); brown; loose; damp; % silt, 45% very fine to ned sand; low plasticity; bility.	2.00				15			
20				Sand(SP); brisit, 90% finition opinion permeability.	own; dense; wet; 10% e to medium grained sticity; high estimated						·		
1 2	57.8									_20 _ _ _ _ _	Bottom of Boring		
5									<u> </u>	25			
Drille	Gregg Dril	ling			Drilling Started 3/6/96				Notes: Rori	na loc	ated near the		
Logge	ed By DCE	-	·		Drilling Completed 3/6/				west corne		i i		
Wate	Water-Bearing Zones N/A Grout Type Portland I/I												

" BORING LOG			Borin					
Client: Shell-WIC#204-5508-3103		Loania - 1 <i>1</i> 1	SB-C					
Project No: 24-233 Phase	1	Surface Elev.	th Street, Oakl N/A ft	Dans 4 . e				
Depth Feet Anno Sample Interval		(ppm) (spm) Graphic Log	Boring Completion Graphics	Depth Feet	Page 1 of T Additional Comments			
				ļ <u> </u>	Comments			
O Ground Surface Asphalt				0				
Sity SANI 25% sit, sand; no p estimated gravel to 1 No gravel.	Q(SM); dark brown; damp; 75% fine to medium grained plasticity; moderate permeability. Occasional /4".				_			
5 - Light brow	n; loase.			5				
10 10 17 16 Medium de		D D		10				
Sandy Sil T. 5% clay, 50 medium gra low permeal	(ML); brown; loose; damp;)% silt, 45% very fine to ined sand; low plasticity; bility.	00		15				
Sand(SP); br silt, 90% fin sand; no pla permeability.	rown; dense; wet; 10% e to medium grained sticity; high estimated			20				
5			-	25B	ottom of Boring			
Driller Gregg Drilling	Drilling Stored 2/0/00		\					
Logged By DCE	Drilling Started 3/6/96 Drilling Completed 3/6/96	Notes: Boring located near the west corner of the station						
Water-Bearing Zones N/A	Grout Type Portland I/II			or tile	- stativii			
Grout Type Portland I/II building.								

ATTACHMENT B

Historical Soil and Groundwater Analytical Results



14th Street

LEGEND

- Sample ID-Depth (ft)
 TPHg/Benzene Concentration in ppm
- ------ Former Vent Piping
- --- Former Product Piping
- ND = Not Detected
- Proposed Ground Water Monitoring Well
- Proposed Combination Air Sparge/Soil Vapor Extraction Wells
- Proposed Soil Boring

Base Map by Tank Protect Engineering

CAMBRIA

Environmental Technology, Inc.

Former Shell Service Station WIC # 204-4878-1300 1230 14th Street

Oakland, California

D:/PROJECT/SHELL/OAKLAND/SITE.DWG

Proposed Soil

Boring and Well Locations

FIGURE

1

Tank Protect Engineering of N. Calif Client Project ID:

2821 Whipple Road

Union City, CA 94587 Attention: John Mrakovich Matrix Descript: Analysis Method:

First Sample #:

#150B-022191

Soil

EPA 5030/8015/8020 102-0534 Sampled: Received:

Feb 21, 1991 Feb 22, 1991

Analyzed: Reported:

Feb 28, 1991 Mar 1, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
102-0534	S81-6-6.5	11	0.014	0.37	0.22	1.2
102-0535	SB1-10.5-11	4.6	0.15	0.50	0.13	0.68
102-0536	SB1-15.5-16	7.5	2.1	1.8	0.18	1.1
102-0537	\$82-6-6.5	N.D.	. N.D.	N.D.	N.D.	0.034
102-0538	SB2-10.5-11	1.8	0.062	0.038	0.035	0.082
102-0539	\$82-15.5-16	6.1	1.2	1.4	0.15	0.80
102-0540	SB3-6-6.5	N.D.	0.038	0.0054	0.015	0.034
102-0541	SB3-10.5-11	1,600	18	98	35	190
102-0542	SB3-15.5-16	2.4	0.31	0.21	0.064	0.35

		· · · · · · · · · · · · · · · · · · ·		-		<u></u>	
	Detection Limits:	4.0	0.0050	0.0050	0.0050		
ľ		1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. we're not present above the stated limit of detection.

EQUOIA ANALYTICAL

Julia R. Maierstein Rrolect Manager 6-14-93

1020534.TPE <1>

Table 1. Soil Analytic Data - Former Shell Service Station - 1230 14th Street, Oakland, California

Boring/	Date	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes
well ID	Sampled	Depth (ft)		All concentratio	ns in parts per million (m	g/kg)	
				·			
Product Pipir	ng Samples			-0.00E0	0.0050	<0.0050	<0.0050
TS-1-4.0	11/27/95	4.0	<1.0	<0.0050		<0.0050	0.0075
TS-2-2.0	11/27/95	2.0	<1.0	<0.0050	0,0057		0.0069
TS-3-3.0	11/27/95	3.0	<1.0.	<0.0050	<0.0050	<0.0050	
TS-4-3.0	11/27/95	3.0	<0.0	0.011	0.038	0.0073	0.043
TS-5-2.5	11/27/95	2.5	46	<0.10	<0.10	<0.10	2.0
TS-6-3.0	11/27/95	3.0	3,100	30	<6.0	33	230
Tanknit Exce	avation Samples	•					420
82-15.0	11/27/95	15.0	3,600	<6.0	140	78	430
S3-15.0	11/27/95	15.0	1,000	7.6	33	19	100
S4-15.0	11/27/95	15.0	5,600	72	280	110	580
S5-15.0	11/27/95	15.0	2,800	36	160	64	350
S6-15.0	11/27/95	15.0	3,800	<6.0	<6.0	76	350
	11/27/95	15.0	570	< 0.50	<0.50	4.9	13
\$7-15.0		15.0	3,200	60	200	69	350
S8-15.0 S9-15.0	11/27/95 11/27/95	15.0	5,100	62	260	110	570

Abbreviations
TPHg = Total petroleum hydrocarbons as gasoline
<x.xx = not detected above x.xx ppm detection limit

Notes

TPHg analyzed by modified EPA Method 8015

Benzene, ethylbenzene, toluene and xylenes analyzed by EPA Method 8020

CAMBRIA

Table 1 Soil Analytical Results - Former Shell-branded Service Station, 1230 14th St., Oakland, California - Incident #97088250

