

# WESTERN GEO-ENGINEERS

CALIF. CONTRACTOR #513857 REGISTERED GEOLOGISTS 1386 EAST BEAMER STREET WOODLAND CA 95776-6003 (530) 668-5300, FAX (530) 662-0273 wege@mother.com

August 29, 2000

Mr. John Rutherford Desert Petroleum P.O. Box 1601 Oxnard, California 93032 (805) 644-6784 FAX (805) 654-0720



The following report documents the Third Quarter 2000 collection and certified laboratory analysis of groundwater samples from eight monitoring wells (MW1, RS2, RS5, RS6, RS7, RS8, RS9 and RS10), three water recovery/injection wells (R1, R2 and R3) and the receptor trench well (T1) associated with former Desert Petroleum Station #793. Also included with this report is the description to complete the receptor trench pump and treat system and the workplan for nutrient augmentation into wells R1, R2 and R3.

#### 1.0 SITE LOCATION AND DESCRIPTION

Former Desert Petroleum #793 is a non-active service station, located on the northwest corner of the intersection of Park Boulevard and Hampel Street at 4035 Park Blvd., Oakland, California (Figure 1). The site is located in projected section 32; T1S; R3W; MDB&M at an approximate elevation of 210 feet above mean sea level (Figure 2).

## 2.0 LOCAL GEOLOGY

# 2.1 Geomorphology

The site is located on the western slope of the Berkeley Hills. The Berkeley Hills are a northwest-southeast trending range within the Coastal Range Province of California. Erosion of the Coastal Ranges has filled the valleys within and bordering the Coastal Range with sequences of gravels, silts, sands, and clays.

I





# 2.2 Stratigraphy

# 2.1.1 Station Property

The native soil from surface to 13 feet below ground surface (BGS) consists of dark brown silty clay. The dark brown clay is underlain by light brown stiff clay that includes subrounded to rounded metavolcanic gravel. This clay extends to approximately 23 feet BGS at the northwest corner of the site. A fine to medium sand, clayey sand, and silty sand underlies the gravel and clay.

# 2.1.2 Backyard Sewer Lateral Route

Assessments performed along the sewer lateral as it leaves the site and routes through the residentual area towards Brighton Avenue show the subsurface to consists of fill from a couple of inches thick to two feet thick. Beneath the fill is a sequence of clay formations that vary in color from light brown to dark gray to approximately the 6 foot depth. Silty clay then extends to approximately the 14-foot depth. Beneath the silty clay is sand with occasional gravel. This sand is 11 feet thick at RS5 and is underlain by silty clay.

# 2.1.3 Brighton Avenue

Construction of the receptor trench along the eastern curb area of Brighton Avenue revealed two separate sequences of lithology. North of the storm drain catch basin the sequence consists of; clay to the four foot depth, silty clay to the seven foot depth, fine silty sand to the 9 foot depth, medium sand to the 10 foot depth, silty caly to the 11 ½ foot depth, gravel to the 12 foot depth underlain by clay to the 16 foot depth. South of the storm catch basin is a sequence of silty clays and clays to depth.

# 3.0 COLLECTION AND ANALYSIS OF GROUNDWATER SAMPLES, AUGUST 8, 2000

The third quarter sampling occurred on August 8, 2000. Water samples were collected from wells R1, R2, R3, MW1, RS-2, RS-5, and RS-6 located on-site and RS-7, RS-8, RS-9, RS-10 and T1 located offsite in the backyards and along Brighton Avenue northeast of the site (Figure 3), see Table 1. Appendix A contains QA/QC, details, methods, procedures, abbreviations, and acronyms used in sampling and analysis.

# 3.1 Depth to Water Measurements

Depth to water was measured at each well using a product/water interface probe. Measurements are referenced to the surveyed elevation at the top of casing at each well. Table 1 shows the elevation of groundwater with respect to mean sea level for all wells through August 8, 2000.

## 3.2 Purging of Monitor Wells

David Pittman Well Purge (DPWP), using a truck mounted vacuum lift pump and one-inch diameter PVC tubing purged the monitor wells of three volumes of water. The specific volume of water removed from each well is recorded on the well sampling data sheets (Appendix A).

## 3.3 Collection and Certified Analysis of Groundwater Samples

After purging, the wells were allowed to recover to at least 80% of their original well volumes. A groundwater sample was then collected from each well with a disposable polyethylene bailer and decanted, with no headspace, into two 40 ml VOA vials containing 0.5 ml HCL acid as a preservative. North State Environmental Laboratories analyzed all water samples for concentrations of TPH-G, BTEX, and MTBE using EPA methods 5030/8015M/8020 (Appendix C). On December 7,1989, this site ceased operation and all fuel was removed. Presence of MTBE by Method 8020 from the November 24, 1998 sampling was verified with EPA Method 8260. This most recent sampling showed the absence of MTBE in all wells sampled (August 8, 2000). The November 24, 1998 was the first occurrence of MTBE and was associated with the upgradient wells MW-1 and RS-2. This indicates an upgradient source for the MTBE may exist. Previous sample results and the February 23, 1999 sample results showed all wells below laboratory lower detection limits for MTBE using standard methods and the September 1998 samples from all wells were also analyzed for the Fuel Oxygenants using EPA Method 8260. All wells tested below laboratory lower detection limits.

| Fuel Oxygenants (Method 8260) | Laboratory Lower Detection Limits |
|-------------------------------|-----------------------------------|
| Ethanol                       | 500 ug/L                          |
| Methyl-t-Butyl Ether (MTBE)   | 1 ug/L                            |
| Di Isopropyl Ether (DIPE)     | 5 ug/L                            |
| Tertiary Butyl Alcohol (TBA)  | 5 ug/L                            |
| Ethyl t Butyl Ether (ETBE)    | 5 ug/L                            |
| t-Amyl Methyl Ether (TAME)    | l ug/L                            |
|                               |                                   |

Appendix D contains a chart comparing the amount of MTBE found in wells MW1, RS2, RS5, RS6 and RS7 versus time. This chart indicates two major occurrences of MTBE, the winter of 1996 and the summer of 1999.

#### 3.4 Disposition of Waste Water

The wastewater generated from the purging of the monitor wells during sampling was pumped through two, in series, activated water carbon units and then to the on-site sanitary sewer (wastewater discharge permit # 5043550 1). As of August 24, 2000 29,721 gallons of treated groundwater have been discharged to East Bay Municipal Utility District sewer system, under the

permit. see Table 2 and Appendix B. Previous purged well water was removed from the site and transported to a recycling facility, by Evergreen Environmental Services.

# 4.0 RESULTS OF QUARTERLY GROUNDWATER MONITORING

#### 4.1 Groundwater Gradient and Flow Direction

Figure 4A shows the groundwater elevation gradients and flow direction that were derived from the depth to water measurements of the monitor wells on August 8, 2000. Table 1 with charts shows the groundwater elevations for the wells during the assessment of this site.

The current flow direction is northwest to west. The hydraulic gradient averages 0.11 feet/linear foot downgradient from the overexcavated area at the site to 0.125-feet/linear foot downgradient off site, see Figure 4A. The current flow direction and hydraulic gradient are consistent with previous determinations by WEGE.

# 4.2 Results of Certified Analysis of Groundwater Samples

The results of the certified analyses of groundwater samples collected on August 8, 2000 are shown in Table 1 and Figure 4B. Copies of the laboratory reports are included as Appendix C of this report.

TPH-G concentrations in water samples from the eight monitor wells, the receptor trench well and three recovery wells ranged from a maximum of 100 mg/l at RS8, to 62 and 60 ug/L in wells MW1, and RS2 respectively. Benzene concentrations ranged from a maximum of 24 mg/L in RS8 to below the laboratory lower detection limits (0.5 ug/L) at wells RS2 and R3.

Analysis results for Oxygenant Methyl-t-Butyl Ether (MTBE) was below the laboratory lower detection limit (0.5 ug/L) in all wells sampled. During the September 16, 1998 all Fuel Oxygenants; MTBE, Di-isopropyl Ether (DIPE), tertiary Butyl Alcohol (TBA), Ethyl-t-Butyl Ether (ETBE) and t-Amyl Methyl Ether (TAME) were confirmed with EPA Method 8260. These analytes were below laboratory lower detection limits. Figure 4B shows the areal distribution of the hydrocarbon plume in groundwater as determined from groundwater samples collected from the monitor wells and from non-certified results from the Soil Probe Surveys.

# 5.0 WEEKLY PURGEING OF RECEPTOR TRENCH

Commencing on May 4, 2000, weekly pumping of the receptor trench has been performed for approximately 4 hours per week, see Table 2. During purging the depth to water within the trench

is lowered an average of one feet. Immediately after purging ceases, the water level in the trench recovers to its original depth. As of August 24, 2000, 29,721 gallons of contaminated groundwater have been removed from the trench, processed through two in series activated carbon water scrubs and discharged to the sanitary sewer. The weekly purging of the receptor trench will continue until a conduit can be placed along Park Avenue and Brighton Avenue connected the T1 well (receptor trench) to the treatment compound. This will allow the placement of a submersible pump into T1 that will continuously pump at 2 gpm, removing an estimated 20,000 gallons of contaminated water weekly, instead of the 700 to 1600 gallons currently being recovered on a weekly bases.

# 6.0 WEEKLY NUTRIENT AUGMENTATION

Presently there is no nutrient augmentation into any wells associated with this site. Nutrient augmentation will commence once the enclosed workplan has been approved. The workplan proposes to introduce fifty gallons of nutrient enriched water (consisting of 15 pounds of sodium hexametaphosphate and 15 pounds of ammonium sulfate) into well R3. Prior to introduction of the nutrient enriched water, wells R1, R2, R3, RS8, RS9, RS10 and T1 will be field screened for the presence of dissolved oxygen, reactive phosphorus, sulfate and nitrogen using the Hach DR/2000 Spectrophotometer. Four hours after introduction of the five gallons of nutrients into R3, wells R1. R2 and R3 will be sampled and field screened for reactive phosphorus, sulfate and nitrogen using the Hach DR/2000 Spectrophotometer. Thereafter weekly measurements will be obtained from R1, R2 and T1 and monthly measurements from RS8, RS9 and RS10, see Appendix E – Nutrient Augmentation Workplan, Appendix F-Scope News Letter, Appendix G-MSDS, and Appendix H – Hach field procedures.

#### 7.0 SUMMARY

Since the installation and weekly purging of the receptor trench (T1) TPHg concentrations in down gradient well RS-7 have decreased along with the depth to groundwater, see Table 1 with charts RS-7. The weekly purging of the receptor trench is limited to a maximium daily discharge of 5 gpm, thus removing approximately 1200 to 2000 gallons per week. Although this does lower the water level in the trench, after pumping has ceased the water level rebounds to it original pre pump depth allowing for the gradient migration of TPHg contaminated groundwater to continue.

### 8.0 RECOMMENDATIONS

Solicit bids to:

Construct a subsurface 4-inch diameter conduit connecting the receptor trench to the treatment compound along the curb areas of Brighton and Park Avenues;

Supply electrical power to the treatment compound;

Connect the treatment compound components to the electrical power supply;

And install a submersible pump with a no load sensor into T1 and connect the pump and discharge line to the treatment compound via the 4-inch diameter conduit;

• Continue the weekly four hour purge of T1 until the above pump system has been installed.

- Start augmentation of nutrients (sodium hexametaphosphate and ammonium sulfate) into well
- Perform monthly field measurements of dissolved oxygen, phosphate, sulfate and nitrogen at R1, R2, RS8, RS10, T1 and RS9.

# 9.0 LIMITATIONS

This report is based upon the following:

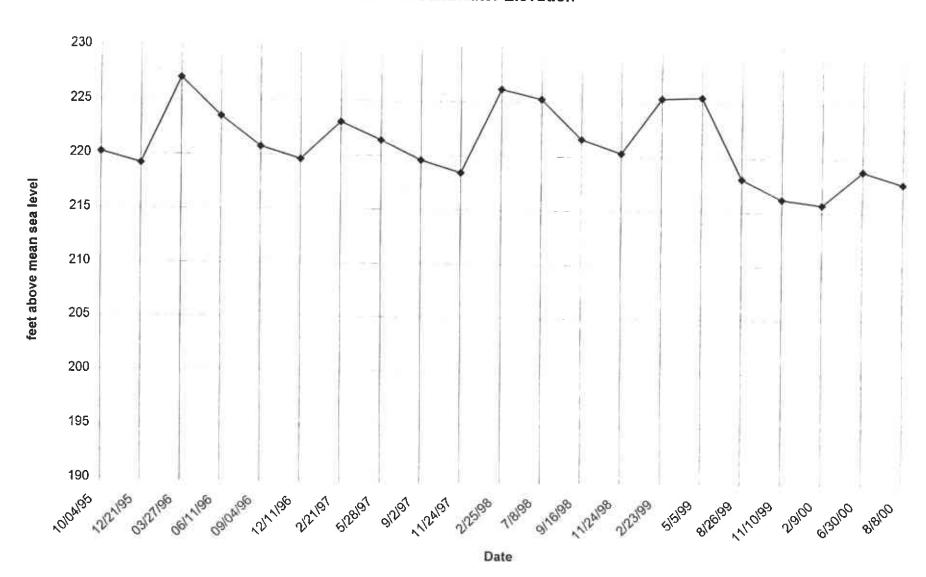
- A. The observations of field personnel.
- The results of laboratory analyses performed by a state certified laboratory. B.
- C. Referenced documents.
- D. Our understanding of the regulations of the State of California, Alameda County and the City of Oakland.
- E. Changes in groundwater conditions can occur due to variations in rainfall, temperature, local and regional water use, and local construction practices.
- In addition, variations in the soil and groundwater conditions could exist beyond the points F. explored in this investigation.

State Certified Laboratory analytical results are included in this report. This laboratory follows EPA and State of California approved procedures; however, WEGE is not responsible for errors in these laboratory results. Western Geo-Engineers is a corporation under California Registered Geologist #3037 and/or Contractors License #513857. The services performed by Western Geo-Engineers have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the State of California and the Oakland area. Our work and/or supervision of remediation and/or abatement operations, active or preliminary, at this site is in no way meant to imply that we are owners or operators of this site. Known or suspected contamination of soil and/or groundwater must be reported to the appropriate agencies in a timely manner. No other warranty, expressed or implied, is made.

Sincerely,

George Converse

Geologist


cc: Mr.Tom Peacock, Alameda County Health (510) 567-6774 Mr. Leroy Griffin, Oakland Fire Dept.

Jack E. Napper

Ca. Reg. Geologist #3037

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|              |                 | (All concen                 | trations i                  | n parts per bi               | llion [ug/L, | ppb))   |         |                   |         |        |
|--------------|-----------------|-----------------------------|-----------------------------|------------------------------|--------------|---------|---------|-------------------|---------|--------|
|              |                 | (AMSL = Abo                 |                             |                              |              |         |         |                   |         |        |
| ID#          | DATE<br>SAMPLED | WELL<br>CASING<br>ELEVATION | DEPTH TO<br>GROUND<br>WATER | GROUND<br>WATER<br>ELEVATION | TPH-G        | BENZENE | TOLUENE | ETHYL-<br>BENZENE | XYLENES | MTBE   |
|              |                 | (FEET AMSL)                 | (FEET)                      | (FEET AMSL)                  | (UG/L)       | (UG/L)  | (UG/L)  | (UG/L)            | (UG/L)  | (UG/L) |
| RS-1         | 12/14/89        | 240                         | 24_25                       | 215.75                       | 19000        | 2600    | 2700    | 200               | 1200    | (DG/E) |
| RS-1         | 12/90           |                             |                             |                              | 15000        | 3500    | 330     | 170               | 760     |        |
| RS-1         | 2/91            |                             |                             |                              | 6900         | 910     | 200     | 39                | 540     |        |
| RS-1         | 6/91            |                             |                             |                              | 1600         | 56      | 180,000 | 12                | 26      |        |
| RS-1         | 9/91            |                             |                             |                              | 4100         | 730     | 7_6     | 5.1               | 24      |        |
| RS-1         | 12/91           |                             |                             |                              | 8300         | 950     | 160     | 71                | 190     |        |
| RS-1         | 11/09/92        | 100.18                      | 17.05                       | 83.13                        | 1700         | 730     | 9.6     | 16                | 14      |        |
| ₹S-1         | 04/07/94        | 100.18                      | 13                          | 87 18                        | 860          | 84      | 12      | 16                | 110     |        |
| RS-1         | 06/19/94        | 228 15                      | 13.37                       | 214.78                       | 1400         | 150     | 12      | 52                | 87      |        |
| RS-1         | 09/17/94        | 228.15                      | 16.33                       | 211 82                       | 310          | 30      | 1.8     | 2.8               | 3.9     |        |
| RS-1         | 03/12/95        | 228.15                      | 4 . 66                      | 223 49                       | ND           | ND      | ND      | ND.               | ND      |        |
|              |                 | DESTROYED BY                | OVER-EXC                    | AVATION OF UST               | DISPENSER AR |         |         | ND                | ND      |        |
|              |                 | REPLACED WIT                |                             |                              |              |         |         |                   |         |        |
| <b>1</b> ₩-1 | 10/04/95        | 232.57                      | 12.38                       | 220 19                       | ND           | ND      | ND      | ND                | ND      |        |
| 1W-1         | 12/21/95        | 232.57                      | 13.40                       | 219.17                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 0.5   | < 0.5  |
| /W - 1       | 03/27/96        | 232.57                      | 5 53                        | 227.04                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 2     | < 50   |
| 1W - 1       | 06/11/96        | 232.57                      | 9 02                        | 223.55                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 2     | < 50   |
| IW-1         | 09/04/96        | 232-57                      | 11.84                       | 220.73                       | < 50         | < 0.5   | < 0.5   | < 0.5             | 5 2     | < 5    |
| 1W - 1       | 12/11/96        | 232.57                      | 12.98                       | 219.59                       | < 50         | < 0.5   | 0.9     | < 0.5             | < 1     | < 0.5  |
| W-1          | 2/21/97         | 232.57                      | 9.50                        | 223.07                       | < 50         | < 0.5   | 0.9     | < 0.5             | < 1     | < 0.5  |
| W-1          | 5/28/97         | 232.57                      | 11.18                       | 221.39                       | < 50         | 3       | 3       | < 0.5             | < 1     | < 0.5  |
| W-1          | 9/2/97          | 232.57                      | 13.00                       | 219.57                       | < 50         | 5       | < 0.5   | < 0.5             | < 1     | < 0.5  |
| 1W - 1       | 11/24/97        | 232.57                      | 14.12                       | 218.45                       | < 50         | 5       | < 0.5   | < 0.5             | < 1     | < 0.5  |
| ſ₩-1         | 2/25/98         | 232.57                      | 6.41                        | 226,16                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 0.5  |
| W-1          | 7/8/9B          | 232.57                      | 7.28                        | 225.29                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 1    |
| IW - 1       | 9/16/98         | 232.57                      | 10.96                       | 221 61                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 1    |
| W-1          | 11/24/98        | 232.57                      | 12.24                       | 220.33                       | 52           | 2.3     | 5.2     | < 0.5             | 5.4     |        |
| IW - 1       | 2/23/99         | 232.57                      | 7.14                        | 225.43                       | < 50         | < 0.5   | 5.2     | < 0.5             |         | 11     |
| W- 1         | 5/5/99          | 232 57                      | 7.00                        | 225 57                       | < 50         | 2       | <0.5    |                   | < 1     | < 0.5  |
| W-1+++       | 8/26/99         | 229.5                       | 11.41                       | 218 09                       | <50          | 4 1     | <0.5    | < 0.5             | < 1     |        |
| W-1          | 11/10/99        | 229-5                       | 13.27                       | 216 23                       | <50          | <0.5    |         |                   | < 1     | <1     |
| W-1          | 2/9/00          | 229 5                       | 13.76                       | 215 74                       | <50          | <0.5    | <0.5    | < 0.5             | < 1     | <0.5   |
| 1W-1         | 6/30/00         | 229.5                       | 10 63                       | 218 87                       | <50          | <0.5    | <0.5    | 0.5               | < 1     | 0 - 5  |
| (W - 1       | 8/8/00          | 229.5                       | 11.77                       | 217 73                       | 62           |         | <0.5    | < 0.5             | < 1     | < 0.5  |
|              | 5,5740          |                             | 24177                       | 447 73                       | 62           | 1       | 2       | < 0.5             | 2       | < 0 5  |



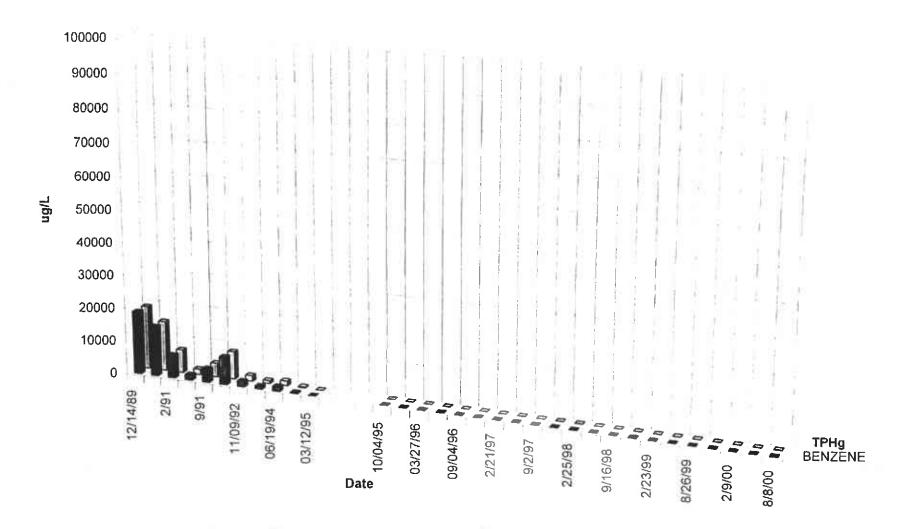
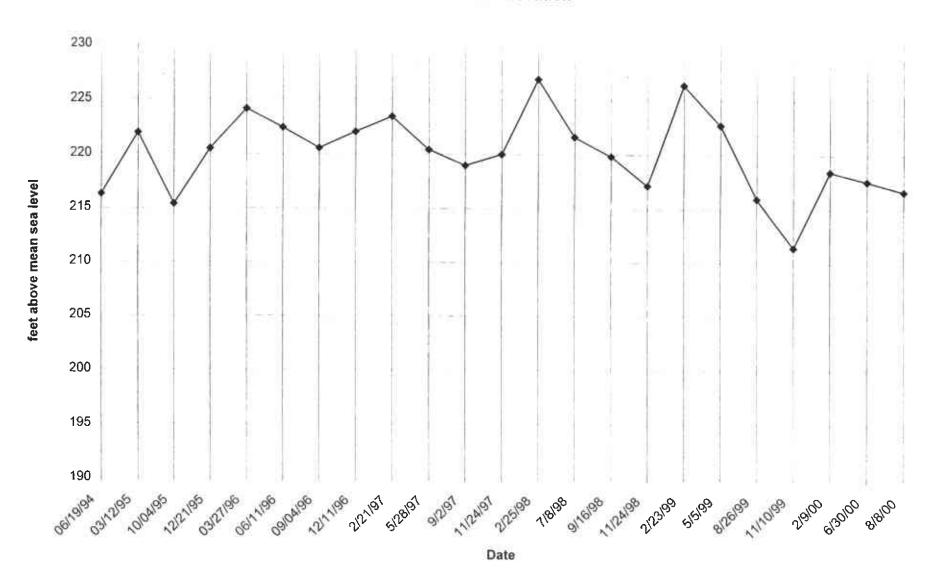




TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|         |                 | (All concen<br>(AMSL = Abo        |                                       | in parts per bi<br>na level)                | ilion (ug/L. | ppb])   |         |                   |         |              | 1  |
|---------|-----------------|-----------------------------------|---------------------------------------|---------------------------------------------|--------------|---------|---------|-------------------|---------|--------------|----|
| ID#     | DATE<br>SAMPLED | WELL CASING ELEVATION (FEET AMSL) | DEPTH TO<br>GROUND<br>WATER<br>(FEET) | GROUND<br>WATER<br>ELEVATION<br>(FEET AMSL) | TPH-G        | BENZENE | TOLUENE | ETHYL-<br>BENZENE | XYLENES | MTBE         | 1  |
|         |                 | (FEET AMOU)                       | (PEEI)                                | (FEET AMSL)                                 | (UG/L)       | (UG/L)  | (UG/L)  | (UG/L)            | (UG/L)  | (UG/L)       | L  |
| RS-2    | 06/19/94        | 227,19                            | 10.89                                 | 216.3                                       | 140          | 9,2     | 34      | 4.3               | 24.0    |              | Ļ  |
| RS-2    | 03/12/95        | 227,19                            | 5.26                                  | 221 93                                      | ND           | ND      | ND      | ND                | ND ND   |              | ╀  |
| RS-2    | 10/04/95        | 230.43                            | 15.05                                 | 215.38                                      | ND           | ND      | ND      | ND                | ND      |              | +  |
| RS-2    | 12/21/95        | 230.43                            | 9.95                                  | 220.48                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 0.5   | < 0.5        | +  |
| RS-2    | 03/27/96        | 230.43                            | 6.28                                  | 224 15                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 2     |              | -  |
| RS-2    | 06/11/96        | 230.43                            | 8_00                                  | 222 43                                      | < 50         | 1.2     | 2.8     | < 0.5             | < 2     | < 50<br>< 50 | -  |
| RS-2    | 09/04/96        | 230.43                            | 9.89                                  | 220.54                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 2     | < 50         | +- |
| RS-2    | 12/11/96        | 230.43                            | 8.38                                  | 222.05                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 5          | -  |
| RS-2    | 2/21/97         | 230.43                            | 6.96                                  | 223.47                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 0.5        | -  |
| RS-2    | 5/28/97         | 230.43                            | 10.02                                 | 220.41                                      | < 50         | 3       | 3       | < 0.5             | < 1     | < 0.5        | -  |
| RS-2    | 9/2/97          | 230.43                            | 11.46                                 | 218.97                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 0.5        | -  |
| RS-2    | 11/24/97        | 230 43                            | 10.43                                 | 220                                         | < 50         | < 0.5   | 1       | < 0.5             | 3       | < 0.5        | -  |
| RS-2    | 2/25/98         | 230 43                            | 3.57                                  | 226.86                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 0.5        | +  |
| RS-2    | 7/8/98          | 230 43                            | 8.83                                  | 221.6                                       | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 1          |    |
| RS-2    | 9/16/98         | 230.43                            | 10.60                                 | 219.83                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 1          | 4- |
| RS-2    | 11/24/98        | 230 43                            | 13.27                                 | 217.16                                      | 140          | 2.8     | 19      | 2.6               | 3.3     | 15           | +  |
| RS-2    | 2/23/99         | 230.43                            | 4.06                                  | 226.37                                      | < 50         | < 0.5   | < 0.5   | < 0.5             | < 1     | < 0.5        | -  |
| RS-2    | 5/5/99          | 230.43                            | 7.70                                  | 222.73                                      | < 50         | 0.7     | < 0.5   | < 0.5             | < 1     | 6            | +- |
| RS-2*** | 8/26/99         | 227_39                            | 11.42                                 | 215.97                                      | 200          | 15      | 23      | 1.7               | 23      |              |    |
| RS-2    | 11/10/99        | 227.39                            | 15 94                                 | 211.45                                      | < 50         | <0.5    | <0.5    | <0.5              | < 1     | <0.5         | +  |
| RS-2    | 2/9/00          | 227_39                            | 8.91                                  | 218.48                                      | < 50         | <0.5    | <0.5    | <0.5              | < 1     | <0.5         | +- |
| RS-2    | 6/30/00         | 227.39                            | 9.79                                  | 217.6                                       | 52           | 2       | <0.5    | <0.5              | < 1     | <0.5         | -  |
| RS-2    | 8/8/00          | 227 39                            | 10.71                                 | 216 68                                      | 60           | <0.5    | <0.5    | <0.5              | < 1     | <0.5         | +- |

**RS-2 Groundwater Elevation** 



RS-2 TPHg

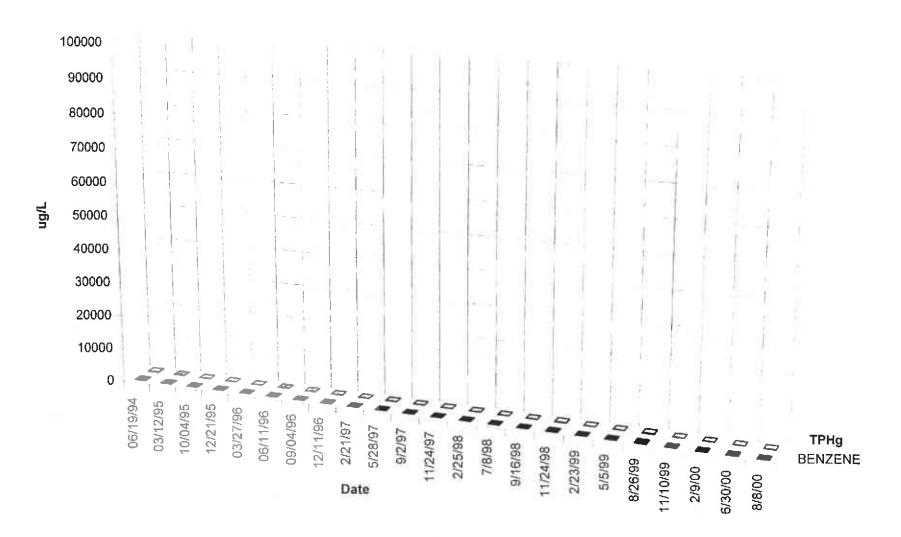
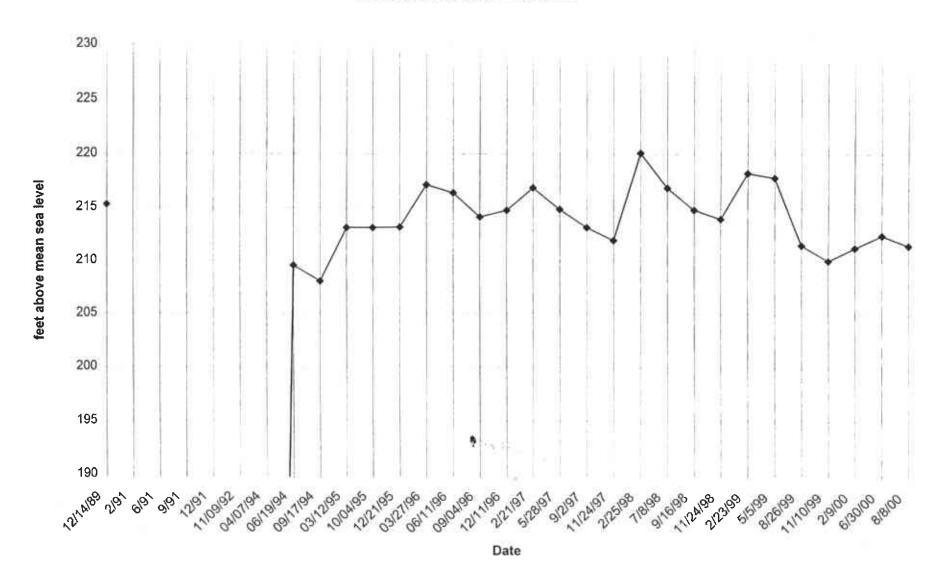




TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAGRATAGRY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|               |                 |                          |                 | n parts per b            | oill | .ion [ug/L, | ppb])   |            |                   |           |         | Ĺ |
|---------------|-----------------|--------------------------|-----------------|--------------------------|------|-------------|---------|------------|-------------------|-----------|---------|---|
|               |                 | (AMSL = Abov             |                 |                          | -    |             |         | may ivenin | convers I         | WILL ENDO | MODE    | Ł |
| ID#           | DATE<br>SAMPLED | CASING                   | GROUND          | GROUND<br>WATER          |      | TPH-G       | BENZENE | TOLUENE    | ETHYL-<br>BENZENE | XYLENES   | MTBE    | l |
|               |                 | ELEVATION<br>(FEET AMSL) | WATER<br>(FEET) | ELEVATION<br>(FEET AMSL) | 1    | (UG/L)      | (UG/L)  | (UG/L)     | (UG/L)            | (UG/L)    | (UG/L)  | L |
| RS-5          | 12/14/89        | 241,26                   | 25.97           | 215.29                   | +    | 57000       | 3100    | 4300       | 670               | 3400      |         | t |
| RS-5          | 2/91            |                          | FLC             | ATING PRODUC             | 1    |             |         |            |                   |           |         | Г |
| RS-5          | 6/91            |                          | FLC             | ATING PRODUC             | 7    |             |         |            |                   |           |         | Γ |
| RS-5          | 9/91            |                          | PLC             | ATING PRODUC             | .1   |             |         |            |                   |           |         | Γ |
| RS-5          | 12/91           |                          | FLC             | ATING PRODUC             | 7    |             |         |            |                   |           |         | Г |
| RS-5          | 11/09/92        | 98.99                    | 20.73           | 78.26                    |      | 50000       | 650     | 4800       | 1100              | 15000     |         | t |
| R\$-5         | 04/07/94        | 98.99                    | 18.16           | 80_83                    |      | 27000       | 5000    | 8700       | 550               | 2800      |         | Γ |
| RS-5          | 06/19/94        | 227 65                   | 18.11           | 209 54                   | _    | 20000       | 2100    | 5300       | 470               | 2500      |         | Γ |
| RS-5          | 09/17/94        | 227 65                   | 19.63           | 208_02                   |      | 9300        | 230     | 340        | 110               | 700       |         | Γ |
| <b>₹\$-</b> 5 | 03/12/95        | 227,65                   | 14.54           | 213 11                   |      | 93000       | 6400    | 2000       | 19000             | 10000     |         | Γ |
| RS - 5        | 10/04/95        | 230 64                   | 17,53           | 213.11                   |      | 16000       | 420     | 2100       | 320               | 1800      |         | Ι |
| RS-5          | 12/21/95        | 230.64                   | 17.47           | 213.17                   |      | 48000       | 3500    | 9200       | 840               | 4800      | 56      | Ι |
| R\$-5         | 03/27/96        | 230,64                   | 13.51           | 217.13                   |      | 68000       | 4900    | 18000      | 1700              | 11000     | < 3000  | 1 |
| RS-5          | 06/11/96        | 230,64                   | 14.25           | 216 39                   |      | 66000       | 6300    | 20000      | 2100              | 12000     | < 3000  | 1 |
| RS-5          | 09/04/96        | 230,64                   | 16.50           | 214 14                   |      | 31000       | 2100    | 11000      | 1100              | 6800      | 400     | 4 |
| RS-5          | 12/11/96        | 230,64                   | 15.88           | 214.76                   |      | 85000       | 7000    | 21000      | 1800              | 8900      | 570     | - |
| RS-5          | 2/21/97         | 230 64                   | 13 76           | 216 88                   | sh   | 100000      | 5000    | 22000      | 1700              | 7300      | <0.5    | - |
| RS-5          | 5/28/97         | 230.64                   | 15.77           | 214.87                   |      | 52000       | 4500    | 19000      | 2100              | 10000     | <0.5    | 1 |
| RS-5          | 9/2/97          | 230.64                   | 17.47           | 213.17                   |      | 38000       | 2200    | 9400       | 1300              | 5800      | <0.5    | - |
| RS-5          | 11/24/97        | 230.64                   | 18.67           | 211.97                   |      | 45000       | 4000    | 16000      | 1900              | 9700      | <0.5    | - |
| RS-5          | 2/25/98         | 230.64                   | 10.53           | 220.11                   |      | 160000      | 2700    | 31000      | 5300              | 28000     | <0.5    | 4 |
| RS-5          | 7/8/98          | 230.64                   | 13.75           | 216 89                   |      | 45000       | 2800    | 12000      | 2000              | 8500      | <10     | 1 |
| RS-5          | 9/16/98         | 230-64                   | 15.80           | 214 84                   |      | 49000       | 1400    | 7500       | 1700              | 8600      | <5      | - |
| R\$-5         | 11/24/98        | 230 64                   | 16.64           | 214                      |      | 89000       | 5300    | 15000      | 2800              | 13000     | <10     | - |
| RS-5          | 2/23/99         | 230.64                   | 12.36           | 218.28                   |      | 19000       | 1900    | 11000      | 2500              |           | <25     |   |
| RS-5          | 5/5/99          | 230.64                   | 12 78           | 217 86                   |      | 78000       | 2000    | 10000      | 3000              |           | 540     | ) |
| RS-5***       | 8/26/99         | 227 61                   | 16:06           | 211.55                   |      | 35000       | 870     | 4000       | 1900              | 8300      | <1      | 1 |
| RS-5          | 11/10/99        | 227.61                   | 17.54           | 210.07                   |      | 40000       | 1000    | 5600       | 1800              | 8100      | <0.5    | - |
| RS-5          | 2/9/00          | 227_61                   | 16.31           | 211-3                    |      | 46000       | 1400    | 6900       | 2700              | 11000     | <0.5    | - |
| RS-5          | 6/30/00         | 227 61                   | 15,15           | 212 46                   |      | 37000       | 810     |            | 2200              | 9100      | <2.5    | - |
| RS-5          | 8/8/00          | 227 61                   | 16.10           | 211 51                   |      | 14000       | 330     | 500        | 1400              | 6500      | < 0 - 5 | i |

# **RS-5 Groundwater Elevation**



RS-5

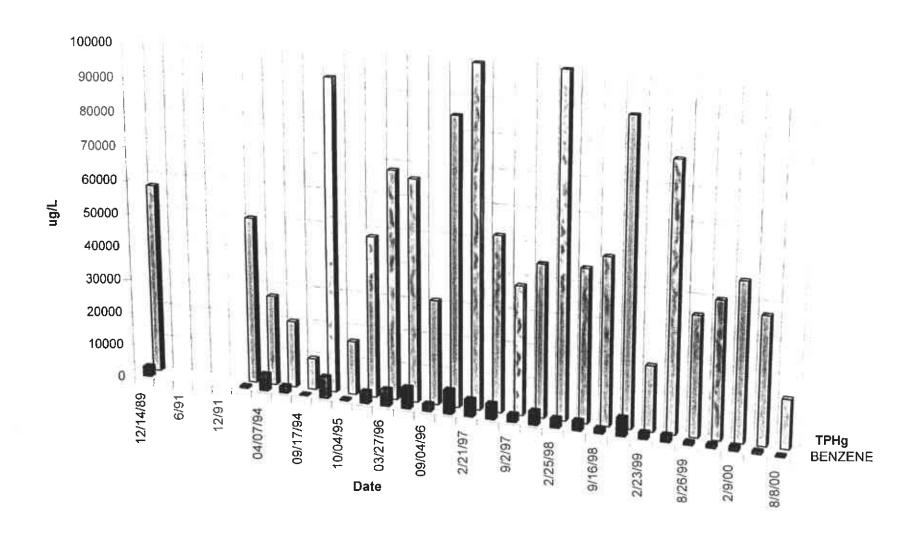
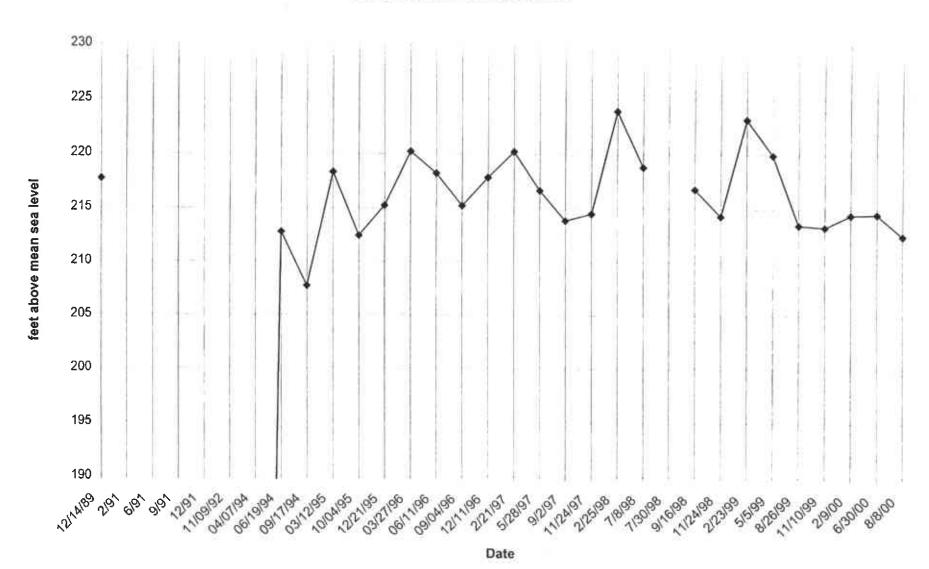




TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|         |                 | (All concent                      | rations in                            | parts per bill                     | Tour Leady or 1 | 85530   |         |                   |         |        |
|---------|-----------------|-----------------------------------|---------------------------------------|------------------------------------|-----------------|---------|---------|-------------------|---------|--------|
|         |                 | (AMSL = Abov                      |                                       |                                    | TPH-G           | BENZENE | TOLUENE | ETHYL-            | XYLENES | MTBE   |
| ID#     | DATE<br>SAMPLED | WELL CASING ELEVATION (FEET AMSL) | DEPTH TO<br>GROUND<br>WATER<br>(FEET) | GROUND WATER ELEVATION (FEET AMSL) | (UG/L)          | (UG/L)  | (UG/L)  | BENZENE<br>(UG/L) | (UG/L)  | (UG/L) |
|         |                 |                                   |                                       |                                    |                 |         | 1700    | 160               | 860     |        |
| S-6     | 12/14/89        | 240.23                            | 22.52                                 | 217.71                             | 11000           | 1400    | 1700    | 100               | 000     |        |
| S-6     | 2/91            |                                   | PLA                                   | DATING PRODUCT                     |                 | 4700    | 4200    | 650               | 3700    |        |
| S-6     | 6/91            |                                   |                                       |                                    | 95000           | 4200    | 4200    | 0.50              |         |        |
| RS-6    | 9/91            |                                   | FL                                    | DATING PRODUCT                     |                 | 3700    | 2300    | 730               | 4100    |        |
| RS-6    | 12/91           |                                   |                                       |                                    | 64000           | 1600    | 710     | 500               | 1600    |        |
| RS-6    | 11/09/92        | 99.27                             | 19.43                                 | 79:84                              | 19000           | 1200    | 1300    | 290               |         |        |
| RS-6    | 04/07/94        | 99.27                             | 14.42                                 | 84.85                              | 16000           | 1300    | 2200    | 590               |         |        |
| RS-6    | 06/19/94        | 227.22                            | 14 45                                 | 212.77                             | 23000           |         | 790     | 250               |         |        |
| RS-6    | 09/17/94        | 227,22                            | 19.52                                 | 207.7                              | 24000<br>3200   |         | 13      | 82                |         |        |
| RS-6    | 03/12/95        | 227.22                            | 8.90                                  | 210.32                             | 3700            |         |         |                   |         |        |
| RS-6    | 10/04/95        | 230 22                            | 17.78                                 | 212.44                             | 3100            |         |         |                   |         | 5.8    |
| RS-6    | 12/21/95        | 230.22                            | 14.98                                 |                                    | 6900            |         |         |                   |         | < 300  |
| RS-6    | 03/27/96        | 230.22                            | 10.00                                 |                                    | 7400            |         |         |                   | 100     | <1000  |
| RS-6    | 06/11/96        | 230,22                            |                                       |                                    | 1400            |         |         |                   | 9.2     | 14     |
| RS-6    | 09/04/96        |                                   |                                       |                                    | 1800            |         |         |                   | 18      | < 0.5  |
| RS-6    | 12/11/96        |                                   |                                       |                                    | 2100            |         |         | 25                | 40      | < 0.5  |
| RS-6    | 2/21/97         |                                   |                                       |                                    | 1700            |         |         |                   | 1 16    | < 0.5  |
| RS-6    | 5/28/97         |                                   |                                       |                                    | 941             |         |         |                   | 55      | < 0.5  |
| RS-6    | 9/2/97          |                                   |                                       |                                    | 491             |         |         |                   | 1 7     | < 0.5  |
| RS-6    | 11/24/97        |                                   |                                       |                                    | 140             | *       |         | 7 9               | 5 52    | < 0.5  |
| RS-6    | 2/25/98         |                                   |                                       |                                    | 150             |         |         | 9 8               | 4 2     | <10    |
| RS-6**  | 7/8/98          |                                   |                                       | 218.01                             | <5              |         | -       | 5 <0.5            | 5 <1    |        |
| RS-6    | 7/30/98         |                                   |                                       | 216.0                              | 99              |         |         | _                 | 5 <1    | <1     |
| RS-6    | 9/16/98         |                                   |                                       |                                    | 340             | -       |         |                   | 5 14    | < 0 5  |
| RS-6    | 11/24/98        |                                   |                                       | -                                  | 100             |         |         | _                 | 6 7.3   | <0.5   |
| RS-6    | 2/23/9          |                                   | _                                     |                                    | 110             | _       |         |                   | 0 15    |        |
| RS-6    | 5/5/9           | 9 230.2                           |                                       |                                    | 69              | •       | 4 2     |                   | 0 31    | . <:   |
| RS-6*** | 8/26/9          |                                   |                                       |                                    | 180             | -       | -       | 2 0               | 9 16    | < 0.   |
| RS-6    | 11/10/9         |                                   |                                       |                                    | 41              |         |         |                   | 4       | < 0.   |
| RS-6    | 2/9/0           |                                   | -                                     |                                    | 66              |         | -       |                   | 5 6     | < 0    |
| RS-6    | 6/30/0          |                                   |                                       |                                    | 66              |         | 2       |                   | 2 6     | < 0    |
| RS-6    | 8/8/0           | 0 227 2                           | 2 14.7                                | 2 212.5                            | 90              | ,,,,    | _       |                   | //      |        |

