FURTHER ASSESSMENT, INSTALLATION OF BRIGHTON AVENUE RECEPTOR TRENCH AND 3RD QUARTER 1999 GROUNDWATER MONITORING

FOR

DP 793 4035 PARK BOULEVARD OAKLAND, CALIFORNIA

OCTOBER 20, 1999

BY

-WEGE-WESTERN GEO-ENGINEERS 1386 E. BEAMER STREET WOODLAND, CALIFORNIA 95776 (530) 668-5300

TABLE OF CONTENTS

1.0 SITE LOCATION AND DESCRIPTION	
2.0 LOCAL GEOLOGY	
2.1 Geomorphology	1
2.2 Stratigraphy	2
3.0 INSTALLATION OF ADDITIONAL GROUNDWATER MONITORING WELLS	2
4.0 INSTALLATION OF RECEPTOR TRENCH	
4.1 Phase 1 - Notifications and staging in of equipment	3
4.2 Phase 2 - Discovery of underground utilities.	3
4.4 Phase 4 - Excavate and install receptor trench north of the storm catch basin	4
4.5 Phase 5 - Installation of the south portion of receptor trench	4
4.6 Phase 6 - Resurfacing receptor trench area	5
4.7 Phase 7 - De-watering receptor trench	5
5.0 COLLECTION AND ANALYSIS OF SOIL SAMPLES	
6.0 SOURCE REMOVAL	6
6.1 Unauthorized Release Background	6
November 30, 1989	٠,,,,,,,
November 30, 1989	
~ 1 / 1000	
December 8, 1989	
6.2 Site Assessment - Source Removal	
_ 1 11 1000	
_ 1 10 1000	
1000	
_ 1 1000	
December 1990	
June 23,1994	******
August 14, 1995	
A	

Pamo	ved hydraulic hoists from station building	δ
Septer	st 31, 1995mber 5, 1995	8
May 2	mber 5, 19952,1996	9
Januar	2,1996ry 17, 1997	9
Augus	ry 17, 1997st 12, 1999	9
Octob	st 12, 1999 per 7, 1999	
		10
7.0 GF	ROUNDWATER SAMPLES	
	gust 26, 1999	10
7.1 Aug	gust 26, 1999	
	oth to Water Measurements	10
7.2 Dep	oth to water weasurements.	10
7 3 Pur	ging of Monitor Wells	10
7.5 I UI		10
7.4 Coll	llection and Certified Analysis of Groundwater Samples	***************************************
	BE	10
7.5 MT	BE	
a C Dia	position of Waste Water	11
	ESULTS OF QUARTERLY GROUNDWATER MONITORING	11
8.0 R	ESULTS OF QUARTERLY GROOMBINATER MOTHER	
0.4.0	oundwater Gradient and Flow Direction	11
8.1 Gr	Oundwater Gradient and Tion 200	12
8.2 Res	sults of Certified Analysis of Groundwater Samples	1 2
9.0	NATURAL ATTENUATION STUDY - BIODEGRADATION	12
5.0	MATORIALATION	
9.2	Bioremediation Sampling	
	Results of Bioremediation Sampling	13
9.2	Results of Bioremediation Sampling	
	A CTION	14
10.0	RBCA TIER 2 RISK BASE CORRECTIVE ACTION	, , , , , , , , , , , , , , , , , , , ,
	Vapor Inhalation:	15
10.1	Vapor Inhalation:	_
1000	Groundwater Ingestion:	15
10.2 G	Plondwater tilgestion:	
10.3	Toxicity Assessment	16
Can	Toxicity Assessment	16
Nor	n-cancer Toxicity	
	Exposure Assessment	1
10.4	Exposure Assessment	4.4
10.5	Concentrations Used	18
RB	Concentrations Used	19
RB	CA Tier 2 – Station proper CA Tier 2 – Backyards CA Tier 2 – West Brighton Avenue (RS9)	20
RB	3CA Tier 2 - West Brighton Avenue (RS9)	

	lts	20
1	-9.9 C - 1	
2004 101	2 Carrier manage (Annandry H. Worksheet 9.1)	
	A D 1 (A and in I Workshoot (I I)	
DDC AT	. A. 137 Delables Avanua (DSO) (Appendix I Worksheet 9.1)	**1=155554144.444.4
	11 - 3 2 C - 4 L	
	o o .: / A - a a n din U Worksheet Q 7	
	a D. 1 . J. (A andis I Workshoot 9.7)	******
0.004.001	A NIZ. A D. Lean Amorro (D.CO) / Appendix 1 Worksheet 7.51	*****

	a O	
RBCA Tie	er 2 – Station proper (Appendix 11 Worksheet 9.3).	22
RBCA Ti	er 2 – Brighton Avenue (Appendix J Worksheet 9.3)	
	ussion	22
		*
Soil Exposu	re Pathways	23
Groundwate	r patnway	
		22
11.0 CON	CLUSIONS	23
	MMENTATIONS	24
12.0 RECC	MINIEN LA LIONS	
		24
11.0 REFE	RENCES	4
400 1 15817	TATIONS	24
12.0 LIMI	ATIONS	
	LIST OF TABLES	
1	GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL	26
	LABORATORY RESULTS FROM WATER SAMPLES	50
2	SOIL SAMPLE (CERTIFIED LABORATORY RESULTS)	54
3	EXCAVATED SOIL SAMPLE (CERTIFIED LABORATORY RESULTS) GROUNDWATER ELEVATIONS AND NATURAL ATTENUATION INDICIES	
4	FROM WATER SAMPLES	56
*	RECEPTOR TRENCH GROUNDWATER REMOVAL	58
5	RECEPTOR TRENCH GROUND WITH BRITAIN	
	LIST OF FIGURES	
1	AAA LOCATION MAP	59
2	PORTION OF USGS TOPOGRAPHIC MAP SHOWING SITE	60
	AND RECEPTOR TRENCH LOCATIONS	61
3	SITE AND LOCAL AREA WITH RECEPTOR TRENCH	62
4	GROUNDWATER GRADIENT - AUGUST 26,1999	63
5	GROUNDWATER TPHg PLUME - AUGUST 26, 1999	64
6	DEPLETED OXYGEN IN GROUNDWATER - AUGUST 26,1999	65
7	SULFATE IN GROUNDWATER - AUGUST 26, 1999	66
8	NITRATE IN GROUNDWATER - AUGUST 26, 1999 FERROUS IRON IN GROUNDWATER - AUGUST 26 1999	6
9 10	LEKKODS IKON IN OKOOND WATER - VOCOOT TO 1919	68
	CROSS SECTION AS BUILT RECEPTOR TRENCH	
10	CROSS SECTION AS BUILT RECEPTOR TRENCH RECEPTOR TRENCH SAMPLE POINTS	69

12 13 14 15	STUDY AREA SAMPLE LOCATIONS RESIDUEL SOIL TPHg PLUME AT THE 5-6 FOOT DEPTH RESIDUEL SOIL TPHg PLUME AT THE 7-15 FOOT DEPTH RESIDUEL SOIL TPHg PLUME AT THE 15-25 FOOT DEPTH	70 71 72 73
	LIST OF APPENDICIES	
A B C D E F G H I J K L M	CERTIFIED SURVEYOR'S MAP WELL PURGE FIELD NOTES CERTIFIED LABORATORY REPORT - WATER SAMPLES MTBE OCCURANCE CHART WITH FIGURES BOREHOLE AND WELL CONSTRUCTION LOGS (RS8, RS9 AND RS10) EXCAVATION/RECEPTOR TRENCH CONSTRUCTION FIELD NOTES CERTIFIED LABORATORY REPORT - SOIL SAMPLES RBCA TIER 2 - 4035 PARK BLVD. RBCA TIER 2 - BACKYARDS RBCA TIER 2 - BRIGHTON AVENUE RECEPTOR TRENCH DEWATER/PURGING FIELD NOTES EXCAVATED SOIL SAMPLING AND PROFILING KLEINFELDER REPORT, CITY OF OAKLAND PERMITS, ALAMEDA COUNTY HEALTING	4 V
	CARE SERVICES LETTER, dated November 6,1998.	

1386 EAST BEAMER STREET WOODLAND CA 95776-6003 (530) 668-5300, FAX (530) 662-0273 wege@mother.com

October 20, 1999

Mr. John Rutherford Desert Petroleum P.O. Box 1601 Oxnard, California 93032 (805) 644-6784 FAX (805) 654-0720

Dear Mr. Rutherford:

The following report documents the Third Quarter 1999 collection and certified laboratory analysis of groundwater samples. This report also includes the Further Assessment which includes; the completion of the receptor trench; the installation of three additional groundwater monitoring wells; the natural attenuation sampling; and a Risk Base Corrective Action (RBCA Tier2) study for former Desert Petroleum Station #793.

1.0 SITE LOCATION AND DESCRIPTION

Former Desert Petroleum #793 is a non-active service station, located on the northwest corner of the intersection of Park Boulevard and Hampel Street at 4035 Park Blvd., Oakland, California (Figure 1). The site is located in projected section 32; T1S; R3W; MDB&M at an elevation ranging between 230 and 227 feet above mean sea level (Figure 2).

2.0 LOCAL GEOLOGY

2.1 Geomorphology

The site is located on the western slope of the Berkeley Hills. The Berkeley Hills are a northwest-southeast trending range within the Coastal Range Province of California. Erosion of the Coastal Ranges has filled the valleys within and bordering the Coastal Range with sequences of gravels, silts, sands, and clays. The Hayward Fault, an active strike slip fault, is located approximately 7280 feet east of the site.

2.2 Stratigraphy

Station Property, 4035 Park Blvd., Oakland, CA.

The native soil from surface to 13 feet below ground surface (bgs) consists of dark brown silty clay. The dark brown clay is underlain by light brown stiff clay that includes sub-rounded to rounded meta-volcanic gravel. This clay extends to approximately 23 feet bgs at the northwest corner of the site. A fine to medium sand, clayey sand, and silty sand underlies the gravel and clay.

Brighton Avenue – Receptor Trench in front of 4026, 4032 and 4038 Brighton Ave., Oakland, California

The receptor trench excavation revealed two distinct sequences of subsurface soils: a sandy sequence north of the storm water catch basin and a clay sequence south of the storm water catch basin, see Figure 10.

North of the storm water catch basin: The excavation was dug to a maximum depth of 15.5 feet below the surface just north of the catch basin and then averaged between 9.5 and 10 feet deep to the northern extent of the trench. The surface soil below the asphalt surface was brown stiff clay that graded into silty clay at approximately 3 feet bgs. A silty sand is at 6 feet bgs. At 7.5 feet bgs the silty sand grades into fine sand that is approximately one foot thick. Below this sand is a firm brown clay, approximately a half foot thick. A thin gravel lense approximately one-inch thick was encountered at the 11.5 feet bgs. Below this gravel lens, silty sand extends to the 15.5-feet bgs.

Just south of the stormwater catch basin the excavation was dug to a maximum depth of 14.5 feet bgs. Further south the trench averaged 9 to 10.5 feet deep. The southern portion of the trench revealed soils comprised of silty clay at the surface grading to stiff clay at approximately 2 feet bgs, to a silty clay at the 6 feet bgs and to a stiff clay at 8.5 feet bgs.

Groundwater was noted entering the excavation between 7 and 9 feet bgs.

3.0 INSTALLATION OF ADDITIONAL GROUNDWATER MONITORING WELLS.

To further define the extent of the groundwater and soil plumes and to help evaluate future remediation efforts, three additional groundwater wells were installed. Wells RS-8 and RS-10 were installed in the backyards of residences located at 4006 and 4026 Brighton Avenue respectively. Well RS-9 was installed within the City of Oaklands easement between the sidewalk and curb area, west side of Brighton Avenue, see Figure 3. Western Geo-Engineers geologists working directly under California Registered Geologist #3037 hand augered, and sampled the three borings. Each bucket of the hand auger was field screened for volatile organic vapors using a hand held photo-

ionizing detector organic vapor meter (PID-OVM) with a 10.6 e.v. bulb. Recovered soils were also used for lithologic description. Selected samples were placed into 2" X 6" clean brass sleeves, sealed, labeled, and place on ice for later Chain of Custody delivery to a State of California certified laboratory. RS-8 and RS-9 were hand augered with an 8" bucket and RS-10 was hand augered with a 6" bucket. All augering equipment was cleaned between borings with tri-sodium phosphate and clean water rinse, see Appendix E – Borehole logs. Excavated soils were placed with the stockpile of soil removed during the installation of the receptor trench. These soils were later profiled and transported to Vacaville Landfill for disposal, see Appendix L – excavated soil profile.

Two-inch schedule 40 PVC casing was used to install groundwater monitoring in the above-mentioned borings, see Appendix E – Well Construction Logs for installation details.

4.0 INSTALLATION OF RECEPTOR TRENCH

Previous investigations delineated an area along Brighton Avenue where free product (gasoline) was floating on the shallow groundwater. To collect this product and to expedite the remediation of the site (sewer lateral) a receptor trench was installed along the eastern gutter area of Brighton Avenue that would intercept the sewer lateral as it enters Brighton Avenue after leaving the residences' backyards. A workplan was approved by Alameda County Health, with SB2004 preapproval of estimated costs. The workplan defined a 6 to 8 feet deep, 160 feet long trench to be dug within the curb area of Brighton Avenue. It was to have a sump eight feet deep, with four-inch vertical casing installed, near the sewer lateral. This well would be for monitoring and recovery of free product and contaminated groundwater.

A Western Geo-Engineers geologist working directly under California Registered Geologist #3037 supervised the excavating contractor, collected documentation soil samples and provided the health and safety monitoring during the trench excavating and installation. The trench was installed in phases.

4.1 Phase 1 - Notifications and staging in of equipment.

Notice was given to Alameda County Health, City of Oakland, and the residence owners and occupants two weeks prior to moving in the construction equipment; Underground Service Alert (USA) was notified 48 hours in advance.

4.2 Phase 2 - Discovery of underground utilities.

The road surface was saw cut and removed from the area of the proposed receptor trench. Discovery (exposure) of all underground utilities was accomplished by hand digging the areas that USA had marked (home service for gas and electric) and suspected areas for the home service sewer laterals. Once all known and suspected areas had been hand dug and the underground utilities exposed the excavation for the receptor trench proceed using an extend-a-hoe with a two foot wide bucket.

4.3 Phase 3 - Excavate area around sewer main for vertical extent.

The receptor trench excavation was initiated in the area that would be used to de-water the excavation. This area included the sewer main and the areas north and south of the storm drain outfall. Originally this area was to be excavated to the seven-foot depth. Field screen of the soils as excavating progressed indicated that the contaminated soils started below the three-foot depth and proceeded deeper than the seven-foot depth. Also no groundwater was encountered above the seven-foot depth. The excavation was advanced to the 10.5-foot depth, with water entering (slowly seeping) into the excavation at the 8-foot depth. Field screening with a PID-OVM indicated that the contaminated soils extended to the 10.5-foot depth. The support for the storm water catch basin was constructed of redbrick and mortar. This support extended to the 8-foot depth. To connect the northside of the trench to the southside of the trench the brick support would have to be undercut with the backhoe bucket. The excavation was deepened to the 15.5-foot depth and the northside of the storm water catch basin was undercut.

The south side of the storm water catch basin was then excavated to the 15-foot depth and the brick support was undercut, connecting the north side to the southside. Geoliner was then installed along with 4 inch PVC slotted casing north (T1) and south (T2) of the storm water catch basin. These areas were then backfilled with clean half inch pea gravel to within 3 feet of surface.

4.4 Phase 4 - Excavate and install receptor trench north of the storm catch basin

In order to limit the inconvenience to the residence of the neighborhood the receptor trench was dug to the appropriate depth in 15-foot long segments. A WEGE geologist obtained documentation samples and provided the air monitoring using a PID-OVM with 10.6 ev bulb. After field screening of the soils indicated that the vertical extent of tainted soils had been reached, geofabric was placed on the bottom and on the sides of the trench, along with support shoring. The excavation was then backfilled to within three feet of the surface with clean half-inch pea gravel. When the pea gravel was in place, that section of the finished trench was covered with steel traffic plates. To prevent undermining of the sidewalls, the trench was de-watered using WEGE's water purging truck and the four inch PVC wells placed near the storm drain catch basis portion of the excavation. This water was then transported and transferred to a holding tank (Baker Vapor-Tight 22,000-gallon capacity tank) located at 4035 Park Blvd.

A two-inch PVC monitor well was installed, at the north end of the receptor trench excavation prior to backfilling with pea gravel (T3).

4.5 Phase 5 - Installation of the south portion of receptor trench

Once the north half of the receptor trench had been completely filled with half inch pea gravel, half inch electrical conduit and two-inch PVC pipe were connected to the traffic rated boxes installed at T1 recovery well and T3 monitor well. Road base material was then compacted backfilled along the north trench area to finish grade prior to placement of the concrete gutter and asphalt surface. A Kleinfelder technician conducted the compaction testing, see Appendix M – Kleinfelder daily

field report, City of Oakland excavation and encroachment permits and the November 6, 1998 letter from Alameda County Health Care Service further approval of receptor trench workplan with additional groundwater monitoring wells.

The southern portion of the trench excavation was constructed similarly to the northern section, with the exception that a four-inch PVC pipe was used to connect T1 to T2 recovery well traffic rated boxes and T2 traffic rated box to the T4 two-inch PVC monitoring well traffic rated box, see rated boxes and T2 traffic rated box to the T4 two-inch PVC monitoring well traffic rated box, see Figure 10-As Built Receptor Trench cross section view and Figure 11, Plan view of receptor trench.

4.6 Phase 6 - Resurfacing receptor trench area

Mr. Brian Tino Granados, Constructin Inspector City of Oakland conducted the inspections of the installation of the receptor trench and the resurfacing of Brighton Avenue gutter/street area. During inspections it was noted that the concrete curb was not attached to the badly decomposed concrete gutter and the curb would not have to be replaced. A 12-inch wide by 4-inch deep concrete gutter was installed abutting the curb. Asphalt was then placed ontop of the concrete gutter to resurface the area to meet precondition requirements, see Appendix F – Excavation Field Notes and Appendix M – City of Oakland Permit Conditions.

4.7 Phase 7 - De-watering receptor trench

During construction of the receptor trench it was important to remove any groundwater that could accumulate within the trench. This was accomplished using the four-inch PVC wells (T1 and T2) that were installed north and south of the storm water catch basin. A centrifugal pump was used to remove the water from the wells and into WEGE's 300-gallon truck tank. Prior to pumping water from the wells, a WEGE technician gauged the top of groundwater. Depth to water measurements were also obtained after each holding tank volume removed. The holding tank water was then transported back to 4035 Park Blvd. and transferred into a 22,000 gallon Baker tank for storage, transported back to 4035 Park Blvd. and transferred into a been backfilled with half-inch clean pea gravel.

Once the trench was completed weekly de-watering of the trench was performed. A WEGE technician would obtain depth to water in all wells associated with the site and trench wells T1, T2, T3 and T4. As usual and standard, depth to water measurements were made using the top of the casing as the reference datum. Once the depth to water measurements were obtained, the WEGE technician would de-water the receptor trench, record the amount of water removed and again obtain depth to water measurements from all of the monitor wells. De-watering for the installation of the receptor trench occurred on August 9, 10, 11, 12, 13, 1999. Weekly de-watering of the of the receptor trench occurred on September 2, 16, 23, and 30, 1999. On October 7, receptor trench after completion occurred on September 2, 16, 23, and 30, 1999. On October 7, 1999 an estimated 293 gallons of water was purged from the receptor trench for the purpose of a 1999 an estimated 293 gallons of water was purged from the receptor trench for the purpose of a treatability study using activated carbon for treatment. This water was sampled prior to pumping it through the carbon and another sample was obtained from the effluent of the carbon as it was through the carbon and another sample was obtained from the effluent of the carbon the receptor pumped to the Baker tank. A total of 19,451 gallons of water was removed from the receptor trench, see Table 5 and Appendix K – Trench purge field notes.

5.0 COLLECTION AND ANALYSIS OF SOIL SAMPLES

Soil samples were collected along the length of the receptor trench and from the boring of three additional groundwater-monitoring wells, see Table 2 and Appendix E – Borehole and Well Construction Logs and Appendix G – Soil Sample Laboratory Reports.

The excavation was extended in depth until the PID-OVM showed less than 10 parts per million vapors (ppmv). Trench samples B-10, E-5 and G-7 were obtained to document the contamination concentrations prior to removing those soils. B-10 was obtained from 10 feet bgs and contained Total Petroleum Hydrocarbons gasoline range (TPHg) at 140 mg/Kg. E-5 was obtained from 5 feet bgs and contained TPHg at 4000 mg/Kg. G-7 was obtained from 7 feet bgs and contained TPHg at 1100 mg/Kg, see Table 2 for complete soil sample analysis results, see Appendix F – excavation field notes and Figure11 - sample locations.

Documentation soil samples were obtained from hand augered borings used to install groundwatermonitoring wells RS8, RS9 and RS10. These soil samples showed relatively clean soils above the six-foot depth, with contaminated soils associated with the groundwater and capillary fringe, at approximately the 10-foot depth, see Table 2.

Relatively undisturbed soil samples were collected from various depths in the trench, using the backhoe bucket, and from the well borings using the auger bucket. A two-inch by six-inch clean brass sleeve was then driven into the collected soil completely filling the sleeve, with no headspace. Teflon liners were then fitted on each exposed end of the sample sleeve. A plastic cap was then placed over the teflon liner and then the sample was labeled and placed into an ice chest containing enough ice to cool the sample to 4°C. North State Environmental Laboratories analyzed all soil samples for concentrations of TPH-G, BTEX, and MTBE using EPA methods 5030/8015M/8020 (Appendix G – soil sample laboratory reports).

Figure 10 represents the as built receptor trench cross-section view.

Figure 11 represents the plan view of the receptor trench and soil sample locations.

6.0 SOURCE REMOVAL

6.1 Unauthorized Release Background

November 30, 1989

Mr. Ariu Levi of Alameda County Health Department notified Desert Petroleum that gasoline was trickling into a sewer manway on Brighton Avenue. In response to Mr. Levis notification, that same day, a Desert Petroleum area manager conducted tank inventory audit and found overages on all tanks.

December 5, 1989

The retail fueling facility is closed.

The underground storage tanks were tested. The results of these tests were inconclusive.

All fuel was removed from the underground storage tanks. The supply lines are pressure tested by December 7, 1989 Walton Engineering. The regular leaded and the super-unleaded lines passed the tests; the regular unleaded line failed. Further investigation located a half-inch hole in the two inch unleaded supply line beneath the eastern pump island.

December 8, 1989

Desert Petroleum filed an Unauthorized Release Report.

6.2 Site Assessment - Source Removal

Drilling and soil sampling was initiated. Groundwater monitoring wells RS-1, RS-5 and RS-6 and December 11, 1989 vapor extraction well RS-2 were installed.

A backhoe excavated along the sewer lateral on Brighton Avenue. During excavating a six-inch December 13,1989 water main was broken. A vacuum truck was used to collect the water from the excavation and the broken water main. RS-7 was installed into the excavation and the vacuum truck used to pump water from RS-7 for one week. Approximately 7,200 gallons of fuel/wastewater from the excavation was manifest transported to H & H Shipyard for treatment and disposal.

A Internal Combustion Unit Vapor Extraction System (ICUVES) was connected to wells RS-1, RS-2, RS-5 and RS-6 and operated 24 hours a day for the first week, then only during daylight hours thereafter, due to noise complaints. A second portable ICUVES was connected to RS-7 and operated during daylight hours for gasoline vapor recovery. No estimates of source removal amounts can be located from the ICUVES operations.

Conducted soil-boring investigation near the sewer lateral in residential backyard 1227 Hampel July 24, 1990 Avenue.

Conducted soil-boring/sampling investigation near the sewer lateral in residential backyards 4006 August 21, 1990 Brighton Avenue and 4010/4012 Brighton Avenue.

December 1990

Commenced groundwater quarterly monitoring, see Table 1.

Conducted soil-boring/sampling investigation at residences 4003 Park Blvd. and 4006 Brighton Avenue. Constructed groundwater monitoring well LF1 at 4003 Park Blvd.

Excavated and removed the regular leaded steel underground storage tank (UST), the unleaded June 23,1994 steel UST, the unleaded fiberglass UST, the waste oil steel UST, and all associated product dispensing piping and drain pipes. Performed documentation sampling under the direction of Jennifer Eberly, Alameda County Health Department. The excavated soil was placed back into the excavations for later removal with the concurrence of Ms. Eberly.

Completion of over-excavation of gasoline tainted soils associated with the UST and product August 14, 1995 dispensing system. An estimated 1700 cubic yards of non-line and a color of the col was remained profiled, fransported and disposed to Forward Landfill, Stockton, California. Installed recovery/injection well R3 in the excavation south of the station building.

August 16,1995

Removed hydraulic hoists from station building.

Exploratory excavating at former waste oil UST area, north of the station building and area west of the station building. Installation of recovery/injection wells R1 and R2 into the excavations.

Installation of MW-1, upgradient well, to replace RS-1 which was destroyed during overexcavation of the UST/Product dispensing area.

Completion of States (SPS) and soil sample boring investigation along the sewer lateral that leaves 4036 Park Blvd. and travels through residential backyards, see

January 17, 1997

Completion of free product SPS investigation along Brighton Avenue, including soil boring/sampling.

August 12, 1999

Completion of the receptor trench along Brighton Avenue, with installation of additional groundwater monitoring wells RS-8, RS-9 and RS-10. An estimated 148 cubic yards of nonhazardous gasoline tainted soils were removed, profiled, transported to Vacaville Landfill for disposal.

October 7, 1999

The completion of receptor trench de-watering and weekly purging. An estimated 19451 gallons of gasoline tainted groundwater was removed from the receptor trench and temporarily stored on site in a 22000 gallon Baker tank, awaiting the results of a treatability study for proper disposal.

- Table 1 Groundwater monitoring sample results.
- Table 2 Excavations and borings soil sample results.
- Table 3 Excavated soil sample results.
- Table 4 Natural attenuation sample results.
- Table 5 Receptor trench groundwater removal.

Figure 12 represents all known sample points associated with the assessment of this site and the areas over-excavated at 4035 Park Blvd.

Figure 13 represents the TPHg soil plume 7 to 15 feet below the surface. This elevation of the plume represents the lateral movement and is associated with the top of groundwater/capillary fringe depth.

Figure 14 represents the shallow Total Petroleum Hydrocarbons as gasoline (TPHg) soil plume. Samples were obtained from five to six feet below the surface. This elevation of the plume is limited in extent showing contaminated soils in the backyards near the sewer lateral at 4006 and 4010/4012 Brighton Avenue and along the eastern curb gutter area of Brighton Avenue (receptor trench excavation).

Figure 15 represents the TPHg soil plume 15 to 25 feet below the surface. This elevation of the plume is limited to the station proper and probably represents groundwater fluctuation smear zone.

7.0 GROUNDWATER SAMPLES

7.1 August 26, 1999

The third quarter sampling occurred on August 26,1999. Water samples were collected from onsite wells MW1, RS-2, RS-5, RS-6, R-1, R-2 and R-3 and off site wells RS-7, RS-8, RS-9, RS-10, and the receptor trench well T-1 (Figure 3), see Table 1. Appendix B contains QA/QC, details, methods, procedures, abbreviations, and acronyms used in sampling and analysis.

7.2 Depth to Water Measurements.

Trench wells T2, T3 and T4, had cars were parked over them and they could not be accessed. The depth to water measurements were obtained using a product/water interface probe. Measurements are referenced to surveyed elevation at the top of casing at each well. A licensed land surveyor surveyed all the new wells, resurveyed all old wells and produced a topographic contour map (contour interval 1 foot) of the area encompassing the station, the backyard sewer lateral and Brighton Avenue on August 26, 1999, see Appendix A. Table 1 shows the elevation of groundwater with respect to mean sea level for all monitor wells through August 26, 1999.

7.3 Purging of Monitor Wells

David Pittman Well Purge (DPWP), using a truck mounted vacuum lift pump and one-inch diameter dedicated PVC tubing purged the monitor wells of three volumes of water. This is the same truck and operator as had been regularly used under the name of Lawrence Tank Testing. The specific volume of water removed from each well is recorded on the well sampling data sheets (Appendix B).

7.4 Collection and Certified Analysis of Groundwater Samples

After purging, the wells were allowed to recover to at least 80% of their original well volumes. A groundwater sample was then collected from each well with a disposable polyethylene bailer and decanted, with no headspace, into two 40 ml VOA vials containing 0.5 ml HCL acid as a preservative. North State Environmental Laboratories analyzed all water samples for concentrations of TPH-G, BTEX, and MTBE using EPA methods 5030/8015M/8020 (Appendix C). Method 8020 presence of MTBE from the November 24, 1998 sampling was verified with EPA Method 8260; Method 8020 presence of MTBE from the May 5, 1999 was verified with EPA Method 8260 for sample RS-5. This latest sampling (August 26, 1999) analyzed all of the water samples using EPA Method 8260 for the Fuel Oxygenants.

7.5 MTBE

The November 24, 1998 was the first occurrence of MTBE and was associated with the upgradient wells MW-1 and RS-2. This indicates an upgradient source for the MTBE may exist (a Chevron

Station is located approximately 0.4 miles upslope and east of the site along Park Blvd.). Previous sample results and the February 23, 1999 sample results showed all wells below laboratory lower detection limits for MTBE using standard methods and the September 1998 samples from all wells were also analyzed for the Fuel Oxygenants using EPA Method 8260. All wells tested below laboratory lower detection limits, see Chart and Figures Appendix D.

Fuel Oxygenants	Laboratory Lower Detection Limits
Ethanol Methyl-t-Butyl Ether (MTBE) Di Isopropyl Ether (DIPE) Tertiary Bútyl Alcohol (TBA) Ethyl t Butyl Ether (ETBE) t-Amyl Methyl Ether (TAME)	500 ug/L 1 ug/L 5 ug/L 5 ug/L 5 ug/L 1 ug/L

7.6 Disposition of Waste Water

The wastewater generated from the purging of the monitor wells during sampling, de-watering of the receptor trench and development of wells RS8, RS9 and RS10 is contained on-site in a 21,000 gallon Baker Tank. This wastewater will undergo a treatability study using a 50-gallon activated carbon water scrub that will treat and restore approximately 300 gallons of water recovered from the receptor trench. Once the treatability study has been accomplished, the stored water will be disposed of appropriately.

8.0 RESULTS OF QUARTERLY GROUNDWATER MONITORING

8.1 Groundwater Gradient and Flow Direction

Figure 4 shows the groundwater elevation gradients and flow directions that were derived from the depth to water measurements of the monitor wells on August 26, 1999. The groundwater elevation has dropped approximately 3 feet for onsite wells MW-1, RS-2, RS-5, RS-6, R1, R2 and R3 and approximately 0.3 feet for the offsite well RS-7, since the last sampling (May 5,1999). All of the monitoring wells have shown increases in groundwater elevation since October 1995 (Table 1 and charts).

The current flow direction is west and northwest. The hydraulic gradient averages 0.06 feet/linear foot downgradient from the overexcavated area to MW-5 and 0.09 feet/linear foot from backyard well RS-10 to the receptor trench well T-1, see Figure 4. The current flow direction and hydraulic gradient are consistent with previous determinations by WEGE.

8.2 Results of Certified Analysis of Groundwater Samples

The results of the certified analyses of groundwater samples collected on August 26, 1999 are shown in Table 1 and Figure 5. Copies of the laboratory reports are included as Appendix C of this report.

TPH-G concentrations in water samples from the eight monitor wells, the receptor trench well and three recovery wells ranged from a maximum of 160,000 ug/l at monitor well RS-8 to below the laboratory lower detection limits (50 ug/L) in wells MW-1 and R-3. Benzene concentrations ranged from a maximum of 24,000 ug/L in well RS-8 to 2.0 ug/L in well R-3.

Analysis for Oxygenant Methyl-t-Butyl Ether (MTBE) was confirmed with EPA Method 8260 for sample MW-1, RS-2, RS-9, RS-10, T-1, R1, R2, and R3 from the August 26, 1999 sampling. MTBE ranged between below laboratory detection limits for wells MW-1, R1, R2, R3, RS5, RS6, RS7 and RS8 to a high of 53 ug/L at T1. During the September 16, 1998 sampling, all Fuel Oxygenants; MTBE, Di-isopropyl Ether (DIPE), tertiary Butyl Alcohol (TBA), Ethyl-t-Butyl Ether (ETBE) and t-Amyl Methyl Ether (TAME) were confirmed with EPA Method 8260. These analytes were below laboratory lower detection limits. Prior to and since that time, MTBE analysis has shown elevated spikes between non-detect events indicating that an offsite/upgradeint source for MTBE may exist, see Table 1 and Appendix D - Chart of MTBE occurrence.

Figure 5 shows the lateral distribution of the hydrocarbon plume in groundwater as determined from groundwater samples collected from the monitor wells and from non-certified results from the Soil Probe Surveys.

9.0 NATURAL ATTENUATION STUDY - BIODEGRADATION

9.2Bioremediation Sampling

Bacteria native to the soil at hydrocarbon contamination sites normally degrade hydrocarbons. The most effective hydrocarbon degraders (eaters) are the aerobic (oxygen using) bacteria. Usually the factor controlling the rate that these bacteria degrade the gasoline is the amount of available dissolved oxygen.

A much slower degradation process starts when the dissolved oxygen is consumed. The plume begins to become anaerobic and the bacteria commence to reduce nitrate, ferric iron, and sulfate to further degrade the hydrocarbons. Eventually, as these compounds and the oxygen are depleted, the bacteria begin methogenesis, in which the hydrocarbons are converted to methane.

In order to determine the site potential for natural Bioremediation, the wells were sampled during the August 26,1999 sampling round for the following electron acceptors:

- Dissolved Oxygen, O₂
- 2. Nitrate, NO₃
- 3. Sulfate, SO₄"
- 4. Ferrous Iron, Fe⁺⁺. The actual electron acceptor is Ferric Iron Fe⁺⁺⁺ but it is insoluble, so the reaction product Fe⁺⁺ is measured.
- 5. Additionally, the wells were sampled for TPHg/MBTEX.

During the August 26, 1999 sampling field measurements were obtained from all of the monitoring wells and the receptor trench well T1 to evaluate the natural attenuation occurring at this time. A WEGE geologist, using a HACH spectrophotometer, analyzed water samples for Dissolved Oxygen (DO), and the electron acceptors Sulfate, Nitrate, and Ferrous Iron, see Table 4 and Figures 6, 7, 8 and 9.

On September 2,1999 selected wells were sampled for carbon dioxide, methane, aerobic hydrocarbon degrading bacteria, orthophsphate and ammonia as nitrogen, see Table 4.

9.2 Results of Bioremediation Sampling

Figure 6 represents DO measurements. This figure shows depletion of DO beneath the station property and along the receptor trench.

Figure 7 represents the field measurements for the electron acceptor Nitrate. This figure shows elevated nitrate in groundwater near the building at the station property, extending along the backyard sewer lateral to the receptor trench at Brighton Avenue.

Figure 8 represents the field measurements for the electron acceptor Sulfate. This figure shows elevated sulfate near the building at the station property and at monitor well RS-7 within the street of Brighton Avenue.

Figure 9 represents the field measurements for the electron acceptor Ferrous Iron. Fe2 does not occur naturally in the environment but is a byproduct of reducing environments. The Fe2 plume shows the area that is actively consuming available oxygen.

Figures 6 and 9 demonstrate that active bio-degradation is occurring at the site, along the sewer lateral and within the receptor trench with reductions of DO and elevated levels of Fe2 occurring in the same areas.

Figures 7 and 8 demonstrate that active bio-degradation is occurring along the parameters of the groundwater plume with reductions of NO3 and SO4 compared to levels within the groundwater plumes higher TPHg concentration, where NO3 and SO4 still exist.

Subsequent samples were obtained on September 2,1999 to further define the natural attenuation study. These samples were obtained from wells MW-1, RS-5, RS-6, RS-8, RS-9, RS-10 and T-1

were analyzed for biological indicators; Carbon Dioxide, Methane, and Aerobic Hydrocarbon Degrading Bacteria (AHDB) along with the nutrients Ortho Phosphate, and Ammonia as Nitrogen, see Table 4.

Comparing the Carbon Dioxide to Methane results indicates that the degradation is primarily oxygen based in nature, but some methogenic conditions exist with the presence of methane. The bacteria study shows that there are AHDB present within the hydrocarbon plume with the highest count at downgradient well RS-9 and the lowest count at upgradient well MW-1. The nutrients Orthophosphate and nitrogen have been depleted.

10.0 RBCA TIER 2 RISK BASE CORRECTIVE ACTION

In order to help determine the risks associated with this site a Risk Base Corrective Action (RBCA) Tier 2 Risk Assessment was performed on three separate segments of the groundwater plume. Segment 1 is the station proper Site Name DP 793, see Appendix H, Segment 2 is the backyards along the sewer lateral Site Name DP 793-Backyards, see Appendix I, and Segment 3 is Brighton Avenue, see Appendix J.

During the Tier 2 Assessment, Site-Specific Target Levels (SSTLs) were calculated, using the RBCA Spread Sheet System, for the following compounds of concern (COCs):

- Benzene in groundwater and subsurface soils using the current California Cancer Slope Factor (SF) for Benzene.
- Toluene in groundwater and subsurface soils
- Ethylbenzene in groundwater and subsurface soils
- Xylenes in groundwater and subsurface soils
- MTBE in groundwater and subsurface soils
- TPHg as Hexane in groundwater and subsurface soils

Two potential transport pathways were considered during the Tier Two investigation of this site: Vapor Inhalation and Groundwater Ingestion. The third major pathway, soil ingestion, was not considered because there is no documented contamination in the upper three feet of soil and the site has been over-excavated to a minimum of 12 feet below the surface where tainted soils have been found, limiting the probability of the ingestion of contaminated soil.

10.1 Vapor Inhalation:

- 1. Volatilization to onsite inside air.
- 2. Volatilization to onsite outside air.

At the direction of Alameda County Health and the City of Oakland Fire Department. A Western Geo-Engineers geologist on September 20, 1996 obtained permission and collect air samples from the crawl spaces of the residences at 4006, 4026 and 4032 Brighton A. from 1211, 1215, 1221, and 1227 Hampel Street and from 4003 Park Boulevard. At that time air samples were obtained from the sewer manways at Brighton Avenue, 4035 Park Boulevard and the backyard of 1221 Hampel Street. The samples were analyzed for Total Petroleum Hydrocarbons gasoline range (TPHg), Benzene, Toluene, Ethylbenzene, Xylenes and Methane. All but the methane was below. Laborator, lewer detection in this of TPHg 50 ug/L, Benzene 50.5 ug/L, Televae 50.6 ug/L, Ethylbenzene 50.5 ug/L.

Methane concentrations are as follows:

Basements/crawlspaces

1211 Hampel Street 0.4 ug/L, 1215 Hampel Street 1.5 ug/L, 1221 Hampel Street 3.8 ug/L,

1227 Hampel Street 0.4 ug/L, 4006 Brighton Avenue 0.7 ug/L, 4026 Brighton Avenue 0.6 ug/L,

4032 Brighton Avenue 1.1 ug/L, and 4003 Park Blvd. 11.3 ug/L.

Sewer manways

1215 Hampel Street 0.7 ug/L, Brighten Avenue 0.4 ug/L and 4035 Park Blvd. 0.3 ug/L.

The lower explosion limit for gasoline in air is 52,000 ug/L.

The lower explosion limit for methane in air is 35, 30 again.

10.2 Groundwater Ingestion:

- 1. Oneits groundwater ingestion, commercial. The groundwater located in the shallow aquifer beneath this site is not suitable for commercial or domestic use due to the likelihood of biological and non-petroleum contaminants from leaking sewer and storm drain systems throughout the neighborhood.
- 2. Off-site ingestion, Domestic. There are no known domestic and or commercial wells within a half mile radius of the site. Because there is no down gradient well in the area various downgradient points were used for each Tier 2, ie. Station proper resident at 4010/4012 Brighton Avenue. Backyard sewer T1 well in receptor trench and Brighton Avenue west side where sewer enters beneath Greenwood Street, distances of 2000 cm (65 feet), 5600 cm (182 feet) and 6900 cm (224.6 feet) respectively were used to calculate off-site ingestion.

10.3 Toxicity Assessment

Of the compounds currently found at the site, the primary driver of risk at this site is the benzene.

Cancer Toxicity

Benzene, a class A carcinogen, has been shown in work place studies to cause Leukemia in humans. The current California Cancer risk slope factor (SF) is 0.1 (1/(mg/kg-day)).

Non-cancer Toxicity.

Five compounds were considered for the non-cancer toxicity, Ethlybenzene, Hexane, MTBE, Toluene, and Xylenes (which includes, meta, para and orto xylenes). See Appendies H, I and J, RBCA Spreadsheet, RBCA Chemical Data, and Toxicity Data for current EPA.

Hexane was used to represent the alkane (non-aromatic) portion of gasoline. Hexane was chosen because its properties represent the light, faster moving, end of the alkanes and as such represents the worst case for alkane migration.

At the concentrations currently found at this site, the risk of most importance is the chronic or long-term risk. Two types of chronic risk have to be assessed: cancer risk and non-cancer chronic exposure risk.

These two types of risk are treated differently because of the way they effect people. Carcinogens are modeled as if any amount of the compound will produce some possibility of causing cancer. Non carcinogens will not cause health effects until they reach a threshold value at which concentration they may have some adverse effect on the population. Below the threshold value, a high-risk compound may even have a beneficial effect, e.g., vitamin A and sodium chloride (table salt).

Because of these different effect models, the risk is calculated differently. The cancer risk is calculated as a probability of causing cancer using a slope factor (SF). The SF expresses the probability of developing cancer from the intake of 1 mg of compound per kg of body weight over a 70-year lifetime.

The non-cancer risk is calculated by comparing the chance of exceeding the threshold limit of the compound. In order to insure that no sensitive person will be effected by the chemical, the Reference Dose (Rfd) that is used to calculate the risk of exposure is given an uncertainty factor of 10 to 1000 times less than the No-Observed-Adverse-Effect-Level (NOAEL). The NOAEL is the concentration at which no adverse effect was found in human and/or animal studies. The non-cancer risk is calculated by dividing the long-term ingestion rate by the Rfd. If the result is less than one, the threshold limit above which health effects will occur should not be reached.

10.4 Exposure Assessment

Three primary routes of exposure that must be considered at any site are:

- 1. Ingestion of compounds in soil.
- 2. Ingestion of compounds in groundwater.
- 3. Inhalation of compounds in vapor form.

Of these three routes of exposure, only inhalation is a likely route of exposure to be encountered at this site.

Ingestion of compounds in soil was not considered because there is no documented contamination in the upper three feet of soil. The majority of contaminated soils have been removed by over-excavation of the USTs and associated piping dispensing area at 4035 Park Blvd. (to the 17 foot depth) and the Brighton Avenue eastern gutter area (to the 15.5 foot depth). Where contaminated soils still exists, these areas are paved over or are deeper than five feet below the surface, limiting the probability of the ingestion of contaminated soil.

On-site ingestion of compounds in groundwater was considered in order to determine the probability of adverse effects to off-site wells. Ingestion of groundwater at the site is unlikely, as it would require turning RS-5 into a domestic well and proceeding to drink the water therefrom.

Off-site ingestion was considered in order to determine the probability of adverse effects to off-site downgradient receptor points (RS-9) and where the sewer main is below Greenwood.

10.5 Concentrations Used

RBCA Tier 2 - Station proper

In order to test the probable impact of the current groundwater plume the upper confidence level (UCL) concentrations were calculated for the Monitor Wells within the plume, from the August 26, 1999 sampling round.

The values used to determine the soil impacts were the highest values from samples of the sidewall over-excavation of the UST and product dispensing system August 1995.

COMPOUND	MILLIGRAMS/LITER MILLIGRAMS/KILOGRAM	WELL			
Benzene Water	0.94	R2			
Benzene Soil	8.8	14.5 feet Hoist Area			
Ethylbenzene Water	1.9	RS5			
Ethylbenzene Soil	18	14.5 feet Hoist Area			
TPHg water represented in the RBCA by Hexane.	35	RS5			
TPHg soil represented in the RBCA by Hexane.	2000	Excavation sidewall sample I-SW building 8 feet.			
MTBE Water	0.002	RS2			
MTBE Soil	0.005	Detection limit			
Toluene Water	4.0	RS5			
Toluene Soil	35	Excavation sidewall sample I-SW building 8 feet.			
Xylenes Water	8.3	RS5			
Xylenes Soil	130	Excavation sidewall sample I-SW building 8 feet.			

RBCA Tier 2 - Backyards

In order to test the probable impact of the current groundwater plume the upper confidence level (UCL) concentrations were calculated for the Monitor Wells (RS8 and RS10) in the backyards, from the August 26, 1999 sampling round.

The values used to determine the soil impacts were the highest values from the soil samples obtained during installation of the backyard wells (RS8 and RS10).

COMPOUND	MILLIGRAMS/LITER MILLIGRAMS/KILOGRAM	WELL
Benzene Water	24	RS8
Benzene Soil	11	9.5 feet RS10
Ethylbenzene Water	4.2	RS8
Ethylbenzene Soil	21	9.5 feet RS10
TPHg water represented in the RBCA by Hexane.	160	RS8
TPHg soil represented in the RBCA by Hexane.	870	9.5 feet RS10
MTBE Water	0.032	RS10
MTBE Soil	0.005	Detection limit
Toluene Water	35	RS8
Toluene Soil	62	9.5 feet RS10
Xylenes Water	24	RS8
Xylenes Soil	120	9.5 feet RS10

RBCA Tier 2 - West Brighton Avenue (RS9)

In order to test the probable impact of the current groundwater plume the upper confidence level (UCL) concentrations were calculated for the Monitor Well RS9 located at the western easement of Brighton Avenue, just north of the sewer main route, from the August 26, 1999 sampling round.

The values used to determine the soil impacts were the highest values from the soil samples obtained during installation of monitor well RS9.

COMPOUND	MILLIGRAMS/LITER MILLIGRAMS/KILOGRAM	WELL
Benzene Water	3.5	RS9
Benzene Soil	0.41	10 feet RS9
Ethylbenzene Water	0.36	RS9
Ethylbenzene Soil	0.87	10 feet RS9
TPHg water represented in the RBCA by Hexane.	17	RS9
TPHg soil represented in the RBCA by Hexane.	67	10 feet RS9
MTBE Water	0.18	RS9
MTBE Soil	0.005	Detection limit
Toluene Water	1.2	RS9
Toluene Soil	2	10 feet RS9
Xylenes Water	1.6	RS9
Xylenes Soil	4.9	10 feet RS9

10.6 Results

The results of a Tier 2 RBCA calculation are expressed as SSTLs. This is the concentration at which, the calculated cancer risk will not exceed the 1/1,000,000 residential or 1/100,000 commercial cancer risk and the non-cancer threshold limit is less than one.

Surface Soils <3.3 feet bgs

RBCA Tier 2 – Station proper (Appendix H Worksheet 9.1)

None of the compounds exceeded the SSTLs for soil leaching to groundwater or ingestion, inhalation and dermal contact.

Volatilization to indoor air: Air sample obtained from the sewer manway was below laboratory lower detection limits for TPHg, BTEX

RBCA Tier 2 – Backyards (Appendix I Worksheet 9.1)

None of the compounds exceeded the SSTLs for soil leaching to groundwater or ingestion, inhalation and dermal contact.

Volatilization to indoor air: Air samples obtained from the basements/crawl spaces beneath 4006, 4026 and 4032 Brighton Avenue, from 1211, 1215, 1221, and 1227 Hampel Street and from 4003 Park Boulevard were below laboratory lower detection limits for TPHg, BTEX. Soil gas samples obtained from two locations in the backyard of 4006 Brighton Avenue were below laboratory lower detection limits for TPHg, BTEX.

RBCA Tier 2 – West Brighton Avenue (RS9) (Appendix J Worksheet 9.1)

None of the compounds exceeded the SSTLs for soil leaching to groundwater or ingestion, inhalation and dermal contact.

Volatilization to indoor Air: Air sample obtained from the sewer manway in Brighton Avenue was below laboratory lower detection limits for TPHg, BTEX

Subsurface soils >3.3 feet bgs

RBCA Tier 2 – Station proper (Appendix H Worksheet 9.2)

Benzene and gasoline (hexane) exceeded the SSTLs for soil leaching to groundwater, volatilization to indoor air and volatilization to outdoor air; the corrective reduction factor (CRF) indicates that benzene needs to be reduced by 46X's and gasoline (hexane) by 40X's.

RBCA Tier 2 – Backyards (Appendix I Worksheet 9.2)

Benzene and gasoline (hexane) exceeded the SSTLs for soil leaching to groundwater, volatilization to indoor air and volatilization to outdoor air; the corrective reduction factor (CRF) indicates that benzene needs to be reduced by 110X's and gasoline (hexane) by17X's.

RBCA Tier 2 – West Brighton Avenue (RS9) (Appendix J Worksheet 9.2)

Benzene and gasoline (hexane) exceeded the SSTLs for soil leaching to groundwater, volatilization to indoor air and volatilization to outdoor air; the corrective reduction factor (CRF) indicates that benzene needs to be reduced by 4X's and gasoline (hexane) by 1X's.

Groundwater

RBCA Tier 2 – Station proper (Appendix H Worksheet 9.3)

Benzene, gasoline (hexane), Methyl t-Butyl Ether, Toluene and Xylenes exceeded the SSTLs for groundwater ingestion, volatilization to indoor air and volatilization to outdoor air; the corrective reduction factor (CRF) indicates that benzene needs to be reduced by 6200X's, gasoline (hexane) by 41X's, MTBE by 11X's, toluene by 4X's and Xylenes by 2X's.

RBCA Tier 2 – Backyards (Appendix I Worksheet 9.3)

Benzene and gasoline (hexane exceeded the SSTLs for groundwater ingestion, volatilization to indoor air and volatilization to outdoor air; the corrective reduction factor (CRF) indicates that benzene needs to be reduced by 56X's and gasoline (hexane) by 2X's.

RBCA Tier 2 – Brighton Avenue (Appendix J Worksheet 9.3)

Benzene and gasoline (hexane exceeded the SSTLs for groundwater ingestion, volatilization to indoor air and volatilization to outdoor air; the corrective reduction factor (CRF) indicates that benzene needs to be reduced by 1200X's and gasoline (hexane) by 3X's.

10.7 Discussion

By definition, the SSTLs determine the concentrations at which the site will not pose a significant risk to the public or the workers at or near the site. On site, the SSTLs were exceeded for indoor air, soil exposure pathways and groundwater exposure pathways. The sewer lateral backyard study indicates that the SSTLs were exceeded for indoor air, soil exposure pathways and groundwater exposure pathways. The Brighton Avenue study indicates that the SSTLs were exceeded for indoor air, soil exposure pathways and groundwater exposure pathways.

Indoor Air

The RBCA Tier 2 studies indicated that the indoor air pathway has been exceed. Subsurface lithology is composed of clays which would hinder the vertical/lateral migration of vapors which was substantiated by an earlier study that obtained air samples for analysis from sewer manways at Brighton Avenue, at the site (4035 Park Blvd) and along the backyard sewer later at 1215 Hampel Street and from the basement/crawl spaces of the following residences: 4006, 4026 and 4032 Brighton Avenue, from 1211, 1215, 1221, and 1227 Hampel Street and from 4003 Park Boulevard. Soil gas samples were also obtained from the backyard (3-foot depth) of 4006 Brighton Avenue. All samples were below lower laboratory detection limits for TPHg, BTEX, and MTBE.

Soil Exposure Pathways

No contaminated soils were found in the upper 3.3 feet of the studied areas. The station was extensively over-excavated removing the majority of contaminated soils to the 17-foot depth. Where free phase floating product was discovered along Brighton Avenue, the installation of the receptor trench removed contaminated soils that where discovered between the 3 and 10 foot depth. In the backyards and along Brighton Avenue, the contaminated subsurface soils are associated with groundwater movement and the capillary fringe, which is deeper than the underground utility trenches, reducing the chance of dermal exposure from construction practices. The upper soils are composed of clay, which restricts the vertical and horizontal migration of vapors produced from the gasoline contaminant.

Groundwater pathway

There are no known private, municipal or industrial wells within a half mile radius of the known extent of the groundwater gasoline plume. This groundwater is shallow and is not suited for domestic or industrial use. Of greater concern would be biological constituents in the groundwater from leaking sewers and storm drains. At the site (DP 793) groundwater is located between 5 and 20 feet below the surface. At Brighton Avenue (RS-7) groundwater is located between 3.7 and 4.7 feet below the surface. As shown during the various assessments of this site, the groundwater plume is associated with the sewer lateral that leaves DP 793 north along the backyards of 4006, 4010/4012, 4026, and 4032 Brighton Avenue, then west along the northern property line of 4032 Brighton Avenue, and then west across Brighton Avenue. This plume route shows migration along the route of least resistance, backfill of the sewer. And a damming effect that has retarded the downgradient migration of the plume along Brighton Avenue by water filled underground utility fill of the gas and water services. The native subsurface soils that contain the groundwater are very fine silty clays and clayey sands that do not typically allow for much of a downgradient extent of gasoline type plumes.

11.0 CONCLUSIONS

- With the data produced from the additional groundwater monitoring wells RS8, RS9, and RS10, the groundwater gradient is shown to follow the local topography; leaving the site (DP793), flowing in a west northwesterly direction to Brighton Avenue, and then flowing west across Brighton Avenue. It follows a coarse similar to the sewer main along the backyard property lines of 4006, 4010/4012, 4026 and 4032 Brighton Avenue.
- Risk Base Corrective Action Tier 2 Studies of the Site (DP793), the Backyards and Brighton Avenue indicate that corrective actions are needed to reduce the soil and groundwater contaminant levels.
- A natural attenuation study indicates that natural attenuation is occurring and aerobic hydrocarbon degrading bacteria do exist along the perimeter of the groundwater plume. The

groundwater within the plume is depleted of oxygen and the nutrients containing nitrogen and ortho phosphate.

· Weekly purging of the receptor trench showed that a one day purge could remove between 2700 to 5100 gallons of water, emptying the trench, but did not significantly lower the local water table beyond the trench.

12.0 RECOMMENTATIONS

• Continue quarterly groundwater sampling/monitoring of the site.

• Finalize a treatability study to have the purged/stored water disposed to the sewer operated by East Bay Municipal Utility District

Develop a bid package to connect the receptor trench to the treatment facility at 4035 Park

Develop a workplan to augment natural attenuation with oxygen, nitrogen and ortho phosphate

 Permit and install a continuous groundwater pump and treatment system to pump and treat water from the receptor trench wells T1 and T2 and discharge to the sewer under a sewer discharge permit.

11.0 REFERENCES

LEVINE - FRICKE REPORT OF THE SOIL AND GROUND-WATER INVESTIGATION AT 4003 PARK BOULEVARD/4006 BRIGHTON AVENUE, OAKLAND, CALIFORNIA, November 16, 1993

SITE ASSESSMENT AND REMEDIATION RSI REMEDIATION SERVICE, INT'L REPORT FOR DESERT PETROLEUM STATION NO. 793, 4035 PARK BOULEVARD, OAKLAND, CALIFORNIA, January 5, 1990.

12.0 LIMITATIONS

This report is based upon the following:

- The observations of field personnel. A.
- The results of laboratory analyses performed by a state certified laboratory. B.

Referenced documents. C.

Our understanding of the regulations of the State of California, Alameda County and the D. City of Oakland.

Changes in groundwater conditions can occur due to variations in rainfall, temperature, E. local and regional water use, and local construction practices.

In addition, variations in the soil and groundwater conditions could exist beyond the points F. explored in this investigation.

State Certified Laboratory analytical results are included in this report. This laboratory follows EPA and State of California approved procedures; however, WEGE is not responsible for errors in these laboratory results. Western Geo-Engineers is a corporation under California Registered Geologist #3037 and/or Contractors License #513857. The services performed by Western Geo-Engineers have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the State of California and the Oakland area. Our work and/or supervision of remediation and/or abatement operations, active or preliminary, at this site is in no way meant to imply that we are owners or operators of this site. Known or suspected contamination of soil and/or groundwater must be reported to the appropriate agencies in a timely manner. No other warranty, expressed or implied, is made.

NAPPER

Sincerely,

George Converse

Geologist

Jack E. Napper

Ca. Reg. Geologist #3037

cc: Mr.Tom Peacock, Alameda County Health (510) 567-6774

Mr. Leroy Griffin, Oakland Fire Dept.

Mr. Chuck Headlee, RWQCB-Bay Region (510) 622-2433

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(All concent (AMSL = Abov		n parts per bi a level)	llion [ug/L,	ppol)				
IDM	DATE	WELL CASING ELEVATION (FEET AMSL)	DEPTH TO GROUND WATER (FEET)	GROUND WATER ELEVATION (FEET AMSL)	TPH-G (UG/L)	BENZENE (UG/L)	TOLUENE (UG/L)	ETHYL- BENZENE (UG/L)	(UG/L)	MTBE
RS-1	12/14/89	240	24.25	215.75	19000	2600	2700	200	1200	
S-1	12/90				15000	3500	330	170	760	
RS-1	2/91				6900	910	200	39	540	
RS-1	6/91				1600	56	180.000	12	26	
RS-1	9/91				4100	730	7.6	5.1	24	
RS-1	12/91				8300	950	160	71	190	
RS-1	11/09/92	100.18	17.05	83.13	1700	730	9.6	16	14	
RS-1	04/07/94	100.18	13	87.18	860	84	12	16	110	
RS-1	06/19/94	228.15	13.37	214.78	1400	150	12	52	87	
RS-1	09/17/94	228,15	16.33	211.82	310	3.0	1.8	2.8	3.9	
RS-1	03/12/95	228.15	4.66	223.49	ND	ND	ND	ND	ND	
KG-4	10/10/	DESTROYED B	Y OVER-EX	CAVATION OF UST	-DISPENSER A	REAS (8/1	4/95			
		REPLACED WI								
MW-1	10/04/95	232.57	12.38	220.19	ND	ND	ND	ND	ND	
MW-1	12/21/95				< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.
MW-1	03/27/96				< 50	< 0.5	< 0.5	< 0.5		< 5
MW-1	06/11/96				< 50	< 0.5	< 0.5	< 0.5		< 5
MW-1	09/04/96	100000000000000000000000000000000000000		220.73	< 50	< 0.5	< 0.5	< 0.5	< 2	<
MW-1	12/11/96			219.59	< 50	< 0.5	0.9	The second secon		< 0.
MW-1	2/21/97			223.07	< 50	< 0.5	0.9	The second second second		< 0.5
MW-1	5/28/97		11.18	221.39	< 50	3	3	< 0.5		< 0.5
MW-1	9/2/97			219.57	< 50	5	< 0.5	< 0.5	< 1	< 0.5
MW-1	11/24/97				< 50	5	< 0.5	< 0.5		< 0.5
MW-1	2/25/98		110		< 50	< 0.5	< 0.5	< 0.5	< 1	< 0.5
MW-1	7/8/98				< 50	< 0.5	< 0.5	< 0.5		< 1
MW-1	9/16/98			The second secon	< 50	< 0.5	< 0.5	< 0.5	< 1	< 1
MW-1	11/24/91	The second secon			52	2.3	5.2			11
	2/23/9				< 50	< 0.5	5	< 0.5	< 1	< 0.
MW-1	5/5/9				< 50	1	<0.5	< 0.5	< 1	
MW-1***	8/26/9				<50	4.3	<0.5	< 0.5	< 1	

MW-1 Groundwater Elevation

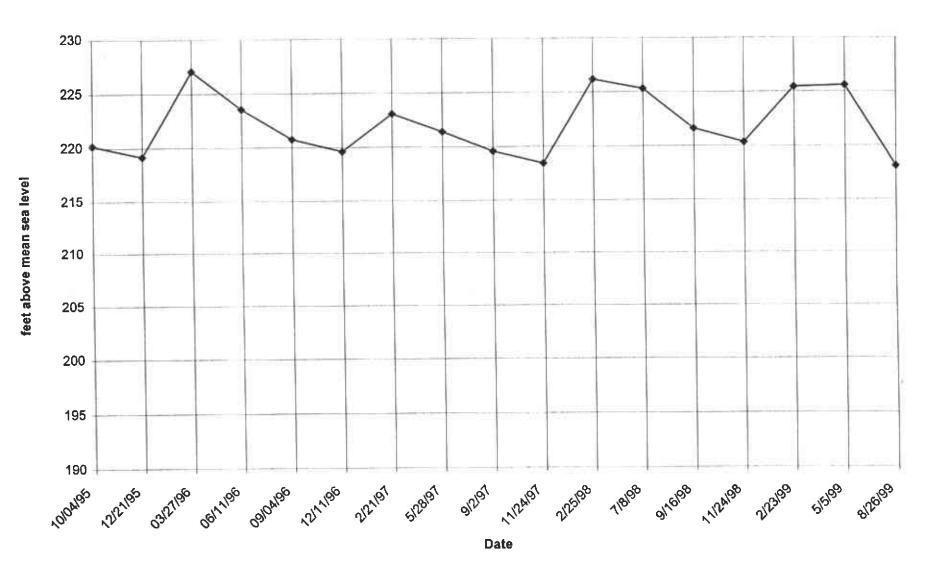
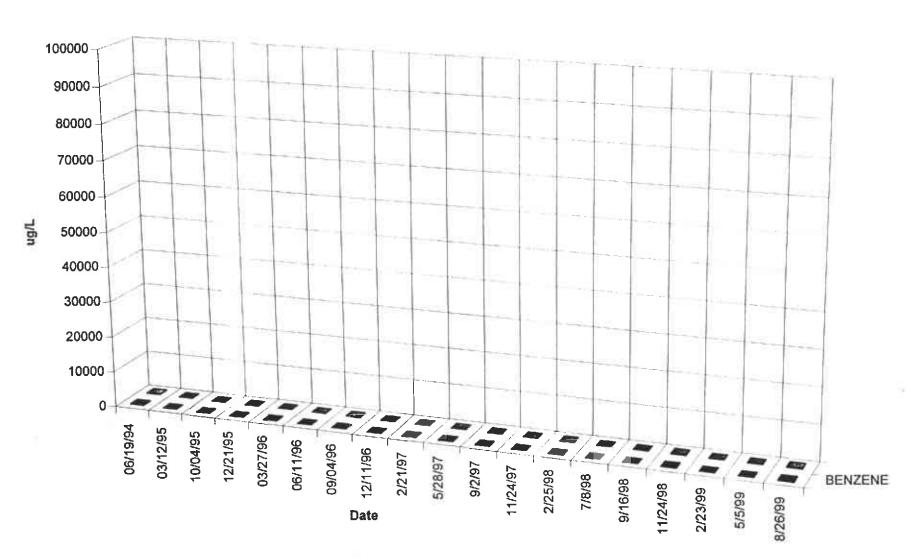
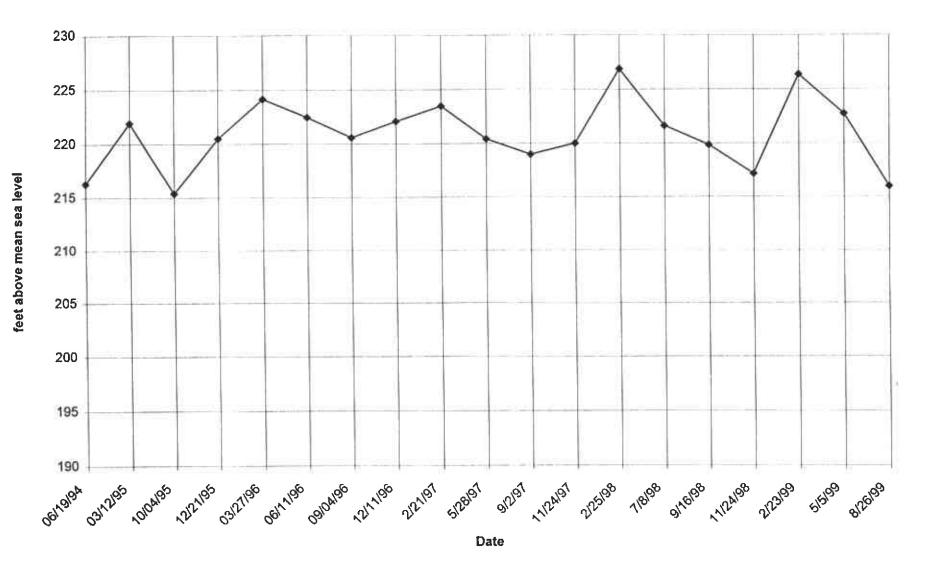
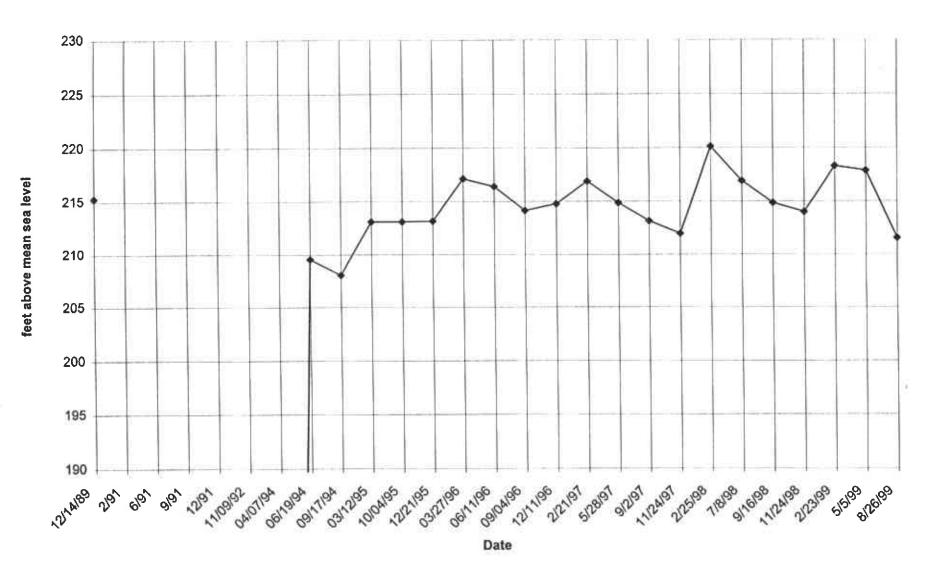



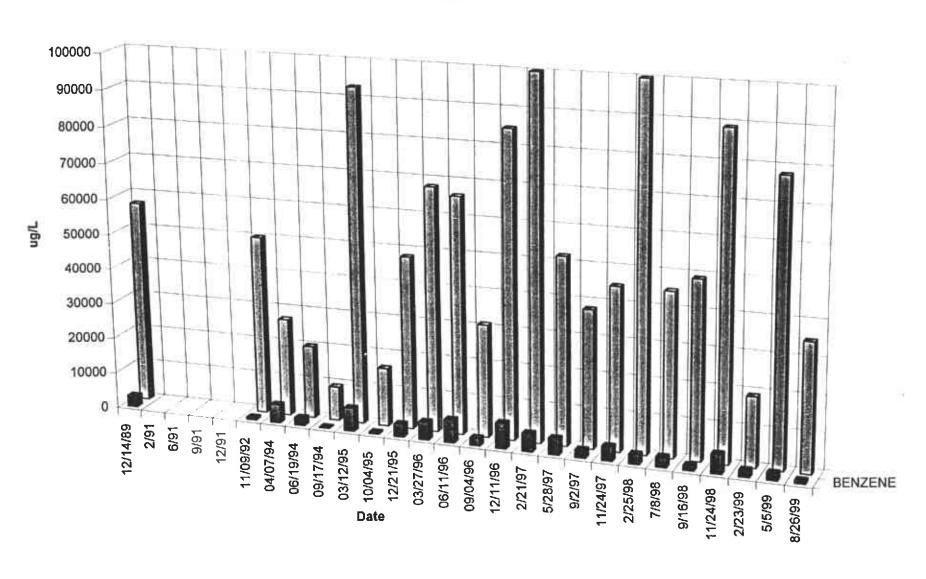
TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(All concent (AMSL = Abov			oillion [ug/L,	pbp11				
ID#	DATE SAMPLED	WELL CASING	DEPTH TO GROUND	GROUND WATER	TPH-G	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE
		ELEVATION (FEET AMSL)	WATER (FEET)	(FEET AMSL)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
RS-2	06/19/94	227.19	10.89	216.3	140	9.2	34	4.3	24.0	
RS-2	03/12/95	227.19	5.26	221.93	ND	ND	ND	ND	ND	
RS-2	10/04/95	230.43	15.05	215.38	ND	ND	ND	ND	ND	
RS-2	12/21/95	230.43	9.95	220.48	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.
RS-2	03/27/96		6.28	224.15	< 50	< 0.5	< 0.5	< 0.5	< 2	< 5
RS-2	06/11/96	230.43	8.00	222.43	< 50	1.2	2.8	< 0.5	< 2	< 5
RS-2	09/04/96	230.43	9.89	220.54	< 50	< 0.5	< 0.5	< 0.5	< 2	<
RS-2	12/11/96		8.38	222.05	< 50	< 0.5	< 0.5	< 0.5	< 1	
RS-2	2/21/97	230.43	6.96	223.47	< 50	< 0.5	< 0.5	< 0.5	< 1	< 0.5
RS-2	5/28/97	230.43	10.02	220.41	< 50	3	3	< 0.5	< 1	< 0.5
RS-2	9/2/97	230.43	11.46	218.97	< 50	< 0.5	< 0.5	< 0.5	< 1	< 0.5
RS-2	11/24/97	230.43	10.43	220	< 50	< 0.5	1	< 0.5	3	< 0.5
RS-2	2/25/98	230.43	3.57	226.86	< 50	< 0.5	< 0.5			< 0.5
RS-2	7/8/98	230.43	8.83	221.6	< 50	< 0.5				< 1
RS-2	9/16/98		10.60	219.83	< 50	< 0.5	< 0.5			< 1
RS-2	11/24/98	230.43	13.27	217.16	140	2.8				15
RS-2	2/23/99	230.43	4.06	226.37	< 50	< 0.5	< 0.5			< 0.
RS-2	5/5/99		7.70	222.73	< 50	0.7	< 0.5			
RS-2***	8/26/99		11.42	215.97	200	15	23	1.7	23	9