Sample ID	Date	Depth (fbg)	TPHg	Benzene	Toluene	Ethyl-benzene — mg/kg (ppm) —	Xylenes	мтве	Petroleum Oîl and Grease
MW-5-9.5	9/27/01	9.5	3.9	<0.0050	<0.0050	0.0069	0.019	<0.50	
MW-5-14.0	9/27/01	14.5	790	2.7	30	11	67	<1.0	
GP-1-5	12/11/00	5.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-1-10	12/11/00	10.0	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	
GP-1-15	12/11/00	15.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-1-20	12/11/00	20.0	120	<0.020	0.022	0.64	1.1	<0.020	_
GP-2-5	12/11/00	5.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-2-10.5	12/11/00	10.5	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	
GP-2-15	12/11/00	15.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-3-5	12/11/00	5.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-3-10.0	12/11/00	10.0	<1.0	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	
GP-3-15.0	12/11/00	15.0	<1.0	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	
GP-4-5	12/11/00	5.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-4-10	12/11/00	10.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-4-15	12/11/00	15.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
GP-5-5	12/11/00	5.0	<1.0	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	

CAMBRIA

Table 1 Soil Analytical Results - Former Shell-branded Service Station, 1230 14th St., Oakland, California - Incident #97088250

Sample ID	Date	Depth	ТРНд	Benzene	Toluene	Ethyl-benzene	Xylenes	МТВЕ	Petroleum Oil and Grease
		(fbg)				mg/kg (ppm) —	·		
GP-5-10	12/11/00	10.0	<1.0	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
GP-5-15	12/11/00	15.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
SB-A/(MW-1)-10.5	03/06/96	10.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		160
SB-A/(MW-1)-16.0	03/06/96	16.0	9.8	1.9	0.4	0.22	1.1		57
SB-A/(MW-1)-20.5	03/06/96	20.5	5.9	0.89	0.049	0.19	0.25		80
SB-B/(MW-2)-10.5	03/06/96	10.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-B/(MW-2)-16.0	03/06/96	16.0	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-C-11.75	03/06/96	11.8	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-C-15.5	03/06/96	15.5	1.9	0.022	0.12	0.086	0.32		
								•	
SB-D/(MW-3)-10.5	03/06/96	10.5	<1.0	< 0.0025	< 0.0025	<0.0025	< 0.0025		
SB-D/(MW-3)-15.5	03/06/96	15.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-E-10.5	03/06/96	10.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		<50

CAMBRIA

Table 1 Soil Analytical Results - Former Shell-branded Service Station, 1230 14th St., Oakland, California - Incident #97088250

Sample ID	Date	Depth (fbg)	ТРНg	Benzene	Toluene	Ethyl-benzene — mg/kg (ppm) —	Xylenes	МТВЕ	Petroleum Oil and Grease
SB-E-16.0	03/06/96	16.0	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		200
SB-F(VW/AS)-1-5.5	03/07/96	5.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		~~
SB-F(VW/AS-1)-10.5	03/07/96	10.5	62	0.97	4.2	1.4	8.0		
SB-F(VW/AS-1)-15.5	03/07/96	15.5	7.4	1.7	0.44	0.2	0.6		
SB-F(VW/AS-1)-20.5	03/07/96	20.5	20	2.6	1.7	0.5	2.0		
SB-G(VW/MW-2)-8.5	03/07/96	8.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-G(VW/MW-2)-10.5	03/07/96	10.5	<1.0	0.0032	< 0.0025	<0.0025	<0.0025		
SB-G(VW/MW-2)-20.5	03/07/96	20.5	2.9	0.47	0.34	0.15	0.57		
SB-H(VW/AS-3)-8.5	03/07/96	8.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-H(VW/AS-3)-10.5	03/07/96	10.5	<1.0	0.018	< 0.0025	<0.0025	0.014		
SB-H(VW/AS-3)-21.0	03/07/96	21.0	1.0	0.047	0.016	0.0037	0.017		
SB-I(VW/MW-4)-5.5	03/08/96	5.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-I(VW/MW-4)-8.5	03/08/96	8.5	80	0.14	0.33	1.3	5.2		

Table 1 Soil Analytical Results - Former Shell-branded Service Station, 1230 14th St., Oakland, California - Incident #97088250

Sample ID	Date	Depth (fbg)	ТРНg	Benzene	Toluene	Ethyl-benzene — mg/kg (ppm) —	Xylenes	МТВЕ	Petroleum Oil and Grease
SB-I(VW/MW-4)-15.5	03/08/96	15.5	3.4	0.23	0.093	0.1	0.42		
SB-J-10.5	03/08/96	10.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		
SB-K(MW-4)-10.5	03/08/96	10.5	<1.0	<0.0025	<0.0025	<0.0025	<0.0025		

Abbreviations and Notes:

ppm = parts per million (milligrams per kilogram).

TPHg = Total Petroleum Hydrocarbons as gasoline, analyzed by EPA Method 8015 in 3/6/96 event; by EPA Method 8260B for susequent events.

Benzene, toluene, ethylbenzene, and xylene analyzed by EPA Method 8020 in 3/6/96 event; by EPA Method 8260B for subsequent events

MTBE = Methyl tertiary butyl ether, analyzed by EPA Method 8260B.

Petroleum oil and grease (POG) by Standard Method 5520.

ppm=parts per million

^{-- =} Not sampled

<x=not detected above x ppm

WELL CONCENTRATIONS Former Shell Service Station

1230 14th Street Oakland, CA

							MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	T	E	X	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)						
MW-1	03/25/1996	37,000	7,400	1,500	720	3,300	<500	NA	18.58	9.53	9.05	NA
MW-1	06/21/1996	35,000	9,900	460	340	3,500	890	NA	18.58	10.72	7.86	NA
MW-1	09/26/1996	19,000	8,200	510	780	790	<250	NA	18.58	12.88	5.70	NA_
MW-1	12/19/1996	27,000	120	1,200	1,400	2,800	<100	NA	18.58	12.59	5.99	NA
MW-1	12/19/1996	32,000	12,000	1,300	1,600	3,100	830	NA	18.58	12.59	5.99	NA
MW-1	03/25/1997	39,000	13,000	1,600	840	3,100	730	NA	18.58	11.10	7.48	1.2
MW-1	06/26/1997	NA	NA	NA	NA	NA	NA	NA :	18.58	12.42	6.16	NA
MW-1	09/26/1997	NA	NA	NA NA	NA	NA	NA	NA	18.58	13.31	5.27	0.8
MW-1	12/05/1997	NA	18.58	12.65	5.93	0.3						
MW-1	02/19/1998	16,000	5,500	450	500	800	<500	NA	18.58	6.46	12.12	2.4
MW-1	06/08/1998	NA	NA.	_NA	NA	NA	NA	NA	18.58	6.62	11.96	1.2
MW-1	08/25/1998	NA	NA	NA	NA	NA	NA	NA_	18.58	11.83	6.75	2.8
MW-1	12/28/1998	NA	18.58	12.01	6.57	2.6						
MW-1	03/26/1999	NA	18.58	9.15	9.43	2.2						
MW-1	06/30/1999	NA	18.58	11.22	7.36	3.8						
MW-1	09/30/1999	NA	18.58	11.89	6.69	3.0						
MW-1	12/27/1999	34,800	8,660	953	956	2,770	<1,000	NA	18.58	13.55	5.03	2.4/2.1
MW-1	01/21/2000	40,600	14,700	1,850	1,210	3,670	<500	NA	18.58	13.42	5.16	2.8
MW-1	03/07/2000	NA	18.58	8.11	10.47	0.4						
MW-1	04/17/2000	NA	18.58	9.78	8.80	3.0/3.4						
MW-1	04/18/2000	18,300	8,060	543	528	872	<50.0	NA	18.58	NA	NA	NA
MW-1	09/21/2000	NA	18.58	13.11	5.47	5.2						
MW-1	10/17/2000	15,800	6,720	435	587	887	351	<66.7	18.58	12.61	5.97	1.2/0.8
MW-1	01/09/2001	NA	NA	NA	NA	NA	NA	NA_	18.58	12.94	5.64	0.3
MW-1	04/27/2001	1,400	650	28	58	48	NA	<10	18.58	10.73	7.85	1.8/2.1
MW-1	07/03/2001	NA	18.58	12.00	6.58	1.8						
MW-1	12/06/2001	4,500	1,500	85	160	210	NA	<50	18.58	10.53	8.05	2.5/2.9