**RS-6 Groundwater Elevation** 



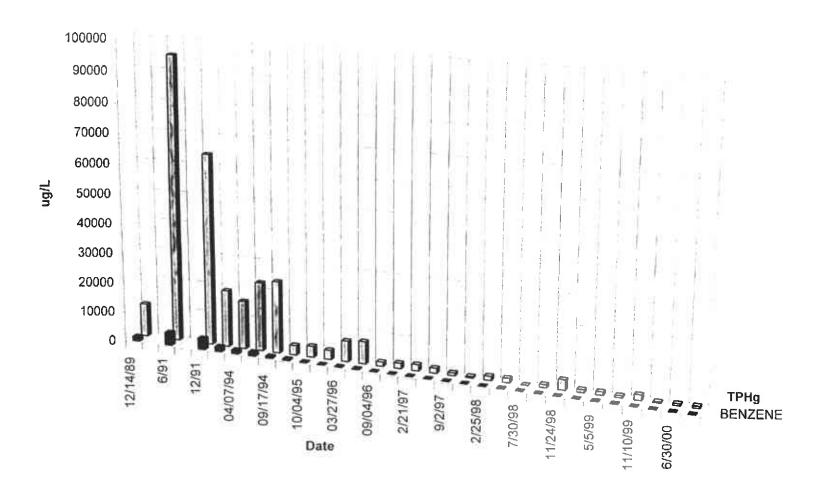
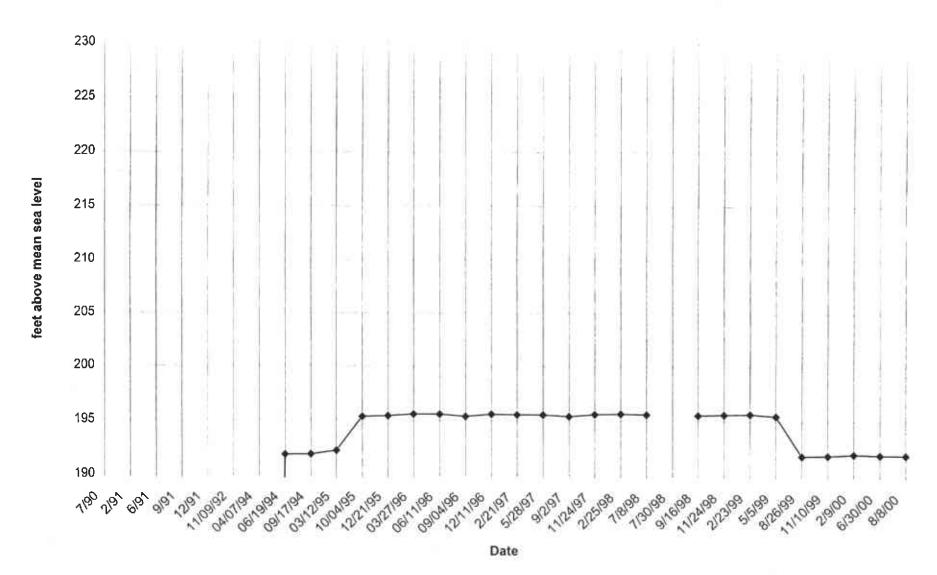
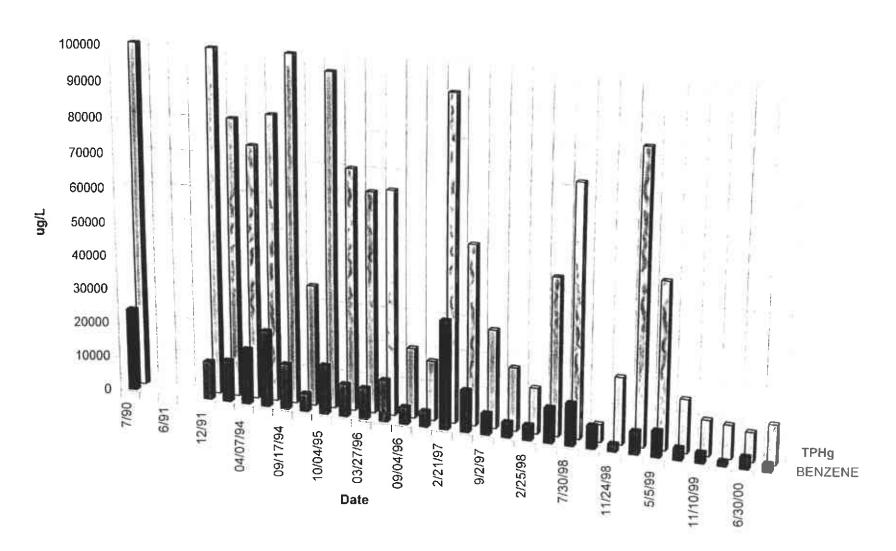



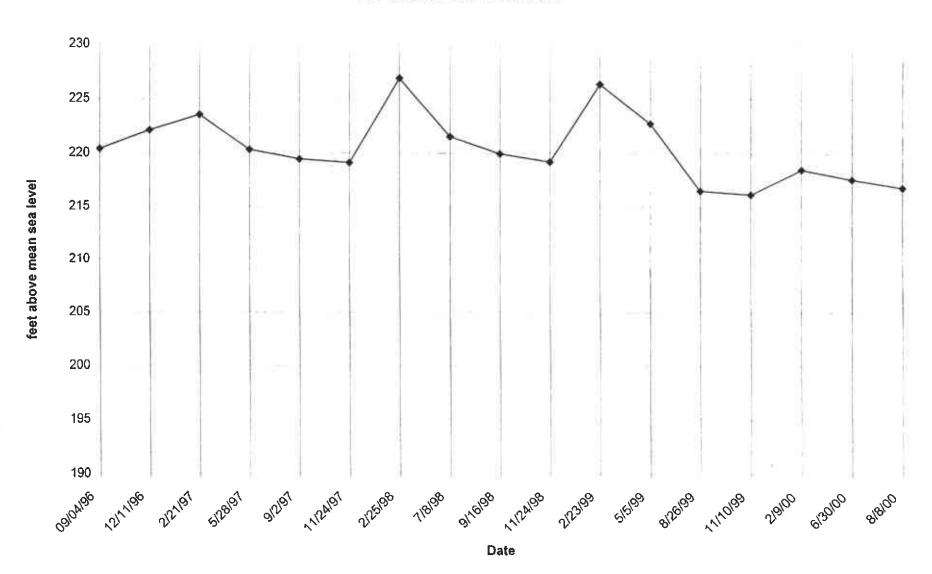

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|         |                 | (All concen<br>(AMSL = Abo                 |                                       | n parts per bill<br>a level)       | ion (ug/L,      | ppb])          |                |                             |                |        | 1  |
|---------|-----------------|--------------------------------------------|---------------------------------------|------------------------------------|-----------------|----------------|----------------|-----------------------------|----------------|--------|----|
| ID#     | DATE<br>SAMPLED | WELL<br>CASING<br>ELEVATION<br>(FEET AMSL) | DEPTH TO<br>GROUND<br>WATER<br>(FEET) | GROUND WATER ELEVATION (FEET AMSL) | TPH-G<br>(UG/L) | BENZENE (UG/L) | TOLUENE (UC/L) | ETHYL-<br>BENZENE<br>(UG/L) | XYLENES (UG/L) | MTBE   |    |
| RS-7    | 7/90            |                                            |                                       |                                    | 5600000         | 24225          |                |                             |                |        | 1  |
| RS-7    | 2/91            |                                            | DI.                                   | OATING PRODUCT                     | 2600000         | 24000          | 210000         | 50000                       | 740000         |        | 4  |
| RS-7    | 6/91            |                                            |                                       |                                    |                 |                |                |                             |                |        | 1  |
| RS-7    | 9/91            |                                            |                                       | OATING PRODUCT                     |                 |                |                |                             |                |        | 1  |
| RS-7    | 12/91           |                                            | 117                                   | OATING PRODUCT                     |                 |                |                |                             |                |        | 1  |
| RS-7    | 11/09/92        | 67.88                                      | 4.63                                  | 63.06                              | 270000          | 11000          | 22000          | 2000                        | 13000          |        | 1  |
| RS-7    | 04/07/94        | 67.88                                      | 4.62                                  | 63.26                              | 81000           | 12000          | 16000          | 1900                        | 13000          |        | 1  |
| RS-7    |                 |                                            | 4.03                                  | 63.85                              | 74000           | 16000          | 16000          | 1400                        | 8500           |        |    |
| RS-7    | 06/19/94        | 195 92                                     | 4.07                                  | 191.85                             | B3000           | 22000          | 19000          | 1500                        | 9500           |        | 1  |
| RS-7    | 03/12/95        | 195 92                                     | 4.05                                  | 191.87                             | 270000          | 13000          | 15000          | 2100                        | 1100           |        | 1  |
| RS-7    | 10/04/95        | 195 92                                     | 3.72                                  | 192.2                              | 35000           | 5100           | 560            | 6300                        | 3600           |        | 1  |
| RS-7    | 12/21/95        | 199 35                                     | 4.03                                  | 195.32                             | 96000           | 14000          | 14000          | 1300                        | 7000           |        | I  |
| RS-7    | 03/27/96        | 199.35                                     | 3.95                                  | 195.4                              | 70000           | 9300           | 12000          | 860                         | 5600           | 210    | Ι  |
| RS-7    |                 | 199 35                                     | 3.80                                  | 195.55                             | 64000           | 8900           | 14000          | 1100                        | 8300           | < 3000 | L  |
| RS-7    | 06/11/96        | 199,35                                     | 3.79                                  | 195.56                             | 65000           | 12000          | 17000          | 1600                        | 9700           | <5000  | Ι  |
|         | 09/04/96        | 199.35                                     | 3.99                                  | 195.36                             | 20000           | 4900           | 2100           | 670                         | 4400           | 100    | Τ  |
| RS-7    | 12/11/96        | 199.35                                     | 3.78                                  | 195.57                             | 17000           | 4400           | 7500           | 570                         | 4600           | 180    | Т  |
| RS-7    | 2/21/97         | 199.35                                     | 3 82                                  | 195.53                             | 93000           | 31000          | 47000          | 3800                        | 23000          | <0.5   | F  |
| RS-7    | 5/28/97         | 199.35                                     | 3.82                                  | 195.53                             | 52000           | 12000          | 8200           | 2000                        | 11000          | <0.5   | ħ  |
| RS-7    | 9/2/97          | 199 35                                     | 3.96                                  | 195.39                             | 28000           | 6100           | 2800           | 950                         | 3800           | <50    | T  |
| RS-7    | 11/24/97        | 199_35                                     | 3.76                                  | 195 59                             | 18000           | 4300           | 5900           | 600                         | 2900           | < 0.5  | t  |
| RS-7    | 2/25/98         | 199.35                                     | 3.70                                  | 195.65                             | 13000           | 4300           | 7100           | 1100                        | 5800           | <0.5   | t  |
| RS-7**  | 7/8/98          | 199.35                                     | 3.76                                  | 195.59                             | 45000           | 10000          | 3400           | 2000                        | 8000           | <10    | +- |
| RS-7    | 7/30/9B         | 199.35                                     |                                       |                                    | 72000           | 12000          | 2100           | 2000                        | 9100           |        | t  |
| RS-7    | 9/16/98         | 199.35                                     | 3,83                                  | 195 52                             | 5000            | 6500           | 160            | <2.5                        | 500            | <5     | t  |
| RS-7    | 11/24/98        | 199.35                                     | 3.77                                  | 195.50                             | 19000           | 2100           | 1100           | 500                         | 2100           | <0.5   | +- |
| RS-7    | 2/23/99         | 199.35                                     | 3.70                                  | 195.65                             | 83000           | 6500           | 9900           | 1200                        | 7000           | <10    | +  |
| RS-7    | 5/5/99          | 199 35                                     | 3.88                                  | 195 47                             | 47000           | 7400           | 4800           | 1300                        | 7400           | 540    | +  |
| RS-7*** | 8/26/99         | 195 99                                     | 4 16                                  | 191.83                             | 15000           | 3400           | 91             | 950                         | 970            | <5     | -  |
| R\$-7   | 11/10/99        | 195_99                                     | 4 12                                  | 191_87                             | 10000           | 2900           | 170            | 630                         | 1200           | <0.5   | -  |
| RS-7    | 2/9/00          | 195.99                                     | 3 98                                  | 192 01                             | 9400            | 1400           | 120            | 480                         | 600            | <0.5   | 4- |
| RS-7    | 6/30/00         | 195.99                                     | 4 04                                  | 191 95                             | 8200            | 3300           | 190            | 430                         | 540            |        | 4- |
| RS-7    | 8/8/00          | 195 99                                     | 4 . 06                                | 191.93                             | 11000           | 2300           | 150            | 430                         | 540            | <0.5   | 4- |









TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALLFORNIA

|          |                 | (All concent<br>(AMSL - Abo       |                                       |                                    | illion [ug/L,   | ppb])             |                |                             |                |         |
|----------|-----------------|-----------------------------------|---------------------------------------|------------------------------------|-----------------|-------------------|----------------|-----------------------------|----------------|---------|
| ID#      | DATE<br>SAMPLED | WELL CASING ELEVATION (FEET AMSL) | DEPTH TO<br>GROUND<br>WATER<br>(FEET) | GROUND WATER ELEVATION (FEET AMSL) | TPH-G<br>(UG/L) | BENZENE<br>(UG/L) | TOLUENE (UG/L) | ETHYL-<br>BENZENE<br>(UG/L) | XYLENES (UG/L) | MTBE    |
|          |                 |                                   |                                       |                                    |                 |                   |                |                             | 100, 2,        | (00) 0) |
| RS-8***  | 8/26/99         | 214 67                            | 7.25                                  | 207.42                             | 160000          | 24000             | 35000          | 4200                        | 24000          | <5      |
| RS-8     | 11/10/99        | 214,67                            | B.69                                  | 205.98                             | 150000          | 21000             | 29000          | 3000                        | 14000          | < 0.5   |
| RS-8     | 2/9/00          | 214.67                            | 7.23                                  | 207.44                             | 14000           | 1900              | 3200           | 270                         | 2300           | < 0.5   |
| RS-8     | 6/30/00         | 214.67                            | 3.99                                  | 210.68                             | 6400            | 570               | 870            | 150                         | 770            | <0.5    |
| RS-0     | 8/8/00          | 214.67                            | 7.52                                  | 207,15                             | 100000          | °C 24000          | > 40000        | 2300                        | 9900           | < 0 5   |
| RS-9***  | 8/26/99         | 195 63                            | 7.46                                  | 188 17                             | 17000           | 3500              | 1200           | 360                         | 1600           | 180     |
| RS-9     | 11/10/99        | 195 63                            | 7.91                                  | 187 72                             | 2800            | 520               | 62             | 46                          | 130            | <0.5    |
| RS-9     | 2/9/00          | 195.63                            | 6.09                                  | 189 54                             | 3400            | 650               | 74             | 64                          | 130            | <0.5    |
| RS-9     | 6/30/00         | 195 63                            | 6 77                                  | 188 86                             | 3000            | 600               | 79             | 74                          | 120            | <0.5    |
| RS-9     | 8/8/00          | 195.63                            | 7 32                                  | 188.31                             | 4900            | 500               | 430            | 160                         | 530            | <0.5    |
| RS-10*** | 8/26/99         | 208.46                            | 3 . 76                                | 204.7                              | 5100            | 160               | 340            | 190                         | 1000           | 32      |
| RS-10    | 11/10/99        | 208 46                            | 3 83                                  | 204.63                             | 500             | 7                 | 2              | 2                           | 4              | <0.5    |
| RS-10    | 2/9/00          | 208.46                            | 0_31                                  | 208.15                             | 100             | 4                 | 3              | 1                           | 6              | <0.5    |
| RS-10    | 6/30/00         | 208 46                            | 2 22                                  | 206 24                             | 640             | 5                 | 2              | 4                           | 2              | <0.5    |
| RS-10    | 8/8/00          | 208.46                            | 2 46                                  | 206                                | 460             | 2                 | 2              | 2                           | 7              | <0.5    |

TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|               |                 |                             |                             |                              | bi       | llion [ug/L, | ppb])      |           |                   |         |                 | 1   |
|---------------|-----------------|-----------------------------|-----------------------------|------------------------------|----------|--------------|------------|-----------|-------------------|---------|-----------------|-----|
|               |                 | (AMSL - Abo                 | -                           |                              |          |              |            |           |                   |         |                 | J   |
| ID#           | DATE<br>SAMPLED | WELL<br>CASING<br>ELEVATION | DEPTH TO<br>GROUND<br>WATER | GROUND<br>WATER<br>ELEVATION |          | TPH-G        | BENZENE    | TOLUENE   | ETHYL-<br>BENZENE | XYLENES | MTBE            |     |
|               |                 | (FEET AMSL)                 | (FEET)                      | (FEET AMSL)                  |          | (UG/L)       | (UG/L)     | (UG/L)    | (UG/L)            | (UG/L)  | (UG/L)          |     |
| DEGOVERN 3    | 00/01/06        |                             |                             |                              | Ш        |              |            |           |                   |         |                 |     |
| RECOVERY 3    | 09/04/96        | 230 32                      |                             | 220.42                       | Н        | <50          | <0.5       | <0.5      | <0.5              | <2      | </td <td>-</td> | -   |
| RECOVERY 3    | 12/11/96        | 230_32                      |                             | 222.14                       | _        | <50          | <0.5       | <0.5      | <0.5              | <1      | Ē               | -   |
| RECOVERY 3    | 2/21/97         | 230 32                      | 6.76                        | 223.56                       | _        | 340          | 35         | 59        | 8                 | 54      | <0.5            |     |
| RECOVERY 3    | 5/28/97         | 230 32                      | 9.98                        | 220.34                       | -        | <50          | <0.5       | <0.5      | <0.5              | <1      | <0.5            | , * |
| RECOVERY 3    | 9/2/97          | 230,32                      | 1.0 86                      | 219.46                       | _        | <50          | 4          | < 0 5     | <0.5              | <1      | <0.5            | ,   |
| RECOVERY 3    | 11/24/97        | 230,32                      | 11.20                       | 219.12                       | not      | enough wate  | r to sampl | e. No sam | ple               |         |                 | Т   |
| RECOVERY 3    | 2/25/98         | 230.32                      | 3.42                        | 226.9                        |          | <50          | <0.5       | <0.5      | <0.5              | < 1     | <0.5            | 1   |
| RECOVERY 3    | 7/8/98          | 230.32                      | 9_78                        | 221 54                       |          | 140          | <0.5       | <0.5      | 4                 | 24      | <1              | 1   |
| RECOVERY 3    | 9/16/98         | 230.32                      | 10.38                       | 219.94                       |          | <50          | <0.5       | <0.5      | <0.5              | <1      | <1              | 1.  |
| RECOVERY 3    | 11/24/98        | 230.32                      | 11.12                       | 219.2                        | not      | enough wate  | r to sampl | e. No sam | ple               |         |                 | T   |
| RECOVERY 3    | 2/23/99         | 230,32                      | 3.95                        | 226.37                       |          | <50          | <0_5       | <0.5      | <0.5              | <1      | <0.5            | 1.  |
| RECOVERY 3    | 5/5/99          | 230.32                      | 7.58                        | 222 - 74                     |          | 80           | 9          | <0.5      | <0.5              | <1      | 6               | 1   |
| RECOVERY 3*** | 8/26/99         | 227.25                      | 10.76                       | 216.49                       |          | <50          | 2          | <0.5      | <0.5              | <1      |                 | -   |
| RECOVERY 3    | 11/10/99        | 227.25                      | 11.09                       | 216.16                       |          | 140          | 3          | 4         | 1                 | 11      | <0.5            | -   |
| RECOVERY 3    | 2/9/00          | 227.25                      | 8.76                        | 218_49                       |          | <50          | 2          | <0.5      | <0.5              | <1      | <0.5            | -   |
| RECOVERY 3    | 6/30/00         | 227 25                      | 9.67                        | 217.58                       | П        | <50          | 0.7        | <0.5      | 1                 | 1       | <0.5            | -   |
| RECOVERY 3    | 8/8/00          | 227, 25                     | 10.44                       | 216.81                       |          | 72           | <0.5       | <0.5      | <0.5              | <1      | <0.5            | -   |
| T 1***        | 8/26/99         | 195 11                      | 2.44                        | 192.67                       | Н        | 40000        | 7200       | 5000      | 950               | 8100    | 53              | ŀ   |
| T 1           | 11/10/99        | 195.11                      | 2.23                        | 192.88                       |          | 46000        | 5600       | 3600      | 910               | 6500    | <0.5            | -   |
| T 1           | 2/9/00          | 195 11                      | 2.22                        | 192.89                       |          | 35000        | 2900       | 5700      | 720               | 6600    | <0.5            | -   |
| T 1           | 6/30/00         | 195.11                      | 2 22                        | 192:89                       | П        | 30000        | 3400       | 3200      | 950               | 4600    | <5              | -   |
| T 1           | 8/8/00          | 195.11                      | 2.73                        | 192.38                       |          | 8900         | 1600       | 760       | 260               | 870     | <5              | -   |
| T 2***        | 8/26/99         | 195 3                       | CAR                         |                              | Н        |              |            |           |                   |         |                 | F   |
| T 2           | 11/10/99        | 195_3                       | CAR                         |                              |          |              |            |           |                   |         |                 | t   |
| Т 2           | 2/9/00          | 195.3                       | CAR                         |                              | $\vdash$ |              |            |           |                   |         |                 | ÷   |
| Т 2           | 6/30/00         | 195.3                       | CAR                         |                              | Н        |              |            |           |                   | _       |                 | +   |
| T Z           | 8/8/00          | 195,3                       | CAR                         |                              |          |              |            |           |                   |         |                 | t   |
| T 3***        | 8/26/99         | 202.38                      | CAR                         |                              | H        |              |            |           |                   |         |                 | F   |
| Т 3           | 11/10/99        | 202 3B                      | CAR                         |                              |          |              |            |           |                   |         |                 | +   |
| Т 3           | 2/9/00          | 202.38                      | CAR                         |                              |          |              |            |           |                   |         |                 | +   |
| г 3           | 6/30/00         | 202 38                      | CAR                         |                              |          |              |            |           |                   |         |                 | +   |
| T 3           | 8/9/00          | 202 38                      | 9.80                        | 192.58                       |          |              |            |           |                   |         |                 | +   |
|               |                 |                             |                             |                              |          |              |            |           |                   |         |                 | +   |

# R-3 Groundwater Elevation



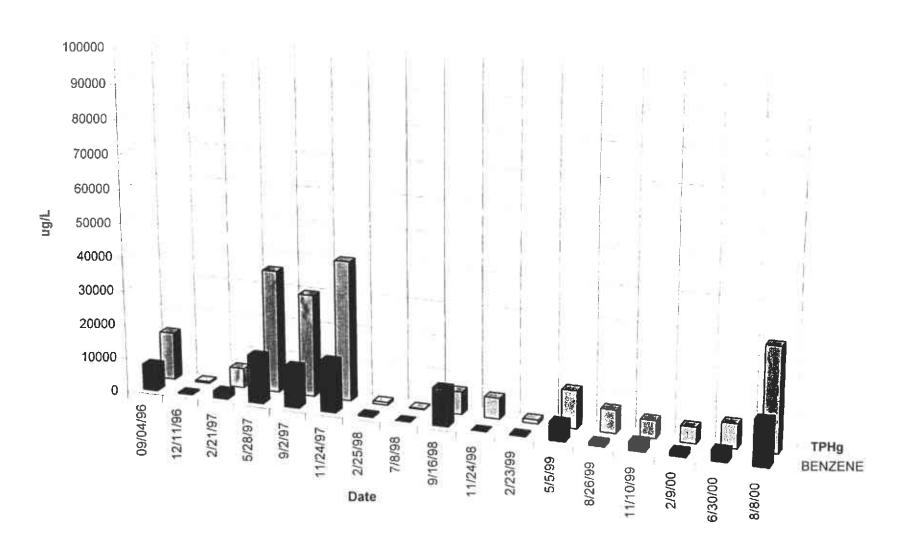



TABLE 1
GROUNDWATER ELEVATIONS AND CERTIFIED ANALYTICAL LABAORATAORY RESULTS FROM WATER SAMPLES
DESERT PETROLEUM, INC. SITE #793
4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|         |                 | (All concen<br>(AMSL = Abo |                    | n parts per<br>a level) | bil. | lion (ug/L, | . ppb]} |         |                   |         |        |
|---------|-----------------|----------------------------|--------------------|-------------------------|------|-------------|---------|---------|-------------------|---------|--------|
| ID#     | DATE<br>SAMPLED | WELL<br>CASING             | DEPTH TO<br>GROUND | GROUND<br>WATER         |      | TPH-G       | BENZENE | TOLUENE | ETHYL-<br>BENZENE | XYLENES | MTBE   |
|         |                 | ELEVATION (FEET AMSL)      | WATER<br>(FEET)    | ELEVATION (FEET AMSL)   |      | (UG/L)      | (UG/L)  | (UG/L)  | (UG/L)            | (UG/L)  | (UG/L) |
| T 4***  | 8/26/99         | 197.48                     | CAR                |                         |      |             |         |         |                   | 113/2/  | (00,2, |
| T 4     | 11/10/99        | 197.40                     | CAR                |                         |      |             |         |         |                   |         |        |
| T 4     | 2/9/00          | 197.48                     | CAR                |                         |      | -           |         |         |                   |         |        |
| T 4     | 6/30/00         | 197,48                     | CAR                |                         |      |             |         |         |                   |         |        |
| T 4     | 8/8/00          | 197.48                     | 4.77               | 192 71                  |      |             |         |         |                   |         |        |
| LF-1*** | 8/26/99         | 226.59                     | CAR                |                         | +    |             |         |         |                   |         |        |
| LF-1    | 11/10/99        | 226 59                     | CAR                |                         | _    |             |         |         |                   |         |        |
| LF-1    | 2/9/00          | 226 59                     | CAR                |                         |      |             |         |         |                   |         |        |
| LF-1    | 6/30/00         | 226.59                     | CAR                |                         |      |             |         |         |                   |         |        |
| LF-1    | 8/8/00          | 226 59                     | CAR                |                         |      |             |         |         |                   |         |        |

ND BELOW LABORATORY DETECTION LIMITS

TPH-G TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

MTBE results confirmed by EPA Method 8260 (GC/MS)

\*\* LAB REPORT HAD RS-6 AND RS-7 MISLABELED, RESAMPLE ON 7/30/98 CONFIRMED.