RS-2 TPHg

RS-2 Groundwater Elevation

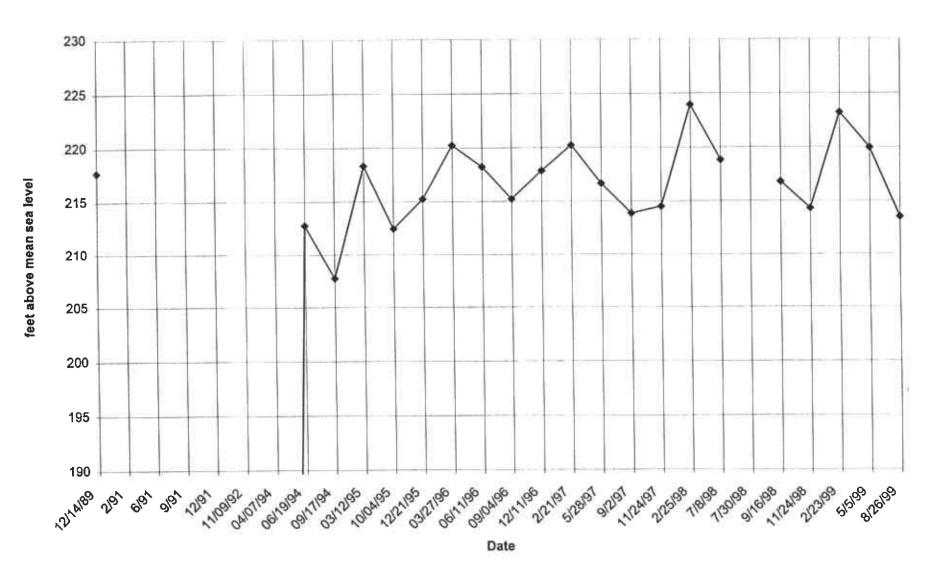




TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(All concent	trations i	n parts per	bi1	llion [ug/L,	ppb])				
		(AMSL = Abor	ve mean se	a level)							
ID#	DATE SAMPLED	WELL CASING	DEPTH TO GROUND	GROUND WATER		TPH-G	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE
		ELEVATION (FEET AMSL)	WATER (FEET)	ELEVATION (FEET AMSL)		(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
RS-5	12/14/89	241.26	25.97	215.29	\exists	57000	3100	4300	670	3400	
	2/91	241.20	and the second s	DATING PRODU	CT						
RS-5	6/91			DATING PRODU							
	9/91			DATING PRODU							
RS-5 RS-5	12/91			DATING PRODU							
RS-5	11/09/92	98.99	20.73		-	50000	650	4800	1100	15000	
RS-5	04/07/94	98.99	18.16	80.83	\dashv	27000	5000	8700	550	2800	
RS-5	06/19/94	227.65	18.11	209.54	\dashv	20000	2100	5300	470	2500	
RS-5	09/17/94	227.65	19.63	208.02		9300	230	340	110	700	
RS-5	03/12/95	227.65	14.54	213.11	\neg	93000	6400	2000	19000	10000	
RS-5	10/04/95	230.64	17.53	213.11	\vdash	16000	420	2100	320	1800	
RS-5	12/21/95	230,64	17.47	213.17		48000	3500	9200	840	4800	56
RS-5	03/27/96	230.64	13.51	217,13		68000	4900	18000	1700	11000	< 3000
RS-5	06/11/96	230.64	14.25	216.39		66000	6300	20000	2100	12000	< 3000
RS-5	09/04/96	230.64	16.50		П	31000	2100	11000	1100	6800	400
RS-5	12/11/96	230.64	15.88			85000	7000	21000	1800	8900	570
RS-5	2/21/97	230.64			sh	100000	5000	22000	1700	7300	<0.5*
RS-5	5/28/97			214.87		52000	4500	19000	2100	10000	<0.5
RS-5	9/2/97	230.64				38000	2200	9400	1300	5800	<0.5
RS-5	11/24/97	230.64				45000	4000	16000	1900	9700	<0.5
RS-5	2/25/98					160000	2700	31000	5300	28000	<0.5
RS-5	7/8/98					45000	2800	12000	2000	8500	<10*
RS-5	9/16/98					49000	1400	7500	1700	8600	<51
RS-5	11/24/98					89000	5300	15000	2800	13000	<10
RS-5	2/23/99					19000	1900	11000	2500	4800	<25
RS-5	5/5/99				-	78000		10000	3000	15000	540
RS-5***	8/26/99					35000	870	4000	1900	8300	<1'

RS-5 Groundwater Elevation

RS-5



34

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAGRATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(All concent	rations i	n parts per bil	lion [ug/L,	ppb])				
		(AMSL = Abov	ve mean se	a level)						
ID#	DATE SAMPLED	WELL CASING	DEPTH TO	GROUND WATER	TPH-G	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE
		ELEVATION (FEET AMSL)	WATER (FEET)	ELEVATION (FEET AMSL)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
RS-6	12/14/89	240.23	22.52	217.71	11000	1400	1700	160	860	
RS-6	2/91		FL	OATING PRODUCT						
RS-6	6/91				95000	4200	4200	650	3700	
RS-6	9/91		FL	DATING PRODUCT						
RS-6	12/91				64000	3700	2300	730	4100	
RS-6	11/09/92	99,27	19.43	79.84	19000	1600	710	500	1600	
RS-6	04/07/94	99.27	14.42	84.85	16000	1200	1300	290	1100	
RS-6	06/19/94	227,22	14.45	212.77	23000	1300	2200	590	2200	
RS-6	09/17/94	227.22	19.52	207.7	24000	630	790	250	1100	
RS-6	03/12/95	227.22	8.90	218.32	3200	450	13	82	230	
RS-6	10/04/95	230.22	17.78	212.44	3700	170	250	38	290	
RS-6	12/21/95	230.22	14.98	215.24	3100	120	30	16	150	5
RS-6	03/27/96	230.22	10.00	220.22	6900	180	440	79	360	< 30
RS-6	06/11/96	230.22	12.00	218.22	7400	220	150	30	100	<100
RS-6	09/04/96	230.22	15.00	215.22	1400	68	2.6	7.7	9.2	1
RS-6	12/11/96	230.22	12.36	217.86	1800	39	16	10	18	< 0,
RS-6	2/21/97	230.22	10.00	220.22	2100	71	85	25	40	< 0.5
RS-6	5/28/97	230.22	13.56	216.66	1700	34	12	11	16	< 0.5
RS-6	9/2/97	230.22	16.35	213.87	940	34	71	9	55	< 0.5
RS-6	11/24/97	230.22	15.72	214.5	490	9	6	1	7	< 0.5
RS-6	2/25/98	230,22	6.26	223.96	1400	22	47	5	52	< 0.5
RS-6**	7/8/98		11.41	218.81	1500	83	9	84	2	<10
RS-6	7/30/98				<50	<0.5	<0.5	<0.5	<1	
RS-6	9/16/98	230.22	13.42	216.8	990	23	<0.5	<0.5	<1	<1
RS-6	11/24/98	230.22	15.91	214.31	3400	5.3	<0.5	<0.5		<0.
RS-6	2/23/99	230.22	7.00	223.22	1000	3.4	3.2	1.6	7.3	<0.
RS-6	5/5/99	230.22	10.29	219.93	1100	50	10			
RS-6***	8/26/99		13.72	213.5	690	44	2.5	30	31	<

RS-6 Groundwater Elevation

RS-6

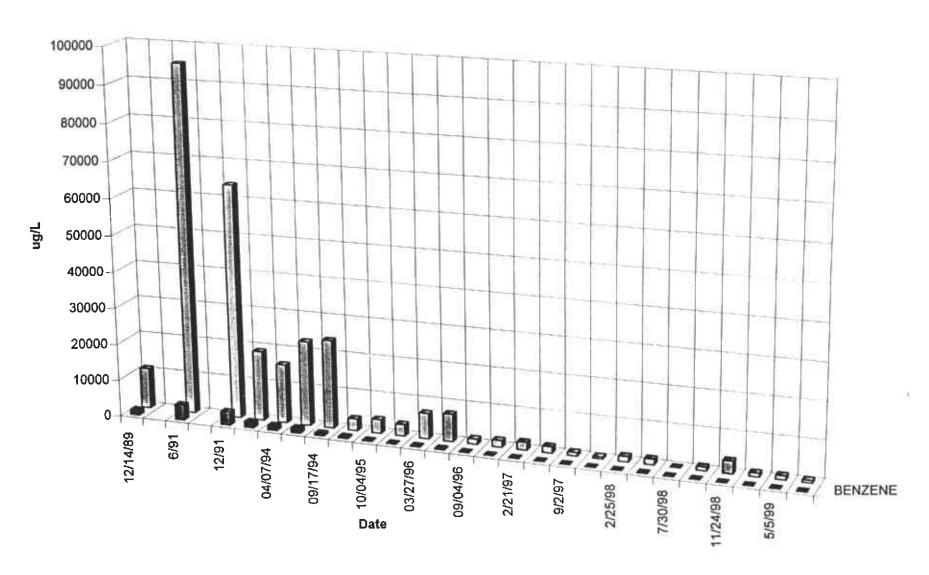
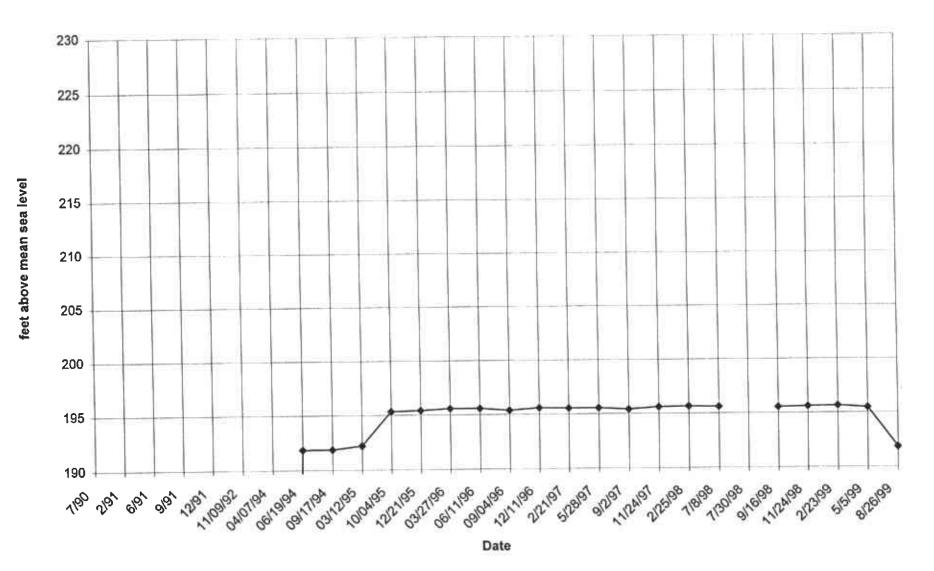



TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(All concent (AMSL = Abov		n parts per bi a level)	llion [ug/L,	ppb])				
ID#	DATE SAMPLED	WELL CASING	DEPTH TO GROUND WATER	GROUND WATER ELEVATION	трн-с	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE
		ELEVATION (FEET AMSL)	(FEET)	(FEET AMSL)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
			Y		5600000	24000	210000	50000	740000	
RS-7	7/90				5600000	24000	210000	50000	740000	
RS-7	2/91			DATING PRODUCT						
RS-7	6/91			DATING PRODUCT						
RS-7	9/91		FL	DATING PRODUCT					42000	
RS-7	12/91				270000	11000	22000	2000	13000	
RS-7	11/09/92	67.88	4.62	63.26	81000	12000	16000	1900	13000	
RS-7	04/07/94	67.88	4.03	63.85	74000	16000	16000	1400	8500	
RS-7	06/19/94	195.92	4.07	191.85	83000	22000	19000	1500	9500	
RS-7	09/17/94	195.92	4.05	191.87	270000	13000	15000	2100	1100	
RS-7	03/12/95	195.92	3.72	192.2	35000	5100	560	6300	3600	
RS-7	10/04/95	199.35	4.03	195.32	96000	14000	14000	1300	7000	
RS-7	12/21/95	199.35	3.95	195.4	70000	9300	12000	860	5600	210
RS-7	03/27/96	199.35	3.80	195.55	64000	8900	14000	1100	8300	< 3000
RS-7	06/11/96	199.35	3.79	195.56	65000	12000	17000	1600	9700	<500
RS-7	09/04/96	199.35	3.99	195.36	20000	4900	2100	670	4400	10
RS-7	12/11/96	199.35	3.78	195.57	17000	4400	7500	570	4600	18
RS-7	2/21/97	199.35	3.82	195.53	93000	31000	47000	3800	23000	<0.5
RS-7	5/28/97	199.35	3.82	195.53	52000	12000	8200	2000	11000	<0.5
RS-7	9/2/97	199.35	3.96	195.39	28000	6100	2800	950	3800	<5
RS-7	11/24/97	199.35	3.76	195.59	18000	4300	5900	600	2900	<0.5
RS-7	2/25/98		3,70	195.65	13000	4300	7100	1100	5800	<0.5
RS-7**	7/8/98			195.59	45000	10000	3400	2000	8000	<10
RS-7	7/30/98		_		72000	12000	2100	2000	9100	
RS-7	9/16/98			195.52	5000		160	<2.5	500	<5
RS-7	11/24/98				19000	2100	1100	500	2100	<0.
RS-7	2/23/99				83000					
	5/5/99				47000					54
RS-7	8/26/99				15000	-				

RS-7 Groundwater Elevation

RS-7

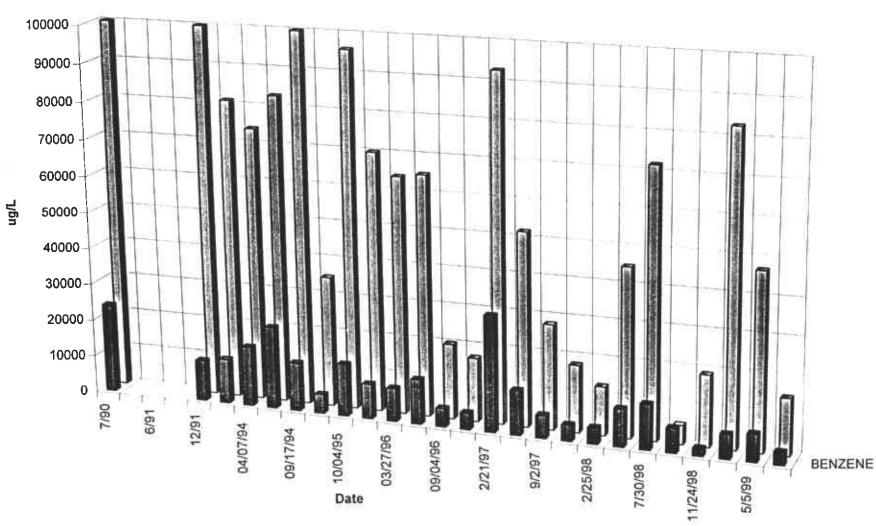


TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(All concent (AMSL = Abo		n parts per bi a level)	llion [ug/L,					
ID#	DATE SAMPLED	WELL CASING ELEVATION (FEET AMSL)	DEPTH TO GROUND WATER (FEET)	GROUND WATER ELEVATION (FEET AMSL)	TPH-G	BENZENE (UG/L)	TOLUENE (UG/L)	ETHYL- BENZENE (UG/L)	XYLENES (UG/L)	MTBE (UG/L)
RS-8***	8/26/99	214.67	7.25	207.42	160000	24000	35000	4200	24000	<5
RS-9***	8/26/99	195.63	7.46	188.17	17000	3500	1200	360	1600	180*
RS-10***	8/26/99	208.46	3.76	204.7	5100	160	340	190	1000	32*

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(AMSL = Abo		n parts per bi a level)	11100 (09/0)					
ID#	DATE SAMPLED	WELL CASING ELEVATION (FEET AMSL)	DEPTH TO GROUND WATER (FEET)	GROUND WATER ELEVATION (FEET AMSL)	TPH-G	BENZENE (UG/L)	TOLUENE (UG/L)	ETHYL- BENZENE (UG/L)	XYLENES (UG/L)	MTBE
	09/04/96	230.73	15.00	215.73	1800	1100	3	29	< 10	< 30
RECOVERY 1			10.30	220.43	<50		< 0.5	< 0.5	< 1	4
RECOVERY 1	12/11/96		11.88	218.85	2500		9	3	13	<0.5*
RECOVERY 1	2/21/97		14.03	216.7	24000			2000	370	<0.5
RECOVERY 1	5/28/97			215.75	4400			340	72	20
RECOVERY 1	9/2/97				100			18	10	<0.9
RECOVERY 1	11/24/97			216.67	1200			13	150	<0.5
RECOVERY 1	2/25/98			221.8				< 0.5	< 1	<1'
RECOVERY 1	7/8/98	230.73		219.37	68					
RECOVERY 1	9/16/98	230.73	13.30	217.43	16000				410	<1'
RECOVERY 1	11/24/98	230.73	10.72	220.01	340	19		35	9.7	<0.5
RECOVERY 1	2/23/99	230.73	9.34	221.39	60	16	0.6	5.6	1.2	<0.5
RECOVERY 1	5/5/99		11.30	219.43	1300	290	3	150	1	15
RECOVERY 1***			13.97	213.72	6500	630	<0.5	1300	<1	<

R-1 Groundwater Elevation

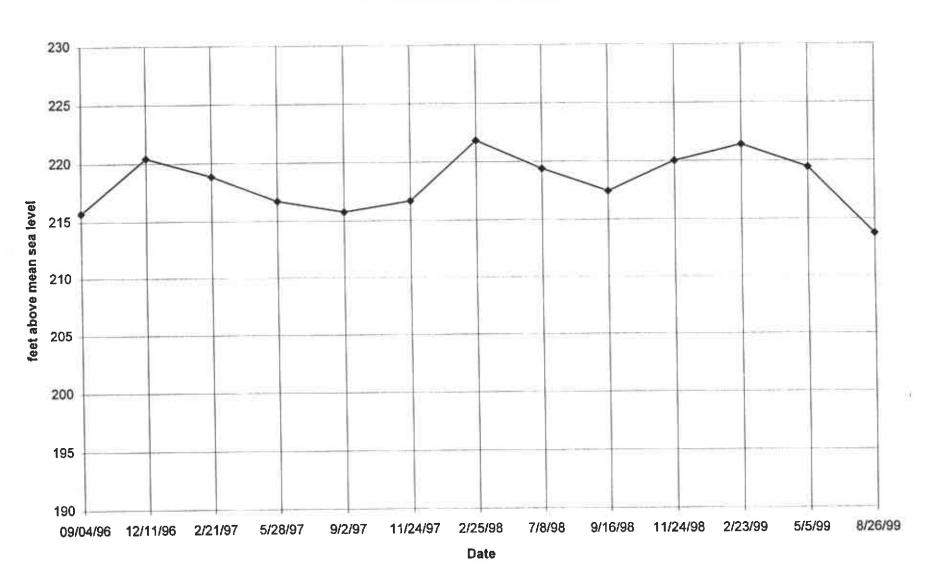
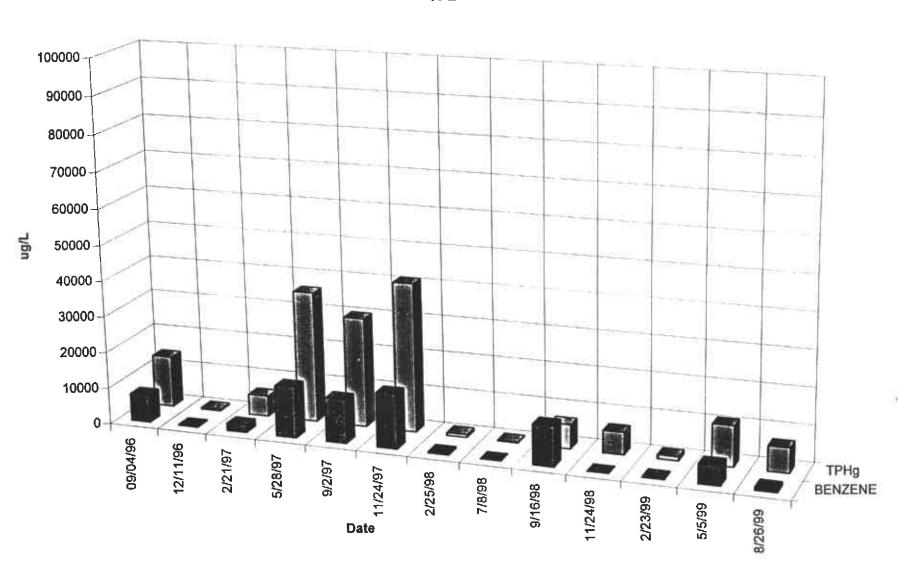



TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(AMSL = Abo		n parts per bi a level)	111011 (03/2/					
ID#	DATE SAMPLED	WELL CASING ELEVATION (FEET AMSL)	DEPTH TO GROUND WATER (FEET)	GROUND WATER ELEVATION (FEET AMSL)	(UG/L)	BENZENE (UG/L)	TOLUENE (UG/L)	ETHYL- BENZENE (UG/L)	(UG/L)	MTBE
	20/01/06	226.60	13.44	217.24	14000	7600	<10	170	190	<100
RECOVERY 2	09/04/96				488	300	1	< 0.5	30	16
RECOVERY 2	12/11/96		12.42	218.26				1 0.0	10	31
RECOVERY 2	2/21/97	230.68		220.18	5700		2	250		<0.5
RECOVERY 2	5/28/97	230.68	13.10	217.58	36000		63	260	220	
RECOVERY 2	9/2/97	230.68	14.16	216.52	30000	12000	330	1000	790	47
RECOVERY 2	11/24/97	230.68	14.71	215.97	41000	15000	830	1500	4200	<0.5
RECOVERY 2	2/25/98	230.68	7.39	223.29	800	400	<0.5	<0.5	15	<0.5
RECOVERY 2	7/8/98		11.27	219.41	290	31	< 0.5	1	< 1	2:
RECOVERY 2	9/16/98		13.73	216.95	6600	11000	24	<0.5	35	<1
RECOVERY 2	11/24/98		11.67	219.01	6100	<0.5	36	<0.5	21	<0.5
RECOVERY 2	2/23/99			223.13	1100	310	3	2	26	<0.
RECOVERY 2	5/5/99			219.79	11000	5300	7	36	7	
RECOVERY 2***					6700	940	33	190	240	<1

45

R-2 Groundwater Elevation

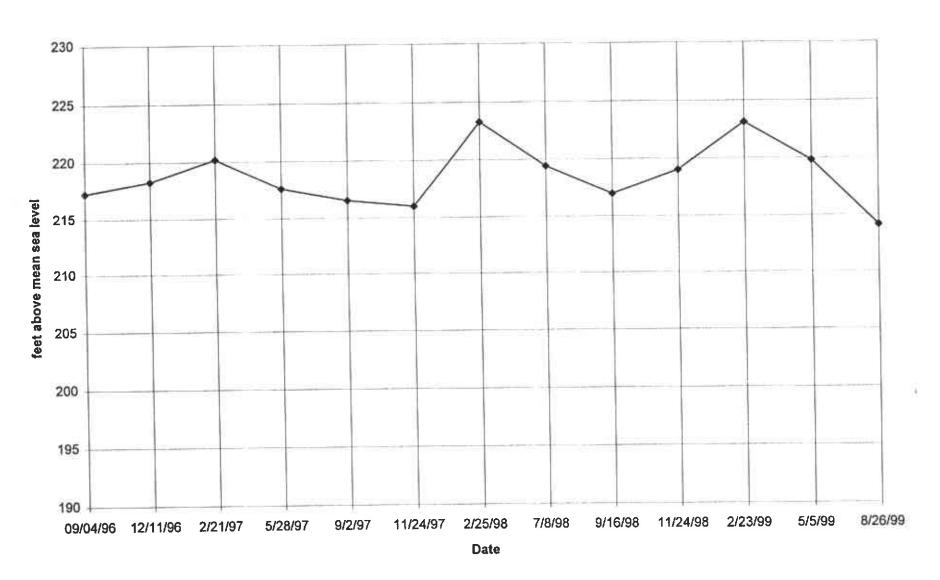
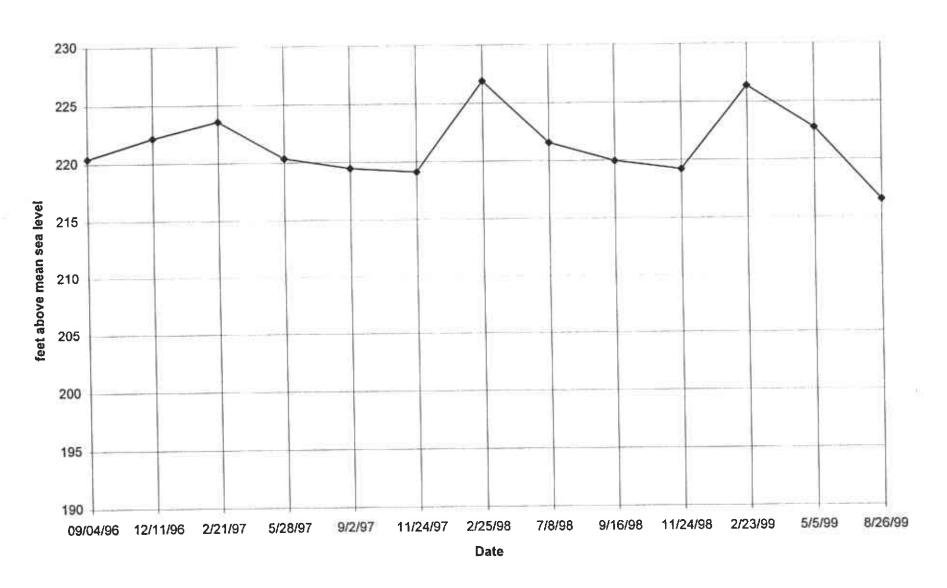



TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

		(AMSL = Abov				llion [ug/L,					Samuel .
ID#	DATE	WELL CASING ELEVATION	DEPTH TO GROUND WATER	GROUND WATER ELEVATION		TPH-G	BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE
		(FEET AMSL)	(FEET)	(FEET AMSL)		(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	20101/05	230.32	9.90	220.42	\exists	<50	<0.5	<0.5	<0.5	<2	<5
RECOVERY 3	09/04/96			222.14		<50		<0.5	<0.5	<1	5
RECOVERY 3	12/11/96	230,32	8.18		\vdash	340		59	8	54	<0.5
RECOVERY 3	2/21/97	230.32	6.76	223.56	-			<0.5	<0.5	<1	<0.51
RECOVERY 3	5/28/97	230.32	9.98	220.34		<50					<0.5
RECOVERY 3	9/2/97	230.32	10.86	219.46		<50		<0.5	<0.5	<1	<0.5
RECOVERY 3	11/24/97	230.32	11.20	219.12	not	t enough wate	r to samp				
RECOVERY 3	2/25/98		3.42	226.9		<50	<0.5	<0.5	<0.5	<1	<0.5
RECOVERY 3	7/8/98	230.32	8.78	221.54		140	<0.5	<0.5	4	24	<1
RECOVERY 3	9/16/98		10.38	219.94		<50	<0.5	<0.5	<0.5	<1	<1
RECOVERY 3	11/24/98	230.32	11.12	219.2	no	t enough wate	er to samp	le. No san	ple		
RECOVERY 3	2/23/99		3.95	226.37		<50	<0.5	<0.5	<0.5	<1	<0.5
RECOVERY 3	5/5/99			222.74		80	9	<0.5	<0.5		
RECOVERY 3***	8/26/99			216.49	П	<50	2	<0.5	<0.5	<1	1

R-3 Groundwater Elevation

		(All concent (AMSL = Abov		n parts per bi a level)	llion [ug/L,	ppb])				
ID#	DATE SAMPLED	WELL CASING ELEVATION (FEET AMSL)	DEPTH TO GROUND WATER (FEET)	GROUND WATER ELEVATION (FEET AMSL)	TPH-G	BENZENE (UG/L)	TOLUENE (UG/L)	ETHYL- BENZENE (UG/L)	(UG/L)	MTBE
r 1***	8/26/99	195.11	2.44	192.67	40000	7200	5000	950	8100	53
L 5***	8/26/99	195.3	CAR							
T 3***	8/26/99	202.38	CAR							
Г 4***	8/26/99	197.48	CAR							
LF-1***	8/26/99	226.59	CAR							

ND BELOW LABORATORY DETECTION LIMITS

TPH-G TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

MTBE results confirmed by EPA Method 8260 (GC/MS)

LAB REPORT HAD RS-6 AND RS-7 MISLABELED, RESAMPLE ON 7/30/98 CONFIRMED.

*** WELL CASING ELEVATION SURVEY 8-27-99, WADE HAMMOND NO.6163, BENCH MARK CITY OF OAKLAND #2814

TABLE 2 SOIL SAMPLE (CERTIFIED LABORATORY RESULTS) FORMER DP #793 4035 PARK BLVD., OAKLAND, CALIFORNIA

SAMPLE	SAMPLED	DATE	DEPTH	EPA METH				100 EUE0	ATOE	TOO
D	BY	SAMPLED	SAMPLED BELOW	TPHg	BENZENE mg/Kg	TOLUENE mg/Kg	ETHYL- BENZENE mg/Kg	XYLENES mg/Kg	MTBE mg/Kg	TOC mg/Kj
		SOIL BORII	SURFACE IN FEET NGS/MONITOR	mg/Kg WELLS INS						
RS-1	RSI	12/11/89	5	16	na	na	na	na		
RS-1	RSI	12/11/89	10	33	na	na	na	na		
RS-1	RSI	12/11/89	15	<1	na	па	na	na		
RS-1	RSI	12/11/89	20	<1	< 0.003	0.008	<0.003	< 0.003		
RS-1	RSI	12/11/89	25	10	0.056	0.12	0.041	0.13		
RS-1	RSI	12/11/89	30	<1	<0.003	0.012	<0.003	<0.003		_
				117						1
RS-2	RSI	12/11/89	5	<1	na na	na	กล	na		-
RS-2	RSI	12/11/89	10	11	na	na	na	na		_
RS-2	RSI	12/11/89	15	<1	na	na	na	na		-
R5-2	RŞI	12/11/89	20	<1	<0.003	0.017	<0.003	<0.003		_
00.0	Inci	1231100	5	<1	<0.003	0.043	< 0.003	0.008		
RS-3	RSI	12/11/89	10	<1	<0.003	0.02	< 0.003	< 0.003		
RS-3	RSI	12/11/89	10		10.003	12.04	-0.000			
00.4	RSI	12/12/89	5	50	0.78	3.4	0.74	4.1		
RS-4	RSI	12/12/89	10	8	0.25	0.94	0.17	0.92		
RS-4	Irtai	12/12/05	1 10	1	1					
RS-5	RSI	12/12/89	5	<1	na	na	na	na		_
RS-5	RSI	12/12/89	10	<1	na	na	na	na		
RS-5	RSI	12/12/89	15	<1	na	na	na	na		
RS-5	RSI	12/12/89	20	530	1.5	8.4	3.9	22		_
RS-5	RSI	12/12/89	25	4	0.7	0.42	0.58	0.26		
RS-5	RSI	12/12/89	30	1600	na	na	na	na		-
RS-5	RSI	12/12/89	35	<1	na	na	na	na		-
RS-5	RSI	12/12/89	40	1	0.036	0.069	0.009	0.043		
								na		1
RS-6	RSI	12/13/89	5	<1	na	กล	na	na		_
RS-6	RSI	12/13/89	10	<1	na	na	na	na		+
RS-6	RSI	12/13/89	15	<1	na	na nooz	na <0.003	0.015		
RS-6	RSI	12/13/89	20	<1	0.017	0.007	<0.003	<0.003		_
RS-6	RSI	12/13/89	25	<1	0.009	0.011	na	na		
RS-6	RSI	12/13/89	30	<1	na	na 0.007	<0.003	0.006		_
RS-6	RSI	12/13/89	35	<1	0.005	0.007	<0.005	0.000		_
RS-7(SB-1)	IRSI	12/14/89	STOCKPILE	130	0.46	3.6	1	7.6		
RS-7(SB-2)	RSI	12/14/89	STOCKPILE	370	1.1	13	4.4	29		
(NOT) (GENE)	1,567		NGS ALONG S	EWER LATE			1 - 205	1 -0.005		
DPO-SS1	WWC	7/24/90	3.5	<1	<0.005	<0.005	<0.005	<0.005		_
DPO-SS1	WWC	7/24/90	5	<1	0.005	<0.005	<0.005	0.011		1
DPO-SB1	wwc	8/21/90	5	390	2.5	17	9.4	47		
						1 72.2	6.00	1		1
DPO-SB2	WWC	8/21/90	5	41	0.31	1.4	0.92	4.4		+
DPO-SB2	wwc	8/21/90	10	230	3.5	21	5	43		-
DPO-SB2	wwc	8/21/90	15	<1	0.052	0.13	0.019	0.099		+
DPO-SB2	WWC	8/21/90	20	<1	0.03	0.033	0.0076	0.03		1
K.				-	1 10 666	40.005	T 40 00F	0.0073		T -
DPO-SB3	WWC	9/19/90	15	<1	<0.005	<0.005	<0.005	0.0073		_

TABLE 2 SOIL SAMPLE (CERTIFIED LABORATORY RESULTS) FORMER DP #793

				en	OD 0000					
SAMPLE D	SAMPLED BY	DATE SAMPLED	DEPTH SAMPLED BELOW	EPA METH TPHg		TOLUENE	ETHYL- BENZENE	XYLENES	MTBE	TOC
			SURFACE IN FEET	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/K(
		SOIL BORI	NGS AT 4003	AND 4006 BF	RIGHTON AVE	NUÉ				
SB-A	LF	9/8/93	5	<0.2	<0.005	<0.005	<0.005	<0.005		
SB-A	LF	9/8/93	15	< 0.2	<0.005	<0.005	<0.005	<0.005		
3071			-							_
SB-B	LF	9/8/93	5	< 0.2	<0.005	<0.005	<0.005	<0.005		-
SB-B	LF	9/8/93	12.5	400	1.7	17	8.2	44		
				1	T -0.00E	<0.005	<0.005	<0.005		1
_F-1	LF	9/9/93	6	<0.2	<0.005	<0.005	<0.005	<0.005		
LF-1	LF	9/9/93	15.5	<0.2	<0.005	40.003	-0.005	-0.000		-
REGULAR LEA	WEGE	6/23/94	14	2	0.022	0.075	0.03	0.16		
T1B	WEGE	8/23/94	14	<1	0.027	0.020	0.000	1 0.340		
www.mae-a.										
UNLEADED ST		6/23/94	14	<1	0.022	0.027	0.005	0.022		
T2A T2B	WEGE	6/23/94	14	<1	0.017	0.025	0.005	0.02		
UNLEADED FI T3A T3B	WEGE	6/23/94 6/23/94	14	<1	0.013	0.012	<0.005	<0.015 <0.015		
WASTE OIL U	The same of the sa		7.5	3	0.063	0.34	0.048	0.23		
WO-1	WEGE	6/23/94	7.5	3	0.000	1 0.0.		-		
PRODUCT DIS	DENGING SY	STEM								
PL-1	WEGE	6/23/94	2.5	<1	0.01	<0.005	<0.005	0.02		_
PL-2	WEGE	6/23/94	2.5	<1	0.01	0.031	0.0059	0.032		_
SIDEWALLS (OF UST EXCA			BUILDING			REAS 0.046	T 0.36		_
SWA -13	WEGE	8/8/95	13	3	0.005	< 0.009	<0.005	<0.005		
SWB-6	WEGE	8/8/95	6	<1	<0.005	<0.005	<0.005	0.022		
SWC-13	WEGE	8/8/95	13	3	<0.005	<0.005	<0.005	<0.005		
SWD-6	WEGE	8/8/95	6	<1	<0.005	<0.005	<0.005	<0.005		
SWE-11.5	WEGE	8/8/95	11.5	3	0.12	0.24	0.053	0.29		
F-14	WEGE	8/8/95	17	6	0.15	0.31	0.11	0.68		
G-17	WEGE	8/8/95	16	1000	3.6	31	14	77		
H-SW-BOT-16		B/10/95		2000	4.5	35	18	130		
I-SW BUILD 8	- Children Committee	8/10/95	_	<1	<0.005	<0.005	<0.005	<0.005		
J-BOT WEST	WEGE WEGE	8/11/95		<1	<0.005	<0.005	<0.005	0.005		
K-SW WEST							27.28		FT	
SIDEWALLS A	AND BASE OF	EXCAVATION	ON SOUTH OF	PUMP ISLAN	NDS AND DIS	PENSER ARE	EAS	-6 005		_
PI-1	WEGE	8/14/95	12	<1	<0.005	<0.003	~0,000	<0.005		
	WEGE	8/14/95	7	<1	0.011	<0.005	0.005	0.03		+
	VVEGE									
PI-2 PI-3 PI-4	WEGE	8/14/95 8/14/95		<1	<0.005	<0.005	<0.005	<0.005		-

TABLE 2 SOIL SAMPLE (CERTIFIED LABORATORY RESULTS) FORMER DP #793 4035 PARK BLVD., OAKLAND, CALIFORNIA

SAMPLE ID	SAMPLED BY	DATE SAMPLED	DEPTH SAMPLED	EPA METHO TPHg	OD 8020 BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE	тос
			BELOW SURFACE IN FEET	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	HOIST AREAS				_					
SLP-7	WEGE	8/16/95	7	na		05	18	92		_
SLP-14.5	WEGE	8/16/95	14.5	1200	8.8	25	10	94		_
NPL-7	WEGE	8/16/95	7	na						
WASTE OIL I	CT									
WASTE OIL U	IWEGE	8/31/95	17	940	2.1	3.3	7.9	33		
111111111111111111111111111111111111111				-						
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	RY PIT WEST			<1	<0.005	<0.005	<0.005	<0.005		
T2-11.5	WEGE	8/31/95	11.5	4	0.05	0.07	0.062	0.31		
T2-17.5	WEGE	8/31/95	17.5	1 1	0.00	0.01	8,000	1 333		
		BORING F	OR MONITOR	WELL MW1, F	REPLACED R		NAS OVER-E	XCAVATED.		
MW1-5	WEGE	9/5/95	5	<1	0.005	0.005	<0.005	0.015		
MW1-10	WEGE	9/5/95	10	<1	<0.005	<0.005	<0.005	<0.005		_
MW1-15	WEGE	9/5/95	15	<1	<0.005	<0.005	<0.005	<0.005		_
MW1-20	WEGE	9/5/95	20	<1	<0.005	<0.005	<0.005	<0.005		
		CEWED I	TERAL INVES	TIGATION						
BH1-5	WEGE	5/1/96	5	<0.2	< 0.005	<0.005	<0.005	<0.005		
BH1-10	WEGE	5/1/96	10	31	<0.005	0.16	0.22	0.71		390
			-	1	T -0.00F	< 0.005	<0.005	<0.005		2400
BH2-5.5	WEGE	5/2/96	5.5	<0.2	<0.005	<0.005	1 <0.005	1 40,000		1 2100
BH3-5	IWEGE	5/2/96	5	< 0.2	<0.005	<0.005	<0.005	<0.005		
BH3-8.5	WEGE	5/2/96	8.5	<0.2	< 0.005	< 0.005	< 0.005	<0.005		
BH3-10.5	WEGE	5/2/96	10.5	<0.2	0.09	<0.005	<0.005	0.021		340
		2-1-		V				1 -0 005		
BH4-8.5	WEGE	5/2/96	6.5	<0.2	<0.005	<0.005	<0.005	<0.005		460
BH4-8.5	WEGE	5/2/96	8,5	<0.2	<0.005	<0.005	<0.005	<0.005		1 400
BH5-5	WEGE	5/2/96	5	<0.2	<0.005	<0.005	<0.005	<0.005		
BH5-6.5	WEGE	5/2/96	6.5	<0.2	< 0.005	<0.005	< 0.005	<0.005		5700
BH3-0.5	WEGE	1 3:2:00	0,0							
AUGER 1	WEGE	1/17/97	0.9	0.5	< 0.005	0.017	< 0.005	< 0.01	0.14	
AUGER 2	WEGE	1/17/97	7	0.68	0.024	0.032	0.009	0.024	0.07	
	Anna de Santa de Caración de C				< 0.005	0.017	< 0.005	< 0.01	0.085	
AUGER 3	WEGE	1/17/97 ADDITION	4.5 AL MONITOR	<0.5 WELLS ALON	1		<0.005	<0.01	0.085	_
RS8-10	WEGE	8/2/99	10	160	0.49	0.79	2.6	6.2	<0.005	
5000					1	1 40 000	20 nos	<0.01	<0.005	1
RS9-6	WEGE	8/3/99	6	<0.5	<0.005	<0.005	<0.005	4.9	<0.005	-
RS9-10	WEGE	8/3/99	10	67	0.41	2	0.87	4.8	50.003	_
									-0.005	T -
RS10-6	WEGE	8/5/99	6	< 0.5	0.005	< 0.005	< 0.005	< 0.01	< 0.005	

TABLE 2 SOIL SAMPLE (CERTIFIED LABORATORY RESULTS) FORMER DP #793 4035 PARK BLVD., OAKLAND, CALIFORNIA

SAMPLE ID	SAMPLED BY	DATE SAMPLED	DEPTH SAMPLED	EPA METHO TPHg	DD 8020 BENZENE	TOLUENE	ETHYL- BENZENE	XYLENES	MTBE	тос
			BELOW SURFACE IN FEET	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
		RECEPTOR	R TRENCH DO	CUMENTATIO	ON SAMPLES	i				

	WEGE	8/4/99	15	<0.5	0.072	0.011	0.008	0.015	<0.005
1,1001,1001	WEGE		10	140	2	4	2.4	10	<0.005
111411411141114	WEGE	8/4/99		-	0.009	0.017	0.005	0.031	<0.005
1,1901 (0)	WEGE	8/4/99	14	<0.5	-	0.006	<0.005	0.017	<0.005
TRENCH-D-10.5	WEGE	8/5/99	10.5	<0.5	<0.005			580	<0.005
RENCH-E-5	WEGE	8/5/99	5	4000	17	260	110		<0.005
RENCH-F-10.5	WEGE	8/5/99	10.5	<0.5	0.064	0.015	0.01	0.046	
and the fact that the last the	WEGE	8/6/99	7	1100	1.4	70	34	180	4.5
RENCH-H-10.5		8/6/99	10.5	<0.5	<0.005	< 0.005	<0.005	0.018	<0.005
A STATE OF THE PARTY OF THE PAR	WEGE	8/6/99	5	<0.5	< 0.005	< 0.005	< 0.005	< 0.01	<0.005
	WEGE	8/6/99	10	<0.5	0.021	0.079	0.011	0.057	<0.005
		8/9/99	12.5	<0.5	<0.005	< 0.005	<0.005	< 0.01	<0.005
TRENCH-K-12.5	****			<0.5	<0.005	< 0.005	< 0.005	< 0.01	<0.005
. 7 1427 7 27 7	WEGE	8/9/99	10		<0.005	<0.005	< 0.005	< 0.01	<0.005
TRENCH-M-6	WEGE	8/12/99	6	<0.5		0.005	<0.005	0.012	<0.005
TRENCH-N-8	WEGE	8/12/99	8	<0.5	0.012	-		0.011	<0.005
TRENCH-0-10	WEGE	8/12/99	10	<0.5	0.011	<0.005	<0.005		<0.005
TRENCH-P-6	WEGE	8/12/99	6	<0.5	0.045	<0.005	<0.005	<0.01	50.005

RSI WWC REMEDIATION SERVICE, INT'L

WATERWORKS CORP.

LF

LEVINE-FRICKE

WEGE

WESTERN GEO-ENGINEERS

< BELOW LABORATORY LOWER DETECTION LIMITS mg/Kg milligrams per kilogram (parts per million)

TPHg TOTAL PETROLEUM HYDROCARBONS GASOLINE RANGE

MTBE METHYL TERTIARY BUTYL ETHER

TOC Total Organic Carbon

TABLE 3 EXCAVATED SOIL SAMPLE (CERTIFIED LABORATORY RESULTS) FORMER DP #793 4035 PARK BLVD., OAKLAND, CALIFORNIA

SAMPLE ID	SAMPLED BY	DATE SAMPLED	DEPTH SAMPLED	EPA METHO	OD 8020 BENZENÉ	TOLUENE	ETHYL-	XYLENES	MTBE	EPA 8015 DIESEL	EPA 418.1 OIL & GREASE
			BELOW SURFACE IN FEET	mg/Kg	rng/Kg	mg/Kg	BENZENE mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg

SOIL BORINGS/MONITOR WELLS INSTALLATIONS BY RSI

RS-7(SB-1)	Togi	12/14/89	STOCKPILE	130	0.46	3.6	1	7.6
the state of the s	11501	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE RESERVE AND PERSONS ASSESSED.	370	- 11	13	44	29
RS-7(SB-2)	RSI	12/14/69	STOCKPILE	3/0		10	4.7	

UST AND PIPING REMOVAL EXCAVATED SOIL DOCUMENTATION SAMPLING

MADIE OIL	JST EXCAVATE				1 0.000	0.008	<0.005	0.02	- 61	1100
SP-W	WEGE	6/23/94	1.5	<	0.009	D.UUd			LAME WEARINGED ED	
	SOIL WAS	PLACED BACK	INTO EXCA	VATION AF	TER CONCUR	RENCE WIT	H ALAMEDA	COUNTY HEALT	(MS. JENNIFER EB	
	(37) M. 1884									
CAROLINE C	TORAGE USTS	EVCAVATEDS	OIL							
	the state of the s	B/23/94	1.5	110	<0.05	0.46	0.46	4.9		
SP1	WEGE	-			100000000000000000000000000000000000000	0.22	0.34	3.5		
5P2	WEGE	6/23/94	1.5	200	<0.05					
SP3	WEGE	6/23/94	1.5	170	<0.05	0.08	0.47	2.6		
	17.65110750			68	<0.05	0.13	0.13	1.8		
	INVECTE:	6/23/94	1.5							
SP4 SP5	WEGE	6/23/94	1.5	110	0.011	0.009	0.14	1.3		

PRODUCT L	NE EXCAVATE	D SOIL							1	
SP6	WEGE	6/23/94	1.5	19	0.006	0.013	0.048	0,51	1	
21.0	TANE OF	21 1000 0101	WATO EVEL	STATION AT	TER CONCLE	DENCE WIT	H ALAMEDA	COUNTY HE	ALTH (MS. JENNIFER EBE	ERLY)

SOIL WAS PLACED BACK INTO EXCAVATION AFTER CONCURRENCE WITH ALAMEDA COUNTY HEALTH (MS. JENNIFER EDENCI

OVER EXCAVATION OF GASOLINE TAINTED SOILS DISCOVERED DURNG UST REMOVALS

WO A&B	WEGE	7/10/95	1.5						
USTs AND P	RODUCT DISPE	NSING AREAS						_	-
SP1 A&B	WEGE	7/10/95	1.5			_		+	+
SP2 A&B	WEGE	7/10/95	1.5				_	-	-
SP3 A&B	WEGE	7/10/95	1.5				_	-	+
SP4 A&B	WEGE	7/10/95	1.5					-	-
SP5 A&B	WEGE	7/10/95	1.5					-	-
SP6 A&B	WEGE	7/10/95	1.5					TON CALIB	

A CALCULATED 700 CUBIC YARDS OF EXCAVATED SOIL WAS REMOVED AND DISPOSED OF AT FORWARD LANDFILL, STOCKTON, CALIRONIA

RECEPTOR TRENCH DOCUMENTATION SAMPLES

SOIL PILE 1 A	WEGE	8/6/99	1	COMPOSITE	E FOUR INTO	ONE			
SOIL PILE 1 B	WEGE	8/6/99	- 1						7 -0.005
SOIL PILE 1 C	WEGE	8/6/99	1	7.9	0.006	0.051	0.064	0.52	<0.005
SOIL PILE 1 D	WEGE	8/6/99	- 1						
SUIL PILL I D	TATEOR	Section and the section of the secti							
SUIL PILE TO	TATEGE	1 0000				SANG			
	WEGE	8/13/99	1	COMPOSITE	E FOUR INTO	ONE			
SOIL PILE 2 A			1	COMPOSITE	E FOUR INTO				
SOIL PILE 2 A SOIL PILE 2 B SOIL PILE 2 C	WEGE	8/13/99	1 1	COMPOSITE	0.006	ONE <0.005	<0.005	0.023	<0.005

A CALCULATED 148 CUBIC YARDS OF SOIL WAS REMOVED AND DISPOSED OF AT BJ LANDFILL, VACAVILLE, CALIFORNIA

mg/L milligrams per liter (parts per million)

WEGE WESTERN GEO-ENGINEERS

< BELOW LABORATORY LOWER DETECTION LIMITS mg/Kg milligrams per kilogram (parts per million) TPHg TOTAL PETROLEUM HYDROCARBONS GASOLINE RANGE MTBE METHYL TERTIARY BUTYL ETHER SAMPLE

EPA 8010 EPA 8270 CAM FIVE METALS TTLC

CADMIUM CHROMIUM NICKEL

mg/Kg

mg/Kg

METALS STLC

ID

LEAD mg/Kg mg/Kg mg/Kg

EPA 6010

LEAD mg/L

ZINC

mg/Kg

mg/Kg

CADMIUM CHROMIUM NICKEL

mg/L

mg/L mg/L

ZINC mg/L

RS-7(SB-1) RS-7(SB-2)

WASTE DIL UST SP-W

GASOLINE STO SP1 SP2 SP3 SP4 SP5

PRODUCT LINE SP6

WASTE OIL UST 0.083 0.81 <10 <0.025 150 5.98 54 <3 130 1.6 46 <0.0005 WO A&B

USTs AND PRO		<0.25	
SP1 A&B	27		
SP2 A&B	32	<0.25	
SP2 AGD		<0.25	
SP3 A&B SP4 A&B	34	<0.25	
SP4 AAB	51		
CDE ARB	10	<0.25	
SPS AGIS		<0.25	
SP5 A&B SP6 A&B	29	10.25	

A CALCULATED

SOIL PILE 1 A SOIL PILE 18 SOIL PILE 1 C SOIL PILE 1 D

SOIL PILE 2 A SOIL PILE 2 B SOIL PILE 2 C SOIL PILE 2 D

A CALCULATED

mg/L milligrams p

WEGE

TABLE 4
GROUNDWATER ELEVATIONS AND NATURAL ATTENUATION INDICES FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, CARLAND, CALIFORNIA

			FIELD MEASU	JRENEHTS.					CERTIFIED LABOR	RATORY REST	LTS DISSOL	VED IN WATER		
IDS	DATE SAMPLED	GROUND WATER ELEVATION (FEET AMSL)	DISSOLVED OXYGEN 02 (MG/L)	SULFATE SO4 (MG/L)	NO3	FERROUS IRON FE2 (MG/L)	TEMP- ERATURE (F)	pĦ	TOTAL PETROLEUM HYDROCARBONS GASOLINE (MG/L)	CARBON DI OXIDE CO2 (MG/L)	CH4 (MG/L)	AEROBIC HYDROCARBON DEGRADING BACTERIA CFU/ML	ORTHO- PHOSPHATE PO4 (MG/L)	AMMONIA as HITROGEN H (MG/L)
MW-1***	8/26/99	218.16	4.9	35	0	0.25	75.4	6.55	<0.05					
	9/2/99	217.92					72.9	H-16		0.13	<0.00001	10	<1	<0.5
RS-2***	8/26/99	215.97	0.7	46	2.7	0 65	80.9	6.97	0.2					
K3-2	9/2/99	215.39	7,94.7							nm	t\m\	Dim	ŋm	1200
		411.66	4.7			0.92	71.7	7.08	35	_				1
R9-5***	8/26/99 9/2/99	211.55 211.35	0.7	31	1,3	0.92	69.4	7.05	,,	0.16	0.00021	3000	4	<0.5
RS-6***	8/26/99	213 5	1.2	76	0.3	>3.3	77.8	6.66	0 69					
	9/2/99	213.08					69	6.69		0.36	<0.00001	400	<1	<0.5
RS-7***	8/26/99	191.83	0 3	>77	0 8	1 27	73.4	6.99	15					
	9/2/99	191.85								nm	nm	nm	ηт	nm
R9-8	8/26/99	207.42	2.6	0	0	0.54	69.2	6.7	160					
	9/2/99	207.29					71.7	5.74		0.058	0.000018	6600	<1	<0.5
RS-9	8/26/99	188 -17	2.1	7	0	0.59	73.5	6.95	17					T
	9/2/99	188 02					70 - 9	5.98		0.25	0_0021	10000	<1	<0.5
R9-10	8/26/99	204.7	4 2	pim	nm	nm	70 9	8.03	5.1	Ι				
	9/2/99	204_5					73.3	7.24		0_1	0.000037	8800	<1	<0.5
RECOVERY 1***	8/26/99	213 72	0.4	9	0	>3,3	70_6	6.3B	6.5					
	9/2/99	213.51			ļ				1	mcc	17m	nm	nm	nm
RECOVERY 2***	8/26/99	214.14	0.4	>77	0.8	0.3	72.7	6.65	6.7					
	9/2/99	214.05				1				nm	nm	nm	hm	nm
RECOVERY 3***	8/26/99	219 56	2 5	>77	0.7	0.05	75	6.95	<0.05					
	9/2/99	219 45								13 M	ma	កធា	nm	Dim
т 1	8/26/99	192.67	7 0.8	32	0.5	0.03	75.3	7.29	40	I				
	9/2/99	192.91	1				79.1	7.57		0.11	0.00019	1300	<1	<0.5

TABLE 4 GROUNDWATER ELEVATIONS AND NATURAL ATTENUATION INDICES FROM WATER SAMPLES DESERT PETROLEUM, INC. SITE 1793 4035 PARK BOULEVARD, DAFLAND, CALIFORNIA

			FIELD MEAST	REMENTS					CERTIFIED LABOR	RATORY RESU	LTS DISSOL	VED IN WATER		
IDE	DATE SAMPLED	GROUND WATER ELEVATION (FEET AMSL)	DISSOLVED OXYGEN O2 (MG/L)	SULFATE SO4 (MO/L)	NOTE NOTE (MG/L)	FERROUS IRON FE2 (MG/L)	TEMP- ERATURE (F)	pН	TOTAL PETROLEUM HYDROCARBOMS GASOLINE (MG/L)	CARBON DI GXIDE CO2 (MG/L)	CH4 (MG/L)	AEROBIC HYDROCARBON DEGRADING BACTERIA CPU/ML	ORTHO- PHOSPHATE PO4 (MG/L)	AMMONIA BE NITROGES H (MG/L)
MM-1+**	8/26/99	218.16	4.5	35	· c	0.25	75.4	6.55	<0.05					
T 2	8/26/99		nn.	nm	I)M	nm	nm	nm	NA.					
	9/2/99									nm	rsm .	nm .	ne	Date
Т 3	8/26/99		mrt	nm	nm	nm	ma	nm	AN					
	9/2/99									met	hm	nm	T) Th	nm
T 4	8/26/99		nm	nm	i:m	nm	nm	nm	NA.					
	9/2/99						i	3		nm	nm	TAM .	hm	กต
LF-1	8/26/99		nm	true	nm	nm	hm	nm	АИ					
	9/2/99						nm	rım		jr.m	nm	nm	nm	nm

MG/L

milligrams per liter (ppm) NA

Not Analyzed

nm

degrees Fahrenheit <

below laboratory lower detection limits

CAR

CFU/ML

colony forming units per milliliter

TABLE 5
RECEPTOR TRENCH GROUNDWATER REMOVAL
FORMER DP #793
4035 PARK BLVD., OAKLAND, CALIFORNIA

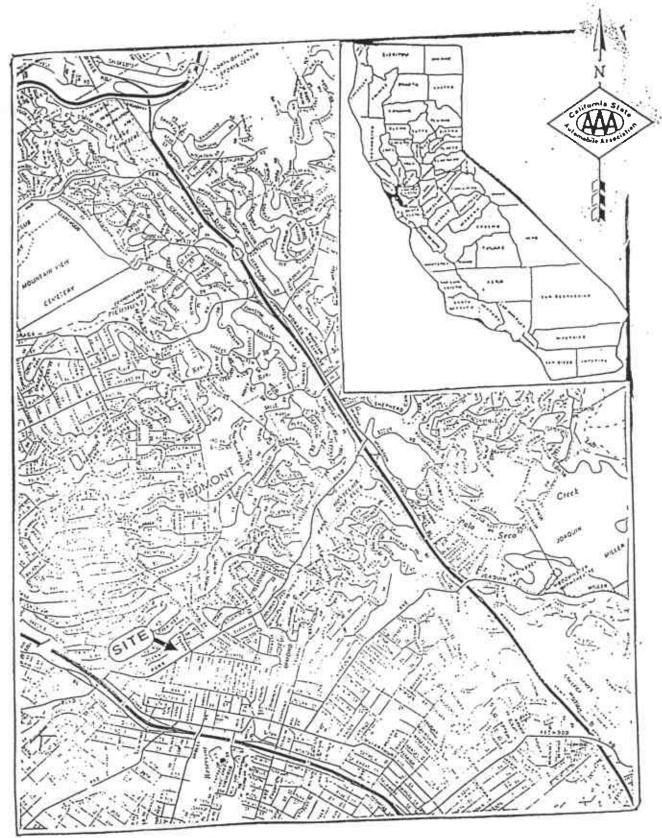
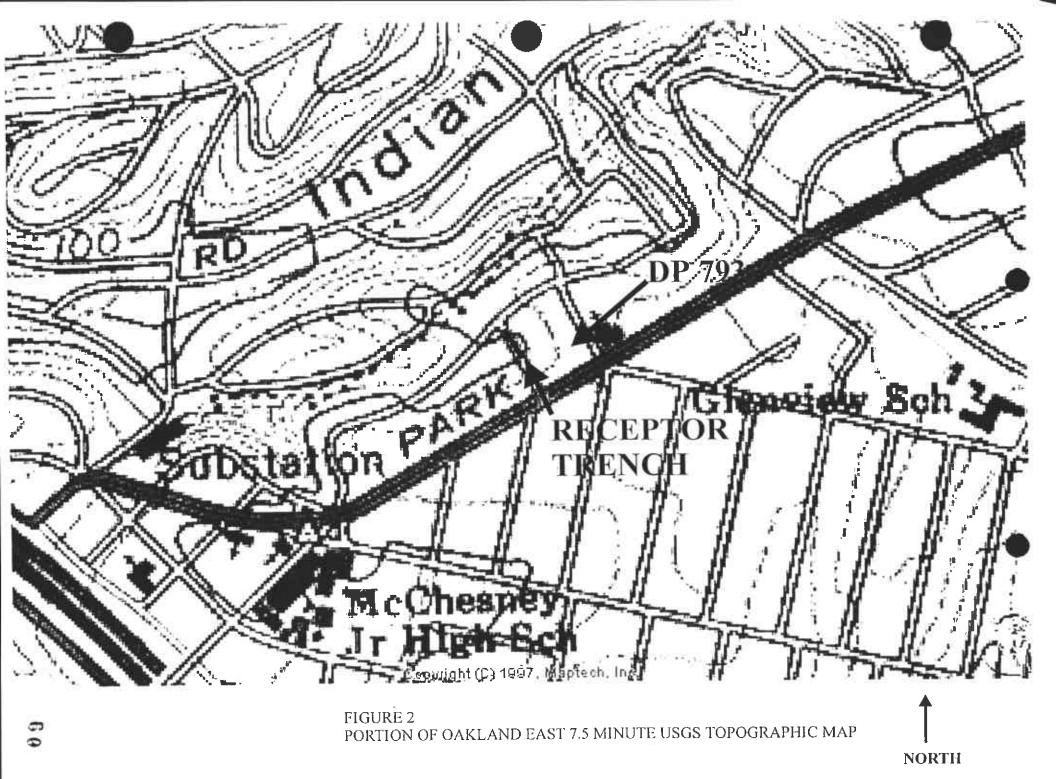
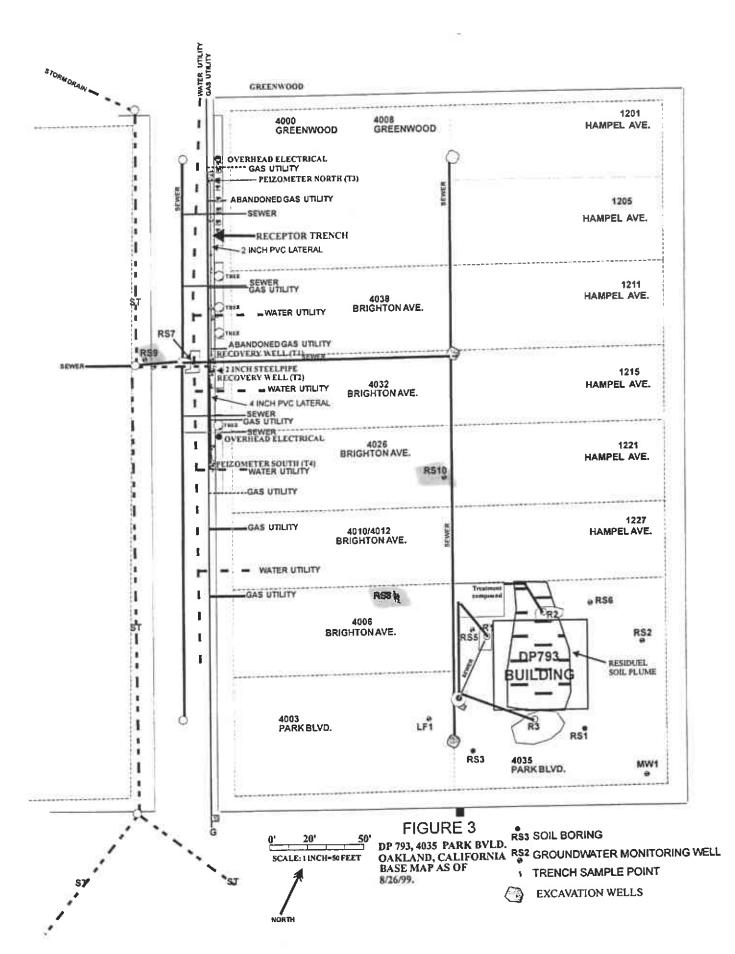
WELL	PURGING BY	DATE PURGED	DEPTH G	ALLONS PURGED	ACCUMULATED E	PA METH TPHg	OD 8020 BENZENE	TOLUENE	ETHYL-	XYLENES	MTBE
			WATER IN FEET		REMOVED	mg/Kg	mg/Kg	mg/Kg	BENZENE mg/Kg	mg/Kg	mg/Kg
T4	lwege	8/9/99	6.47	200	200		1				
T1	WEGE	8/10/99	10000	1730							
T4	WEGE	8/11/99	- A Section	960	2890						
T1	WEGE	8/12/99		800	3690						
T1	WEGE	8/13/99	8.87	600	4290						2.054
T1	WEGE	9/2/99	2.2	3600	7890	40	7.2	5	0.95	8,1	0.053
T1	WEGE	9/16/99	9 2.27	5131	13021						
T1	WEGE	9/23/99	9 4.26	3351	16372						
T1	WEGE	9/30/99	9 4.69	2786	19158						
T1	WEGE	10/7/9	9 4.78	293	19451						

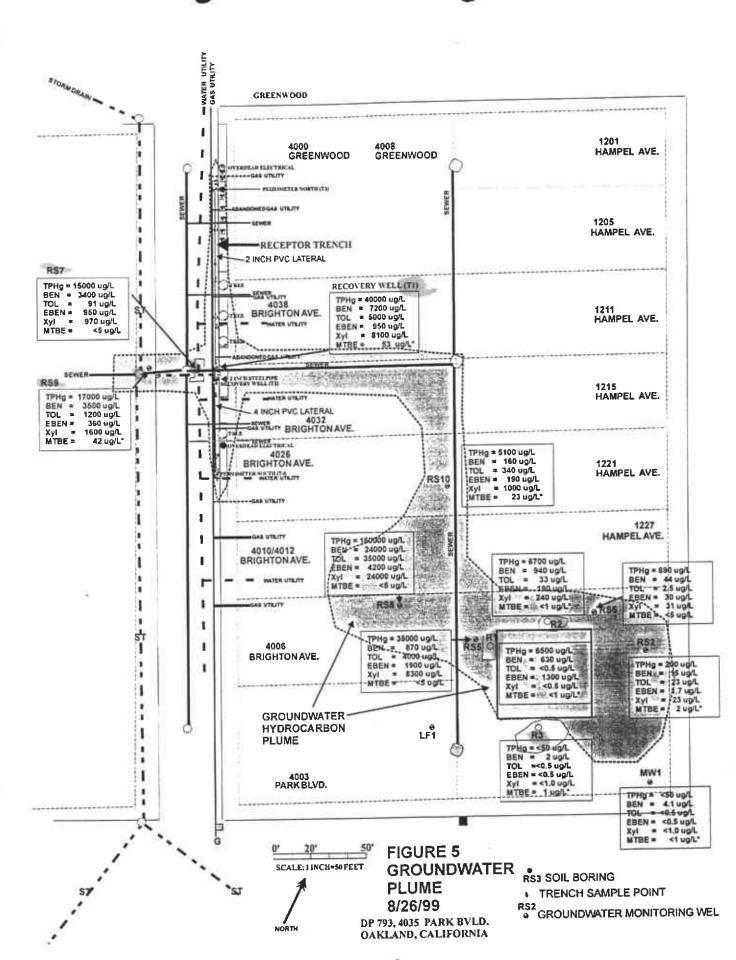
mg/L milligrams per liter (parts per million)