WELL CONCENTRATIONS Former Shell Service Station 1230 14th Street Oakland, CA

					<u> </u>	7-3300-0	MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	т	E	x	8020	8260	тос	Water	Elevation	
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	Reading (ppm)
		(-3/	1-3/	<u> </u>	(-9/	(-9,-/	(g/- _/	109127	(NICE)	1 (10.)	(NICE)	(ррпі)
MW-1	01/23/2002	NA	NA	NA	NA	NA	NA	NA	18.58	9.33	9.25	0.1
										*		
MW-2	03/25/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	8.19	9.71	NA
MW-2	06/21/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	9.94	7.96	NA
MW-2	09/26/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	12.15	5.75	NA.
MW-2	12/19/1996	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NA	17.90	11.70	6.20	NA
MW-2	03/25/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	9.25	8.65	 1.8
MW-2	06/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	11.36	6.54	2.4
MW-2	09/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	12.56	5.34	1.1
MW-2	09/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	12.56	5.34	1.1
MW-2	12/05/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	11.15	6.75	0.7
MW-2	02/19/1998	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	17.90	5.61	12.29	2.7
MW-2	06/08/1998	<50	<0.30	<0.30	<0.30	<0.60	<10	NA	17.90	5.58	12.32	3.2
MW-2	08/25/1998	NA	NA	NA	NA	NA	NA	NA	17.90	10.67	7.23	1.7
MW-2	12/28/1998	<50.0	<0.500	<0.500	<0.500	<0.500	<2.00	NA	17.90	11.65	6.25	0.4/0.8
MW-2	03/26/1999	NA	NA	NA	NA	NA	NA	NA	17.90	8.60	9.30	0.7
MW-2	06/30/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00	NA	17.90	10.30	7.60	2.3
MW-2	09/30/1999	NA	NA	NA.	NA	NA	NA	NA	17.90	10.77	7.13	1.9
MW-2	12/27/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00	NA	17.90	12.21	5.69	0.7/0.7
MW-2	03/07/2000	NA	NA	NA	NA	NA	NA	NA	17.90	7.13	10.77	 1.1
MW-2	04/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	17.90	8.35	9.55	1.8/1.8
MW-2	09/21/2000	NA	NA	NA	NA	NA	NA	NA	17.90	11.76	6.14	2.1
MW-2	10/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	17.90	11.80	6.10	0.9/0.6
MW-2	01/09/2001	ŅA	NA	NA	NA	NA	NA	NA	17.90	12.14	5.76	0.7
MW-2	04/27/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	17.90	9.85	8.05	1.1/0.9
MW-2	07/03/2001	NA	NA	NA	NA	NA	NA	NA	17.90	11.20	6.70	1.2
MW-2	12/06/2001	<50	<0.50	<0.50	<0.50	< 0.50	NA	<5.0	17.90	10.77	7.13	3.9/2.1

WELL CONCENTRATIONS Former Shell Service Station 1230 14th Street Oakland, CA

							MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	T	E	X	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)						
										_		
MW-2	01/23/2002	NA_	NA	NA	NA_	NA	NA	NA	17.90	8.64	9.26	2.5
										_		
MW-3_	03/25/1996	<50	<0.50	<0.50	<0.50	<0.50	<2,5	NA	18.18	8.47	9.71	NA NA
MW-3_	06/21/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.18	10.40	7.78	NA
MW-3	09/26/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.18	12.45	5.73	NA
MW-3	12/19/1996	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NA	18.18	12.14	6.02	NA
MVV-3	03/25/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.18	9.54	8.64	2.2
MW-3	06/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	_ NA	18.18	11.66	6.52	3.6
MW-3	09/26/1997	<50	<0.50	<050	<0.50	<0.50	<2.5	NA	18.18	12.85	5.33	1.1
MW-3	12/05/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.18	11.44	6.74	0.6
MW-3	02/19/1998	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.18	6.78	11.40	3.6
MW-3	06/08/1998	<50	<0.30	<0.30	<0.30	<0.60	<10	NA	18.18	6.82	11.36	3.8
MW-3	06/08/1998	<50	<0.30	<0.30	<0.30	<0.60	<10_	NA	18.18	6.82	11.36	3.8
MW-3	08/25/1998	NA	NA	NA	_NA	NA	NA	NA	18.18	11.09	7.09	1.2
MW-3	12/28/1998	<50.0	<0.500	<0.500	<0.500	<0.500	<2.00	NA	18.18	11.84	6.34	0.9/0.6
MW-3	03/26/1999	NA	NA	NA	NA.	NA	NA	NA	18.18	8.57	9.61	0.8
MW-3	06/30/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00	NA	18.18	10.61	7.57	4.8
MW-3	09/30/1999	NA	18.18	11.53	6.65	1.4						
MW-3	12/27/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00	NA_	18.18	12.35	5.83	1.4/2.5
MW-3	03/07/2000	NA	NA .	NA	NA	, NA	NA	NA	18.17	7.36	10.81	5.8
MW-3	04/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	19.3	NA	18.17	8.39	9.78	6.5/5.1
MW-3	09/21/2000	NA _	NA	NA	NA	NA	NA	NA	18.17	12.01	6.16	3.0
MW-3	10/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	18.17	12.10	6.07	2.0/1.0
MW-3	01/09/2001	NA	18.17	12.43	5.74	1.9						
MW-3	04/27/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	18.17	10.10	8.07	2.3/2.4
MW-3	07/03/2001	NA	18.17	11.45	6.72	1.4						
MW-3	12/06/2001	<50	<0.50	<0.50	<0.50	<0.50	NA_	<5.0	18.17	11.07	7.10	2.8/3.9

WELL CONCENTRATIONS Former Shell Service Station 1230 14th Street Oakland, CA Wic #204-5508-3103

							MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	T	E	X	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
MW-3	01/23/2002	NA	NA	SIA.		L	N. A	114	40.47		1	
MAA-9	01/23/2002	<u>NA</u>	NA	NA	NA NA	NA NA	NA	NA	18.17	8.89	9.28	3.1
MW-4	03/25/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	9.20	8.81	NA NA
MW-4	06/21/1996		<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	10.25	7.76	NA NA
MW-4	09/26/1996	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	12.29	5.72	NA NA
MW-4	12/19/1996	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NA	18.01	12.47	5.54	NA NA
MW-4	03/25/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	9.44	8.57	1.8
MW-4	06/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	11.57	6.44	6.2
MW-4 (D)	06/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	11.57	6.44	6.2
MW-4	09/26/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	12.75	5.26	2.1
MW-4	12/05/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	11.37	6.64	1.0
MW-4 (D)	12/05/1997	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	11.37	6.64	1.0
MW-4	02/19/1998	<50	<0.50	<0.50	<0.50	<0.50	<2.5	NA	18.01	5.59	12.42	6.5
MW-4	06/08/1998	<50	<0.30	<0.30	<0.30	<0.60	<10	NA	18.01	5.65	12.36	2.6
MW-4	08/25/1998	NA	NA	NA	NA .	NA	NA	NA	18.01	10.98	7.03	2.4
MW-4	12/28/1998	<50.0	<0.500	<0.500	<0.500	<0.500	<2.00	NA	18.01	11.83	6.18	1.3/1.2
MW-4	03/26/1999	NA	NA	NA	NA	NA	NA	NA	18.01	8.40	9.61	1.9
MW-4	06/30/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00	NA	18.01	10.53	7.48	7.6
MW-4	09/30/1999	NA	NA	NA	NA	NA	NA	NA	18.01	11.03	6.98	2.6
MW-4	12/27/1999	<50.0	<0.500	<0.500	<0.500	<0.500	<5.00	NA	18.01	12.53	5.48	1.9/0.8
MW-4_	03/07/2000	NA	NA	NA	NA	NA	NA	NA	18.01	7.00	11.01	6.5
MW-4	04/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	18.01	8.57	9.44	5.1/5.1
MW-4	09/21/2000	NA	NA	NA	NA	NA	NA	NA	18.01	12.05	5.96	3.0
MW-4	10/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	18.01	11.96	6.05	5.5/1.2
MW-4	01/09/2001	NA	NA	NA	NA	NA	NA	NA	18.01	12.33	5.68	2.1
MW-4	04/27/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	<0.50	18.01	9.96	8.05	5.3/3.8
MW-4_	07/03/2001	NA	NA	NA	NA	NA	NA	NA	18.01	11.35	6.66	4.5

WELL CONCENTRATIONS

Former Shell Service Station

1230 14th Street Oakland, CA

							•				
					1	MTBE	MTBE		Depth to	GW	DO
Date	TPPH	В	T	E	X	8020	8260	TOC	Water	Elevation	Reading
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
12/06/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	<5.0	18.01	10.99	7.02	10.23/6.5
01/23/2002	NA	NA	NA	NA	NA	NA	NA	18.01	8.80	9.21	8.8
12/03/2001	NΑ	NA	NA	NA	NA	NA	NA	18.47	11.86	6.61	NA
12/06/2001	31,000	3,000	2,000	1,100	3,000	NA	<50	18.47	11.40	7.07	3.1/3.2
01/23/2002	NΑ	NA	NA	NA	NA	NA	_ NA	18.47	9.24	9.23	0.9
12/03/2001	NA	NA	NA	NA	NA	NA	NA	18.84	12.19	6.65	NA
12/06/2001	76	5.7	3.8	1.4	7.0	NA	<5.0	18.84	11.70	7.14	6.3/6.1
01/23/2002	NΑ	NA	NA	NA	NA	NA	NA .	18.84	9.57	9.27	8.7
										• • •	
12/03/2001	NA	NA	NA	NA	NA	NA	NA	19.20	12.66	6.54	NA
12/06/2001	1,800	390	<2.0	6.2	<2.0	NA	<20	19.20	12.20	7.00	3.9/3.8
01/23/2002	NA	NA	NA	NA	NA	NA	NA	19.20	10.00	9.20	9.4
03/25/1996	13,000	900	920	180	1,500	<250	NA	18.30	9.04	9.26	NA
06/21/1996	27,000	4,100	1,100	1,400	3,200	700	NA	18.30	10.48	7.82	NA NA
09/26/1996	27,000	5,300	1,900	980	2,200	<500	NA	18.30	12.52	5.78	NA
09/26/1996	29,000	5,800	2,200	1,100	2,500	<250	NA	18.30	12.52	5.78	NA
12/19/1996	50,000	6,200	5,100	1,700	5,600	590	NA	18.30	12.42	5.88	NA
03/25/1997	210	5.6	<0.50	0.52	<0.50						2.0
03/25/1997	250	1.7	0.58	0.51	<0.50	4.7	NA				2.0
06/26/1997	NA	NA	NA	NA	NA	NA		18.30	12.43	5.87	NA
09/26/1997	NA	NA	NA	NA	NA	NA					0.9
12/05/1997	NA	NA	NA	NA	NA	NA	NA				0.4
02/19/1998	<50	1.5	<0.50	<0.50	0.71					12.47	3.6
06/08/1998	NA	NA	NA	NA	NA	NA	NA	18.30	5.80	12.50	1.0
	12/06/2001 01/23/2002 12/03/2001 12/06/2001 01/23/2002 12/03/2001 12/06/2001 01/23/2002 12/03/2001 12/06/2001 01/23/2002 03/25/1996 06/21/1996 09/26/1996 12/19/1996 03/25/1997 03/25/1997 06/26/1997 12/05/1997 02/19/1998	(ug/L) 12/06/2001 <50 01/23/2002 NA 12/03/2001 NA 12/06/2001 31,000 01/23/2002 NA 12/06/2001 76 01/23/2002 NA 12/06/2001 76 01/23/2002 NA 12/06/2001 1,800 01/23/2002 NA 12/06/2001 1,800 01/23/2002 NA 03/25/1996 27,000 09/26/1996 27,000 09/26/1996 29,000 12/19/1996 50,000 03/25/1997 210 03/25/1997 250 06/26/1997 NA 09/26/1997 NA 12/05/1997 NA 02/19/1998 <50	(ug/L) (ug/L) (ug/L) 12/06/2001 <50 <0.50 01/23/2002 NA NA NA 12/06/2001 31,000 3,000 01/23/2002 NA NA 12/06/2001 76 5.7 01/23/2002 NA NA 12/06/2001 76 5.7 01/23/2002 NA NA 12/06/2001 76 5.7 01/23/2002 NA NA 12/06/2001 1,800 390 01/23/2002 NA NA NA 12/06/2001 1,800 390 01/23/2002 NA NA NA 03/25/1996 27,000 4,100 09/26/1996 27,000 5,300 09/26/1996 29,000 5,800 12/19/1996 50,000 6,200 03/25/1997 210 5.6 03/25/1997 250 1.7 06/26/1997 NA NA NA 09/26/1997 NA NA NA 09/26/1997 NA NA NA 02/19/1998 <50 1.5	(ug/L) (ug/L) (ug/L) (ug/L)	(ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L)	(ug/L)	Date TPPH				