\*\*\* WELL CASING ELEVATION SURVEY 8-27-99, WADE HAMMOND No. 6163, BENCH MARK CITY OF OAKLAND #2814

TABLE 2
WASTEWATER DISHCARGE PERMIT # 5043550 1
FORMER DP #793
4035 PARK BLVD., OAKLAND, CALIFORNIA

| WASTEWATER                   | DATE    | METER                 | NEW                 | GALLONS               | ACCUMULATIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVERAGE                 | EPA METHO | DD 624  |                   |         | 7420   |
|------------------------------|---------|-----------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|---------|-------------------|---------|--------|
| SOURCE ID                    |         | READING<br>IN GALLONS | METER<br>IN GALLONS | DISCHARGED<br>BETWEEN | GALLONS<br>DISCHARGED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DISCHARGE<br>PER MINUTE | BENZENE   | TOLUENE | ETHYL-<br>BENZENE | XYLENES |        |
|                              |         | #35635668             | #47083426           | VISITS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN GALLONS              | ug/L      | ug/L    | ug/L              | ug/l.   | ug/L   |
| BAKER TANK                   | 1/25/00 | 314110<br>314110      |                     | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                       | 1         |         |                   |         |        |
| BAKER TANK                   | 1/26/00 | 315050                |                     | 940                   | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 0                     | <1        | 94      |                   |         | Lien   |
| BAKER TANK                   | 1/28/00 | 321120                |                     | 6070                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | - 37      | <1      | <1                | <1      | <50    |
| BAKER TANK                   | 2/2/00  | 521120                | 1102560             | 4230                  | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 1         |         |                   |         |        |
| BAKER TANK                   | 2/3/00  |                       | 1107482.2           | 4922                  | - interest to the second secon | 3                       | <1        | 24      |                   |         | T area |
| BAKER TANK                   | 2/7/00  |                       | 1107482.2           | 0                     | 16162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0                     |           | <1      | <1                | <1      | <50    |
| BAKER TANK AND 1/4LY SAMPLES | 2/9/00  |                       | 1109680             | 2198                  | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                       | EPA METHO | DD 624  |                   |         | 239.2  |
| F1 (PSP No. 1)               | 3/23/00 |                       | 1109720             | 40                    | 18400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0                     | <1 <1     | et      |                   | -70     |        |
| F1 (PSP No. 1)               | 5/4/00  |                       | 1110780             | 1060                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |         | <1                | <2      | <5     |
| F1 (PSP No. 1)               | 5/12/00 |                       | 1111700             | 920                   | 20380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           |         |                   |         |        |
| F1 (PSP No. 1)               | 5/18/00 |                       | 1113359             | 1659                  | 22039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       | 1         |         |                   |         |        |
| F1 (PSP No. 1)               | 5/25/00 |                       | 1113840             | 481                   | 22520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           |         |                   |         |        |
| F1 (PSP No. 1)               | 5/31/00 |                       | 1115111             | 1271                  | 23791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           |         |                   |         |        |
| F1 (PSP No. 1)               | 6/16/00 |                       | 1115823             | 712                   | 24503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           |         |                   |         |        |
| F1 (PSP No. 1)               | 6/28/00 |                       | 1116293             | 470                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                       |           |         |                   |         |        |
| F1 (PSP No. 1)               | 6/30/00 |                       | 1116303             | 10                    | 24983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       | EPA METHO | )D 624  |                   |         | 200.7  |
| F1 (PSP No. 1)               | 7/5/00  |                       | 1116313             | 10                    | 24993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           | <1      | <1                | <2      | <2     |
| F1 (PSP No. 1)               | 7/13/00 |                       | 1117816             | 1503                  | 26496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           |         |                   |         | 1.5    |
| F1 (PSP No. 1)               | 7/20/00 |                       | 1118892             | 1076                  | 27572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       | 1         |         |                   |         |        |
| F1 (PSP No. 1)               | 7/27/00 |                       | 1118892             | 0                     | 27572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           |         |                   |         |        |
| F1 (PSP No. 1)               | 8/3/00  |                       | 1120336             | 1444                  | 29016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       | 1         |         |                   |         |        |
| F1 (PSP No. 1)               | 8/10/00 |                       | 1121041             | 705                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                       | 1         |         |                   |         |        |
| F1 (PSP No. 1)               | 8/17/00 |                       | 1121041             | 0                     | 29721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       | 1         |         |                   |         |        |

#### < BELOW LABORATORY LOWER DETECTION LIMITS

ug/L micrograms per liter (parts per billion)

Note: water meter #47083426 did not function during initial test, substitute meter #35635668 used until cleaned and tested. Re-installed January 28, 2000. WATER DISCHARGED TO SEWER IS FROM WEEKLY PURGEING OF T1 AND PURGED WATER FROM 1/4LY SAMPLING.

TABLE 3 GROUNDWATER ELEVATIONS AND ELECTRON ACCEPTO RESULTS FROM WATER SAMPLES DESERT PETROLEUM, INC SITE #793 4035 PARK BOULEVARD, OAKLAND, CALIFORNIA

|                |            | IAMSE - Abo                               | re mean se                | ea level                                    |                                     |                          |                |                                  |                  |       |                                              |                           |            |                                                           |                             |                                          |
|----------------|------------|-------------------------------------------|---------------------------|---------------------------------------------|-------------------------------------|--------------------------|----------------|----------------------------------|------------------|-------|----------------------------------------------|---------------------------|------------|-----------------------------------------------------------|-----------------------------|------------------------------------------|
|                | 150005     | 16000                                     |                           |                                             | FIELD MEASUR                        |                          |                |                                  |                  |       | CERTIFIED LABO                               | SEATORY RE-               | FULTE DISS | OLVED IN WATER                                            |                             | T                                        |
| ED#            | DATE       | WELL<br>CASING<br>ELEVATION<br>(FEET AMSL | GROUND<br>WATER<br>(FRET) | GROUND<br>WATER<br>ELEVATION<br>(FEET AMSL) | DISTOLVED<br>OXYGEN<br>O2<br>(MG/L) | SULFATE<br>SO4<br>(MG/L) | NITRATE<br>NO. | FERROUS<br>IRON<br>FE2<br>(MG/L) | TEMP-<br>ERATURE | Ьн    | TOTAL PETROLEUM HYDROCARBONS GASOLINE (MG/L) | CARRON<br>DI OXIDE<br>CO2 | CH4        | AENOBIC<br>HYDROCARDON<br>DEGRADING<br>BACTERIA<br>CPU/ML | ORTHO-<br>PHOSPRATE<br>PO4: | AMMONIA<br>AT<br>NUTROGER<br>N<br>(MQ/L) |
| MM-1***        | 8/26/99    | 229.57                                    | 12.41                     | 218.16                                      | 4.9                                 | 15                       | 0              | 0.25                             | 75.4             | 6.55  | +0.05                                        | 1000/107                  | 11407.753  | Croyna                                                    | 1843/411                    | 1962713                                  |
|                | 9/2/99     | 229.57                                    | 11 65                     | 317.92                                      |                                     |                          |                |                                  | 72.9             | 8.16  | SKIINA.                                      | 0.13                      | 40.00001   | 10                                                        | *1                          | <0.5                                     |
| ES+7+++        | 8/26/99    | 227.39                                    | 11.42                     | 215.97                                      | 0.7                                 | 46                       | 2.7            | 0.65                             | 80.9             | 6.97  | 0.2                                          |                           |            |                                                           |                             |                                          |
|                | 9/2/99     | 227.39                                    | 12.00                     | 215,29                                      |                                     |                          |                | W. H.                            | 4412             | HARA. | 9.2                                          | tuti                      | nin        | this                                                      | ne.                         | ros                                      |
| 25.5***        | 8/26/99    | 227.61                                    | 15.06                     | 211.55                                      | 0.7                                 |                          |                |                                  |                  |       | F 22                                         |                           |            |                                                           |                             |                                          |
|                | 9/2/99     | 227.61                                    | 16.26                     | 211.35                                      | 9.7                                 | 31                       | 1.3            | 0.92                             | 71.7<br>6E.4     | 7.08  | 35                                           | 8.55                      |            | 2000                                                      |                             |                                          |
|                |            |                                           |                           |                                             |                                     |                          |                |                                  | 00.1             | 7,42  |                                              | 0.16                      | 0.00021    | 3000                                                      | *1                          | ₹0.5                                     |
| RS-6***        | 8/26/99    | 227.22                                    | 13,72                     | 213.5                                       | 312                                 | 76                       | 9.3            | >1.7                             | 77.8             | 6.66  | 0.69                                         |                           |            |                                                           |                             | T                                        |
|                | 9/2/99     | 227.22                                    | 14:14                     | 213.08                                      |                                     |                          |                |                                  | 69               | 6.69  |                                              | 0:36                      | +0.00001   | 400                                                       | -1                          | 40.5                                     |
| 25-7+++        | 8/26/99    | 195.99                                    | 4.16                      | 191.83                                      | 0.1                                 | >77                      | 0.6            | 1.27                             | 73.4             | 6.97  | 15                                           |                           | -          |                                                           |                             | _                                        |
|                | 9/2/99     | 195.99                                    | 4.14                      | 191.85                                      |                                     |                          | -              | 1.121.                           |                  |       |                                              | nm.                       | per.       | nm                                                        | 100                         | nn.                                      |
| RS-8           | 8/26/99    | 214.67                                    | 7.25                      | 207.42                                      | 2.6                                 | 0                        | 0              | 0.54                             | 69.2             | 6.7   | 160                                          |                           |            |                                                           |                             |                                          |
|                | 9/2/99     | 214 67                                    | 7,38                      | 207.29                                      | 2.5                                 | -                        | -              | 0.34                             | 71.7             | 5.74  | 180                                          | 0.058                     | 0.000018   | 6600                                                      | - 4                         | 40.5                                     |
|                | - 25 1-125 | 722                                       |                           |                                             |                                     |                          |                |                                  |                  |       | -                                            |                           |            |                                                           |                             | 40.3                                     |
| RS-9           | 9/2/99     | 195.63                                    | 7.46                      | 188.17                                      | 2.1                                 | 7                        | - 0            | 0.59                             | 73.5             | 6.95  | 17                                           |                           |            |                                                           |                             |                                          |
|                | 9/2/99     | 133.83                                    | 7,61                      | 188.02                                      |                                     |                          |                |                                  | 70.9             | 6.98  |                                              | 0.25                      | 0.0021     | 10000                                                     | - 62                        | < 0.5                                    |
| #5-10          | #/26/99    | 208.46                                    | 3.76                      | 204.7                                       | 4.2                                 | nin                      | DM:            | rim                              | 70.5             | 8.03  | 5.1                                          |                           |            |                                                           |                             | _                                        |
| 2              | 9/2/99     | 208.46                                    | 3.96                      | 204.5                                       | 3000                                |                          |                |                                  | 73.3             | 7,24  |                                              | 0.1                       | 0.000037   | 8800                                                      | <1                          | <0.5                                     |
| RECOVERY 1 *** | 0/26/99    | 227.69                                    | 13.57                     | 213.72                                      | 0.4                                 | - 9                      | 0              | 53.3                             | 70.€             | 6.38  | 6.5                                          |                           |            |                                                           |                             | _                                        |
|                | 9/2/99     | 227.59                                    | 14/15                     | 213.51                                      |                                     |                          |                |                                  |                  | 11.24 | 0.3                                          | nm                        | 10%        | nm                                                        | nn.                         | nm                                       |
| RECOVERY 2***  | 8/26/99    | 227.28                                    | 13.14                     | 214.14                                      | 0.4                                 |                          | 1 2 2          |                                  |                  |       |                                              |                           |            |                                                           |                             |                                          |
| ESCOTEST 2     | 9/2/99     | 221.26                                    | 13.23                     | 214.05                                      | 0.4                                 | +77                      | 0.8            | 0.3                              | 72.7             | 6.65  | 6.7                                          | nm                        | - pa       | nm                                                        | nm .                        | -                                        |
|                |            |                                           |                           |                                             |                                     |                          |                |                                  |                  |       |                                              |                           | 1977       | nin .                                                     | 100                         | nm                                       |
| BECOVERA 3     | 9/2/99     | 236:32                                    | 10.76                     | 219.56                                      | 2.5                                 | - ⇒77                    | 0.7            | 0.05                             | 75               | 6.95  | 40.05                                        | 2                         |            |                                                           |                             |                                          |
|                | 9/4/99     | 230.32                                    | 10.87                     | 219.45                                      |                                     |                          |                |                                  |                  |       | 1                                            | nm                        | 1000       | 20,00                                                     | rim.                        | nm                                       |
| T. 3           | 8/26/99    | 195.11                                    | 2.44                      | 192.47                                      | 0.8                                 | 32                       | 0.5            | 0.01                             | 75.1             | 7.29  | 40                                           |                           |            |                                                           |                             | 1                                        |
|                | 9/2/99     | 195.11                                    | 2:20                      | 192.91                                      |                                     |                          |                |                                  | 76.1             | 7.57  |                                              | 0.11                      | 0.00019    | 1300                                                      | e1                          | +0.5                                     |

\*\*\* NEW BLEVATION SURVEY MG/L

milligrams per liter (ppm) NA

Not Analyzed

пπ

degrees Fahrenheit -

below laboratory lower detection limits

CAR PARKED OVER WELL, NO ACCESS CFU/ML colony forming units per milliliter CAR

# DP 793

750

# 4035 PARK BLVD, OAKLAND, CA Table 4 Pounds TPHg in soil and in groundwater AUGUST 1999.

16

Total Calculated Mass TPHg in Groundwater AUGUST 1999

12000

| 700/0 11 0 | 11.00 11.119 | I Son and my | T T T T T T T T T T T T T T T T T T T | 100001118 | 33.         |         |          |        |
|------------|--------------|--------------|---------------------------------------|-----------|-------------|---------|----------|--------|
| MASS GRO   | UNDWATE      | R CONTAMIN   | ATION AUC                             | UST 1999  |             |         |          | ,      |
|            |              | PORES        | 0.3                                   |           |             |         |          |        |
| Square     | Thickness    | Cubic        | Upper                                 | Lower     | Average con | LITERS  | mg       | pounds |
| Feet       |              | feet         | mg/l                                  | mg/l      | mg/l        | water   | TPHg     | TPHg   |
| 10520      | 0.75.97      | 168320       | 1                                     | 0.05      | 0.525       | 1429895 | 750695   | 1.66   |
| 8650       |              | 138400       | 10                                    | 1         | 5.5         | 1175722 | 6466470  | 14.26  |
| 2000       | 16           | 32000        | 40                                    | 10        |             | 271843  | 6796080  | 14.98  |
| 2550       | 16           | 40800        | 100                                   | 10        | 55          | 346600  | 19063004 |        |

100

160

13252356

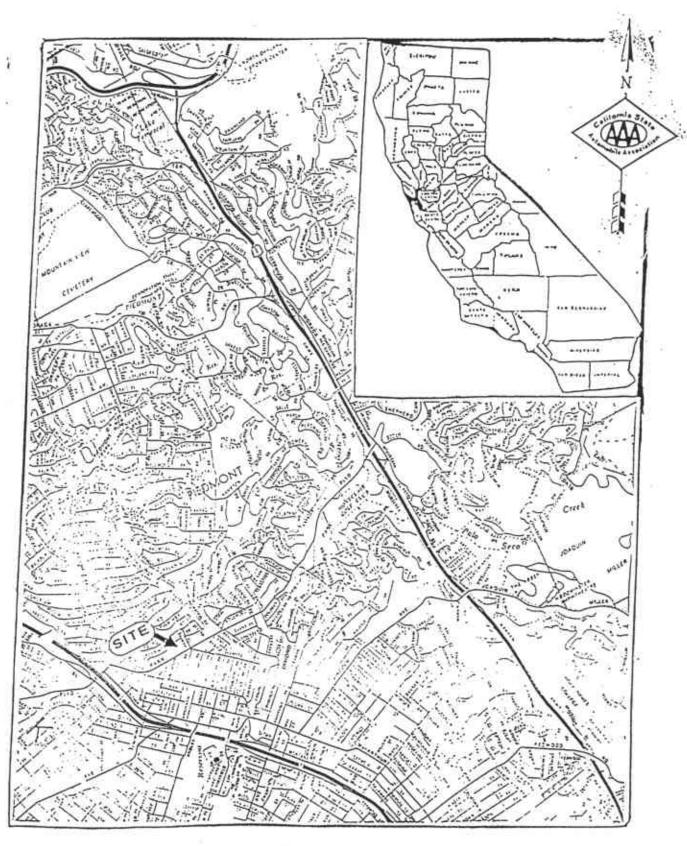
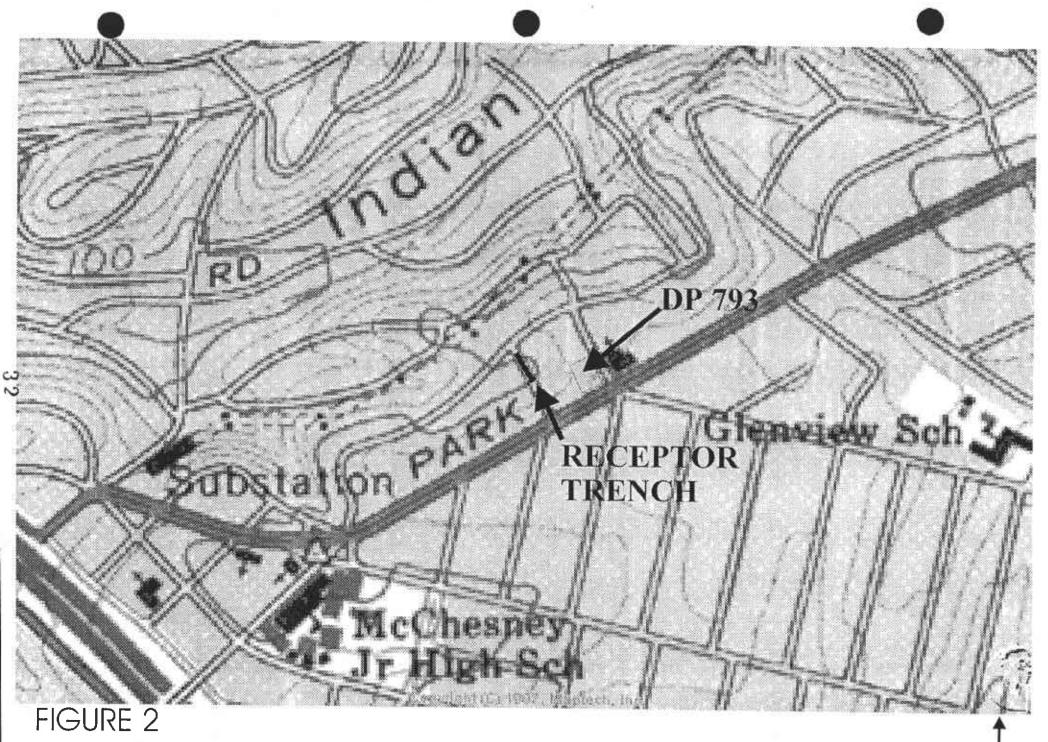
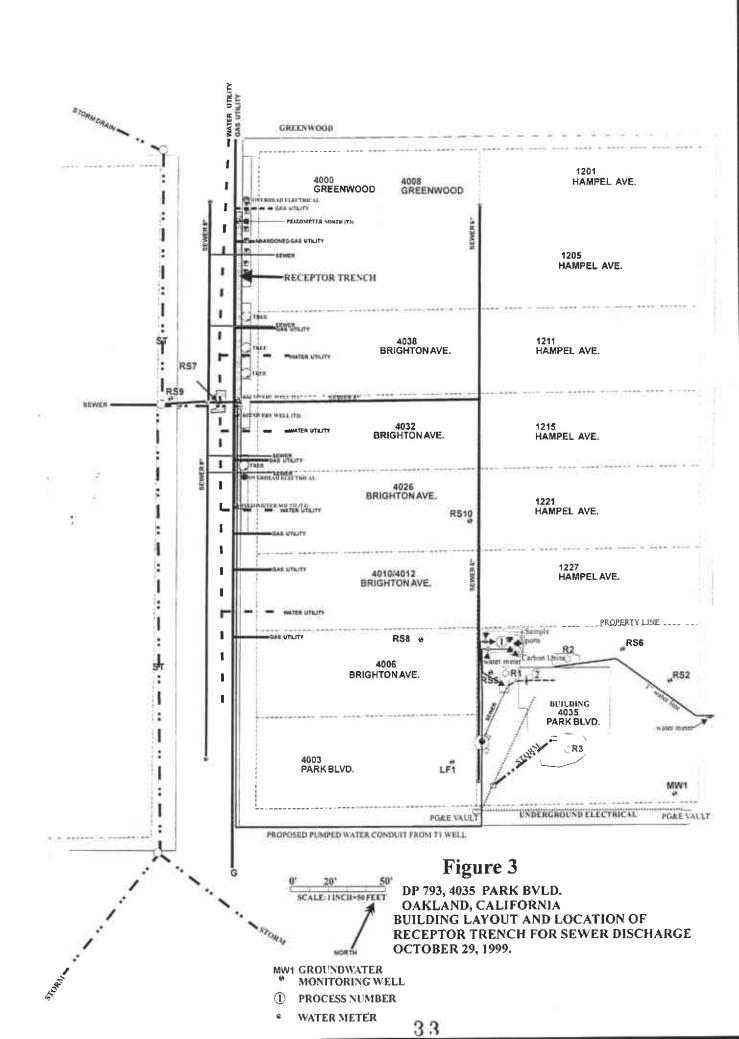
29.22