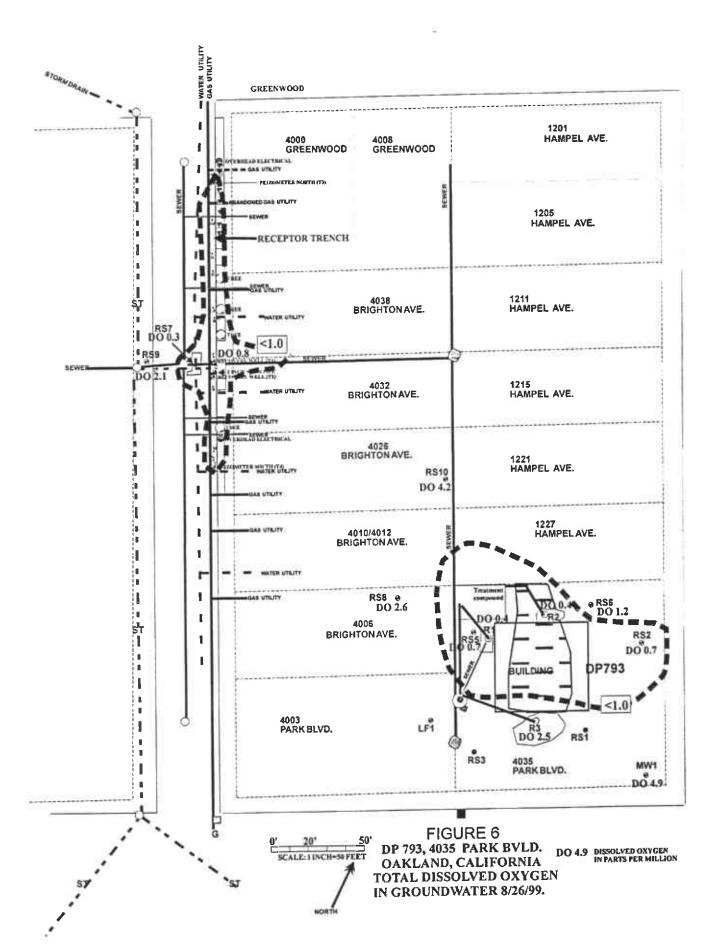
WEGE

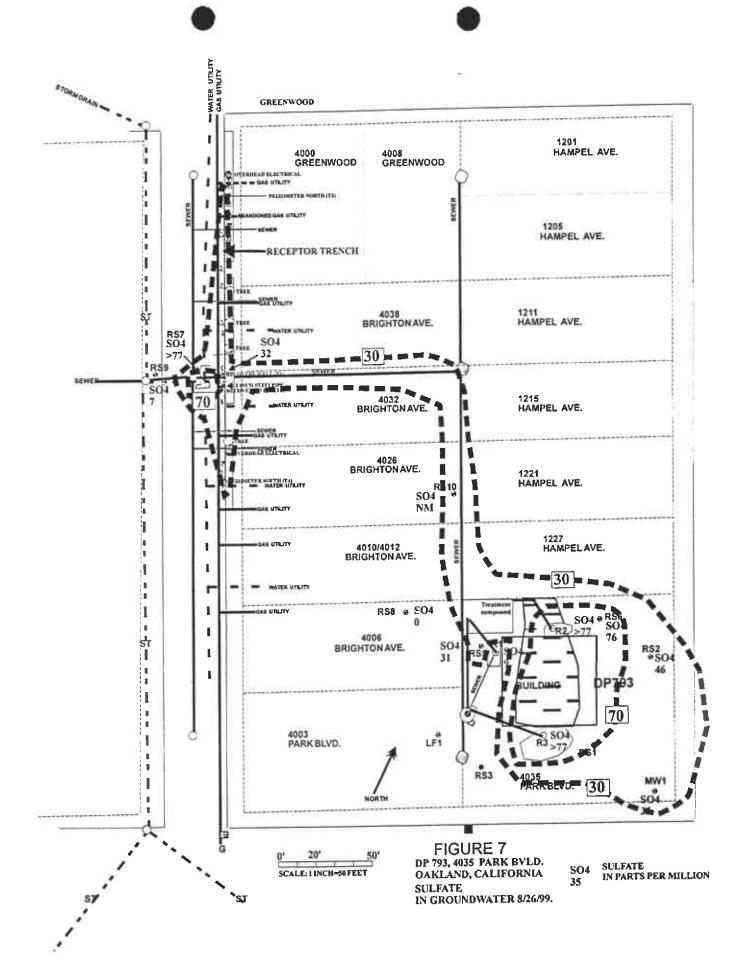
WESTERN GEO-ENGINEERS

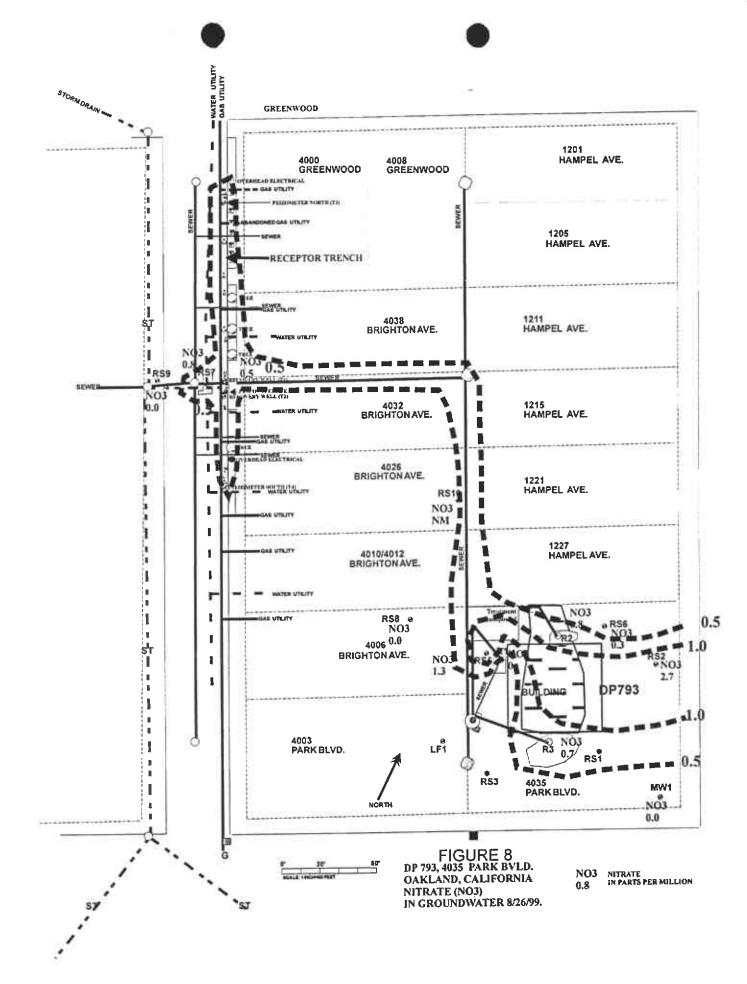
DESERT STATION #793 4035 Park Blvd. Oakland, California

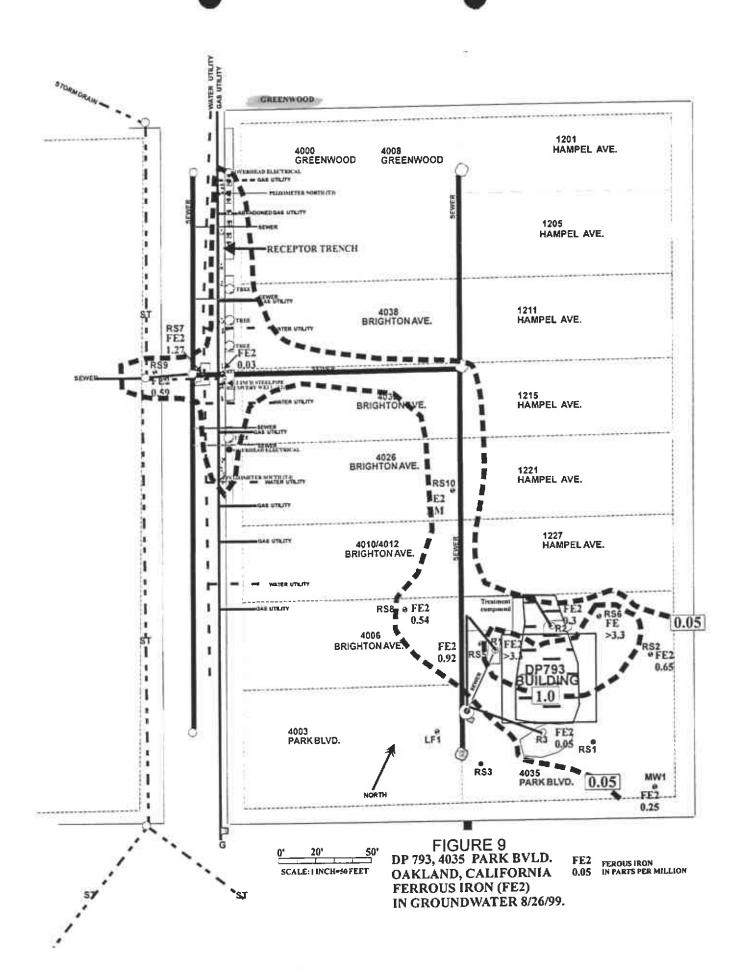




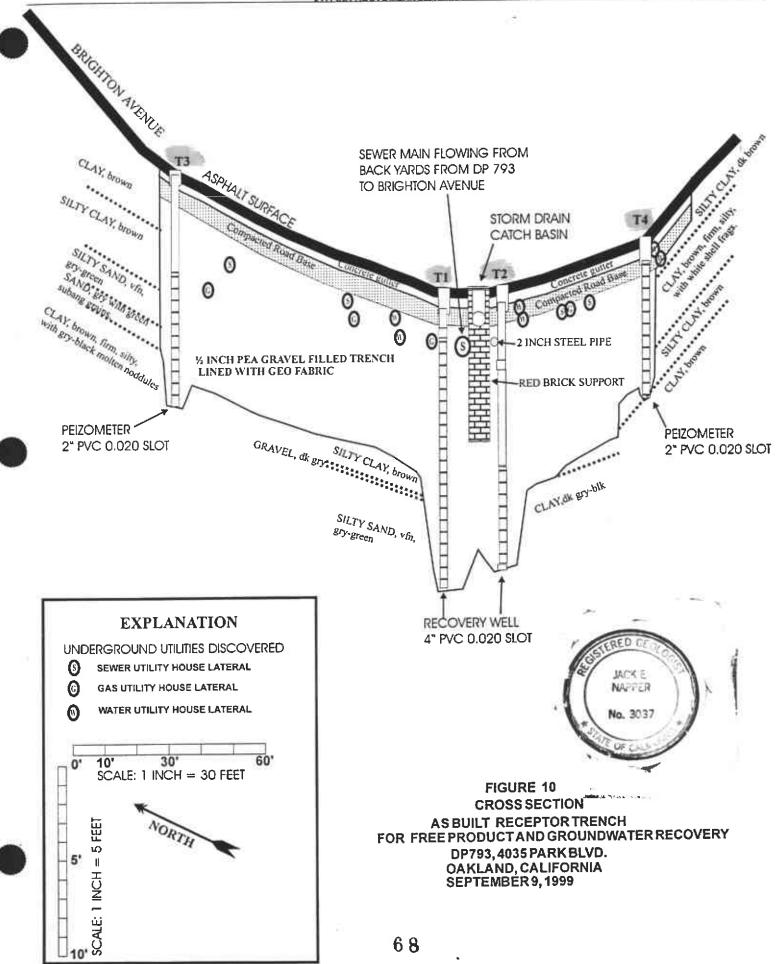


FIGURE 1

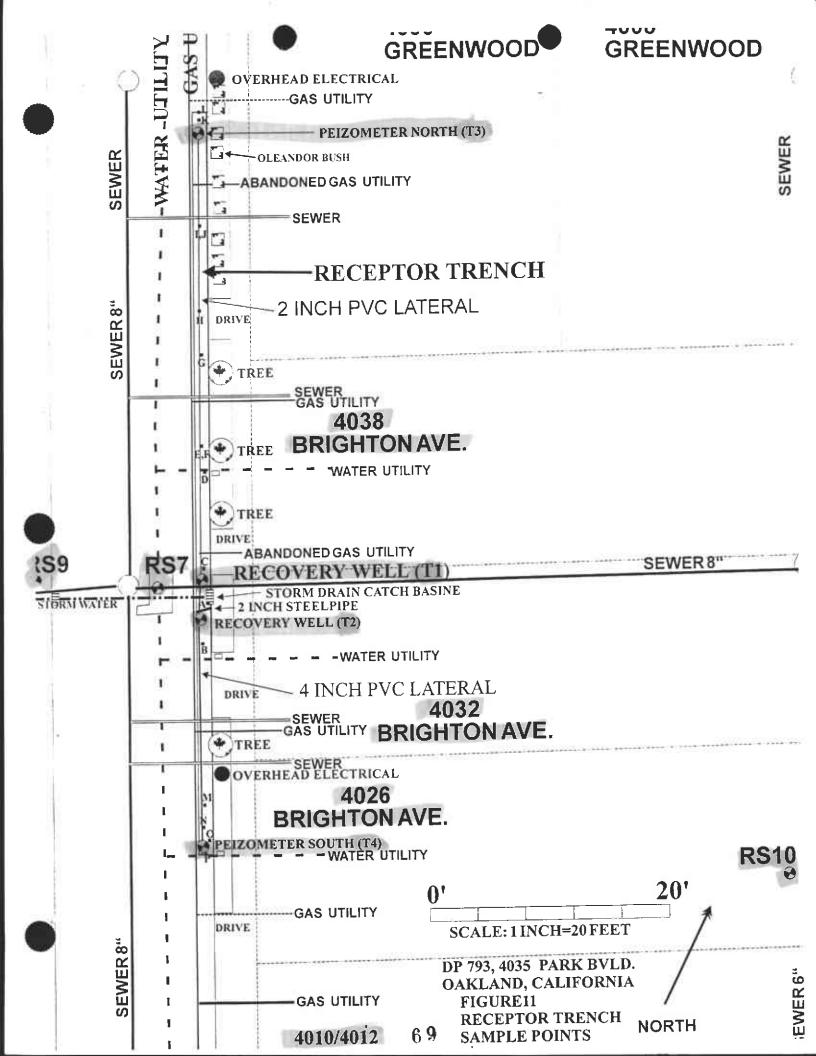

Location (AAA Map)

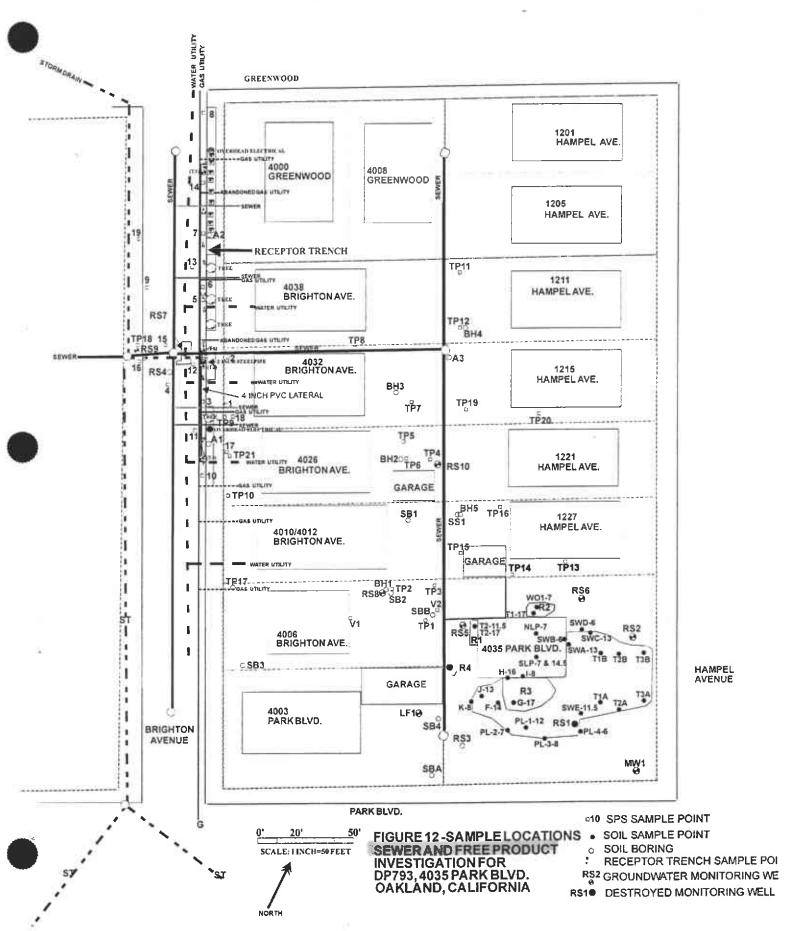


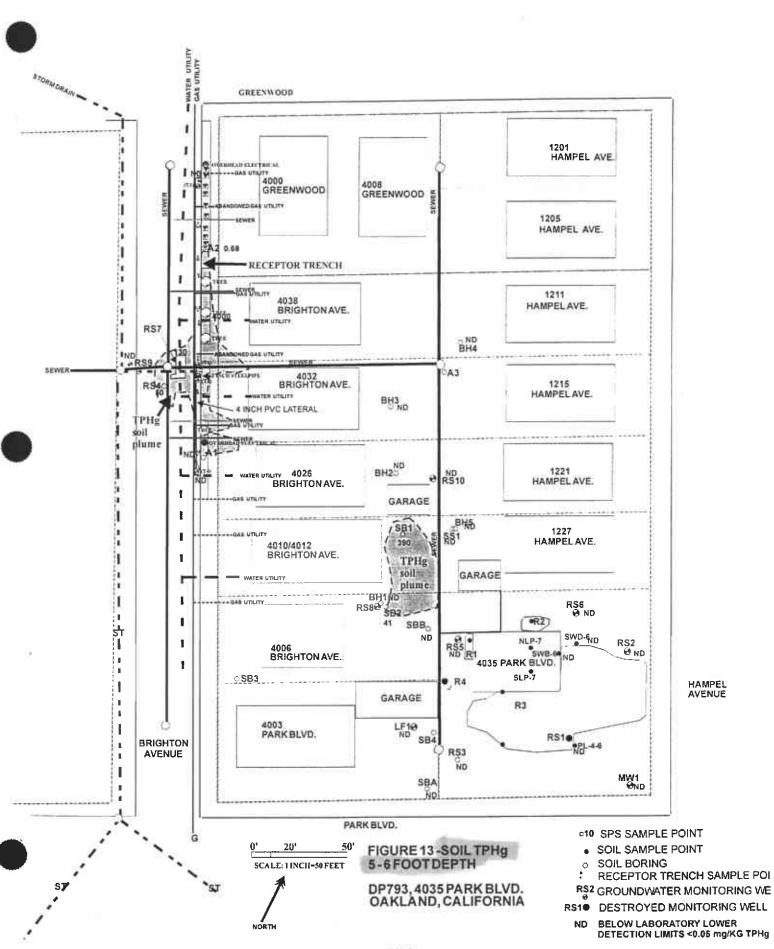


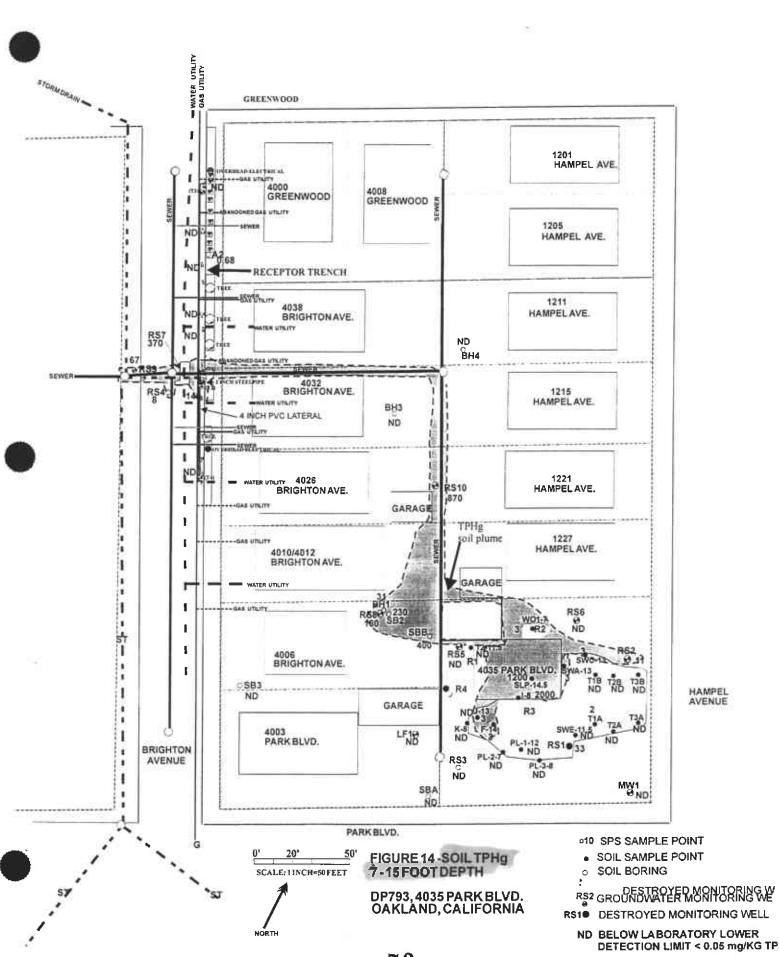


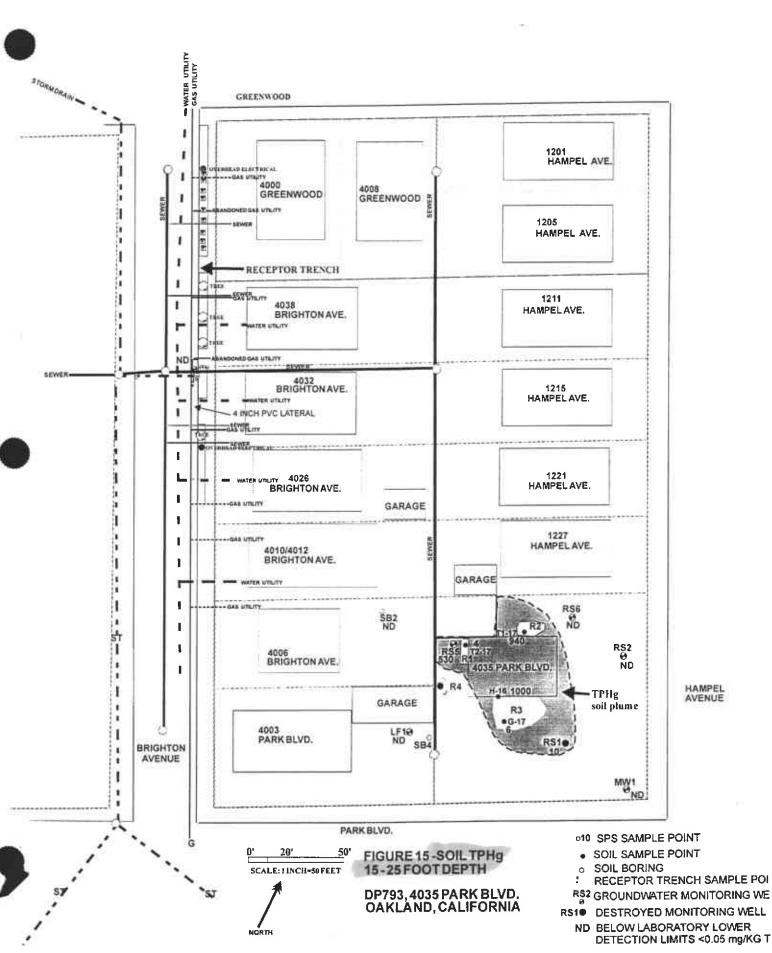


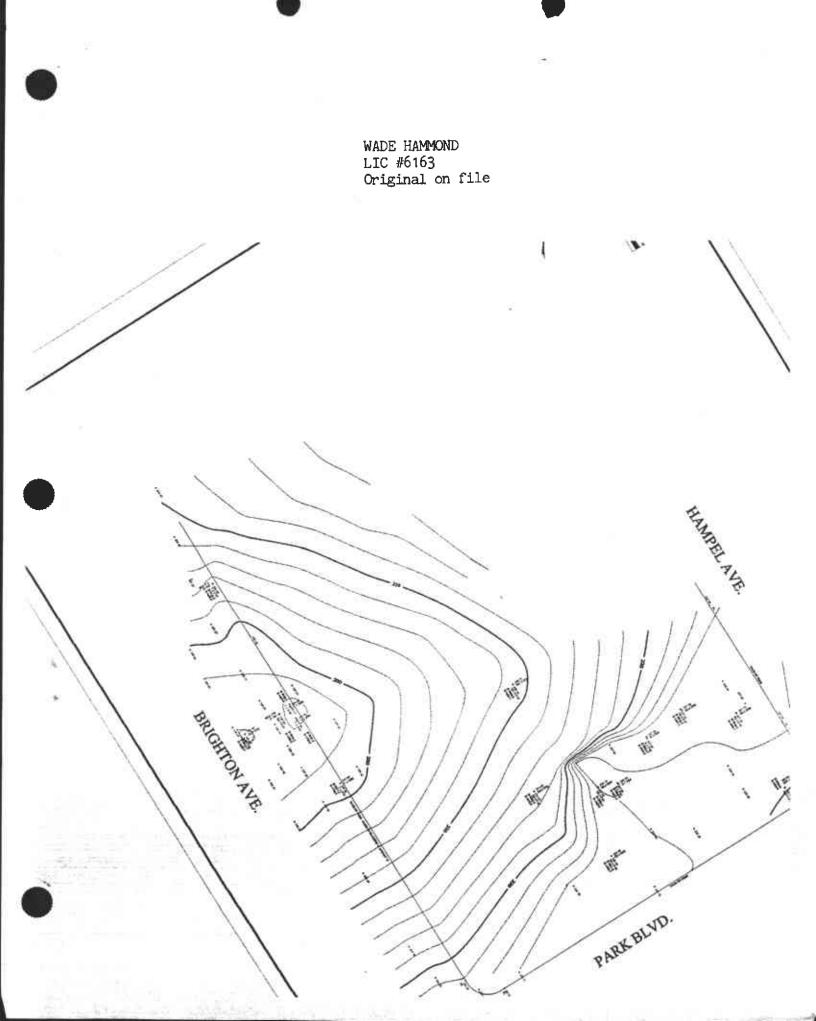












WED Report

APPENDIX A

APPENDIX B

APPENDIX B.

METHODS AND PROCEDURES, QA/QC

This Appendix documents the specific methods, procedures, and materials used to collect and analyze ground water samples.

Gauging and Measuring Monitor Wells.

Prior to sampling a well, WEGE personnel obtain two measurements: the depth to ground water and the product thickness using a battery powered depth to water-product interface probe and or by using a specially designed bailer. The probe is lowered into the well casing until the instrument signals that the top of water has been reached. The distance from the top of water to the top of casing is read from the tape calibrated in 0.01 foot intervals for accuracy to 0.01 foot, that is attached to the probe. The measured distance is subtracted from the established elevation at the top of casing to determine the elevation of ground water with respect to mean sea level.

The probe is washed with TSP and rinsed in distilled water before each measurement. WEGE has designed and built bailers that will collect a sample of the contents of a well to show the exact thickness of any floating product.

Purging Standing Water from Monitor Wells

If no product is present, WEGE personnel purge the well. This is accomplished by removing ground water from the well until the water quality parameters (temperature, pH, and conductivity) stabilize, or until the well is emptied of water. Periodic measurements of ground water temperature, pH, and conductivity were taken with a Hydac Monitor or other meter and recorded along with the volume of ground water removed from the well. Purging is done by one or more methods singularly or in combination. Bailers, pneumatic or electric sample pumps, or vacuum pump tanks or trucks may be used. The usual amount of water removed is three well volumes. The water collected during purging is either safely stored onsite for later disposition, transported to an approved onsite or offsite sewer discharge system, or an approved onsite or offsite treatment system.

Collection of Water Sample for Analysis

The well is allowed to recover after purging and a ground water sample is collected. A fresh bailer is used to collect enough water for the requirements of the laboratory for the analyses needed or required. The water samples are decanted from the bailer into the appropriate number and size

containers. These containers are furnished pre-cleaned to exact EPA protocols, with and without preservatives added, by the analytical laboratory or a chemical supply company. The bottles are filled, with no headspace, and then capped with plastic caps with teflon liners.

The vials or bottles containing the ground water samples are labeled with site name, station, date, time, sampler, and analyses to be performed, and documented on a chain of custody form. They were placed in ziplock bags and stored in a chest cooled to 4øC with ice. The preserved samples are chain of custody delivered to the chosen laboratory.

Analytical Results

TPH is the abbreviations used for Total Petroleum Hydrocarbons used by the laboratories for water and soil analyses. The letter following TPH indicates a particular distinction or grouping for the results. The letters "g", "d", "k", or "o" indicates gasoline, diesel, kerosene, or oil, respectively, ie. TPH-d for diesel range TPH.

BTEX or MTBE are acronyms or abbreviations used for Benzene, Toluene, Ethylbenzene and all of the Xylenes (BTEX) and Methyl Tertiary Butyl Ether (MTBE), respectively.

MBTEX is the designation for the combination of the above five compounds.

The less than symbol, <, used with a "parts per value" indicates the lower detection limit for a given analytical result and the level, if present, of that particular analyte is below or less than that lower detection limit.

Other abbreviations commonly used are ppm, ppb, mg/Kg, ug/Kg, ml/l and ul/l are parts per million, parts per billion, milligrams per kilogram, micrograms per kilogram, milliliters per liter, microliters per liter, respectively.

Chain of Custody Documentation

All water samples that are collected by WEGE and transported to a certified analytical laboratory are accompanied by chain-of-custody (COC) documentation. This documentation is used to record the movement and custody of a sample from collection in the field to final analysis and storage. Samples to be analyzed at the certified laboratory were logged on the COC sheet provided by the laboratory. The same information provided on the sample labels (site name, sample location, date, time, and analysis to be performed) are also noted on the COC form. Each person relinquishing custody of the sample set signs the COC form indicating the date and time of the transfer to the recipient. A copy of the COC follows the samples or their extracts throughout the laboratory to aid the analyst in identifying the samples and to assure analysis within holding times.

Copies of the COC documentation are included with the laboratory results in Appendix C of this report.

SITE DP 793	DATE 8-26-99 TIME 1621
WELL R-/	SAMPLED BY. BROADWAY
TTIBLE R-1	
WELL ELEVAT	ION
PRODUCT THE	CKNESS
DEPTH TO WA	TER 13.97 DTB 16.92
FLUID ELEVA	
BAILER TYPE	Disposable Briler
PUMP	David Pittman TRANSPER + SSYAl metered

	WELL PU	RGING R	ECORD	
TIME	VOLUME REMOVED	TEMP.	pH	COND.
1623	1 Bailer	718	7.10	,64
1643.	2091/	23.1	6.45	,65
1646	, ,	71.6	6.38	,63
1649	(70.6	6,38	.63
				<u> </u>

FINAL VOLUME PURGED 22 14/
TIME SAMPLED 1653
SAMPLE ID R./
SAMPLE CONTAINERS 4/40cc VOR 5
ANALYSIS TO BE RUN TPHE BTEX INTRE
LABORATORY NSE
NOTES: 1st Bailer Clear Strong Odor
0,=0.4
Sp = 9
NO2 20
R=2-3.30

1.47

SITE OP 793	DATE 8-26-99 TIME
WELL R-2	SAMPLED BY. BROADWAY
11 222	U
WELL ELEVAT	ION
PRODUCT THIC	CKNESS
DEPTH TO WA	TER 13.14 DTB 16.8
FLUID ELEVAT	TION
BAILER TYPE	Disposable Briler
PUMP	David Pittman TRANSFER + SSGAI METERED

			ECODD	
	WELL PU	<u>RGING K</u>	ECOKD_	CONTR
TIME	VOLUME	TEMP.	pН	COND.
111111111111111111111111111111111111111	REMOVED	F°		X1000
1444	1 Bailer	77.7	6.93	185
1454 .	16 941	76.4	6.69	,69
1456	1 1	72.6	6,66	163
1458	,	72.7	1.65	,63
14 7 8				
			ą.	
		<u></u>	<u></u>	

FINAL VOLUME PURGED 18 gal
TIME SAMPLED 1501
SAMPLE ID. R-2
SAMPLE CONTAINERS 4/40cc VOR 5
ANALYSIS TO BE RUN TPHG BTEX /MTRE
LABORATORY NSE
NOTES: 1st Bailer Clear Some Odor
Or 0.4
504 >77
NO2 0.8
$F_0^{+2} = 0.30$

SITE DP 793	DATE 8-26-99 TIME 1605
WELL R-3	DATE 8-26-99 TIME 1605 SAMPLED BY. BROADWAY
WELL ELEVAT	ION
PRODUCT THIC	CKNESS
DEPTH TO WA	TER 10.76 DTB 11.74
FLUID ELEVAT	TION
BAILER TYPE	Disposable BriLER
PUMP	British TRANSFER + 55 gal metered

	<u> </u>		7777	
	WELL PU	<u>RGING R</u>	ECOKD_	
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED	F°		XIOOO
1612	1 Bailer	17.8	7.38	.82
1403	1591/	75.7	7.02	.85
	1 7	75.1	6.96	.86
1414	1 7	75.0	6.96 6.95	.85
7717				
				

FINAL VOLUME PUR	GED 17 12/
TIME SAMPLED ///	7
SAMPLE ID. R-3	
OMIVITUDE ID. ATT	5 4 / w VOA -
SAMPLE CONTAINER	15 7/ 40cc von 5
ANALYSIS TO BE RU	N TPHG BTEX /MTBE
LABORATORY NSE	
NOTES: 15T BAILER	Clear Some CHOR
02=215	
•	
Soy>77	
NO2 0.7	
Fo2 0.09	
Fig. Agr. 19 Harris Brown Co.	

	DATE 8-26-99 TIME 1030
SITE DP 793	
WELL MW-1	SAMPLED BY. BROADWAY
VELL ELEVAT	ION
PRODUCT THIC	CKNESS
DEPTH TO WA	TER 11,41' DTB 18.31
FLUID ELEVAT	TION
RAILER TYPE	Disposable BriLER
PUMP	David Pittern Hand Bailed + Bucket

X	WELL PU	RGING R	ECORD	
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED	F°		XIOOO
1035	1 Bailer	79.4 1	7.39	.56
1059 .	3.5.94/	77.6	. 6.57	.37
1102	11	75.9	6.55	.33
1105	1	75.4	6.55	3'3
1107	/	75.4	6.55	.33
	1			1

EDIAL VOLUME PURGED (544)
FINAL VOLUMET ORGED
TIME SAMPLED ///O
SAMPLE ID. MW-1
SAMPIE CONTAINERS 4/40cc VOR'S
ANALYSIS TO BE RUN TPHE BTEX MTRE + OXY
LABORATORY NSE
NOTES: 1st Bailer 0,=4,9
504 = 35
$No_3 = 0.0$
F1 = 0.25
CIERR No OdOR

SITE DP 793	DATE 8-26-99	TIME ///9
WELL RS-2	SAMPLED BY.	BROADWRY
7.0 2		U
WELL ELEVA	ION	
PRODUCT THE	CKNESS	
DEPTH TO WA	TER //42	DTB 18.40
FLUID ELEVA	TION	
BAILER TYPE	Disposable Bailer	uster + 55 gal metered
PUMP	David Pattman TRA	usten + 55 gal meTered

WELL PURGING RECORD				
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED	F°		X1000
1121	1 Bailer	78,9	1.80	1.07
	15 91/	81.1	6.99	1.16
1305:	, ,	80.9	6.97	1.15
			<u> </u>	
Š.		<u> </u>		
*				
		<u> </u>		

FINAL VOLUME PÜRGED /6 14/
TIME SAMPLED 1405
SAMPLE ID. RS-2
SAMPLE CONTAINERS 4/40cc VOR 5
ANALYSIS TO BE RUN TPHG BTEX /MTRE
LABORATORY NSE
NOTES: 15T Builes Clear No OdoR
INOTES: / PARIS
0,=0.7 pull SAND IN Botton of well
SOUT - 46 SAND IN DOLLAR OF WELL
$N0_2 = 2.7$
Fe'= 0.65

SITE DP 793	DATE	8-26-99	TI	ME /5/2
WELL RS-5	SAMPL	ED BY.	BROADU	IRM
7.3				- <i>U</i>
WELL ELEVA	TION			•
PRODUCT THE	CKNESS			
DEPTH TO WA	TER	16.06	DTB	39.20
FLUID ELEVA				
BAILER TYPE PUMP	Disposabi	le Briler		
PUMP	DAVID Pi	HMAN		

WELL PURGING RECORD				
TIME	VOLUME	TEMP.	рH	COND.
	REMOVED	F°		XIOOU
1516	1 Bailer	26.5	7.64	,47
1543 -	46 91	75.8	7, 39	145
1547	1	72.8	7.19	143
1551		21.6	7.08	,42
1556		717	7.08	,42
. '				

FINAL VOLUME PURGED 49 gal
TIME SAMPLED 1559
SAMPLE ID. RS-5
SAMPLE CONTAINERS 4/40cc VOA 5
ANALYSIS TO BE RUN TPHG BTEX MIRE
LABORATORY NSE
NOTES: 1st Builer Clear STRONG Odore
0, ≥ 0.7
S6y = 31 $N0x = 1.3$
Fer = 0, 92,

SITE OP 793	DATE	3-26-99	TIME	14/2
WELL RS-6	SAMPL	ED BY. 15	PROADWAY	
WELL ELEVAT	ION			
PRODUCT THIC	KNESS			
DEPTH TO WAT	(ER	13.72	DTB 34.0	22
FLUID ELEVAT				
BAILER TYPE	Disposabl	le Briler		
PUMP 4	Sound Pol	HOLAN TRAN	sfer + 55 g	al meter

WELL PURGING RECORD				
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED			
1415	1 Bailer	18:7	6.80	,75
1431	16 ga/	27.9	6.64	178
1433 .	1	77.8	6.66	:76
	% <u> </u>			

FINAL VOLUME PURGED	7 91
TIME SAMPLED # 35	0
SAMPLE ID. RS-6	
SAMPLE CONTAINERS 4/40cc	VOA s
ANALYSIS TO BE RUN TPHG BTEX	IMTRE
LABORATORY NSE	7.33.00
LABURATURI 1036	SLIGHT melor
NOTES: 15T BAILER CLEAR	Skight Thates
$0_2 = 1.2$	
SO4 = 76	
$N0_3 = 0.3$	
Fe ^{F2} >3,30	
	And the second s

SITE DP 793	DATE 8	-26-99	TIM		3/4
WELL RS-7	SAMPLE	DBY. /	BROADWI	841	
	Same .				
WELL ELEVAT	ION				
PRODUCT THI	CKNESS				
DEPTH TO WA	TER	4,16	DTB	7.0	et's
FLUID ELEVA					
BAILER TYPE	Disposable	Briler		1/2	
PUMP -	David Pitto	TRASA	Pung	+ 55ga/	MeTered

	WELL PU	RGING R	ECORD	
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED	F°		XIOOU
1915	1 Bailer	73.3	7.32	.64
1918	16 91/	73,0	7.03	165
1920	, ,	73.4	6.99	124
	* .			
				÷.
	X1:			

FINAL VOLUME PURGED 17.14
TIME SAMPLED 1924
SAMPLE ID. R5-7
SAMPLE CONTAINERS 4/40ec VOA 5
ANALYSIS TO BE RUN TPHE BTEX /MTRE
NOTES: 1st Builer Tunbid Strong Odor
1,0120.
02-03
50y=77
$N0. = 0.8$ $F_{0} = 1.27$

15 EAST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

SITE DP 793	DATE	8-26-99	TIM		
WELL RS-8	SAMPI	ĚD BY.	BROADWA	<u> </u>	
			<u> </u>		
WELL ELEVAT	ION				
PRODUCT THI	CKNESS				
DEPTH TO WA		7,25	DTB	14.15	- Secret
FLUID ELEVA	rion				- Inches
BAILER TYPE	DisposAb				<u> </u>
PUMP	Dorla /	TEAN TEAN	fer + B	rekett_	7

f :	WELL PU	RGING R	ECORD	· •
TIME	VOLUME	TEMP.	pН	COND.
-	REMOVED	F°		X1000
1746	1 Bailer	71.9	7,26	16/
1252 -	. 3 91/	20.3	6,67	.63
1800	1.1	69.2	6.70	167
, i				
,				
			·	
	,			
	- T			
.,			<u> </u>	

FINAL VOLUME PURGED	4 gal
TIME SAMPLED 1822	0
SAMPLE ID. R5-8	
SAMPLE CONTAINERS 4/9	Occ VORs
ANALYSIS TO BE RUN TPHE	BTEX /MTRE
LABORATORY NSE	
NOTES: 1ST BAILER Silty	SIRONG OCHER
02=216	V
504 = 0	
NOZ > 0	
Fe = 0.54	

SITE DP 793	DATE 8-26	-99 TIM	ME 1705
WELL RS-9	SAMPLED B	Y. BROADU	URYI
AA TITT V2-1			U
		A STATE OF THE STA	
WELL ELEVAT	ION		•
PRODUCT THIC	KNESS	·	
DEPTH TO WAT	TER 7.46	DTB	14.98
FLUID ELEVAT	ION		
		/ ^	
BAILER TYPE	DISPOSABLE DAI	CR	<u> </u>
PUMP	David Pittern	TRANSFER +	Bucket

WELL PURGING RECORD				
TIME	VOLUME REMOVED	TEMP.	pН	COND.
1713	1 Bailer	75.8	7.39	.48
1721.	B 91/	74.9	7.17	,5/
1723	, ,	73.8	7.04	.50
1726	. /	23.8	6.96	.50
1729	1	735	6.95	150
/ / / / / / / / / / / / / / / / / / / /				
				<u> </u>

	/ ,	
FINAL VOLUME PURGED	6 911	
TIME SAMPLED 1737		
SAMPLE ID. RS-9		
SAMPLE CONTAINERS %	140cc VORs	. · · · · · · · · · · · · · · · · · · ·
ANALYSIS TO BE RUN 7	OHG BTEX INTRE	
LABORATORY NSE	0	
NOTES: 1st Bailer Silt	- 4	Slight Oder
$O_2 = 2.1$	<i>/</i>	
S04 = 7		The state of the s
NO = 0	N. N.	
Fe2 20.59		A.
10-20.71		
		- Marie Carlo

SITE DP 793 D	ATE 8-26 AMPLED BY	-99 TIM	E 1759
WELL RS-10 SA	AMPLED BY	1. BROADWI	AM.
WELL KSYO O			U
WELL ELEVATION	N		
WELL ELEVATIO	NECC		
PRODUCT THICK	NEOO -	76 DTB	96
DEPTH TO WATE		16 DID	1
FLUID ELEVATIO	N		
BAILER TYPE	isposable Brile	ere	
PUMP Ba	and Pittman	TRANSFOR F	bucket
		•	

_				
	WELL PURGING RECORD			
TIME	VOLUME	TEMP.	pН	COND.
LIMIL	REMOVED	F°		XIOOU
1807	1 Bailer	73.2	8.51	.29
1833	3 91/	72.7	8.31	,27
/X33 /X35	1	70.9	8.03	,25
7837				
,				
· · · · · · · · · · · · · · · · · · ·				
,	**			
				

FINAL VOLUME PURGED 4 4 14	
TIME SAMPLED 1841	
CAMPIE ID RS-10	
SAMPLE CONTAINERS 4/40cc VOR 5	
DAIVITLE CONTAINED AND DE DE DE COMP	 -
ANALYSIS TO BE RUN TPHE BTEX /MTRE	
IT A RORATORY NSF	
NOTES: 1st Builer Med silty	Some OdoR
HOILO, / ZAZZES	
02 = 41/2	
	.*

SITE OP 793 DA' WELL II SAI	TE 8-26-99 MPLED BY.	BROADWAY	
WELL FLEVATION			
 PRODUCT THICKN DEPTH TO WATER	ESS	DTB 14	1.64
 FLUID ELEVATION BAILER TYPE Disp			
PUMP BALLER TIPE DISP	A Attman TR.	ash Pump + S	Sapl netered

* WELL PURGING RECORD				
TIME	VOLUME	· TEMP.	pН	COND.
T TIATT	REMOVED	. F°		XIOOC
1902	1 Bailer	76.2	7.58	.54
1905.	2091/	75.8	7.38	156
1907)	75.4	730	156
1908		75.3	7.29	156
			<u></u>	
1			1	

FINAL VOLUME PURGED 2211/
TIME SAMPLED 1907
CAMPIE ID T/
SAMPI F CONTAINERS 4/40cc VON S
ANALYSIS TO BE RUN TPHG 87EX /MTRE
IT ABORATORY NSE
NOTES: 1st Bailer Clear Some Odor
02=0.9
504 = 32
Non = 6.5
Fe = 0.07

138 AST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

SITE DP 793	DATE 8:26-99 TIME
WELL TI	DATE 8-26-99 TIME SAMPLED BY. BROADWAY
WELL 72	<u> </u>
WELL ELEVAT	ON
PRODUCT THIC	KNESS
DEPTH TO WAT	TER DTB
FLUID ELEVAT	ION
LLOID EFFAUI	Directho Reiler
BAILER TYPE PUMP	Valid Atta
LOMB	JAVIA / I IIMAN

	WELL PL	IRGING R	<u>ECORD</u>	COND.
TIME	VOLUME	TEMP.	pН	
	REMOVED	Fo		X1000
	1 Bailer			
	. 91/			
			·	
····				
		$ V \rangle$		
		1/		
<u> </u>				
<u></u>	*			

FINAL VOLUME PURGED 11/
TIME SAMPLED
CAMPLE ID. 72
SAMPI F CONTAINERS / 40cc VOR'S
ANALYSIS TO BE RUN TPHE BTEX MTRE
LABORATORY NSE
NOTES: 1st Builer

SITE DP 793	DATE 9	2.99		E 928
WELL MUT	SAMPLEL	BY. 18	ROADWI	ag
WELL ELEVAT	TION			
PRODUCT THI	CKNESS			10.61
DEPTH TO WA		11.65	DTB	18.31
FLUID ELEVA	TION			
BAILER TYPE	Disposable	Briler		
PUMP	David Pittm.	(N		

WELL PURGING RECORD						
VOLUME	TEMP.	pН	COND.			
REMOVED	Fo		XIOOO			
1 Bailer	77.5		41			
2 91/	74.3		,39			
, ,	73.5	8,55	.3/			
1	73.1	8.15	,30			
1	72.9	8.16	,29			
	<u></u>					
	VOLUME REMOVED / Bailer 2 ga/	VOLUME REMOVED F° / Bailer 77.5 2 ga/ 74.3 1 73.1 2 19	REMOVED F° Bailer 77.5 8.76 2 ga/ 74.3 8.65 1 73.5 8.55 1 73.1 8.15 219 6.16			

FINAL VOLUME	UNULL	5 gal
TIME SAMPLED	850	
O'LL COT E ID		100 2 14 1
SAMPLE CONTA	NERS / 40cc	TOAS 2/Ambers
ANALYSIS TO BI	ERUN TPHG BTEX	/MTRE
LABORATORY	NSE	
NOTES: / ST BAL	ler CleAR	No OdbR

1380 AST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

R1-14.18
R3-10.87
R542826

CITE na rea	DATE	9-2-99	TIM	E 0915	
SITE DP 793	DAID	ED DV	00 00/11	2/4	
WELL 85-5	SAMPL	ED BI. /	SROAUWI	()	
		_			
WELL ELEVAT	ION				
WELL ELEVAL	IOIA				
PRODUCT THIC	KNE22				
DEPTH TO WA	ΓER	16.26	DTB	39.20	
FLUID ELEVAT	YON				
BAILER TYPE PUMP	DisposAb	le Briler			
PUMP	DAVID Pi	ttman			

WELL PURGING RECORD					
TIME	VOLUME REMOVED	TEMP.	pH	COND.	
0917	1 Bailer	68.7	7.35	145	
0924.	46 91	48.8	7.15	.46	
0917 0924 . 6929	, , ,	18.4	7.15	,44	
	·				
j					

FINAL VOLUME PURGED 4774
TIME SAMPLED 934
GAMPLE ID PC- C
SAMPIFCONTAINERS /1000 VOITS & Rubers
ANALYSIS TO BE RUN TPHE BTEX INTRE
In an an among the desired
NOTES: 1st Briler Clordy STrong Odore
NOTES:

1386 BAST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

WELL SAMPLING DATA SHEET

?2-13-23' ?52-12'

SITE 00 793 DATE 9-2-99 TIME 853
OTTE OF THE PROPERTY OF
WELL RS-6 SAMPLED BY. BROADWAY
WELL ELEVATION
PRODUCT THICKNESS
DEPTH TO WATER 14.14 DTB 34.62
FLUID ELEVATION.
RATIER TYPE DISHOSABLE BRICE
BAILER TYPE Disposable BriLER PUMP DAVID PITTMAN
LOMIT ONLY ALLEGAN

WELL PURGING RECORD						
WELL PURGING RECORD COND.						
TIME	VOLUME	TEMP.	pН			
	REMOVED	F°		XIOOU		
8:56	1 Bailer	71.0	1.75	.68		
	20/84/	19.5	774	,73		
902	24/37/	69.0	6.70	173		
904	 		6.69	173		
906	1	69,0	p.c. i			
_			1			

FINAL VOLU	<u>ME PURGE</u>	D 2291	
TIME SAMPL	ED 7/4	<u> </u>	
CAMPIEID	RICLE		<i>a</i> ,
SAMPLECO	NTAINERS_	140cc 1013 5	2/AMBERS
ANALYSIS T	<u>O BE RUN</u>	TPHO BTEX INTRE	
LABORATOR	Y NSE		
NOTES: /5	BAILER CA	EAR	Slight edia
•			
	e e Geografia		

1386 BAST BRAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

SITE DP 793	DATE	9-2-99		1509
WELL RS 8	SAMPL	ED BY.	BROADWAY	
WELL ELEVAT	ION			
PRODUCT THIC	KNESS			
DEPTH TO WAT	ΓER	<i>7.38</i>	DTB	•
FLUID ELEVAT	YON			
BAILER TYPE	Disposabi	le Briler		
PUMP	DAVID PI	HMAN		

WELL PURGING RECORD					
TIME	VOLUME	TEMP.	pН	COND.	
	REMOVED	Fo		XIOOU	
1512	1 Bailer	72.4	6,43	,41	
1517.	294/	71.9	6.21	,49	
1520	, 1	71.7	5.78	.47	
1523	1	71.7	5.74	.46	
1,2		<u> </u>			
			1		
				<u> </u>	

FINAL VOLUME PURGED	4 91
TIME SAMPLED 1330	0
SAMPLE ID. AS-8	
SAMPLE CONTAINERS / 4000	WOAS 2/Rubers
ANTI LECONTRE DE DIN -PU- RT	EX INTRE
ANALYSIS TO BE RUN TPHE 876	W. C.
LABORATORY NSE	
NOTES: 1st Bailer Silty	Some Odor
NOTES: 7 PATTON DETE	
	*.
4 *	7.3 <u> </u>
	1.20

RS7-4,14'

WELL RS-7 SAMPLED BY. BROADWAY	
WELL ELEVATION PRODUCT THICKNESS 7.61	
DEPTH TO WATER 244 DTB 15 FLUID ELEVATION	
BAILER TYPE Disposable Bailer PUMP David Pittman	

THE L DIRCING PECOPD						
	WELL PURGING RECORD					
TIME	VOLUME	TEMP.	pН	COND.		
	REMOVED	F°		X1000		
942	1 Bailer	23.7	7.07	.46		
0745.	3 94/	71.9	7.00	,53		
747	7.1	71.2	6.99	5/		
919		70.9	6.98	,51		
			<u></u>			

FINAL VOLUME PURGED 5 11	
TIME SAMPLED 950	
THIVE SAME LED / 150	
SAMPLE ID. RS-9	0 / 0 / ==
THE PROPERTY OF A PARTY OF A PART	2/Ambers
DAMI LE COLLEGE DE DINI - OF PARTY	Bio Chen Cof C
ANALYSIS TO BE RUN FOR STAX MURE	
LABORATORY NSE	
NOTES: 1st Briler Silty	Slight der
NUIES: / WALLER SILLY	

1386 BAST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

SITE OP 793	DATE	9-2-99		E 1550	
WELL KS10	SAMPI	ED BY.	BRONDWI	all	
				<u> </u>	*
WELL ELEVAT	ION				
PRODUCT THIC	CKNESS				
DEPTH TO WA	TER	3.96	DTB	9.6	
FLUID ELEVAT	NOI	<u> </u>			
BAILER TYPE	DISPOSAL	le BriLER			
PUMP	David A	HAN			

WELL PURGING RECORD					
TIME	VOLUME	TEMP.	pН	COND.	
	REMOVED	F°		X1000	
1553	1 Bailer	73.8	7.2%	.23	
1558 -	1 91/	73.2	7.25	.21	
1600	1	73.3	7.24	,21	
7 9					
		·			
]	<u> </u>	

FINAL VOLUM	ME PURGE	D /	11/	
TIME SAMPLE	ED 1559	0		
SAMPLE ID.	RS 10_	<u></u>		
SAMPLE CON	TAINERS	140cc VOI		anbers.
ANALYSIS TO	BE RUN 7	TPHG BTEX/N	TRE	
TABORATOR'	Y NSE	1 Y 1 3 X	* a.	21
NOTES: /5T	Bailer 51	1ty	Sane	Odor
		<u> </u>		
				¥
			<u> </u>	
			, , , , , , , , , , , , , , , , , , , 	

1386 BAST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

SITE DP 793	DATE 9-2-99 TIME 1015
WELL TI	SAMPLED BY. BROADWAY
WELL ELEVAT	ION
PRODUCT THE	CKNESS
DEPTH TO WA	TER 2.20 DTB 14.98
FLUID ELEVA	rion
	Disposable BriLER
PUMP	David Pittman

WELL PURGING RECORD							
	The state of the s						
TIME	VOLUME	TEMP.	bir				
Į	REMOVED	F°		X1000			
1020	1 Bailer	18.8	7.59	,62			
1140.	300 gal -						
1105	300	14:40	300 921				
1/25	307	1505	300				
1145	300	1530	300				
1207	300						
1230	300	78.1	7.57	,60			
1327	300						
1350	300						
1420	300			<u> </u>			

	
FINAL VOLUME PURGED 3601) gal	
TIME SAMPLED 15 40	<u>.</u>
SAMPLE ID. T/	2 2 2
SAMPLE CONTAINERS /4000 VOR 5	2 Ambers
ANALYSIS TO BE RUN THIS BEEK MITE	
LABORATORY NSE	
NOTES: 15T BAILER CLERR	Strong Work
1384 T1=425 & TY=6.42	

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custo	dy / Request for Analysis
Lab Job No.:	Pageof

Client: DOSERT	Peteole	e hem	Report	Report to: Roy Butler				Phone: 570 168 5300			300	Turnaround Time			
			Billing t	Billing to:					Fax: 530 K/2 0273			273			
Western G	es tra	INECRS	SA.	SAME			ſ	PO# / Billing Reference:				Date: 9-2 - 99			
Mailing Address: Western G 1386 E. Ben Woodland	nerst)	95776										Sampler: BRONDINAL			
Project / Site Address:			,		Analys	is /	() (/	/ د	2 2		3		/	
DP 793	F	ark Bu	vol	Re	equested		3	, 4	The Colonial				/ /		
Sample ID	Sample Type	Container No. / Type	Pres.	Samp Date /		19.6		15	1/3/	20/0	Dry				Comments / Hazards
MW 1	1120	2 Ambers	None	9-2-99	8:50		1			\perp			ļ		
R55					9:34										
R56					9:10										
R58					13:30										
R59					9:50										
R510					15:59										
TI	1				15:40					-	-			<u> </u>	
									•				i		
	Į														
. :															
			-												
					, , , , , , , , , , , , , , , , , , , 								И		
Relinquished by:	The 2	Same	2 6 D	ate: 9.3.9	99 Time:	9:30	Re	ceiv	ed by	<u>.</u> زير_:	1	Ph	bece	e	Lab Comments
Relinquished by: Sacraham Date: 9.3.99 Time: 9:32 Received by: Sacraham Date: 9.3-99 Time: //And Received by:															
Relinquished by:		(\ \footnote{\chi_0}	ate:	Time:		Re	ceiv	ed by	-				1182	

APPENDIX C

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1350

Client:

Western Geo-Engineers

Project:

DP793 Park Blvd

Date Reported: 09/14/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

mal <u>yte</u>	Method	Result	Unit	Date Sampled	Date Analyzed
Sample: 99-135	50-01 Cli	lent ID: MW-	1	08/26/99	WATER
Gasoline	8015M	ND			09/02/99
Benzene	8020	4.1	\mathtt{ug}/\mathtt{L}		
Ethylbenzene	8020	ND			
MTBE	8020	*ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 99-13	50-02 Cl:	ient ID: R-1		08/26/99	WATER
Gasoline	8015M	6500	ug/L	- "	09/02/99
Benzene	8020	630	ug/L		
Ethylbenzene	8020	1300	\mathtt{ug}/\mathtt{L}		
MTBE	8020	*ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 99-13	50-03 Cl:	ient ID: R-2)	08/26/99	WATER
Gasoline	8015M	6700	ug/L		09/02/99
Benzene	8020	940	ug/L		
Ethylbenzene	8020	190	ug/L		
TBE	8020	*4.9	ug/L		
Toluene	8020	33	ug/L		
Xylenes	8020	240	ug/L		

^{*}Confirmed by GC/MS method 8260.

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1350

Client:

Western Geo-Engineers

Project:

DP793 Park Blvd

Date Reported: 09/14/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

halvteN	Method _	Result	Uni <u>t</u>	Date Sampled	Date Analyzed
Sample: 99-13		ent ID: R-3	3	08/26/99	WATER
Gasoline	8015M	ND			09/02/99
Benzene	8020	2	ug/L		
Ethylbenzene	8020	ND			
MTBE	8020	*2.1	ug/L		
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 99-13	50-05 Cli	ent ID: RS-	-2	08/26/99	WATER
Gasoline	8015M	200	ug/L		09/02/99
Benzene	8020	15	ug/L		
Ethylbenzene	8020	1.7	ug/L		
MTBE	8020	* 9	ug/L		
Toluene	8020	23	ug/L		
Xylenes	8020	23	ug/L		
Sample: 99-13	50-06 Cli	ent ID: RS	-5	08/26/99	WATER
Gasoline	8015M	35000	ug/L		09/02/99
Benzene	8020	870	ug/L		
Ethylbenzene		1900	ug/L		
TBE	8020	*ND<5	ug/L		
Toluene	8020	4000	ug/L		
Xylenes	8020	8300	ug/L		
					D+

^{*}Confirmed by GC/MS method 8260.

North State Environmental Laboratory

CA ELAP # 1753

90 South Spruce Avenue. Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

ANALYSIS CERTIFICATE OF

Lab Number:

99-1350

Client:

Western Geo-Engineers

Project:

DP793 Park Blvd

Date Reported: 09/14/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

nalvte N	Method	Result	Unit	Date Sampled	Date Analyzed
sample: 99-135	50-07 Cli	ent ID: RS-	6	08/26/99	WATER
Gasoline	8015M	690	ug/L		09/02/99
Benzene	8020	44	ug/L		
Ithylbenzene	8020	30	ug/L		
TBE	8020	ND			
Toluene	8020	2.5	ug/L		
Kylenes	8020	31	ug/L		
Sample: 99-13	50-08 Cli	ent ID: RS-	7	08/26/99	WATER
Gasoline	8015M	15000	ug/L		09/02/99
Benzene	8020	3400	ug/L		
Ethylbenzene	8020	950	ug/L		
ATBE	8020	*ND<5	ug/L		
Toluene	8020	91	ug/L		
Kylenes	8020	970	ug/L		
Sample: 99-13	50-09 Cli	lent ID: RS-	-8	08/26/99	WATER
Gasoline	8015M	160000	ug/L		09/02/99
Benzene	8020	24000	ug/L		
Ethylbenzene	8020	4200	ug/L		
TBE	8020	*ND<5	ug/L		
roluene	8020	35000	ug/L		
Kylenes	8020	24000	ug/L		

^{*}Confirmed by GC/MS method 8260.

North State Environmental Laboratory

CA ELAP#1753

90 South Spruce Avenue. Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1350

Client:

Western Geo-Engineers

Project:

DP793 Park Blvd

Date Reported: 09/14/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

nalyte M	lethod	Result	Unit	Date Sampled	Date Analyzed
Jample: 99-135	0-10 Client	ID: RS-9		08/26/99	WATER
Gasoline	8015M	17000	ug/L		09/02/99
Benzene	8020	3500	ug/L		
Ethylbenzene	8020	360	ug/L		
MTBE	8020	*180	ug/L		
Toluene	8020	1200	ug/L		
Xylenes	8020	1600	ug/L		
Sample: 99-135	0-11 Client	t ID: RS-10	0	08/26/99	WATER
Gasoline	8015M	5100	ug/L		09/02/99
Benzene	8020	160	ug/L		
Ethylbenzene	8020	190	ug/L		
MTBE	8020	*32	ug/L		
Toluene	8020	340	ug/L		
Xylenes	8020	1000	ug/L		
Sample: 99-135	0-12 Clien	t ID: T-1		08/26/99	WATER
Gasoline	8015M	40000	ug/L		09/02/99
Benzene	8020	7,200	ug/L		
Ethylbenzene	8020	950	ug/L		
TBE	8020	*26	ug/L		
Toluene	8020	5000	ug/L		
Xylenes	8020	8100	ug/L		

Page

North State Environmental Laboratory

GA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

ANALYSIS O F CERTIFICATE

Quality Control/Quality Assurance

Lab Number:

99-1350

Client:

Western Geo-Engineers

Project:

DP793 Park Blvd

Date Reported: 09/14/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

						
Analyte	Method	Reporting Limit	Unit	Blank	Avg MS/MSD Recovery	RPD
Gasoline	8015M	50	ug/L	ND	103	1
Benzene	8020	0.5	ug/L	ND	108	1
Ethylbenzene	8020	0.5	ug/L	ND	111	1
Toluene	8020	0.5	ug/L	ND	112	0
Xylenes	8020	1.0	ug/L	ND	117	1
MTBE	8020	0.5	ug/L	ND	107	6

ELAP Certificate NO:1753

ratory Director

5 of 5 Page

CERTIFICATE OF ANALYSIS

Job Number: 99-1350

Client : Western Geo-Engineers

Project : DP793 Park Blvd

Date Sampled: 08/26/99

Date Analyzed: 09/02/99

Date Reported: 09/14/99

.	99-1350-01	99-1350-02	99-1350-03	99-1350-04	99-1350-05	99-1350-06
Laboratory Number	MW-1	R-1	R-2	R-3	RS-2	RS-5
Client ID	WATER	WATER	WATER	WATER	WATER	WATER
Matrix	WAIDA	M.12.51			,	/1
Analyte	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Bromochloromethane	ND<5	ND<5	ND<5	ND<5	ND<5	ND<25
Dichlorodifluoromethane	ND<5	ND<5	ทD<5	ND<5	ND<5	ND<25
Chloromethane	ND<5	ND<5	ND<5	ND<5	ND<5	ND<25
Vinyl Chloride	ND<5	ทD<5	ND<5	ND<5	ND<5	ND<25
Bromomethane	ND<5	ND<5	ND<5	ND<5	ND<5	ND<25
Chloroethane	ND<5	ND<5	ND<5	ND<5	ND<5	ทธ<25
Trichlorofluoromethane	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,1-Dichloroethene	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
,	ND<50	ND<50	ND<50	ND<50	ND<50	ND<250
Acetone Trichlorotrifluoroethane	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
Methylene Chloride	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2
t-1,2-Dichloroethene	ND<1	ND<1	ND<1	1	2	ND<5
Methyl-t-butyl Ether	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,1-Dichloroethane	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
2,2-Dichloropropane	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
cis-1,2-Dichloroethene	ND<1 ND<10	ND<10	ND<10	ND<10	ND<10	ND<50
2-Butanone		ND<1	ND<1	ND<1	ND<1	ND<5
Chloroform	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,1,1-Trichloroethane	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
Carbon Tetrachloride	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,1-Dichloropropene	ND<1	520	910	ND<1	12	770
Benzene	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,2-Dichloroethane	ND<1	ND<1 ND<1	ND<1	ND<1	ND<1	ND<5
Trichloroethene	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,2-Dichloropropane	ND<1	ND<1 ND<1	ND<1	ND<1	ND<1	ND<5
Dibromomethane	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
Bromodichloromethane	ND<1	ND<1 ND<1	ND<1	ND<1	ND<1	ND<5
trans-1,3-Dichloropropene	ND<1	ND<1 ND<10	ND<10	ND<10	ND<10	ND<50
4-Methyl-2-Pentanone	ND<10	ND<10	12	ND<1	21	3700
Toluene	ND<1	=	ND<1	ND<1	ND<1	ND<5
cis-1,3-Dichloropropene	ND<1	ND<1	ND<1	ND<1	ND<1	ND<5
1,1,2-Trichloroethane	ND<1	ND<1	1	ND<1	ND<1	ND<5
Tetrachloroethene	ND<1	ND<1	nD<1	ND<1 ND<1	ND<1	ND<5
1,3-Dichloropropane	ND<1	ND<1		ND<1 ND<10	ND<10	ND<50
2-Hexanone	ND<10	ND<10	ND<10	ND<10 ND<1	ND<1	ND<5
Dibromochloromethane	ND<1	ND<1	ND<1	MDZT		

Client

North State Environmental Laboratory

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Job Number: 99-1350

: Western Geo-Engineers

Project : DP793 Park Blvd

Date Sampled: 08/26/99

Date Analyzed: 09/02/99

Date Reported: 09/14/99

Callent ID	Laboratory Number	99-1350-01	99-1350-02	99-1350-03	99-1350-04	99-1350-05	99-1350-06
Matrix WATER ATTHOR TOWATH TATHOR TATHOR TATHOR		MW-1	R-1	R-2	R-3	RS-2	RS-5
Analyte ug/L		WATER	WATER	WATER	WATER	WATER	WATER
Analyte	Matrix					/ -	
1,2-pibromoethane	Analyte	ug/L	ug/L	ug/L	ug/L	-	-
NDC1	1.2-Dibromoethane	ND<1	ND<1	ND<1	ND<1		
1,1,2=Tetrachloroethane		ND<1	ND<1	ND<1	ND<1		
Ethylbenzene	1.1.1.2-Tetrachloroethane	ND<1	ND<1	ND<1	ND<1	. – .	
m,p-xylene ND<1 ND<1 23 ND<1 7 5500 c-xylene ND<1		ND<1	1100	120	ND<1		
No.		ND<1	ND<1	23	ND<1		
ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1	· • •	ND<1	3	7	ND<1		
Isopropylbenzene		ND<1	ND<1	ND<1	ND<1		
Isopropylbenzene		ND<1	ND<1	ND<1	ND<1	ND<1	
### Promobenzene ND<1 ND<5 1,1,2,2-Tetrachloroethane ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1-Propyl Benzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 2-Chlorotoluene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 4-Chlorotoluene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 4-Chlorotoluene ND<1 31 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,3,5-Trimethylbenzene ND<1 1 ND<1 ND<1 ND<1 ND<1 ND<1 190 1,2,4-Trimethylbenzene ND<1 40 39 ND<1 3 1200 1,3-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,4-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dibromo-3-chloropropa ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Trichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<5 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<5 ND<5 ND<1 ND<1 ND<1 ND<5 ND<1 ND<1 ND<5 ND<5 ND<1 ND<1 ND<5 ND<1 ND<1 ND<1 ND<5 ND<2 ND<1 ND<1 ND<5 ND<3 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<		ND<1	130	22	ND<1		
1,1,2,2-Tetrachloroethane	• •-	ND<1	ND<1	ND<1	ND<1		
n-Propyl Benzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 2-Chlorotoluene ND<1	1.1.2.2-Tetrachloroethane	ND<1	ND<1	ND<1	ND<1	ND<1	
2-Chlorotoluene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1	, , .	ND<1	ND<1	ND<1	ND<1		
4-Chlorotoluene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1	• •	ND<1	ND<1	ND<1 .	ND<1	•	
1,3,5-Trimethylbenzene ND<1 31 ND<1 ND<1 ND<1 400 tert-Butylbenzene ND<1 1 ND<1 ND<1 ND<1 ND<1 190 1,2,4-Trimethylbenzene ND<1 40 39 ND<1 3 1200 1,3-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 ND<5 1,4-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 sec-Butylbenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<1		ND<1	ND<1	ND<1	ND<1	ND<1	
tert-Butylbenzene ND<1 1 ND<1 ND<1 190 1,2,4-Trimethylbenzene ND<1		ND<1	31	ND<1	ND<1		
1,2,4-Trimethylbenzene ND<1		ND<1	1	ND<1	ND<1		
1,3-Dichlorobenzene ND<1		ND<1	40	39	ND<1	3	
1,4-Dichlorobenzene	-	ND<1	ND<1	ND<1	ND<1		
sec-Butylbenzene ND<1 14 6 ND<1 ND<5 1,2-Dichlorobenzene ND<1		ND<1	ND<1	ND<1	ND<1	ND<1	
1,2-Dichlorobenzene ND<1	_,	ND<1	14	6	ND<1	ND<1	
p-Isopropyltoluene ND<1 ND<1 ND<1 ND<1 9 n-Butylbenzene ND<1	-	ND<1	ND<1	ND<1	ND<1	ND<1	
n-Butylbenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2-Dibromo-3-chloropropa ND<1	•	ND<1	ND<1	ND<1	ND<1		•
1,2-Dibromo-3-chloropropa ND<1	_	ND<1	ND<1	ND<1	ND<1		
Naphthalene ND<1 ND<1 ND<1 ND<1 ND<5 1,2,4-Trichlorobenzene ND<1	-	ND<1	ND<1	ND<1	ND<1		
1,2,4-Trichlorobenzene ND<1		ND<1	ND<1	ND<1	ND<1	ND<1	
Hexachlorobutadiene ND<1 ND<1 ND<1 ND<5 1,2,3-Trichlorobenzene ND<1	_	ND<1	ND<1	ND<1	ND<1		
1,2,3-Trichlorobenzene ND<1 ND<1 ND<1 ND<1 ND<1 ND<1 ND<5 1,2,3-Trichloropropane ND<1	-, -,	ND<1	ND<1	ND<1	ND<1	ND<1	
1,2,3-Trichloropropane ND<1	1.2.3-Trichlorobenzene	ND<1	ND<1	ND<1	ND<1	ND<1	
SUR-Dibromofluoromethane 94% Rec 96% Rec 98% Rec 93% Rec 100% Rec 104% Rec SUR-Toluene d8 101% Rec 99% Rec 105% Rec 95% Rec 101% Rec 103% Rec	-·-·	ND<1	ND<1	ND<1	ND<1		
SUR-Toluene d8 101% Rec 99% Rec 105% Rec 95% Rec 101% Rec 94% Rec		94% Rec	96% Rec	98% Rec	93% Rec		
000 p 90% Rec 94% Rec		101% Rec	99% Rec	105% Rec	95% Rec		
	SUR-4-Bromofluorobenzene	103% Rec	99% Rec	99% Rec	97% Rec	99% Rec	94% Rec