WELL CONCENTRATIONS

Former Shell Service Station 1230 14th Street Oakland, CA

					*****	4-0000-0	,,,,,					
Well ID	Date	ТРРН	В	т	E	х	MTBE	MTBE	T00	Depth to	GW	DO
wen ib	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	8020 (ug/L)	8260 (ug/L)	TOC (MSL)	Water (ft.)	Elevation (MSL)	Reading (ppm)
	······································		<u> </u>	1_ (-3/	(- J , –)	1-3-7	(+3/	(() – /	(*****	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(11102)	(PP.17)
VW/MW-2	08/25/1998	NA	NA	NA	NA	NA	NA	NA	18.30	11.72	6.58	4.8
VW/MW-2	12/28/1998	NA	NA	NA	NA	NA	NA	NA	18.30	11.69	6.61	2.7
VW/MW-2	03/26/1999	NA	NA	NA	NA	NA	NA	NA	18.30	8.75	9.55	2.8
VW/MW-2	06/30/1999	NA	NA	NA	NA	NA	NA	NA	18.30	10.72	7.58	4.7
VW/MW-2	09/30/1999	NA	NA	NA	NA	NA	NA	NA	18.30	12.24	6.06	4.9
VW/MW-2	12/27/1999	13,500	1,330	1,310	490	1,400	<250	NA	18.30	13.92	4.38	2.1/1.9
VW/MW-2	01/21/2000	12,100	2,200	1,080	429	1,120	<250	NA	18.30	13.26	5.04	2.8
VW/MW-2	03/07/2000	NA	NA	NA	NA	NA	NA	NA	18.28	7.87	10.41	3.7
VW/MW-2	04/17/2000	NA	NA	NA	NA	NA	NA	NA	18.28	9.65	8.63	3.7/4.1
VW/MW-2	04/18/2000	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	NA	18.28	NA	NA	NA
VW/MW-2	09/21/2000	NA	NA	NA	NA	NA	NA	NA	18.28	12.75	5.53	6.2
VW/MW-2	10/17/2000	4,070	763	589	214	501	<50.0	NA	18.28	12.21	6.07	0.8/0.7
VW/MW-2	01/09/2001	NA	NA	NA	NA	NA	NA	NA	18.28	12.51	5.77	0.7
VW/MW-2	04/27/2001	80	5.7	<0.50	2.7	4.9	NA	<0.50	18.28	10.21	8.07	2.3/2.8
VW/MW-2	07/03/2001	NA	NA	NA	NA	NA	NA	NA	18.28	11.60	6.68	0.6
VW/MW-2	12/06/2001	160	1.7	1.0	1.8	4.6	NA	<5.0	18.28	11.15	7.13	3.7/2.3
VW/MW-2	01/23/2002	NA	NA	NA	NA	NA	NA	NA	18.28	9.07	9.21	0.5
VW/MW-4	03/25/1996	83,000	6,500	7,000	2,000	11,000	<250	NA	18.14	8.45	9.69	NA
VW/MW-4 (D)	03/25/1996	84,000	6,400	7,000	2,100	12,000	<250	NA	18.14	8.45	9.69	NA
VW/MW-4	06/21/1996	110,000	14,000	15,000	3,700	17,000	1,700	NA	18.14	10.38	7.76	NA
VW/MW-4 (D)	06/21/1996	100,000	12,000	12,000	2,900	13,000	<1,000	NA	18.14	10.38	7.76	NA
VW/MW-4	09/26/1996	52,000	13,000	2,700	2,100	3,200	<500	NA	18.14	12.43	5.71	NA.
VW/MW-4	12/19/1996	75,000	15,000	6,600	3,000	7,600	<1,250	NA	18.14	11.87	6.27	NA
VW/MW-4	03/25/1997	56,000	4,700	1,500	2,500	6,300	580	NA	18.14	9.60	8.54	2.4
VW/MW-4	06/26/1997	NA	NA	NA	NA	NA	NA	NA	18.14	12.36	5.78	NA
VW/MW-4	09/26/1997	NA	NA	NA	NA	NA	NA	NA	18.14	12.82	5.32	0.4

WELL CONCENTRATIONS Former Shell Service Station 1230 14th Street Oakland, CA Wic #204-5508-3103

					VVIC #20	T 0000 t						
							MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	T	E	X	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
					** ***							
VW/MW-4	12/05/1997	NA	NA	NA	NA .	NA	NA	NA	18.14	12.15	5.99	0.3
VW/MW-4	02/19/1998	4,100	320	40	44	520	<50	NA	18.14	5.85	12.29	1.8
VW/MW-4 (D)	02/19/98	4,300	340	44	47	540	<50	NA	18.14	5.85	12.29	1.8
VW/MW-4	06/08/1998	NA	NA	NA	NA	NA	NA	NA	18.14	5.87	12.27	1.8
VW/MW-4	08/25/1998	NA	NA	NA	NA	NA	NA	NA	18.14	10.96	7.18	2.5
VW/MW-4	12/28/1998	NA	NA NA	NA	NA	NA	NA	NA	18.14	11.28	6.86	0.9
VW/MW-4	03/26/1999	NA	NA	NA_	NA	NA	NA	NA	18.14	8.45	9.69	1.9
VW/MW-4	06/30/1999	NA	NA	NA_	NA NA	NA	NA	NA	18.14	9.70	8.44	3.6
VW/MW-4	09/30/1999	NA	NA	NA_	NA	NA	NA	NA	18.14	11.78	6.36	2.6
VW/MW-4	12/27/1999	33,900	3,740	2,000	1,130	5,090	587	NA	18.14	12.63	5.51	0.4/0.2
VW/MW-4	01/21/200	13,900	1,560	568	227	1,990	<500	21.0a	18.14	13.07	5.07	1.0
VW/MW-4	03/07/2000	NA	NA	NA	NA	NA	NA	NA	18.13	7.82	10.31	0.9
VW/MW-4	04/17/2000	NA	NA	NA_	NA	NA	NA	NA	18.13	9.18	8.95	1.4/1.9
VW/MW-4	04/18/2000	757	103	8.59	30.8	84.2	<25.0	NA	18.13	NA	NA	NA
VW/MW-4	09/21/2000	NA	NA	NA	NA	NA	NA	NA	18.13	12.18	5.95	5.0
VW/MW-4	10/17/2000	8,360	2,060	391	468	1,170	147	NA	18.13	12.03	6.10	0.7/0.8
VW/MW-4	01/09/2001	NA	NA	NA	NA	NA	NA	_NA	18.13	12.42	5.71	0.9
VW/MW-4	04/27/2001	7,100	2,300	50	460	250	NA	<10	18.13	10.13	8.00	1.0/1.4
VW/MW-4	07/03/2001	NA	NA	NA	NA	NA	NA	_ NA	18.13	11.42	6.71	1.2
VW/MW-4	12/06/2001	7,700	750	90	300	350	NA	<25	18.13	11.02	7.11	2.5/1.9
VW/MW-4	01/23/2002	NA	NA	NA	NA	NA	NA	NA	18.13	8.89	9.24	0.4
VW/AS-1	03/25/1996	NA	NA	NA	NA	NA	NA	NA	18.60	8.98	9.62	NA
VW/AS-1	06/21/1996	NA	NA	NA	NA	NA	NA	NA	18.60	10.95	7.65	NA
VW/AS-1	09/26/1996	NA	NA	NA	NA	NA	NA	NA	18.60	12.98	5.62	NA
VW/AS-1	12/19/1996	NA	NA	NA_	NA	NA	NA	NA.	18.60	12.67	5.93	NA
VW/AS-1	03/25/1997	NA	NA	NA	NA	NA	NA	NA	18.60	10.12	8.48	NA