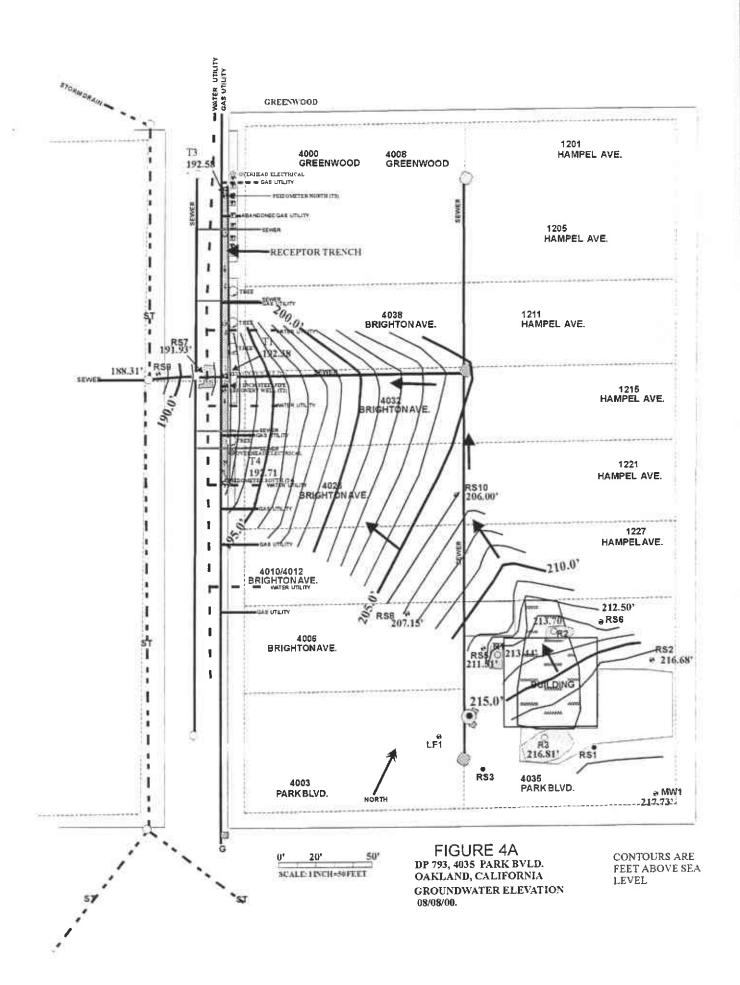
102.14

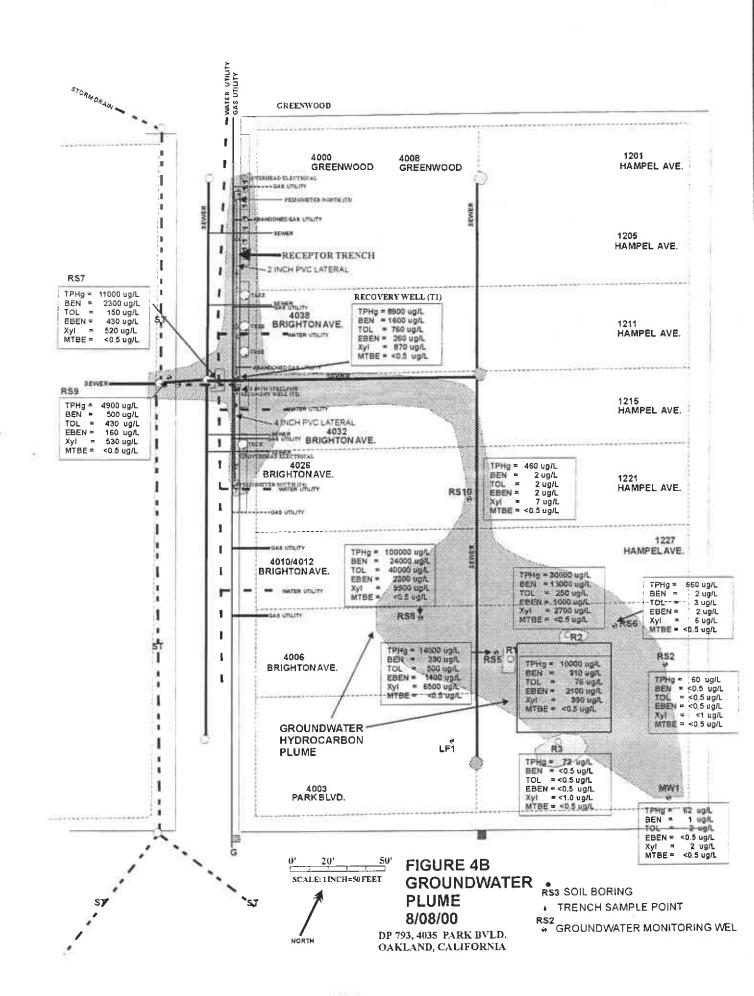
101941

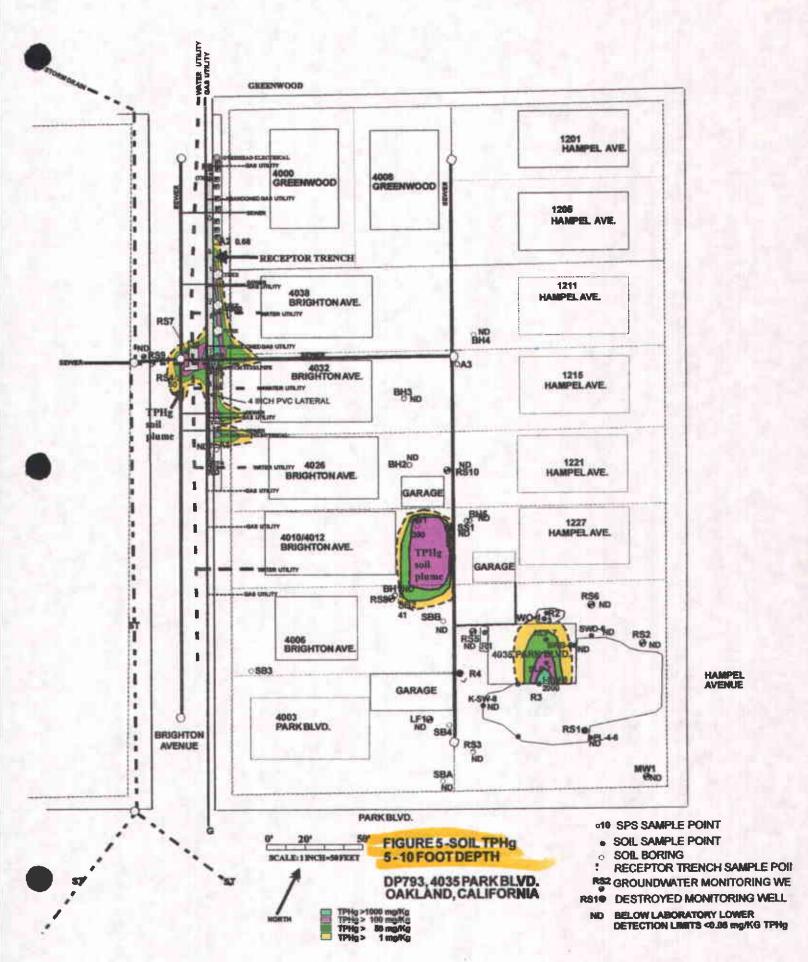
| assumption:                                  | free product | contains 287 mg | L of benzene |        |             |         |         |         |
|----------------------------------------------|--------------|-----------------|--------------|--------|-------------|---------|---------|---------|
|                                              |              | PORES           | 0.3          |        |             |         |         |         |
| Square                                       | Thickness    | Cubic           | Upper        | Lower  | Average con | LITERS  | mg      | pounds  |
| Feet                                         |              | feet            | mg/l         | mg/l   | mg/l        | water   | Benzene | Benzene |
| 6775                                         | 16           | 108400          | 0.1          | 0.0005 | 0.05025     | 920869  | 46274   | 0.10    |
| 7800                                         | 16           | 124800          | 1            | 0.1    | 0.55        | 1060188 | 583104  |         |
| 2000                                         | 16           | 32000           | 7.2          | 1      | 4.1         | 271843  | 1114557 | 2.46    |
| 2000                                         | 16           | 32000           | 10           | 1      | 5.5         |         | 1495138 |         |
| 1200                                         |              |                 | 24           | 10     |             | 163106  | 2772801 | 6.11    |
| Total Calculated Mass Benzene in Groundwater |              |                 |              |        |             |         |         | 13.25   |

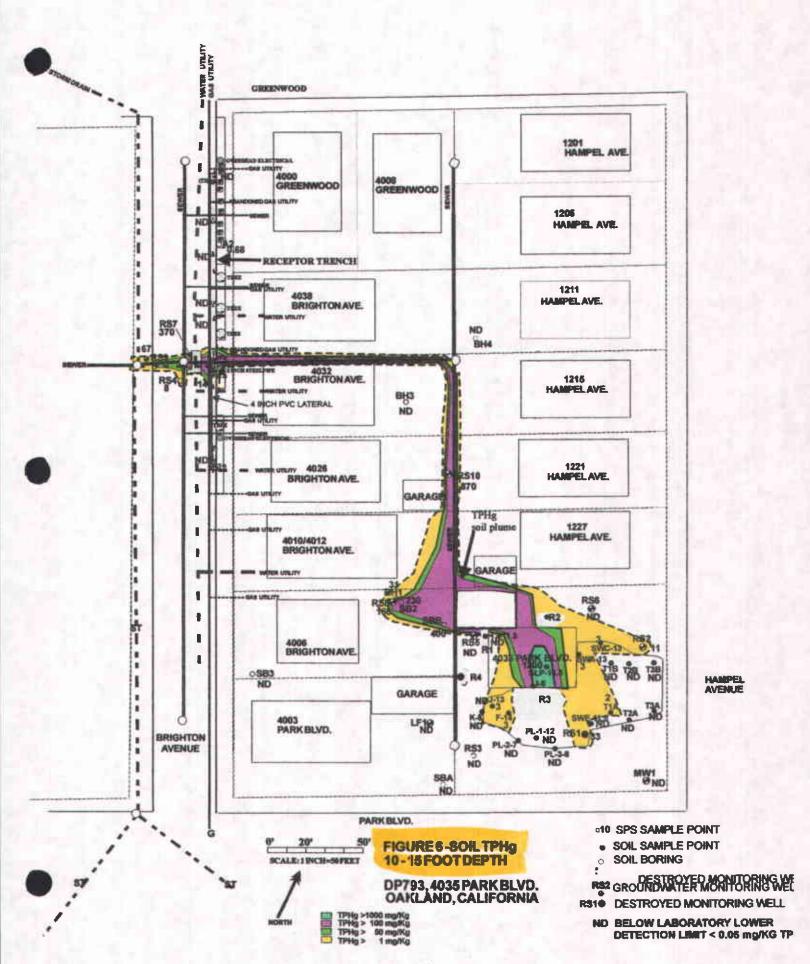
DESERT STATION #793 4035 Park Blvd. Oakland, California

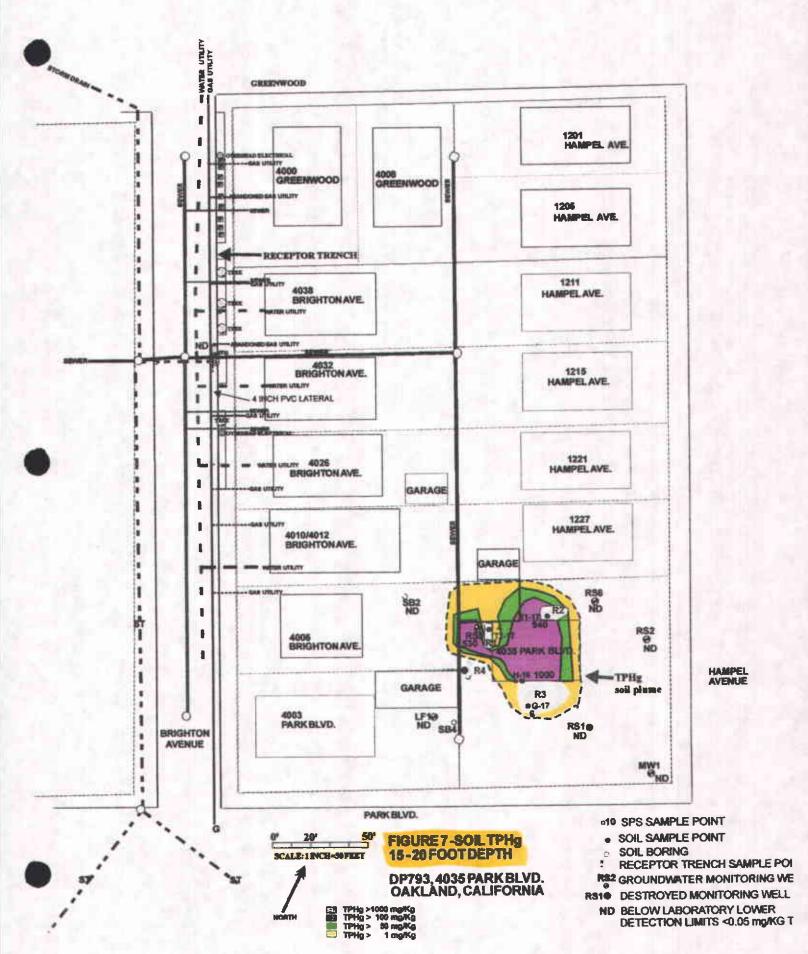




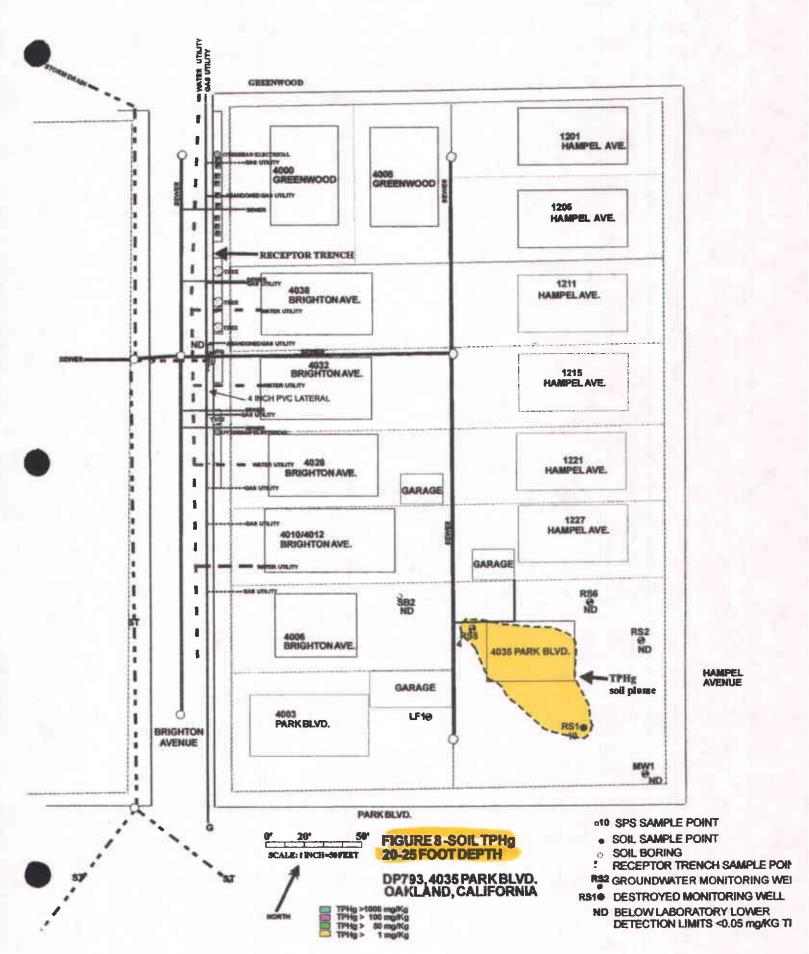


FIGURE 1

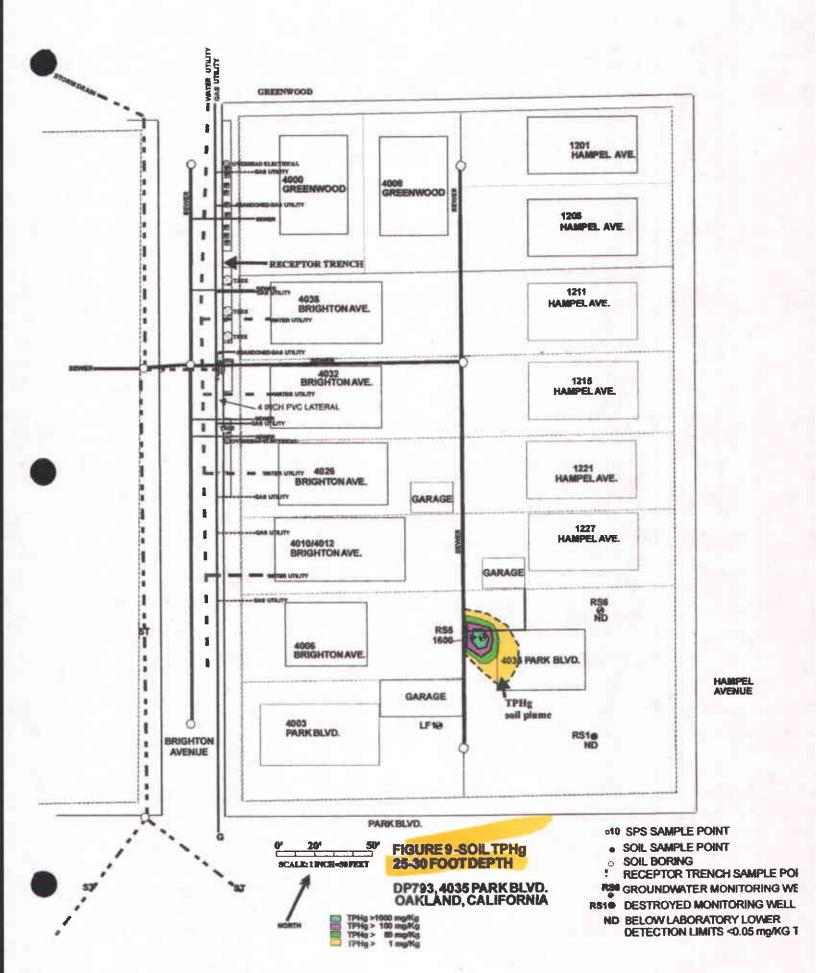

Location (AAA Map)

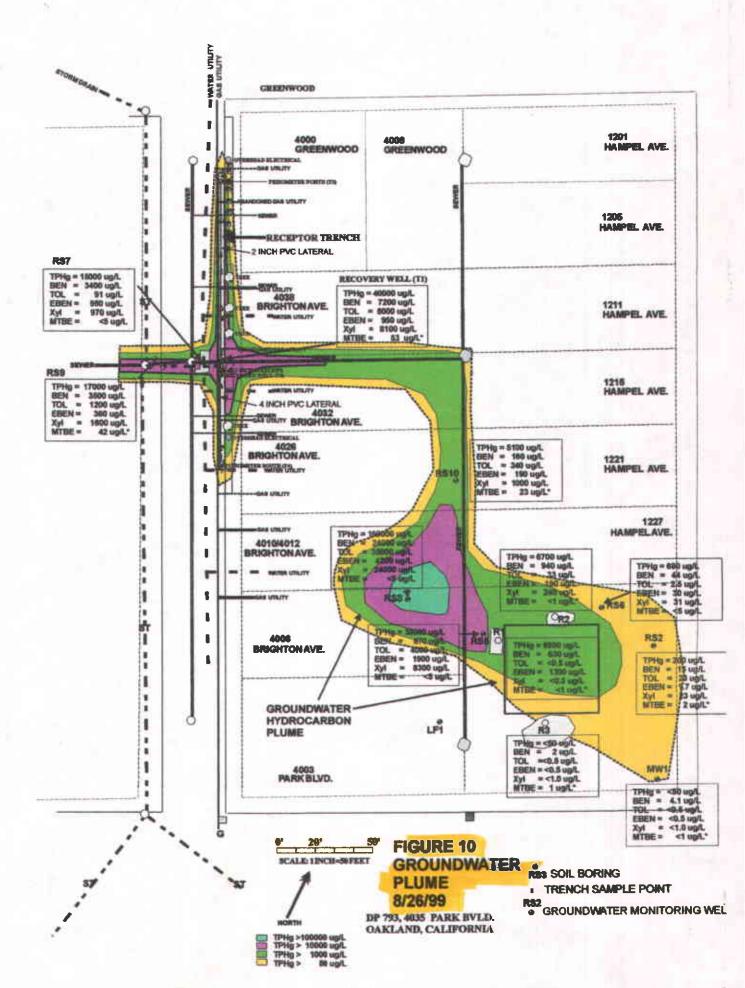


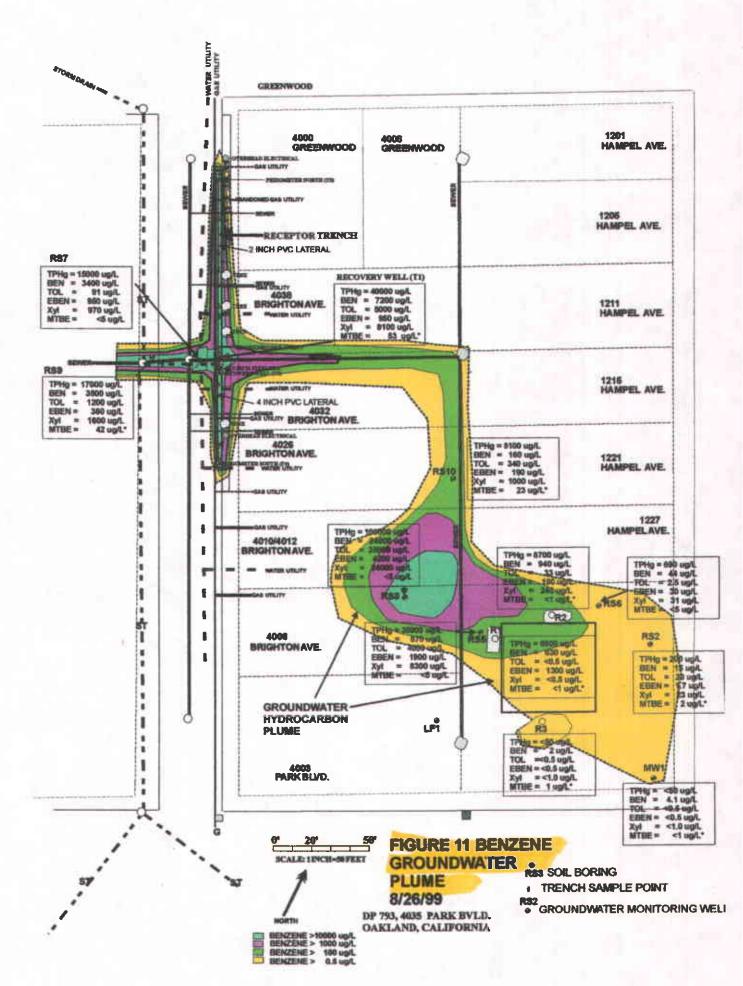


PORTION OF OAKLAND EAST 7.5 MINUTE USGS TOPOGRAPHIC MAP














### APPENDIX A

QA/QC METHODS & PROCEDURES WITH WELL SAMPLING DATA SHEETS

### APPENDIX A.

### METHODS AND PROCEDURES, QA/QC

This Appendix documents the specific methods, procedures, and materials used to collect and analyze ground water samples.