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Job Number: 99-1350

Client : Western Geo-Engineers

Project : DP793 Park Blvd

Date Sampled: 08/26/99 Date Analyzed: 09/02/99

Date Reported: 09/14/99

	99-1350-07	99-1350-08	99-1350-09	99-1350-10	99-1350-11	99-1350-12
Laboratory Number	RS-6	RS-7	RS-8	RS-9	RS-10	T-1
Client ID	WATER	WATER	WATER	WATER	WATER	WATER
Matrix	WAIER	WAIDI				
Analyte	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Bromochloromethane	ND<5	ND<25	ND<500	ND<100	ND<5	ND<100
Dichlorodifluoromethane	ND<5	ND<25	ND<500	ND<100	ND<5	ND<100
Chloromethane	ND<5	ND<25	ND<500	ND<100	ND<5	ND<100
Vinyl Chloride	ND<5	ทบ<25	ND<500	ND<100	ND<5	ND<100
Bromomethane	ND<5	ND<25	ทD<500	ND<100	ND<5	ND<100
Chloroethane	ND<5	ND<25	ND<500	ND<100	ND<5	ND<100
richlorofluoromethane	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,1-Dichloroethene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
	ND<50	ND<250	ND<5000	ND<1000	ND<50	ND<1000
Acetone Trichlorotrifluoroethane	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Methylene Chloride	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
t-1,2-Dichloroethene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Methyl-t-butyl Ether	ND<1	ND<5	ND<100	42	23	53
	ND<1	ND<5	ND<100	ND<20	ND<1	ทD<20
1,1-Dichloroethane 2,2-Dichloropropane	ND<1	ND<5	ND<100	ND<20	ND<1	ทป<20
	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
cis-1,2-Dichloroethene	ND<10	ND<50	ND<1000	ND<200	ND<10	ND<200
2-Butanone	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Chloroform	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,1,1-Trichloroethane	ND<1 ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Carbon Tetrachloride	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,1-Dichloropropene	38	2500	23000	3200	110	6700
Benzene	oo ND <l< td=""><td>ND<5</td><td>ND<100</td><td>ND<20</td><td>ND<1</td><td>ND<20</td></l<>	ND<5	ND<100	ND<20	ND<1	ND<20
1,2-Dichloroethane	ND<1 ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Trichloroethene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,2-Dichloropropane	ND<1 ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Dibromomethane		ND<5	ND<100	ND<20	ND<1	ND<20
Bromodichloromethane	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
trans-1,3-Dichloropropene	ND<1	ND<50	ND<1000	ND<200	ND<10	ND<200
4-Methyl-2-Pentanone	ND<10	72	32000	840	260	4500
Toluene	2	ND<5	ND<100	ND<20	ND<1	ND<20
cis-1,3-Dichloropropene	ND<1	ND<5	ND<100	ND<20	ND<1	иD<20
1,1,2-Trichloroethane	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
retrachloroethene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,3-Dichloropropane	ND<1	ND<5	ND<1000	ND<200	ND<10	ND<200
2-Hexanone	ND<10	ND<5	ND<1000	ND<20	ND<1	ND<20
Dibromochloromethane	ND<1	がしてつ	WD -700			

North State Environmental Laboratory

CA ELAP # 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Job Number: 99-1350

Client : Western Geo-Engineers

Project : DP793 Park Blvd

Date Sampled: 08/26/99

Date Analyzed: 09/02/99

Date Reported: 09/14/99

	99-1350-07	99-1350-08	99-1350-09	99-1350-10	99-1350-11	99-1350-12
Laboratory Number	RS-6	RS-7	RS-8	RS-9	RS-10	T-1
Client ID	WATER	WATER	WATER	WATER	WATER	WATER
Matrix	WAILK	HAT ZIX				/7
Analyte	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,2-Dibromoethane	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Chlorobenzene	ND<1	ND<5	ทD<100	ND<20	ND<1	ND<20
1,1,1,2-Tetrachloroethane	ND<1	ND<5	ND<100	ทธ<20	ND<1	ND<20
Ethylbenzene	25	660	3700	290	130	790
m,p-Xylene	4	550	14000	820	480	4700
o-Xylene	ND<1	45	5400	270	180	1900
	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
tyrene romoform	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Isopropylbenzene	3	28	ND<100	24	18	47
Bromobenzene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,1,2,2-Tetrachloroethane	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
n-Propyl Benzene 2-Chlorotoluene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
4-Chlorotoluene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ND<1 ND<1	31	1000	110	130	390
1,3,5-Trimethylbenzene	ND<1 ND<1	110	470	46	51	120
tert-Butylbenzene	3	720	3400	390	370	1200
1,2,4-Trimethylbenzene	3 ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,3-Dichlorobenzene	ND<1	ND<5	ND<100	ND<20	ND<1	ทธ<20
1,4-Dichlorobenzene	ND<1 ND<1	ND<5	ND<100	ND<20	7	ND<20
sec-Butylbenzene		ND<5	ND<100	ND<20	ND<1	ND<20
1,2-Dichlorobenzene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
p-Isopropyltoluene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
n-Butylbenzene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,2-Dibromo-3-chloropropa	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Naphthalene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,2,4-Trichlorobenzene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
Hexachlorobutadiene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,2,3-Trichlorobenzene	ND<1	ND<5	ND<100	ND<20	ND<1	ND<20
1,2,3-Trichloropropane	ND<1	98% Rec	99% Rec	99% Rec	104% Rec	100% Rec
SUR-Dibromofluoromethane	98% Rec	95% Rec	100% Rec	105% Rec	106% Rec	103% Rec
SUR-Toluene d8	100% Rec	*	112% Rec	109% Rec	100% Rec	105% Rec
SUR-4-Bromofluorobenzene	99% Rec	99% Rec	1120 100	1000 1100		

CERTIFICATE OF ANALYSIS

Job Number: 99-1350

: Western Geo-Engineers

Client Project : DP793 Park Blvd Date Sampled : 08/26/99

Date Analyzed: 09/02/99 Date Reported: 09/14/99

Volatile Organics by GC/MS Method 8260 Quality Control/Quality Assurance Summary

Laboratory Number Client ID Matrix	99-1350 Blank WATER	MS/MSD Recovery WATER	RPD
Analyte	Results ug/L	%Recoveries	
Bromochloromethane	ND<5		
Dichlorodifluoromethane	ND<5		
Chloromethane	ND<5		
Vinyl Chloride	ND<5		
Bromomethane	ND<5		
Chloroethane	ND<5		
richlorofluoromethane	ND<1		•
1,1-Dichloroethene	ND<1	81	5
Acetone	ND<50		
Trichlorotrifluoroethane	ND<1		
Methylene Chloride	ND<1		
t-1,2-Dichloroethene	ND<1		
Methyl-t-butyl Ether	ND<1		
1,1-Dichloroethane	ND<1		
2,2-Dichloropropane	ND<1		
cis-1,2-Dichloroethene	ND<1		
2-Butanone	ND<10		
Chloroform	ND<1		
1,1,1-Trichloroethane	ND<1		
Carbon Tetrachloride	ND<1		
1,1-Dichloropropene	ND<1		3
Benzene	ND<1	102	2
1,2-Dichloroethane	ND<1		11
Trichloroethene	ND<1	103	11
1,2-Dichloropropane	ND<1		
Dibromomethane	ND<1		
Bromodichloromethane	ND<1		
trans-1,3-Dichloropropene	ND<1		
4-Methyl-2-Pentanone	ND<10	400	1
Toluene	ND<1	102	•
cis-1,3-Dichloropropene	ND<1		
1,1,2-Trichloroethane	ND<1		
Tetrachloroethene	ND<1		
1,3-Dichloropropane	ND<1		
2-Hexanone	ND<10		
Dibromochloromethane	ND<1		
1,2-Dibromoethane	ND<1	106	1
Chlorobenzene	ND<1	100	-
1,1,1,2-Tetrachloroethane	ND<1		
Ethylbenzene	ND<1		
m,p-Xylene	ND<1		
	Dag	a 5 OF 6	

Page 5 Of 6

CA ELAP#1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Job Number: 99-1350

: Western Geo-Engineers

Client Project

: DP793 Park Blvd

Date Sampled: 08/26/99

Date Analyzed: 09/02/99

Date Reported: 09/14/99

RPD

3

Volatile Organics by GC/MS Method 8260 Quality Control/Quality Assurance Summary

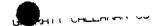
Laboratory Number	99-1350	MS/MSD
Client ID	Blank	Recovery
Matrix	WATER	WATER
Matilx		
Analyte	Results	<pre>%Recoveries</pre>
	ug/L	
o-Xylene	ND<1	
Styrene	ND<1	
Bromoform	ND<1	
Isopropylbenzene	ND<1	
Bromobenzene	ND<1	
1,1,2,2-Tetrachloroethane	ND<1	
-Propyl Benzene	ND<1	
-Chlorotoluene	ND<1	
4-Chlorotoluene	ND<1	
1,3,5-Trimethylbenzene	ND<1	
tert-Butylbenzene	ND<1	
1,2,4-Trimethylbenzene	ND<1	
1.3-Dichlorobenzene	ND<1	
1.4-Dichlorobenzene	ND<1	
sec-Butylbenzene	ND<1	
1,2-Dichlorobenzene	ND<1	
p-Isopropyltoluene	ND<1	
n-Butylbenzene	ND<1	
1,2-Dibromo-3-chloropropa	ND<1	
Naphthalene	ND<1	
1,2,4-Trichlorobenzene	ND<1	
Hexachlorobutadiene	ND<1	
1,2,3-Trichlorobenzene	ND<1	
1,2,3-Trichloropropane	ND<1	
SUR-Dibromofluoromethane	90% Rec	100/98
SUR-Toluene d8	98% Rec	102/99
SUR-4-Bromofluorobenzene	106% Rec	98/96

John A. Murphy

Laboratory Director

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560


99-1350

Chain of Custody / Request for Analysis Lab Job No.: Page of

Client: Desert	Petrole	in Min	Repor	to: Georg Co	ONVERSE	Phone: 530	668-5300	Turnaround Time
Mailing Address: WEGE 1386 E. Be Woodland	AMER 5	<i>t</i> .	Billing We	to: Georg Co to: STERN GEO E	•		(2-0273	Date: 8-26-99 Sampler: Brandway
Project / Site Address: DP793	PARK	6 phol		Analys Requested	is the state of th	12/2/2		
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	1504 12			/ Comments / Hazards
MW-1	H20	4 VOAs	HC1	8-26-79 1110				
R-1				1653				
R-2				1501				
R-3				1417				
R5-2				1405				
RS-5				1559				
RS-6				1435		ļ <u></u>		
RS-7				1724				
R5-8				1822				
R 5-9				1733				
RS-10				1841				
T-1	1	1		1909	VV		XM	
Paris								
		<u></u>						
Relinquished by:	oten ?	Savadin	eg [Date 8-27.99 Time:	450 Receiv	ved by:	M	Lab Comments
Relinquished by:		0		Date: Time:	Receiv	ved by:	<u> </u>	
Relinquished by:				Date: Time:	Recei	ved by:		

FAX	:		Date Number of page	9/13/99 ges including cover sheet- [0]
ro: Roy	Bitler		FROM:	North State Environmental Lab 90 S. Spruce Avenue, Suite W South San Francisco, CA 94080
Phone Fax Phone 52	0 662.027	3	Phone Fax Phone	650,266.4563 650,266.4560
REMARKS:	☐ Urgent	☐ For your review	v 📋 Reply A.	SAP Please Comment
	Ortho pho	sphute res	ults only	
	Orthopho	sphute res	ults only	
	Orthopho	isphute res	ults only	
	Orthopho	is phate res	ults only	

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481

Name of Sample Source: MW-1

Lab Sample ID No.: 991481-A

Sample Type:

Grab □ Composite

Date/Time Sample Collected: 09/02/99 |0850 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

			_ 				
	Analysis	a malayet	Method	Result	Units	RDL	
Analyte	Date	Analyst	EPA 300.0	ND	mg/L	1	j
Orthophosphate, PO4	09/03/99	W. Li	1				

RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 5x dilution.

Method Reference:

EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No: 1226

Laboratory Manager: May & Swat-

Garratt-Callahan Company

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481

Name of Sample Source: RS5

Lab Sample ID No.: 991481-B

Sample Type: S Grab Composite

Date/Time Sample Collected: 09/02/99 10934 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

Linpley							
	Analysis	Analyst	Method	Result	Units	RDL	
Analyte	Date	W. Li	EPA 300.0	ND	mg/L	1	
Orthophosphate, PO4	09/03/99	VV , L.1	<u> </u>				

RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 5x dilution.

Method Reference:

EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No:

1226

Laboratory Manager: Signature

Garratt-Callahan Company

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481

Name of Sample Source: RS6

Lab Sample ID No.: 991481-C

Sample Type: S Grab Composite

Date/Time Sample Collected: 09/02/99 |0910 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

					T		
	Analysis Date	Analyst	Method	Result	Units	RDL	
Analyte			EPA 300.0	ND	mg/L	1	
Orthophosphate, PO4	09/03/99	W. Li	EIASOU		1	<u> </u>	,

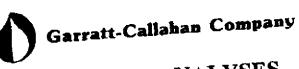
RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 5x dilution.

Method Reference:


EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No:

Laboratory Manager: Signature

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481 Lab Sample ID No.: 991481-D

Name of Sample Source: RS8

Sample Type: ⊠ Grab □ Composite

Date/Time Sample Collected: 09/02/99 [1330 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

							1
	Analysis	Analyst	Method	Result	Units	RDL	
Analyte	Date	W. Li	EPA 300.0	ND	mg/L	1	
Orthophosphate, PO4	09/03/99	11. 15.					

RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 5x dilution.

Method Reference:

EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No:

1226

Laboratory Manager:

Mant & South

Garratt-Callahan Company

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481

Name of Sample Source: RS9

Lab Sample ID No.: 991481-E

Sample Type:

☐ Grab ☐ Composite

Date/Time Sample Collected: 09/02/99 |0950 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

Employed 23						
	Analysis	Amalyst	Method	Result	Units	RDL
Analyte	Date	Analyst W. Li	EPA 300.0	ND	mg/L	1
Orthophosphate, PO4	09/03/99		<u> </u>			

RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 5x dilution.

Method Reference:

EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No:

Laboratory Manager: Signature

Garratt-Callahan Company

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481 Lab Sample ID No.: 991481-F

Name of Sample Source: RS10

Sample Type:

Grab □ Composite

Date/Time Sample Collected: 09/02/99 |1559 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

							
	Analysis	A o luret	Method	Result	Units	RDL	
Analyte	Date	Analyst	EPA 300.0	ND	mg/L	0.4	
Orthophosphate, PO4	09/03/99	W. Li	EFA Joolo		<u></u>		•

RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 2x dilution.

Method Reference:

EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No: 1226

Laboratory Manager: May + 2 Sms.

REPORT OF ANALYSES

Company Name: NORTH STATE ENVIRONMENTAL

Report Date: 09/10/99

Address: P.O. Box 5624

City/State/Zip: South San Francisco, CA 94083

Customer Number: 58480013

LABORATORY PROJECT NO.: 991481

Name of Sample Source: T1

Lab Sample ID No.: 991481-G

Sample Type:

Grab □ Composite

Date/Time Sample Collected: 09/02/99 [1540 Date/Time Sample Received: 09/03/99 |1545

Name of Sampler: unknown

Employed By: North State Environmental

	······································					
	Analysis	Analyst	Method	Result	Units	RDL
Analyte	Date		EPA 300.0	GX	mg/L	1
Orthophosphate, PO.	09/03/99	W. Li	EFA 300.0			<u></u>

RDL = Reporting Detection Limit.

ND = None detected at or above the RDL.

COMMENTS:

The sample was analyzed at a 5x dilution.

Method Reference:

EPA: METHODS FOR THE DETERMINATION OF INORGANIC SUBSTANCES IN ENVIRONMENTAL SAMPLES, United States Environmental Protection Agency, EPA/600/R-93/100, August 1993.

Laboratory Name:

GARRATT-CALLAHAN ANALYTICAL LABORATORY

Laboratory Certificate No: 1226

Laboratory Manager: Signature

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W. South San Francisco, CA 94080

CERTIFIED	SAMPL	ES
~		

Chain or Custouy / request for Analysis

mit NSF Report of Steen Address: Pax	Phone: (650) 266-4563 Fax	Report to: @2KA SPANTON)	Phone:	Turnaround Time
Sample ID Sample Container Pres. Sampling Date / Time			PO# / Billing Reference:	Date: 9.3.99
MN-1 H20 25821 — 9.2.99 (8:50) X /9:34 X RS6 /9:0 X /9:50 X /9:50 X /9:50 X RS9 /15:99 X /15:99 X	99-1384 Sample D Sample Container	Analysis Requested Pres. Sampling Date / Time		1 (200): 1
	MW-1 H20 25821 255 256 R58 R59	/9:34 X /9:10 X / 13:30 X / 15:59 X		G 3 1999 (C1)
Lab Comments Date: 1/4/4 Time: Received by Mat 98000				Lab Comments

North State Environmental Analytical Laboratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

(650) 266-4563 Fax: (650) 266-4560

Chain of Custody /	Request for Ar		is
Lab Job No.:	Page	of_	

Phone:	(650) 266-	-4503 Tax.			0 11			Pho	ne: <	70	11	8 5 J	100	7	furnaround Time	
lient: Desert	Petrole	21M.	Report to	: Kog 1	<u>SUT/e</u>	<u> </u>						02				_
			Billing to									rence:		Date:	9-2-99	_
Western G	er Eng	INECK	SAM	14				'						Sampl	er. BRORDWAY	
lailing Address: LUIESTERN G 1386 E. BEAN LUISE ALANGE	10 K 30	15776	<u> </u>				$\overline{}$	<u>.l</u>	73:	3 7		٧7	7	7	70	
Project / Site Address:		3 1, 121		_	Analysi	s /]	×/3	3	1 8 P		Yn.				/	
DP 793	PA	ERK BL	V 04		equested		X / 3	1837	S. S.	\ _\ight\}	1/4	/	/		Comments / Haza	ırds
Sample ID	Sample Type	Container No. / Type	Pres.	Samp Date /	oling Time	S CHANGE	1	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$ \$	7	-{			_		
MW L	1120	2 Ambers	NONE	7-2-99		-	-	+	++	+	+					
R55	 	<u> </u>			9:34	++		-	++	1						
RS 6	 	 	 			++-	1		11							
R58	 	 	-	 	9:50	1 1							<u> </u>			
R59	 		 	 	15:59	7							<u> </u>	↓_		
RS10_	1-1/	+-\			15:4 <u>0</u>		7]	1					 - -	-		
	1		11	1	<u></u>					_						
		_	-							<u> </u>			-			
			 							1			-	-		
			+							-						
										-				_		
	-							}		+-		 _	1			
									ed by:				ppa	l_ e2	Lab Commo	ents
Relinquished by:	Toplay 1	1 Brach	way_	Date: 9	1.99 Tim	e: 973			ed by:		4	1		NFR		
Relinquished by:	4/ Cm	nse 6	<u>/</u>		3-99 Tim Tim	_			ed by:					118		
Relinquished by:	/ 			Date:										_		

FAX	<u>;</u>		Date Number of pa	9.2.99 Iges including cover sheet-4
TO: Roy 1	3utler		FROM:	North State Environmental Lab 90 S. Spruce Avenue, Suite W South San Francisco, CA 94080
Phone Fax Phone 5	30-662-02	.73	Phone Fax Phone	650.266.4563 650.266.4560
REMARKS:	Urgent	For your re	view 🗌 Reply A	SAP Please Comment
	DP7	93 Pa	rk Blud.	
	/	ć	ammonia ni	troyen only
	•			

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 5

Project: 99-1384

PO#

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

port # K250-04

Date: 9/08/99

orth State Environmental

9/07/99 Date Rec'd: 9/07/99 Date Started: Date Completed: 9/07/99

South Spruce Ave

CA 94080 outh San

Date Sampled: Time:

9/02/99

Sampler:

		_	Analyte	Results	Units
Sample ID	Lab ID MDL	Method	Ammonia as N	ND	mg/L
MW-1	K35182 0.5	350.2	Allunota		
RS-5	K35183 0.5	350.2	Ammonia as N	ND	mg/L
RS-6	K35184 0.5	350.2	Ammonia as N	ND	mg/L
RS-8	K35185 0.5	350.2	Ammonia as N	ND	mg/L
RS-9	K35186 0.5	350.2	Ammonia as N	ND	mg/L
RS-10	K35187 0.5	350.2	Ammonia as N	NI	mg/L
T-1	K35188 0.5	350.2	Ammonia as N	NI) mg/L

Ramiro Salgado

Donna Keller Laboratory Director

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 572-0916

:port# K250-04

QC REPORT

Jorth State Environmental) South Spruce Ave outh San Francisco CA

94080

Dates Analyzed 9/7/99

			MS % Recovery	MSD % Recovery	RPD	Blank
n alyte nmonia as N	Batch # 103275	Method 350.2	101.5	101.0	0.5	ND 、

Donna Keller Laboratory Director

North State Environmental Analytical Lawratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody /	Request for Ana Page / of /
ab Job No.:	Page_ <u>/_</u> of_/_

	-	-4563 Fax				Phone:			Turnaround Time
ient: NORTH STAT	E ENVIE	DATURNIAC	+	o: Erica Stanto	<u>n</u>	Fax:	<u> </u>	7 5.	-DAY
ailing Address:			Billing to	У.		PO# / Billing # 97 -	Reference:	Date:	9.3.99
roject / Site Address: #-99 - 138* Sample ID	Sample Type	Container No. / Type	Pres.		William 15	1/25	142	<i>T</i> /	Comments / Hazards
MWI RS5 RS6 RS8 RS9 RS10	H20	25pm/pl	NOVE	9.2.99/8:50 / 9:34 / 9:10 / 13:30 / 9:50 / 15:40	X X X X X X X	M35 M35 M35 M35 M35 M35	183		
	em s	AL NO	J 5E	Date: 9/3/91 Time Date: 9/1/99 Time	(M) RE	eceived by:	ed Ex	toffma	Lab Comments
Relinquished by:	rca c	X		Date: Time	_	eceived by:	,		
Relinquished by:						·· - ·	CBT	5: GROW	SALYTICAL

FAX	Dete	9.16.99
	Number of pay	ges including cover sheet-
ro: Western Geo	FROM:	North State Environmental Lab 90 S. Spruce Avenue, Suite W South San Francisco, CA 94080
Phone Fax Phone 530-668-5300	Phone Fax Phone	650.266.4563 650.266.4560
REMARKS: Urgent For your review	Reply AS	IAP Please Comment
DP793 Park Blv	J	
COz/metl	rane	
		•

O Bar 5624 a South San Bringisco California 94023 a 656, 589, 7828 BAY 588, 1950

TEL:510 484 1096

P. 009

CHROMALAB, INC.
Environmental Services (SDB)

Submission #: 1999-09-0076

North State Labs To:

Test Method:

3810M

Attn.: Erica Stanton

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

T 1

Lab Sample ID: 1999-09-0076-007

Project:

99-1384

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

Sampled:

09/02/1999 15:40

QC-Batch:

1999/09/15-01.37

Matrix:

	المسجوني المستميد المستميد					
Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Methane	0.19	0.010	ug/ml	1.00	09/15/1999 18:36	1 1
Carbon Dioxide	110	2.0	ug/ml	1.00	09/15/1999 18:36	

P. 008

CHROMALAB, INC.
Environmental Services (SDB)

Submission #: 1999-09-0076

Ta: North State Labs

Test Method:

3810M

Attn.: Erica Stanton

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

R\$ 10

Lab Sample ID: 1999-09-0076-006

Project:

99-1384

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

Sampled:

09/02/1999 15:59

Matrix:

Water

QC-Batch:

1999/09/15-01.37

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Methane	0.037	0.010	ug/mi	1.00	09/15/1999 18:28	
Carbon Dioxide	100	2.0	ug/ml	1.00	09/15/1999 18:28	

P. 00

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 1999-09-0076

To: North State Labs

Test Method:

3810M

Attn.: Erica Stanton

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

RS 9

Lab Sample ID: 1999-09-0076-005

Project:

99-1384

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

Sampled:

09/02/1999 09:50

QC-Batch:

1999/09/15-01.37

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Methane Carbon Dioxide	2.1 250	0.010 2.0	ug/mi ug/mi		09/15/1999 18:17 09/15/1999 18:17	

TEL: 510 484 1096

P. 006

CHROMALAB, INC. Environmental Services (SDB)

North State Labs

Attn.: Erica Stanton

Tast Method:

3810M

"Submission #: 1999-09-0076

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

RS 8

Project:

To:

99-1384

Lab Sample ID: 1999-09-0076-004

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

QC-Batch:

1999/09/15-01.37

Sampled:

09/02/1999 13:30

Matrix

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Methane	0.018	0.010	ug/ml	1.00	09/15/1999 18:09	
Carbon Dioxide	58	2.0	ug/ml	1.00	09/15/1999 18:09	

P. 005

CHROMALAB, INC. Environmental Services (SD8)

~Submission #: 1999-09-0076

North State Labs To:

Test Method:

3810M

Attn.: Erica Stanton

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

RS 6

Lab Sample ID: 1999-09-0076-003

Project.

99-1384

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

Sampled:

09/02/1999 09:10

QC-Batch:

1999/09/15-01.37

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Methane	ND	0.010	ug/ml	1.00	09/15/1999 17:33	
Carbon Dioxide	360	2.0	ug/ml	1.00	09/15/1999 17:33	

TEL:510 484 109

P. 004

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 1999-09-0076

North State Labs To:

Test Method:

3810M

Attn.: Erica Stanton

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

RS 5

Lab Sample ID: 1999-09-0076-002

Project:

99-1384

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

09/02/1999 09:34

QC-Batch:

1999/09/15-01.37

Matrix:

Sampled:

Compound	Result	Rep Limit	Units	Dilution	Analyzed	Flag
Methane	0.21	0.010	ug/ml		09/15/1999 17:24	
Carbon Dioxide	160	2.0	ug/mi	1.00	09/15/1999 17:24	-

P. 003

CHROMALAB, INC. Environmental Services (SDB)

- Submission #: 1999-09-0076

North State Labs To:

Test Method:

3810M

Attn.: Erica Stanton

Prep Method:

3810

Dissolved Gases by Headspace

Sample ID:

MW 1

Lab Sample ID: 1999-08-0076-001

Project:

99-1384

Received:

09/07/1999 14:50

Extracted:

09/15/1999 14:00

Sampled:

09/02/1999 08:50

QC-Batch:

1999/09/15-01.37

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed Flag
Methane	ND	0.010	ug/m!	1.00	09/15/1999 17:16
Carbon Dioxide	130	2.0	ug/ml	1.00	09/15/1999 17:16

TEL:510 484 1096

P. 002

CHROMALAB, INC. Environmental Services (SDB)

Submission #: 1999-09-0076

Dissolved Gases by Headspace

North State Labs

90 S. Spruce Street, Suite W Sp San Francisco, CA 94080

Attn: Erica Stanton

Phone: (650) 266-4563 Fax: (650) 266-4560

Project #: 99-1384

Project:

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW 1	Water	09/02/1999 08:50	1
RS 5	Water	09/02/1999 09:34	1 2
RS 6	Water	09/02/1999 09:10	3
RSB	Water	09/02/1999 13:30	4
RS 9	Water	09/02/1999 09:50	5
RS 10	Water	09/02/1999 15:59	6
T1	Water	09/02/1999 15:40	7

P.01

CytoCulture International, Inc. 1446

Attn: John Murphy

North State Environmental, Inc. 90 South Spruce Avenue Suite V South San Francisco, CA 94080

Cyto Lab Number: 99-66

Reporting Date: September 14, 1999

Project Contract #: 99-1384

Tel: 650-588-2838 Fax: 650-588-1950

SAMPLES: Seven water sample (collected 9/2/99) were received at CytoCulture on 9/7/99. The samples were assayed the same day and stored at 4°C for any follow up work...

AEROBIC Hydrocarbon-Degrading Bacteria Enumeration Assays

ANALYSIS REQUEST:

Bacterial enumeration for aerobic hydrocarhon-degraders.

CARBON SOURCES:

Gasoline, diesel and jet fuel hydrocarbons were dissolved into the agar as the sole carbon and energy sources for the growth of hydrocarbon-degrading aerobic

bacteria.

PROTOCOLS:

Aerobic Hydrocarbon Degraders

Sterile agar plates (100 x 15 mm) were prepared with aerobic vs. anaerobic minimal salts medium at pH 6.8 with 1.5% noble agar. Dissolved phase petroleum hydrocarbons provided the only carbon/energy source. Triplicate plates were inoculated with 1.0 ml of sample, or a log dilution of the sample, at dilutions of 10°, 10°, 10°, 10°, and 10°, Hydrocarbon plates were poured on 9/7/99. The plates were counted after 7 days. The plate count data are reported as colony forming units (cfu) per milliliter (ml) of sample. Each bacteria population value represents a statistical average of the plate count data obtained with inoculations for at least two of the three log dilutions tested.

P.04

INVOICE: LAB-NST 99-66

Company: North State Environmental Street: South Spruce Avenue, Suite V City/Zip: South San Francisco, CA 94080

Attn: John Murphy

Invoice Date: September 7, 1999 Reporting Date: September 14, 1999

Project Name:

No. Samples: 7 Water Project Number: 99-1384

Tel: 650-588-2838 Fax: 660-588-1950

Chemistry Assay Description Ammonia Nitrogen - Water Ammonia Nitrogen - Soil Nitrate Nitrogen - Water Ortho-Phosphate - Water Sulfate - Water Ferrous Iron - Water pH - Water Dissolved Oxygen - Water Percent Moisture - Soil Redox potential (ORP)- water	Qty	\$25 \$30 \$25 \$25 \$25 \$25 \$40 \$10 \$15 \$15	Amount \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Bacterial Plate Enumerations Aerobic Hydrocarbon Degraders (cfu/ml) - Water Aerobic Hydrocarbon Degraders (cfu/g) - Soil Aerobic Total Heterotrophs (cfu/ml) - Water Aerobic Total Heterotrophs (cfu/g) - Soil Anaerobic Hydrocarbon Degraders (cfu/ml) - Water Anaerobic Hydrocarbon Degraders (cfu/g) - Soil Anaerobic Total Heterotrophs (cfu/ml) - Water Anaerobic Total Heterotrophs (cfu/g) - Soil	7	\$60 \$70 \$60 \$70 \$90 \$100 \$90	\$420.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00 \$0.00
Bacterial MPN Enumerations (Priced per s Nitrate Reducing Bacteria (cells/ml) - Water Iron Reducing Bacteria (cells/ml) - Water Sulfate Reducing Bacteria (cells/ml) - Water	ets of 6	\$140 \$140 \$140 \$140	\$0.00 \$0.00 \$0.00

invoice Total

\$420.00

Please have checks mailed within 30 days, payable to: CytoCulture International, Inc. 249 Tewksbury Avenue Point Richmond, CA 94801-3629

Thank you.

FAX				es including cover sheet-
ro: Roy 1	Butter		FROM:	North State Environmental Lab 90 S. Spruce Avenue, Suite W South San Francisco, CA 94080
Phone Fax Phone 15 3 0	66/3-1-		Phone Fax Phone	650.266.4563 650.266.4560
530	662-0473 Urgent [For your review	☐ Reply AS	4P Please Comment
	DP793	Park Blue		
	·	Hydro	Corbon	degraders resu

Northstate Environmental

Subcontracted Microbiology Assays performed by

Cyto Culture En	vironmental Biotechnology OF CUSTODY FORM	#199-66
Project No.	Nonhstate LOG IN #:	
Project Name:	99-1384	
99 - 1384	Northstate Project Manager:	
Northstate Client Organization:	JOHN MURPHY	
Address to Send Results: 90 Spruce. Also Address to Send Results: 90 Sp	THE SAN FRANCISCO, CA 94	œÔ
LINE STATE ENVIRONMENTAL, SUITEY, SO	Client Contact / Project Manager:	

Ī	Address to Send Results:	SAN FRANCISCO, CA TOURS (Project Manager)
l.	LAND STATE ENVIRONMENTALLY WITH	Client Contact / Project Manager:
ŀ	Client Fax III Deliving Dame	Mark
ł	650 56 1930	Client Sampler / Recorder:
1	Client Tel for Follow-up:	
	650. 588-2838	

Sempling		Matrix		Analysis CPU		ρH	DO	NH,	PO.	NO ₃	SO,	Other Tests or	
apit LD. icale turget drocarbon range	Date	Time	Soil	Water	CFU Hydrocarbon Degraders	Total Hererotrophic		}					Comments
	9.2.99	6:50		- - - - - - - - - - 	 × –		 	 	 				
NI		934	 _	┨═╂╌╴	 						<u> </u>	 	
56		9:10		-} }	+ 💠					 	 	 	ļ
58		13:30	1		\ X		—		╃—				}
59		15:50	1	1	X	<u> </u>	+		 		 	+	<u> </u>
510		15:40		15	T ×	<u> </u>							

		a firm Purchase Order for services	requested above.
Chain of Custody Record	Signature of this toris constitutes	Received by:	Date/Hr:
Relinquished by:	Date/Hr:		
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CytoCulture Tel: 510-233-0102	Please fax Chain of Custody form
Received for GyroColture-Lab by	1 1 / 6	CytoCulture Tel: 510-233-0102 Lab Services Fax: 510-233-3777	to CytoCulture prior to delivery.
- C	917/99 3:12 pm	Lao Scivices	
aniell von all	7 99		

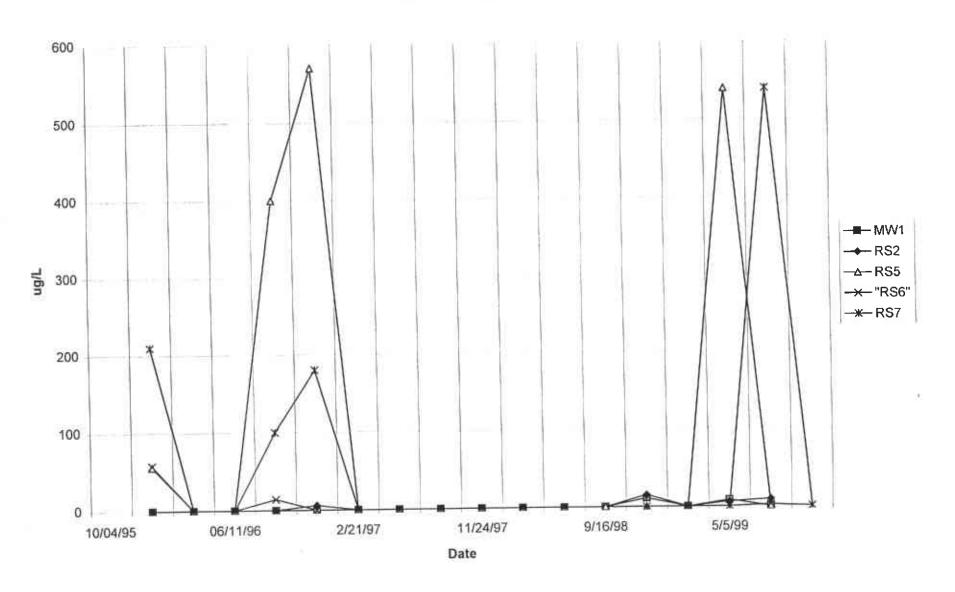
AEROBIC Hydrocarbon Degrading Bacteria Enumeration Results

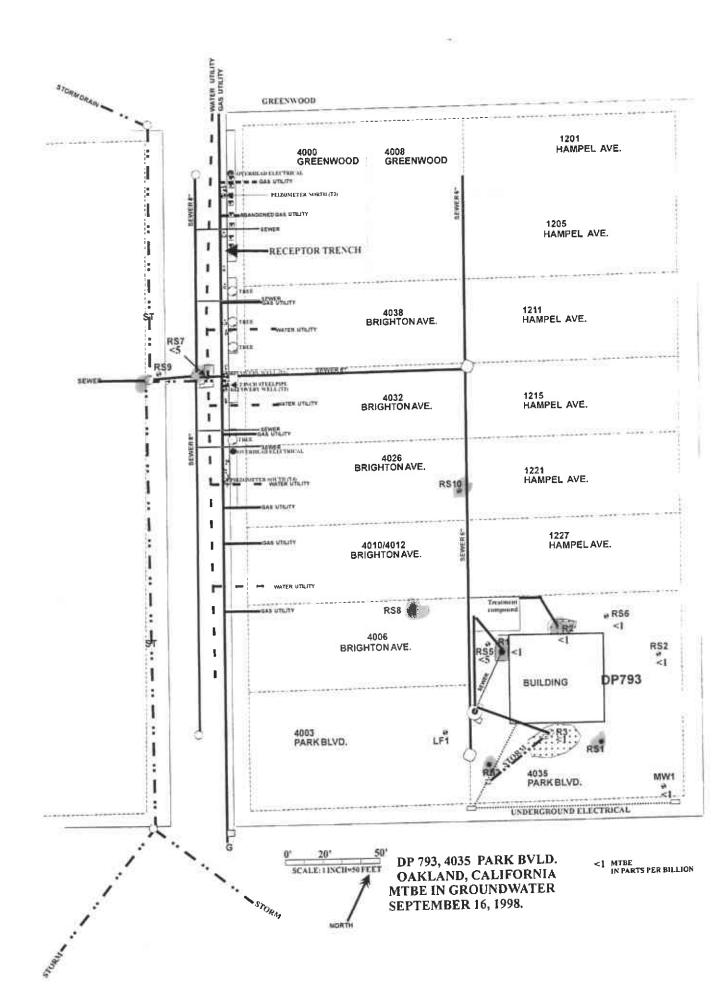
	DEGRADERS (AEROBIC) (CFU/ML)	DEGRADERS (ANAEROBIC) (CFU/ML)
9/2/99	1 x 10 ¹	Not Tested
	3.0×10^3	Not Tested
		Not Tested
	9/2/99 9/2/99 9/2/99 9/2/99 9/2/99 9/2/99	9/2/99 3.0 x 10 ³ 9/2/99 4.0 x 10 ² 9/2/99 6.6 x 10 ³ 9/2/99 1.0 x 10 ⁴ 9/2/99 8.8 x 10 ³

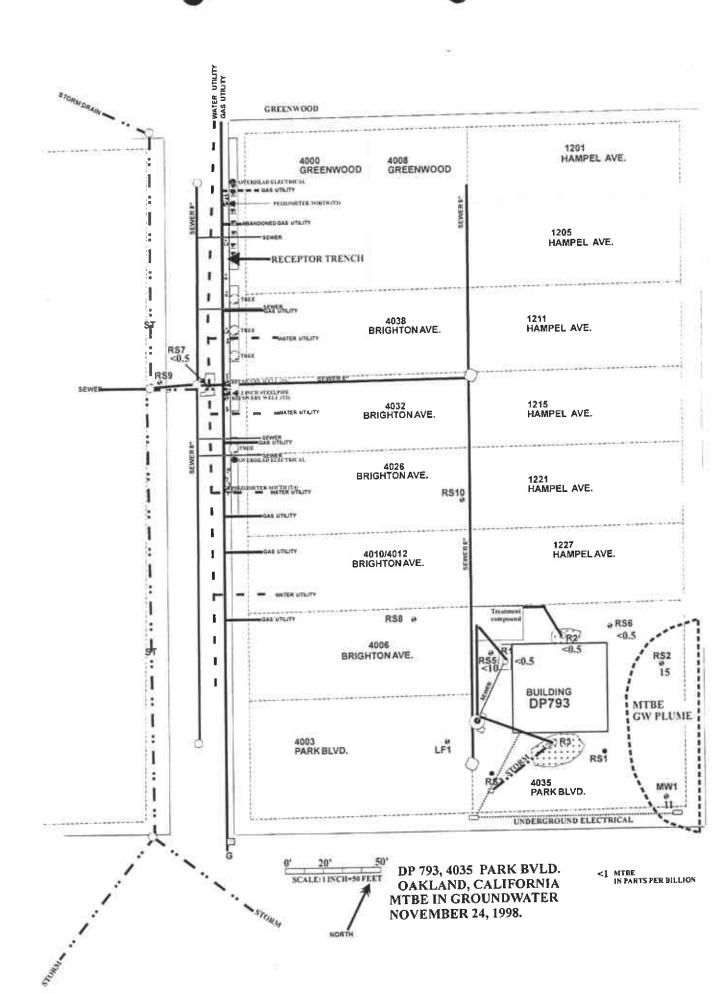
1.0 x 10° cfu/ml is the lowest detection level for this assay

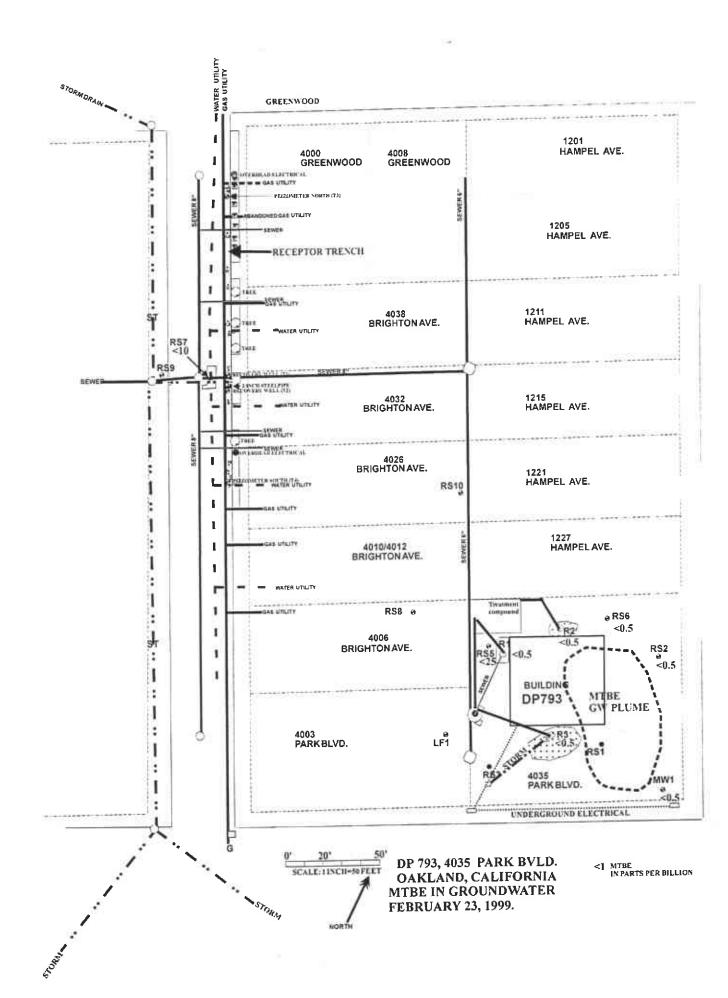
A hydrocarbon-degrading bacteria positive control sample was run on 9/7/99. The plate count results obtained were >1.0 x 108 cfu/ml. The positive control sample used was a previously characterized culture of hydrocarbon-degrading bacteria from a Northern California groundwater site.

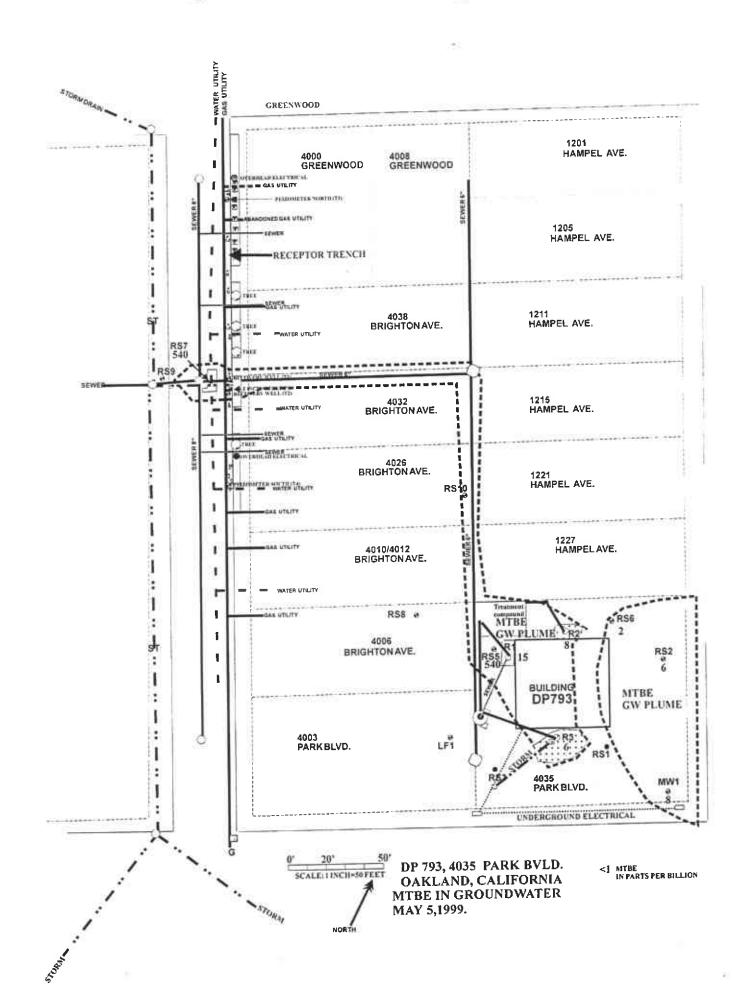
Other notes: MW-1, RS-5 and RS-9 had small, diffuse colonies. RS-6 and RS-8 had predominantly large. white colonies RS-10 displayed a greater variety of colonies, including a few unusual dark red colonies.

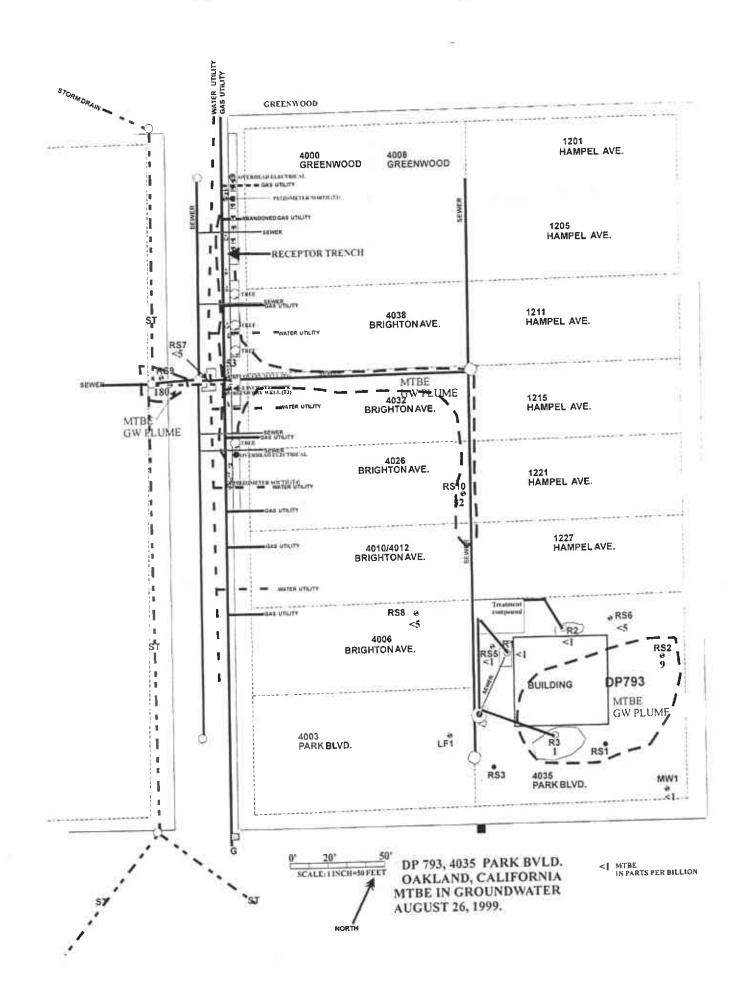

CytoCulture is available on a consulting basis to help with the interpretation of these data and their application predictions of field conditions for biodegradation. Thank you.

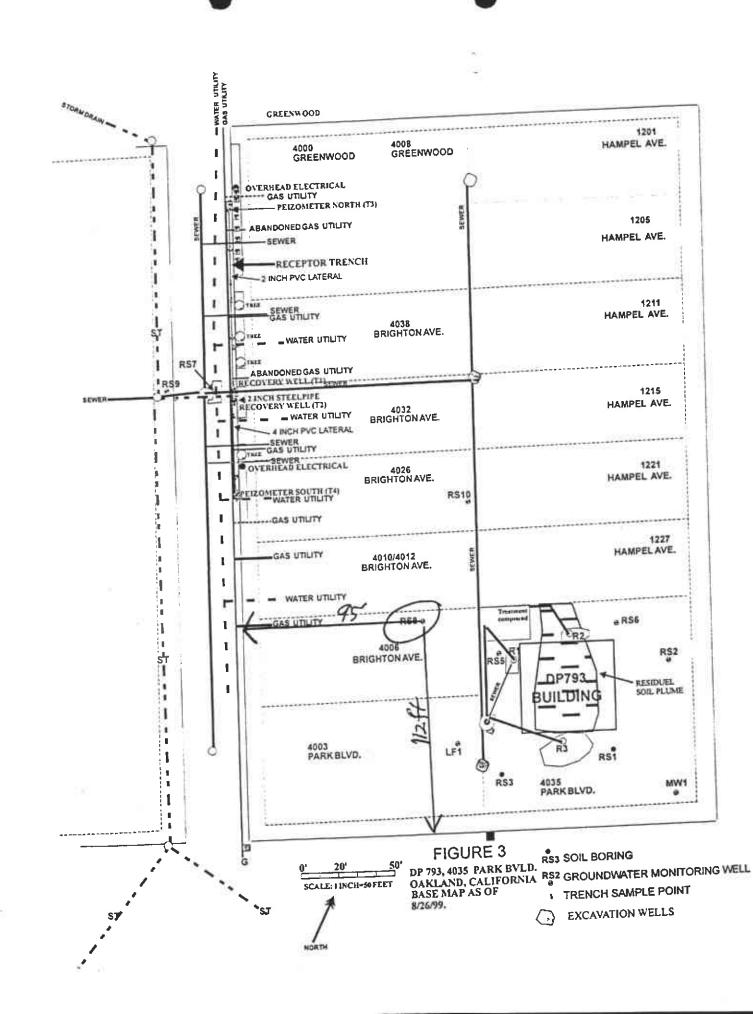

Laboratory Services

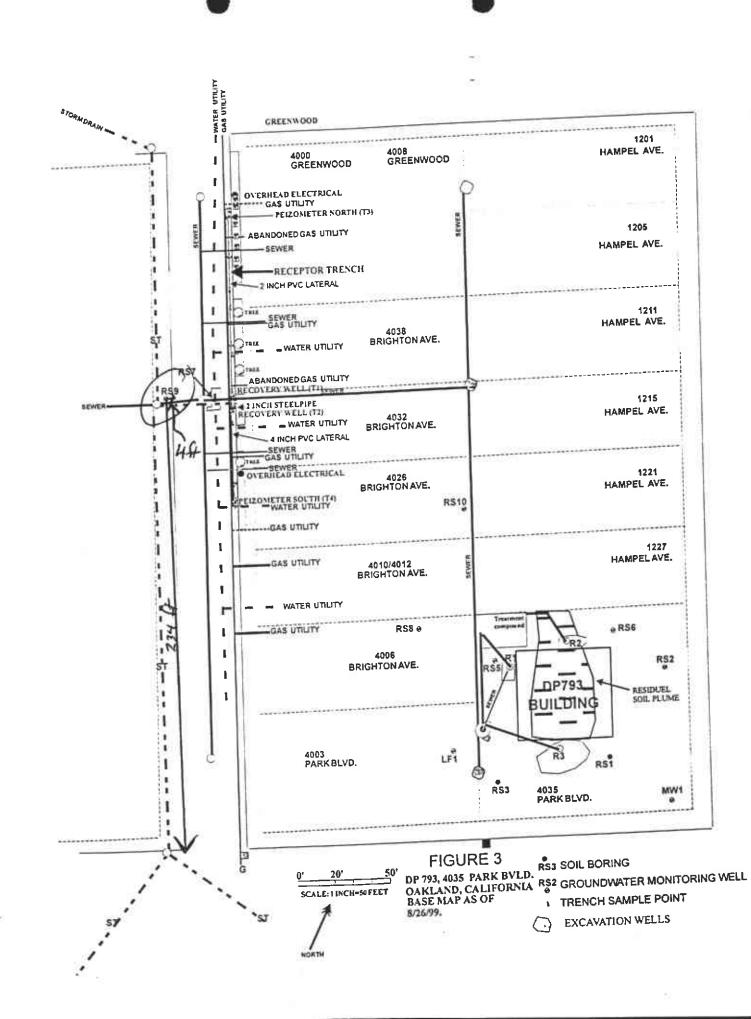

Principal Biochemist and Director of Research

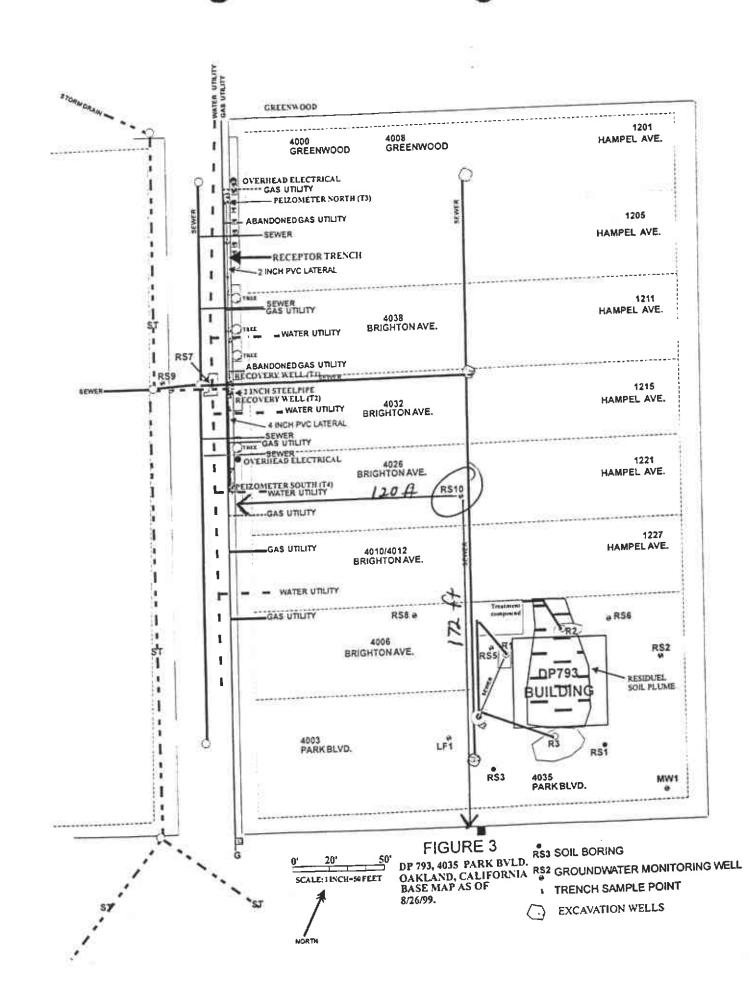

APPENDIX D


MTBE IN WELLS

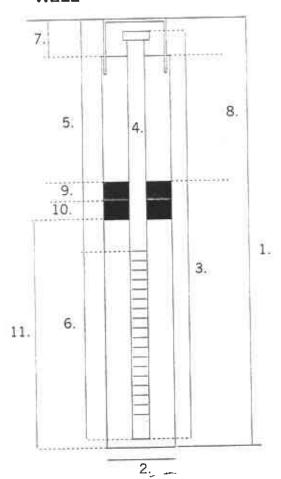








APPENDIX E



WEGE WELL CONSTRUCTION LOG

	ME DP 793	MONITOR WELL NUMBER	RS-8
	HTON AVENUE	TOP OF CASING ELEVATION	214.67' ST 3, 1999
PROJECT NUMBER GROUNDWATER MO WELLTYPE		ITORING WELL	
REMARKS:	WELLINSTALLEDTHRO	OUGH8INCHHAND AUGERED BO	RING

TYPICAL MONITORING WELL

WELL CONSTRUCTION

- Total Depth of hole
 Diameter of boring
 Casing length
- 4. Diameter of casing ____
- 5. Depth to top of screen 4.0'
- 6. Length of screen 10°
 screen interval 4'-14.0"
 screen type MONOFLEX F480
 screen size 0.020"
- 7. Surface seal 6" TRAFFIC BOX seal material CONCRETE
- 8. Backfill 8"-3' seal material NEAT CEMENT
- 9. Upper seal 3'-3.5' seal material BENTONITE
- 10. Lower seal _____seal material____
- 11. Annulus 3.5'-14' material #3 MONTERAY SAND

NOTE: Well constructed with poly-vinyl chloride (PVC) casing with threaded bottom cap and slip on top cap. Also, PVC steam cleaned before constructing each well. Traffic boxes are water tight and locked for security.

Western Geo-Engineers

PAGE <u>1</u> 0F <u>1</u>

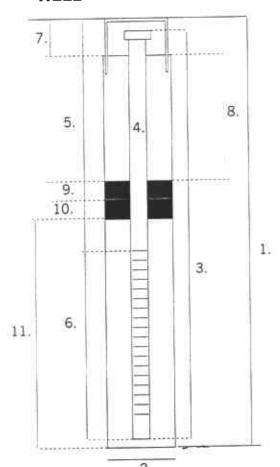
BORING: RS-8 DATE DRILLED: 8-2-99

SAMPLE INTERVAL

PORE HOLF LOG TWATER

				BOR	E HOLE LOG	▼ WATE	:K
ROJE	CT: DI	793	- SEW	ER LATERAL	GEOLOGIST: GEORGE CONVERSE	SURF.	ACE ATION: 214.98
OCATION: 4006 BRIGHTON AVE. OAKLAND, CA					DRILLER: STEVE BROADWAY	TOTAI	DEPTH: 14 FT
VES'	10.00	NITE	CTOP.		DEPTH TO SWATER: 11'	CASIN	G: 2" SCH 40 PVC
REMAF	NICO.		ATTOTY	arm watu ee RHA	CKET D WITH 10.6 EV. BULB.		
ОЕРТН (FT)	SAMPLE No.	BLOWS/FT.	PPM IVO VRPOR		DESCRIPTION	SRAPHIC LOG	REMARKS
2'-			0.0	SILTY CLAY, NO ODOR (C	BROWN, HARD, DRY L-ML)		
2			0.0	SILTY CLAY	, DARK BROWN,	_=	
4'			0.0	HARD, MOIS	ST, NO ODOR (CL-ML)		
6'			0.0	CLAY, MEDI MOIST, NO	UM GRAY, STIFF, ODOR (CL)		
10°	RS8 -10		177	SILT, CLAY TRACE OF F ODOR WET.	GRAY-GREEN INE SAND, DEG. PET. (CL-ML)		
14"				Total 14'	depth drilled JACK E. NAPPER NO. 3037		
	-						

CONFIDENTIAL


STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

WEGE WELL CONSTRUCTION LOG

	DP 793	MONITOR WELL NUMBER	RS-9
4037 BRIC	ME DP793	TOP OF CASING ELEVATION	195.63°
PROJECT NU	IMBER GROUNDWATERMON	DATE COM LETED	ST 3, 1999
REMARKS:	WELL INSTALLED THR	OUGH8INCH HAND AUGERED BO	RING

TYPICAL MONITORING WELL

WELL CONSTRUCTION

- 1. Total Depth of hole 2. Diameter of boring 15' 3. Casing length_
- 4. Diameter of casing 2"
- 5. Depth to top of screen 5.0'
- 6. Length of screen_ screen interval 5'-15.0" screen type MONOFLEX F480 0.020" screen size_
- 6"TRAFFIC BOX 7. Surface seal seal materia CONCRETE
- 8"-3' 8. Backfill_ seal material NEAT CEMENT
- 9. Upper seal 3'-4.5' seal material BENTONITE
- 10. Lower seal seal material
- 11. Annulus 4.5'-15' materia| #3 MONTERAY SAND

NOTE: Well constructed with poly-vinyl chloride (PVC) casing with threaded bottom cap and slip on top cap. Also, PVC steam cleaned before constructing each well. Traffic boxes are water tight and locked for security.

Western Geo-Engineers

PAGE <u>1</u> 0F <u>1</u>

BORING: RS-9 DATE DRILLED: 8-3-99

SAMPLE INTERVAL

BORE HOLE LOG ▼WATER

					E HOLE LOG		
PROJE	CT:	DP 79	3 - SEV	VER LATERAI	GEOLOGIST: GEORGE CONVERSE	SURFACE 19	
LOCATION: 4037 BRIGHTON AVE. OAKLAND, CA					DRILLER: STEVE BROADWAY	TOTAL DEPTH:	
DRILLII	NG C	ONTR	ACTOR:		DEPTH TO SWATER: 9"	CASING: 2" SC PVC	H 40
REMAP	DVQ.	LIAND	AUGE	ED WITH 8" BILL	CKET D WITH 10.6 EV. BULB.		
DEPTH (FT)	SAMPLE No.	BLOWS/FT.	PPM TV0 VAPOR		DESCRIPTION	BEMA REMA	RKS
2'-			0.0	SILTY CLAY, W/OCC ROC NO ODOR (C			
4'			0.0	HARD, NO O	DARK BROWN, DOR (CL-ML)		
6'	RS9 -6		0.0	SILTY CLAY, HARD, MOIS CLAY GRAY NO ODOR W			
8'	RS9		3.7	TRACE ODC	WET. (CL-ML) OR WET. (CL-ML)		
12 ^r	-10		0.2	OF CHARCO ODOR WET. SILT. CLAY	MED. GRAY, W/SAND		
14'''			0.2	WHITE CHE	LAR RED-BLACK W/ RT. WET. (CL-ML-SC)		
3				Total de	epth drilled JACK E. NAPPER No. 3037		
8				1.7			

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

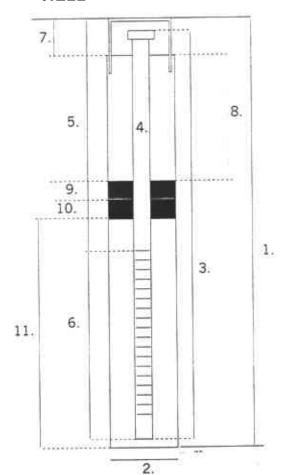
REMOVED

Western Geo-Engineers

PAGE <u>1</u> 0F <u>1</u>

BORING: RS-10 DATE DRILLED: 8-5-99

SAMPLE INTERVAL


DODE HOLE LOG ▼WATER

				BOR	E HOLE LOG	▼ WATER
PROJEC	CT:	DP 79	3 - SE	WER LATERAL		SURFACE 208.71
OCATION: 4026 BRIGHTON AVE. OAKLAND, CA.					DRILLER: STEVE BROADWAY	TOTAL DEPTH: 10.5 F
RILLIN	IC C	ONTR	ACTOR		DEPTH TO SWATER: 5	CASING: 2" SCH 40 PVC
EMAR	KS:	LAND	ALIGE	RED WITH 6" BUG	CKET D WITH 10.6 EV. BULB.	
DEPTH (FT)	SRIPLE No.	BLOWS/FT.	TIM TWO VAPOR	CORE D	ESCRIPTION	SCHPHIC LOG
2'				PLANTER SO SILTY W/ORC NO ODOR (CI		===: ===: ===: ===:
4'				CLAY, GRAY,	STICKY, WET (CL-M	2)
6' 1 ▼	RS1 -6 RS1			CLAY, SILTY, GRAVEL, PET	RED W/OCC. ANGUL CODOR (CL-ML-SC)	
10	-9.5	part.		Total depti 10.5'	h drilled JACK E. NAFFER No. 3037	
-					THE OF CALEGO	
_					:e: «	
7/2						<u> </u>

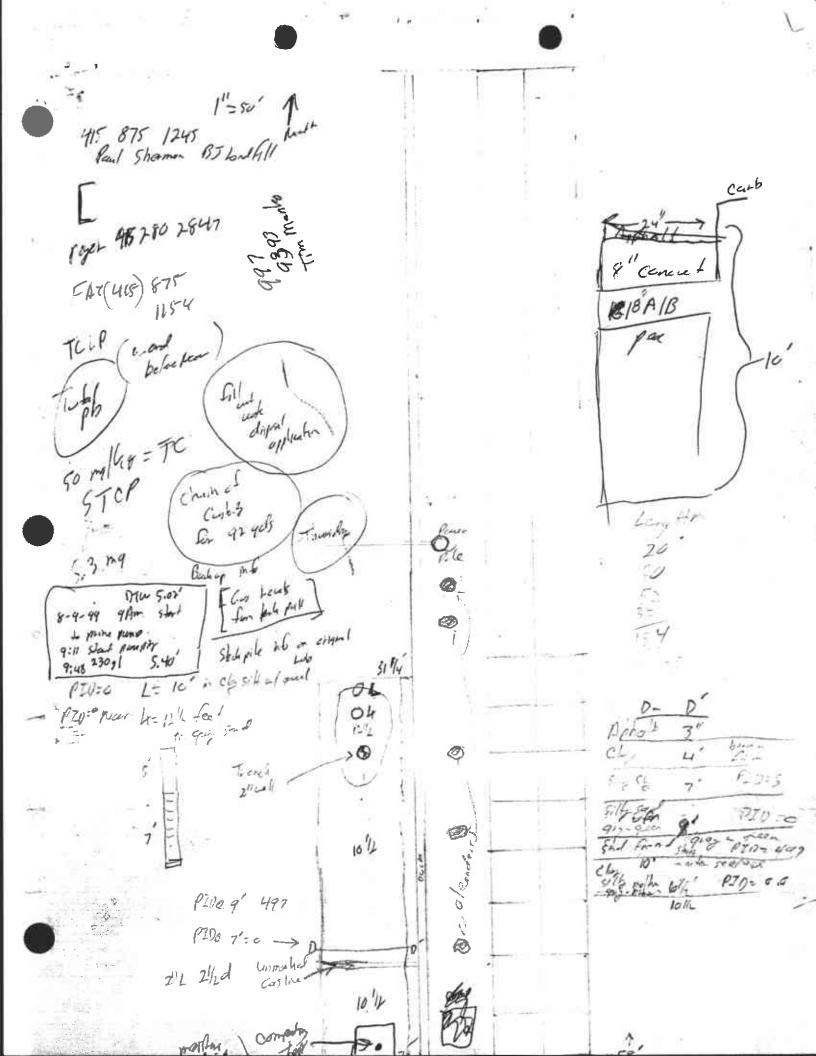
WEGE WELL CONSTRUCTION LOG

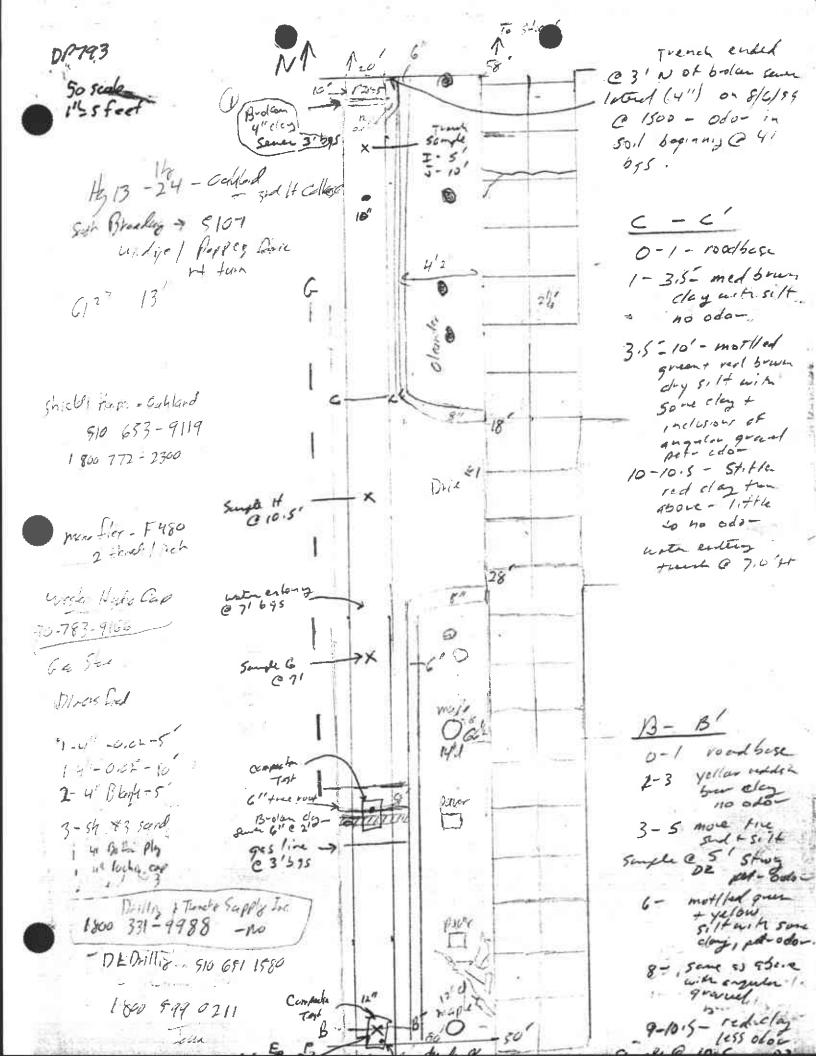
PROJECT NA 4026 BRIG	ME DP 793 OHTON AVENUE	MONITOR WELL NUMBER TOP OF CASING ELEVATION	RS-10 208,46'
PROJECT NUMBER GROUNDWATER MO		DAILOOMI LLILD	IST 6, 1999
REMARKS:	WELLINSTALLEDTH	IROUGH 6 INCH HAND AUGERED BO	RING

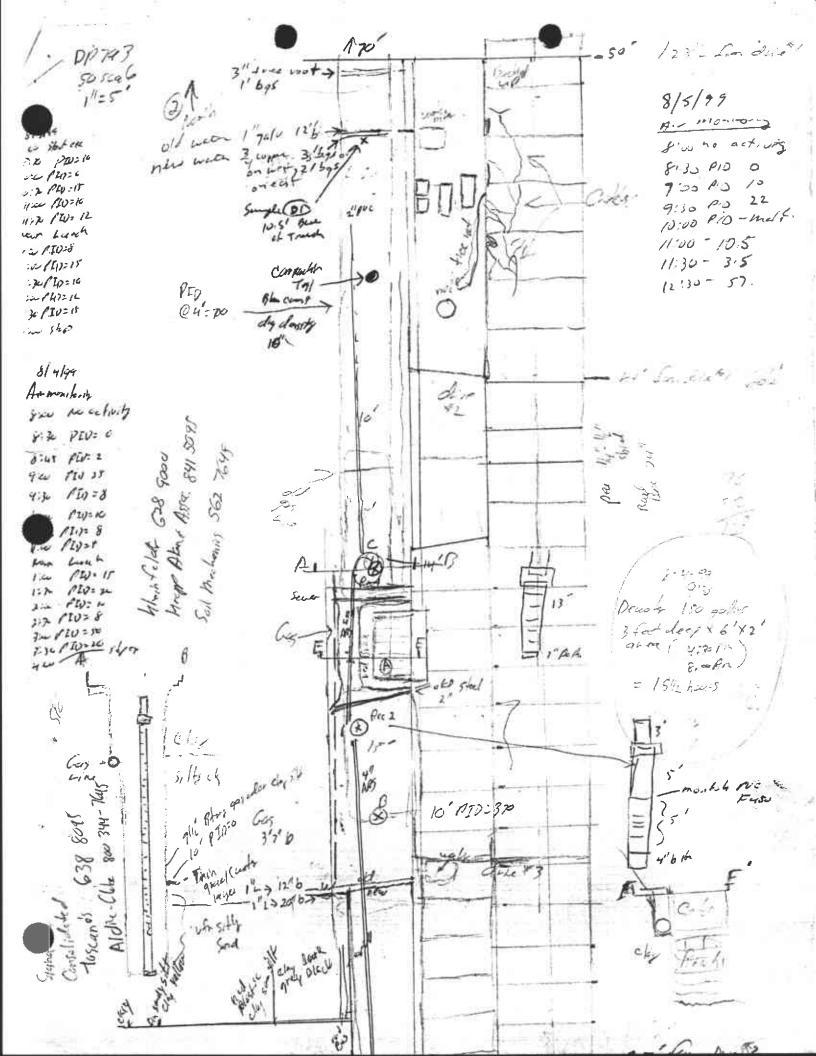
TYPICAL MONITORING WELL

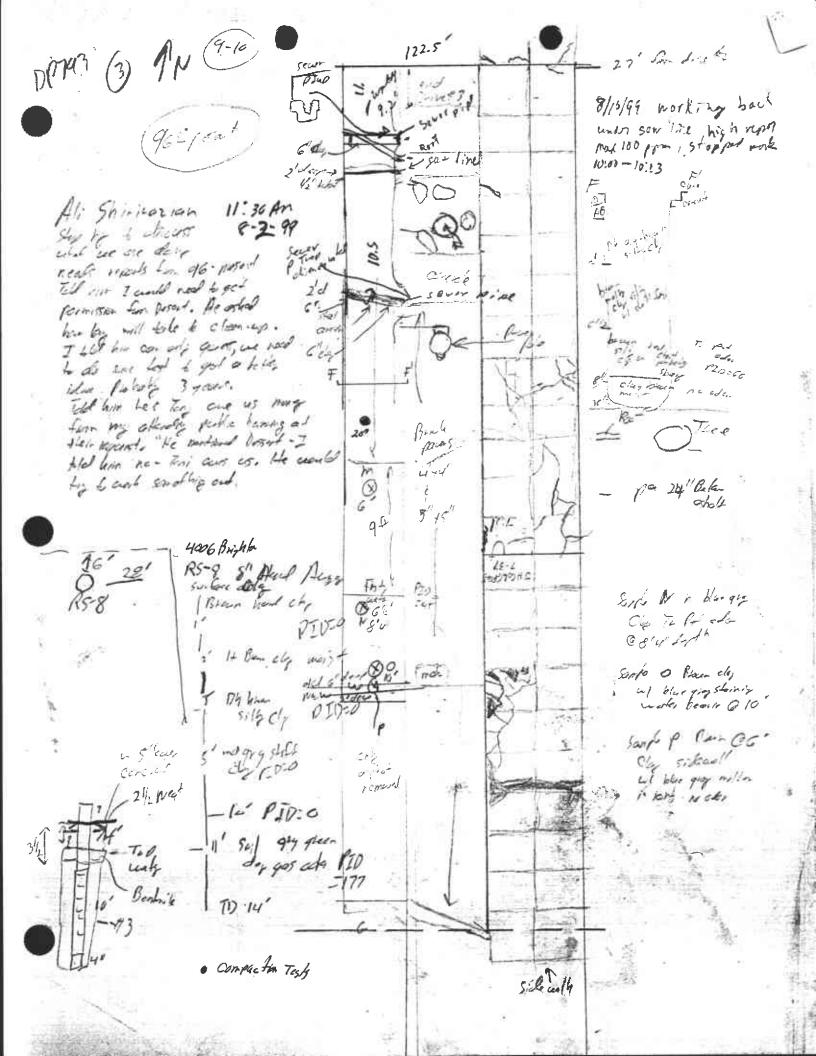
WELL CONSTRUCTION

- 1. Total Depth of hole 2. Diameter of boring 6"
- 10' 3. Casing length_
- 4. Diameter of casing.
- 5. Depth to top of screen 1.5'
- 6. Length of screen_ screen interval 1.5' - 10.0" screen typeMONOFLEX F480 0.020" screen size_
- 6" TRAFFIC BOX 7. Surface seal seal material CONCRETE
- SURFACE-1' 8. Backfill__ seal material NEAT CEMENT
- 9. Upper seal 1.0' -1.5' seal material BENTONITE
- 10. Lower seal. seal material
- 11. Annulus 1.5'-10' material #3 MONTERAY SAND


NOTE: Well constructed with poly-vinyl chloride (PVC) casing with threaded bottom cap and slip on top cap. Also, PVC steam cleaned before constructing each well. Traffic boxes are water tight and locked for security.