WELL CONCENTRATIONS Former Shell Service Station 1230 14th Street Oakland, CA

				_			MTBE	MTBE		Depth to	GW	DO
Weil ID	Date	TPPH	В	T	Ε	X	8020	8260	TOC	Water	Elevation	Reading
	<u> </u>	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)						
			r .									
VW/AS-1	06/26/1997	NA	NA	NA_	NA	NA	NA	NA	18.60	12.34	6.26	NA
VW/AS-1	09/26/1997	NA	18.60	13.40	5.20	NA						
VW/AS-1	12/05/1997	NA	18.60	11.96	6.64	5.2						
VW/AS-1	02/19/1998	NA	NA	NA	NΑ	NA	NA	NA	18.60	6.22	12.38	1.3
VW/AS-1	06/08/1998	NA	18.60	6.20	12.40	1.0						
VW/AS-1	08/25/1998	NA	NA	NA.	NA	NA	NA	NA	18.60	11.59	7.01	1.6
VW/AS-1	12/28/1998	NA .	NA	NA	NA	NA	NA	NA	18.60	11.74	6.86	1.3
VW/AS-1	03/26/1999	NA	NA	NA _	NA	NA	NA	NA	18.60	9.20	9.40	1.3
VW/AS-1	06/30/1999	NA	18.60	11.08	7.52	2.1						
VW/AS-1	09/30/1999	NA	18.60	11.94	6.66	1.9						
VW/AS-1	12/27/1999	8,940	2,000	95.7	1,200	570	606	NA	18.60	11.01	7.59	1.6/1.8
VW/AS-1	03/07/2000	NA	18.59	7.35	11,24	NA						
VW/AS-1	04/17/2000	NA	18.59	9.08	9.51	1.9/2.0						
VW/AS-1	04/18/2000	20,800	6,550	1,220	2,270	1,720	<250	NA	18.59	NA NA	NA	NA
VW/AS-1	09/21/2000	NA	18.59	11.98	6.61	2.1						
VW/AS-1	10/17/2000	38,400	7,240	5,980	1,960	5,730	534	72.4	18.59	12.62	5.97	2.5/1.0
VW/AS-1	01/09/2001	NA	NA	NA	NA	NA	NA	NΑ	18.59	13.03	5.56	1.9
VW/AS-1	04/27/2001	34,000	8,000	2,100	2,500	2,000	NA	<25	18.59	10.71	7.88	2.9/2.1
VW/AS-1	07/03/2001	NA	18.59	12.03	6.56	2.0						
VW/AS-1	12/06/2001	6,000	990	35	820	59	NA	<25	18.59	11.63	6.96	1.2/0.8
VW/AS-1	01/23/2002	NA	NA NA	NA	NA	NA	NA	NA	18.59	9.34	9.25	0.9
VW/AS-3	03/25/1996	NA	NA	NA	. NA	NA	NA	NA	18.17	8.50	9.67	NA
VW/AS-3	06/21/1996	NA	18.17	10.42	7.75	NA NA						
VW/AS-3	09/26/1996	NA	18.17	12.49	5.68	NA						
VW/AS-3	12/19/1996	NA	18.17	12.28	5.89	NA						
VW/AS-3	03/25/1997	NA	18.17	9.61	8.56	NA						

WELL CONCENTRATIONS Former Shell Service Station 1230 14th Street Oakland, CA Wic #204-5508-3103

					TTIC WALL							
		· · · · · · · · · · · · · · · · · · ·					MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	T	E	X	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)
			,			,						-
VW/AS-3	06/26/1997	NA	NA	NA	NA_	NA NA	NA	NA	18.17	11.80	6.37	NA
VW/AS-3	09/26/1997	NA	NA	NA	NA	NA	NA	NA	18.17	12.89	5.28	NA
VW/AS-3	12/05/1997	NA NA	NA	NA	NA	NA	NΑ	NA ·	18.17	11.38	6.79	1.8
VW/AS-3	02/19/1998	NA	NA	NA	NA	NA	NA	NA	18.17	6.24	11.93	1.3
VW/AS-3	06/08/1998	NA	NA	NA	NA	NA	NA	NA	18.17	6.25	11.92	1.2
VW/AS-3	08/25/1998	NA	NA	NA	NA	NA	NA	NA	18.17	11.43	6.74	1.3
VW/AS-3	12/28/1998	NA	NA	NA	NA	NA	NA	NA	18.17	11.63	6.54	1.7
VW/AS-3	03/26/1999	NA	NA	NA	NA	NA	NA	NA	18.17	8.92	9.25	1.5
VW/AS-3	06/30/1999	NA	NA	NA	NA	NA	NA	NA	18.17	10.71	7.46	2.5
VW/AS-3	09/30/1999	NA	NA	NA	NA	NA :	NA	NA	18.17	11.78	6.39	1.5
VW/AS-3	12/27/1999	488	47.9	2.60	16.9	8.50	35.4	NA	18.17	12.57	5.60	1.5/2.1
VW/AS-3	03/07/2000	NA	NA	NA	NA	NA	NA	NA	18.14	4.82	13.32	NA
VW/AS-3	04/17/2000	NA	NA	NA	NA	NA	NA	NA	_ 18.14	8.69	9.45	2.0/2.4
VW/AS-3	04/18/2000	3,110	871	<5.00	141	56.8	78.2	NA	18.14	NA	NA	NA
VW/AS-3	09/21/2000	NA	NA	NA	NA	NA	NA	. NA	18.14	11.65	6.49	2.5
VW/AS-3	10/17/2000	7,730	2,700	<50.0	542	344	<250	42.1	18.14	12.13	6.01	1.6/1.0
VW/AS-3	01/09/2001	NA	NA	NA	NA	NA	NA	NA	18.14	12.51	5.63	2.2
VW/AS-3	04/27/2001	14,000	3,900	62	690	560	NA	46	18.14	10.20	7.94	2.8/1.6
VW/AS-3	07/03/2001	NA	NA	NA	NA	NA	NA	NA	18.14	11.55	6.59	2.6
VW/AS-3	12/06/2001	5,000	1,200	19	380	320	NA	<50	18.14	11.10	7.04	0.9/1.1
VW/AS-3	01/23/2002	NA	NA	NA	NA	NA	NA	NA	18.14	8.93	9.21	1.1