### Gauging and Measuring Monitor Wells.

Prior to sampling a well, WEGE personnel obtain two measurements: the depth to ground water and the product thickness using a battery powered depth to water-product interface probe and or by using a specially designed bailer. The probe is lowered into the well casing until the instrument signals that the top of water has been reached. The distance from the top of water to the top of casing is read from the tape calibrated in 0.01 foot intervals for accuracy to 0.01 foot, that is attached to the probe. The measured distance is subtracted from the established elevation at the top of casing to determine the elevation of ground water with respect to mean sea level.

The probe is washed with TSP and rinsed in distilled water before each measurement. WEGE has designed and built bailers that will collect a sample of the contents of a well to show the exact thickness of any floating product.

### **Purging Standing Water from Monitor Wells**

If no product is present, WEGE personnel purge the well. This is accomplished by removing ground water from the well until the water quality parameters (temperature, pH, and conductivity) stabilize, or until the well is emptied of water. Periodic measurements of ground water temperature, pH, and conductivity were taken with a Hydac Monitor or other meter and recorded along with the volume of ground water removed from the well. Purging is done by one or more methods singularly or in combination. Bailers, pneumatic or electric sample pumps, or vacuum pump tanks or trucks may be used. The usual amount of water removed is three well volumes. The water collected during purging is either safely stored onsite for later disposition, transported to an approved onsite or offsite sewer discharge system, or an approved onsite or offsite treatment system.

### Collection of Water Sample for Analysis

The well is allowed to recover after purging and a ground water sample is collected. A fresh bailer is used to collect enough water for the requirements of the laboratory for the analyses needed or required. The water samples are decanted from the bailer into the appropriate number and size

containers. These containers are furnished pre-cleaned to exact EPA protocols, with and without preservatives added, by the analytical laboratory or a chemical supply company. The bottles are filled, with no headspace, and then capped with plastic caps with teflon liners.

The vials or bottles containing the ground water samples are labeled with site name, station, date, time, sampler, and analyses to be performed, and documented on a chain of custody form. They were placed in ziplock bags and stored in a chest cooled to 4øC with ice. The preserved samples are chain of custody delivered to the chosen laboratory.

### **Analytical Results**

TPH is the abbreviations used for Total Petroleum Hydrocarbons used by the laboratories for water and soil analyses. The letter following TPH indicates a particular distinction or grouping for the results. The letters "g", "d", "k", or "o" indicates gasoline, diesel, kerosene, or oil, respectively, ie. TPH-d for diesel range TPH.

BTEX or MTBE are acronyms or abbreviations used for Benzene, Toluene, Ethylbenzene and all of the Xylenes (BTEX) and Methyl Tertiary Butyl Ether (MTBE), respectively.

MBTEX is the designation for the combination of the above five compounds.

The less than symbol, <, used with a "parts per value" indicates the lower detection limit for a given analytical result and the level, if present, of that particular analyte is below or less than that lower detection limit.

Other abbreviations commonly used are ppm, ppb, mg/Kg, ug/Kg, ml/l and ul/l are parts per million, parts per billion, milligrams per kilogram, micrograms per kilogram, milliliters per liter, microliters per liter, respectively.

### **Chain of Custody Documentation**

All water samples that are collected by WEGE and transported to a certified analytical laboratory are accompanied by chain-of-custody (COC) documentation. This documentation is used to record the movement and custody of a sample from collection in the field to final analysis and storage. Samples to be analyzed at the certified laboratory were logged on the COC sheet provided by the laboratory. The same information provided on the sample labels (site name, sample location, date, time, and analysis to be performed) are also noted on the COC form. Each person relinquishing custody of the sample set signs the COC form indicating the date and time of the transfer to the recipient. A copy of the COC follows the samples or their extracts throughout the laboratory to aid the analyst in identifying the samples and to assure analysis within holding times.

Copies of the COC documentation are included with the laboratory results in Appendix B of this report.



| SITE OP 793  |           | 8.8.00    |       |      | 1250 |
|--------------|-----------|-----------|-------|------|------|
| WELL MWI     | SAMPL     | EDBY. 15  | ROADU | IRY1 |      |
|              |           |           |       |      |      |
| WELL ELEVAT  |           |           |       |      |      |
| PRODUCT THIC | CKNESS    |           |       |      |      |
| DEPTH TO WA  |           | 11.77     | DTB   | 18.  | 32   |
| FLUID ELEVAT |           |           |       |      |      |
| BAILER TYPE  | Disposabi | le Briler |       |      |      |
| PUMP         | David Pi  | ttman     |       | ·    |      |

|       | WELL PU    | RGING R | ECORD    |       |
|-------|------------|---------|----------|-------|
| TIME  | VOLUME     | TEMP.   | pН       | COND. |
|       | REMOVED    | F°      |          | X1000 |
| 1252  | 1 Bailer   | 69.4    | 7.41     | ,24   |
| 1301. | 3.5g1/     | 69.9    | 7.15     | .23   |
| 1302  | 11         | 70.0    | 7.10     | .22   |
| 1304  |            | 70.0    | 6.97     | ,22   |
| 1306  |            | 70.1    | 6.96     | ,22   |
|       |            |         |          |       |
|       |            |         |          |       |
|       |            |         |          |       |
|       |            |         |          |       |
| 1     | l <u> </u> |         | <u> </u> | !     |

| FINAL VOLUME PURGED 6.5 gal        |         |   |
|------------------------------------|---------|---|
| TIME SAMPLED 1302                  |         |   |
| SAMPLE ID. MWI                     |         |   |
| SAMPLE CONTAINERS 3/40cc VOR 5     |         | - |
| ANALYSIS TO BE RUN TPILE BTEX MTRE |         |   |
| LABORATORY NSE                     | <u></u> |   |
| NOTES: 1st Bailer Clear            | No OSOR |   |
|                                    | ,       |   |
|                                    |         |   |
|                                    |         |   |
|                                    |         |   |
|                                    |         |   |
|                                    |         |   |



| SITE DP 793  | DATE       | 8800    |        | E 1310   |  |
|--------------|------------|---------|--------|----------|--|
| WELL AS 2    | SAMPLE     | EDBY. 🗸 | BROADW | A FI     |  |
|              |            |         |        | <u> </u> |  |
| WELL ELEVAT  |            |         |        |          |  |
| PRODUCT THIC |            |         |        |          |  |
| DEPTH TO WAT |            | 10,71   | DTB    | 18.40    |  |
| FLUID ELEVAT |            |         |        |          |  |
| BAILER TYPE  | Disposable | BriLER  |        |          |  |
| PUMP         | David Pitt | MeN     |        |          |  |

| · · · · · · · · · · · · · · · · · · · | WELL PU  | RGING R | ECORD    |       |
|---------------------------------------|----------|---------|----------|-------|
| TIME                                  | VOLUME   | TEMP.   | pН       | COND. |
|                                       | REMOVED  | F°      |          | XIOOO |
| 1311                                  | 1 Bailer | 68.9    | 6.98     | .52   |
| 1314                                  | . 16 91/ | 67.8    | 7.01     | . 53  |
| 1316                                  | 1        | 67.8    | 7.13     | .53   |
| /3/8                                  | 1        | 67.9    | 1.15     | .53   |
|                                       |          |         |          |       |
|                                       |          |         |          |       |
|                                       |          |         |          |       |
|                                       |          |         | <u> </u> |       |
|                                       |          |         | <u> </u> |       |
|                                       |          |         | <u> </u> |       |

| FINAL VOLUME PURGED 18 14/        | <u> </u> | ·                                     |
|-----------------------------------|----------|---------------------------------------|
| TIME SAMPLED /320                 |          |                                       |
| SAMPLE ID. R5 2                   |          |                                       |
| SAMPLE CONTAINERS 2/40cc VOR 5    |          | ••                                    |
| ANALYSIS TO BE RUN TPIG BTEX MTRE | <u> </u> |                                       |
| LABORATORY NSE                    |          | · · · · · · · · · · · · · · · · · · · |
| NOTES: 1st Briler CLEAR           | No Odor  | <u>.</u>                              |
|                                   |          |                                       |
|                                   |          | _                                     |
|                                   |          |                                       |
|                                   |          |                                       |
|                                   |          |                                       |
|                                   |          |                                       |



| SITE OP 793  | DATE       | 8800    | TIM     | E /4:02  | · · |
|--------------|------------|---------|---------|----------|-----|
| WELL RSS     | SAMPL      | ED BY.  | BROADWI | 951      |     |
|              |            |         |         | <i>U</i> |     |
| WELL ELEVAT  |            |         |         |          |     |
| PRODUCT THIC |            |         |         |          |     |
| DEPTH TO WAT |            | 16.10   | DTB     | 39.20    |     |
| FLUID ELEVAT |            |         |         |          |     |
| BAILER TYPE  | Disposable | e Brier |         |          |     |
| PUMP &       | DAVID Pit  | tman    |         |          |     |

|      | WELL PU           | RGING R  | ECORD |       |
|------|-------------------|----------|-------|-------|
| TIME | VOLUME<br>REMOVED | TEMP.    | pН    | COND. |
| 1404 | 1 Bailer          | 66.1     | 2.80  | .32   |
| 1410 | 45 94/            | 65.0     | 2.15  | .30   |
| 1412 | 11                | 64.4     | 7./2  | .29   |
| 14/4 | 1                 | 64.2     | 7.10  | ,28   |
|      |                   | <u> </u> |       |       |
|      |                   |          |       |       |
|      |                   |          |       |       |
|      |                   |          |       |       |
|      |                   |          |       |       |

| FINAL VOLUME PURGED 47 34/          |    |
|-------------------------------------|----|
| TIME SAMPLED 1416                   |    |
| SAMPLE ID. RS5                      |    |
| SAMPLE CONTAINERS 2/40cc VOR 5      | 4. |
| ANALYSIS TO BE RUN TPILE BTEX /MTRE |    |
| LABORATORY NSE                      |    |
| NOTES: 1ST BRIVER CLEAR STRONG OdOR |    |
| d                                   |    |
|                                     |    |
|                                     |    |
|                                     |    |
|                                     |    |
|                                     |    |



| SITE OP 793 | DATE 8-8-00 TIME 1323 |
|-------------|-----------------------|
| WELL RS6    | SAMPLED BY. BROADWAY  |
|             | C                     |
| WELL ELEVAT |                       |
| PRODUCT THI |                       |
| DEPTH TO WA |                       |
| FLUID ELEVA |                       |
| BAILER TYPE | Disposable Briler     |
| PUMP        | David Pittman         |

|        | WELL PU  | RGING R | ECORD    |       |
|--------|----------|---------|----------|-------|
| TIME   | VOLUME   | TEMP.   | pН       | COND. |
| }      | REMOVED  | F°      |          | XIOOU |
| 1325   | 1 Bailer | 67.5    | 6.81     | .48   |
| /333 . | 30 ga/   | 67.2    | 6.89     | 147   |
| 1335   | 1        | 66.3    | 7.01     | 144   |
| 1337   | 1        | 65.6    | 7.02     | .44   |
| /339   | 1        | 65.1    | 7.15     | 144   |
| 1341   | 1        | 64,9    | 7.14     | 144   |
|        |          |         |          |       |
|        |          |         |          |       |
|        |          |         |          |       |
|        |          |         | <u> </u> |       |

| FINAL VOLUM   | E PURGED    | 34 911     |         |                |
|---------------|-------------|------------|---------|----------------|
| TIME SAMPLED  | ) /345      | 0          |         | ·- <del></del> |
| SAMPLE ID. R  | 56          |            |         |                |
| SAMPLE CONT   | AINERS 2/40 | Dec VOR s  |         |                |
| ANALYSIS TO I | BERUN TP/19 | BTEX IMTRE |         |                |
| LABORATORY    | NSE         |            |         | ·              |
| NOTES: /ST &  | iler CLEAR  |            | Some o  | Odor           |
|               |             |            |         |                |
| •             |             |            | · · · - |                |
|               |             |            |         |                |
|               |             |            |         |                |
|               |             |            |         |                |
|               |             |            |         |                |



| SITE OP 793         | DATE      | 8800     | TIM     | E /236         | > |
|---------------------|-----------|----------|---------|----------------|---|
| WELL RS7            | SAMPL     | ED BY. 🗸 | BROADWA | 141            |   |
|                     |           |          |         | ·              |   |
| WELL ELEVAT         |           |          |         | ·· <del></del> |   |
| PRODUCT THIC        |           |          |         |                |   |
| DEPTH TO WA         |           | 4.06     | DTB     | 7.00           |   |
| FLUID ELEVAT        |           |          |         |                |   |
| BAILER TYPE<br>PUMP | Disposabl | e Brier  |         |                |   |
| PUMP                | DAVID Pit | tman     |         |                |   |

|       | · · · · · · · · · · · · · · · · · · · |         |              |            |
|-------|---------------------------------------|---------|--------------|------------|
|       | WELL PU                               | RGING R | ECORD        |            |
| TIME  | VOLUME                                | TEMP.   | pН           | COND.      |
|       | REMOVED                               | F°      |              | XIOOO      |
| 1231  | 1 Bailer                              | 68.4    | 7.06         | ,35        |
| 12.33 | 6 94/                                 | 69.2    | 2.64         | 136<br>.35 |
| 12.33 | 1 1                                   | 69.4    | 7.64<br>7.05 | .35        |
|       |                                       |         |              |            |
|       |                                       |         |              |            |
|       |                                       |         |              |            |
|       |                                       |         |              |            |
|       |                                       |         |              |            |
|       |                                       |         |              |            |
|       |                                       |         |              |            |

| FINAL VOLUME PURGED 7 94/           |     |
|-------------------------------------|-----|
| TIME SAMPLED 1240                   |     |
| SAMI'LE ID. RS7                     |     |
| SAMPLE CONTAINERS 2/40 CC VOR 5     |     |
| ANALYSIS TO BE RUN TPILG BTEX /MTRE |     |
| LABORATORY NSE                      |     |
| NOTES: 1st Briler Cloudy STRONG DO  | 10x |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |



# WELL SAMPLING DATA SHEET 13-9.80

| SITE OP 793  |           | 8.8.00   |        |          | 1144 |  |
|--------------|-----------|----------|--------|----------|------|--|
| WELL RS 8    | SAMPL     | EDBY. 💪  | BROADU | 1241     |      |  |
|              |           |          |        | <i>U</i> |      |  |
| WELL ELEVAT  |           |          |        |          |      |  |
| PRODUCT THIC | KNESS     |          |        |          |      |  |
| DEPTH TO WA' | -         | 2,52     | DTB    | 15       |      |  |
| FLUID ELEVAT |           |          |        |          |      |  |
| BAILER TYPE  | Disposabl | e Briler |        |          |      |  |
| PUMP .       | David Pit | tman     |        |          |      |  |

|       | <u></u>  |         |        |       |
|-------|----------|---------|--------|-------|
|       | WELL PU  | RGING R | ECORD_ |       |
| TIME  | VOLUME   | TEMP.   | pН     | COND. |
|       | REMOVED  | F°      |        | XIOOO |
| 1147  | 1 Bailer | 64.1    | 6.84   | . 36  |
| 1149. | 3 81/    | 63.7    | 6.89   | .36   |
| 1150  | , 1      | 63.3    | 6.88   | +36   |
| 1152  | 1        | 63.2    | 6.90   | .36   |
|       |          |         |        |       |
|       |          |         |        |       |
|       |          |         |        |       |
|       |          |         |        |       |
|       |          |         |        |       |
|       |          |         |        |       |

| FINAL VOLUME PURGED 5 11/          |
|------------------------------------|
| TIME SAMPLED 1154                  |
| SAMILE ID. RS 8                    |
| SAMPLE CONTAINERS 2/40cc VOR 5     |
| ANALYSIS TO BE RUN TPILG BTEX MTRE |
| LABORATORY NSE                     |
| NOTES: 1st Bailer Clear No Odra    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |



| SITE OP 793  | DATE      | 8-8.00  | 1             | E 12/5   |  |
|--------------|-----------|---------|---------------|----------|--|
| WELL RS9     | SAMPL     | EDBY.   | BROADWI       | 941      |  |
|              |           | ·       |               | <u> </u> |  |
| WELL ELEVAT  |           |         |               |          |  |
| PRODUCT THIC |           |         | · <del></del> |          |  |
| DEPTH TO WA' |           | 7.32    | DTB           | 14.00    |  |
| FLUID ELEVAT |           | <u></u> |               |          |  |
| BAILER TYPE  | Disposabl | e Brier |               |          |  |
| PUMP .       | David Pit | tman_   | <del></del>   |          |  |

|        | WELL PU  | RGING R  | ECORD |       |
|--------|----------|----------|-------|-------|
| TIME   | VOLUME   | TEMP.    | pН    | COND. |
|        | REMOVED  | F°       |       | XIOOU |
| 1218   | 1 Bailer | 63.8     | 7.08  | .21   |
| 1221 . | 3 94/    | 66,2     | 6.75  | -23   |
| 1223   | 1 1      | 66.5     | 6.85  | ,23   |
| 1225   |          | 66.8     | 6.85  | ,23   |
|        |          |          |       |       |
|        |          | <u> </u> |       |       |
|        |          |          |       |       |
|        |          |          |       |       |
|        |          |          |       |       |
|        |          |          |       |       |

| FINAL VOLUME PURGED 5 gal          |         | _ |
|------------------------------------|---------|---|
| TIME SAMPLED 1227                  |         | _ |
| SAMPLE ID. RS 9                    |         | _ |
| SAMPLE CONTAINERS 2/40cc VOR 5     |         |   |
| ANALYSIS TO BE RUN TPIG BTEX /MTRE |         | _ |
| LABORATORY NSE                     | ·       |   |
| NOTES: 1st Bailer Clear            | No Odor | _ |
|                                    |         |   |
|                                    |         |   |
|                                    |         | _ |
|                                    |         | _ |
|                                    |         |   |
|                                    |         |   |



| SITE OP 793  | DATE       | 8800    | TIME     | 1158 |
|--------------|------------|---------|----------|------|
| WELL RSID    | SAMPLE     | EDBY. 🗷 | BROADWAY |      |
|              |            |         |          |      |
| WELL ELEVAT  |            |         |          |      |
| PRODUCT THIC |            |         |          |      |
| DEPTH TO WAT |            | 2.46    | DTB      | 9.00 |
| FLUID ELEVAT |            |         |          |      |
| BAILER TYPE  | Disposable | BRIER   |          |      |
| PUMP 2       | DAVID PITT | MAN     |          |      |

|      |          |          |                      | <del> </del> |
|------|----------|----------|----------------------|--------------|
|      | WELL PU  | RGING R  | ECORD_               |              |
| TIME | VOLUME   | TEMP.    | pН                   | COND.        |
|      | REMOVED  | F°       |                      | XIOOO        |
| 1200 | 1 Bailer | 62.9     | 7.38<br>7.06         | .12          |
| 1204 | . 3 91/  | 62.8     | 7.06                 | .11          |
| 1206 |          | 63.1     | <b>8.</b> 82<br>6.83 | 41           |
| 1208 | l        | 62.9     | 6.83                 | ,//          |
|      |          |          |                      |              |
|      |          |          |                      |              |
|      |          |          |                      |              |
|      |          |          |                      | 1            |
|      |          |          | <u>.</u>             | <u> </u>     |
|      |          | <u> </u> |                      | <u></u>      |

| FINAL VOLUME PURGED 5 gal           |          |  |
|-------------------------------------|----------|--|
| TIME SAMPLED 1209                   |          |  |
| SAMPLE ID. RS10                     |          |  |
| SAMPLE CONTAINERS 2/40cc VOR 5      | <u> </u> |  |
| ANALYSIS TO BE RUN TPILE BTEX /MTRE |          |  |
| LABORATORY NSE                      |          |  |
| NOTES: 1st Briler Stained           | Smelly   |  |
|                                     | V        |  |
| •                                   |          |  |
|                                     |          |  |
|                                     |          |  |
|                                     |          |  |
|                                     |          |  |



| SITE OP 793 | DATE      | 8800     | l l     | •        |  |
|-------------|-----------|----------|---------|----------|--|
| WELL RI     | SAMPL     | ED BY. 🔏 | BROADWI | RFI      |  |
|             |           |          |         | <u> </u> |  |
| WELL ELEVAT |           |          |         |          |  |
| PRODUCT THE |           |          | ···     |          |  |
| DEPTH TO WA |           | 14.25    | DTB     | 16.92    |  |
| FLUID ELEVA |           |          |         |          |  |
| BAILER TYPE | Disposabl | e Briler |         |          |  |
| PUMP        | David Pil | Tman     |         |          |  |