CONFIDENTIAL


STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)


REMOVED

APPENDIX F

R5-9 15000 Paraget where Rest 3" 14 been clay soft to make 4' most - reader PID: 0 6' Clay gray staff moist PID:0.0 7' Clay brown stiff PIN:6.2 9° wet to pet also PIV: 3.7 10'12 brown silt clay we charcool pieces of -1" lay brown silty alread toppostar and blech shop quarts 12 mal gry silf clas fin soud

Monito-well RS-10- @ 4026 Brighton

0-21 - Flowe-bed Fill - drk brown, sitt no odo
torgonics

3'- Sune as above with
additional clay - wet @ 3', 40 odo
41- quez stick; clay - wet

4.5-6.5 red clay tsilt with occasional angular

gradel - petroloum odo
Single @ 6.0 - red brown cly with occasional angular gradel

Single @ 9.5 rest silt-the true down medicate path above

Surple @ 9.5 rest silt-the true down medicate path above

on 8/6/99 with circular s/5/99

before completion - completed 8/5/99

Confliction

TO - 10.0 ++ 695

211.020 slotted-AUC 15'-10' ++ 695

211 blanck

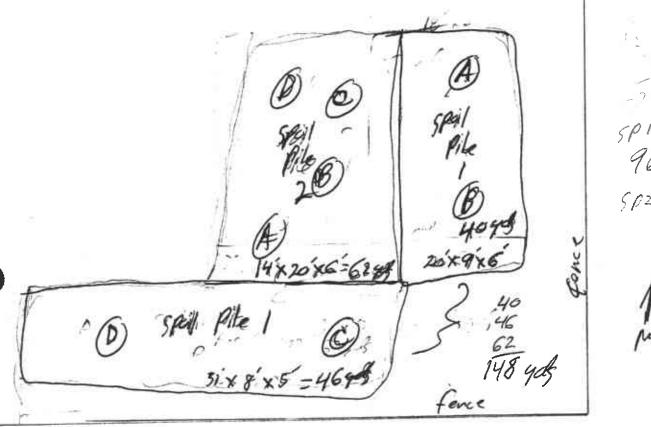
1.51 - Surface

Sund #3 lapis lastre - 10 ++ 1.5' 695

bentonike fellels - 1.5-' 1.0' 655

heat cannot - 1.0' - Surface

Reat SII traffic box in concrete


to grade

Dewaterier

```
DTa 502
8-9-99
         9km
              Prid lung
                                  PID= 75 ppmv
             Start purply
        9:11
                         DTW 5.46'
              230 91
         7:48
         KIN PENT PURP DTG 5.36"
         10:00 Star pumping
                           DT ~ 5.78"
                          DTW 5.74'
         11/16 penso
                         DTLG-18
               25091
         11:50
                         DTW 6.13'
         12:07
                250gal
         11:23
                2:50 gal.
                             7. 17
         13133
                             7,13'
                                      colles ped breem in pit with drye
        14118 25 5 Suppry
                            8.38
                                           to 7. 73'
       14:40 star pamping 8.22
                            9.10
       15:03 25 igallons.
                            10167
                             10:63 gellens
       15:44
8/10/99
       8:08
                             7.89
                250 gallon 8.82
         8:39
        9:32 start/enging 8.58
        9:49. 300geller 9.42
              stort.
       10:20
       10.47
                250 gallens) 13: 49
       10:40
       11,14
              to che ch.
       16.51
```

8-12-99 8:15 Am DTU 8.12'
12:83 25096 176 8.90'

25-96 DTu 9.42'

4035 Park Atud 6-Oahland, CA W/ 5P1 9648 502-6214

puth

SITE SAFETY PLAN

FOR

FORMER DESERT PETROLEUM DP 793

FACILITY BACKGROUND:

SITE ADDRESS:

4035 Park Blvd., Oakland, CA 94602

OWNER NAME:

Environmental - Desert Petroleum Inc.

Station - Mr. Tony Razzi

DIRECTIONS TO SITE: From Hyw 680 take Hyw 12 west. South on Hwy 13 (Warren Freeway) to Park Blvd. West on Park Blvd. to Brighton (non active gas station).

TYPE FACILITY: NON-ACTIVE FENCED, GASOLINE SERVICE STATION: ONLY REMAINING IMPROVEMENTS STATION STORE AND TREATMENT COMPOUND.

KEY PERSONNEL AND RESPONSIBILITIES

CONSULTANT:

Western Geo-Engineers - Sampling

1386 E. Beamer Street

Woodland, Ca. 95776-6003

(530) 668-5300

Field Geologist - George Converse

CA. REG. Geologist #3037 - Jack E. Napper

CONTRACTOR:

Pile Construction

P.O. Box 293688

Sacramento, CA 95829

(916) 387-7453

(Fax 916) 387-7423

SAFETY OFFICER:

George Converse

1

Excavate and install receptor trench along eastern gutter of ENTRY OBJECTIVIES Brighton Avenue. Trench will be approximately 6 feet deep by 170 feet long. Three water recovery wells will be installed and manifolded in trench. Access to wells will be through traffic rated traffic boxes at grade. Surface will be replaced with asphalt and concrete.

Install two 2 inch 15 foot deep ground water monitoring wells in backyards and one 2 inch 15 foot deep monitor well in City of Oakland easement west of Brighton Avenue. Sampling excavations as per Alameda County Health and City of Oakland directives. Back filling excavations with clean 1/2" rounded pea gravel to surface. Work areas will be baricaded to prevent public from access. Trench plates and shoring will be placed over and in excavations, until excavations are backfilled and resurfaced. The station site is fenced from public access, this fence will remain in place during construction and storage of excavated soils and removed groundwater generated from dewatering activities.

SITE ACTIVITIES:

- 1. Removal of asphalt over area to be excavated.
- 2. Construct soil stockpile area at service station.
- 3. Excavate and dewater receptor trench area
- 4. Line receptor excavation
- 5. Place $\frac{1}{2}$ " clean pea gravel and 2 2" and 1 4" recovery wells into excavation.
- 6. Set traffic boxes
- 7. Place clean road base ontop of pea gravel to within 4 inches of surface
- 8. Resurface with 4 inch asphalt
- 9. Clean site
- 10. Cover soil stockpiles nightly with plastic liner.

JOB HAZARD ANALYSES

PHYSICAL HAZARDS

X_NOISE X_UNDERGROUND HAZARDS X_EXCAVATIONS/TRENCHES _OTHER	X TRAFFIC OVERHEAD HAZARDS X MECHANICAL EQUIPMENT
--	---

LEVEL OF PROTECTIVE EQUIPMENT

A	_B	C	<u>X_</u> D
---	----	---	-------------

PERSONAL PROTECTIVE EQUIPMENT R = REQUIRED A = AS NEEDED

R SAFETY BOOTS RESPIRA	Y EYEWEAR (TYPE) <u>SAFETY GLASSES</u> ATOR (TYPE) LTER (TYPE) GLOVES (TYPES) <u>NYTRIL INNER GLOOVE</u> <u>LEATHER OUTER GLOOVE</u>
A_TYVEK COVERALLSO 5 MIN ESCAPE RESPIRATOR MONITORING EQUIPMENT (ON SITE
OGRANIC VAPOR ANALYZER R OXYGEN METER R COMBUSTIBLE GAS METER H₂S METER W.B.G.T.	R_PID WITH LAMP OF _10.6Ev _SORBENT SAMPLE TUBES (TYPE) PASSIVE DOSIMETER _AIR SAMPLING PUMP _FILTER MEDIA

RISK ASSESSMENT

FIRE AND EXPLOSION REVENTION: THE SITE IS FENCED OR BARRICADED TO KEEP THE GENERAL PUBLIC OUT. NO SMOKING SIGNS WILL BE POSTED ON THE FENCE AND BARRICADES. SMOKING WILL NOT BE PERMITTED INSIDE THE WORK AREA. ALL ELECTRICAL EQUIPMENT USED WILL BE IN GOOD WORKING CONDITION WITH NO EXPOSED WIRES. SPARK ARRESTORS WILL BE ON ALL MOTOR AND EXHUASTS. HAND TOOLS WILL BE SPARK RESISTANT.

FIRE EXTINGUISHERS WILL BE PLACE AROUND THE EXCAVATION FOR EASY ACCESS. EXTINGUISHERS WILL BE CARBON DIOXIDE TYPE (FLAMMABLE LIQUIDS AND ELECTRICAL FIRES).

TRAFFIC: THE SITE IS EITHER BARRICADED OR FENCED TO KEEP OUT THE GENERAL PUBLIC. A GATE IS SITUATED ON THE STATION ENTRANCE OFF OF PARK BLVD. FOR ACCESS BY CONTRACTORS AND EQUIPMENT. BRIGHTON AVENUE EXCAVATION WILL HAVE BARRICADES, CONES AND CAUTION TAPE TO ISOLATE THE SITE ACTIVITIES FROM THE GENERAL PUBLIC.

EXCAVATION: A BACKHOE WITH A REACH CAPABILITY OF 15 FEET AND A 24 INCH BUCKET WILL BE USED TO EXCAVATE THE RECEPTOR TRENCH. PRIOR TO USING THE BACKHOE ALL UNDERGROUND UTILITES WILL BE LOCATED BY HAND DIGGING.

WEATHER: WARM TEMPERATURES ARE EXPECTED, 65-85 DEGREE F TEMPERATURE.

CONTAMINATED SOILS: EXCAVATED SOILS ARE EXPECTED TO CONTAIN GASOLINE RANGE HYDROCARBONS.

CONTAMINATED GROUNDWATER: EXPECTED TO CONTAIN GASOLINE RANGE HYDROCARBONS.

EXPOSURE MONITORING PLAN

SITE CLOSURE: THE SITE IS CLOSED AND PROTECTED WITH A SIX FOOT HIGH SECURITY FENCE. BRIGHTON AVENUE EXCAVATION AREA WILL BE CLOSED OFF WITH CONES, BARRICADES AND CAUTION TAPE. TRAFFIC PLATES WILL BE PLACED OVER EXCAVATIONS AFTER EVERY WORK SHIFT AND OVER PORTIONS OF EXCAVATION THAT ARE NOT BEING WORKED ON AT THE TIME. NON-SMOKING SIGNS WILL BE POSTED. WORKERS WILL WEAR ORANGE SAFETY VESTS, STEEL TOE BOOTS (SHOES) HARD HATS AND EAR PROTECTION. ALL WORK WILL BE CONDUCTED INSIDE OF THE FENCED AREA OR INSIDE THE BARRICADES AND TAPE AREAS. THE HEALTH AND SAFETY OFFICER WILL WATCH FOR UNAUTHORIZED TRAFFIC AND THE WORKERS WILL USE THE BUDDY SYSTEM.

COLD: WORKERS WILL DRINK PLENTY OF FLUIDS, WEAR APPROPRIATE CLOTHING TO SHEILD FROM FOGGY WEATHER THAT MAY BE AS COLD AS 35 DEGREES AND WILL PERFORM SELF MONITORING FOR EXTREMITY NUMBNESS, FATIGUE, DIZZINESS, ALERTNESS. HEALTH AND SAFETY OFFICER WILL MONITOR WORKERS FOR ALERTNESS AND FLUID INTAKE. IF NECESSARY WORK WILL BE SLOWED OR PERFORMED IN SHIFTS IF COLD FATIGUE IS NOTICED.

HEAT: THE FIELD OPERATIONS ARE ANTICIPATED TO BE PERFORMED DURING SUMMER TIME, WHEN MEAN DAYTIME DAILY TEMPERATUREA ARE EXPECTED TO EXCEED 70°F. WHEN WEARING STANDARD LEVEL D WORK UNIFORMS A HEAT MONITORING PROGRAM IS INITIATED AT AMBIENT TEMPERATURE EXCEEDING 85°F.

Monitoring: Pulse for 30 seconds multiplied by 2 should not exceed 110 beats per minute Workers will take breaks as needed.

Workers will intake fluids as needed.

EXCAVATOR AND EXCAVATION: WORKERS WILL USE COMMON SENSE AND GOOD WORK HABITS TO PERFORM THEIR DESIGNATED JOBS.

CONTAMINANT EXPOSURE: GEOLOGIST/HEALTH AND SAFETY OFFICER WILL MONITOR THE EXCAVATING ACTIVITIES AND SOILS/FLUIDS GENERATED BY THE EXCAVATING AND UST REMOVAL ACTIVITIES FOR ORGANIC VAPORS USING A PHOTO IONIZING DETECTOR WITH A 10.6 EV BULB. IF WORK AREA EXCEDES 25 PPMV THE EXCAVATING WILL BE SLOWED TO DECREASE THE PPMV VALUE.

WORK ZONES AND SECURITY MEASURES

The site presently is secured with a 6-foot high security fence with a entry gate at the drive on Park Blvd.

East curb area of Brighton Avenue will be barricaded.

THE IMMEDIATE WORK ZONES WILL BE CONED OFF AND THE HEALTH AND SAFETY OFFICER WILL INSURE THAT NO UNAUTHORIZED PERSONNEL ENTER THE WORK AREA.

DECONTAMINATION MEASURES

At the end of each workday all personnel (and subcontractors) will thoroughly wash their hands, face and footwear before leaving the site. In the event that personnel protective equipment is necessary, all disposable items will be deposited into a steel drum container on site and all reusable items will be washed with TSP detergent and rinsed with clean water. Residual liquid will be placed in the 1000 gallon ConVault that is currently be used for water treatment on site. Personnel will not be allowed to leave the contaminated area without completing the decontamination process. All waste material will be placed in environmental drums or tanks and stored at site. All containers will be properly labeled as per current City, County and State regulations.

GENERAL SAFE WORK PRACTICES

All personnel performing sampling will wear disposable gloves. Anyone entering the site without authorization will be asked to leave and escorted out of the control area. All workers will practice good hygiene practices: no smoking in control area, wash hands and face prior to handling food and drinks, be aware of the public at all times.

MEDICAL CONTINGENCY PLAN

HOSPITAL/CLINIC:_Highland General Hsopital

ADDRESS: 1411 E. 31st Street PHONE NUMBER: (415) 534-8055

PARAMEDIC: 911 FIRE: 911 POLICE: 911

Any personnel at the site who are injured must notify the Site Safety Officer. Paramedics can be at the site location within 10 minutes for extreme emergencies. If any chemical exposures are exceeded, a medical exam will be required.

JOB HAZARD ANALYSIS

MAIN COMPOUND (S) OF INTEREST: IN PPMV

EXPOSURE TABLE

COMPOUND	TLV-8HR	IDLH	STEL(st)	C	NIOSH PAGE
BENZENE TOLUENE XYLENES ETHYLBENZENE MTBE	0.1 100 100 100	500 500 900 800	1.0 150 150 125	Ca 300	26 310 336 132

Ca - CARCINOGENS, SEE PAGE 344 OF NIOSH

Ca? - QUESTIONABLE CARCINOGEN

TLV-8HR, THRESHOLD LIMIT VALUE AVERAGED OVER AN 8-HOUR DAY- NIOSH RECOMMENDED. OSHA USES PEL'S (PERMISSABLE EXPOSURE LEVELS) WHICH ARE LESS CONSERVATIVE THAN THE TLV'S.

IDLH - IMMEDIALTLY DANGEROUS TO LIFE AND HEALTH WITH 30 MINUTE EXPOSURE.

STEL – SHORT TERM EXPOSURE LEVEL, CAN BE EXPOSED FOR 15 MINUTES 4 TIMES A SHIFT WITH AT LEASE 1 HOUR BETWEEN EXPOSURES.

C – CEILING, DO NOT EXCEED THIS EXPOSURE WITHOUT SOME SORT OF AIR PURIFYING DEVISE.

TARGET ORGANS

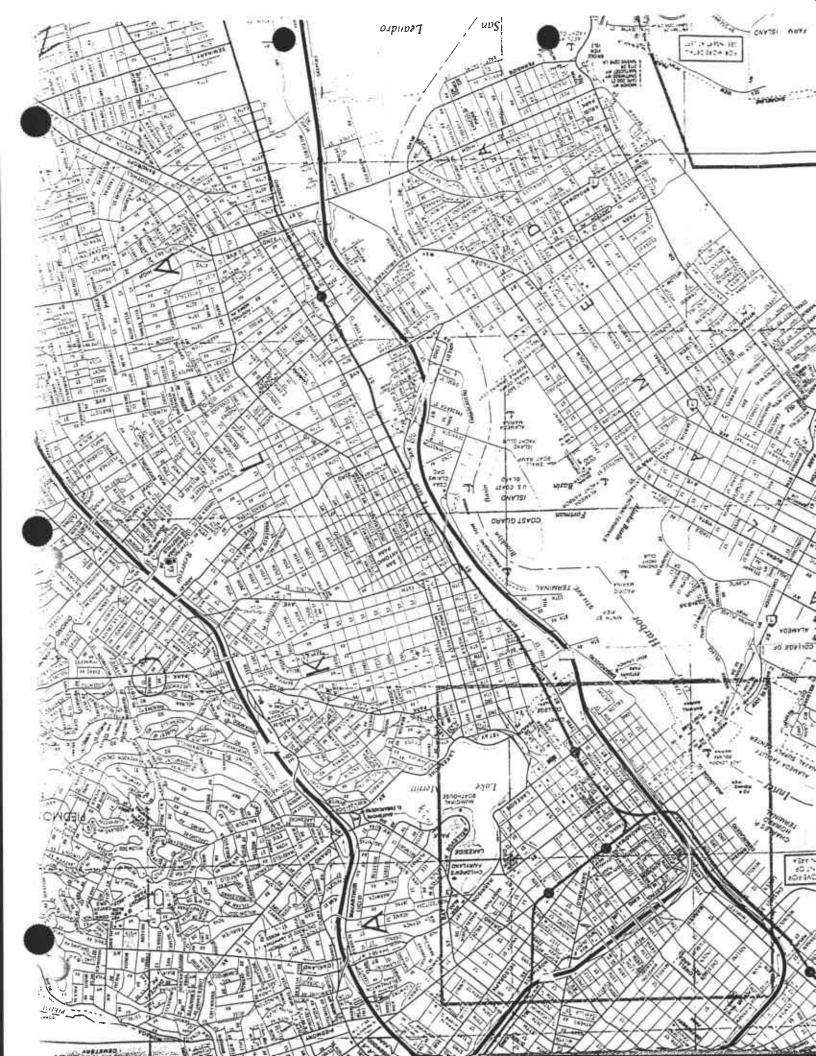
EYES, SKIN, RESPITORY SYSTEM, BLOOD, CENTRAL NERVOUS SYSTEM, BONE MARROW, LIVER, KIDNEYS AND GASTROINTESTINAL TRACT.

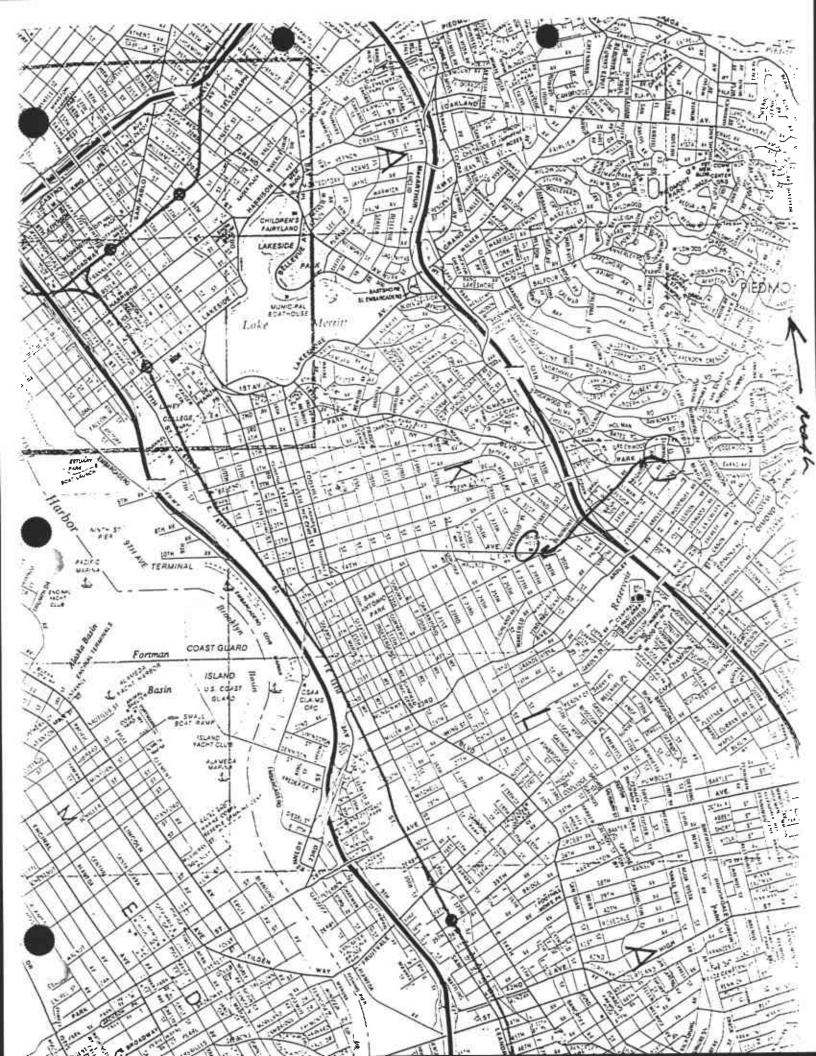
ROUTES OF EXPOSURE

INHALLATION, ABSORBTION, INGESTION AND CONTACT

SYMPTOMS

IRRITATION TO EYES, NOSE, SKIN, THROAT, AND UPPER RESPORATORY SYSTEM. SKIN BURNS MUSCLE SPASMS, SLOW PULSE. WEAK, CONFUSED, DIZZY, LIGHT HEADED, EUPHORIC, EXCITED, NARCOUSIS.


SITE HAZARD INFORMATION PROVIDED BY: GEORGE CONVERSE


PHONE NUMBER (530 668-5300)

DATE August 1, 1999

I HAVE READ AND FULLY UNDERSTAND THE INFORMATION AND SAFETY REQUIREMENTS IN THIS SITE SAFETY PLAN.

SIGNATURES	1 8-2-99
JOHN PERZ	MIN 8-2-99
Bob White	Bil what 8.2-99
JEREMY BERG	8-2-99
Sulvador & Martinez	8-298
Ceox Convene	S/(mry 8-2-49

APPENDIX G

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody	/ Request for Analysis
Lab Job No.:	Page <u> /</u> _of <u>_2</u> _

Client: WEGE			Report t	o WIGE		Phone	570-6	<u> 268-5</u>	700		Turnaround Time
Mailing Address:	;			Billing to:			70°	_			5 tendard
1386 Ea	st BRO	mer_	6	Western Geo-Engine		PO#/				Date:	8.6.99
woodland	f, (A)	95776								Sample	er:
Project / Site Address:	Deser Park K	+ Petu Bluck, Od	lourd Hand	793 Analy	\$ 'V\						
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time				_	_	_	/Comments / Hazards
R58-10'	50:1	Sleeve		8/2/99	X		_				
R59-61				8/3/99	$\perp \times \perp$				ļ		
RS9-10'				8/3/99	$\downarrow \times \downarrow$		-	ļ <u> </u>	ļ		
RS10-6'				8/5/79	$\perp \times \downarrow$		_	\	<u> </u>		
RS10-9.51				8/5/99	1×1		<u> </u>	<u> </u>	ļ	 	
Treuch-A-151				1/4/99/10	0 ×			 	 	 	
Trouch-B-10'				8/4/99 11:3			 	<u> </u>	 	<u> </u>	
Trough- E-14'				8/4/99 140			-	 	ļ	<u> </u>	
Trans-0-10.5				8/5/99 10	500 X		<u> </u>		 	-	:
Trough-E- 5'				8/5/99 11:	30 X		<u> </u>		_	<u> </u>	<u> </u>
Trench-F-10,51	1 1			8/5/97 12	20 X				 	<u> </u>	
Trens-6-7'				8/6/99 10.	00 X					<u> </u>	
Trench -11 - 10.5	\			8/6/99 11:	00 X						
Trench-I-5'	501	Steem		8/6/99 13	<u>//</u>			<u> </u>		<u></u>	
	Duy	all	D	ate: 8/6/99Tim	e:/440	Received by:	muls	<u> 15</u>	NZEL	AB_	Lab Comments
Relinquished by:	6	/	D	Date: Tim	e: .	Received by:					_
Relinquished by:			C	ate: Tim	e :	Received by:			·		

North State Environmental Analytical Laboratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Cust	ody / Request for Analysis
Lab Job No.:_	Page <u> </u>

Client: WEGE	-	- 111	Report 1	10: George Co	1ce-se	us	Phone:	530-	465-5	300		urnaround Time
		Billing to	Billing to:		Fax: 536-667-0273			273	18 Sturkend			
1386 Fast Declar		}	Billing to: WESken 60-Engineer			PO# / Billing Reference:			:	Date: 8.6.99		
woodlands	14 95	774				it 1					Sample	er:
Project / Site Address:	Deser	of fetrole Black C	Daklen	79_3 Analysi	- 7 ($\overline{}$		
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	15/4	/			_			/Comments / Hazards
Trench-J-10'	Soi /	Sleeve		8/6/99 1350	×							-
Soil Pile 1-14-11				8/6/99	X		6-	nyo	3	7		
Suil Pile-B-11				//	X		7.4		,046	1051		composite 4
Soil Pile-C-11				1,	*		<u> </u>		Es	Х		lab
Soil Pile- D-11	50:1	Sleeve		8/6/99	~		<u> </u>	<u> </u>	1064	.052	/ _	
									-	 		
					<u> </u>		 		<u> </u>	 		
(<u> </u>		 	 	-	 		
							 	<u> </u>	-	<u> </u>	<u> </u>	
	<u> </u>	<u> </u>			 		 			 	<u> </u>	
			<u> </u>		-		-	 	 		-	
	<u> </u>		 		<u> </u>		-	 	1	-		
	<u> </u>				-					-		·
	<u> </u>	<u> </u>	<u> </u>		1	<u> </u>				<u> </u>	<u> </u>	Lab Comments
Relinquished by: 7/	With	4)ate: 8/4/95 Time:	1440		ived by:/	My	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	5 W5	CAD	Lab Comments
Relinquished by:			E	Date: Time:		<u>.</u> .	ived by:					4
Relinquished by:			Ε	Date: Time:		Rece	ived by:		<u></u>			<u></u>

North State Environmental

Remit To: North State Environmental P.O. Box 5624 So. San Francisco, CA94083-5624 (650) 588-2838 Invoice

Invoice No. 016514
Inv.Date 08/13/99

PO.No. Mailed 8/20/99
Fee 8/24/99

Accounts Payable
Western Geo-Engineers
1386 East Beamer Street
Woodland CA 95776

Samples Received: 08/06/99 Samples Reported: 08/13/99

Project:Desert Petroleum 793 / 4035 Park Blvd

Jobnumber: 99-1216

Service	Item	Number	Unitprice	Lineprice
analysis	Gas/BTEX/MTBE	16.00	40.00	640.00
			TOTAL	640.00

To Colusa 8/24/99

a +4 +41

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

<u>Am</u> alyte	Method	Result	Unit_	Date Sampled	Date Analyzed
mple: 99-12	16-01 Cli	lent ID: RS	8-10'	08/02/99	SOIL
Gasoline	8015M	160	mg/Kg		08/12/99
Benzene	8020	0.49	mg/Kg		
Ethylbenzene	8020	2.6	mg/Kg		
MTBE	8020	ND			
Toluene	8020	0.79	mg/Kg		
Xylenes	8020	6.2	mg/Kg		
Sample: 99-12	16-02 Cl	ient ID: RS	9-6'	08/03/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 99-12	16-03 Cl:	ient ID: RS	9-10'	08/03/99	SOIL
Gasoline	8015M	67	mg/Kg		08/12/99
Benzene	8020	0.41	mg/Kg		
Ethylbenzene	8020	0.87	mg/Kg		
MRBE	8020	ND			
Luene	8020	2.0	mg/Kg		
Xylenes	8020	4.9	mg/Kg		

Page

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

<u> Malyte</u>	Method	Result	Unit	Date Sampled	Date Analyzed
		ent ID: RS1	.0-6'	08/05/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	0.005	mg/Kg		
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 99-12	216-05 Cli	ent ID: RS1	.0-9.5'	08/05/99	SOIL
Gasoline	8015M	870	mg/Kg		08/12/99
Benzene	8020	11	mg/Kg		
Ethylbenzene	8020	21	m g/ Kg		
MTBE	8020	ND			
Toluene	8020	62	mg/Kg		
Xylenes	8020	120	mg/Kg		
Sample: 99-1:	216-06 Cli	ent ID: TRE	ENCH-A-15'	08/04/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	0.072	mg/Kg		
Ethylbenzene	8020	0.008	mg/Kg		
BE	8020	ND			
luene	8020	0.011	mg/Kg		
Xylenes	8020	0.015	mg/Kg		

Page

North State Environmental Laboratory

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
	1216-07 Cli	ent ID: TRE	ENCH-B-10'	08/04/99	SOIL
Gasoline	8015M	140	mg/Kg		08/12/99
Benzene	8020	2.0	mg/Kg		
Ethylbenzen	ie 8020	2.4	mg/Kg		
MTBE	8020	ND			
Toluene	8020	4.0	mg/Kg		
Xylenes	8020	10	mg/Kg		
Sample: 99-1	1216-08 Cli	ent ID: TRE	ENCH-C-14'	08/04/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	0.009	mg/Kg		
Ethylbenzen	e 8020	0.005	mg/Kg		
MTBE	8020	ND			
Toluene	8020	0.017	mg/Kg		
Xylenes	8020	0.031	mg/Kg		
Sample: 99-1	1216-09 Cli	ent ID: TRE	ENCH-D-10.5'	08/05/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	ND			
Ethylbenzen	ie 8020	ND			
MTBE	8020	ND			
luene	8020	0.006	mg/Kg		
Xylenes	8020	0.017	mg/Kg		
Sample: 99-3 Gasoline Benzene Ethylbenzen MTBE	8020 1216-09 Cli 8015M 8020 8020 8020 8020	0.031 ent ID: TRE ND ND ND ND ND 0.006	mg/Kg ENCH-D-10.5' mg/Kg	08/05/99	

Page

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

<u>Analyte</u>	Method	Result	Unit	Date Sampled	Date Analyzed
mple: 99-12		ent ID: TRE	NCH-E-5'	08/05/99	SOIL
Gasoline	8015M	4000	mg/Kg		08/12/99
Benzene	8020	17	mg/Kg		
Ethylbenzene	8020	110	mg/Kg		
MTBE	8020	*ND<0.5	mg/Kg		
Toluene	8020	260	mg/Kg		
Xylenes	8020	580	mg/Kg		
Sample: 99-12	216-11 Cli	ent ID: TRE	NCH-F-10.5'	08/05/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	0.064	mg/Kg		
Ethylbenzene		0.010	mg/Kg		
MTBE	8020	ND			
Toluene	8020	0.015	mg/Kg		
Xylenes	8020	0.046	mg/Kg		
Sample: 99-1	216-12 Cli	ent ID: TRE	NCH-G-7 '	08/06/99	SOIL
Gasoline	8015M	1100	mg/Kg		08/12/99
Benzene	8020	1.4	mg/Kg		
Ethylbenzene	8020	34	mg/Kg		
MTBE	8020	4.5	mg/Kg		
luene	8020	70	mg/Kg		
Xylenes	8020	180	mg/Kg		
				4	

Page

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco. CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Analyte	Method	Result	Unit	Date Sampled	Date Analyzed
mple: 99	-1216-13 Clie		NCH-H-10.5'	08/06/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	ND			
Ethylbenze	ene 8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	0.018	mg/Kg		
Sample: 99	-1216-14 Clie	nt ID: TRE	NCH-I-S'	08/06/99	SOIL
Gasoline	8015M	ND		· · · · · · · · · · · · · · · · · · ·	08/12/99
Benzene	8020	ND			
Ethylbenze	ene 8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
Xylenes	8020	ND			
Sample: 99	-1216-15 Clie	nt ID: TRE	ENCH-J-10'	08/06/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	0.021	mg/Kg		
Ethylbenze	ene 8020	0.011	mg/Kg		
MTBE	8020	ND			
luene	8020	0.079	mg/Kg		
Xylenes	8020	0.057	mg/Kg		

Page

North State Environmental Laboratory

CA ELAP#1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

<u>Analyte</u>	Method	Result	Unit	Date Sampled_	Date Analyzed
mple: 99-12	216-16 Cli	ent ID: SOIL	PILE-A,B,C,D-1	08/06/99	SOIL COMP.
Gasoline	8015M	7.9	mg/Kg		08/12/99
Benzene	8020	0.006	mg/Kg		
Ethylbenzene	8020	0.064	mg/Kg		
MTBE	8020	ND			
Toluene	8020	0.051	mg/Kg		
Xylenes	8020	0.52	mg/Kg		

North State Environmental Laboratory

CA ELAP#1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

OF ANALYSIS CERTIFICATE

Quality Control/Quality Assurance

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

	<u> </u>	Reporting			Avg MS/MSD	
alyte	Method	Limit	Unit	Blank	Recovery	RPD
Gasoline	8015M	0.5	mg/Kg	ND	101	3
Benzene	8020	.005	mg/Kg	ND	85	2
Ethylbenzene	8020	.005	mg/Kg	ND	102	0
Coluene	8020	.005	mg/Kg	ND	100	1
Kylenes	8020	.010	mg/Kg	ND	107	1
MTBE	8020	.005	mg/Kg	ND	77	2

ELAP Certificate NO:1753

John A. Murphy, Laboratory Director

7 of 7 Page

Pelinguished by:

rquished by:

North State Environmental Analytical Laboratory

Date:

Date:

Time:

Time:

Received by:

Received by:

99-1216	
ι '	-

Chain of Custody / Request for Analysis 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080 Lab Job No.: Page / of 2 Phone: (650) 266-4563 Fax: (650) 266-4560 Report to: WEGE Phone: 570-668-5300 Turnaround Time Client: WEGE y to: Fax: SPG 62-0273

Western 600- Engress PO#/ Billing Reference: Billing to: Mailing Address: 1386 East Beamen Date: 8.6.29 woodland, (A 95776 Sampler: Project / Site Address: Dese-+ Petrolem 793 Analysis
4035 Park Blud., Oaldand, CA Requested Sample ID Container Pres. Sampling Sample Comments / Hazards Date / Time Type No. / Type R58-10' Sleeve 99 12:22 99 10:00 X Date: 5/6/99 Time: 1440 Received by Mul Relinquished by: Lab Comments 5 NSELAB

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

44-	1	O
-----	---	----------

Chain of Custody / Request for Analysis Lab Job No.: Page 2 of 2

	Client: 4JEGE			Report	to: George (wherse	us	Phone:	530-	LG-5	300	Т	urnaround Time
	Mailing Address:	+ Beai	11-	Billing t	to: George (6-0-E	معداري	Fax: 5:	3 <u>/ /_ /</u> Billing Re	(7 - 0 .	273	Date: 6	9:5 tendard 5.6.99
	woodland	14 95	771			,	it	10#12	Juliy 110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	Sample	
	Project / Site Address:	Deson	of fetroli Bluck	eun DaKlas	793 Anal ACH Requeste	lysis d		7	$\overline{\mathcal{I}}$	/		$\overline{}$	
	Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	13	<i>]</i>						Comments / Hazards
7	Trenc4-J-10'	So: 1	Sleeve		8/4/99 13								·
6	Soil Pile 1-14-11		'		F/6/99	<u> </u>						7	1 2 2 2 2 2 4 Y
	Soil Pile-B-11				1	X			<u> </u>			\leftarrow	Composite 4
	Soil Pile-C-1' Soil Pile-D-1'		- I		0/1/99	× ×					<u> </u>	//	140
	30: Pile - D - 1'	5011	Sleeve	:	8/6/7/	1 / 1							
													ı
											<u> </u>		
									<u> </u>	ļ	<u> </u>		
											-		
										<u> </u>	<u> </u>		
							<u></u>	 			-		
	Relinquished by: Z	Metro	<u> </u>]	Date: <i>\$\langle \left(\frac{1}{9}\frac{9}{9}\text{ Times}</i>	ie: /440	Receiv	/ed by:/	mo	\ \ \ \ \ \ \ \ \	المراح ك	- LAD	Lab Comments
	Relinquished by:	<u>~ [[]</u>			Date: Tim			ed by:					
	Relinquished by:			[Date: Tim	ne:	Recei	ved by:					

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of	Custody	/Request for	Analysis
Lab Job	No.:	Page	of

Client: Western Cer- Engineers	Report to: Graye Co	nverm	Phone: 530 668	5300	Turnaround Time
Mailing Address: 12 67 F 77 C	Billing to: uege		Fax:		
Grandland CA			PO# / Billing Reference	e: Date:	12-8-71
Gradland, CA 957	76		DP 793-Trinch	Samp	ller:(Januar et al. P
Project / Site Address: DP 793	Anal Requeste	()			
Sample ID Sample Containe Type No. / Type					Comments / Hazards
Tirneh K-12/6 80:1 1/ Ro	Ne 8-9-44 Noon				ij
Track L-10 5 1/5) Noun				
Trach m- 6 1 1 1	NO 8-11-49 K				V
Track N. 8 1 11.5	\$ 9 111				
Truly 9-10: 10 11	1 / / /2		·		Ì
Their p=6) 1/	122	- 2			1
					· * }
					N _{to}
					N.
Relinquished by:	Date: // /5/99 Tim	ne: 2:50 Rece	eived by: Sliver	#-680	Lab Comments
Relinquished by:	Date: Tim		eived by:		_
Relinquished by:	Date: Tim	ne: Rece	eived by:		

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1244

Client:

Western Geo-Engineers

Project:

DP 793-Trench

Date Reported: 08/20/99

<u> An</u> alyte	Method	Resu.	Lt J	Unit	<u>Date Sar</u>	mpled	Date Analyzed
		Client ID:	TRENCH	K-12.5	08/09/	99	SOIL
Gasoline	8015M	I ND					08/18/99
Benzene	8020	ND					
Ethylbenzen	e 8020	ND					
MTBE	8020	ND					
Toluene	8020	ND					
Xylenes	8020	ND					
Sample: 99-1	L244-02	Client ID:	TRENCH	L-10	08/09/	99	SOIL
Gasoline	8015M	I ND					08/18/99
Benzene	8020	ND					
Ethylbenzen	e 8020	ND					
MTBE	8020	ND					
Toluene	8020	ND					
Xylenes	8020	ND					
Sample: 99-1	1244-03	Client ID:	TRENCH	M-6	08/12/	99	SOIL
Gasoline	80151	MD ND					08/18/99
Benzene	8020	ND					
Ethylbenzen	e 8020	ND					
MEBE	8020	ND					
luene	8020	ND					
Xylenes	8020	ND					

North State Environmental Laboratory

CA ELAP # 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1244

Client:

Western Geo-Engineers

Project:

DP 793-Trench

Date Reported: 08/20/99

alvte	Method	Result	Unit	Date Sampled	<u>Date Analyzed</u>
	244-04 Cli		NCH N-8	08/12/99	SOIL
Gasoline	8015M	ND			08/18/99
Benzene	8020	0.012	mg/Kg		
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	0.005	mg/Kg		
Xylenes	8020	0.012	mg/Kg		
Sample: 99-1	244-05 Cli	ent ID: TRE	NCH 0-10	08/12/99	SOIL
Gasoline	8015M	ND			08/18/99
Benzene	8020	0.011	mg/Kg		
Ethylbenzene		ND			
MTBE	8020	ND			•
Toluene	8020	ND			
Xylenes	8020	0.011	mg/Kg		
Sample: 99-1	244-06 Cli	ent ID: TRE	ENCH P-6	08/12/99	SOIL
Gasoline	8015M	ND			08/18/99
Benzene	8020	0.045	mg/Kg		
Ethylbenzene		ND			
BE	8020	ND			
luene	8020	ND			
Xylenes	8020	ND			

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:

99-1244

Client:

Western Geo-Engineers

Project:

DP 793-Trench

Date Reported: 08/20/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Method	M 0.5 mg/Kg ND 99 2 .005 mg/Kg ND 113 1 .005 mg/Kg ND 112 1 .005 mg/Kg ND 113 1 .010 mg/Kg ND 116 1	RPD			
8015M	0.5	mg/Kg	ND	99	2
8020	.005	mg/Kg	ND	113	1
8020	.005	mg/Kg	ND	112	1
8020	.005	mg/Kg	ND	113	1
8020	.010	mg/Kg	ND	116	1
8020	.005	mg/Kg	ND	79	8
	8015M 8020 8020 8020 8020	Method Limit 8015M 0.5 8020 .005 8020 .005 8020 .005 8020 .010	Method Limit Unit 8015M 0.5 mg/Kg 8020 .005 mg/Kg 8020 .005 mg/Kg 8020 .005 mg/Kg 8020 .010 mg/Kg	Method Limit Unit Blank 8015M 0.5 mg/Kg ND 8020 .005 mg/Kg ND 8020 .005 mg/Kg ND 8020 .005 mg/Kg ND 8020 .010 mg/Kg ND	Method Limit Unit Blank Recovery 8015M 0.5 mg/Kg ND 99 8020 .005 mg/Kg ND 113 8020 .005 mg/Kg ND 112 8020 .005 mg/Kg ND 113 8020 .010 mg/Kg ND 116

LAP Certificate NO:1753

eviewed and Approved

John A. Murphy, Laboratory Director

3 of 3 Page

North State Environmental Laboratory

GA ELAP # 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

OF ANALYSIS CERTIFICATE

Quality Control/Quality Assurance

Lab Number:

99-1244

Client:

Western Geo-Engineers

Project:

DP 793-Trench

Date Reported: 08/20/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

					Avg MS/MSD	
Analyte	Method	Reporting Limit	Unit	Blank	Recovery	RPD
 Gasoline	8015M	0.5	mg/Kg	ND	99	2
Benzene	8020	.005	mg/Kg	ND	113	1
Ethylbenzene	8020	.005	mg/Kg	ND	112	1
Coluene	8020	.005	mg/Kg	ND	113	1
Kylenes	8020	.010	mg/Kg	ND	116	1
MTBE	8020	.005	mg/Kg	ND	79	8

ELAP Certificate NO#1753

Regiewed /and Approved

John A. Murphy, Laboratory Director

3 of 3 Page

Relinquished by:

North State Environmental Analytical Laboratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

99-124	4
--------	---

Chain of Custody / Request for Analysis Lab Job No.: Page of Phone: (650) 266-4563 Fax: (650) 266-4560 Report to: George Converse

Billing to: Uege Turnaround Time Phone: 530 668 5300 Client: Western Ger- Engineers Fax: Mailing Address: 1386 E. Beamer St Woodland, CA 95776 PO# / Billing Reference: DP 793 - Thouch Sampler: Converse Analysis Project / Site Address: DP 793 Requested Comments / Hazards Sampling Sample ID Container Pres. Sample Date / Time No. / Type Type -9-49 Noon Soil 1 Brest Tranch h - 12/2 Noon Trank L-10 8-12-99 0 Tranh m-6 1300 Track 0-10 17:15 Date: 12-8-7 Time: 2:50 Received by: 53/1444 #680 Lab Comments Relinquished by: Received by: Date: 4/13/44 Time: Relinquished by: Received by:

Time:

Date:

APPENDIX H

RBCA TIER 1/TIER 2 EVALUATION

Output Table

Site Name: DP793 Job Identification: DP793-Site Location: 4035 Park Blvd., Oakland, Califibate Completed: 9/23/99 Job Identification: DP793 -1

Completed By: George Converse

Software GSI RBCA Spreadsheet

Version: 1.0.1

NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined.

			Residential		Commerci	ai/industrial	Surface		Residential	Constrctn	
posure rameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn		Definition (Units)	2.3E+06	2.3E+06	
	Averaging time for cercinogens (yr)	70					A	Contaminated soil area (cm^2)		1.2E+03	
C		30	6	16	25	1	W	Length of affect, soil parallel to wind (cm)	1.2E+03	1.25.03	
n	Averaging time for non-carcinogens (yr)	70	15	35	70		W.gw	Length of affect, soil parallel to groundwater (cm	2.1E+03		
i	Body Weight (kg)	30	6	16	25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
۲	Exposure Duration (yr)	30 30			25	1	della	Air mixing zone height (cm)	2.0E+02		
	Averaging time for vapor flux (yr)				250	180	Lss	Thickness of affected surface soils (cm)	1.0E+02		
=	Exposure Frequency (days/yr)	350			250	100	Pe	Particulate areal emission rate (g/cm*2/s)	6.9E-14		
Derm.	Exposure Frequency for dermal exposure	350			1		. •				
gw	Ingestion Rate of Water (L/day)	2				400					
\$ ··	Ingestion Rate of Soil (mg/day)	100	200		50	100	Carringhuston	Definition (Units)	Value		
edi 1	Adjusted soiling, rate (mg-yr/kg-d)	1.1E+02			9.4E+01			Groundwater mixing zone depth (cm)	4.9E+02		
8. 1 1)	Inhalation rate indoor (m*3/day)	15			20		della gw	Groundwater infiltration rate (cm/yr)	6.1E+01		
a.out	Inhalation rate outdoor (m*3/day)	20			20	10			3.1E+03		
A.	Skin surface area (dermal) (cm*2)	5.8E+03		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	1.1E+04		
	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1.7E+03		Ugw.lr	Groundwater seepage velocity (cm/yr)	1.0E-03		
Aad i	Soil to Skin adherence factor	1					Ks	Saturated hydraulic conductivity(cm/s)	1.0E-01		
		FALSE			FALSE		grad	Groundwater gradient (cm/cm)			
AFs	Age adjustment on soil ingestion	FALSE			FALSE		Sw	Width of groundwater source zone (cm)	2.1E+03		
AFd	Age adjustment on skin surface area	TRUE					Sd	Depth of groundwater source zone (cm)	4.9E+02		
×	Use EPA tox data for air (or PEL based)?	FALSE					phi.eff	Effective porosity in weter-bearing unit	3.0E-01		
wMCL?	Use MCL as exposure limit in groundwater?	LWF9E					foc.sat	Fraction organic carbon in water-bearing unit	4.6E-02		
							BIO?	Is bioattenuation considered?	TRUE		
							BC	Biodegradation Capacity (mg/L)	7.3E+00		
		mt.t			Commerc	cial/Industrial		•			
	osed Persons to	Residential			Chronic	Constrctn	Soil	Definition (Units)	Value		
omplete Ex	posure Pathways				Distrib		hc	Capillary zone thickness (cm)	3.0E+01		
utdoor Air					FALSE	FALSE	hv	Vadose zone thickness (cm)	2.7E+02		
S.v	Volatiles and Particulates from Surface Soils	FALSE			TRUE	,,,,,,,,	rho	Soil density (g/cm*3)	1.7		
. v	Votatilization from Subsurface Soils	TRUE			TRUE		foc	Fraction of organic carbon in vadose zone	<u>0.24</u>		
W.v	Volatilization from Groundwater	FALSE			INOL		phi	Soil perosity in vadose zone	0.38		
ndoor Air Pa	ithways:				TRUE		Lgw	Depth to groundwater (cm)	3.0E+02		
3.b	Vapors from Subsurface Soils	FALSE					Ls.	Depth to top of affected subsurface soil (cm)	2.1E+02		
SW.b	Vapors from Groundwater	FALSE			TRUE		Lauba	Thickness of effected subsurface soils (cm)	7.6E+02		
oil Pathway	ra:					TOUR		Spit/groundwater pH	6.5		
SS.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	TRUE	рH	Opin Bradita water but	capillary	vadose	founda
	r Pathways:						and the	Volumetric water content	0.342	0.12	0.1
3W.i	Groundwater Ingestion	TRUE			TRUE		phi.w		0.03B	0.26	0.2
G99.1 S.1	Leaching to Groundwater from all Soils	TRUE			TRUE		phi,a	Volumetric air content	0.000	•	
5.1	CRECING to Crockerson man and and								Residential	Commercial	
							Building	Definition (Units)	2.0E+02	3.0E+02	
							Lb	Building volume/area ratio (cm)			
	4 D 1 - 1	Rosin	dential		Comme	rcial/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.3E-04	
	ceptor Distance	Distance	On-Site	_	Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01		
	n On- or Off-Site	2.0E+03	FALSE			TRUE	eta	Foundation crack fraction	0.01		
GW	Groundwater receptor (cm)	2.0E+03	FALSE			TRUE					
S	Inhelation receptor (cm)	2.00+03	FALSE								
							Transport				
								Definition (Units)	Residential	Commercial	
Matrix of							Groundwal	· · · · · · · · · · · · · · · · · · ·			
Target Risk	5	Individual	Cumulative				8x	Longitudinat dispersivity (cm)	6.1E+01		
	Target Risk (class A&B carcinogens)	1.0E-06						Transverse dispersivity (cm)	6.1E+00		
TRah		1.0E-05					ay	Vertical dispersivity (cm)	6.1E-01		
TRab	Tarnet Risk (class C carcinogens)	1.02 00									
TRo	Target Risk (class C carcinogens) Target Hazard Quotient	1.0E+00					<u>82</u>	ABILICAL DISPOSARIA (CARA)	0.1E 01		
TRab TRc THQ Opt	Target Risk (class C carcinogens) Target Hazard Quotient Calculation Option (1, 2, or 3)						az Vapor dey	Transverse dispersion coefficient (cm)	2.3E+02		

RBCA CHEMICAL DATABASE

Physical Property Data

CAS	tuna	Molect Weig (g/mo MW	ht	_	effi	ision cients in wate (cm2/s		log (Koc) log(Kd (@ 20 - 2: log(l/kg	i) 5 C)	•	aw Constan 0 - 25 C) (unitless) r		Vapor Pressure (@ 20 - 25 0 (mm Hg)		Solubility (@ 20 - 25 ((mg/L)	C) ;	 base pKb	ref
Number Constituent 71-43-3 Benzene CA 100-41-4 Ethylbenzene CA 110-54-3 Hexane, n- 1634-04-4 Methyl t-Butyl Ether CA 108-88-3 Toluene CA 1330-20-7 Xylene CA	0 0 0 0 0 0	78.1 106.2 86.2 88.146 92.4 106.2	5	9.30E-02 7.60E-02 2.00E-01 7.92E-02 8.50E-02 7.20E-02	4	1.10E-05 8.50E-06 7.77E-06 9.41E-05 9.40E-06 8.50E-06	4	1.58 1.98 2.68 1.08 2.13 2.38	4	5.29E-03 7.69E-03 1.22E-01 5.77E-04 6.25E-03 6.97E-03	2.20E-01 3.20E-01 5.07E+00 2.40E-02 2.60E-01 2.90E-01	4	9.52E+01 1.00E+01 1.50E+02 2.49E+02 3.00E+01 7.00E+00	4	1.75E+03 1.52E+02 1.30E+01 4.80E+04 5.15E+02 1.98E+02	5		

Site Name: DP793

Site Location: 4035 Park Blvd., Oaklan Completed By: George Converse

Date Completed: 9/23/1999

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Physical Property Data

CAS Number Constituent 71-43-3 Benzene CA 100-41-4 Ethylbenzene CA 110-54-3 Hexane, n- 1634-04-4 Methyl t-Butyl Ether CA 108-88-3 Toluene CA 1330-20-7 Xylene CA	type 0 0 0 0	Molecui Weigh (g/mol- MW 78.1 106.2 86.2 88.146 92.4 106.2	nt e) ref 5	Co in air (cm2/s)	effi ref 4	in wate (cm2/s Dwat 1.10E-05 8.50E-06 7.77E-06 9.41E-05 9.40E-06 8.50E-06	ref 4	log (Koc) or log(Kd) (@ 20 - 25 C) log(I/kg) ref 1.58 1.98 2.68 4 1.08 2.13 2.38	(i	(@ 20 atm-m3) mol 5.29E-03 7.69E-03	aw Constant 0 - 25 C) (unitless) ref 2.20E-01 3.20E-01 5.07E+00 4 2.40E-02 2.60E-01 2.90E-01	Vapor Pressure (@ 20 - 25 0 (mm Hg) 9.52E+01 1.00E+01 1.50E+02 2.49E+02 3.00E+01 7.00E+00	C)	Solubility (@ 20 - 25 (mg/L) 1.75E+03 1.52E+02 1.30E+01 4.80E+04 5.15E+02 1.98E+02			re
--	--------------------------	---	----------------------	-------------------------	------------------	---	----------	--	----	---	--	--	----	--	--	--	----

Site Name: DP793

Site Location: 4035 Park Blvd., Oaklan Completed By: George Converse

Date Completed: 9/23/1999

Software version: 1.0.1

Slope Reference **Factors** Dose **EPA Weight** ls 1/(mg/kg/day) (mg/kg/day) Constituent of Inhalation Oral Oral Inhalation CAS Carcinogenic? Evidence SF oral ref SF_inhal ref ref RfD_inhal ref Number Constituent RfD oral TRUE 1,00E-01 A 1.00E-01 2.00E-02 30 2.00E-02 71-43-3 Benzene CA **FALSE** 2.86E-01 30 1.00E-01 100-41-4 Ethylbenzene CA **FALSE** R 5.71E-02 6.00E-02 Α 110-54-3 Hexane, n-? RUE OEHHA draf 31 1.73E-03 1.73E-03 1634-04-4 Methyl t-Butyl Ether CA 5.00E-03 FALSE D 30 5.70E-02 1.10E-01 108-88-3 Toluene CA FALSE D 30 8.57E-02 2.50E-01 1330-20-7 Xylene CA

RBCA CHEMICAL DATABASE

Site Name: DP793 Site Location: 4035 Park Blvd., Oaki Completed By: George Converse

Date Completed: 9/23/1999

Toxicity Data

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

CAS		dimum inant Level	Permissit Exposur Limit PEL/	e e	Abse	lative orption ctors	Detection Groundway (mg/L)	ater	Limits Soil (mg/kg)	(First-Or	If Life der Decay) ays)	
Number Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref	ref	Saturated	Unsaturated	ref
71-43-3 Benzene CA	1.00E-03		3.20E+00		1	0.5	0.0005		0.005	720	720	
	7.00E-02		4.34E+02		1	0.5	0.0005		0.005	228	228	
100-41-4 Ethylbenzene CA	7.00L-02				1	0.5						
110-54-3 Hexane, n-	J		1.44E+02		i	0.5	0.005		0.05			
1634-04-4 Methyl t-Butyl Ether CA	1 4 505 04		1.47E+02		1	0.5	0.0005		0.005	28	28	
108-88-3 Toluene CA 1330-20-7 Xylene CA	1.50E-01 1.75E+00		4.34E+02		1	0.5	0.002		0.005	360	360	

Site Name: DP793

Site Location: 4035 Park Blvd., Oakland, California

Completed By: George Converse Date Completed: 9/23/1999

Software version: 1.0.1

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration									
CONSTITUENT	in Groundy		in Surface S		in Subsurface Soil					
CONSTITUENT	value (mg/L)	note	value (mg/kg)	note_	value (mg/kg)	note				
D	5.3E+0	max	5.0E-3		4.5E+0	ISW				
Benzene CA	3.0E+0	max	5.0E-3		1.8E+1	I SW				
Ethylbenzene CA			5.0E-3		2.0E+3	ISW				
Hexane, n-	8.9E+1	max			5.0E-3					
Methyl t-Butyl Ether CA	5.4E-1	max	5.0E-3		3.5E+1	I SW				
Toluene CA	1.5E+1	max	5.0E-3							
Xviene CA	1.5E+1	max	1.0E-2		1.3E+2	I SW				

Site Name: DP793 Completed By: George Converse Date Completed: 9/23/1999

Site Location: 4035 Park Blvd., Oakland, California Date Completed: 9/23/1999

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT	Mole Fraction of Constituent in Source Material
Benzene CA	
Ethylbenzene CA	
Hexane, n-	
Methyl t-Butyl Ether CA	
Toluene CA	
Xylene CA	

Site Name: DP793 Completed By: George Converse Site Location: 4035 Park Blvd., Oakland Date Completed: 9/23/1999

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)
Dilution Attenuation Factor
(DAF) in Groundwater

tesidential	Comm./ind.
Pacentor	D 1 - 1
1/C/chrn	Receptor
1.0E+0	1.0E+0
	1.0E+0
	1.0E+0
	1.0E+0 1.0E+0

Site Name: DP793 Completed By: George Converse Date Completed: 9/23/1999

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT

Half-Life of Constituent

	(day)
Benzene CA	
Ethylbenzene CA	
Hexane, n-	
Methyl t-Butyl Ether CA	
Toluene CA	
Xviene CA	

Site Name: DP793 Completed By: George Converse Site Location: 4035 Park Blvd., Oakland, Date Completed: 9/23/1999

[@] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Exposure Limits

	Applied t	o Receptors
CONSTITUENT	Groundwater (MCL) (mg/L)	Air (Comm. only) (PEL/TLV) (mg/m^3)
Benzene CA		
Ethylbenzene CA		
Hexane, n-		
Methyl t-Butyl Ether CA		
Toluene CA		
Xviene CA		

Site Name: DP793 Completed By: George Converse Date Completed: 9/23/1999

	DDCA SITE	ASSESSMENT		Tier 2 Wo	rksheet 8.1
Site Name: DP793	Si	te Location: 4035 Park Blvd.,	Oakland, Californi Completed By: Go	eorge Convers Date Completed	9/23/1999 1 OF 9
			ENTRATION AND INTAKE CALCUL		
OUTDOOR AIR EXPOSURE PATHY	WAYS HE SHIP THE STATE OF THE S		CHECKED IF PATHWAY IS ACTIVE)		
SURFACE SOILS: VAPOR AND	Exposure Concentration			4) Exposure Multiplier	5) Average Daily Intake Rate
DUST INHALATION	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Outdoor Air: POE Cone. (mg/m^3) (1) / (2)	(IRXEFXED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)
	Surface Soil Conc.	, , , , , , , , , , , , , , , , , , ,	. [
Constituents of Concern	(mg/kg)		 	· · · · · · · · · · · · · · · · · · ·	
Benzene CA	5.0E-3				
Ethylbenzene CA	5.0E-3				
Hexane, n-	5.0E-3				
Methyl I-Butyl Ether CA	5.0E-3				
Toluene CA	5.0E-3				
Xylene CA	1.0E-2		_		

NOTE: ABS = Dermal absorption factor (dim) AF = Adherence factor (mg/cm*2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET ≈ Exposure time (hrs/day) R = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

Tier 2 Worksheet 8.1 RBCA SITE ASSESSMENT 2 OF 9 Site Location: 4035 Park Blvd., Oakland, Californi Completed By: George Convers Date Completed: 9/23/1999 Site Name: DP793 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION OUTDOOR AIR EXPOSURE PATHWAYS AND THE PATHWAY IS ACTIVE) THE PATHWAY IS ACTIVE) THE PATHWAY IS ACTIVE) Exposum Concentration SUBSURFACE SOILS: VAPOR 5) Average Daily Intake Rate 4) Exposure Multiplier 3) Exposure Medium 2) NAF Value (m^3/kg) 1) Source Medium INHALATION (mg/kg-day) (3) X (4) (IRxEFxED)/(BWxAT) (m^3/kg-day) Outdoor Air: POE Conc. (mg/m^3) (1) / (2) Receptor Subsurface Soil Conc. Off-Site Residential On-Site Commercial Off-Site Residential On-Site Commercial Off-Site Residential On-Site Commercial Off-Site Residential Constituents of Concern On-Site Commercial (mg/kg)_ 1.2E-5 6.9E-6 7,0E-2 1.2E-1 9.9E-5 4.6E+4 9.9E-5 4.5E+0 4 6E+4 Benzene CA 5.2E-5 2.7E-1 3.7E-5 2.0E-1 1.9E-4 1.9E-4 9.6E+4 9.6E+4 1.8E+1 Ethylbenzene CA 2.0E-2 2.7E-1 1.7E-2 2.0E-1 7.4E-2 2.7E+4 8.9E-2 2.2E+4 2.0E+3 2.2E-9 3.8E-9 Hexane, n-7.0E-2 1.2E-1 3.2E-8 3.2E-8 1.6E+5 5.0E-3 1.6E+5 Methyl t-Butyl Ether CA 6.5E-5 2.7E-1 4.6E-5 2.0E-1 2.4E-4 2.4E-4 1.5E+5 1.5E+5 3.5E+1 1.3E-4 Toluene CA 9.1E-5 2.7E-1 4.7E-4 2.0E-1 4.7E-4 2.8E+5 2.8E+5 1.3E+2 Xylene CA

	NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/day)	
- 1	AT = Averaging time (days)	Eft = Exbosone on another (319)			_

Software: GSI R8CA Spreadsheet

Serial: G-443-CSX-444

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

		RECA SITE ASSES	SMENT		Tier 2 W	orksheet 8.1	
			Park Blvd., Oakland, Ca Complet	ed By: George Converse	Date Completed: 9/23/1999	,	3 OF
Site Name: DP793		TIER 2	EXPOSURE CONCENTRATION	AND INTAKE CALCULATION			
			CAMPINE VIOLECUED IS DATHWAY	S ACTIVE)			
OUTDOOR AIR EXPOSURE PATHV			CHECKEDIF PAINTAL			TOTAL PATHWAY	NTAKE (mg/kg-day)
BROUNDWATER: VAPOR	Exposure Concentration	OVERA STORES (m)	3/L) 3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate		res from surface,
SHALATION	1) Source Medium	1) Source Medium 2) NAF Value (m^3/L) Receptor) (1) / (2) (IRxEFxEDV(BWkAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	aubsurface & gro	undweler roules.)
	Groundwater Conc.		On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	
Constituents of Concern	(mg/L)	On-Site Commercial	2.2E-5	7.0E-2	1,5E-6	8.4E-6	1.2E-5
Benzene CA	5.3E+0	2.4E+5	1.2E-5	2.0E-1	2.4E-6	3.9E-5	5,2E-5
Ethylbenzene CA	3.0E+0	2.4E+5		2.0E-1	2.0E-3	1.9E-2	2.0E-2
Hexane, n-	8.9E+1	8.6E+3	1.0E-2		2.9E-7	3.0E-7	3.8E-9
Methyl t-Butyl Ether CA	5.4E-1	1.3E+5	4.2E-6	7.0E-2	1.2E-5	5.8E-5	6.5E-5
	1.5E+1	2.5E+5	6.1E-5	2.0E-1		1.0E-4	1.3E-4
Toluene CA Xylene CA	1.5E+1	2.6E+5	5.7E-5	2.0E-1	1.1E-5	1,004	

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days) BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)		Paint of exposure kin exposure area (cm^2/day)
--	--	---