WELL CONCENTRATIONS

Former Shell Service Station 1230 14th Street

Oakland, CA

	 WIC #ZU4	4-5508-3	1103		
		:	MTBE	MTBE	

							MTBE	MTBE		Depth to	GW	DO
Well ID	Date	TPPH	В	Т	E	X	8020	8260	TOC	Water	Elevation	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ppm)						

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by modified EPA Method 8260B; prior to April 27, 2001, analyzed by EPA Method 8015.

BTEX = benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to April 27, 2001, analyzed by EPA Method 8020.

MTBE = Methyl-tertiary-butyl ether

TOC = Top of Casing Elevation

GW = Groundwater

DO = Dissolved Oxygen

NA = Not applicable

ug/L = Parts per billion

ppm = Parts per million

msi = Mean sea level

ft = Feet

<n = Below detection limit

D = Duplicate sample

n/n = Pre-purge/Post-purge DO Readings

Notes:

a = Sample was analyzed outside of the EPA recommended holding time.

Site surveyed November 1, 2001 by Virgil Chavez Land Surveying of Vallejo, California.

ATTACHMENT C Oakland RBCA Eligibility Checklist

Oakland RBCA Eligibility Checklist

The Oakland Tier 1 RBSLs and Tier 2 SSTLs are intended to address human health and environmental concerns at the majority of small to medium-sized sites in Oakland where commonly-found contaminants are present. Large and/or complicated sites—especially those with continuing releases, special ecological concerns or unusual subsurface conditions—will likely require a Tier 3 analysis. The following checklist is designed to assist you in determining your site's eligibility for the Oakland RBCA levels.

CRITERIA	YES	NO
Source:		
Is there a continuing, primary source of a chemical of concern, such as a		
leaking container, tank or pipe? (This does not include secondary/residual		
sources.)		\square
Is there any mobile or potentially-mobile free product?		\boxtimes
Are there more than five chemicals of concern at the site, each of which is at a		
concentration greater than the lowest applicable Oakland RBCA level?		\boxtimes
Pathways:		
Are there any preferential migration pathways—such as sand or gravel		
channels, or utility corridors—that are potential conduits for the migration, on-		
site or off-site, of a chemical of concern?		\boxtimes
Is there a chemical of concern at the site within 20 feet of a surface water		
body?		\boxtimes
If groundwater ingestion is not an exposure pathway of concern (i.e., MCLs		
will not figure in the risk analysis), does groundwater at the site both (a) exist		
at depths less than 10 feet and (b) contain volatile chemicals of concern? (If		
groundwater ingestion is an exposure pathway of concern, this criterion may		
be disregarded because the MCL-based Oakland RBCA levels will be		
protective for all potential groundwater-related exposure scenarios.)		\square
Are there any existing structures, either on site or off site, that (a) are intended		
for future use and (b) are adjacent to volatile chemicals of concern and (c)		
have foundations or basement walls that are less than 15 cm (6 inches) thick		
(i.e., do not meet Uniform Building Code standards)?		
Receptors:		
Are there any immediate health risks to humans (i.e., explosive levels of a		
chemical or vapor concentrations that could cause acute health effects) as a		
result of contamination at the site?		\square
Are there any complete pathways to nearby ecological receptors, such as		
endangered species, wildlife refuge areas, wetlands or protected areas?		\boxtimes

If you answer "no" to all questions, your site is eligible for the Oakland RBCA levels. If you answer "yes" to any of the questions, your site is *not* eligible for the Oakland Tier 1 or Tier 2 RBCA levels.

ATTACHMENT D Oakland RBCA RBSLs for Sandy Silt and Representative Concentration Calculations

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration								
CONSTITUENT	in Groundy	vater	in Surface	Soil	in Subsurface Soil				
<u></u>	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note			
Benzene	9.5E-1	UCL	5.7E-1	mean	1.6E-1	UCL			
Ethylbenzene	2.5E-1	UCL	4.9E-1	mean	2.4E-1	UCL			
Toluene	5.9E-2	UCL	9.7E-3	mean	2.9E-1	UCL			
Xylene (mixed isomers)	1.9E-1	UCL	3.1E+0	mean	1.2F+0	UCI			

Site Name: Inactive Service Station Completed By: Melody Munz Site Location: 1230 14th Street, Oakland Date Completed: 3/5/2002

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 2 Worksheet 5.6

Site Name: Inactive Service Station Site Location: 1230 14th Street, Oakland

Completed By: Melody Munz

Date Completed: 3/5/2002

1 of 1

TIER 2 GROUNDWATER CONCENTRATION DATA SUMMARY

		Analytical Method			Det	ected Concentrat	ions
CONSTITUE	NTS DETECTED Name	Typical Detection Limit (mg/L)	No. of Samples	No. of Detects	Maximum Conc. (mg/L)	Mean Conc. (mg/L)	UCL on Mean Conc. (mg/L)
71-43-2	Benzene		15	15	8.0E+00	3.6E-01	9.5E-01
100-41-4	Ethylbenzene	5.6.7.8g	15	15	2.5E+00	1.0E-01	2.5E-01
108-88-3	Toluene		15	14	2.1E+00	2.3E-02	5.9E-02
1330-20-7	Xylene (mixed isomers)	Apple Joseph Company	15	14	3.0E+00	8.0E-02	1.9E-01

Serial: G-273-IBX-89

Software: GSI RBCA Spreadsheet Version: 1.0.1

@ Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.