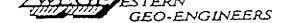
|      | WELL PU           | RGING R | ECORD |       |
|------|-------------------|---------|-------|-------|
| TIME | VOLUME<br>REMOVED | TEMP.   | pН    | COND. |
| 1416 | 1 Bailer          | 65.9    | 7.20  | .37   |
| 1418 | . /2 ga/          | 64.1    | 7.09  | ,37   |
| 1419 | 1                 | 63.9    | 7.63  | .37   |
| 1421 | /                 | 64.0    | 7.02  | 37    |
|      |                   |         |       |       |
|      |                   |         |       |       |
|      |                   |         |       |       |
|      |                   |         |       |       |
|      |                   |         |       |       |

| FINAL VOLUME PURGED 14 gal         |           |
|------------------------------------|-----------|
| TIME SAMPLED 122                   |           |
| SAMPLE ID. RI                      |           |
| SAMPLE CONTAINERS 2/40cc VOR 5     | , 6       |
| ANALYSIS TO BE RUN TPIG BTEX /MTRE | ·         |
| LABORATORY NSE                     |           |
| NOTES: 1ST BAILER CLEAR            | Some Odox |
|                                    |           |
| ·                                  |           |
|                                    |           |
|                                    |           |
|                                    |           |
|                                    |           |



| SITE OP 793  | DATE     | 8-8-00    | TIN    | Æ_  | 1347 |  |
|--------------|----------|-----------|--------|-----|------|--|
| WELL R2      | SAMPL    | ED BY.    | BROADU | IRM |      |  |
|              |          |           |        |     |      |  |
| WELL ELEVAT  |          |           |        |     |      |  |
| PRODUCT THIC |          |           |        |     |      |  |
| DEPTH TO WAT |          | 13.58     | DTB    | 16. | 8    |  |
| FLUID ELEVAT |          |           |        |     |      |  |
| BAILER TYPE  | DisposAb | le Briler |        |     |      |  |
| PUMP «       | DAVID P. | HMAN      |        |     |      |  |

|      | WELL PU  | RGING R | ECORD |       |
|------|----------|---------|-------|-------|
| TIME | VOLUME   | TEMP.   | pН    | COND. |
|      | REMOVED  | F°      |       | XIOOC |
| 1348 | 1 Bailer | 66.6    | 6.88  | .46   |
| 1351 | 12 94/   | 66.6    | 7.00  | .47   |
| /353 | 1        | 66.9    | 7.12  | 148   |
| 1355 | 1        | 66.9    | 7.10  | .48   |
|      |          |         |       |       |
|      |          |         |       |       |
|      |          |         |       |       |
|      |          |         |       |       |
|      |          |         |       |       |
|      |          |         |       |       |


| FINAL VOLUME PURGED      | 14 911     |           |
|--------------------------|------------|-----------|
| TIME SAMPLED 1356        | 0          |           |
| SAMPLE ID. 2             |            |           |
| SAMPLE CONTAINERS 2/4    | Occ VOR s  |           |
| ANALYSIS TO BE RUN TPIlg | BTEX /MTBE | 1         |
| LABORATORY NSE           |            | <u> </u>  |
| NOTES: 1ST BRITCH CLEAR  | STA        | rong adox |
|                          |            |           |
|                          |            |           |
|                          |            |           |
|                          |            | <u> </u>  |
|                          |            |           |
|                          |            |           |



| SITE DP 793  | DATE &8-00 TIME         |
|--------------|-------------------------|
|              | SAMPLED BY. BROADWAYI   |
| WELL R3      | SAMIFLED BI. ISROAUWRYI |
|              | YON                     |
| WELL ELEVAT  |                         |
| PRODUCT THIC |                         |
| DEPTH TO WA  |                         |
| FLUID ELEVAT |                         |
| BAILER TYPE  | Disposable Briler       |
| PUMP         | David Pittman           |

|          | WELL PU           | RGING R | ECORD       |       |
|----------|-------------------|---------|-------------|-------|
| TIME     | VOLUME<br>REMOVED | TEMP.   | pН          | COND. |
| 1427     | 1 Bailer          | 629     | 2.38        | .42   |
| 1429     | . / 91/           | 68.8    | 7.45        | .41   |
| 1431     | / 1               | 68.7    | 7.30        | 9/    |
| 1433     | /                 | 68.7    | 7.28        | .4//  |
| <u>,</u> |                   |         |             |       |
| <u> </u> |                   |         | <del></del> | [     |
|          | -                 |         |             |       |
|          |                   |         |             |       |

| FINAL VOLUME PURGED 3 54/         |
|-----------------------------------|
| TIME SAMPLED 1435                 |
| SAMPLE ID. R3                     |
| SAMPLE CONTAINERS 2/40 CC VOR 5   |
| ANALYSIS TO BE RUN TPHE BTEX MTRE |
| LABORATORY NSE                    |
| NOTES: 15T BRIVER CLEAR NO DOOR   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |



|                     |            | 8-16-00 | TIM     |       | 6 |
|---------------------|------------|---------|---------|-------|---|
| WELL TI             | SAMPLI     | EDBY. ¿ | BROADWI | RYI   |   |
|                     |            |         |         |       |   |
| WELL ELEVAT         |            |         |         |       |   |
| PRODUCT THIC        |            |         |         |       |   |
| DEPTH TO WAT        |            | 2.73    | DTB     | 14.63 |   |
| FLUID ELEVAT        |            |         |         |       |   |
| BAILER TYPE<br>PUMP | Disposable | e Brier |         |       |   |
| PUMP 4              | DAVID PITE | MAN     |         |       |   |

|              | WELL PU           | RGING R                                      | ECORD |       |
|--------------|-------------------|----------------------------------------------|-------|-------|
| TIME         | VOLUME<br>REMOVED | TEMP.                                        | pН    | COND. |
| 1237         | 1 Bailer          | 69.1                                         | 7.09  | : 24  |
| 1242         | 24 94/            | 68.9                                         | 7.69  | .24   |
|              |                   |                                              |       |       |
|              |                   |                                              |       |       |
|              |                   |                                              |       |       |
|              |                   |                                              |       |       |
| <del>-</del> |                   |                                              |       |       |
|              |                   | <u>                                     </u> |       |       |
|              |                   | <u> </u>                                     |       |       |

| FINAL VOLUME PURGED 24 14/          |           |
|-------------------------------------|-----------|
| TIME SAMPLED /242                   |           |
| SAMPLE ID TI                        |           |
| SAMPLE CONTAINERS 2/40cc VOR 5      |           |
| ANALYSIS TO BE RUN TPILG BTEX IMTRE | 1         |
| LABORATORY NSE                      |           |
| NOTES: 1ST BRITCH CLEAR             | Some Odor |
|                                     |           |
|                                     |           |
|                                     |           |
|                                     |           |
|                                     |           |
|                                     |           |



North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080 Phone: (650) 266-4563 Fax: (650) 266-4560

| Chain of Custody / F | Request for Analysis |
|----------------------|----------------------|
| ab Job No.:          | Pageof               |

| Client: /// / C          |                  |                         | Report    | to:WEGE                 |           | Phone:      | 530-60     | 58-5300                      | Т        | urnaround Time     |
|--------------------------|------------------|-------------------------|-----------|-------------------------|-----------|-------------|------------|------------------------------|----------|--------------------|
| Mailing Address:         | ). <sup>**</sup> |                         | Billing t | to:<br>UZGE 1           |           | Fax: 5      | 30-66      | 2-0273                       |          |                    |
| Western 12<br>1566 BEAME | KO ZANJ.         | 6 / /s                  |           | 0200                    |           | PO# / E     | Billing Re | ference:                     | Date:    | 8-9-00             |
| Woodland,                |                  | 7.26                    |           |                         |           |             |            |                              | Sample   | F. BRONDary        |
| Project / Site Address:  |                  |                         |           | Analysi                 | s / ·     |             |            |                              |          |                    |
| DP 743                   |                  | Part !                  | Seed .    | Requested               | 15 3      |             |            |                              |          |                    |
| Sample ID                | Sample<br>Type   | Container<br>No. / Type | Pres.     | Sampling<br>Date / Time | SAN       |             |            |                              |          | Comments / Hazards |
| A1101                    | H20              | 2 VOA =                 | HCC       | 8/4/10 1307             |           |             |            |                              |          |                    |
| R1                       |                  |                         |           | 1422                    |           |             |            |                              | <u> </u> |                    |
| Rd                       |                  |                         |           | 17.56                   |           |             |            |                              | ļ        |                    |
| R3                       |                  |                         |           | 1455                    |           |             |            |                              |          |                    |
| K52                      |                  |                         |           | 1320                    |           |             |            |                              | ļ        |                    |
| X55                      |                  | Í                       |           | 14/6                    |           | ļ. <u>.</u> |            |                              | ļ        |                    |
| R56                      |                  |                         |           | 1345                    |           |             |            |                              |          |                    |
| <b>ペ</b> タフ              |                  |                         |           | 1240                    |           |             |            |                              |          |                    |
| N28                      |                  |                         |           | 1154                    |           |             |            |                              |          |                    |
| 159                      |                  |                         |           | 1227                    |           |             |            |                              |          |                    |
| X510                     |                  |                         |           | 1209                    |           |             |            |                              |          |                    |
| T1                       |                  |                         |           | 1242                    |           |             |            |                              |          |                    |
|                          |                  |                         |           |                         |           |             | ]          |                              |          |                    |
|                          |                  |                         |           |                         |           |             |            |                              | 1        |                    |
| Relinquished by:         | Acher 91)        |                         | 0         | Date:08 09 05ime:       | 2. ARecei | ved by:     |            |                              | <u> </u> | Lab Comments       |
| Relinquished by:         |                  |                         |           | Date: Time:             |           | ved by:     | <u> </u>   | XO                           |          |                    |
| Relinquis by:            | <del></del>      |                         | C         | Date: Time              | Recei     | ved by:     |            | $\mathcal{O}_{\underline{}}$ | <u> </u> |                    |

# APPENDIX B. RECEPTOR TRENCH WEEKLY PURGING FIELD NOTES



FORMER DESERT PETROLEUM SILL DE 793

4035 PARK DEVO OARLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WAS IT WATER PRETREATMENT SEDMENT SETTLING TARK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM DAILY 2889 GALLONS

| DATE               | 2-5                 | .00      |                        |                   |          |                      |                        |                     | REASON                                       | FOR SITE V           | SIT_           | CAL                    | ROOM         | SAN              | Je.           |              |            |                                         |                  |                               |                |
|--------------------|---------------------|----------|------------------------|-------------------|----------|----------------------|------------------------|---------------------|----------------------------------------------|----------------------|----------------|------------------------|--------------|------------------|---------------|--------------|------------|-----------------------------------------|------------------|-------------------------------|----------------|
|                    | TRENCH              | WELL 11  |                        |                   |          | TRENCH               | WELL T2                |                     |                                              |                      | Ti             | RENCHA                 | MELL T3      |                  | <del>/</del>  |              | TRENCE     | WELL T4                                 |                  |                               |                |
| TIME               | PIO                 | DIW      | pH                     | TEMP              | COND     | PID                  | DIW                    | pH                  | TEMP                                         | COND                 |                |                        | DIW          | 1141             | 1EMP          | COND         | PHD        | DIW                                     | DH               | TEMP                          | TCOND          |
|                    |                     | 1        | <u> </u>               |                   |          |                      | 1                      |                     |                                              |                      | 1              |                        |              | <u> </u>         |               |              |            |                                         | 1                | 1                             | 1              |
|                    |                     |          |                        |                   |          |                      |                        |                     | 1                                            |                      |                |                        |              |                  |               |              | 1          |                                         |                  |                               |                |
| L                  |                     | <b> </b> | ļ                      | ļ                 | <b> </b> |                      | <u> </u>               | .  <u> </u>         | . <del> </del>                               | _                    | <br>           |                        | <u> </u>     | ļ                | _             |              | l          |                                         |                  |                               |                |
| ļ                  | <del> </del>        |          | ļ                      | ļ                 | ļ        |                      | ļ                      | ·   · · · · · · · · | · <del>  · · · · ·</del>                     |                      |                |                        |              | ļ                | +             | <b>-</b>     | ļ <b>ļ</b> |                                         |                  |                               | _              |
| <u> </u>           |                     | ļ        | <del> </del>           | -                 |          | l <del> </del>       | 1                      | -                   | -                                            | 1                    |                |                        |              | <del> </del>     |               |              |            | _                                       | -}               | <del></del>                   | 1              |
| <b>-</b>           | 1                   | ┼──      | <del> </del>           | <del></del>       | <b></b>  |                      | <del> </del>           |                     |                                              |                      | <u> </u>       |                        |              | 1                |               | +            | ┧ ├───     | -                                       | <del> </del> -   |                               | <del>-  </del> |
| ٠                  |                     |          |                        | <u>,</u>          |          |                      |                        |                     |                                              |                      | L.             |                        | ·            |                  |               | _}           | J L        |                                         |                  | _,                            |                |
|                    |                     |          | O WATER                |                   |          |                      |                        |                     | OMVLES                                       |                      |                |                        |              |                  |               |              |            |                                         |                  |                               |                |
| WELL               | DTW                 | TIME     | DIW                    | TIME              | 7        | WELL                 | DTW                    | TIME                | DIW                                          | TIME                 | _              | <del></del>            | ,            | <del></del>      |               | -            |            |                                         | -                |                               | _              |
| MW1<br>RS2         | <del> </del>        | ·}       | <b>├</b> ──            | <b>├</b>          | -        | RS10                 | 1                      |                     | <del></del>                                  | _                    | $\vdash$       |                        |              | <del> </del>     |               | -            |            | -                                       | - <del> </del>   |                               |                |
| 855                |                     |          | <del> </del>           | <del> </del>      | ٠.       | RI                   | -                      |                     | 1                                            | -1                   | $\vdash$       |                        |              | ·                | -             | -            |            |                                         |                  | <del>-  </del>                |                |
| RS6                |                     | ·        | ·                      | ·                 |          | 182                  | -                      | -                   | 1                                            |                      |                |                        | <del> </del> | ·                |               |              |            |                                         |                  |                               | {              |
| RS7                | -                   | ·        |                        | ·                 | -[       | R3                   | 1                      | -                   | 1                                            |                      |                |                        |              | 1                | -             | <del>-</del> |            | -                                       |                  | <del> </del>                  |                |
| RSB                | 1                   | 1        | 1                      |                   | 1        |                      |                        |                     |                                              |                      |                |                        | 1            | 1                | 1             | _1           |            | T                                       | 1                | 1                             | -1             |
|                    |                     |          |                        |                   |          |                      |                        |                     |                                              |                      | -              |                        |              |                  |               |              |            |                                         | _[               |                               | _]             |
| L                  | _l                  | .i       | 1                      | J                 | .i       | L                    | 1                      |                     | _l                                           |                      | · L            |                        | l            |                  |               | اا           | L          |                                         | _L               |                               |                |
| SAMPLE             | nis<br>( <u>CAZ</u> |          | ump<br>cmeter_<br>KG/u | ed<br>———<br>vent | 50       | <u>- Gri lla</u><br> | SITE MO                | +1.cg               | gy <u>. 7</u>                                | 1 10.                | <u>еу</u><br>У | n ti<br>Nater M<br>day | HETER        | <u>CAR</u><br>[] | (3 <b>6</b> 3 | - CAI        | Chore      | TIME<br>pH<br>Conduct<br>Tempera<br>PID | o <sup>2</sup> p | CARO CO<br>WASTEW<br>INFLUENT | ATER EFFLUENT  |
|                    | TREATMEN            |          |                        |                   |          |                      |                        |                     |                                              |                      |                |                        | V            |                  |               |              |            |                                         |                  |                               |                |
| T1 FLOV<br>12 FLOV |                     | GA       | LLONS/<br>LLONS/       | MINUTI            | ES<br>ES | GALLON<br>GALLON     | IS PURGEI<br>IS PURGEI | <u> </u>            | <u>,                                    </u> |                      | F              | PRESSU                 | RE WATER     | CARBON           | IS #1         | PSI, #2      | ?          | PSI,                                    |                  |                               |                |
|                    | NSPECTIO            |          |                        |                   |          |                      | 1                      |                     |                                              |                      |                | -                      |              |                  |               |              |            |                                         |                  |                               |                |
| WATER              | PHASE CA            | RBON UNI | S INSPEC               | TION COMI         | MENTS    | <u> Mc c</u>         | Q <sup>7</sup>         | 20 ps               | 4/12                                         |                      |                |                        |              |                  |               |              |            |                                         |                  |                               |                |
| CONDIT             | ION OF CO           | MPOUND ( | COMMENTS               | S                 | ,3K      | <u>No e</u>          |                        |                     |                                              |                      |                |                        |              |                  |               |              |            |                                         |                  |                               |                |
|                    |                     |          |                        |                   |          |                      |                        |                     |                                              | orbon manulai<br>5no |                | un lo car              | bon manuf    | acture           | i.            |              |            |                                         |                  |                               |                |

FORMER DESERT PETROLEUM SITE OF 793

4035 PARK BLVD OAKLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS
PEAK HOURLY DISCHARGE 2 COM. DAILY 2880 CALLONS

| PEAK HO            | URLY DISC    | CHARGE 2     | GPM,           | DAILY         | 2880 GALLO     | NS                                            |                      |                                        |             |             |                                              |           |              | • •         |         |                                         |                       |             |              |                 |
|--------------------|--------------|--------------|----------------|---------------|----------------|-----------------------------------------------|----------------------|----------------------------------------|-------------|-------------|----------------------------------------------|-----------|--------------|-------------|---------|-----------------------------------------|-----------------------|-------------|--------------|-----------------|
| DATE               | 7-6          | -0.0         |                |               |                |                                               |                      |                                        | REASOA      | FOR SITE    | MSIT_CA                                      | Rhon      | 1 RO         | PRIK        |         |                                         |                       |             |              |                 |
|                    | TRENCH       | WELL TE      |                |               |                | TRENCH                                        | WELL T2              |                                        |             |             |                                              | H WELL TS |              | ·           |         | TOURC                                   | H WELL 74             |             |              |                 |
| TIME               | PID          | DTW          | pH             | TEMP          | COND           | PID                                           | orw                  | pH                                     | TEMP.       | COND        | PID                                          | DIW       | pH           | TEMP        | COND    | PID                                     | lotw                  | pH          | TEMP         | COND            |
|                    | <b> </b> _   | ļ            | ļ              |               |                | . [                                           |                      |                                        |             |             | 1                                            |           | 1 -          |             | - 50.10 |                                         | - 127.44              | pr ·        | TEMP         | COND            |
|                    | <del> </del> | <del> </del> | <del> </del>   |               | <del> </del>   |                                               |                      |                                        |             |             |                                              |           |              |             | _       | -                                       |                       | _           | <del> </del> | - <del> </del>  |
|                    | ļ            |              | ╄              | +             | <b></b>        | <u> </u>                                      |                      |                                        |             |             |                                              |           |              |             |         |                                         |                       |             | -            |                 |
| <del></del>        | <del> </del> | <del> </del> | <del> </del> - | -{            | -}             |                                               |                      |                                        |             |             | ł <b>├</b> ──                                |           | _            |             |         |                                         |                       | .           |              |                 |
|                    | <del> </del> | <del> </del> | - <del> </del> | +             | <del>- </del>  |                                               | +                    |                                        | <del></del> | +           | { }                                          |           |              |             |         |                                         |                       |             |              |                 |
|                    | <del> </del> |              | <del> </del> - | <del>- </del> | +              | <del> </del> -                                |                      | +                                      | <del></del> |             | ł <del>├</del> ──                            |           | _            |             |         | ·                                       |                       |             |              |                 |
|                    | 1, ,         |              |                | -             |                | <u>ا</u> ــــــــــــــــــــــــــــــــــــ |                      | ــــــــــــــــــــــــــــــــــــــ |             | <u> </u>    | J L                                          |           | ш            |             | _!      | L                                       |                       |             |              |                 |
|                    |              |              | O WATER        |               |                |                                               |                      | DEPTH                                  | TO WATER    |             |                                              |           |              |             |         |                                         |                       |             |              |                 |
| WELL               | DIW          | TIME         | DIW            | TIME          | _              | WELL                                          | DTW                  | TIME                                   | DTW         | TIME        |                                              |           |              |             |         |                                         |                       |             |              |                 |
| MW1<br>RS2         | <b> </b>     | ļ            | 4              | ┥──           | -{             | RS9                                           |                      |                                        |             |             |                                              |           |              |             |         |                                         |                       |             | 1            | ٦               |
| RS5                | <del> </del> | <del> </del> |                | -             | -{             | RS10                                          | -                    | <b></b>                                |             |             | <b>↓                                    </b> |           |              |             | _l      |                                         |                       |             |              |                 |
| R\$6               | t            | 1            | ·              | -             | -1             | RZ                                            |                      | -}                                     |             | -           | { <b>├</b> ──                                | _         |              | _           | 4       | <b> </b>                                |                       |             | _            |                 |
| RS7                |              |              |                |               |                | RO                                            | <u> </u>             |                                        |             |             | { }                                          | _         | <del> </del> |             |         | <b> </b>                                |                       | <del></del> | <del> </del> |                 |
| RSØ                | ļ. <u> </u>  |              |                |               |                |                                               |                      |                                        |             |             | 1 1                                          |           |              |             | -       | <u> </u>                                |                       |             |              |                 |
| ļ                  | <u> </u>     | - <b> </b>   | - <del> </del> | -∤            | 4              |                                               | -                    | _                                      |             | _           |                                              |           |              |             | _1      |                                         |                       |             |              |                 |
| <u>-</u>           | 1            | -L           | -L             |               |                | ·                                             | <u> </u>             | _[                                     | _L          | _L          | J I                                          | L         |              |             |         |                                         |                       |             |              | -1              |
| COMMEN             |              |              |                |               | <u></u>        |                                               | logy:                | ed <sup>7</sup> -                      | bro         | Ken<br>Brie | water                                        | Te t      | FY<br>1116   | 6<br>(5.45) |         | *************************************** | TIME<br>pH<br>Conduct | insty       | WASTEWA      | TER<br>EFFLUENT |
| WATERT             | REATMEN      | ıt           |                |               |                |                                               |                      |                                        |             |             |                                              | 0         |              |             |         |                                         | PID<br>PID            | Blue        |              |                 |
| 11 FLOW<br>12 FLOW |              | GAI          | LONS/          | TUNIMI        | ES<br>ES       | GALLON<br>GALLON                              | S PURGED<br>S PURGED | )                                      |             |             | PRESS                                        | URE WATE  | R CARBON     | 4S #1       | PSI, #2 | ~···                                    | PSI,                  |             |              |                 |
|                    |              |              |                |               |                |                                               |                      | · ···                                  |             |             |                                              |           | ***********  | <del></del> |         |                                         |                       |             |              |                 |
| WATER              | PHASE CAF    | TINU NOBE    | S INSPEC       | TION COM      | MENIS 🕰        | nevest                                        | AFLA                 | 14 / 12 x                              | 1 50        | Telpe       | place                                        | JEAR      | CON          |             |         |                                         |                       |             |              |                 |
| Семпин             | IN OF COL    | MPOUNDO      | CMMENTS        | 5 <b></b>     | le mo          |                                               |                      |                                        |             |             |                                              |           |              | _           |         |                                         |                       |             |              |                 |
| Acceptan           | ce of water  | phase carb   | on units on    | ly if complet | lely flooded v | with water<br>nd containers                   | ves                  | no .                                   | rehva to ca | rbon manula | ·hua                                         |           |              |             |         |                                         |                       |             |              |                 |

FORMER DESERT PETROLEUM SITE OF 793

4035 PARK BLVD OAKLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM. DAILY 2880 GALLONS

|                          |              | 3-00                            | 2            |          |        |                               |                      |             | REASON         | FOR SITE V                            | nsın <u>W.</u> | eekl      | 4        |               |                 |        |                                         |             |      |      |
|--------------------------|--------------|---------------------------------|--------------|----------|--------|-------------------------------|----------------------|-------------|----------------|---------------------------------------|----------------|-----------|----------|---------------|-----------------|--------|-----------------------------------------|-------------|------|------|
|                          | TRENCH       |                                 |              |          |        |                               | WELL T2              |             |                |                                       | TRENC          | H WELL TO |          |               |                 | TRENCI | WELL T4                                 |             | •    |      |
| 435                      | PID          | lotw                            | <b>A</b>     | TEMP     | COND   | PID                           | DIW .                | pH          | TEMP           | COND.                                 | ₽0             | DIW       | pH       | TEMP.         | COND            | PID    | DIW                                     | pH          | TEMP | COND |
| MELL                     | DTW          | DEPTH TO                        | WATER<br>01W | TIME     |        | WELL                          | DIW                  | DEPTH T     | O WATER<br>DIW | TIME                                  |                |           |          |               |                 |        |                                         |             |      |      |
| RS2<br>RS5<br>RS6<br>RS7 |              |                                 |              |          |        | RS9<br>RS10<br>R1<br>R2<br>R3 |                      |             |                |                                       |                |           |          |               |                 |        |                                         |             |      |      |
| COMMENT                  |              | ELECTRIC                        | METER_       |          |        | flow                          |                      |             |                | · · · · · · · · · · · · · · · · · · · | WATER          | METER_    | ///78    | 7/6           |                 |        | · · · · · · · · · · · · · · · · · · ·   | <del></del> |      | ATER |
| SAMPLET                  | CARL         | י ניסי                          | wit          | #/       |        |                               | SHE MO               | ) O'PROTHAC | э <b>ү /</b> С | <i>Reono</i>                          | lwar<br>C      | <i>J</i>  |          |               |                 |        | TIME<br>pH<br>Conduct<br>Tempera<br>PID | •           |      |      |
| WATER 16                 | EATMEN.      | 1                               |              |          |        |                               |                      |             |                |                                       |                |           |          |               |                 |        |                                         |             |      |      |
| TTLOW                    | PLAS<br>PLAS |                                 | LONS//       | MINUTE   | s<br>s | GALLON<br>GALLON              | IS PURGE<br>IS PURGE | 0           |                |                                       | PRESS          | URE WATE  | R CARBON | IS #1 <u></u> | <i>0</i> PSI #2 |        | PSI,                                    |             |      |      |
| 12 + LOW I               |              | 4 4 5 11 11 11 11 11            | IMENTS.      |          |        |                               |                      |             |                |                                       |                | , -       |          |               |                 |        |                                         |             |      |      |
| T2 FLOW I<br>FILTER IN   | SPECTION     | * /// / / / / / / / / / / / / / |              |          |        |                               |                      |             |                |                                       |                |           |          |               |                 |        |                                         |             |      |      |
| E2 ELOWI<br>FILTER IR    | SPECTION     | TIMU MOBI                       | S INSPECT    | ION COMM | ENIS ( | OK                            | <del></del>          |             |                |                                       |                |           |          | <del></del>   |                 |        |                                         |             |      |      |
| E2 FLOW I                | SPECTION     | BON UNIT                        | S INSPECT    | ION COMM | ens (  | OK_                           |                      |             |                |                                       |                |           |          |               |                 |        |                                         |             |      |      |