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

	RBCA SIT	Tier 2 Worl	csheet 8.1			
		ite Location: 4035 Park Blvd., O.	akland, Californi Completed By: G	eorge Convers Date Completed:	9/23/1999 <u>4 OF</u>	
Site Name: DP793			NTRATION AND INTAKE CALCUL			
					ALL TO A DESCRIPTION OF THE PARTY OF THE PAR	
INDOOR AIR EXPOSURE PATHWA	YS THE STATE OF THE BOARD	一次的特殊的工作。	CHECKED IF PATHWAY IS ACTIVE)		and the second s	
BUBBURFACE BOHLS:	Exposure Concentration					
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Indeor Air: POE Conc. (mg/m^3) (1) / (2)	4) <u>Exposure Multiplier</u> (IRxEFxED)(BWXAT) (m*3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	
	Subsurface Soil Conc.	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercia	
Constituents of Concern	(mg/kg)	6.8E+2	6.6E-3	7.0E-2	4.6E-4	
Benzene CA	4.5E+0	1.4E+3	1.3E-2	2.0E-1	2.5E-3	
Ethylbenzene CA	1.8E+1		1.2E+1	2.0E-1	2.3E+0	
Hexane, n-	2.0E+3	1.7E+2		7.0E-2	1.5E-7	
Methyl t-Butyl Ether CA	5.0E-3	2.4E+3	2.1E-6	2.0E-1	3.1E-3	
Toluene CA	3.5E+1	2.2E+3	1.6E-2		6.1E-3	
Xylene CA	1.3E+2	4.2E+3	3.1E-2	2.0E-1	0.12-0	

NC	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure lime (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
1				

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

			Tier 2 Wi	orksheet 8.1						
Site Name: DP793	S	ite Location: 4035 Park Blvd.	, Oakland, Ca Completed By:	George Converse	Date Completed: 9/23/1999	5 OF 9				
TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION										
		AND THE PROPERTY OF THE PROPER	INTERNATION OF BATHERINA DE ACTO							
INDOOR AIR EXPOSURE PATHWAY		新米地名の福祉のかかります。 はこれには本本	(CHECKED IF PATHWAT IS ACTO			TOTAL PATHWAY (MTAKE (mg/kg-day)				
GROUNDWATER:	Exposure Concentration			At E an una Adultinian	5) Average Daily Intake Rate	(Sum intake values from subsurface				
VAPOR INTRUSION TO BUILDINGS	1) <u>Source Medium</u>	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Air: POE Cone. (mg/m^3) (1)/(2)	4) Exposure Multiplier (IRXEFXED)(BWXAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	& groundwaler routes.)				
0	Groundwater Conc. (mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial		On-Site Commercial				
Constituents of Concern	5.3E+0	5.2E+2	1.0E-2	7.0E-2	7.2E-4	1.2E-3				
Benzene CA	3.0E+0	5.0E+2	6.0E-3	2.0E-1	1.2E-3	3.6E-3				
Ethylbenzene CA		1.7E+1	5.1E+0	2.0E-1	1.0E+0	3.3E+0				
Hexane, n-	8.9E+1		5.8E-4	7.0E-2	4.0E-5	4.0E-5				
Methyl t-Butyl Ether CA	5.4E-1	9,4E+2		2.0E-1	5.6E-3	6.7E-3				
Toluene CA	1.5E+1	5.2E+2	2.9E-2	2.0E-1	5.3E-3	1.1E-2				
Xylene CA	1.5⊑+1	5.6E+2	2.7E-2	2,0E-1	1					

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE ≃ Point of exposure SA ≃ Skin exposure area (cm^2/day)
---	---	--	---

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

	RBCA SITE ASSESS	MENT		Tier 2 Wo	rksheet 6.1
Site Name: DP793	Site Location: 4035 Park Blvd.,	Oakland, California	Completed By: George Co	Date Completed: 9/23/1999	6 OF
	TIER 2 EXPOS	SURE CONCENTRATIO	N AND INTAKE CALCULAT	TION	
SOIL EXPOSURE PATHWAYS		CHECKED IF PATHWAY IS A	CTIVE):	The state of the s	
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration				
DERMAL CONTACT	1) <u>Source Medium</u>	2) Exposure Multiplier (Saxafxabsxcfxefxedy(bWxat) (kg/kg-dey)		3) <u>Average Daily Intake Rate</u> (mg/kg-dny) (1) x (2)	
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene CA	5.0E-3				
Ethylbenzene CA	5.0E-3				
Hexane, n-	5.0E-3				
Methyl t-Butyl Ether CA	5.0E-3				
Toluene CA	5,0E-3				
Xylene CA	1.0E-2				L

	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	Dit - Dady Holgin (Hg)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

	RBCA SITE ASSESSMENT				Tier 2 Wor	ksheet 8.1	
Site Name: DP793	Site Location: 4035 Park BI					9/23/1999	7 OF 9
SOIL EXPOSURE PATHWAYS	Exposure Concentration	CHECKED IF PAT	HWAY S ACTIVE)			(OTAL PATHWAT I	HIXAC (mgrag-usy)
MOESTION	1) <u>Source Medium</u>		e Multiplier WkAT) (kg/kg-day)	3) <u>Average Daily Intake Rate</u> (mg/kg-day) (1) x (2)		(Sum Intake values from dermal & Ingestion routes.)	
Constituents of Concern	Surface Soit Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene CA	5.0E-3					<u> </u>	
Ethylbenzene CA	5.0E- <u>3</u>					<u> </u>	
Hexane, n-	5.0E-3	ļ			 		
Methyl t-Butyl Ether CA	5.0E-3	<u> </u>				 	
Toluene CA	5.0E-3	 	 	 			
Xylene CA	1.0E-2	<u> </u>	<u> </u>	٠	·		

NOTE:	ABS = Dermal absorption factor (dim AF = Adherance factor (mg/cm^2) AT = Averaging time (days)) BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Intake rate (mg/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)	
					•

Software: GSI R8CA Spreadsheet

Serial: G-443-CSX-444

Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

RBCA SITE ASSESSMENT							Tier 2 Worksheet 8.1				
Site Name: DP793	Site Location: 4035	Park Blvd., Oakl	and, California	Completed By: C	eorge Convers	Date Completed:	9/23/1999		8 OF		
Old Hame, Dr. 100				NTRATION AND							
GROUNDWATER EXPOSURE PATHY	VAYS BELLIUMAN AND AND AND AND AND AND AND AND AND A			CHECKED IF PAT	HWAY IS ACTIVE)						
SOIL: LEACHING TO GROUNDWATER	Exposure Concentration					,					
GROUNDWATER INGESTION	1) <u>Source Medium</u>		2) NAF Value (L/kg) Receptor Gro		3) Exposure Medium Groundwater: POE Conc. (mg/L) (1)/(2)		4) Exposure Multiplier (IR:EFXEDY(BWXAT) (LAg-day)		5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) x (4)		
Constituents of Concern	Soit Concentration (mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential		
Benzene CA	4.5E+0	1.2E+2	1.2E+2	3.8E-2	3.8E-2	3.5E- <u>3</u>	1.2E-2	1.3E-4	4.5E-4		
Ethylbenzene CA	1.8E+1	2.9E+2	2.9E+2	6.1E-2	6.1E-2	9.8E-3	2.7E-2	6.0E-4	1.7E-3		
Hexane, n-	2.0E+3	1.5E+3	1.5E+3	1.4E+0	1.4E+0	9.8E-3	2.7E-2	1.3E-2	3.7E-2		
Methyl I-Butyl Ether CA	5.0E-3	3.8E+1	3.8E+1	1.3E-4	1,3E-4	3.5E-3_	1.2E-2	4.6E-7	1.6E-6		
Toluene CA	3.5E+1	4.1E+2	4.1E+2	8.4E-2	8.4E-2	9.8E-3	2.7E-2	8.3E-4	2.3E-3		
Xylene CA	1.3E+2	7.4E+2	7.4E+2	1.8E-1	1.8E-1	9.8E-3	2.7E-2	1.7E-3	4.8E-3		

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm²2) AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (lvs/day) IR = Intake rate (L/day)	POE ≈ Point of exposure SA ≈ Skin exposure area (cm²2/day)

Software: GSI RBCA Spreadsheet Version: 1.0.1

Seriat: G-443-CSX-444

		RBCA SITE	SSESSMENT	•					Tier 2 Wo	rksheet 8.1	
Site Name: DP793	Site Location: 4035	Park Blvd., Oa	kland, Californ			George Conve		Date Complete	d: 9/23/1999		<u>9 OF</u>
GROUNDWATER EXPOSURE PATH											NTAKE (mg/kg-day)
GROUNDWATER: INGESTION	1) Source Medium	2) NAF V			3) Exposure Medium 4) Exposure Multiplier Groundwater: POE Conc. (mg/L) (1)(2) (IR/EFXED)/(BW/AT) (U/kg-day)			5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) x (4)		(Maximum intake of active pathways soil leaching & groundwater routes.)	
	Groundwater Conc. (mg/L)	On Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial		On-Site Commercial	Off-Site Residenti
Constituents of Concern	5.3E+0	1.0E+0	1.0E+0	5.3E+0	5.3E+0	3.5E-3	1.2E-2	1.9E-2	6.2E-2	1.9E-2	6.2E-2
Benzene CA	3.0E+0	1.0E+0	1.0E+0	3.0E+0	3.0E+0	9.8E-3	2.7E-2	2.9E-2	8.2E-2	2.9E-2	8.2E-2
thylbenzene CA	3,0E+0 8.9E+1	1.0E+0	1.0E+0	8.9E+1	8.9E+1	9.8E-3	2.7 <u>E-2</u>	8.7E-1	2.4E+0	8.7E-1	2.4E+0
lexane, n-		1.0E+0	1.0E+0	5.4E-1	5.4E-1	3.5E-3	1,2E-2	1.9E-3	6.3E-3	1.9E-3	6.3E-3
dethyl t-Butyl Ether CA	5.4E-1	1.0E+0	1.0E+0	1.5E+1	1.5E+1	9.8E-3	2.7E-2	1.5E-1	4.1E-1	1.5E-1	4,1E-1
Toluene CA Xviene CA	1.5E+1 1.5E+1	1.0E+0	1.0E+0	1.5E+1	1.5E+1	9.8E-3	2.7E-2	1.5E-1	4.1E-1	1,5E-1_	4.1E-1

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm²2) AT = Averaging time (days)	BW ≈ Body weight (kg) CF ≈ Units conversion factor ED ≈ Expoeure duræ8on (yrs)	EF ≈ Exposure frequencey (days/yr) ET ≈ Exposure time (hrs/day) IR ≈ Intake rate (L/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
	A1 = Averaging time (days)			

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA S	ITE ASSESSI	MENT					Tier 2 Worl	SHEEL D.Z	
ite Name: DP793		Site Location: 4	035 Park Blvd.,	Oakland, Cali	fornia	Completed By:	George Convers	e	Date Completed:	9/23/1999	1 0
te Hamo, Of 100				TIER 2 PAT	HWAY RISK	CALCULATION	<u> </u>				
ITDOOR AIR EXPOSURE PAT	(one of the same of the					ICHECKED IF PA	THWAYS ARE AC	NVE)		And the second second	
JTDOOR AIR EXPOSURE PAT	HWAYS A THE PARTY	THE RESERVE THE PERSON THE	C.A	RCINOGENIC R	SK				TOXIC EFFECTS	<u> </u>	
	(2) Total Carcinogenic (1) EPA Intake Rate (mg/kg/day) Carcinogenic On-Site Off-Sit		arcinogenic	(3) Inhalation Slope Factor	(4) Individ Risk (2 On-Site	2) x (3) Off-Site	On-Site	Toxicant (mg/kg/day) Off-Site Residential	(6) Inhalation Reference Dosa (mg/kg-day)	(7) Individual Hazard Quo On-Site Commercial	tual COC tient (5) / (6) Off-Site Residential
onstituents of Concern	Classification	Commercial	Residential	(mg/kg-day)^-1	Commercial	Residential 1.2E-6	Commercial 2.4E-5	2.7E-5	2.0E-2	1.2E-3	1.4E-3
enzene CA	A	8.4E-6	1.2E-5	1.0E-1	8.4E-7	1.25-0	3.9E-5	5.2E-5	2.9E-1	1.4E-4	1.8E-4
hylbenzene CA	!			- 			1.9E-2	2.0E-2	5.7E-2	3.4E-1	3.6E-1
exane, n-		2 AF 7	3.8E-9	1.7E-3	5.1E-10	6.5E-12	1				
ethyl t-Butyl Ether CA		3.0E-7	3.0E-8	1,72-0	0.12.10		5.8E-5	6.5E-5	5.7E-2	1.0E-3	1.1E-3
stuene CA	<u> </u>			 			1.0E-4	1.3E-4	8.6E-2	1.2E-3	1,5E-3
ylene CA	<u> </u>	Total Batt	hway Carcinog	nonie Risk =	8.4E-7	1,2E-6	<u> </u>	otal Pathway i	Hazard Index =	3.4E-1	3.6E-1

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA SITE ASSESSI	MENT			Tier 2 Work	sheet 8.2
Site Name: DP793	Si	ite Location: 4035 Park Blvd.	Oakland, Califor	nia Completed By: G	eorge Converse	Date Completed:	9/23/1999 2 OF
JILO TEGETIO, D. 155				WAY RISK CALCULATION			<u></u>
NDOOR AIR EXPOSURE PATH	WAYS THE EYAM			(CHECKED IF PATI	WATS ARE ACTIVE)	TOXIC EFFECTS	nas of Software Cognic and Architecture (Constant Constant Constan
	(1) EPA Carcinogenic	(2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site	(3) Inhalation Slope Factor	(4) Individual COC Risk (2) x (3) On-Site Commercial	(5) Total Toxicant Intake Rate (mg/kg/day) On-Site Commercial	(6) Inhalation Reference Dose (mg/kg-day)	(7) Individual COC Hazard Quotient (5) / (6) On-Site Commerciat
Constituents of Concern	Classification	Commercial	(mg/kg-day)^-1 1.0E-1	1,2E-4	3,3E-3	2.0E-2	1.6E-1
Benzene CA	A	1.2E-3	1.05+1	1,25-3	3.6E-3	2.9E-1	1.3E-2
Ethylbenzene CA			 		3.3E+0	5.7E-2	5.7E+1
lexane, n- Methyl t-Butyl Ether CA		4.0E-5	1.7E-3	7.0E-8			1.55.1
Toluene CA					8.7E-3	5.7E-2	1.5E-1
Xylene CA	D				1,1E-2	8.6E-2	1.3E-1
1,7,0,10 (0.1)		Total Pathway Carcinog	genic Risk =	0.0E+0 1.2E-4	Total Pathway I	Hazard Index ≖	0.0E+0 5.8E+1

Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

		RBCA S	SITE ASSESS!	MENT					Tier 2 Wor	sheet 8.2	<u></u>
Site Name: DP793		Site Location: 4	035 Park Blvd.	, Oakland, Cali	fornia	Completed By:	George Conver	se	Date Completed	9/23/1999	3 OF
Site Maille, DI 195						CALCULATION	l				
			ego- ord affect ourse processor societies	and the second s	na lab and decident to	8					
OIL EXPOSURE PATHWAYS		M-14-12-18-18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·		CHECKED IF PA	THWATS ARE AL		TOXIC EFFECTS	an kalendari da kal	i al Sittinita soni komen i pietiti
	(1) EPA	Intaka Rate	arcinogenic (mg/kg/day)	(3) Oral Slope Factor	(4) Indivi	dual COC 2) x (3) On-Site	1-7	Toxicant (mg/kg/day) On-Site	(6) Oral Reference Dose		dual COC tient (5) / (6) On-Site
Constituents of Concern	Carcinogenic Classification			(mg/kg-day)^-1	Residential	Commercial	Residential	Commercial	(mg/kg-day)	Residential	Commercial
Benzene CA	A			1.0E-1					2.0E-2		
thylbenzene CA									1.0E-1		
lexane, n-									6.0E-2		
lethyl t-Butyl Ether CA	7			1.7E-3			<u> </u>		5.0E-3		
oluene CA	р 1						<u> </u>	ļ	1.1E-1		
(ylene CA	D					<u></u>	l	<u> </u>	2.5E-1		<u> </u>
Niene on		T 4 1 D - 4	L Canalasa	vania Diek w	0.0E+0	0.0E+0	1 <i>1</i>	otal Pathway I	łazard Index = [0.0E+0	0.0E+0
		i otal Pati	hway Carcinog	genic Risk - 1	0.01.0	0.02.5			•		

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial G-443-CSX-444

		RBCA S	SITE ASSESSI	VIENT					Tier 2 Worl	ksheet 8.2	
site Name: DP793		Site Location: 4	035 Park Blvd.				George Convers	e	Date Completed	9/23/1999	4 01
				TIER 2 PAT	HWAY RISK	CALCULATION	1				
ROUNDWATER EXPOSURE PA	and Surpersident to be	d i na sid Riconia				ICHECKED IF PA	THWAYS ARE AC	IIVE) WARRANG		Alter tone	
OUNDWATER EXPOSURE PA	THWAYS WHITE	新华州市村市市市市村市市市村市市	C	ARCINOGENIC RI	SK	151.251.35			TOXIC EFFECTS		
		(2) Total Ca		(3) Oral	(4) Individ	tual COC	(5) Total	Toxicant	(6) Oral	(7) Indivi	tual COC
	(1) EPA Carcinogenic		(mg/kg/day) Off-Site	Slope Factor	Risk (2 On-Site	2) x (3) Off-Site	Intake Rate On-Site Commercial	(mg/kg/day) Off-Site Residential	Reference Dose (mg/kg-day)	Hazard Quo On-Site Commercial	tient (5) / (6) Off-Site Residential
nstituents of Concern	Classification	Commercial	Residential	(mg/kg-day)^-1 1.0E-1	Commercial 1.9E-3	Residential 6.2E-3	5.2E-2	1,5E-1	2.0E-2	2.6E+0	7.3E+0
nzene CA	A	1.9E-2	6.2E-2	1.05-1	1.50-3	U.ZL-U	2.9E-2	8.2E-2	1.0E-1	2.9E-1	8.2E-1
ylbenzene CA				+			8.7E-1	2.4E+0	6.0E-2	1.5E+1	4.1E+1
xane, n-		4.05.0	6.3E-3	1.7E-3	3.3E-6	1.1E-5	5.3E-3	1.5E-2	5.0E-3	1.1E+0	3.0E+0
thyl t-Butyl Ether CA		1,9E <u>-3</u>	6.3E-3	1.1.6-0	0.02.0	7,1,32	1.5E-1	4.1E-1_	1.1E-1	1.3E+0	3.7E+0
stuene CA			 			 	1.5E-1	4.1E-1	2.5E-1	5.9E-1	1.6E+0
ylene CA	D	Total Pati	way Carcino	genic Risk =	1.9E-3	6.2E-3	Τ.	otal Pathway i	Hazard Index ≖	2.0E+1	5.7E+1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

Tier 2 Worksheet 8.3

Site Name: DP793

Completed By: George Converse

Site Location: 4035 Park Blvd., Oakland, California

Date Completed: 9/23/1999

1 of 1

		BASELINE	CARCINOGE	NIC RISK			BASELI	NE TOXIC EF	FECTS	
	Individual		Cumulative		Risk Limit(s) Exceeded?	Hazard (Quotient	Hazaro	d Index	Toxicity Limit(s) Exceeded?
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	3-3-2-1-1-1
OUTDOOR AIR	EXPOSURE PAT	HWAYS		中的体系的影響	计图 图 40以	學學的學問	网络军场和 图显示	PERENDENS N	100	
Complete:	1.2E-6	1.0E-6	1.2E-6	N/A	=	3.6E-1	1.0E+0	3.6E-1	N/A	
INDOOR AIR EX	POSURE PATHY	WAYS	學用學術	公司的企业 市		第1条1966的19	別保險 15%	構造体が複雑	1102 1700 AS 1832	
Complete:	1.2E-4	1.0E-6	1.2E-4	N/A	=	5.7E+1	1.0E+0	5.8E+1	N/A	THE RESERVE OF
SOIL EXPOSUR	E PATHWAYS	建筑 建筑		國際原產數	加品電影響					阿斯斯斯科斯
Complete:	NC	1.0E-6	NC	N/A	=	NC	1.0E+0	NC	N/A	
GROUNDWATE	R EXPOSURE P.	ATHWAYS	能到機能開		中国的智慧。	No. 14 Sept.	AND DESCRIPTIONS	Name of	Will SHOW HE	
Complete:	6.2E-3	1.0E-6	6.2E-3	N/A	•	4.1E+1	1.0E+0	5.7E+1	N/A	
		- The second	And district to the widow		ray Property Care Services	110000	(E) (美丽 4 (186))	医 经 附		
CRITICAL EXP	OSURE PATHWA	Y (Select Ma	ximum Values I	rom Complet	te Pathways)			The Second Property of		
	6.2E-3	1.0E-6	6.2E-3	N/A	=	5.7E+1	1.0E+0	5.8E+1	N/A	m

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Serial: G-443-CSX-444

		RBCA SITE A	SSESSME	NT				L		Tier 2 Work	sheet 9.1	
Site Name: DP	793 4035 Park Blvd., Qakland, California		No. 00 (Cont.) (Co.)	y. George Co. fed: 9/23/199								1.0F 1
	SURFACE SOIL SSTL VA (< 3.3 FT BGS)		Turget	(Cless A & B) Risk (Class C) azard Quotient	1.0E+0	D MCL exp	osure limit?		Groundwar	culation Option ter DAF Option	Elec. Accep	otor Super ional vert, dispersi
CONSTITUEN	ITS OF CONCERN	Representative Concentration	X Soi	I Leaching to		ingesti and De	on, Inhalation ermal Contact	x	Construction Worker	Applicable SSTL	SSTL Exceeded 7	Required CRF
CAS No.	Name	(mg/kg)	Residential 65 feet	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial (on-site)	1	Commercial; (on-site)	(mg/kg)	-m- If yes	Only if "yes" left
	Benzene CA	5.0E-3	1.0E-1	3.4E-1	NA	NA	NA		3.3E+1	1.0E-1		<1
	Ethylbenzene CA	5.0E-3	1.1E+3	3.0E+3	NA	NA	NA		>Res	1.1E+3		<1
	Hexane, n-	5.0E-3	>Res	>Res	NA	NA	NA		>Res	>Res		<1
	Methyl t-Butyl Ether CA	5.0E-3	1.9E+0	6.3E+0	NA	NA	NA		1.9E+3	1.9E+0		<1
	Toluene CA	5.0E-3	1.7E+3	4.7E+3	NA	NA	NA		5.2E+3	1.7E+3		<1
	Xylene CA	1.0E-2	6.7E+3	>Res	NA.	NA	NA	L	>Res	6.7E+3		<1

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved

Version 1.0.1

		RBCA SITE	ASSESSM	ENT					- 6		- 4	ier 2 Workshe	01 9.2	
Site Location: 4	793 1035 Park Blvd., Oakland, California	4	Completed By Date Complete											1 OF 1
	BSURFACE SOIL SSTL (> 3.3 FT BGS)		Target	(Class A & B) Risk (Class C) azard Quotient	1 0E-5	1500	MCL expo	sure limit? sure limit?				culation Option iter DAF Option	Elec Accep	otor Super. ional vert. dispers
				S5TL F	Results For Comp	leto E	xposure P	athways ("x" if	Com	plete)			1 cen	
	Concen	Representative Concentration	X Soi	Leaching to	Groundwater	x	200 000 000	latilization to door Air	x	100000000000000000000000000000000000000	iatilization to	Applicable SSTL	SSTL Exceeded	Required CRF
iewer-	ISTITUENTS OF CONCERN		Residential: 65 feet		Regulatory(MCL) (on-site)		on-site)	Commercial (on-site)	1111	sidential 65 feet	Commercial (on-site)	(mg/kg)	-m- If yes	Only if "yes" lef
CAS No.	Name Benzene CA	(mg/kg) 4.5E+0	1.0E-1	3.4E-1	NA	Г	NA	9.8E-2	3	.9E+0	6.5E+0	9.8E-2		4.6E+01
	Ethylbenzene CA	1.8E+1	1.1E+3	3.0E+3	NA	Г	NA	2.1E+3		>Res	>Res	1.1E+3		<1
		2.0E+3	>Res	>Res	NA.		NA	5.0E+1		>Res	>Res	5.0E+1	-	4.0E+01
The second secon	Hexane, n- Methyl t-Butyl Ether CA	5.0E-3	1.9E+0	6.3E+0	NA	Т	NA	1.9E+1	7	7.7E+2	1.3E+3	1.9E+0		<1
		3.5E+1	1.7E+3	4.7E+3	NA.	Т	NA	6.5E+2		>Res	>Res	6.5E+2		<1
	Toluene CA Xylene CA	1,3E+2	6.7E+3	>Res	NA.		NA	1.8E+3		>Res	>Res	1.8E+3		<1

>Res_indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Version: 1.0.1

ite Name: DP	793 1035 Park Blvd., Oakland, California			r: George Con led: 9/23/1999									1 OF 1
	ROUNDWATER SSTL VA		Target	: (Class A & B) Risk (Class C) azard Quotient	1.0E-5	☐ MCL expo					ulation Option: er DAF Option.	Elec. Accept	tor Super onal vert, dispers
		Representative Concentration	_	SSTL	Results For Com	Groundwa	Pathways ("x" if ater Volatilization Indoor Air	1	Groundwat	er Volatilization utdoor Air	Applicable SSTL	SSTL Exceeded	Required CRF
CONSTITUEN	TS OF CONCERN	70.75.84	Residential:		Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)		lesidential (on-site)	Commercial (on-site)	(mg/L	-m- if yes	Only if "yes" let
CAS No.	Name	(mg/L)	65 feet	-	NA	NA	7.4E-2		NA	3.5E+1	8.5E-4	-	6.2E+03
71-43-3	Benzene CA	5.3E+0	8.5E-4	2.9E-3		NA.	>Sol		NA	>Sol	3.7E+0		<1
100-41-4	Ethylbenzene CA	3.0E+0	3.7E+0	1.0E+1	NA.		5.1E+0	-	NA	>Sol	2.2E+0		4.1E+01
	Hexane, n-	8.9E+1	2.2E+0	6.1E+0	NA NA	NA NA		1	NA	1.1E+3	4.9E-2	-	1.1E+01
	Methyl t-Butyl Ether CA	5.4E-1	4.9E-2	1.7E-1	NA .	NA.	7.7E+0	\vdash		>Sol	4.0E+0		4.0E+00
	Toluene CA	1.5E+1		1.1E+1	NA NA	NA.	1.5E+2	⊢	NA	_	9.1E+0		2.0E+00
	7 Xylene CA	1.5E+1	9.1E+0	2.6E+1	NA NA	NA.	>Sol	L	NA	>Sol	9.16.40	1 7	2.00.

Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

Tier 2 Worksheet 9.3

Version: 1.0.1

APPENDIX I

Output Table 1

		DAGIO(A)	noc lob	Identification	DP793 -2		Software:	GS1 RBCA Spreadsheet			
	Site Name: D	0793 - BACKYAF 035 Park Blvd., O			9/23/99		Version.	1.01			
	Site Location: 4	035 Park Blvd., U	zkianu, Calillai C	ompleted By:	George Convers	e e					
				umpiered by.	Courge warmen						
TE: values w	hich differ from Tier 1 default values are shown	IN DOIG ITAINS BIT	L CE PLOT III IO G.								
					Commercia	I/Industrial	Surface				
posure	_		Residential	14.45	Chronic	Constrctn		Definition (Units)	Residential	Constrctn	
	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Cittoric	CONSTITUTE	A	Contaminated soil area (cm^2)	2.3E+06	2.3E+06	
C	Averaging time for carcinogens (yr)	70			05	1	W	Langth of affect, soil parallel to wind (cm)	<u>1,2E+03</u>	<u>1,2E+03</u>	
'n	Averaging time for non-carcinogens (yr)	30	6	16	25	•	W.gw	Length of affect, soil parallel to groundwater (cm	2.1E+03		
	Body Weight (kg)	70	15	35	70		Ueir Ueir	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
•		30	6	16	25	1		Air mixing zone height (cm)	2.0E+02		
	Exposure Duration (yr)	30			25	1	delta	Thickness of affected surface soils (cm)	1.0E+02		
	Averaging time for vapor flux (yr)	350			250	180	Las	Particulate areal amission rate (g/cm^2/s)	6.9E-14		
7	Exposure Frequency (days/yr)	350			250		Pe	Paukniste ateat annisarou rare /Arcu, 50%			
	Exposure Frequency for dermal exposure	2			1						
gw.	Ingestion Rate of Water (L/day)		200		50	100			Value		
5	Ingestion Rate of Soil (mg/day)	100	200		9.4E+01		Groundwate	r Definition (Units)			
adi	Adjusted soit ing. rate (mg-yr/kg-d)	1.1E+02			20		delta.gw	Groundwater mixing zone depth (cm)	4.9E+02		
kaug Kalin	Inhalation rate indoor (m^3/day)	15			20	10	i -	Groundwater infiltration rate (cm/yr)	5,1E+01		
le.out	Inhalation rate outdoor (m^3/day)	20			5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.1E+03		
	Skin surface area (dermal) (cm^2)	5.8E+03		2.0E+03		5,62703	Ugw.tr	Groundwater seepage velocity (cm/yr)	6.8E+03		
A	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1.7E+03		Ks	Saturated hydraulic conductivity(cm/s)	1.0E-03		
Aadj	Soil to Skin adherence factor	1						Groundwater gradient (cm/cm)	6.5E-02		
1	Soil to skin additionation	FALSE			FALSE		grad	Width of groundwater source zone (cm)	2.1E+03		
AFs	Age adjustment on soil ingestion	FALSE			FALSE		Sw	Depth of groundwater source zone (cm)	4.9E+02		
AFd	Age adjustment on skin surface area	TRUE					Sd	Depth of groundwater source zone (on)	3,0E-01		
X.	Use EPA tox data for air (or PEL based)?	FALSÉ					phi.eff	Effective porosity in water-bearing unit	4.6E-02		
wMCL?	Use MCL as exposure limit in groundwater?	FALSE					loc.sat	Fraction organic carbon in water-bearing unit	TRUE		
							BIO?	Is bioattenuation considered?	7.3E+00		
							BC	Biodegradation Capacity (mg/L)	7.3ETQU		
					Commerc	iat/Industrial			Value		
Astrix of Expo	osed Persons to	Residential			Chronic	Constrctn	Soil	Definition (Units)	3.0E+01		
Complete Exp	osure Pathways						hc	Capillary zone thickness (cm)			
Outdoor Air P	athways:				FALSE	FALSE	hv	Vedose zone thickness (cm)	2.1E+02		
SS.v	Volatiles and Particulates from Surface Soils	FALSE			TRUE	•	rho	Soil density (g/cm^3)	1.7		
S.v	Volatilization from Subsurface Soils	TRUE			TRUE		foc	Fraction of organic carbon in vadose zone	0.24		
GW.v	Volatilization from Groundwater	FALSE			INOC		phi	Soil parosity in vadose zone	0.38		
Indoor Air Pa					TRUE		Lgw	Depth to groundwater (cm)	3.0E+02		
S.5	Vapors from Subsurface Soils	FALSE					Ls	Depth to top of affected subsurface soil (cm)	2.1E+02		
	Vapors from Groundwater	FALSE			TRUE		Laubs	Thickness of affected subsurface soils (cm)	<u>7.6E+Q2</u>		
GW.b	• •						pH	Spil/groundwater pH	6.5		
Soil Pathway	B:	FALSE			FALSE	TRUE	þΠ	Oping Contamination Free	capillary	yado\$e	foundati
SS.d	Direct Ingestion and Dermal Contact						_L* · ·	Volumetric water content	0.342	0.12	0.12
Groundwater	Pathways:	TRUE			TRUE		phi.w		0.038	0,26	0.26
GW.i	Groundwater Ingestion	TRUE			TRUE		phi.a	Volumetric air content	v. -	*	
S.I	Leaching to Groundwater from all Soils	INOE							Residential	Commercial	
							Building	Definition (Units)	2.0E+02	3.0E+02	
							Lb	Building volume/area ratio (cm)		2.3E-04	
			-tAtal		Comme	rcial/Industrial	ER	Building air exchange rate (s^-1)	1.4E-04	2.55.704	
Matrix of Re	ceptor Distance		dential	_	Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01		
and Location	n On- or Off-Site	Distance	On-Site		Clarated	TRUE	eta	Foundation crack fraction	0,01		
GW	Groundwater receptor (cm)	5.6E+03	FALSE			TRUE	_ ,				
S	Inhalation receptor (cm)	2.0E+03	FALSE			INOL					
3	and the state of t						Transport				
								s Definition (Units)	Residential	Commercial	
							Groundwa				
Matrix of		Individual	Cumulative	<u>. </u>			-	Longitudinal dispersivity (cm)	3.2E+02		
Target Risk	127	1.0E-06		_			ex	Longitudinal dispersivity (cm)	3.2E+01		
TRab	Target Risk (class A&B carcinogens)	1.0E-05					ay	Transverse dispersivity (cm)	3.2E+00		
TRC	Target Risk (class C carcinogens)	1.0E+00					az	Vertical dispersivity (cm)	J. E.L 00		
THQ	Target Hazard Quotient						Vapor		2 35 163		
Opt	Calculation Option (1, 2, or 3)	2					dcy	Transverse dispersion coefficient (cm)	2,3E+02 1,6E+02		
	RBCA Tier	2						Vertical dispersion coefficient (cm)	1 64 4(17		

RBCA CHEMICAL DATABASE

Physical Property Data

CAS		Molecu Weig MW	ht		oeffi	ision cients in wate (cm2/s Dwat		log (Koc) o log(Kd) (@ 20 - 25 C log(l/kg)		,	.aw Constant 0 - 25 C) (unitless) ref	Vapor Pressure (@ 20 - 25 C) (mm Hg) ref	Solubility (@ 20 - 25 ((mg/L)	C)	 base pKb	ref
71-43-3 Benzene CA 100-41-4 Ethylbenzene CA 110-54-3 Hexane, n- 1634-04-4 Methyl t-Butyl Ether CA 108-88-3 Toluene CA 1330-20-7 Xylene CA	type 0 0 0 0 0	78.1 106.2 86.2 88.146 92.4 106.2	5	9.30E-02 7.60E-02	4	1.10E-05 8.50E-06 7.77E-06 9.41E-05 9.40E-06 8.50E-06	4	1.58 1.98 2.68 1.08 2.13 2.38	4	5.29E-03 7.69E-03 1.22E-01 5.77E-04 6.25E-03 6.97E-03	2.20E-01 3.20E-01 5.07E+00 4 2.40E-02 2.60E-01 2.90E-01	9.52E+01 1.00E+01 1.50E+02 4 2.49E+02 3.00E+01 7.00E+00	1.75E+03 1.52E+02 1.30E+01 4.80E+04 5.15E+02 1.98E+02	5		

Site Name: DP793 - BACKYARDS

Site Location: 4035 Park Blvd., Oaklan Completed By: George Converse

Date Completed: 9/23/1999

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Toxicity Data

			feren Dose g/kg/d	lay)		1/(n	Slope Factor ng/kg/	s day)		EPA Weight	ls Constituent
CAS Number	Constituent	Oral RfD oral		Inhalation RfD inhal	ref	Oral SF_oral	ref	Inhalation SF_inhal	ref	Evidence	Carcinogenic ?
	Benzene CA	2.00E-02		2.00E-02	30	1.00E-01		1.00E-01		Α	TRUE
	Ethylbenzene CA	1.00E-01		2.86E-01	30						FALSE FALSE
	Hexane, n-	6.00E-02	Α	5.71E-02	R	-		4 705 03	31	2	RUE OEHHA drai
1634-04-4	Methyl t-Butyl Ether CA	5,00E-03				1.73E-03		1.73E-03	31	r D	FALSE
108-88-3	3 Toluene CA	1.10E-01		5.70E-02	30					Ď	FALSE
1330-20-7	7 Xylene CA	2.50E-01		8.57E-02	30						

Site Name: DP793 - BACKYARDS

Site Location: 4035 Park Blvd., Oakl Completed By: George Converse Date Completed: 9/23/1999

Software version: 1.0.1

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

0.0		kimum inant Level	Permissit Exposur Limit PEL/	·e	Abs	lative orption ctors	Detect Groundwa (mg/L)		imits Soil (mg/kg)	(First-Or	lf Life der Decay) lays)	
CAS Number Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermai		ref	ref	Saturated	Unsaturated	ref
(12117201	1.00E-03	701010110	3.20E+00		1	0.5	0.0005	- 1	0.005	720	720	
71-43-3 Benzene CA	7.00E-02		4.34E+02		1	0.5	0.0005		0.005	228	228	
100-41-4 Ethylbenzene CA	7.002-02		4,0 12 02		1	0.5						
110-54-3 Hexane, n-	}		1.44E+02		•	0.5	0.005		0.05			
1634-04-4 Methyl t-Butyl Ether CA					1	0.5	0.0005		0.005	28	28	
108-88-3 Taluene CA	1.50E-01		1.47E+02		- 1		0.0003		0.005	360	360	
1330-20-7 Xylene CA	1.75E+00		4.34E+02		1	0.5	0.002		0.005	300		

Site Name: DP793 - BACKYARDS

Site Location: 4035 Park Blvd., Oakland, California

Completed By: George Converse Date Completed: 9/23/1999

Software version: 1.0.1

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration						
CONSTITUENT	in Groundwater		in Surface Soil		in Subsurface Soil		
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note	
Benzene CA	1.6E-1	max	5.0E-3		1.1E+1	ISW	
Ethylbenzene CA	1.9E-1	max	5.0E-3		2.1E+1	ISW	
Hexane, n-	5.1E+0	max	5.0E-3		8.7E+2	ISW	
Methyl t-Butyl Ether CA	2.3E-2	max	5.0E-3		5.0E-3		
Toluene CA	3.4E-1	max	5.0E-3		6.2E+1	ISW	
Xviene CA	1.0E+0	max	1.0E-2		1.2E+2	ISW	

Site Name: DP793 - BACKYARDS Site Location: 4035 Park Blvd., Oakland, California

Completed By: George Converse Date Completed: 9/23/1999

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT	Mole Fraction of Constituent in Source Material
Benzene CA	
Ethylbenzene CA	
Hexane, n-	
Methyl t-Butyl Ether CA	
Toluene CA	
Xylene CA	

Site Name: DP793 - BACKYARDS Completed By: George Converse Site Location: 4035 Park Blvd., Oakland Date Completed: 9/23/1999

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)

Dilution Attenuation Factor

(DAF) in Groundwater

(DAF) III GIOGIGMAICI			
Residential	Comm./ind.		
Receptor	Receptor		
1.2E+0	1.0E+0		
	1.0E+0		
	Residential Receptor 1.2E+0 1.2E+0 1.2E+0 1.2E+0		

Site Name: DP793 - BACKYARDS Site Location: 4035 Park Blvd., Oakland, California Completed By: George Converse Date Completed: 9/23/1999

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Half-Life of Constituent (day)
Benzene CA	
Ethylbenzene CA	
Hexane, n-	
Methyl t-Butyl Ether CA	
Toluene CA	
Xvlene CA	

Site Name: DP793 - BACKYARDS Completed By: George Converse Site Location: 4035 Park Blvd., Oakland, Date Completed: 9/23/1999

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Site Name: DP793 - BACKYARDS Completed By: George Converse Site Location: 4035 Park Blvd., Oakland, California Date Completed: 9/23/1999

	RBCA SITE	ASSESSMENT		Tier 2 Wo	rksheet 8.1
Site Name: DP793 - BACKYAF	ens s	te Location: 4035 Park Blvd	Oakland, Californi Completed By: Go	eorge Convers Date Completed	9/23/1999 1 O
Site Marile. DF193 - BACKTAI			ENTRATION AND INTAKE CALCUL		
OUTDOOR AIR EXPOSURE PATH	WAYS THE EVENT BY AN	工作事件等數件或個目的 基準的對稱 L	CHECKED IF PATHWAY IS ACTIVE)	med And for the second will be transfer to the second of t	da nakata da keri atau atau atau kana da da da da da da da da da kana ka da d Caranteria
SURFACE SOILS: VAPOR AND	Exposure Concentration			4) f	5) Average Daily Intake Rate
DUST INHALATION	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Outdoor Air: POE Cond. (mg/m²3) (1) / (2)	4) Exposure Multiplier (IRxEFxED)(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)
	Surface Soil Conc.		1 1		
Constituents of Concern	(mg/kg)				
Benzene CA	5.0E-3				
Ethylbenzene CA	5.0E-3				
Hexane, n-	5.0E-3				
Methyl t-Butyl Ether CA	5.0E-3		_		
Toluene CA	5.0E-3				
Xylene CA	1.0E-2				<u> </u>

NOTE:	ABS = Dermat absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR ≃ (nhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GSt RBCA Spreadsheet Version: 1,0,1

Serial: G-443-CSX-444

Tier 2 Worksheet 8.1

Site Name: DP793 - BACKYARDS	Site Location: 4035 Park Blvd., Oakland, Californi Completed By: George Convers Date Completed: 9/23/1999
Site Name: UP/93 - BACKTARDS	One Location: 4000 director, constitution of the constitution of

OUTDOOR AIR EXPOSURE PATH	WAYS SEASON SYND			(CHECKED IF PAT	HWAY IS ACTIVE)				ment and a second
UBSURFACE SOILS; VAPOR	Exposure Concentration								
INHALATION	1) Source Medium	2) NAF Value (m^3/kg) 3) Exposure Medium Receptor Outdoor Air: POE Conc. (mg/m/3) (1)/(4) Exposure Multiplier (IRXEFXEDY(BWxAT) (m^3/kg-day)		5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)		
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	Off-Site Residential_	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residentia
Benzene CA	1.1E+1	4.6E+4	4.6E+4	2.4E-4	2.4E-4	7.0E-2	1.2E-1	1.7E-5	2.8E-5
Ethylbenzene CA	2.1E+1	9.6E+4	9.6E+4	2.2E-4	2.2E-4	2.0E-1	2.7E-1	4.3E-5	6.0E-5
	8.7E+2	2.2E+4	2.7E+4	3.9E-2	3.2E-2	2.0E-1	2.7E-1	7.6E-3	8.8E-3
Hexane, n- Methyl t-Butyl Ether CA	5.0E-3	1.6E+5	1.6E+5	3.2E-8	3.2E-8	7.0E-2	1.2E-1	2.2E-9	3.8E-9
Toluene CA	6.2E+1	1.5E+5	1.5E+5	4.2E-4	4.2E-4	2.0E-1	2.7E-1	8.2E-5	1.1E-4
Xylene CA	1.2E+2	2.8E+5	2.8E+5	4.3E-4	4.3E-4	2.0E-1	2.7E-1	8.4E-5	1.2E-4

AF = Adhera	al absorption factor (dim) noe factor (mg/cm^2) nog time (days) BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/day)
1			

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

2 OF 9

Tier 2 Worksheet 8.1

Site Name: DP793 - BACKYARDS Site Location: 4035 Park Blvd., Oakland, Ca Completed By: George Converse TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

Date Completed: 9/23/1999

3 OF 9

TER: YAPOR	Exposure Concentration		TOTAL PATHWAY INTAKE (mg/kg-day)
R AIR EXPOSURE PATHWAYS	我看到我们的	(CHECKED IF PATHWAY IS ACTIVE) 科神教教	

GROUNDWATER: VAPOR	Exposure Concentration					TOTAL PATHWAY I	NTAKE (mg/kg-day)
MHALATION	Source Medium Groundwater Conc.	2) <u>NAF Value (m^3/L)</u> Receptor	3) Exposure Medium Outdoor Air: POE Conc. (mg/m²3) (1) / (2)	4) <u>Exposure Multiplier</u> (RKEFXED)/(BWXAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	(Sum inteks valu subsurface & gro	•
Constituents of Concern	(mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Sile Commercial	Off-Site Residentia
Benzene CA	1.6E-1	2.4E+5	6.6E-7	7.0E-2	4.6E-8	1.7E-5	2.8E-5
Ethylbenzene CA	1.9E-1	2.4E+5	7.9E-7	2.0E-1	1.5E-7	4.3E-5	6.0E-5
Hexane, n-	5.1E+0	8.6E+3	5.9E-4	2.0E-1	1.2E-4	7.7E-3	8.8E-3
Methyl t-Butyl Ether CA	2.3E-2	1.3E+5	1.8E-7	. 7.0E-2	1.2E-8	1.5E-8	3.8E-9
Toluene CA	3.4E-1	2.5E+5	1.4E-6	2.0E-1	2.7E-7	8.2E-5	1.1E-4
Xylene CA	1.0E+0	2.6E+5	3.8E-6	2.0E-1	7.4E-7	8.5E-5	1.2E-4

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yra)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
---	---	--	---

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

Tier 2 Worksheet 8.1 RBCA SITE ASSESSMENT Site Location: 4035 Park Blvd., Oakland, Californi Completed By: George Convers Date Completed: 9/23/1999 4 OF 9 Site Name: DP793 - BACKYARDS TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION INDOOR AIR EXPOSURE PATHWAYS Exposure Concentration SUBSURFACE SOILS: 5) Average Daily Intake Rate 4) Exposure Multiplier 3) Exposure Medium 1) Source Medium 2) NAF Value (m^3/kg) VAPOR INTRUSION TO BUILDINGS (IRxEFxED)/(BWhAT) (m*3/kg-day) (mg/kg-day) (3) X (4) Indoor Air: POE Conc. (mg/m^3) {1} / (2) Receptor Subsurface Soil Conc. On-Site Commercial On-Site Commercial On-Site Commercial Constituents of Concern (mg/kg) On-Site Commercial 1.1E-3 7.0E-2 6.8E+2 1.6E-2 1.1E+1 Benzene CA 2.9E-3 2.0E-1 1.5E-2 1.4E+3 Ethylbenzene CA 2.1E+1 2.0E-1 9.9E-1 5.0E+0 8.7E+2 1.7E+2 Hexane, n-

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhelation rate (m^3/day)	POE ≂ Point of exposure SA ≃ Skin exposure area (cm^2/day)	

2.4E+3

2.2E+3

4.2E+3

Software: GSI RBCA Spreadsheet

7.0E-2

2.0E-1

2.0E-1

Serial: G-443-C5X-444

1.5E-7

5.4E-3

5.6E-3

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

5.0E-3

6.2E+1

1.2E+2

Methyl t-Butyl Ether CA

Toluene CA

Xylene CA

Version: 1.0.1

2.1E-6

2.8E-2

2.9E-2

		RBCA SITE ASSESSMENT			Tier 2 W	orksheet 8.1
Site Name: DP793 - BACKYAR		ite Location: 4035 Park Blvd	., Oakland, Ca Completed By:	000/30 000	Date Completed: 9/23/1999	5 OF
IDOOR AIR EXPOSURE PATHWA	YS WHITE DAY SEE SEE SEE			· · · · · · · · · · · · · · · · · · ·		TOTAL PATHWAY INTAKE (mg/kg-de)
ROUNDWATER:	Exposure Concentration	<u> </u>			5) Average Daily Intake Rate	TOTAL PATHWAY INTAKE (mg/kg-da) (Sum intaks values from subsurface
LPOR INTRUSION TO BUILDINGS	1) <u>Source Medium</u>	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m²3) (1)/(2)	4) Exposure Multiplier (IRxEFxED)(8WxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)	& groundwater routes.)
	Groundwater Conc.	On-Site Commercial	On-Site Commercial	On-Site Commercial		On-Site Commer
pastituents of Concern	(mg/L) 1.6E-1	5.2E+2	3.1E-4	7.0E-2	2.2E-5	1.1E-3
enzene CA thylbenzene CA	1.9E-1	5.0E+2	3.8E-4	2.0E-1	7.4E-5	2.9E-3 1.0E+0
exane, n-	5.1E+0	1.7E+1	2.9E-1	2.0E-1	5.7E-2 1.7E-6	1.9E-6
ethyl t-Butyl Ether CA	2.3E-2	9.4E+2	2.5E-5	7.0E-2	1.7E-6	5.6E-3
oluene CA	3.4E-1	5.2E+2	6.5E-4	2.0E-1 2.0E-1	3.5E-4	6.0E-3
(viene CA	1.0E+0	5.6E+2	1.8E-3	2.06-1	3.50-4	L

	NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhelation rete (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
ı				

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

	RBCA SITE ASSESS	MENT		Tier 2 Wo	rksheet B.1	
Site Name: DP793 - BACKYAR	tD Site Location: 4035 Park Blvd.,	Oakland, California	Completed By: George Co	Date Completed: 9/23/1999	6 OF	
Old Walle, Di 100			N AND INTAKE CALCULA	TION		
CONTEXPOSURE DATHWAYS		CHECKED IF PATHWAY IS	CTIVE SHARE TO BE THE			
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration				· · · · · · · · · · · · · · · · · · ·	
DERMAL CONTACT	1) <u>Source Medium</u>	2) Exposure Multiplier (SAxAFxABSxCFxEFxED)(BV4xAT) (kg/kg-dby)		3) <u>Average Daity Intake Rate</u> (mg/kg-day) (1) r (2)		
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene CA	5.0E-3					
Ethylbenzene CA	5.0E-3					
Hexane, n-	5.0E-3					
Methyl t-Butyl Ether CA	5.0E-3					
Toluene CA	5.0E-3					
Xylene CA	1.0E-2		1	<u> </u>	<u> </u>	

NOTE:	ABS = Dermal absorption factor (dim AF = Adherance factor (mg/cm^2) AT = Averaging time (days)) BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/ ET = Exposure time (hrs/day) IR = Intake rate (mg/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software: GS1 RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

5.0E-3

5.0E-3

5.0E-3 1.0E-2

Tier 2 Worksheet 8.1

Site Name: DP793 - BACKYAF	RDS Site Location: 4035 Park B	lvd., Oakland, C	Completed By: 0	Seorge Convers	Date Completed:	9/23/1999	7 OF 1	
	TIER 2 EXPOSU	RE CONCENTR	ATION AND INT	AKE CALCULA	TION		• •	
SOIL EXPOSURE PATHWAYS		(CHECKED IF PAT	HWAY IS ACTIVE)			amaeus2		
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration						NTAKE (mg/kg-day)	
INGESTION	1) Source Medium		Exposure Multiplier (RxCFxEFxEDY(BWkAT) (kg/kg-day)		aily Intake Rate v) (1) × (2)	(Sum intake values from dermal & ingestion routes.)		
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene CA	5.0E-3		<u></u>			<u> </u>		
Ethylbenzene CA	5.0E-3					 		
<u> </u>		1	I .		1			

AT ≈ Averaging time (days) ED ≈ Exposure duration (yrs) IR ≈ Intake rate (mg/day)	AF = Adherence factor (mg/cm^2)	= Exposure frequencey (days/yr) POE = Point of exposure Exposure time (hrs/day) SA = Skin exposure eres (cm^2/day) intake rate (mg/day)
---	---------------------------------	---

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Hexane, n-

Toluene CA Xylene CA

Methyl t-Butyl Ether CA

Tier 2 Worksheet 8.1

	S Site Location: 4035			NTRATION AND					
ROUNDWATER EXPOSURE PATH	WAYS 地域 经活动			CHECKED IF PAT	IWAY IS ACTIVE)				All of the last seed that we
COL-LEACHING TO GROUNDWATER BROUNDWATER INGESTION	1) Source Medium	2) <u>NAF Va</u> Reco	alue (L/kg) aptor	3) <u>Exposul</u> Groundwater: POE		4) Exposure Multiplier (IRXEFXED)(BWXAT) (L/kg-day)		5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) x (4)	
Constituents of Concern	Soil Concentration (mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Sile Residents
lenzene CA	1.1E+1	8.0E+1	9.7E+1	1.4E-1	1.1E-1	3.5E-3	1.2E-2	4.8E-4	1.3E-3
hylbenzene CA	2.1E+1	2.0E+2	2.4E+2	1.0E-1	8.6E-2	9.8E-3	2.7E-2	1.0E-3	2.4E-3
	8.7E+2	1.0E+3	1.2E+3	8.7E-1	7.1E-1	9.8E-3	2.7E-2	8.5E-3	1.9E-2
exane, n-	5.0E-3	2.6E+1	3.1E+1	1.9E-4	1.6E-4	3.5E-3	1.2E-2	6.8E-7	1.9E- <u>6</u>
lethyl t-Butyl Ether CA	6.2E+1	2.8E+2	3.4E+2	2.2E-1	1.8E-1	9.8E-3	2.7E-2	2.1E-3	4.9E-3
Toluene CA	1,2E+2	5.0E+2	6.1E+2	2.4E-1	2.0E-1	9.8E-3	2.7E-2	2.3E-3	5.4E-3

NOTE: ABS = Dermal at AF = Adherance AT = Averaging I	 EF = Exposure frequencey (deys/yr) ET = Exposure time (hrs/day) IR = intake rate (Uday)	POE = Point of exposure SA = Skin exposure area (cm*2/day)
1		The state of the s

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		DDCA SITE	SSESSMENT						Tier 2 Wo	orksheet 8.1	
					Completed By:	George Conve	irse	Date Complete	d: 9/23/1999		9 OF 9
Site Name: DP793 - BACKYARDS	Site Location: 4035	Park Blvd., Oal	R 2 EXPOSU	RE CONCENTI							
GROUNDWATER EXPOSURE PATHWA										7.7	
GROUNDWATER EXPOSURE PATHWA		立海岸港		CHECKED IF PA	IHWAT IS ACT	V - 1 Million and Sold	many field to the Secretary and the Land Section	and a demand here a life and a restrict to the		MAX. PATHWAY II	(TAKE (mg/kg-day)
GROUNDWATER: INGESTION	Exposure Concentration	2) NAF V	alua (dim)	3) Exposur	e Medium	4) Exposur	e Multiplier	5) Average Daily Intake Rate (mg/kg-day) (3) x (4)		(Maximum intake of active pathways soil leaching & groundwater routes.)	
	1) <u>Source Medium</u>	2) NAT X		Groundwater: POE		(IRxEFxED)/(BW	λΑΤ) (L/kg-day)				
	Groundwater Conc. (mg/L)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial 5.6E-4	Off-Site Residential
Constituents of Concern Benzene CA	1.6E-1	1.0E+0	1.2E+0	1.6E-1	1.3E-1	3.5E-3	1.2 <u>C-2</u>	5.6E-4 1.9E-3	1.5E-3 4.3E-3	1.9E-3	4.3E-3
Ethylbenzene CA	1.9E-1	1.0E+0	1.2E+0	1.9E-1	1.6E-1	9.8E-3 9.8E-3	2.7E-2 2.7E-2	5.0E-2	1,1E-1	5.0E-2	1.1E-1
Hexane, n-	5.1E+0	1.0E+0	1,2E+0	5.1E+0	4.2E+0 1.9E-2	3.5E-3	1.2E-2	8.0E-5	2.2E-4	8.0E-5	2.2E-4
Methyl t-Butyl Ether CA	2.3E-2	1.0E+0	1.2E+0 1.2E+0	2.3E-2 3.4E-1	2.8E-1	9.8E-3	2.7E-2	3.3E-3	7.7E-3	3.3E-3	7.7E-3
Toluene CA	3.4E-1 1.0E+0	1.0E+0 1.0E+0	1.2E+0	1.0E+0	8.2E-1	9.8E-3	2.7E-2	9.8E-3	2.3E-2	9.8E-3	2.3E-2
Xylene CA	1,02.0										

BW = Body weight (kg)

CF = Units conversion factor

ED = Exposure duration (yrs)

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

POE = Point of exposure

SA = Skin exposure area (cm^2/day)

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

NOTE: ABS = Dermal absorption factor (dim)

AT = Averaging time (days)

AF = Adherance factor (mg/cm^2)

EF = Exposure frequencey (days/yr)

ET = Exposure time (hrs/day)

IR = Intake rate (L/day)

			ITE ASSESSM			Completed By:	George Converse		Date Completed:	9/23/1999	1 0
Name: DP793 - BACKYAI	RDS S	ite Location: 40	35 Park Blvd.,	Oakland, Calif TIER 2 PAT		ALCUL ATION	1				
Name: DP793 - BACK IN	WAYS ENERGY	建	(Althorna tar. 17)	DOINOGENIC RI	的 建筑建筑 ■	CHECKED IF PA	THWAYS ARE ACT	IVE) SHOWING	TOXIC EFFECTS	(7) Individ	lual COC
		(2) Total Ca	arcinogenic	(3) Inhalation Slope Factor	(4) Individ Risk (2	(3) 2) x (3)	(5) Total Intake Rate (Оп-Site	Toxicant (mg/kg/day) Off-Site	Reference Dose	Hazard Quo On-Site Commercial	tient (5) / (6) Off-Site Residential
	(1) EPA Carcinogenic Classification	On-Site Commercial	Off-Site Residential	(mg/kg-day)^-1	On-Site Commercial 1,7E-6	Off-Site Residential 2,8E-6	Commercial 4.7E-5	Residential 6.6E-5	(mg/kg-day) 2.0E-2 2.9E-1	2.4E-3 1.5E-4	3.3E-3 2.1E-4
zene CA	A	1.7E-5	2.8E-5	1.0E-1			4.3E-5 7.7E-3	6.0E-5 8.8E-3	5.7E-2	1.3E-1	1.5E-1
ibenzene CA ane, n- hyl t-Butyl Ether CA	?	1.5E-8	3.8E-9	1.7E-3	2.5E-11	6.5E-12	8.2E-5 8.5E-5	1.1E-4 1.2E-4	5.7E-2 8.6E-2	1.4E-3 9.9E-4	2.0E-3 1.4E-3
uene CA ene CA	D D			i- Blok #	1.7E-6	2.8E-6	<u> </u>	otal Pathway	Hazard Index =	1.4E-1	1.6E-1
		Total Pat	hway Carcino	genic Risk –							

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

		RBCA SITE ASSESSI	MENT			Tier 2 Work	sheet 8.2	
ite Name: DP793 - BACKY	ARDS S	ite Location: 4035 Park Blvd.,	Oakland, Californ	nia Completed By: C	eorge Converse	Date Completed:	9/23/1999 2 0/	
			TIER 2 PATHY	WAY RISK CALCULATION				
		Marketon de la Participa de constal de la Sulfation de la Sulf		PART OF THE PART OF THE PART	HWAYS ARE ACTIVE) 翻網館中			
IDOOR AIR EXPOSURE PATH	WAYS THE BEST OF THE SECOND		RCINOGENIC RISK		MANAGE STATE OF THE PROPERTY O	TOXIC EFFECTS		
	(1) EPA Carcinogenic	(2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site	(3) Inhalation Slope Factor	(4) Individual COC Risk (2) x (3) On-Site	(5) Total Toxicant Intake Rate (mg/kg/day) On-Site	(6) Inhalation Reference Dose	(7) Individual COC Hazard Quotient (5) / (6) On-Site	
constituents of Concern	Classification			Commercial	Commercial	(mg/kg-day)	Commercial	
Benzene CA	Α	1.1E-3	1.0E-1	1.1E-4	3.2E-3	2.0E-2	1.6E-1	
thylbenzene CA					2.9E-3	2.9E-1	1.0E-2	
exane, n-					1.0E+0	5.7E-2	1.8E+1	
lethyl t-Butyl Ether CA	7	1,9E-6	1.7E-3	3.2E-9				
oluene CA	D				5,6E-3	5.7E-2	9.8E-2	
vlene CA	D				6,0E-3	8.6E-2	7.0E-2	
Vielle On		Total Pathway Carcinog	enic Risk =	0.0E+0 1.1E-4	Total Pathway i	Hazard Index =	0.0E+0 1.9E+1	

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

				TIER 2 PAT	HWAY RISK	CALCULATION					
1						CHECKED IF PA	THWAYS ARE AC	TIVE) WINA 推翻		n dadin i cari Litar la cara i car	
EXPOSURE PATHWAYS CHECKED IF PATHWAYS ARE ACTIVE)									TOXIC EFFECTS		
	(1) EPA Carcinogenic	(2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site On-Site Residential Commercial		(3) Oral Slope Factor (mg/kg-day)^-1	(4) Individual COC Risk (2) x (3) On-Site On-Site Residential Commercial		(5) Total Toxicant Intake Rate (mg/kg/day) On-Site On-Site Residential Commercial		(6) Oral Reference Dosa (mg/kg-day)	(7) Individual COC Hezerd Quotient (5) / (6 On-Site On-Si Residential Comme	
stituents of Concern	Classification	Residential	Commercial	1.0E-1	110010071101	T			2.0E-2		
zene CA	A			 ""= 					1.0E-1		
/Ibenzene CA				 					6.0E-2		
ane, n-				1.7E-3					5.0E-3		
nyl I-Butyl Ether CA		·		1.7 = 5					1.1E-1		
ene CA			 	- 		· · · · · · · · · · · · · · · · · · ·			2.5E-1		
ne CA	D										
Total Pathway Carcinogenic Risk = 0.0E+0 0.0E+0 Total Pathway								lazard index = [0.0E+0	0.0E+0	

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1,0,1 Serial: G-443-CSX-444

		RBCA S	ITE ASSESSM		fornia	Completed By: (George Convers	e	Date Completed:	9/23/1999	4 OF 4
Site Name: DP793 - BACKYAF				TIER 2 PAT	HWAY RISK I	CALCULATION					
GROUNDWATER EXPOSURE PAT	HWAYS WILLIAM					CHECKED IF PA	THWAYS ARE ACT	IVE) WHILE	TOXIC EFFECTS		
Occursion	(1) EPA Carcinogenic	(2) Total Ca Intake Rate On-Site	arcinogenic	(3) Oral Slope Factor	(4) Individ Risk (2 On-Site	dual COC 2) x (3) Off-Site	(5) Total Intake Rate On-Site Commercial	Toxicant	(6) Oral Reference Dose (mg/kg-day)	(7) Individ Hazard Quol On-Site Commercial	tient (5) / (6) Off-Sile Residential
Constituents of Concern Benzene CA	Classification	Commercial 5.6E-4	Residential 1.5E-3	(mg/kg-day)^-1 1.0E-1	Commercial 5.6E-5	Residential 1.5E-4	1.6E-3 1.9E-3	3.6E-3 4.3E-3	2.0E-2 1.0E-1	7.8E-2 1.9E-2	1.8E-1 4.3E-2
Ethylbenzene CA Hexane, n-				1.7E-3	1,4E-7	3.8E-7	5.0E-2 2.3E-4	1.1E-1 5.2E-4	6.0E-2 5.0E-3	8.3E-1 4.5E-2	1.9E+0 1.0E-1 7.0E-2
Methyl t-Butyl Ether CA Foluene CA	7 D	8.0E-5	2.2E-4	1.7E-3	1,75		3.3E-3 9.8E-3	7.7E-3 2.3E-2	1.1E-1 2.5E-1	3.0E-2 3.9E-2	9.0E-2
Xylene CA	<u> </u>	Total Pati	hway Carcinog	jenic Risk =	5.6E-5	1.5E-4] 7	otal Pathway l	Hazard Index =	1.0E+0	2.4E+0

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

Tier 2 Worksheet 8.2

Tier 2 Worksheet 8.3

Site Name: DP793 - BACKYARDS

Completed By: George Converse Date Completed: 9/23/1999

Site Location: 4035 Park Blvd., Oakland, California

9/23/1999 1 of 1

Site Location: 4			TIER 2	BASELIN	E RISK SUI	MMARY TAI	BLE			
		BASELINE	CARCINOGE	NIC RISK			BASELI	NE TOXIC EF	FECTS	
					Risk Limit(s)					Toxicity Limit(s)
	Individual	COC Risk	Cumulative	COC Risk	Exceeded?	Hazard (Quotient	Hazaro	Index	Exceeded?
EXPOSURE	Maximum	Target	Total	Target		Maximum	Applicable	Total Value	Applicable Limit	
PATHWAY	Value	Risk	Value	Risk	English trade on any order to be a realist to	Value	Limit		排除的时候 注册的	THE BOOK OF THE PARTY OF THE PA
PATHWAY OUTDOOR AIR E	XPOSURE PAT	HWAYS 編纂語	3. 万年城(日本)	以外,如此的社会的	TANKA MARKATAN	国公司公司的	Contracts on the standard of the	10234 Charach and and and actions		
Complete:	2.8E-6	1.0E-6	2.8E-6	N/A	•	1.5E-1	1.0E+0	1.6E-1	N/A	
INDOOR AIR EX	DOSUBE BATH	WAYS INTO A		Sesse Manual Const	10000000000000000000000000000000000000	Park Branch	Christia in the state of the st			
Complete:	1,1E-4	1.0E-6	1.1E-4	N/A		1.8E+1	1.0E+0	1.9E+1	N/A	=
	Marin distribution and the second							Frest Barrie		
SOIL EXPOSUR	E PATHWAYS 🎚	MANAGE POLICE STREET	1.127. 40人人的网络 英国市场	MARKET MERCHANISM STATE OF STA	公外公開時期中代共和國政治的共和國					
Complete:	NC	1.0E-6	NC	N/A		NC	1.0E+0	NC	N/A	Transfers and Liberal Constitution
GROUNDWATE	D EYPOSIIRE P	ATHWAYS 4				小 心理性 学师:				
Complete:	1.5E-4	1.0E-6	1.5E-4	N/A		1.9E+0	1.0E+0	2.4E+0	N/A	
					<u> </u>			<u> </u>	<u></u>	
CRITICAL EXPO	SURE PATHW	AY (Select Ma	ximum Values	From Complet	e Pathways)					
	1.5E-4	1.0E-6	1.5E-4	N/A		1.8E+1	1.0E+0	1.9E+1	N/A	
		機動物質	i and the second	唯 對原始時間	IN ESTABLISHED TO			神 山紅岩 松玉 (644) 19		

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Serial: G-443-CSX-444

								Tier 2 Works	heet 9.1	
	RBCA SITE AS									
TACKVAPOS		Completed By	George Conv	/erse						1 OF 1
Site Name: DP793 - BACKYARDS		Date Complete	ed: 9/23/1999				Cak	ulation Option:	2	
Site Location: 4035 Park Blvd., Oakland, California		Target Risk	(Class A & B)	1.0E-6	☐ MCL exp			or DAE Ontion	Flec. Accept	or Super
SURFACE SOIL SSTL VAL	JES		Risk (Class C)		☐ PEL expo	SUFE IITIM	O, Calleria		(One-direction	onal vert. dispersion)
(< 3.3 FT BGS)		Target Ha	zard Quotient	1 0E+0						
(0.01 / Dec/			SSTL Results	For Complete Ex	posure Pathwa	ays ("x" if Com	olete)		SSTL	
	Representative				Ingesti	on, Inhalation	Construction	Applicable SSTL	Exceeded 2	Required CRF
	Concentration	X Soil	Leaching to C	Sroundwater		ermai Contact	X Worker Commercial:	3315	··	
CONSTITUENTS OF CONCERN		Residential:	Commercial:	Regulatory(MCL):	Residential: (on-site)	Commercial: (on-site)	(on-site)	(mg/kg)		Only if "yes" left
CAS No. Name	(mg/kg)	185 feet	(an-site)	(on-site)	NA	NA.	3.3E+1	2.3E-1		<1<1
71-43-3 Benzene CA	5.0E-3	1.4E+0	2.3E-1	NA _	NA NA	NA.	>Res	8.0E+2		<1<1
100-41-4 Ethylbenzene CA	5.0E-3	8.0E+2	2.0E+3	NA	NA NA	NA NA	>Res	>Res		<1
	5.0E-3	>Res_	>Res	NA	 	NA NA	1.9E+3	1.4E+0		<1
110-54-3 Hexane, n-	5.0E-3	1.4E+0	4.3E+0	NA_	NA_	NA NA	5.2E+3	1.2E+3		<1
1634-04-4 Methyl I-Butyl Ether CA	5.0E-3	1.2E+3	3.2E+3	NA_	NA NA	NA NA	>Res	5.1E+3		<1
108-88-3 Toluene CA	1.0E-2	5.1E+3	>Res	NA NA	NA _					
1330-20-7 Xylene CA			Indicator ris	k.hased larget CO	ncentration gr	eater than cons	tituent residual satu	ration value		
		>Res	II IUICAIGS 119	W DOOD					. 0.440.00	2V 444

O Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA SITE	ASSESSM	ENT					<u>T</u>	ier 2 Workshe	et 9.2	
	793 - BACKYARDS 4035 Park Blvd., Oakland, California		Completed By Date Completed	-								1 OF 1
	BSURFACE SOIL SSTL \ (> 3.3 FT BGS)		Target	(Class A & B) Risk (Class C) azard Quotient	1.0E-5		xposure limit? xposure limit?			culation Option: ter DAF Option:	Elec. Accep	otor Super. conal vert. dispersion
CONSTITUEN	ITS OF CONCERN	Representative Concentration		Leaching to (Groundwater	X Soil	re Pathways ("x" if I Volatilization to Indoor Air	Soil Vo	latilization to	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residentiel: 185 feet	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residenti (on-site		Residential: 65 feet	Commercial: (on-site)	(mg/kg)	"■" If yes	Only if "yes" left
	Benzene CA	1.1E+1	1.4E+0	2.3E-1	NA	NA	9.8E-2	3.9E+0	6.5E+0	9.8E-2	<u> </u>	1.1E+02
	Ethylbenzene CA	2.1E+1	8.0E+2	2.0E+3	NA	NA	2.1E+3	>Res	>Res	8.0E+2		<1
	Hexane, n-	8.7E+2	>Res	>Res	NA	NA	5.0E+1	>Res	>Res	5.0E+1		1.7E+01
	Methyl t-Butyl Ether CA	5.0E-3	1.4E+0	4.3E+0	NA	NA	1.9E+1	7.7E+2	1.3E+3	1.4E+0		<1
	Toluene CA	6.2E+1	1.2E+3	3.2E+3	NA	NA	6.5E+2	>Res	>Res	6.5E+2		<1
	Xylene CA	1.2E+2	5.1E+3	>Res	NA	NA	1.8E+3	>Res	>Res	1.8E+3		<1