SCREEN 7.1 GROUNDWATER CONCENTRATION Choose UCL Percentile CALCULATOR Analytical Data (Up to 50 Data Points) 5 7 11 12 13 Calculated Default Distribution Detection (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)of Data Limit Well Name 1111 Date Sampled (mg/L) 0.05 BETX Lognormal Lognormal 0.0005 0.0005 Lognormai Lognormal 0.0005

Site Name: Inactive Service Station Site Location: 1230 14th Street, Oakland Completed By: Melody Munz Date Completed: 3/5/2002

1 of 1

TIER 2 SURFACE SOIL CONCENTRATION DATA SUMMARY

Analytical Method					Detected Concentrations			
CONSTITUE	NTS DETECTED Name	_ Typical Detection Limit (mg/kg)	No. of Samples	No. of Detects	Maximum Conc. (mg/kg)	Mean Conc. (mg/kg)	UCL on Mean Conc. (mg/kg)	
71-43-2	Benzene	0,00138	2	2	3.0E+01	5.7E-01'/S		
100-41-4	Ethylbenzene	₩ 51±;;015;	2	2	3.3E+01	4.9E-01	N/A	
108-88-3	Toluene		2	1	3.8E-02	9.7E-03	N/A	
1330-20-7	Xylene (mixed isomers)	X-4 XXVII.454	2	2	2.3E+02	3.1E+00	N/A	

Serial: G-273-IBX-89

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.

SCREEN 7.2 SURFACE SOILS CONCENTRATION CALCULATOR

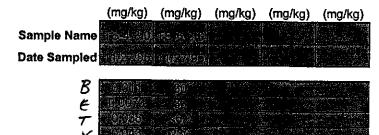
UC<u>L Percen</u>tile

5094

Analytical Data (Up to 50 Data Points)

3

1


2

5

Calculated	Default
Distribution	Detection
of Data	Limit

(mg/kg)

Lognormal	0.005
Lognormal	0.005
Lognormal	0.005
Lognormal	0.005

RBCA SITE ASSESSMENT

Tier 2 Worksheet 5.5

Site Name: Inactive Service Station Site Location: 1230 14th Street, Oakland Completed By: Melody Munz Date Completed: 3/5/2002

1 of 1

TIER 2 SUBSURFACE SOIL CONCENTRATION DATA SUMMARY

· ·		Analytical Method	Detected Concentrations				
CONSTITUENTS DETECTED CAS No. Name		Typical Detection Limit (mg/kg)	No. of Samples	No. of Detects	Maximum Conc. (mg/kg)	Mean Conc. (mg/kg)	UCL on Mean Conc. (mg/kg)
71-43-2	Benzene		13	12	1.8E+01	5.9E-02	1.6E-01
100-41-4	Ethylbenzene	(2) of 1000	13	8	3.5E+01	6.1E-02	2.4E-01
108-88-3	Toluene	2 2 2 2 2 2 3	13	8	9.8E+01	6.7E-02	2.9E-01
1330-20-7	Xylene (mixed isomers)	文 例之(5)	13	11	1.9E+02	2.9E-01	1.2E+00

Serial: G-273-IBX-894

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.

SCREEN 7.3
SUBSURFACE SOILS
CONCENTRATION
CALCULATOR

UCL Percentile

Analytical Data (Up to 50 Data Points)

3

5 6 7 8

Calculated	Default
Distribution	Detection
of Data	Limit
	(mg/kg)

Sample Name Date Sample

	_(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ne	Was File	Halling i	merans is iso	vija (6		15 20	MATAVÁRJÍKAV 1	TOTAL STATE	515.83105
₽d	#1/7/f9(E)	31161915	2 <i>51 (</i> 915)	4.74% (c.)	ZAL	2000 T	20.00	212 H.	2000
	011.62	ัดมีอได้ห <i>ือ</i>) ไ	(J5) (0) (16)	Tremen vi		e enre			
			,		Construction Construction			(vejajaje)	

	Lognormal	0.0025
-	Lognormal	0.0025
j	Lognormal	0.0025
	Lognormal	0.0025

モナメ

 \mathcal{B}

Oakland RBSLs Sandy Silts

Medium	Exposure Pathway	Land Use	Type of Risk	Benzene	Ethyl- benzene	Toluene	Xylenes
		Residential	Carcinogenic	2.7E+01			
Surficial Soil [mg/kg]	ingestion/ Dermai/		Hazard	8.2E+01	5.1E+03	9.0E+03	5.6E+04
	Inhalation	Commercial/	Carcinogenic	8.5E+01			
		Industrial	Hazard	5.2E+02	3.3E+04	5.6E+04	3.1E+05
		Residential	Carcinogenic	2.0E+01			
	Inhalation of Outdoor Air		Hazard	8.0E+01	SAT	SAT	SAT
·	Vapors	Commercial/	Carcinogenic	7.7E+01			5.6E+04 3.1E+05
		Industrial	Hazard	4.7E+02	SAT	SAT	SAT
		Residential	Carcinogenic	1.1E+00			
Subsurface Soil	Inhalation of Indoor Air		Hazard	3.6E+00	SAT	5.7E+02	SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic	1.7E+01			
	Industrial	Hazard	1.1E+02	SAT	SAT	SAT	
	Ingestion of	Residential	Carcinogenic	6.5E-03	2.4E+01	2.7E+00	4.0E+01
	Groundwater		Hazard	6.5E-03	2.4E+01	2.7E+00	4.0E+01
	Impacted by Leachate	Commercial/	Carcinogenic	6.5E-03	2.4E+01	2.7E+00	4.0E+01
	Loudinate	Industrial	Hazard	6.5E-03	2.4E+01	2.7E+00	4.0E+01
		Residential	Carcinogenic	1.0E-03	7.0E-01	1.5E-01	1.8E+00
	Ingestion of	1 (CO/GO/TUGI	Hazard	1.0E-03	7.0E-01	1.5E-01	1.8E+00
	Groundwater	Commercial/	Carcinogenic	1.0E-03	7.0E-01	1.5E-01	1.8E+00
		Industrial	Hazard	1.0E-03	7.0E-01	1.5E-01	SAT 00 4.0E+01 00 4.0E+01 00 4.0E+01 00 4.0E+01 01 1.8E+00 01 1.8E+00 01 1.8E+00 01 1.8E+00
		Residential	Carcinogenic	3.4E+00			
Groundwater [mg/l]	Inhalation of Indoor Air	residental	Hazard	1.1E+01	>Sol	>Sol	>Sol
	Vapors	Commercial/	Carcinogenic	5.3E+01			
	industrial Inhalation of Outdoor Air Vapors Commercial/	Hazard	3.2E+02	>Sol	>Sol	>Sol	
		Residential	Carcinogenic	1.0E+03			
		. 100/00/1001	Hazard	>Sol	>Sol	>Sol	>Sol
			Carcinogenic	>Sol			
		Industrial	Hazard	>Sol	>Sol	>Sol	>Sol
Water for Recreation	Ingestion/	Residential	Carcinogenic	6.3E-02			
[mg/l] *Italicized concentrations	Dermal		Hazard	1.8E-01	3.6E+00	1.1E+01	6.6E+01

^{*}Italicized concentrations based on California MCLs

Source: Excerpt from Oakland RBCA Spreadsheet.xls, based on Oakland Risk-Based Corrective Action: Technical Background Document, May 17, 1999: City of Oakland Environmental Services Division, 250 Frank H. Ogawa Plaza, Suite 5301, Oakland, CA 94612.

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water