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

		RBCA	SITE ASSE	ESSMENT							Her 2 wor	KSHEEL 9.3	
	793 - BACKYARDS 1035 Park Blvd., Oakland, California			y: George Con ted: 9/23/1999									1 OF 1
	ROUNDWATER SSTL VA	Target Risk (Class A & B) Target Risk (Class C) Target Hazard Quotient			1.0E-6 1.0E-5	☐ MCL expos				Calculation Option: 2 Groundwater DAF Option: Elec. Acceptor Super. (One-directional vert. dis			
	ar on one	Representative Concentration	x	SSTL Groundwater	Results For Com	Groundwa	Pathways ("x" if iter Volatilization indoor Air	li	Groundwat	er Volatilization	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	TS OF CONCERN Name	(mg/L)	Residential: 185 feet		Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)		esidential (on-site)	Commercial: (on-site)	(mg/L		Only if "yes" left
	Benzene CA	1.6E-1	1.7E-2	2.9E-3	NA	NA	7.4E-2		NA	3.5E+1	2.9E-3	<u> </u>	5.6E+01
	Ethylbenzene CA	1.9E-1	4.0E+0	1.0E+1	NA _	NA .	>Sol	L.	NA	>Sol	4.0E+0		<1
	Hexane, n-	5.1E+0	2.9E+0	6.1E+0	NA	NA .	5.1E+0	<u> </u>	NA	>Sol	2.9E+0		2.0E+00
	Methyl t-Butyl Ether CA	2.3E-2	5.6E-2	1.7E-1	NA_	NA_	7.7E+0	<u> </u>	NA	1.1E+3	5.6E-2	<u> </u>	<1
	3 Toluene CA	3.4E-1	4.4E+0	1.1E+1	NA	NA	1.5E+2		NA .	>Sol	4.4E+0		<1
	7 Xylene CA	1.0E+0	1.0E+1	2.6E+1	NA	NA	>Sol	L	NA	>Sol	1.0E+1		<1
				>Sol	indicates risk-ba	sed target conc	entration greater	than	constituent	solubility			

Serial: G-443-C5X-444

APPENDIX J

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

			1_1 1-	doptilication	DP793 -3		Software	GSI RUCA Spreadsheet			
	Site Name: DI	7793		dentification Completed	9/23/99		Version				
	Site Location: W	EST BRIGHTON	WAS DEAAGINGIG	mpleted By.							
		in hald italies and		лиринен оу.	Coolde Courelee						
: values v	which differ from Tier 1 default values are shown	EL POIG HAIRC2 SAIG	Griderin Ind.								
			Residential		Commercial		Surface	- m 1st - MA-th-1	Residential	Constrata	
******		Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn		Definition (Units)	9.JE+05	9.3E+05	
meter	Definition (Units)	70	1. 91.0	1				Contaminated soil area (cm^2)		1.5E+03	
	Averaging time for carcinogens (yr)	30	6	16	25	1	w	Length of affect, soil parallel to wind (cm)	1.5E+03	TAFIA	
	Averaging time for non-carcinogens (yr)			35	70		W.gw	Length of affect, soil parallel to groundwater (cm.	1.5E+03		
	Body Weight (kg)	70	15		25	1	Uair	Ambient air velocity in mixing zone (cm/s)	2.3E+02		
	Exposure Duration (yr)	30	6	16	25	i	delta	Air mixing zone height (cm)	2.0E+02		
	Averaging time for vapor flux (yr)	30				180	L53	Thickness of affected surface soils (cm)	1.0E+02		
	Exposure Frequency (days/yr)	350			250	tou	Pe	Particulate areal emission rate (g/cm^2/s)	6.9E-14		
	Exposure Frequency for dermal exposure	350			250		re	E ditrottio al out all more all all all all all all all all all al			
)erm	Ingestion Rate of Water (L/day)	2			1						
*		100	200		50	100			Value		
	Ingestion Rate of Soil (mg/day)	1.1E+02	200		9.4E+01			Definition (Units)	4.9E+02		
5j	Adjusted soil ing. rate (mg-yr/kg-d)	15			20		della.gw	Groundwater mixing zone depth (cm)	6.1E±01		
in	Inhalation rate indoor (m^3/day)				20	10	l .	Groundwater infiltration rate (cm/yr)			
out	Inhalation rate outdoor (m*3/day)	20		2.0E+03	5.8E+03	5.8E+03	Ugw	Groundwater Darcy velocity (cm/yr)	4.0E+03		
	Skin surface area (dermal) (cm^2)	5.8E+03		2.00.403	1,7E+03	*** *	Ugw.tr	Groundwater seepage velocity (cm/yr)	1.3E+04		
dj	Adjusted dermal area (cm^2-yr/kg)	2.1E+03			1,16,100		Ks	Saturated hydraulic conductivity(cm/s)	1.0E-03		
-7	Soil to Skin adherence factor	1			FALSE		prad	Groundwater gradient (cm/cm)	1.3E-01		
	Age adjustment on soil ingestion	FALSE					Sw	Width of groundwater source zone (cm)	6.1E+02		
d	Age adjustment on skin surface area	FALSE			FALSE		Sd Sd	Depth of groundwater source zone (cm)	2.4E+02		
.0	Use EPA lox data for air (or PEL based)?	TRUE						Effective porosity in water-bearing unit	3.0E-01		
	Use MCL as exposure limit in groundwater?	FALSE					phi.eff	Fraction organic carbon in water-bearing unit	4.6E-92		
ACL7	Ose MCC as exhoso a mint at Brown and						foc.sat	Is bigation considered?	TRUE		
							BIO?		7.3E+00		
							BC	Biodegradation Capacity (mg/L)	1.55		
_		Residential			Commercia	Modustrial		m m 141 114-11-3	Value		
trix of Exp	ased Persons to	Tree Brown			Chronic	Constroin	Soll	Definition (Units)	4.6E+01	•	
	posure Pathways						hc	Capillary zone thickness (cm)	1.8E+02		
Adoor Air	Pathways:	FALSE			FALSE	FALSE	hv	Vadose zone thickness (cm)	1.7		
.¥	Volatiles and Particulates from Surface Solls	TRUE			TRUE		rho	Soil density (g/cm^3)	9.24		
,	Volatilization from Subsurface Soils	FALSE			TRUE		1oc	Fraction of organic carbon in vadose zone	0.38		
N.Y	Volatilization from Groundwater	PACSE					phi	Spil porosity in vadose zone			
soor Air Pa	athways:	E41.05			TRUE		Lgw	Depth to groundwater (cm)	2,3 <u>E+02</u>		
b	Vacors from Subsurface Soils	FALSE			TRUE		Ls	Depth to top of affected subsurface soil (cm)	2.JE+02		
N,b	Vapors from Groundwater	FALSE			11100		Lsubs	Thickness of affected subsurface soils (cm)	1.5E+02		
A Pathwa	/a:				FALSE.	TRUE	pН	Soil/groundwater pH	6.5		* 4 - 4 1
S.d	Direct Ingestion and Dermal Contact	FALSE			FALSE	711011	F : :	-	capillary	vadose	foundation
	r Pathways:				*01/F		phi.w	Volumetric water content	0.342	0.12	0.12
	Groundwater Ingestion	TRUE			TRUE		phi.a	Volumetric air content	0.038	0.26	0.26
W.i	Leaching to Groundwater from all Soils	TRUE			TRUE		buira	A Admittant on man and and and			
.1	FREE MA CO COLUMNIA CONTRACTOR OF THE PARTY						m, 10-41	Definition (Units)	Residential	Commercial	
							Bullding	Building volume/area ratio (cm)	2.0E+02	3.0E+02	
							Lb		1.4E-04	2.3E-04	
		Darl	dential		Commerc	ial/Industrial	_ ER	Building air exchange rate (s^-1)	1.5E+01	p /	
atrix of Re	ceptor Distance		On-Site	_	Distance	On-Site	Lork	Foundation crack thickness (cm)	0.01		
nd Locatio	n On- or Off-Site	Distance	FALSE			TRUE	eta	Foundation crack fraction	0.01		
W	Groundwater receptor (cm)	6.9E+03				TRUE					
	inhalation receptor (cm)	2.0E+03	FALSE								
•							Transport				
								s Definition (Units)	Residential	Commercial	-
							Groundwi				
Autrix of	_	individual	Cumulative	_				Longitudinal dispersivity (cm)	3.6E+02		
	Target Risk (class A&B carcinogens)	1.0E-06					BX -	Transverse dispersivity (cm)	3.6E+01		
arget Rist	I SUDGE KRZK (CHS29 N/P.D. CRECK MARCH 19)	1.0E-05					8y		3.6E+00		
Rab	m i de - d						BŽ	Vertical dispersivity (cm)	5.0E-90		
IRab IRc	Target Risk (class C carcinogens)										
TRab TRC	Target Risk (class C carcinogens) Target Hazard Quotient	1.0E+00					Vapor		2 25402		
Target Rist TRab TRc THQ Opl	Target Risk (class C carcinogens)							Transverse dispersion coefficient (cm) Vertical dispersion coefficient (cm)	2.3E+02 1.6E+02		

RBCA CHEMICAL DATABASE

Physical Property Data

CAS Number Constituent	type	Molecular Weight (g/mole) MW re	Co in air (cm2/s)	effi	sion cients in water (cm2/s) Dwat _ref	log (Koc) or log(Kd) (@ 20 - 25 C) log(I/kg) ref	(@ 2 (<u>atm-m3)</u> mol	.aw Constant (0 - 25 C) (unitless) ref	Vapor Pressure (@ 20 - 25 C) (mm Hg) ref	Solubility (@ 20 - 25 ((mg/L)		ref
Number Constituent 71-43-3 Benzene CA 100-41-4 Ethylbenzene CA 110-54-3 Hexane, n- 1634-04-4 Methyl I-Butyl Ether CA 108-88-3 Toluene CA 1330-20-7 Xylene CA	0 0 0 0 0	78.1 106.2 86.2 5 88.146 92.4 106.2	9.30E-02 7.60E-02 2.00E-01 7.92E-02 8.50E-02 7.20E-02	4	1.10E-05 8.50E-06 7.77E-06 4 9.41E-05 9.40E-06 8.50E-06	1.58 1.98 2.68 4 1.08 2.13 2.38	5.29E-03 7.69E-03 1.22E-01 5.77E-04 6.25E-03 6.97E-03	5.07E+00 4 2.40E-02 2.60E-01	9.52E+01 1.00E+01 1.50E+02 2.49E+02 3.00E+01 7.00E+00	1.75E+03 1.52E+02 1.30E+01 4.80E+04 5.15E+02 1.98E+02	5	

Site Name: DP793

Site Location: WEST BRIGHTON AVE Completed By: George Converse

Date Completed: 9/23/1999

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Toxicity Data

CAS	0				ref	ı	Slope actor ng/kg/c		<u>ref</u>	EPA Weight of Evidence	Is Constituent Carcinogenic ?
Number	Constituent	2.00E-02		2.00E-02	30	1.00E-01		1.00E-01		Α	TRUE
	Benzene CA	1.00E-01		2.86E-01	30						FALSE
	Ethylbenzene CA	6.00E-02	Α	5.71E-02	R	_		-			FALSE
	Hexane, n-		^	5.7 12 02	• • •	1.73E-03		1.73E-03	31	?	RUE OEHHA draf
1634-04-4	Methyl t-Butyl Ether CA	5.00E-03		5.70E-02	30	,,,,,,,				D	FALSE
	3 Toluene CA 7 Xylene CA	1.10E-01 2,50E-01		B.57E-02	30					D	FALSE

Site Name: DP793

Site Location: WEST BRIGHTON A Completed By: George Converse

Date Completed: 9/23/1999

Software version: 1.0.1

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

		kimum inant Level	Permissi Exposu Limit PEL	10	Abs	lative orption ictors	Detect Groundwa (mg/L)	ter	imits Soil (mg/kg)	(First-Or	If Life der Decay) lays)	
CAS	• • • • • • • • • • • • • • • • • • • •	reference	(mg/m3)	ref	Oral	Dermal		ref	ref	Saturated	Unsaturated	ref
Number Constituent	MCL (mg/L)	1816191100	3.20E+00		1	0.5	0.0005		0.005	720	720	
71-43-3 Benzene CA 100-41-4 Ethylbenzene CA	1.00E-03 7.00E-02		4.34E+02		1	0.5	0.0005		0.005	228	228	
110-54-3 Hexane, n-	1				1	0.5						
1634-04-4 Methyl t-Butyl Ether CA	•		1.44E+02		1	0.5	0.005		0.05		20	
	1.50E-01		1.47E+02		1	0.5	0.0005		0.005	28	28	
108-88-3 Toluene CA 1330-20-7 Xylene CA	1.75E+00		4.34E+02		1	0.5	0.002		0.005	360	360	

Site Name: DP793

Site Location: WEST BRIGHTON AVE SEWER., Oakland, Cal Completed By: George Converse Date Completed: 9/23/1999

Software version: 1.0.1

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

		Rente	esentative COC Conc	entration	
CONSTITUENT	in Groundw value (mg/L)		in Surface Soil value (mg/kg) note	in Subsurfac value (mg/kg)	note
Benzene CA	3.5E+0	max	5.0E-3	4.1E-1	ISW
Ethylbenzene CA	3.6E-1	max	5.0E-3	8.7E-1	ISW
Hexane, n-	1.7E+1	max	5.0E-3	6.7E+1	ISW
Methyl t-Butyl Ether CA	4.2E-2	max	5.0E-3	5.0E-3	LCUA
Toluene CA	1.2E+0	max	5.0E-3	2.0E+0	ISW
Yvlene CA	1.6E+0	max	1.0E-2	4.9E+0	1944

Completed By: George Converse Date Completed: 9/23/1999 Site Name: DP793 Site Location: WEST BRIGHTON AVE SEWER., Oakland, California

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT

Benzene CA
Ethylbenzene CA
Hexane, nMethyl t-Butyl Ether CA
Toluene CA
Xylene CA

Site Name: DP793 Completed By: George Converse Site Location: WEST BRIGHTON AVE Date Completed: 9/23/1999

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)
Dilution Attenuation Factor
(DAF) in Groundwater

	(DAF) in Groundwater						
CONSTITUENT	Residential	Comm./Ind.					
CONSTITUENT	Receptor	Receptor					
D CA	8.8E+1	1.0E+0					
Benzene CA	8.8E+1	1.0E+0					
Ethylbenzene CA	8.8E+1	1.0E+0					
Hexane, n-	8.8E+1	1.0E+0					
Methyl t-Butyl Ether CA	8.8E+1	1.0E+0					
Toluene CA	8.8E+1	1.0E+0					
Xylene CA	0.05+1						

Site Name: DP793 Completed By: George Converse Site Location: WEST BRIGHTON AVE SEWER., Oakla Date Completed: 9/23/1999

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Half-Life of Constituent (day)
Benzene CA	
Ethylbenzene CA	
Hexane, n-	
Methyl t-Butyl Ether CA	
Toluene CA	
Xylene CA	

Site Name: DP793 Completed By: George Converse Site Location: WEST BRIGHTON AVE S Date Completed: 9/23/1999

EXPOSURE LIMITS IN GROUNDWATER AND AIR

Exposure Limits

	Applied 1	o Receptors
CONSTITUENT	Groundwater (MCL) (mg/L)	Air (Comm. only) (PEL/TLV) (mg/m^3)
Benzene CA		
Ethylbenzene CA		
Hexane, n-		
Methyl t-Butyl Ether CA		
Toluene CA		
Xylene CA		<u>_i</u>

Site Name: DP793 Completed By: George Converse Site Location: WEST BRIGHTON AVE SEWER., Oakland, C Date Completed: 9/23/1999

	RBCA SITE	ASSESSMENT		Tier 2 Wor	ksheet 8.1
Site Name: DP793			ON AVE SEWER., Completed By: Ge	eorge Convers Date Completed:	9/23/1999 1 OF
SRE Name. DF 193			ENTRATION AND INTAKE CALCUL		
		Tak Laker Bertukkalan kara dakirk F	CHECKED IF PATHWAY IS ACTIVE)	医2011年125日本語文學學學學學學學學學學	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
OUTDOOR AIR EXPOSURE PATHY		在大學的學術學的學術學的學術學的學術學的學生	J (CHECKEDIF PAINTING TO AGITTE)		
SURFACE SOILS: VAPOR AND	Exposure Concentration		Total Control of the	4) Exposure Multiplier	5) Average Daily Intake Rate
DUST INHALATION	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Outdoor Air: PDE Conc. (mg/m²3) (1) / (2)	(IRKEL*EDK(BAYYY) (W.740-qak)	(mg/kg-day) (3) X (4)
	Surface Soil Conc.				_
Constituents of Concern	(mg/kg)			·····	
Benzene CA	5.0E-3				
Ethylbenzene CA	5.0E-3		_		
Hexane, n-	5.0E-3				
Methyl t-Butyl Ether CA	5.0E-3				
Toluene CA	5.0E-3				
Xylene CA	1.0E-2		1		<u> </u>

		AF = Adherance factor (mg/cm^2)	CF = Units conversion factor		POE = Point of exposure SA = Skin exposure area (cm^2/da	٥
--	--	---------------------------------	------------------------------	--	---	---

Serial: G-443-CSX-444

	DRCA SI	E ASSESSMEN	Т				Tier 2 Wo	rksheet 8.1	
Site Name: DP793		Site Location: W	EST BRIGHTON	AVE SEWER.			Date Completed	9/23/1999	2 OF
		TIER 2 EXPO	SURE CONCE	TRATION AND	INTAKE CALCU	LATION			
OUTDOOR AIR EXPOSURE PATHW	Assert Control to the Control of the			ACHECKED IF PAT	HWAY IS ACTIVE)				
OUTDOOR AIR EXPOSURE PATHWA		Citizenson management little belg be-	And the second second						
SUBSURFACE SOILS: VAPOR	Exposure Concentration	5) NUE 3 (-1)	(-A20ca)	3) Exposu	re Medium	4) Exposur	e Multiplier	5) Average Da	ily Intake Rate
INHALATION	1) <u>Source Medium</u>	2) <u>NAF Val</u> Rece		Outdoor Air: POE Co		(IRxEfxED)/(BWkAT) (m*3/kg-day)		(mg/kg-day) (3) X (4)	
	Subsurface Soil Conc.		Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential
Constituents of Concern	(mg/kg)	On-Site Commercial 9.0E+4	1,9E+5	4.6E-6	2.1E-6	7.0E-2	1.2E-1	3.2E-7	2.5E-7
Benzene CA	4.1E-1		1,9E+5	9.7E-6	4.6E-6	2.0E-1	2.7E-1	1.9E-6	1.2E-6
Ethylbenzene CA	8.7E-1	9.0E+4	1.9E+5	7.5E-4	3.5E-4	2.0E-1	2.7E-1	1.5E-4	9.6E-5
Hexane, n-	6.7E+1	9.0E+4			2.3E-8	7.0E-2	1.2E-1	2.8E-9	2.6E-9
Methyl I-Butyl Ether CA	5.0E-3	1.3E+5	2.2E+5	4.0E-8	9.5E-6	2.0E-1	2.7E-1	3.3E-6	2.6E-6
Toluene CA	2.0E+0	1.2E+5	2.1E+5	1.7E-5	1.2E-5	2.0E-1	2.7E-1	4.3E-6	3.4E-6
Xylene CA	4,9E+0	2.2E+5	4.0E+5	2.2E-5	1.2E-3	2.00-	<u> </u>		

	ABS = Dermal absorption factor (dim) AF = Adherence factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhelation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/dey)	
1	"				

Serial: G-443-CSX-444

		RBCA SITE ASSESSMEN	NT		Tier 2 W	orksheet 8.1	
Site Name: DP793		Site Location: WEST BRIG	HTON AVE SE Completed By:	George Converse	Date Completed: 9/23/1999	<u> </u>	3 0
			SURE CONCENTRATION AND				
	We made to produce a series and a series of the series of the		CHECKED IF PATHWAY IS ACT	VE) WALLESTAN MORE THAT			
SUTDOOR AIR EXPOSURE PATH	WAYS THE TAX TO SEE THE		TORECKED IF TANKER IN THE			TOTAL PATHWAY	NTAKE (mg/kg-da)
PROUNDWATER: VAPOR	Exposure Concentration		ni et a a a a litadiam	4) Exposure Multiplier	5) Average Daily Intake Rate	(Sum intake valu	es from surface,
NOTALATION	1) Source Medium	2) <u>NAF Vatue (m^3/L)</u> Receptor	3) Exposure Medium Outdoor Air: POE Conc. (mg/m*3) (1) / (2)	· · · · · · · · · · · · · · · · · · ·	(mg/kg-day) (3) X (4)	euhsurface & gro	undwaler roules.)
	Groundwater Conc.		A and a second	On-Site Commercial	On-Site Commercial	On-Site Commercial	Off-Site Resident
Constituents of Concern	(mg/L)	On-Site Commercial	0n-Site Commercial 1,2E-5	7.0E-2	8.6E-7	1.2E-6	2.5E-7
Benzene CA	3.5E+0	2.9E+5		2.0E-1	2.5E-7	2.1E-6	1.2E-6
Ethylbenzene CA	3.6E-1	2.8E+5	1.3E-6	2.0E-1	3.2E-4	4.7E-4	9.6E-5
Hexane, n-	1.7E+1	1.0E+4	1.7E-3		2.7E-8	3.0E-8	2.6E-9
Methyl t-Butyl Ether CA	4.2E-2	1.1E+5	3.9E-7	7.0E-2	8.1E-7	4.1E-6	2.6E-6
Toluene CA	1.2E+0	2.9E+5	4.1E-6	2.0E-1	1.0E-6	5.3E-6	3.4E-6
TOILIGING O/T	1.6E+0	3.1E+5	5.1E-6	2.0E-1	1.02-0	J —————	

	NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) BY = Duty Weight (wg) CF = Units conversion factor ED = Expensive direction (vrs) IR		POE = Point of exposure SA = Skin exposure erea (cm^2/day)
--	--	--	---

Serial: G-443-CSX-444

	PRCA SITE	ASSESSMENT		Tier 2 Work	sheet 8.1	
Site Name: DP793	Sit	e Location: WEST BRIGHTON	AVE SEWER., Completed By: Ge		9/23/1999 4 OF	
NDOOR AIR EXPOSURE PATHWA			(CHECKED IF PATHWAY IS ACTIVE)			
BUBSURFACE SOILS: VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg) Receptor	3) Exposure Medium Indeer Air: POE Conc. (mg/m²3) (1) / (2)	4) Exposure Multiplier (IRXEFXED)(BWXAT) (m*3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	
Benzene CA	4.1E-1	6.8E+2	6.0E-4	7.0E-2 2.0E-1	1.2E-4	
thylbenzene CA	8,7E-1	1.4E+3	6.1E-4 3.2E-1	2.0E-1	6.2E-2	
lexane, n-	6.7E+1	2.1E+2	3.2E-1 2.1E-6	7.0E-2	1.5E-7	
Methyl t-Butyl Ether CA	5.0E-3	2.4E+3	9.0E-4	2.0E-1	1.8E-4	
Toluene CA (vlene CA	2.0E+0 4.9E+0	2.2E+3 4.2E+3	1.2E-3	2.0E-1	2.3E-4	

NOTE: ABS = Dermal absorption factor AF = Adherence factor (mg/cm^2 AT = Averaging time (days)	EF ≤ Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure srea (cm^2/day)	
1			

Serial: G-443-CSX-444

	F	RBCA SITE ASSESSMENT			Tier 2 W	orksheet 8.1
Site Name: DP793		te Location: WEST BRIGHT	ON AVE SE Completed By:	Coolige Still Cool	Date Completed: 9/23/1999	5 OF :
INDOOR AIR EXPOSURE PATHWA	YS THE RESERVE THE					TOTAL PATHWAY INTAKE (mg/kg-day)
GROUNDWATER: VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1) / (2)	4) Exposure Multiplier (IRxEFxEO)(BWxAT) (m^3/kg-day)	5) <u>Average Daily Intake Rate</u> (mg/kg-day) (3) X (4)	(Sum intake values from subsurface & proundwater routes.)
Constituents of Concern	Groundwater Conc. (mg/L)	On-Site Commercial		On-Site Commercial	On-Site Commercial 3.3E-4	On-Site Commercia
Benzene CA	3.5E+0	7.3E+2	4.8E-3	7.0E-2 2.0E-1	9.8E-5	2.2E-4
Ethylbenzene CA	3.6E-1	7.2E+2	5.0E-4	2.0E-1	1.3E-1	1.9E-1
Hexane, n-	1.7E+1	2.5E+1	6,7E-1	7.0E-2	3.1E-6	3.2E-6
Methyl t-Butyl Ether CA	4.2E-2	9.5E+2	4.4E-5 1.6E-3	2.0E-1	3.2E-4	4.9E-4
Toluene CA	1.2E+0 1.6E+0	7.4E+2 8.0E+2	2.0E-3	2.0E-1	3.9E-4	6.2E-4

NOTE: ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Serial: G-443-CSX-444

	RBCA SITE ASSESS	MENT		Tier 2 Wo	rksheet 8.1
	Site Location: WEST BRIGHTO		Completed By: George Co	Date Completed: 9/23/1999	6 OF
Site Name: DP793	TIFR 2 FXPOS	SURE CONCENTRATION	I AND INTAKE CALCULAT	TION	
SOIL EXPOSURE PATHWAYS	建筑 的设置。	CHECKED IF PATHWAT IS A	- IIAE) Busingside Andreas Communication		
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration		N. 101-11-1	3) Average Da	ily Intake Rate
DERMAL CONTACT	1) <u>Spurce Me</u> dium		re Multiplier Dy(BWkAT) (kg/kg-day)	191	
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene CA	5.0E-3				
Ethylbenzene CA	5.0E-3				
	5.0E-3				
Hexane, n- Methyl I-Butyl Ether CA	5.0E-3				
	5.0E-3			ļ — —	
Toluene CA	5.02-5				

Γ	We a Volter and a grown of	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/ ET = Exposure time (hrs/day) IR = inteke rate (mg/day)	PQE ≈ Point of exposure SA ≈ Skin exposure area (cm^2/day)	

Serial: G-443-CSX-444

	RBCA SITE ASSESSMENT				Tier 2 Wor	ksheet 8.1		
Site Name: DP793	Site Location: WEST BRIG	HTON AVE SE	Completed By: G	Seorge Convers	Date Completed:	9/23/1999	7 OF 9	
	TIER 2 EXPOSU							
SOIL EXPOSURE PATHWAYS	Exposure Concentration	CHECKED IF PAT	HWAY IS ACTIVE)					
SURFACE SOILS OR SEDIMENTS: INGESTION	1) Source Medium	2) Exposur (IR±CFxEFxED)(B	e <u>Multiplier</u> WhAT} (kg/kg-day)	,	aily Intake Rate y) (1) × (2)	(Sum intake values from dermal & ingestion routes.)		
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene CA	5.0E-3	<u></u>						
Ethylbenzene CA	5.0E-3	 						
Hexane, n- Methyl t-Butyl Ether CA	5.0E-3 5.0E-3					}		
Toluene CA Xylene CA	5.0E-3 1.0E-2	<u></u>		<u> </u>				

	ABS = Dermal absorption factor (dim AF = Adherence factor (mg/cm²2) AT = Averaging time (days)	DAS - COOL MOISIN (1.8)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Intake rate (mg/day)	POE * Point of exposure SA = Skin exposure area (cm^2/day)	
- 1					-

Serial: G-443-CSX-444

Tier 2 Worksheet 8.1

	VE SEWER, Oa Completed By: George Convers Date Completed: 9/23/1999
	A/C CENAFR The Completed BV. George Convers Date Completes
Site I conting WEST BRIGHTON	VE SEVER, OR COMPLETE TO
Olle Location. Trace	THE PARTY OF THE P
	OSUBE CONCENTRATION AND INTAKE CALCULATION

8 OF 9

Site Name: DP793	Site Location: WES	T BRIGHTON AV	E SEWER., Oa	Completed By: G	edige Convers	ATION			
	·	TIER 2 EXPO	SURE CONCEN	TRATION AND	NIAKE CALCO	LATION			
		to one who walked their white	analysis manufaction	ICHECKED IE PATI	NAY IS ACTIVE)				R management
GROUNDWATER EXPOSURE PATHW	AYS THE PARTY OF T	2011年1月1日20日1日	经验证的证明	CHECKEDIC I AL		, , , , , , , , , , , , , , , , , , ,			
SOIL: LEACHING TO GROUNDWATER	Exposure Concentration			3) Exposur		4) Exposur		5) Average Da	iy Intake Rate
GROUNDWATER INGESTION	1) Source Medium	2) <u>NAF V</u> a		Groundwater: POE		(IRKEFxED)/(BW		(mg/kg-day	r) (3) x (4)
	Soil Concentration				Off-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	Off-Site Residential
Constituents of Concern	(mg/kg)	On-Site Commercial	Off-Site Residential	On-Site Commercial 2.0E-3	2.3E-5	3.5E-3	1.2E-2	7.0E-6	2.7E-7
Benzene CA	4.1E-1	2.0E+2	1.8E+4	1.7E-3	1.9E-5	9.8E-3	2.7E-2	1.7E-5	5.3E-7
Ethylbenzene CA	8.7E-1	5.1E+2	4.5E+4	2.6E-2	3.0E-4	9,8E-3	2.7E-2	2.6E-4	8.1E-6
Hexane, n-	6.7E+1	2.6E+3	2.3E+5	7.6E-5	8.7E-7	3.5E-3	1,2E-2	2.7E-7	1.0E-8
Methyl t-Butyl Ether CA	5.0E-3	6.5E+1	5.8E+3	2.8E-3	3.2E-5	9.8E-3	2.7E-2	2.7E-5	8.7E-7
Toluene CA	2.0E+0	7.2E+2	6.3E+4	3.8E-3	4.4E-5	9.8E-3	2.7E-2	3.8E-5	1.2E-6
Yvlene CA	4.9E+0	1.3E+3	1.1E+5	3.0E-3	, ,				

NOTE: ABS = Dermal absorption factor (dim) BW = Body Weight (kg) EF = Exposure frequencey (days/yr) POE = Point of exposure SA = Skin exposure area (cm^2 AF = Adherance factor (mg/cm^2) CF = Units conversion factor ET = Exposure time (hrs/day) SA = Skin exposure area (cm^2 AT = Averaging time (days) ED = Exposure duration (yrs) IR = Intake rate (L/day)
--

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Xylene CA

Version: 1.0.1

			LOCECCMENT						Tier 2 Wo	rksheet 8.1		
			ASSESSMENT					D-t- Complete	d: 0/23/4000		9 OF	
24- Name DP793	Site Location: WES	T BRIGHTON	AVE SEWER.,	Oakland, Calif	Completed By:	George Conve		Date Complete	u. 912311434			
ite Name: DP793		TIE	R 2 EXPOSU	RE CONCENTI	RATION AND	NTAKE CALC	ULATION		<u> </u>			
						5,000 100 100	SWAME DE LA PRIME		Mark to the second			
ROUNDWATER EXPOSURE PATH	WAYS THE THE MALE	地域的特別		CHECKED IF PA	THWAY IS ACT	VE) We make the		A STATE OF THE PARTY OF THE PAR	Address of the second second	MAX, PATHWAY IF	(TAKE (mg/kg-day)	
ROUNDWATER: INGESTION	Exposure Concentration					4) Exposur		5) Average Da		(Maximum intaka	of active pathways	
	1) Source Medium	•	NAF Value (dim) Receptor		3) Exposure Medium Groundwater: POE Conc. (mg/L) (1)(2)		(IRKEFKEDY(BWKAT) (L/kg-day)		y) (3) x (4)	zoll leaching & groundwater routes.)		
	Groundwater Conc.	1		On Pite Commercial	Off. Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Resident	
constituents of Concern			8.8E+1	3,5E+0	4.0E-2	3.5E-3	1.2E-2	<u> </u>		1.2E-2	4.7E-4	
Benzene CA	3.5E+0	1.0E+0	8.8E+1	3.6E-1	4.1E-3	9.8E-3	2.7E-2	3.5E-3	1.1E-4	3.5E-3	5.3E-3	
thylbenzene CA	3.6E-1	1.0E+0		1.7E+1	1.9E-1	9.8E-3	2.7E-2	1.7E-1	5.3E-3	1.7E-1		
lexane, n-	1.7E+1	1.0E+0	8.8E+1	4.2E-2	4.8E-4	3.5E-3	1.2E-2	1.5E-4	5.6E-6	1.5E-4	5.6E-6	
Methyl t-Butyl Ether CA	4.2E-2	1.0E+0	8,8E+1	1.2E+0	1.4E-2	9.8E-3	2.7E-2	1.2E-2	3.7E-4	1.2E-2	3.7E-4	
Foluene CA	1.2E+0	1.0E+0	8.8E+1 8.8E+1	1.6E+0	1.8E-2	9.8E-3	2.7E-2	1.6E-2	5.0E-4	1.6E-2	5.0E-4	
Xylene CA	1.6E+0	1.0E+0	0.0ET1	1.04.0								

POE = Point of exposure EF = Exposure frequencey (days/yr) BW = Body weight (kg) SA = Skin exposure area (cm^2/day) NOTE: ABS = Dermal absorption factor (dim) ET = Exposure time (hrs/day) IR = Intake rate (L/day) CF = Units conversion factor AF = Adherance factor (mg/cm²) ED * Exposure duration (yrs) AT = Averaging time (days)

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA S	ITE ASSESSM	AND CENT	D Oakland	Completed By:	George Convers	e	Date Completed:	9/23/1999	1 OF
e Name: DP793		ite Location: W	EST BRIGHT	N AVE SEVE	LINAY PISK	CALCULATION	 				
				HER 2 PAT	MWAT MON			Loughted several for			
	and the second of the second o	ALERS AND SAME	SOME STATE	Serial markets		(CHECKED IF PA	THWAYS ARE ACT	IVE) WEEKS PERMIT	TOVIC CEFECTS	the state of the s	
TDOOR AIR EXPOSURE PAT	HWAYS THE	and the second	CA	RCINOGENIC RI	sk			Tavingel	(6) Inhalation	(7) Individ	lual COC
	(1) EPA	(2) Total Ca		(3) Inhalation Stope Fector	(4) Individ Risk (2	dual COC 2) x (3) Off-Site	(5) Total Intake Rate On-Site	OXIGOR	Reference Dose	Hazard Quo On-Site Commercial	tient (5) / (6) Off-Site Residential
	Carcinogenic	On-Site	Off-Site		On-Site Commercial	Residential	Commercial	Residential	(mg/kg-day) 2.0E-2	1.6E-4	2.9E-5
nstituents of Concern	Classification	Commercial	Residential	(mg/kg-day)^-1 1.0E-1	1.2E-7	2.5E-8	3.3E-6	5.9E-7	2.9E-1	7.5E-6	4.4E-6
nzene CA	A	1.2E-6	2.5E-7	1-1.00			2.1E-6	1.2E-6 9.6E-5	5.7E-2	8.2E-3	1.7E-3
nylbenzene CA							4.7E-4	9.015	1		
xane. n-	- 	3.0E-8	2.6E-9	1.7E-3	5.1E-11	4.6E-12	4.1E-6	2.6E-6	5.7E-2	7.2E-5	4.6E-5
thyl t-Butyl Ether CA	- - 	3,02.0				 -	5.3E-6	3.4E-6	8.6E-2	6.2E-5	4.0E-5
luene CA	- 				<u> </u>					0.65.3	1.8E-3
lene CA	1				1.2E-7	2.5E-8	7 7	otal Pathway	Hazard Index ≖	8.5E-3	1.02-0
		Total Pat	hway Carcino	genic Risk =	1.26-1		_				

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-443-CSX-444

		RBCA SITE ASSESSI	MENT			Tier 2 Works	sheet 8.2	
				, Oakland, Completed By: G	eorge Converse	Date Completed:	9/23/1999 2 O	
e Name: DP793	Sit	le cocation. VVCS1 Divio	TIFR 2 PATH	VAY RISK CALCULATION				
					。 一、人名安斯·希腊安斯			
OOR AIR EXPOSURE PATH	NAYS THE PLANE	ACTUAL DESIGNATION OF THE PARTY.		制像。静林圖(CHECKED IF PAT	HWAYS ARE ACTIVE) 報味的概念	TOXIC EFFECTS		
	·	CA	ARCINOGENIC KISK	(4) Individual COC	(5) Total Toxicant	(6) Inhalation	(7) Individual COC Hazard Quotient (5) / (6) On-Site Commercial	
	(1) EPA li Carcinogenic	(2) Total Carcinogenic Intake Rate (mg/kg/day) On-Site	(3) Inhalation Slope Factor	Risk (2) x (3) On-Site	Intake Rate (mg/kg/day) On-Site Commercial	Reference Dose (mg/kg-day)		
nstituents of Concern		Commercial	(mg/kg-day)^-1	Commercial 3.8E-5	1.1E-3	2.0E-2	5.3E-2	
nzene CA	A 3.8E-4		1.0E-1	3.02-3	2.2E-4	2.9E-1	7.6E <u>-4</u>	
hylbenzene CA			- 		1,9E-1	5.7E-2	3.4E+0	
exane, n-			1.7E-3	5.6E-9				
ethyl t-Butyl Ether CA	?	3, <u>2</u> E-6	1.75-3		4.9E-4	5.7E-2	8.6E-3	
vluene CA	D				6.2E-4	8.6E-2	7.3E-3	
rlene CA	D	Total Pathway Carcino	genic Risk =	0.0E+0 3.8E-5	Total Pathway	Hazard index =	0.0E+0 3.5E+0	

Serial: G-443-CSX-444

									Tier 2 Works	sheet 8.2	
		PRCA SI	E ASSESSMI	ENT			Converse		Date Completed:		3 OF 4
Site Name: DP793	S			OCNACI	R., Oakland, (HWAY RISK (Completed By: G	Seorge Converse	IVE) SEE SEE			非 对于
Site Name: DP793		建	CA	RCINOGENIC RI	SK (4) ledivis	CHECKED IF PAT	(5) Total	Toxicant	TOXIC EFFECTS (6) Oral Reference Dose	(7) Individ Hazard Quo	tient (5) / (6)
	(1) EPA Carcinogenic	(2) Total Ca Intake Rate (On-Site Residential	CIUODeriic	Stope Factor (mg/kg-day)^-1	Risk (On-Site Residential	2) x (3) On-Site Commercial	Intake Rate On-Site Residential	(mg/kg/day) On-Site Commercial	(mg/kg-day) 2.0E-2 1.0E-1	Residential	Commercial
Constituents of Concern Benzene CA Ethylbenzene CA	Classification A	Kesiderine		1.0E-1					6.0E-2 5.0E-3 1.1E-1 2.5E-1		
Hexane, n- Methyl I-Butyl Ether CA Toluene CA	? D D				0.0E+0	0.0E+0]	Total Pathway	Hazard Index =	0.0E+0	0.0E+0
Xylene CA		Total Pat	hway Carcino	genic Kisk =							
				au Diable RasaNi			Softwa Versi	re: GSI RBCA Sp on: 1.0,1	readsheet	Ser	el: G-443-C5X-44

SROUNDWATER EXPOSURE P	ATHWAYS WILL					CHECKED IF PA	THWAYS ARE ACT	IIVE)	(PA) INCHES	Control of the Control of the	
		(2) Total Ca	CA arcinogenic	(3) Oral	SK (4) Individ	dual COC	(5) Total Intake Rate	Toxicant	(6) Oral Reference Dose	(7) Individ	lual COC
Constituents of Concern	(1) EPA Carcinogenic Classification	Intake Rate On-Site Commercial	(mg/kg/day) Off-Site Residential	Siope Factor (mg/kg-day)^-1	On-Site Commercial	2) x (3) Off-Site Residential	On-Site Commercial	Off-Site Residential	(mg/kg-day)	On-Site Commercial	Off-Site Residential
enzene CA	A	1.2E-2	4.7E-4	1.0E-1	1.2E-3	4.7E-5	3.4E-2	1.1E-3	2.0E-2	1.7E+0	5.4E-2 1.1E-3
thylbenzene CA				<u> </u>			3.5E-3	1.1E-4	1.0E-1 6.0E-2	3.5E-2 2.8E+0	8.8E-2
lexane, n-						0.75.0	1.7E-1	5.3E-3 1.3E-5	5.0E-3	8.2E-2	2.6E-3
lethyl t-Butyl Ether CA	?	1.5E-4	5.6E-6	1.7E-3	2.5E-7	9.7E-9	4.1E-4 1.2E-2	3.7E-4	1.1E-1	1.1E-1	3.4E-3
oluene CA	D			 			1.6E-2	5.0E-4	2.5E-1	6.3E-2	2.0E-3
(ylene CA	<u> </u>	Total Pati	way Carcinog	genic Risk = [1.2E-3	4.7E-5			Hazard Index =	4.8E+0	1.5E-1

Tier 2 Worksheet 8.3

Serial: G-443-CSX-444

Site Name: DP793

Completed By: George Converse

Site Location: WEST BRIGHTON AVE SEWER., Oakland, Date Completed: 9/23/1999

1 of 1

		BASELINE	CARCINOGE	NIC RISK			BASEL	NE TOXIC EF	FECTS	
	Individual		Cumulative		Risk Limit(s) Exceeded?	Hazard •	Quotient	Hazaro	d Index	Toxicity Limit(s) Exceeded?
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
	EXPOSURE PAT	HWAYS 1946	REPORT RESIDENCE	中华的特殊的结合	一一分分別的自己的問題	CAMPAGE AND STATE	THE PROPERTY OF	対向内理は	新古典主義 (教育)中于	小菜明和林树
Complete:	1.2E-7	1.0E-6	1.2E-7	N/A		8.2E-3	1.0E+0	8.5E-3	N/A	
INDOOR AIR EX	POSURE PATH	VAYS	40年基本等	斯拉州进会 (V4)	A CLEAN WASHING	金属の	中华地位的国际	高利用的利用	新州市民民党	1.2.1000年1911年76日
Complete:	3.8E-5	1.0E-6	3.8E-5	N/A		3.4E+0	1.0E+0	3.5E+0	N/A	
SOIL EXPOSUR	E PATHWAYS		SECURIOR SEC	80000000000000000000000000000000000000	1/2 温度加强	(計2006年2月		能為經濟體	\$ 唯國語	123001113
Complete:	NC	1.0E-6	NC	N/A	=	NC	1.0E+0	NC	N/A	-
GROUNDWATE	R EXPOSURE P	ATHWAYS	開計學和機	開發情報性的	1. 為機能的	在我们的	阿尔伯斯	心學經典	新加州政治	THE REAL PROPERTY.
Complete:	1.2E-3	1.0E-6	1.2E-3	N/A		2.8E+0	1.0E+0	4.8E+0	N/A	•
anima ti Fun	OSURE PATHWA	V VSelect Ma	vimum Values I	From Complet	e Pathways)	(1) (1) (1) (1)			COMPANIE OF	小星器加炸
CRITICAL EXP	1.2E-3	1.0E-6	1.2E-3	N/A		3.4E+0	1.0E+0	4.8E+0	N/A	-

Software: GSI RBCA Spreadsheet

Version: 1.0.1

		RBCA SITE A	SSESSMEN	T						Tier 2 Work	sheet 9.1	
Site Name: DP	793 WEST BRIGHTON AVE SEWER., C	100000000000000000000000000000000000000	Completed By Date Complet	y: George Cor			S-100					1 OF 1
	SURFACE SOIL SSTL VA (< 3.3 FT BGS)		Target H	(Class A & B) Risk (Class C) azard Quotient	1 0E-5 1 0E+0	☐ PEL exp			Groundwal	culation Option or DAF Option	Elec. Accep	tor Super onal vart, dispers
	TO OF COLCEPN	Representative Concentration		SSTL Results	For Complete Ex Groundwater	Ingesti	on, Inhalation ermal Contact	x	Construction Worker	Applicable SSTL	SSTL Exceeded 7	Required CRF
	ITS OF CONCERN	(mg/kg)	Residential 225 feet	Commercial (on-site)	Regulatory(MCL) (on-site)	Residential: (on-site)	Commercial (on-site)	Ľ	(on-site)	(mg/kg)	-m- If yes	Only if "yes" lef
One ite.	Name	5.0E-3	6.8E+2	5.8E-1	NA	NA:	NA		3.3E+1	5.8E-1		<1
	Benzene CA	5.0E-3	>Res	>Res	NA.	NA.	NA	Г	>Res	>Res		<1
100-41-4	Ethylbenzene CA			-	NA.	NA	NA	1	>Res	>Res		<1
	Hexane, n-	5.0E-3	>Res	>Res		NA.	NA	\vdash	1.9E+3	1.1E+1		<1
1634-04-4	Methyl t-Butyl Ether CA	5.0E-3	1.6E+1	1.1E+1	NA			+	5.2E+3	5.2E+3		<1
	Toluene CA	5.0E-3	1.3E+4	8,1E+3	NA.	NA	NA NA	+		>Res	0	<1
	7 Xylene CA	1.0E-2	>Res	>Res	NA	NA	NA	_	>Res	Pites	1 0	

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

		RBCA SITE	ASSESSM	ENT								ler 2 Workshi	ret w.Z	
Site Name: DP	793 WEST BRIGHTON AVE SEWER., (Dakland, California	Completed B Date Comple	y: George Cor ted: 9/23/1999										1 OF 1
	BSURFACE SOIL SSTL (> 3.3 FT BGS)		Target	(Class A & B) Risk (Class C) azard Quotient	1.0E+0		PEL expo	sure limit? sure limit?			_	culation Option ter DAF Option	Elec. Accep	otor Super ional vert. dispersi
				SSTL	Results For Compl	ete E	xposure P	athways ("x" if	Comp	dete)				
	TS OF CONCERN	Representative Concentration	X Soi	Leaching to	Groundwater	x		latilization to	x	200 H 100 H 100 H	latilization to	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residential 226 feet	and the second second	Regulatory(MCL). (on-site)		sidential; on-site)	Commercial: (on-site)	2111	sidential. 55 feet	Commercial: (on-site)	(mg/kg)	-≡" if yes	Only if 'yes' left
-		4.1E-1	6.8E+2	5.8E-1	NA		NA	9.8E-2	1	.6E+1	1.3E+1	9.8E-2	-	4.0E+00
	Benzene CA	8.7E-1	>Res	>Res	NA.		NA	2.1E+3	- 3	Res	>Res	2.1E+3		<1
	Ethylbenzene CA	6.7E+1	>Res	>Res	NA		NA	6.1E+1	- 53	Res	>Res	6.1E+1	M	1.0E+00
	Hexane, n-	5.0E-3	1.6E+1	1.1E+1	NA	1	NA	1.9E+1	1	1E+3	1.0E+3	1.1E+1		<1
	Methyl t-Butyl Ether CA	2.0E+0	1.3E+4	8.1E+3	NA	\vdash	NA	6.5E+2		>Res	>Res	6.5E+2		<1
	Toluene CA Xylene CA	4.9E+0	>Res	>Res	NA NA		NA	1.8E+3	3	>Res	>Res	1.8E+3		<1

>Res indicates risk-based larget concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet

Serial: G-443-CSX-444

Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved

Version 1 0.1

				POMENT							Tier 2 Wor	ksheet 9,3	
		480000000000000000000000000000000000000	SITE ASSE										
ite Name DP7	793		Completed By Date Complet				15 14			Calc	ulation Option:	2	1 OF
GROUNDWATER SSTL VALUES			Target Risk (Class C) 1.0E-5 Target Hezard Quotient 1.0E+0			☐ MCL exposure limit? ☐ PEL exposure limit?		Groundwater DAF Option: Elec. Acceptor Super. (One-directional vert. dispers					
		Representative Concentration		SSTL	Results For Com	Groundwa	Pathways ("x" if ster Volatilization Indoor Air	1,000	oundwate	er Volatilization itdoor Air	Applicable SSTL	SSTL Exceeded 7	Required CR
CONSTITUEN	TS OF CONCERN	-	Residential	Commercial	Regulatory(MCL)	Residential: (on-site)	Commercial (on-site)	1,000	dential -site)	Commercial: (on-site)	(mg/L	"III" If yes	Only if "yes"
CAS No.	Name	(mg/L)	226 feet	(on-site)	NA	NA	1.0E-1	1	AA	4.1E+1	2.9E-3		1.2E+03
71-43-3	Benzene CA	3.5E+0	3.3E+0	2.9E-3	NA NA	NA	>Sol		NA.	>Sol	1.0E+1		<1
	Ethylbenzene CA	3.6E-1	1.5E+1	1.0E+1	-	NA.	7.4E+0		NA	>Sol	6.1E+0		3.0E+00
	Hexane, n-	1.7E+1	>Sol	6.1E+0	NA.	-	7.9E+0	-	NA	9.0E+2	1.7E-1		<1
	Methyl t-Butyl Ether CA	4.2E-2	2.4E-1	1.7E-1	NA	NA		_	NA	>Sol	1.1E+1		<1
	Toluene CA	1.2E+0	1.8E+1	1.1E+1	NA.	NA.	2.2E+2	-	NA	>Sol	2.6E+1		<1
	7 Xylene CA	1.6E+0	3.9E+1	2.6E+1	NA.	NA .	>Sol	_	NA.	7301	B. 5/4. 1	1	

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved,

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-443-CSX-444

APPENDIX K

130 RAST BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

WELL SAMPLING DATA SHEET

SITE 79793	DATE SAMPLE	3-9-99	TIME	1248
WELL TA	SAMPLE	DBY. B	ROADWAY	
WELL ELEVA	TION			
PRODUCT TH				
DEPTH TO W		6.47'		
FLUID ELEV				
BAILER TYPI		To ak wa	/=	+
PUMP	WEGE Pump	TRUCK 6	Equipmen.	
	WELL PU	RGING R	ECORD	
TIME	VOLUME	TEMP.	pН	COND.
	REMOVED			
1905	200 gals			
	0			
				
	1	<u> </u>		
TOTAL	DATE DIMOTE	D 70	() auls	
	JME PURGE		O gals	
TIME SAMP	/ 1 // /	SAM	PLL	
SAMPLE ID				
ANALYSIS				
TABORATO	RY			
NOTES:	Had trouble	getting	set up o	on the well
and and	Had trouble setting up Eq	vipment +	BR TRANS	fering water
7	J / 6	7		<u> </u>

WELL SAMPLING DATA SHEET

	TO A MIT	2	TIME	0900
SITE DP 793	DATE :	8-10-97	1	
WELL TI	SAMPLE	ED BY. B	RORDWA	14
	•			V
WELL ELEVAT	ION			
PRODUCT THIC	CKNESS			
DEPTH TO WAT	ΓER	5.02		
FLUID ELEVAT	'ION			
BAILER TYPE				
PUMP				

	WELL PU	RGING R	ECORD	
TIME	VOLUME REMOVED	DTWP.	pН	COND.
952	230 gA/s	5.4		
1041 -	250 4	5.78		
1140	2504	6.13]
1223	250	7817		
/333	250	8.36		
1418	250	9.1		
1503	250	10.63		

1720
FINAL VOLUME PURGED 1730 ga(5
TIME SAMPLED A/C) SAMPLED
SAMPLE ID.
SAMPLE CONTAINERS
ANALYSIS TO BE RUN
LABORATORY
NOTES:
110.130.

See Notes

WELL SAMPLING DATA SHEET

SITE DP793	DATE	8-11-9	7 TIME	0800
WELL TI	SAMPL	ED BY.	BROADWRY	
	<u> </u>			
WELL ELEVAT	ION			
PRODUCT THIC	'KNESS			
DEPTH TO WAT	TER	7.89		
FLUID ELEVAT	'ION			
BAILER TYPE				
PUMP WEC	" E P.	Tour	W/Equipme	J
TOME WEL	JL IUM	> / MOICA	7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

		WELL PU	RGING R	ECORD_	
	TIME	VOLUME	TEMP.	pН	COND.
		REMOVED	DTW		
	839	250 gals	8.82'		
	952 .	3001	9.92		
	1042	350	13.68'		
T2 ->	1	160	13.68'		
T2 ->					
re pool			<u> </u>		
			<u> </u>		

FINAL VOLUME PURGED 960 gals
TIME SAMPLED A/O SAMPLE
SAMPLE ID. NO SAMPLE
SAMPLE CONTAINERS
ANALYSIS TO BE RUN
LABORATORY
NOTES. After REMOVING WATER FROM TI - 1 THEN
1
Removed the Remainder FROM La
Removed the Remainder from T2
Removed the Remainder from 1 a
Removed the Remainder from 1 a
Removed the Remainder from 1 a

W Es	LL SAMITLING DATA SILLS	
SITE DP793	3 DATE 8-12-99 TIME 1130	
WELL TI	SAMPLED BY. BROADWAY	
WELL ELEV		
	THICKNESS	
DEPTH TO		
FLUID ELE		
BAILER TY		
PUMP 0	WEGE Pump TRUCK WEQUIDMENT	
	WELL PURGING RECORD	
TIME	VOLUME TEMP. pH COND.	
	REMOVED	
10.23		
/233 /438 ·	250 ga/s	
1555	300	
	VID CE DID CED 800/e	
	LUME PURGED 800 ga/s	
TIME SAM	PLED AMPLE	
SAMPLE I		
ANATVOIC	CONTAINERS TO BE RUN	
NOTES:		
110123.		

44 17	PP DVIAIT I			
SITE DP79	DATE 8	3-13-99	TIME	1145
WELL Ta		DBY. B	RORDWAY	
7 00			U	
WELL ELEV				
	THICKNESS			
DEPTH TO		8.87'		
FLUID ELE				
BAILER TY		7, 11		
PUMP	WEGE PUMP	TRUCK 9	Equipmen	
	WELL PU	RGING R	ECORD	
TIME	VOLUME	TEMP.		COND.
	REMOVED			
1300	250 asls		•	
1416 .	250 gals			
1640	100			
		<u> </u>		
	+			
	 			
TTALAT MO	LUME PURGE	D 60	O gals	
TIME SAM		2		
SAMPLE I		SAM	E	
	CONTAINERS			
	TO BE RUN			
LABORAT				
NOTES:	•			
,			<u> </u>	

AST BEAMER LAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

	DATE 8 O SAMPLE	-12-99	TIME	1030
TE pp 70	73 CAMPLE	DBY. RE	na dwau_	
ELL RS 1	O SVIII III	10 20 10 10 10 10 10 10 10 10 10 10 10 10 10		
ELL ELEV	JATION			
PODUCT 1	THICKNESS			
EPTH TO	WATER	2.92'		
UID ELE	VATION			
AILER TY	PE Disposa Transfer pun	ible		
UMP			`	
	WELL PU	JRGING R	<u>ECORD</u>	
IME	VOLUME	TEMP.	pН	COND.
TTATTA	REMOVED			
1045	2 ga/s		<u> </u>	
1420 .	30		<u> </u>	
			 	
			1	
<u> </u>			<u> </u>	
FINAL VC	LUME PURG	ED §	gals_	
TIME SAN	APLED A+	() < A)	MALE	
SAMPLE	ID. / ()	<u> </u>	<u> </u>	
SAMPLE	CONTAINERS	<u> </u>		
	S TO BE RUN	1		
LABORA'	TORY Developing u	-11 USING	SURGE	block
NOTES:	Developing a	Jell John J	<u> </u>	

7 *	
SITE DP 793 DATE 8-13-99 WELL RS-8 SAMPLED BY.	Broadway
WELL ELEVATION PRODUCT THICKNESS DEPTH TO WATER 7.1	
FLUID ELEVATION BAILER TYPE DISPOSABLE PUMP TRANSFER PUMP	·
THE DID CIN	は K H C U K D —

PUNIT 18	INSTER TELE		- CODD	
	WELL PU VOLUME	RGING R	ECOKD_	COND.
TIME	VOLUME	TEMP.	pH	COND.
111111111111111111111111111111111111111	REMOVED			
930	5 gals			
930 j450 -	201			
7.03				
		_		

FINAL VOLUME PURGED 7 ga/s
TIME SAMPLED No SAMPLE
SAMPLE ID. SAMPLE CONTAINERS
ANALYSIS TO BE RUN
LABORATORY NOTES: Nevelopina well using surge block
NOTES: Development

1386 TT BEAMER WOODLAND, CALIFORNIA 95695 (916) 668-5300, FAX (916) 662-0273

TE DP7		13-99	TIME	8:03
ELL RS	9 SAMPLEL	DI. DK	OHOWNIA	
FILEL	EVATION			
RODUCI	THICKNESS			
EPTH TO) WATER EVATION	8.17		
ATLERT	YPE Disposable	<u>e</u>		
UMP 1	YPE Disposable RANSTER Pump		•	
	WELL PU	RGING R	ECORD	COND.
ÎME	VOLUME REMOVED	TEMP.	pri	COND.
	·	,		
			-	
	TOT THE DIRGI	FD 10	gals	
FINAL	VOLUME PURGE AMPLED	SAMPL	J	
IGAMPI.	E ID			
SAMPI.	E CONTAINERS			
ANALY	SIS TO BE RUN ATORY			
NOTES	: <u>Nevelopina</u> a	vell usix	ug surg	e block
11,00			<u> </u>	

Depth To Water 9-2-99

R2 - 13.23

R52 - 12'

RI - 14,18'

R3 -10.87

R54 - 28.26

RS7 - 4.14 (No Change After pumping TI)

David Pittman Well Purge

Post Office Box 90, Goodyears Bar, CA 95944-0090 530/289-3133

		02 99 13/99 Rec. 9/14/9	9	ce <u>003</u>	
SITENA	ME DP	793 OKUND cus	TOMER WESTER	N 660 E	ENG
ADDRESS CITY/ST PHONE	S TATE				
WELL	#	DESCRIPTION OF WORK	\sim		
MW	/	Z GALLO	US TORGED		
₹<	6	20	<i></i>		
P<		46			
<i>j</i>		2			
<u>RS</u>	9	<u> </u>			
		Toll b			
		1,19			
		9/19			
					_
					-
ARRIVA	AL TIME TURE TIM	HOURS MINUTES		, 1	
TOTAL	TIME AT	SITE / SU	TOTAL LABOR	\$//	<u>Z.</u> 50
			K TO SAC	/ / /	Ω
TRAVE	TIME F	@ \$45.00 PER HOUR	TOTAL TRAVEL	\$ 100	
18	MILES	@ \$.40 PER MILE	TOTAL MILEAGE	\$	<u>1,00</u>
			INVOICE TOTAL	= \$ <u>56</u>	<u>4.00</u>

OTTE 2000	DATE 9-16.99	TIME 3820
$\frac{D_1 + D_1}{D_1 + D_2}$	SAMPLED BY.	
WELL TI	SAMPLED DI.	
WELL ELEVAT	ION	
PRODUCT THIC	KNESS	
DEPTH TO WA'	ΓER <u>2,27'</u>	
FLUID ELEVAT	YON	
BAILER TYPE		
PUMP (L)	EGE TANK TRUCK	

	WELL PU	RGING R	ECORD	
TIME	VOLUME REMOVED	TEMP.	pН	COND.
1210 1030	STARTED FUM - MIN 3° 1 DTW 4°2"	rina J		
1230 1430 1530	οτω 6'5" στω 7.6"			
1630 1644	DTW 10:9"			

	10 //
FINAL VOLUME PURGED	13 621 gyllac
TIME SAMPLED	(5' x 35' x h) Gx 7.489/-/
SAMPLE ID.	
SAMPLE CONTAINERS	
ANALYSIS TO BE RUN	
LABORATORY	(112
NOTES: TOUK DIW 6.82	11:15 - 6:42
7 10 10 11 10 11 27	
No washer in trusk coupling Shight heak AT pumpershed 1520 Ali came by and tooks	- INVENTED ONE
Shight heat at pumperhau	151 - sat pump over Well
1520 Ali came by and took s	one pietures
0	

44 77 77	
SITE OPYG3 WELL TI	DATE 9-23-49 TIME 6830 SAMPLED BY.
WELL ELEVAT	KNESS
DEPTH TO WA' FLUID ELEVAT BAILER TYPE	$\frac{\gamma}{\gamma}$
PUMP	·

rime .	WELL PU VOLUME REMOVED	RGING R TEMP.	pH	COND.
0705	7.26' 5.10'			
1050	6.24° 8.32° +	2		
12.50	11.46 (10.1 14.12 72 10.66	(\$')		
1305 1336	13.68 (12.	5		
				200

				RS 5-14.82
Tarix MOI	UME PURGI	ED		10 38
FINAL VOL	OME LOKE			R-2-13.50
TIME SAME	LED	\mathcal{N}_{o}	Change	RS6-14.32
SAMPLE II	ONT A INERS	//\	DTW After	057-13.21
SAMPLEC	ONTAINERS TO BE RUN		Purge	R52-13.97 MWI 12.26
ANALYSIS	TO BE RUN		<u> </u>	R34 11.06
LABORATO	JKI			
NOTES:		0950		
9 AM	17	7 510'	R&10=4.44	
A618 = 4.5	7	258:25	RE 9 = 8.06'	
A89 = 8.	V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AB7= 4.32	
RB7 = 4.	32		RE8: 8.09	
RA8 = 8.0	/4		T7-T4 = CAR	

F4 = CAR

SITE 00793 DATE 9-30-99 TIME 0800 WELL T-1 SAMPLED BY. BROADWAY	\exists
U	\dashv
WELL ELEVATION PRODUCT THICKNESS DEPTH TO WATER 4.69 → 13.64	\neg
FLUID ELEVATION TANK 2,79 -> 1.44	
BAILER TYPE PUMP	

TIME	WELL PU VOLUME	TEMP.	pН	COND.
	REMOVED			
0912	STARTED Pumpina			
inuo :	5.24			
1100	6.28	<u> </u>		
12.00	7.40			
1300	8.90			
1330	13.64	<u> </u>		
1345	Punping T2		14 14	un motor color
1445	PRIMED Pump	B.Times "	JON'T PICA	up water colin
		ļ	 	

FINAL VOLUME PURGED	DTW
TIME SAMPLED 1754 - 1354 - 1905	R5-5 14.94
CAMPIEID TI-TZ-TANK	0.11 19.52
CANONIE CONTAINERS 40 cc VOAS	0-2-13.49
ANALYSIS TO BE RUN THE I BYEN	R5-6-16.59
IT A BORATORY NSE	R5-2-14.11
NOTES: 0900 T3-CAR	Aug 1 + 12111
D= 2 4 34 No Change	R3-11.05
154 = 7.04 -> 9.2"	
R3 x = 7.98	
189 = 9.20	
8515 × 4.81	
T2=5.17 ->17.72'	2/01

WELL SAIVI 22 TIME 0905
SITE 10P - 25 DATE 10-7-99 TIME WELL TI SAMPLED BY. Recodure.
WELL ELEVATION PRODUCT THICKNESS DEPTH TO WATER DIW: 4.7% DIB: 1.37
FLUID FLEVATION TANK FLUID FLEVATION TANK BAILER TYPE Disposable Bailer PUMP David PITTMAN PUMP David PITTMAN TOTAL PURGING RECORD
WELL PURGING RECORD I COND.

PUMP	David PITT	PGING R	ECORD		
TIME	WELL PU VOLUME	TEMP.	pH	COND.	
1 11/11	REMOVED	74			<u> </u>
0915	4.78 gol 5.25	7.13			
1940	3.2				
					\mathbb{H}
		1			

TO DI TO GED 300 991
TNAI VOLUME PURODE
TIME SAMPLED
0.1.1(DI F II).
SAMPLE ID: VO95 SAMPLE CONTAINERS VO95 SAMPLE CONTAINERS VO95 SAMPLE CONTAINERS VO95 SAMPLE ID: VO95 SAMPLE CONTAINERS S
LABORATORY NSE
NOTES: Ist bailer NOTES: Ist bailer Pumped 300 gallows from TI Sampled Tank RAN 200 gallows they CARbins Filter then sampled outlet Filter then sampled outlet
TOMPOR TOUR RAN 200 GATTONS IN
-its then sampled out he
(DRUM LEAK AROW, of RIM)
fres =
Vac =

North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

		4563 Fax			COLVER	5 6	Phone:	530 60	18 530	0	T	urnaround Time
ent: Desent Per ling Address: Westean G 1374 E. Bei	ener st	ineer.	Billing to	to: George o: SAME			PO# / Bi			7	Date:	10-7-99 er: Brondway
Wood/And Diject / Site Address: DP 793	_ (A	PARK K		Ar Reques Sampling	nalysis sted	1784 526	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rouid on id				Comments / Hazard
Sample ID	Sample Type	Container No. / Type	Pres.	Date / Time	1	/				<u>/</u> _	_	
RE FITER	H20	NOW!	HCL	10-7-99		++	╁╌┼╌┤				 	
CARBON OUTLET	H20	"			- 	 	 	`-				
		 	 			 					<u> </u>	
	<u> </u>	 	 	1					<u> </u>		 	
	 	<u> </u>	1				 	 	 	<u></u>	-	
							-	 	 	 - -	 	
				<u> </u>				 	╂	 	_	6
				 		+-		 				
												WATER STOP
									1/1			IN FIRE
	 		+					4	 	_		1210 Cools
	+							_1 //	 /_	1	VE-1	
Relinquished by:	tola de	Smadus	49	Date:/0-7-99			ceived by:		<u> </u>	\\\		TH/
Relinquished by:				Date:	Time: Time:		ceived by ceived by					1000

Chain of Custody / Request for Analysis

APPENDIX L

WESTERN GEO-ENGINEERS

CALIF. CONTRACTOR #313857 REGISTERED GEOLOGISTS 1386 EAST BEAMER STREET WOODLAND CA 95776-6003 (530) 668-5300. FAX (530) 662-0273 Wege@mother.com

c/17/88

	0 (1)
LSA	DATE: <u>8/13/99</u>
Paul Sterman	FAX #: (115) 875-1159
) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TOTAL PAGES INCLUDING THIS PAGE
	22
	Paul Sterman B5 Landfull

Chain of Custady for both stady pile composity

TPHy levels from original tout pull samples

Shelpile sample usuity from original tout pull samply

Shelpile sample usuity from original tout pull samply

Fryan showing whom samples obtained

Fryan showing whom samples obtained

from speil pile 1 and speil file 2

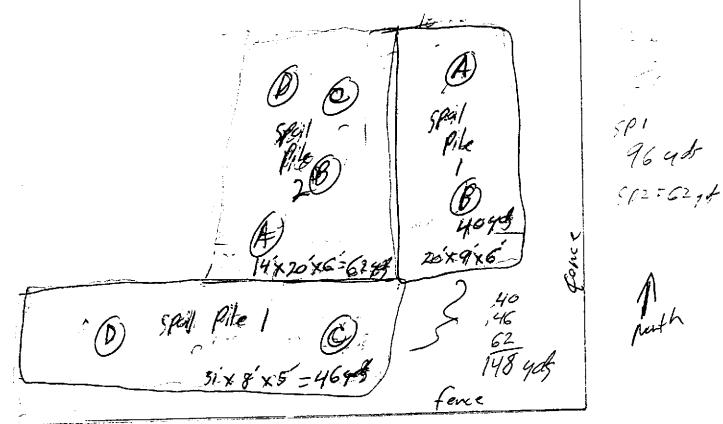
North State Environmental Analytical Laboratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

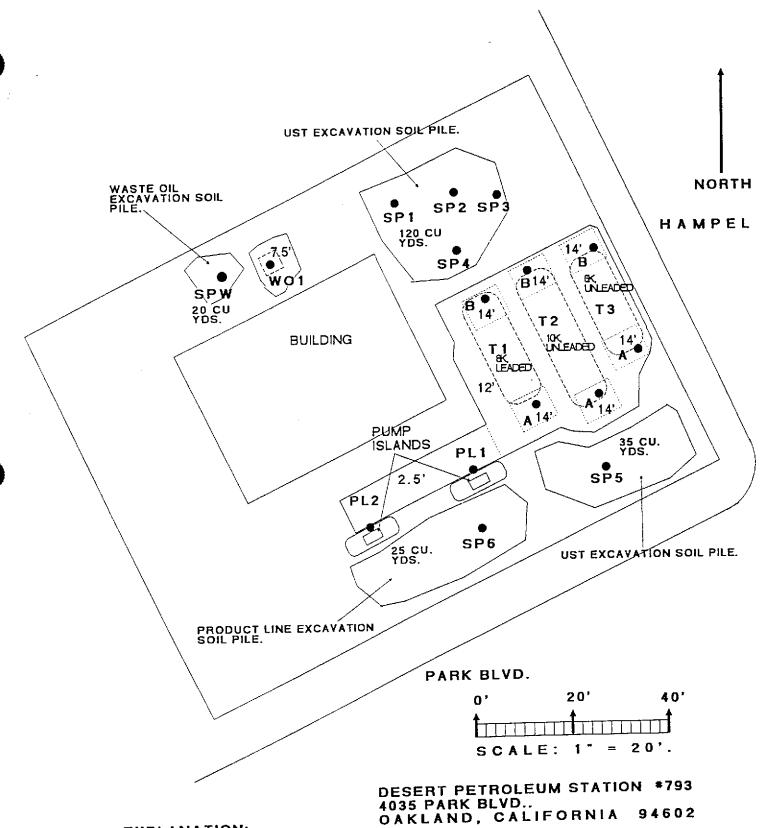
Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of (Custody / Re	quest for Analysis
Lab Job 1		Page_ <u></u> of_ <u></u> _

	(000) 200					/ , ,	Phone:	<u></u>	1.11.5	300	Tu	urnaround Time
Client: 41FGE	•		Report to	: George la	GCO-JR,	-01.0	Fax	<u> </u>	$\frac{2c_0}{2}$, ¬ ₹	7	25 tudend
Mailing Address:	1 Bech	11-	Billing to	WESkin	6-0-1-49	1-12-49	PO# / B	<i>حي حي</i> Illing Re	ference			s (c.96)
woodland	14 95	775			\$	-		-			Sample	
Project / Site Address:									\int			Comments / Hazards
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	1 XX	 -(<u>/</u>				 	
Trench-J-10'		Sleeve		8/6/99 135	\$ X X		6-	INYD	B	7		
Soil Pile 1- A - 11				8/6/99	X		29		,046	1051		composite 4
Soil Pile-B-11 Soil Pile-C-11					X				1064	X .002	/	lah
So: / Pile- D-11	50:1	Sleeve		8/6/99	1 ×				7067	1,201	' -	
		 										
								-	-			
			-					<u> </u>	-	-		
	<u> </u>					·						
									-	_	-	
	1100			Date: 8/4/99 Tim	e: /440	Rece	ived by:	Mus	20.	5 W.	RIAD	Lab Comments
Relinquished by:	vi Ju	7		Date: Tim			ived by:					
Relinquished by:				Date: Tim	e:	Rece	ived by:					


North State Environmental Analytical Laboratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560


Chain of Custody / F	Request for Ar	nalysis
Lab Job No.:	Page	_of

Client: Weckin	Geo-Erg		Report	to: Garg Con	coc	Phone: 9	TV 668	5-530	,		urnaround Time
Client: Western Mailing Address:	1386 E	Brema St	Billing to	to: Gaix Conso: West		Fax:		24 han-			
	ucakero	ICA		-		PO# / Bi	lling Ref	erence:		Date:	5-13-84
		49660 45776							·	Sample	8-13-84 er: (2-10e110)
Project / Site Address	· DP7	4966 0 9577 <u>6</u> 43 - Vene	4	Analys Requested	\$ 15 May 8 15 2						/
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time		/_/	<u>/</u>	<u>/</u>		_	Comments / Hazards
Spil Pikz-A	Soil	1 Sece	No	8-17-94 Men	<u> </u>						
Cail Pikz-B		1			VEC	enfor	R	4,206		<u></u>	
Spil Piloz-C		1)					ļ	
Spil Pikz-A Spil Pikz-B Spil Pikz-C Spil Pikz-D		/ /			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
				/ /				,		-	
			<u> </u>					A ST			
j.						_		/	_	 	
									ļ	_	í
							<u> </u>	-	 		
								<u> </u>	 	_}	
								<u> </u>	 		
-							 	<u> </u>	 		
						_	<u> </u>		 	 	
				A.				<u> </u>			
Relinquished by:	1/	marice		Date: 8/13/19 Time	: /2:30 Red	eived by:				<u> </u>	Lab Comments
Relinquished by:				Date: Time	: Red	eived by:					_
Relinquished by:				Date: Time	: Red	eived by:	•				

8:15 Am 8-12-99 DTU 8.90° 25096 12:53 25-96 DTL 9-42'

4035 Park Ald Cahler J, CA

EXPLANATION:

2.5'7.5' EXCAVATION AND/OR SAMPLE DEPTH BELOW SURFACE.

T 1 REMOVED TANK DESIGNATION.

● SAMPLE POINT AND ID *. A14' FIGURE 1

UST AND PRODUCT LINE REMOVAL SAMPLING LOCATIONS

JUNE 23, 1994

MATRIX ENVIRONMENTAL LABOR PORIES (916) 635-3962 FAX: (916) 635-9331 ANALYSIS PROJECT I.D. NOULONO STAMPS Descrit - Childrend NO. of CONTAINERS CLIENT CHAIN OF CUSTODY # PAGE -\$25.82.70 \$1.80040 On Contraction of the Contractio OF _____ / R. . 100 TIME DATE LAB I.D. # MATRIX SAMPLE I.D. SAMPLED SAMPLED COMMENTS: 6/23/11/125 Sil 942014 TI A Normal 1137 942015 Trans and 8 8240/8270 madified 942016 1120 T2 A 115 942017 100 T3 A 742018 1615 T3 B 742019 on/ DL as 16,30 100-1 942020 8010 For PL-1 1651 942021 8240 442622 1700 P1-2 942623 5P-W 17/0 1711 792624 17/2 442025 17/3 942026 1714 942027 504 9472028 505 1715 1716 5P6 942024

Relinquished by: (Signature)	Date/Time	Received by: (Signature)	Special Instructions
	9/24/4 0830		Report To: GOLYC CONVISC
Relinquished by: (Signature)	1 Date/lime	Received by; (Signature)	BILL To: Wasker Gar - Engineer
			1386 E. Banos St
	6 /Date/Time		Wasterd, CA 9576
	124/44 0830	EAN (To-	

Western GEO 1386 Beamer Street Woodland, Ca 95776 7/8/94

ATTN: George Converse

Re: Project: Desert - Oakland

Lab Reference Number: 4525 Date Samples Received: 6/24/94

No. Samples Received: 16

The samples were received by Matrix Environmental Laboratories intact and in good condition. Samples conformed to required sampling protocols for the requested analyses and were accompanied by required documentation.

Please call if we can be of further assistance.

Sincerely,

Charles R. Todd,

Laboratory Director

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P - W

Lab ID: 942023

Date Sampled: 6/23/94

Date Received: 6/24/94

Date Extracted: 6/27/94

Date of Analysis: 6/27/94

Matrix: SOIL

COMPOUND	mg/kg	REPORTING LIMIT (ppm)
BENZENE	0.009	0.005
TOLUENE	0.008	0.005
ETHYLBENZENE	ND	0.005
TOTAL XYLENES	0.020	0.015
SURROGATE RECOVERY	103%	ACCEPTABLE RANGE 70% TO 130%

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P 1

Lab ID: 942024

Date Sampled: 6/23/94

Date Received: 6/24/94

Date Extracted: 6/27/94
Date of Analysis: 6/28/94

Matrix: SOIL

COMPOUND mg/kg (ppm)		REPORTING LIMIT (ppm)
BENZENE	ND	0.05
TOLUENE	0.46	0.05
ETHYLBENZENE	0.46	0.05
EIIII		
TOTAL XYLENES	4.9	0.15
SURROGATE RECOVERY	108%	ACCEPTABLE RANGE 70% TO 130%

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P 2

Lab ID: 942025

Date Sampled: 6/23/94

Date Received: 6/24/94
Date Extracted: 6/27/94

Date of Analysis: 6/28/94

Matrix: SOIL

COMPOUND	(ppm)	REPORTING LIMIT (ppm)
BENZENE	ND	0.05
TOLUENE	0.22	0.05
ETHYLBENZENE	0.34	0.05
TOTAL XYLENES	3.5	0.15
SURROGATE RECOVERY	105%	ACCEPTABLE RANGE 70% TO 130%

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P 3

Lab ID: 942026

Date Sampled: 6/23/94

Date Received: 6/24/94

Date Extracted: 6/27/94

Date of Analysis: 6/28/94

Matrix: SOIL

COMPOUND	(ppm)	REPORTING LIMIT (ppm)				
BENZENE	ND	0.05				
TOLUENE	0.08	0.05				
ETHYLBENZENE	0.47	0.05				
TOTAL XYLENES	2.6	0.15				
SURROGATE RECOVERY	103%	ACCEPTABLE RANGE 70% TO 130%				

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P 4

Lab ID: 942027

Date Sampled: 6/23/94

Date Received: 6/24/94

Date Extracted: 6/27/94

Date of Analysis: 6/28/94

Matrix: SOIL

COMPOUND	mg/kg (ppm)	REPORTING LIMIT (ppm)
BENZENE	ND	0.05
TOLUENE	0.13	0.05
ETHYLBENZENE	0.13	0.05
TOTAL XYLENES	1.8	0.15
SURROGATE RECOVERY	106%	ACCEPTABLE RANGE 70% TO 130%

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P 5

Lab ID: 942028

Date Sampled: 6/23/94

Date Received: 6/24/94

Date Extracted: 6/27/94

Date of Analysis: 6/27/94

Matrix: SOIL

COMPOUND	mg/kg (ppm)	REPORTING LIMIT (ppm)
BENZENE	0.011	0.005
TOLUENE	0.009	0.005
ETHYLBENZENE	0.14	0.005
TOTAL XYLENES	1.3	0.015
SURROGATE RECOVERY	100%	ACCEPTABLE RANGE 70% TO 130%

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX, EPA 8020

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: S P 6

Lab ID: 942029

Date Sampled: 6/23/94

Date Received: 6/24/94
Date Extracted: 6/27/94

Date of Analysis: 6/27/94

Matrix: SOIL

COMPOUND	mg/kg (ppm)	REPORTING LIMIT (ppm)				
BENZENE	0.006	0.005				
TOLUENE	0.013	0.005				
ETHYLBENZENE	0.048	0.005				
TOTAL XYLENES	0.51	0.015				
SURROGATE RECOVERY	102%	ACCEPTABLE RANGE 70% TO 130%				

NOTE:

(ND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: BTEX SPIKE SUMMARY

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: N/A

Lab ID: LCS/LCSD

Date Sampled: N/A Date Received: N/A

Date Extracted: 6/27/94

Date of Analysis: 6/27/94

Matrix: SOIL

	CONC SPIKED	CONC	CONC MEASURED		PERCENT RECOVERY		
COMPOUND	mg/kg (ppm)	LCS	LCSD	LCS	LCSD	RPD	
BENZENE	0.588	0.604	0.645	103%	110%	7%	
TOLUENE	0.896	0.859	0.915	96%	102%	6%	
ETHYLBENZENE	0.690	0.609	0.647	88%	94%	6%	
TOTAL XYLENES	1.76	1.54	1.63	87%	92%	6%	

LCS=

LABORATORY CONTROL SPIKE

LCSD=

LABORATORY CONTROL SPIKE DUPLICATE

RPD=

RELATIVE PERCENT DIFFERENCE

CONC=

CONCENTRATION

3017 KILGORE ROAD #100 RANCHO CORDOVA, CA 95742

PHONE (916) 635-3962 FAX (916) 635-9331

ANALYSIS: TPH-GASOLINE SPIKE SUMMARY

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: N/A

Lab ID: LCS/LCSD

Date Sampled: N/A
Date Received: N/A
Date Extracted: 6/27/94
Date of Analysis: 6/27/94

Matrix: SOIL

COMPOUND	CONC SPIKED mg/kg (ppm)	CONC MEASURED LCS L		PERCEN RECOVE LCS		RPD
GASOLINE	4,55	4.64	4.93	102%	108%	6%

LCS=

LABORATORY CONTROL SPIKE

LCSD=

LABORATORY CONTROL SPIKE DUPLICATE

RPD=

RELATIVE PERCENT DIFFERENCE

CONC=

CONCENTRATION

3017 KILGORE ROAD #100 RANCHO CORDOVA, CA 95742

PHONE (916) 635-3962 FAX (916) 635-9331

ANALYSIS: TPH-GASOLINE by EPA 5030 PURGE-AND-TRAP

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Matrix: SOIL

Date Sampled: 6/23/94
Date Received: 6/24/94
Date Extracted: 6/27/94

Date of Analysis: 6/27-28/1994

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			GASOLINE mg/kg	REPORTING LIMIT mg/kg (ppm)	SURROGATE RECOVERY
Sample ID	Lab ID		(ppm)		1170/
T 1 A	942014		2.0	1.0	117%
T 1 B	942015		ND	1.0	115%
T 2 A	942016		ND	1.0	113%
T 2 B	942017		ND	1.0	112%
T 3 A	942018		ND	1.0	109%
Т 3 В	942019		ND	1.0	104%
W O - 1	942020		3.0	1.0	103%
P L - 1	942021		ND	1.0	98%
P L - 2	942022		ND	1.0	97%
SP-W	942023		ND	1.0	96%
SP1	942024	* *	110	10	114%
SP2	942025	* *	200	10	120%
S P 3	942026	* *	170	10	112%
S P 4	942027	* *	68	10	109%
S P 5	942028	* *	110	10	106%
S P 6	942029		19	1.0	105%
N/A	Method Blank	ζ	ND	1.0	107%

^{* *} These samples were analyzed at 1: 10 dilution and the reporting limits adjusted accordingly.

NOTE: OND) NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

3017 KILGORE ROAD #100 RANCHO CORDOVA, CA 95742

PHONE (916) 635-3962 FAX (916) 635-9331

ANALYSIS: TPH MATRIX SPIKE SUMMARY

Client: Western GEO

Contact: G. Converse

COC No: 4525

Project No: Desert - Oakland

Matrix: SOIL

Date Sampled: N/A
Date Received: N/A

Date Extracted: 7/1/94

Date of Analysis: 7/1/94

COMPOUND	CONC SPIKED (mg/L)	CONC PERCENT MEASURED RECOVERY LCS LCSD LCS LCSD	RPD
DIESEL	100	98 103 98% 103%	5%

LCS= LCSD= PD=

CONC=

LABORATORY CONTROL SPIKE

LABORATORY CONTROL SPIKE DUPLICATE

RELATIVE PERCENT DIFFERENCE

CONCENTRATION

3017 KILGORE ROAD #100 RANCHO CORDOVA, CA 95742

PHONE (916) 635-3962 FAX (916) 635-9331

ANALYSIS: TPH-D, EPA 8015 mod.

Client: Western GEO Contact: G. Converse

COC No: 4525

Project No: Desert - Oakland

Matrix: SOIL

Date Sampled: 6/23/94
Date Received: 6/24/94
Date Extracted: 7/1/94

Date of Analysis: 7/1/94

v 1 m	Sample ID	Diesel mg/Kg (ppm)	REPORTING LIMIT mg/Kg (ppm)		
Lab ID	Sample Bo		1 -		
Method Blank	N/A	ND	1.		
	WO-1	ND	1.		
942020	VV O-1		1		
942023	SP-W ND		. .		

NOTE: (ND) = NOT DETECTED AT OR ABOVE THE REPORTING LIMITS.

ANALYSIS: EPA 418.1, OIL & GREASE by IR SPECTROPHOTOMETER

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: SP-W

Lab ID: 942023

Date Sampled: 6/23/94

Date Received: 6/24/94

Date Extracted: 7/1/94

Date of Analysis: 7/5/94

Matrix: SOIL

COMPOUND

(mg/Kg) (ppm) REPORTING LIMIT

(ppm)

OIL & GREASE

1,100

50

NOTE: (ND) NOT DETECTED AT OR ABOVE REPORTING LIMITS.

ANALYSIS: EPA 418.1; OIL & GREASE SPIKE SUMMARY

CLIENT: Western GEO

CONTACT: G. Converse

COC No: 4525

Project No: Desert - Oakland

Sample ID: N/A

Lab ID: LCS/LCSD

Date Sampled: N/A

Date Received: N/A

Date Extracted: 7/1/94

Date of Analysis: 7/5/94

Matrix: SOIL

COMPOUND	CONC SPIKED	CONC MEASURE LCS	D LCSD	PERCENT RECOVERY LCS	LCSD	RPD	<u> </u>
OIL & GREASE	500	400	493	80%	99%	21%	

LCS=

LABORATORY CONTROL SPIKE LABORATORY CONTROL SPIKE DUPLICATE LCSD=

RELATIVE PERCENT DIFFERENCE RPD=

CONCENTRATION CONC=

North State Environmental Laboratory

CA ELAPS 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1248

Client:

Western Geo-Engineers

Project:

DP 793 - Trench

Date Reported: 08/16/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

halyte Sampic: 99-12	1 1 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Unit PTLH 2(A-D)	Date Sampled 08/13/99	Date Analyzed SOIL COMP. 08/13/99
Gasoline Benzene Ethylbenzene	8015M 802 0 8020	DN 000.00 DN DN	mg/Kg		
MTBE Toluene Xylenes	8020 8020 8020	*ND ND 0.023	mg/Kg		

North State Environmental Laboratory

CA ELAP# 1953
90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

OF ANALYSIS CERTIFICATE

Quality Control/Quality Assurance

Lab Number:

99-1248

Client:

Western Geo-Engineers

Project:

DP 793 - Trench

Date Reported: 08/16/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

Analyte	Method	Reporting Limit	Unit	Blank	Avg MS/MSD Recovery	RPD	
7 2 2 2	8015M	0.5	mg/Kg	ND	96	2	
Gasoline		.005	mg/Kg	ND	96	5	
Benzene	8020		mg/Kg	ND	95	5	
Ethylbenzene	80 20	.005	• –	ND	95	5	
Toluene	8020	.005	mg/Kg		99	4	
Xylenes	8020	.010	mg/Kg	ND		7	
MTBE	8020	.005	mg/Kg	ND	80	1	

ELAP Certificate NO:1753

A.Murphy, Laboratory Director

2 of 2 Page

1	in a								
ß		North	State	Envir	onmen	tal A	nalytical	Laborat	ory
Z.		90 South	1 Spruce	Avenue,	Suite W,	South:	nalytical San Francisc	o, CA 9408	Ċ

Chain of Custody / Request for Analysis
Lab Job No.: Page of

		6-4563 Fax						· · · · · · · · · · · · · · · · · · ·			urnaround Time
Client: Western	bec-Eng	<u>, </u>	Report	to: Garge Con	ware		57 66	8-55			4 have
Mailing Address:	1386 E	Bena St	Billing t	io: wegl		Fax:	··- <u>-</u>				
•	uxedlan	CA CACCO				PO#/6	Billing Re	ference:			F-13-44
		95776								Sample	T. Ceneno
Project / Site Address:	DP7	9566 0 95776 93 - Trenc	4	Analys Requested	18.8						
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	1/1/2		_		_		/Comments / Hazards
Spil likz-A	Soil	1 Steam	pe	8-17-44 poor)						!
Spil Ple2-8	7	1/			15	3 cm for	Ŕ	4 into			
Spil Piloz-C		1								ļ	
Spil lik 2-A Spil lik 2-B Spil lik 2-C Spil lik 2-C		1	7						<u> </u>	<u> </u>	
		,		//			<u> </u>		<u> </u>	<u> </u>	
							<u> </u>		 	 	
									 	-	
					<u> </u>			ļ	 	-	
							<u> </u>	ļ		┼	
			<u> </u>				-	 			
						 _	 	 	-		
					1	_		-	 	 	
								-			
						L	12		1		1.10
Relinquished by:	4/ (muc	***	Date: 8/13/49 Time	*	ceived by:	~//	(30) =			Lab Comments
Relinquished by:	2			Date: 9/3997 ime		ceived by:	ein	MZ-	NGE	-	-
Relinquished by:				Date: Time	: Re	ceived by:					<u></u>

ANALYSIS CERTIFICATE OF

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Analyte Sample: 99-1	Method 216-16 Clie	Result.	Unit , PILE-A,B,C,D-1	Date Sampled 08/06/99	Date Analyzed SOIL COMP.
Gasoline Benzene Ethylbenzene MTBE Toluene Xylenes	8015M 8020	7.9 0.006 0.064 ND 0.051 0.52	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		08/12/99

WESTERN GEO-ENGINEERS

CALIF. CONTRACTOR #513857 REGISTERED GEOLOGISTS 1386 EAST BEAMER STREET WOODLAND CA 95776-6003 (530) 668-5300, FAX (530) 662-0273 Wege @mother.com

c/12/99

		$\sigma (m)$
FROM:	LSA	DATE: <u>8/13/99</u>
ТО:	Paul Sterman BY Langell	FAX #: (115) 875-1157
		TOTAL PAGES INCLUDING THIS PAGE
		22

Chain of Custady for both study pile composity

TPHy levels from original tout pull samples

Shelpile sample usually from original toute pull samply

Fryau showing where samples abstract

Fryau showing where samples abstract

from spail pile 1 and spailpile 2

FAX	Date &	<u></u>	
TO: Affri George Converse	Number of page	North State Environmental Lab 90 S. Spruce Avenue, Suite W South San Francisco, CA 94080	
Phone Fax Phone 530662 023	Phone Fax Phone	650.266.4563 650.266.4560	
REMARKS: Urgent For your review	Reply ASA	AP Please Comment	
•			
}			

WESTERN GEO-ENGINEERS

CALIF. CONTRACTOR #513857 REGISTERED GEOLOGISTS 1386 EAST BEAMER STREET WOODLAND CA 95776-6003 (530) 668-5300, FAX (530) 662-0273 Wege@mother.com

FROM:	Compre	DATE: 8/17/99
TO: P	Jul Sharman	FAX #: (415) 875-115
	5 CANFILL	TOTAL PAGES INCLUDING THIS PAGE
00145-1170	This was torres	ents loa yards of
COMMENTS:	158 YARDS TOTAL	

ro: Western Geo	Number of pages including cover sheet- FROM: North State Environmental 90 S. Spruce Avenue, Suite South San Francisco, CA 94	th State Environmental Lab	
Phone Fax Phone 5306620273	Phone 650.266.4563 Fax Phone 650.266.4560	_	
REMARKS: Urgent For your r	eview 🗌 Reply ASAP 📋 Please Commer	nl	

North State Environmental Laboratory

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

alvte M	ethod	Result	Unit	Date Sampled 08/02/99	Date Analyzed SOIL
mple: 99-121	6-01 Cli	ent ID: RS8	-10'	08;02722	08/12/99
Gasoline Benzene Ethylbenzene MTBE Toluene	8015M 8020 8020 8020 8020 8020	160 0.49 2.6 ND 0.79 6.2	mg/Kg mg/Kg mg/Kg mg/Kg		00/12/22
Xylenes			0.61	08/03/99	SOIL
Sample: 99-12:	16-02 Cl	ient ID: RS	9-0		08/12/99
Gasoline	8015M	ND			
Benzene	8020	ND			
Ethylbenzene	8020	ND			
MTBE	8020	ND			-
Toluene	8020	ND			
Xylenes	8020	ND			SOIL
	1 C A2 C1	ient ID: RS	39-10'	08/03/99	08/12/99
Sample: 99-12		67	mg/Kg		00/12/0-
Gasoline	8015M	0.41	mg/Kg		
Benzene	8020	0.87	mg/Kg		
Ethylbenzene	8020	ND	-		
MTBE	8020	2.0	mg/Kg		
roluene	8020	4.9	mg/Kg		
Xylencs	8020				Page

^{*}Confirmed by GC/MS method 8260

EE-EI-BUA

North State Environmental Laboratory

CA ELAP = 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Analyte 1	Method	Result	Unit	Date Sampled 08/05/99	Date Analyzed SOIL
mple: 99-12:	16-04 Clie		0-6'	00/03/23	08/12/99
Gasoline	8015M	ND	1=0		
Benzene	8020	0.005	mg/Kg		
Ethylbenzene	8020	ND			
MTBE	8020	ND			
Toluene	8020	ND			
xylenes	8020	ИD			
	16 OB Cli	ent ID: RS1	0-9.5'	08/05/99	SOIL
Sample: 99-12		870	mg/Kg		08/12/99
Gasoline	8015M	11	mg/Kg		
Benzene	8020	21	mg/Kg		
Ethylbenzene		ND	1097-19		
MTBE	8020	ND 62	mg/Kg		
Tolu e ne	8020	-	mg/Kg		
Xylenes	8020	120			COTI
Sample: 99-12	216-06 Cli	ent ID: TRI	ENCH-A-15'	08/04/99	SOIL
Gasoline	8015M	ND			08/12/99
Benzene	8020	0.072	mg/Kg		
Ethylbenzene		0.008	mg/Kg		
MTBE	8020	ND			
luene	8020	0.011	mg/Kg		
Xylenes	8020	0.015	mg/Kg		

^{*}Confirmed by GC/MS method 8260

North State Environmental Laboratory

CA LLAP # 1753
90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266 4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

_		Result	Unit	Date Sampled	Date Analyzed
Analyte I	Method (NCH-B-10'	08/04/99	SOIL
mple: 99-121					08/12/99
Gasoline	8015M	140	mg/Kg		
Benzenc	8020	2.0	mg/Kg		
Ethylbenzene	8020	2.4	mg/Kg		
MTBE	8020	ND			
Toluene	8020	4.0	mg/Kg		
Xylenes	8020	10	mg/Kg	-	
			man 0 1/1	08/04/99	SOIL
Sample: 99-12	16-08	Client ID: TRE	NCH-C-14	00/0-1	08/12/99
Gasoline	8015M	ND			
Benzene	8020	0.009	mg/Kg		
Ethylbenzene	8020	0.005	mg/Kg		
MTBE	8020	ND			
Toluene	8020	0.017	mg/Kg		
Xylenes	8020	0.031	mg/Kg		
-				08/05/99	SOIL
Sample: 99-12	16-09	Client ID: TR	ENCH D-10.5	00/00/22	08/12/99
Gasoline	8015M				*
Benzene	8020	NĎ			
Ethylbenzene	8020	ND			
_MTBE	8020	ND			
oluene	8020	0.006	mg/Kg		
Xylenes	8020	0.017	mg/Kg		

^{*}Confirmed by CC/MS method 8260

North State Environmental Laboratory CA 65.0 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

3 3	Method	Result	Unit	Date Sampled	Date Analyzed
Analyte	16-10 Clie		ICH-E-5 '	08/05/99	SOIL
	8015M	4000	mg/Kg		08/12/99
casoline					
Benzene	8020	17	mg/Kg		
Ethylbenzene	8020	110	mg/ Kg		
MTBE	8020	*ND<0.5	mg/Kg		
Toluene	8020	260	mg/K g		
Xylenes	8020	580	mg/Kg		
Sample: 99-12	216-11 Clie	ent ID: TRE	NCH-F-10.5'	08/05/99	SOIL
Gasoline	8015M	ND			08/12/99
		0.064	mg/Kg		
Benzene	8020		mg/Kg		
Ethylbenzene		0.010	rig / r/g		
MTBE	8020	ND	1		
Toluene	8020	0.015	mg/Kg		
Xylene s	8020	0.046	mg/Kg		
Sample: 99-1	216-12 Clie	ent ID: TRE	NCH ·G-7'	08/06/99	SOIL
Gasoline	8015M	1100	mg/Kg	· · · · · · · · · · · · · · · · · · ·	08/12/99
Benzene	8020	1.4	mg/Kg		
Ethylbenzene		34	mg/Kg		
-	802 0	4.5	mg/Kg		
MTBE		70	mg/Kg		
pluene	8020				
Aylenes	8020	180	mg/Kg		

^{*}Confirmed by GC/MS method 8260

North State Environmental Laboratory

CA FLAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-1560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1216

client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

malyte M mple: 99-121 Gasoline Benzene Ethylbenzene MTBE Toluene Xylenes Sample: 99-122 Gasoline Benzene Ethylbenzene MTBE Toluene	8015M 8020 8020 8020 8020 8020	Result ent ID: TREE ND	mg/Kg	08/06/99 08/06/99	SOIL 08/12/99 SOIL
Gasoline Benzene Ethylbenzene MTBE Toluene Xylenes Sample: 99-12: Gasoline Benzene Ethylbenzene MTBE	8015M 8020 8020 8020 8020 8020 16-14 Cli	ND ND ND ND ND 0.018	mg/Kg	08/06/99	SOIL
MTBE Toluene Xylenes Sample: 99-12: Gasoline Benzene Ethylbenzene MTBE	8020 8020 8020 16-14 Cli	ND ND 0.018 ent ID: TRE		08/06/99	
Xylenes Sample: 99-12: Gasoline Benzene Ethylbenzene MTBE	8020 16-14 Cli	0.018 ent ID: TRE		08/06/99	
Gasoline Benzene Ethylbenzene MTBE			NCH-J-S'	08700733	20 (10 (00
Gasoline Benzene Ethylbenzene MTBE		ND			08/12/99
Vulance	8020 8020 8020 8020 8020	ND ND ND ND			
Xylenes			T-10!	08/06/99	SOIL
Sample: 99-12 Gasoline Benzene Ethylbenzene TTBE oluene Xylenes	8015M 8020	ND 0.021 0.011 ND 0.079 0.057	mg/Kg mg/Kg mg/Kg mg/Kg		08/12/99

^{*}Confirmed by GC/MS method 8260

North State Environmental Laboratory

CA 13LAP # 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

OF ANALYSIS CERTIFICATE

Quality Control/Quality Assurance

Lab Number:

99-1216

Client:

Western Geo-Engineers

Project:

Desert Petoleum 793 / 4035 Park Blvd.

Oakland, CA

Date Reported: 08/13/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

	Method	Reporting Limit	Unit	Blank	Avg MS/MSD Recovery	RPD
halyte				ND	101	3
Gasoline	8015M	0.5	mg/Kg mg/Kg	ND -	85	2
3enzene	8020	.005	mg/Kg	ND	102	0
Ethylbenzene	8020	.005	mg/Kg	ND	100	1
Toluene -	8020	.010	mg/Kg	ND	107	1
Xylenes MTBE	8020 8020	.005	mg/Kg	ND	77	2

ELAP Certificate NO:1753

John A. Murphy, Laboratory Director

7 of 7

North State Environmental Analytical Laboratory

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / F	Request for Analysis
Lab Job No.:	Pageof

Client: Western	Geo-Eng		Report	to: Gary Con	Phone: 52 668 - 530 T		Turnaround Time						
Mailing Address: /	386 E	Beena St.	Billing to	o: west			Fax:					24 han	_
L	widkerd	Beena St.					PO#/E	Billing R	eference:	-	Date:	8-13-89	
		95660 95776									Sample	er: Cenceno /	
Project / Site Address:	DP 7º	43 - Tienc	h	Analys Requested	is THE							Community (More	and a
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, 	_					/Comments / Haza	- I
Spil lik 2-A	Soil	1 Steer	No	8-13-94/ Mcon		<u>) </u>					<u> </u>		
Cp. 1 Piloz-B		1			1	0	confos	K_	4 ins		<u> </u>		
Spil Piloz-C		1				<u>) </u>	<u> </u>		<u> </u>		<u> </u>		
Spil Pilez-B Spil Pilez-C Spil Pilez-D		/ /			1 1						<u> </u>		
		,		//			<u> </u>	 	<u> </u>		 		
					-		· .		A Partie				
<i>)</i>					1		 	ļ	1 1/10		-		
					 		<u> </u>	<u> </u>	-	ļ	 		
								├		 	 		_
			<u> </u>				 	-	- 	 -	_		
<u> </u>	<u> </u>		_				-				-		\dashv
			 		-		+	+		_	-	 	
	<u> </u>		 	1		· -		+			 	<u> </u>	
Relinquished by:	1	ance c	1	Date: 8/13/49 Time	· /2:30	Rece	ived by:			<u> </u>	<u> </u>	Lab Commen	ts
Relinquished by:			· · · · · · · · ·	Date: Time		Rece	ived by:					_	
Relinquished by:				Date: Time		Rece	ived by:	÷ ·					

North State Environmental Laboratory

CA ELAP# 1753

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Lab Number:

99-1248

Client:

Western Geo-Engineers

Project:

DP 793 - Trench

Date Reported: 08/16/99

halyte Sample: 99-12	Method 248-01 Clie	Result ent ID: SPO	Unit IL PILE 2(A-D)	Date Sampled 08/13/99	Date Analyzed SOIL COMP.
Gasoline Benzene Ethylbenzene MTBE	8015M 8020 8020 8020	ND 0.006 ND *ND	mg/Kg		08/13/99
Toluene Xylenes	8020 8020	ND 0.023	mg/Kg		

90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:

99-1248

Client:

Western Geo-Engineers

Project:

DP 793 - Trench

Date Reported: 08/16/99

Gasoline, BTEX and MTBE by Methods 8015M and 8020

		Reporting			Avg MS/MSD	
Analyte	Method	Limit	Unit	Blank	Recovery	RPD
 Gasoline	8015M	0.5	mg/Kg	ND	96	2
Benzene	8020	.005	mg/Kg	ND	96	5
Ethylbenzene	8020	.005	mg/Kg	ND	95	5
Toluene	8020	.005	mg/K g	ND	95	5
Kylenes	8020	.010	mg/Kg	ИD	99	4
MTBE	8020	.005	mg/Kg	ND	80	1

ELAP Certificate NO:1753

Reviewed And Approved

John A. Murphy, Laboratory Director

Page 2 of 2

North State Environmental Analytical Laboratory

99-1248	
---------	--

North State Environmental Analytical Laboratory	Chain of Custody / Request for Analys
90 South Spruce Avenue, Suite W, South San Francisco, CA 94080	Lab Job No.:Pageof_
Phone: (650) 266-4563 Fax: (650) 266-4560	•

Client: Weeken	Geo-Eng		Report	to: Garge Cond	ac	Phone:	57/6	68-530	7		urnaround Time
Client: Western Mailing Address:	1386 E	Beena St	Billing to	Report to: Garge Concare Billing to: Wegl		Fax:	Fax:			24 has	
, , , , , , , , , , , , , , , , , , ,	walkers	ICA	1	,		PO#/E	Billing R	eference:	!	Date:	8-13-44
		4 960 0								Sample	er: Cenveru
Project / Site Address:	DPT	9566 0 95776 93 - Tvenc	h	Analysi Requested	104 P.C.						O and (Morrordo
Sample ID	Sample Type	Container No. / Type	Pres.	Sampling Date / Time	18,						Comments / Hazards
Spillikz-A	Soil	1 Steer	No	8-13-94 jucan	<u> </u>						
Spil Piloz-B Spil Piloz-C Spil Piloz-D	17	1			VEC	emps	/k	4 ins			
Spil Piloz-C		1					 	-			
Spillilez-D		/ /					 	<u> </u>			
				//		ļ	_				
		<u></u>							<u> </u>	-	
							<u> </u>	 			
							 	<u> </u>	<u> </u>	 	1
							 	-		-	
							 			-	
						_	<u> </u>		 	+	
							 		-	-	
							 		 	1	
	1,		<u> </u>				1		Щ.	<u></u>	Lab Comments
Relinquished by:	1/ (muc		Date:8/13/99 Time:		eived by		M			Lab Comments
Relinquished by:	2			Date: 9 1399Time:		eived by:	ein	XX-	NSE		-
Relinquished by:	0		<u> </u>	Date: Time:	Rec	eived by:				<u>. </u>	

APPENDIX M

ALAMEDA COUNTY HEALTH CARE SERVICES

Lecien 11-10-99

November 6, 1998

STID 1248 Page 1 of 2

John Rutherford Desert Petroleum Inc. PO Box 1601 Oxnard, CA 93032

ENVIRONMENTAL HEALTH SERVICES

1131 Harbor Bay Patrivay, Suite 250 Alemeda, OA 94502-8577 £10) 567-6700 . .510, 337-9335 :FAX

Desert Petroleum site #793, 4035 Park Blvd., Oakland, CA 94602 RE:

Dear Mr. Rutherford,

This office has received and reviewed the following documents:

- an update of the investigation, dated September 30, 1998, by Western Geo-Engineers
- a letter from Derrik Williams, dated October 13, 1998
- a Third Quarter Monitoring Report dated October 23, 1998, by Western Geo-Engineers
- a revised site map from Western Geo-Engineers, dated October 29, 1998

The following are comments concerning these reports:

- 1. I discussed called Derrick Williams and had a discussion concerning the workplan. His comments are considered.
- 2. The quarterly report shows that the plume seems to be shrinking, although there is not any noticeable degradation in contamination the plume shows stability or degradation in benzene. A concern has been that the plume is not defined downgradient and that is the main reason for this workplan. The location of the proposed wells has been clarified. At Brighton Ave. the plume going up the hill will be intercepted by construction of a trench which leads back to a proposed recovery well.

3. Some of the ideal locations for monitoring are not available because the property owners decline to grant access. Secondary locations are then selected to allow for real description of the status of the plume.

- 4. The soil and groundwater study which was done found only extremely low levels of benzene in soil and groundwater in TP18, which was across Brighton Ave. near the sewer trench. It appears that the extent of contamination has been defined.
- 5. There will be weekly removal of any accumulated contaminants from the installed trench on Brighton Ave.
- 6. A natural attenuation study is being done to determine what additional nutrients may be needed to augment the tsp which was to be injected in the infiltration wells placed at 4035 Park Blvd. This has not yet been documented.

November 6, 1998 STID 1248 Desert Petroleum Page 2 of 2

7. The current workplan, as amended, is acceptable. You are directed to begin fieldwork within 30 days of the receipt of this letter. Please contact this office at least 3 days prior to conducting the fieldwork.

If you have any questions or comments, please contact me directly at 510-567-6782.

Sincerely,

Thomas Peacock, Manager

Environmental Protection Division

Tony Razi, 3609 East 14th St., Oakland, CA 94601 cc:

Alireza Shirazian, 409 Picadilly Pl., unit 6, San Bruno, CA 94066

George Converse, WEGE, 1386 E. Beamer St., Woodland CA 95776

Michael Gabriel, Glenview Neighborhood Association, 4200 Park Blvd., Box 111, Oakland, CA 94602

Golpad & Karimabadi, c/o Matt Haley, 1633 San Pablo Ave., Oakland, CA 94612

Attn: Shawn Stark, Councilmember Dick Spees' office, City of Oakland, One City Hall Plaza, 2nd Floor, Oakland, CA 94612

Attn: Nicole Brown, Councilmember John Russo's office, City of Oakland, One City Hall Plaza, 2nd Floor, Oakland CA 94612

Leroy Griffin, Oakland Fire Dept., OES, Haz Mat Mgmt Program, 1605 Martin Luther King Jr Dr., Oakland, CA 94612

Ralph Wheeler, City of Oakland, City Attorney's Office, One City Hall Plaza, Oakland, CA 94612

Steve Marquez, SWRCB, Cleanup Fund

Derrik Williams, 4032 Brighton Ave., Oakland, CA 94602

Lara Bise, Supervisor Keith Carson's Office (QIC 20101)

Charles Bryant, Secretary, City Planning Commission, 250 Frank H. Ogawa Plaza, 2nd Floor, Oakland, CA 94612

Thomas Peacock/file

je.1248-I

Exequation

EXCAVATION

Job Site 4026 **ERIGHTON AV** Parce1= 024 -0533-011-00

Descritwo monitoring wells

Permit Issued 04/22/99

Work Type EXCAVATION-PRIVATE P

USA #

Util ℃o. Job # Util Fund #:

Applant

Х

Owner LEVITT RICHARD A & KAREN J Contractor WESTERN GEO-ENGINEERS

(916)668-5300 513957 C57

Arch/Engr

Agent

Applic Addr 420 W SOUTHWOOD DR, WOODLAND, CA, 95695

\$246.00 TOTAL FEES PAID AT ISSUANCE

\$41.00 Applic

\$205.00 Permit

\$.00 Process

\$.00 Rec Mgmt

\$.00 Gen Plan

\$.00 Invstg

\$.00 Other

ApplicationN: X9908319 PaymentH: 001

PRYMENT RECEIPT

payor: WESTERN GEO-ENGINEER2CKS

Check Payment:

Sales Tax:

***** TOTAL PAID:

Subtotal:

Community & Economic Development Agency 250 Frank

EXCAVATION PERMIT TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK

CIVIL ENGINEERING

PAGE 2 of 2

	SITE ADDRESS/LOCATION
PERMIT NUMBER 7900 319	4026 BRIGHTON AV
APPROX. START DATE APPROX. END DATE	24-HOUR EMERGENCY PHONE NUMBER (Permit not valid without 24-Hour number) 1800 995 9343
8-2-99	(Permit not valid without 24-Hour number) 1800 995 9393
CONTRACTOR'S LICENSE # AND CLASS	CTTY BUSINESS TAX #
513857	
inquiry identification number issued by USA. The USA telephon	nice Alert (USA) two working days before excavating. This permit is not valid unless applicant has secured an number is 1 (800) 642-2444. UNDERGROUND SERVICE ALERT (USA) #:
2) 48 hours prior to starting work, YOU MU	UST CALL (510) 238-3651 TO SCHEDULE AN INSPECTION.
OWNER/BUILDER	and the second to
I hereby affirm that I am exempt from the Contractor's License Law for the f construct, alter, improve, demolish, or repair any structure, prior to its issuar provisions of the Contractor's License law Chapter 9 (commencing with Sec. alleged exemption. Any violation of Section 7031.5 by any applicant for a pe I, as an owner of the property, or my employees with wages as their sole Professions Code: The Contractor's License Law does not apply to an owner provided that such improvements are not intended or offered for sale. If how burden of proving that he did not build or improve for the purpose of sale). I, as owner of the property, am exempt from the sale requirements of the be performed prior to sale, (3) I have resided in the residence for the 12 most structures more than once during any three-year period. (Sec. 7044 Business 1, as owner of the property, am exclusively contracting with licensed cont does not apply to an owner of property who builds or improves thereon, and 1 am exempt under Sec	rof property who builds or improves thereon, and who does such work himself or through his own employees, rever, the building or improvement is sold within one year of completion, the owner-builder will have the above due to: (1) I am improving my principal place of residence or appurtenances thereto. (2) the work will this prior to completion of the work, and (4) I have not claimed exemption on this subdivision on more than two and Professions Code). The Contractor's License Law who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law).
WORKER'S COMPENSATION O I hereby affirm that I have a certificate of consent to self-insure, or a cert	ificate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code).
Policy # Company Nan	ne
© I certify that in the performance of the work for which this permit is issue of California (not required for work valued at one hundred dollars (\$100) or	ed, I shall not employ any person in any manner so as to become subject to the worker's Compensation
comply with such provisions or this permit shall be deemed revoked. This permitted upon the express condition that the permittee shall be responsible for perform the obligations with respect to street maintenance. The permittee sh	you should become subject to the Worker's Compensation provisions of the Labor Code, you must forthwith the permit is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is all claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to all, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers all, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers to by any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property mit or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This and by the Director of the Office of Planning and Building.
I hereby affirm that I am licensed under provisions of Chapter 9 of Division this permit and agree to its requirements, and that the above information is to	3 of the Business and Professions Code and my license is in full force and effect (if contractor), that I have read rue and correct under penalty of law.
x - Millel	4/22/99
Signature of Permittee	Date Date Limited Operation Area?
DATE STREET LAST SPECIAL PAVING DETAIL	HOLDAT RESTRICTION
RESURFACED 1 1 1 REQUIRED: 2 125 AND	DATE ISSUED
ISSUED BY	4/22/99

D793 Enchroachment Permit CITY OF OAKLAND

DEVELOPMENT SERVICES DEPARTMENT • 1330 BROADWAY • OAKLAND, CALIFORNIA 94612

TDD 839-6451

USA 538-874

December 11, 1998

Desert Petroleum, Inc. Convenience Management Group P.O. Box 1601 Oxnard, CA 93032-1601

RE: MINOR ENCROACHMENT PERMIT FOR MONITORING WELL ALONG BRIGHTON AVENUE, OAKLAND

Dear Mr. Rutherford:

Enclosed are the Minor Encroachment Permit and Agreement and the Conditions for Granting a Minor Encroachment Permit allowing you to place two monitoring wells and a groundwater recovery trench within the public right-of-way of Brighton Avenue.

Before the permit will become effective, however, it must be signed by the person(s) having the legal authority to do so, properly notarized with notary acknowledgment slip(s) attached, and returned to this office to the attention of Marcel Uzegbu for recordation.

You must also obtain a street excavation permit from the Engineering Information Counter, 2nd Floor, 250 Frank Ogawa Plaza, prior to the start of the proposed work in the City right-of-way. For questions concerning the street excavation permit, call the Engineering Information Counter at (510) 238-4777 between 8 a.m. and 4 p.m., Monday through Friday.

If you have any other questions regarding this minor encroachment permit, please call Marcel Uzegbu at (510) 238-2177.

Very truly yours,

CALVIN N. WONG Chief of Building Services

Βv

Plan Check/Engineering Services Manager

Enclosures

Recording requested by: City of Oakland	
When Recorded Mail to: City of Oakland Community & Econ. Develop. Agency Building Services, Eng. info. 250 Frank Ogawa, 2nd Floor Oakland, CA 94612	
TAX ROLL PARCEL NUMBER (ASSESSOR'S REFERENCE NUMBER) 024 0533 007 MAP BLOCK PARCEL SU Address: 4035 Park Boulevard	Space Above For Recorder's Use Unity
MINOR ENCROACH	MENT PERMIT AND AGREEMENT
Desert Petroleum, Inc, owners of that certain Series No. 96-0051296, in the Office of the R 4035 Park Boulevard, is hereby granted a Corway of Brighton Avenue with two monitoring encroachment shall be as delineated in Exhibit	property described in the Grant Deed recorded March 1, 1996, ecorder, Alameda County, California and commonly known as inditional Revocable Permit to encroach into the public right-of-wells, and a groundwater recovery trench. The location of said A' attached hereto and made a part hereof.
The permittees agree to comply with and be attached hereto and made a part hereof.	bound by the conditions for granting an Encroachment Permit rsigned, the present owners of the property described above, and
In witness whereof, I have set my signature this	is day of , 1998.
III WIGGESS WIGGEST, THE T	DESERT PETROLEUM, INC
	JOHN RUTHERFORD Environmental Manager
Relay For Offic	ial Use Only
	CITY OF OAKLAND
DatedBy:	CALVIN N. WONG Chief of Building Services WILLIAM CLAGGETT Director of Community & Economic Development Agency

To:

Desert Petroleum, Inc.

Address:

P.O. Box 1601, Oxnard, CA 93032-1601

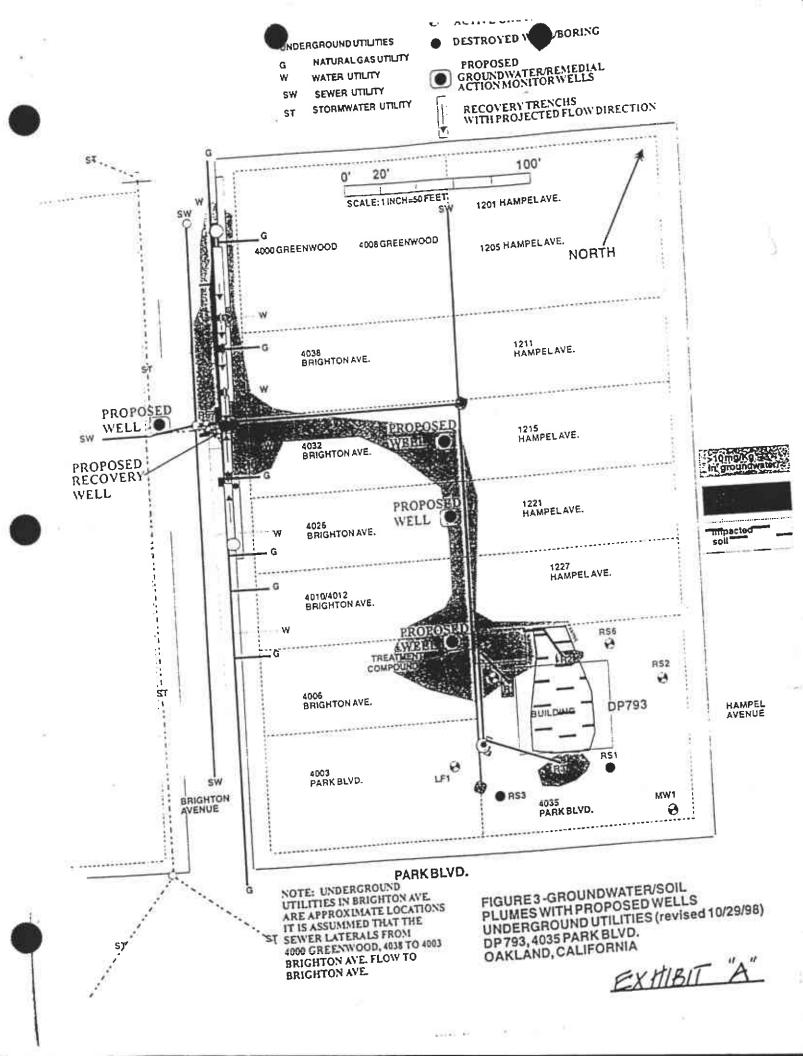
RE:

Minor Encroachment Permit for Monitoring Wells along Brighton Avenue

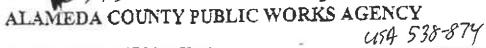
CONDITIONS FOR GRANTING A MINOR ENCROACHMENT PERMIT

1. That this permit shall be revocable at the pleasure of the Chief of Building Services.

- 2. That the permittee, by the acceptance, either expressed or implied, of the minor encroachment permit hereby disclaims any right, title, or interest in or to any portion of the public sidewalk or street area, and agrees that said temporary use of said area does not constitute an abandonment on the part of the City of Oakland of any of its rights for street purposes and otherwise.
- 3. The permittee shall maintain in force and effect at all times that said encroachment occupies said public sidewalk or street area, good and sufficient public liability insurance in the amount of \$300,000 for each occurrence, and property damage insurance in the amount of \$50,000 for each occurrence, both including contractual liability insuring the City of Oakland against any and all claims arising out of the existence of said encroachment in said public sidewalk or street area, and that a certificate of such insurance and subsequent notices of the renewal thereof, shall be filed with the Chief of Building Services of the City of Oakland, and that such certificate shall state that said insurance coverage shall not be canceled or be permitted to lapse without thirty (30) days written notice to said Chief of Building Services. The Permittee also agrees that the City may review the type and amount of insurance required of the Permittee every five (5) years and may require the permittee to increase the amount of and/or change the type of insurance coverage required.
- 4. That the permittee, by the acceptance, either expressed or implied, of this revocable permit shall be solely and fully responsible for the repair or replacement of any portion or all of said improvements in the event that said improvements shall have failed or have been damaged to the extent of creating a menace or of becoming a hazard to the safety of the general public; and that the permittee shall be liable for the expenses connected therewith.
- 5. That the permittee is aware that the proposed work is out of the ordinary and does not comply with City standard installations. Permittee is also aware that the City has to conduct work in the public right-of-way, which may include, but may not be limited to, excavation, trenching, and relocation of its facilities, all of which may damage encroachments. Permittee is further aware that the City takes no responsibility for repair or replacement of encroachments, which are damaged by the City or its contractors. That the permittee, by the acceptance, either expressed or implied, of the encroachment permit hereby agrees that upon receipt of notification from the City, permittee shall immediately repair or replace within 30 days all damages to permittee's encroachments within the public right-of-way which are damaged by the City or its contractors in carrying out the City's work. Permittee agrees to employ interim measures required and approved by the City until repair or replacement work is completed.


- 6. That upon the termination of the permission herein granted, permittee shall immediately remove said encroachment from the sidewalk and street area, and any damage resulting therefrom shall be repaired to the satisfaction of the Chief of Building Services.
- 7. That the permittee shall file with the City of Oakland for recordation a Minor Encroachment Permit and Agreement, and shall be bound by and comply with all the terms and conditions of said permit.
- 8. That said permittee shall obtain an excavation permit prior to the construction and a separate excavation permit prior to the removal of the ground water monitoring wells.
- 9. That said permittee shall provide to the City of Oakland an AS BUILT plan showing the actual location of the ground water monitoring wells and the results of all data collected from the monitoring wells.
- 10. That said permittee shall remove the monitoring wells and repair any damage to the sidewalk or street area in accordance with City standards two (2) years after construction or as soon as monitoring is complete.
- 11. That said permittee shall notify Building Services, Community and Economic Development Agency after the monitoring well(s) are removed and the sidewalk or street area restored to initiate the procedure to rescind the minor encroachment permit.
- 12. That monitoring well covers installed within the sidewalk area shall have a skid proof surface. A pre-cast concrete utility box may be used in conjunction with the bolted cast iron cover with City approval.
- 13. That the ground water monitoring well casting and cover shall be cast iron and shall meet H-20 load rating. The cover shall be secured with a minimum of two stainless steel bolts. Bolts and cover shall be mounted flush with the surrounding surface.
- 14. That the permittee acknowledges that the City makes no representations or warranties as to the conditions beneath said encroachment. By accepting this revocable permit, permittee agrees that it will use the encroachment area at its own risk, is responsible for the proper coordination of its activities with all other permittees, underground utilities, contractors, or workmen operating within the encroachment area and for the safety of itself and any of its personnel in connection with its entry under this revocable permit.
- That the permittee acknowledges that the City is unaware of the existence of any hazardous substances beneath the encroachment area, and hereby waives and fully releases and forever discharges the City and its officers, directors, employees, agents, servants, representatives, assigns and successors from any and all claims, demands, liabilities, damages, actions, causes of action, penalties, fines, liens, judgments, costs, or expenses whatsoever (including, without limitation, attorneys' fees and costs), whether direct or indirect, known or unknown, foreseen

or unforeseen, that may arise out of or in any way connected with the physical condition, or required remediation of the excavation area or any law or regulation applicable thereto, including, without limitation, the Comprehensive Environmental Response, Compensation and including, without limitation, the Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended (42 U.S.C. Sections 9601 et seq.), the Resource Conservation and Recovery Act of 1976 (42 U.S.C. Section 6901 et seq.), the Clean Water Act (33 U.S.C. Section 466 et Seq.), the Safe Drinking Water Act (14 U.S.C. Sections 1401-1450), the Hazardous Materials Transportation Act (49 U.S.C. Section 1801 et seq.), the Toxic Substance Control Act (15 U.S.C. Sections 2601-2629), the California Hazardous Toxic Substance Control Act (California Health and Safety Code Section 13000 et seq.), the Hazardous Substance Account Act (California Health and Safety Code Section 13000 et seq.), the Hazardous Substance Account Act (California Health and Safety Code Section 25300 et seq.), and the Safe Drinking Water and Toxic Enforcement Act (California Health and Safety Code Section 25249.5 et seq.).


- Permittee further acknowledges that it understands and agrees that it hereby expressly waives all rights and benefits which it now has or in the future may have, under and by virtue of the terms of California Civil Code Section 1542, which reads as follows: "A GENERAL RELEASE DOES NOT EXTEND TO CLAIMS WHICH THE CREDITOR DOES NOT KNOW OR SUSPECT TO EXIST IN HIS FAVOR AT THE TIME OF EXECUTING THE RELEASE, WHICH IF KNOWN BY HIM MUST HAVE MATERIALLY AFFECTED HIS SETTLEMENT WITH THE DEBTOR."
- 17. Permittee recognizes that by waiving the provisions of this section, permittee will not be able to make any claims for damages that may exist, and to which, if known, would materially affect his/her decision to execute this encroachment agreement, regardless of whether permittee's lack of knowledge is the result of ignorance, oversight, error, negligence, or any other cause.
- 18. (a) That the permittee, by the acceptance of this revocable permit, agrees and promises to indemnify, defend, and hold harmless the City of Oakland, its officers, agents, and employees, to the maximum extent permitted by law, from any and all claims, demands, liabilities, damages, actions, causes of action, penalties, fines, liens, judgments, costs, or expenses whatsoever (including, without limitation, attorneys' fees and costs; expenses whatsoever (including, without limitation, attorneys' fees and costs; collectively referred to as "claims"), whether direct or indirect, known or unknown, foreseen or unforeseen, to the extent that such claims were caused by the permittee, its agents, employees, contractors or representatives.
 - (b) That, if any contamination is discovered below or in the immediate vicinity of the encroachment, and the contaminants found are of the type used, housed, stored, processed or sold on or from the 4035 Park Boulevard, Oakland, California site, such shall amount to a rebuttable presumption that the contamination below, or in the immediate vicinity of, the encroachment was caused by the permittee, its agents, employees, contractors or representatives.
 - (c) That the permittee shall comply with all applicable federal, state, county and local laws, rules, and regulations governing the installation, maintenance, operation and abatement

of the encroachment.

- (d) That the permittee hereby does remise, release, and forever discharge, and agree to defend, indemnify and save harmless, the City, its officers, agents and employees and each of them, from any and all actions, claims, and demands of whatsoever kind or nature, and any damage, loss or injury which may be sustained directly or by the undersigned and any other person or persons, and arising out of, or by reason of, the occupation of said public property, and the future removal of the above-mentioned encroachment.
- 19. That the herein above conditions shall be binding upon the permittee and the successive owners and assigns thereof.
- 20. That said Minor Encroachment Permit and Agreement shall take effect when all the conditions herein above set forth shall have been complied with to the satisfaction of the Chief of Building Services, and shall become null and void upon the failure of the permittee to comply with all conditions herein above set forth.

GNATURE DULYGER DATE 4/9/99

WATER RESOURCES SECTION

951 TURNER COURT, SUITE 300, HAYWARD, CA 94545-3651 PHONE (\$10) 678-5575 ANDREAS GODFREY FAX (\$1 (\$10) 670-\$248 ALYIN KAN

FAX (510) 670-5262

DRILLING PERMIT APPLICATION

Detineer Park Divo. & Greenwood Avenue Catifornia Coordinates Source Cook ARLAND Catifornia Coordinates Source Cathodic Permit Requirements Apply Catifornia Coordinates Source Cathodic Protection Coordinates Source Cathodic Protection Cathodic Protect	for applicant to complete	FOR OFFICE USE
CARLAND CAR	OCATION OF PROJECT Brighton Avenue	
CLIENT DESERT PETROLEUM INC. Name DESERT Petroleum should be submitted so as to arrive at the Active at the Name of Name Person of Valuer Resource well projects, or drilling logs and lecation sketch for person degited well projects, or drilling logs and lecation sketch for person of valuer and well projects, or drilling logs and lecation sketch for person degited within 90 days or approval date. Name Desertation of Person in the Name Person of Extraction of Security Inc. Name Desertation of Contention of Security Inc. Name Desertation of Person in the Name Person of Extraction of Security Inc. Name Desertation of Contention of Security Inc. Name Desertation of Contention of Security Inc. Name Desertation of Conten	between Park DIVO. & Greenwood Avenue	
CLIENT DESERT PETROLEUM INC. Name P. D. BOX 1601 Phone (805) 654-8084 Address P. D. BOX 1601 Phone (805) 654-8084 Approximation should be submitted as as to arrive at the ACPWA office five days prior to control of the control	California Coordinates Saferceft. Aceuracy ±ft.	PERMIT CONDITIONS
Name DESERT PETROLEUM INC. Name DESERT PETROLEUM INC. Name Services P.O. Box 1001 Phone (805) 654-8084 Address P.O. Box 1001 Phone (805) 654-8084 Address P.O. Box 1001 Phone (805) 654-8084 APPLICANCESTERN GEO-ENGINEERS Name Fax (530) 666-9273 Acdress 1386 E. Seamer Street Phone (806) 660-9273 Acdress 1386 E. Seamer Street Phone (806) 670-9273 Acdress 1386 E. Seamer Stree	CGA / A. CCE / A.	Circled Permit Requirements Apply
Address P.O. Box 1601 Phone (805) 554-8084 City Compand, CA 719 93032 APPLICANESTERN GEO-ENGINEERS Sumit of ACPWA within 60 days after completion permitted work the original Department of Water Records with the Original Department of Water Records of Property of Arrival at the ACPWA within 60 days after completion permitted work the original Department of Water Records work and projects, or drilling logs and lecation aketch for Records for PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PE OF PROJECT Address 1386 E. Seamer Street Phone (500) 10003 PROPOSED WATER Supply WELLS Address 1386 E. Seamer Street Phone (500) 10003 Address 1	CLIENT DESERT DETROLEIM TNC.	GENERAL
City Omany CA 219 93032 APPLICANESTERN GEO-ENGINEERS Name APPLICANESTERN GEO-ENGINEERS Name Fax 1530 662-0273 Address 1385 F. Seamer Street Phone (350) 600-300 Address 1385 F. Seamer Street Phone (350) 600-300 Te OF PROJECT All Construction Geotechnical Investigation General Communication	Marie P O Box 1001 Phone (805) 054-0084	
APPLICATERN GEO-ENGINEERS Name Actives 138B E. Seamer Seres have (\$500 000000000000000000000000000000000		proposed starting date.
Resources Water Well Drillers Report or equivalent well projects, or drilling logs and leastion sketch for security Woodland. CA Zip 95770-6003 PE OF PROJECT all Construction Geotechnical Investigation Cathodic Protection C Genetal C Water Supply D Contamination D Cont	per recognisates	Submit to ACPWA within 60 days after completion of
Actess 1886 E. Beamer Street Phone (1990) 600823300 FE OF PROJECT Fill Construction Geotechnical Investigation Cathodic Protection C General C Construction C General C C Contamination C C Contamination C C Contamination C C C C C C C C C C C C C C C C C C C	APPLICA WESTERN GEO-ENGINEERS	Permittee Work the Gright Department of Water
Segment Segm	Name	
3/Permit is void if project not begun within 90 days of approval date.	138h F. Seamer Streethane (530) 000-5300	Rectechnical projects.
TE OF PROJECT all Construction Cathodic Protection Cathodic Protectio		
Section Construction Content Investigation Cathodic Protection Cathodic Prot		approval date.
Cathodic Protection C General C Water Supply C Contamination C Monitoring W Well Destruction C industrial wells or 20 feet for municipal and industrial wells or 20 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. PROPOSED WATER SUPPLY WELL USE New Domestic C Replacement Domestic C ROUNDWATER MONITORING WELLS New Domestic C Irrigation C Municipal C Irrigation C Irrig		B. WATER SUPPLY WELLS
Water Supply Monitoring Well Destruction Monitoring Well Destruction Well Destruction Monitoring Well Destruction Monitoring Well Destruction Melicipal PROPOSED WATER SUPPLY WELL USE New Domestic Replacement Domestic Municipal Industrial Other monitoring Municipal Municipal Industrial Other monitoring Municipal Municipal Industrial Indus		
Monitoring & Well Destruction & industrial wells or 20 feat for domestic and irrigation wells unless a lesser depth is specially approved. PROPOSED WATER SUPPLY WELL USE New Domestic & Replacement Domestic & Industrial & Other monitoring & Industrial & Other &		
PROPOSED WATER SUPPLY WELL USE New Domestic		
PROPOSED WATER SUPPLY WELL USE New Domestic	- Additional Company of the Company	
Municipal C Irrigation O Other monitoring & Comment grout placed by tremic. Industrial D Other monitoring & Comment grout placed by tremic. Industrial D Other monitoring & Comment grout placed by tremic. Industrial D Other monitoring & Comment grout placed by tremic. Industrial D Other monitoring wells is the maximum depth practicable or 20 feet. D. GEOTECHNICAL Backfill bore hole with compacted curings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremicd cernent grout shall be used in place of compacted curing the cernent grout shall be used in place of compacted curing the cernent grout shall be used in place of compacted curing the compact of c	PROPOSED WATER SUPPLY WELL USE	C. GROUNDWATER MONITORING WELLS
Industrial DOther monitoring Society Comment grout placed by fremic. 2. Minimum seci depth for monitoring wells is the maximum depth practicable or 20 feet. Mud Rotary D Air Rotary D Auger D D. GEOTECHNICAL Cable D Other D PRILLER'S LICENSE NO. C-57 513857 PRILLER'S LICENSE NO. C-57 513857 PRILLER'S LICENSE NO. Depth Don. Maximum Casting Diameter No. Depth Don. Number Swells Surface See! Depth D In. Number Swells Seotechnical projects Number of Borings Maximum Mole Diameter in. Depth In. Popth In. Maximum Depth In. Naximum Depth In. Maximum Mole Diameter In. Popth In. Po	New Domestic Q Replacement Domestic D	
DRILLING METHOD: Mud Rotary D Air Rotary D Auger D D. GEOTECHNICAL Cable D Other D Backfill bore hole with compacted eurlings or heavy bentonite and upper two feet with compacted material. In steas of known or suspected contamination, remited committee and upper two feet with compacted contamination, remited committee and upper two feet with compacted material. In steas of known or suspected contamination, remited committee and upper two feet with compacted country bentonite and upper two feet with compacted material. In steas of known or suspected contamination, remited committee and upper two feet with compacted country bentonite		
DRILLING METHOD: Mud Rotary D Air Rotary D Augér D D. GEOTECHNICAL Cable D Other D Backfill bore hole with compacted eutlings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, transic cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutling cement grout shall be used in place of compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings or heavy bentonite and upper two feet with compacted eutlings of the place of	ladusarial D Other monitoring &	cement grout placed by fremie.
Mud Rotary C Air Rotary C Augér D D. GEOTECHNICAL Cable C Other C Backfill bore hole with compacted eutlings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tramicd cernent grout shall be used in place of compacted eutlings of heavy **ELE PROJECTS** Drill Role Diameter	Datt (1876) terrende.	
Cable C Other D Backfill bore hole with compacted eurlings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tramiced comment grout shall be used in place of compacted eurling comment grout shall be used in place of compacted eurling print shall be used in place of compacted eurling print shall be used in place of compacted eurling print place of compacted eurling pri		
DRILLER'S LICENSE NO. C-57 513857 DRILLER'S LICENSE NO. C-57 513857 LELE PROJECTS Drill Hole Diameter 8 In. Maximum Cosing Diameter 2 in. Depth 20 ft. Surface Seel Depth 2 ft. Number 5 wells PROTECHNICAL PROJECTS Number of Borings Number of Borings Number of Borings Haximum Hole Diameter in. Depth ft. See attached. G. SPECIAL CONDITIONS		
In areas of known or suspected contamination, tramiced comment grout shall be used in place of composed outling the property shall be used in		
STIMATED STARTING DATE Maximum Cathodic Similar Starting Date Star	DRILLER'S LICENSE NO. C-DI DIGODI	In areas of known or suspected contamination, tremied
Drill Hole Diameter 8 In. Maximum Cosing Diameter 2 in. Depth 20 ft. Surface Seel Depth 2 ft. Number 5 wells See attached. G. SPECIAL CONDITIONS Number of Borings Maximum Hole Diameter in. Depth ft. See attached. G. SPECIAL CONDITIONS	1011 244	
Cosing Diameter 2 in Depth 20 ft. Surface See! Depth 2 ft. Number 5 wells See attached. G. SPECIAL CONDITIONS Number of Borings Maximum Hole Diameter in. Depth ft. STIMATED STARTING DATE May 1, 1999	- W. I	E. CATHODIC
Surface See! Depth 2 ft. Number 5 wells Set attached. G. SPECIAL CONDITIONS Number of Borings Maximum Hole Diameter in. Depth ft. STIMATED STARTING DATE May 1, 1999	Casing Diameter 2 in Death 20 o	
SECTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft. STIMATED STARTING DATE May 1, 1999		
Number of Borings Maximum Hole Diameter in. Depth ft. STIMATED STARTING DATE May 1, 1999	384	G. SPECIAL CONDITIONS
Hole Diameter in. Depth (t. STIMATED STARTING DATE May 1, 1999	NUMBER of Regions	
STIMATED STARTING DATE May 1, 1999	Hole Diameter in Denth 6	
		سرم والأبيانية
APPROVED APPROVED DATE DATE		111, 111, 1
Autority	PHINATED COMPLETION DATE May 15, 1999	APPROVED APPROVED DATE
	A CHANGE PRODUCTION OF THE PROPERTY OF THE PRO	Aut. M.

KLEINFELDER DAILY FIELD REPORT Client Received Page / of Copy of this Report Technician/Englheer Location Project Name File Number CAKLAND PARK Blud. Receptoil 44-000251 Time Arrived Contractor/Representative 8.15 Pile Const. WESTERN GEO. Eng -16-99 Time Departed Gauge Number Daily Field Report Number 9701 NATIVE MPORT Travel Time (hours) Results Reported To BACK-F "W Receptor Reviewed By e. John Pile Trench Eot Priten Ac ----Total Time (hours) Specified Compaction (Mary not include m Date Reviewed CIEPIZE COOL Comments % Of Test Test Dry Lab Max. Test Recentratech (E) Side of Britan Ace Test Location Max.*Dry Test Moisture Density Dry Density Depth Elevation Density Number (lbs/cu ft) (lbs/cu ft) (inches) (feet) 2 3 1. Letest 0" 2 3 Any unresolved test (date/number): Observations/Remarks: Ap Rived in THE AM. At (Project) PARK Blud. Receptor OAKLAND TO DO Compaction TEST on BACK Filled TREACH on the Alongside the side walk. 3 Ad Holes BRITEN AUE weredus for me in order to check the Rotton litt. TEST Did not must required Compaction. THE celole Finale hitt was And recomproled about (751). I tested Another irst hift And it had to be more Asie Frecompression of the whole TRENET BACK-FILL W test were redone Compresion was At 1. Test results, pass/fail indications, and/or recommendations (if applicable) provided herein have not been reviewed by supervisory staff and, therefore, should be considered NOTES RESENTATIVE preliminary and subject to change. 2. Tests were conducted in general accordance with generally accepted testing procedures practiced within the site area at

YELLOW COPY-FIELD

the time tests were performed.

WHITE COPY-OFFICE

L-30A

Continued on next page.

PINK COPY-CLIENT

7/90