FORMER DESERT PETROLEUM SITE DP 793

4035 PARK BLVD OAKLAND, CALILORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM. DAILY 2880 GALLONS

| DATE_ 2120-00                                                                                                                            | REASON FOR SITE VISIT                                                                           | weekly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|
| TRENCHWELLTI                                                                                                                             | TRENCH WELL 12                                                                                  | RENCH WELL T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRENCH WELL T4                           |                                |
| TIME PID DTW pH TEMP CONO<br>702 2.29<br>4445 3.33                                                                                       | PID DTW pit TEMP COND F                                                                         | PID OTW PH TEMP COND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PID DTW pH                               | TEMP COND                      |
|                                                                                                                                          |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                |
| DEPTH TO WATER  ELL DTW TIME DTW TIME  WI 1/23                                                                                           | WELL DIW TIME DIW TIME                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                |
| SP 1004<br>SS 13.6<br>SG 13.3<br>SG 13.3<br>SG 13.3                                                                                      | RS10 A A ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                |
| 7.0 /                                                                                                                                    |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                |
| ELECTRIC METER                                                                                                                           |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TIME                                     | WASTEWATER<br>INFLUENT EFFLUEN |
| SAMPLE(                                                                                                                                  | SITE MONITORED BY                                                                               | dury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pH<br>Conductivity<br>Temperature<br>PID |                                |
| WATER TREATMENT THE FLOW RATE   GALLONS/ / MINUTES                                                                                       | CALLONE PHINCED 4 hours                                                                         | PRESSURE WATER CARBONS #1 <b>-9</b> _PSI,#2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 051                                    |                                |
|                                                                                                                                          | GALLONS PURGED 4 LOURS GALLONS PURGED                                                           | PRESSURE WATER CARBONS #1 -1 151, #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21*51.                                   |                                |
| FILTER INSPECTION AND COMMENTS                                                                                                           | OK                                                                                              | White the control of |                                          |                                |
| CONDITION OF COMPOUND COMMENTS C/e                                                                                                       | 4~                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                |
| Acceptance of water phase carbon units only if completely florifed<br>Acceptance of water phase carbon units only if pH is less than 8.5 | with wateryesno - return to cartion manufacture and containers are in good conditionyesno - ref | orn to carbon markifacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                |
| • • •                                                                                                                                    | - WARRANT WARREN                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                |

FORMER DESERT PETROLEUM SITE OP 793.

4035 PARK BLVD OAKLAND CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT SEDIMENT SCHOOL TARK AND 2 IN SCRIES CARBON WATER SCROB UNITS PEAK HOURLY DISCHARGE 2 GPM DAILY 2800 GALLODS

|                                                     | TRENCH                                           | MELL TI         |                                                  |                 |                         | TRENCH                                  | WELL 12                            |                 |         | FOR SITE V                                       | TRENCI                                           | I WELL TO     |          |                | <u> </u>                                         | TRENCI   | I WELL T4                                  |                |                |              |
|-----------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------------------------|-----------------|-------------------------|-----------------------------------------|------------------------------------|-----------------|---------|--------------------------------------------------|--------------------------------------------------|---------------|----------|----------------|--------------------------------------------------|----------|--------------------------------------------|----------------|----------------|--------------|
|                                                     | PID                                              | orw             | pH                                               | TEMP            | COND                    | PID                                     | WIG                                | pH              | TEMP.   | COND.                                            | PID                                              | DTW           | рН       | TEMP           | COND                                             | PID      | DTW                                        | pH             | TEMP           | CON          |
| 25<br>50                                            |                                                  | 7.3             | <u> </u>                                         |                 |                         |                                         | 3.36                               | <b></b>         |         |                                                  | l                                                | 100           | $\rho$   | <del>-  </del> | <b> </b>                                         | <u> </u> | 5.15                                       |                |                |              |
| <b>2</b> ₩                                          |                                                  | TAL T           | <del> </del>                                     | <del> </del>    |                         |                                         | 2.10                               | <del> </del>    |         |                                                  | <del>                                     </del> | $\mathcal{H}$ | K        | -              | <del>                                     </del> |          | 5.79                                       | · <del> </del> | +              | -├           |
|                                                     |                                                  |                 | ļ                                                |                 |                         |                                         |                                    |                 |         |                                                  |                                                  |               |          |                | 1                                                |          |                                            |                |                |              |
|                                                     |                                                  | <del></del>     | <del> </del>                                     | <u> </u>        |                         | ļ                                       | - <b> </b>                         | ļ               | -       |                                                  |                                                  |               |          |                |                                                  |          | _]                                         |                | <b></b>        |              |
|                                                     | ·····                                            |                 | <del> </del>                                     | <del> </del>    | ·                       |                                         | ╅──                                | 1               | +       | <del>                                     </del> |                                                  |               |          |                | <del>                                     </del> | <b> </b> | <del></del>                                |                |                | +            |
| _                                                   |                                                  |                 | <b></b>                                          | •               |                         |                                         | *                                  | <b></b>         |         |                                                  | <u> </u>                                         | •             | J        |                | 1                                                | <u> </u> |                                            | ·              |                |              |
|                                                     | otw                                              | DEPTH TO        | DTW<br>DTW                                       | TIME            |                         | WELL                                    | otw                                | OEPTH 1<br>TIME | O WATER | TIME                                             |                                                  |               |          |                |                                                  |          |                                            |                |                |              |
| •                                                   | 1/.27                                            | 400             |                                                  | T               | ]                       | RS9                                     | 7./7                               | 1               | 7       | Tivet,                                           |                                                  | T             | T        | т              | 1                                                |          |                                            | T              | <del>-</del> T | _            |
|                                                     | 1026                                             | 7-7-0           |                                                  |                 | ]                       | RS 10                                   | 1.07                               |                 |         |                                                  |                                                  |               |          |                | ]                                                |          |                                            |                |                | _            |
|                                                     | 412                                              |                 | ļ                                                | ļ               |                         | 182                                     | 14.07                              | ·               | -       |                                                  | <del> </del>                                     | _             | <b>!</b> | _              | .                                                |          |                                            | -1             |                |              |
|                                                     | 4:34                                             |                 | 4.05                                             | 17.55           | 1                       | 183                                     | 9.84                               | ·               |         |                                                  |                                                  |               | ·        |                | -[                                               | <u> </u> |                                            | <del> </del>   | ·              |              |
|                                                     | 7.24                                             |                 |                                                  |                 | 1                       |                                         | 12.04                              | 1               | 1       |                                                  |                                                  |               |          |                |                                                  |          |                                            |                |                | -            |
|                                                     |                                                  |                 |                                                  | ·               | -                       |                                         |                                    |                 |         | ·                                                | <b></b>                                          |               | l        | _              | -[                                               |          |                                            | ļ              |                | _            |
|                                                     |                                                  |                 | •                                                |                 |                         | *************************************** |                                    |                 |         |                                                  |                                                  |               |          |                | •                                                |          |                                            |                |                |              |
| ĔΝ                                                  | s                                                |                 | Suly                                             | PA              | RTIA                    | / p.                                    | urg.                               | c 0             | se :    | to 1                                             | ine                                              | KC5           | tein     | ts             |                                                  | 9-6)     | Peng                                       | wg_            | Tay            | <del>(</del> |
| AF N                                                | s                                                | ELECTRIC        | DNY<br>CMETER_                                   | PA              | RTIA                    | 1 p.                                    | urg.                               | c 0             | se :    | to 1                                             |                                                  | KC5           |          |                |                                                  | 9-6)     |                                            | ivg_           | TZ 7           |              |
|                                                     |                                                  | ELECTRIC        | C METER_                                         |                 |                         | [ p.                                    |                                    |                 |         |                                                  | WATER                                            | METER         |          |                |                                                  | 9-6)     | TIME pH                                    | ivg            |                |              |
|                                                     |                                                  | ELECTRIC        | ONLY<br>CMETER_                                  |                 |                         | p.                                      |                                    |                 |         |                                                  | WATER                                            | METER         |          |                |                                                  | 9-6)     | TIME<br>pH<br>Conducts                     | vity           |                |              |
|                                                     |                                                  | ELECTRIC        | C METER_                                         |                 |                         | p.                                      |                                    |                 |         | to t                                             | WATER                                            | METER         |          |                |                                                  | 9-6)     | TIME<br>pH                                 | vity           |                |              |
| LE(                                                 |                                                  | ELECTRIC        | C METER_                                         |                 |                         | p.                                      |                                    |                 |         |                                                  | WATER                                            | METER         |          |                |                                                  | 9-6)     | TIME<br>pH<br>Conductiv<br>Temperat        | vity           |                |              |
| PLEC                                                | REATMEN                                          | ELECTRIC        | C METER_                                         |                 | TERRET I ART THE TERRET |                                         | SHE MOI                            | NITORED         | BY      | Ban                                              | WATER<br>CAUSE<br>C                              | METER         | -        |                |                                                  |          | TIME<br>pH<br>Conductiv<br>Temperat<br>PIO | vity           |                |              |
| LEC                                                 | REATMEN                                          | ELECTRIC        | C METER_                                         |                 | TERRET I ART THE TERRET | GALLON<br>GALLON                        | SHE MOI                            | NITORED         | BY      | Ban                                              | WATER<br>CAUSE<br>C                              | METER         | -        |                |                                                  |          | TIME<br>pH<br>Conductiv<br>Temperat<br>PIO | vity           |                |              |
| CR T<br>OW<br>OW                                    | REATMEN'                                         | ELECTRIC<br>GAL | C METER_                                         | /_MINUTI        | .s<br>·s                |                                         | SITE MOI<br>IS PURGED<br>IS PURGED | NITORED         | ву      | Ban                                              | WATER  MALE  PRESSI                              | METER         | CARBON   | IS #1 <u> </u> |                                                  |          | TIME<br>pH<br>Conductiv<br>Temperat<br>PIO | vity           |                |              |
| CRTOW<br>OW<br>RIN                                  | REATMENT<br>RATE<br>RATE<br>SPECTION<br>HASE CAR | GAL GAL         | LONS/_<br>LONS/_<br>LONS/_<br>AMENIS_<br>SINSPEC | / MINUTE MINUTE | SSSS                    | GALLON<br>GALLON                        | SITE MOI<br>IS PURGED<br>IS PURGED | NITORED         | ву      | S.k.m                                            | WATER                                            | METER         | CARBON   | 15 #1 <u>*</u> |                                                  |          | TIME<br>pH<br>Conductiv<br>Temperat<br>PIO | vity           |                |              |
| YELE<br>TER<br>WC<br>WC<br>WC<br>WIER<br>PER<br>PER | REATMENT<br>RATE<br>RATE<br>SPECTION<br>HASE CAR | GAL GAL         | LONS/_<br>LONS/_<br>LONS/_<br>AMENIS_<br>SINSPEC | / MINUTE MINUTE | SSSS                    | GALLON<br>GALLON                        | SITE MOI<br>IS PURGED<br>IS PURGED | NITORED         | ву      | Sk n                                             | WATER                                            | METER         | CARBON   | 15 #1 <u>*</u> |                                                  |          | TIME<br>pH<br>Conductiv<br>Temperat<br>PIO | vity           |                |              |

### FIELD SERVICE REPORT

JOB#: 1/1646A
DATE: 8/3

| _ LEAD TECH:              | SERVIC              | E TECH:                        | TIME: 9Am                           |
|---------------------------|---------------------|--------------------------------|-------------------------------------|
| BILL TO: WESTERN GEO      |                     |                                |                                     |
| JOB SITE: DESERT PETE     | oleury              | SPECIAL INST.:                 |                                     |
| 4035 PARK BIV             | d                   | SCAK                           | + BACKWASH                          |
| CAKLAND                   |                     |                                |                                     |
| SITE CONTACT: SEORGE CE   | NIVERSE             | 44.4                           |                                     |
| PHONE#: 530-668-5.        | 300                 |                                |                                     |
| PGR.#:                    |                     |                                |                                     |
| TIME:                     | PROCEED TO O        | THER JOB                       | SERVICE                             |
| LOADING TO                | ☐ YES ☐ NO          | 0                              | Delivery ASC. 200  REWORK W/ OCK 02 |
| YARD OUT                  | SITE NAME _         |                                | DELIVERY ASC. 2002                  |
| ARRIVAL 9:00              | CITY                |                                | REWORK W/ ace                       |
| DEPART 9:15               | JOB#                |                                | □ WARRANTY                          |
| END TIME 9:45             |                     |                                | SAMPLE                              |
| ADSORBERS SERVICED SERIAL | NUMBERS             | CARBON USED                    | LOT#'S                              |
| QTY ASC 1200 2000         | <del></del>         | QTYSKG/K                       | G:                                  |
| QTY VSC 1200 2000         |                     | QTYSCO                         | C:                                  |
| OTY PV 35 50 80           |                     | QTY CC-602                     | 2 12×30:                            |
| QTYOTHER:                 |                     | QTYOTHE                        | R:                                  |
| CONTAINERS USEO:          | EFT ON SITE         | SHIPPING INFORMAT              | ION:                                |
| QTY DRUMS                 | YES D NO            | PROFILE NO.:                   |                                     |
| QTY TOTE BINS             |                     | BILL OF LADING #:              |                                     |
| OTY ROLL-OFFS             |                     | MANIFEST DOC.#:                |                                     |
| QTYOTHER:                 |                     |                                | •                                   |
| SAMPLE ANALYTICAL:        |                     | EQUIPMENT RENTED               | :                                   |
| EPA 8015-TPH VM/XM        | TCLP                | RENTAL COMPANY:                |                                     |
| EPA 8010/8020 EPA 8240    | TOTALS              | RELEASE NO.:                   |                                     |
| OTHER:                    | <del></del> :       | PHONE #:                       |                                     |
| SERVICE TECH COMMENTS:    |                     |                                |                                     |
|                           |                     |                                |                                     |
| •                         |                     |                                |                                     |
|                           |                     | <u> </u>                       |                                     |
| CUSTOMER COMMENTS:        |                     |                                |                                     |
| ·<br>/                    |                     |                                |                                     |
| -                         | <u> </u>            | ····                           |                                     |
|                           |                     |                                |                                     |
| CUSTOMER SIGNATURE:       | 3 Kar               | nokom                          | DATE:                               |
| WHITE - CUSTOM            | ER • YELLOW - CUSTO | MER SERVICE · PINK - SERVICE · | GOLD - SALES                        |
|                           |                     |                                |                                     |

FORMER DESERT PETROLEUM SITE DP 793

4035 PARK BEVD OAKLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WAS IE WATER PRETREATMENT, SCOIMENT SET ILING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM. DAILY 2880 GAT ONS

| TRENC                          | (WELL TI              |                |                |              | TRENCH           | WELL 12                           |              |              | FOR SITE V     |                          | WELL 13      |                 |                     | <u>'</u>                                         | Teneno.      |                                             |                                                  |                  |                    |
|--------------------------------|-----------------------|----------------|----------------|--------------|------------------|-----------------------------------|--------------|--------------|----------------|--------------------------|--------------|-----------------|---------------------|--------------------------------------------------|--------------|---------------------------------------------|--------------------------------------------------|------------------|--------------------|
| E PIO                          | DIW                   | pH             | TEMP           | COND         | PID              | DTW                               | pH           | TEMP         | COND           | PID                      | DIW          | pH              | TEMP                | COND                                             | PID          | DTW                                         | рн                                               | ITEMP            | Jeeus              |
| 775                            | 1.9                   | <del> </del>   | ·              |              |                  | 2.68                              |              |              |                |                          |              | 2               | 1                   | COMD                                             |              | 5.75                                        | pri                                              | TEMP             | COND               |
| 00                             | ₹.32                  | 1              | <del> </del> - | <del> </del> | <b>┤ ├</b>       | 3.37                              | <del>\</del> | -i           | <del> </del> - |                          | CHI          |                 | ]                   |                                                  |              |                                             | <u> </u>                                         |                  | _                  |
|                                |                       |                |                |              |                  | 3.57                              | <b>'</b>     | +            | 1              | <del> </del>             | -            | <del> `</del> - |                     |                                                  | <b> </b>     | AR                                          | <del> </del>                                     | -                |                    |
|                                |                       | <b>-</b>       |                |              |                  |                                   |              |              |                |                          | <del> </del> | <b>i</b>        | <del> </del>        | <del>                                     </del> | <del> </del> |                                             | <del>                                     </del> |                  | +-                 |
|                                | _                     | <del> </del>   | ┪              | <del></del>  | ┨ ├───           | <del></del> -                     |              | <del> </del> |                |                          |              |                 |                     |                                                  |              |                                             |                                                  |                  |                    |
|                                |                       |                |                | 1            | J L,             |                                   |              |              | <u></u>        |                          |              | 1               |                     |                                                  | l L          |                                             |                                                  |                  |                    |
| DTW.                           | DEPTH TO              | O WATER<br>DTW | TIME           |              | WELL             | 677147                            |              | OWATER       |                |                          |              |                 |                     |                                                  |              |                                             |                                                  |                  |                    |
|                                | 1000                  |                | 1              | ר            | RS9              | 17 2 2                            | TIME         |              | 1300           |                          | <del></del>  |                 | ·                   | ٦                                                | r            | ,                                           |                                                  |                  |                    |
| 10.5                           | "                     |                |                | 1            | R\$10            | 1 2 3 2                           | 10           | LIAOS        | 17300          | <del> </del>             | ·            | <del> </del>    |                     | ┥                                                | <b>}</b>     |                                             | ├                                                | <del>- </del>    |                    |
| <del>- /{\$-</del> }           | <del>}</del>          | +              | <del> </del> - | ₹            | R1<br>R2         | 174.37                            | 1000         |              |                |                          |              |                 |                     |                                                  | <u> </u>     |                                             | <del> </del> -                                   | +                |                    |
| 4.00                           | 930                   | 4.05           | 1700           | \$           | 13               | 1016                              | - +1         | +            | <del> </del> - |                          | -            |                 | - <b> </b>          | _                                                |              |                                             |                                                  |                  |                    |
|                                |                       |                |                | ]            |                  |                                   |              |              |                |                          |              | <del> </del>    | ·                   |                                                  |              |                                             | ļ                                                |                  |                    |
|                                | }                     |                | ·              |              |                  |                                   |              |              |                |                          | -1           |                 | ··                  | -1                                               |              |                                             | <del> </del>                                     | <del></del>      |                    |
|                                |                       |                |                |              |                  |                                   |              |              |                | )———                     |              |                 | ··I                 |                                                  | <b>1</b>     |                                             |                                                  |                  |                    |
| MENIS                          | Re                    | CIFV           | c O            | New          | CARA             | bon a                             | nit          | - coss       | PICK           | Took                     | 54,000       | /e              | Fran                | el<br>Old                                        | T            | - No                                        | 0/                                               |                  | ]<br>w/j″ <u>a</u> |
| MMENIS MPLE(                   | ELECTRI               | C METER_       |                |              | CARA             |                                   |              |              |                | JA/ATE D                 | ucren L      | 120             | <b>?</b> 3/▲        | old                                              | wiT          | TIME pH Conductive Temperature              | ity                                              | WASTEW, INFLUENT | ATER               |
|                                | ELECTRI               | C METER_       |                |              |                  |                                   |              |              | Sem            | JA/ATE D                 | ucren L      | 120             | <b>?</b> 3/▲        | old                                              | wiT          | TIME<br>pH<br>Conductiv<br>Temperate        | ity                                              | WASTEW           | ATER .             |
| MPLE(                          | ELECTRI               | C METER_       |                |              |                  | SITE MO                           | MTOREDE      | av           | Sam            | water<br><i>dwa</i><br>( | метек_/,     | 120:            | 334                 |                                                  |              | TIME<br>pH<br>Conductiv<br>Temperate<br>PIO | ity                                              | WASTEW           | ATER .             |
| ER TREATME<br>OWRATE<br>OWRATE | ELECTRI<br>NI<br>SGAL | LONS/          |                |              |                  | SITE MO<br>IS PURGED<br>IS PURGED | NHOREO E     | . I          | Seon           | WATER  OUA  () PRESSU    | METER        | CARBON          | 334                 |                                                  |              | TIME<br>pH<br>Conductiv<br>Temperate<br>PIO | ity                                              | WASTEW           | ATER .             |
| ህግደ4 <u></u>                   | ELECTRI  NI           | LONS/          | MINUTE         | s s          | GALLON<br>GALLON | SITÉ MÓ<br>IS PURGED<br>IS PURGED | NITOREO E    | 3V           | Skon           | WATER  AWA  PRESSL       | METER        | CARBON:         | 334 <b>.</b><br>s = |                                                  |              | TIME<br>pH<br>Conductiv<br>Temperate<br>PIO | ity                                              | WASTEW           | ATER .             |

FORMER DESERT PETROLEUM SITE OP 793

4035 PARK BLVD UAKLAND, CALIFORNIA 94602 WASTL WATER DISCHARGE PERMIT NUMBER 5043580 1

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM, DAILY 2880 GALLONS

| DATE                   | 8(.                        | 10/00                    |                              |                                 |                                 | MINI                                   |                                              |                                        | REASON       | FOR SITE V                              | isii <i>Lun</i>                              | e Tren         | d +      | IF   | M                                      |        |                 |          |            |              |
|------------------------|----------------------------|--------------------------|------------------------------|---------------------------------|---------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|--------------|-----------------------------------------|----------------------------------------------|----------------|----------|------|----------------------------------------|--------|-----------------|----------|------------|--------------|
|                        | TRENCHY                    |                          |                              |                                 |                                 | TRENCH                                 | WELL T2                                      |                                        |              | *************************************** |                                              | I WELL T3      |          |      |                                        | TRENCH | WELL T4         |          |            | <del></del>  |
| TIME                   | PID                        |                          |                              | TEMP                            | COND                            | PID                                    | DTW                                          | pH                                     | TEMP         | COND                                    | PIO                                          | DTW            | pH       | TEMP | COND                                   | PID    |                 | pH       | TEMP       | ICONO        |
| 1130                   |                            | 2.15                     | ļ <u>.</u>                   | <u> </u>                        |                                 | 6                                      | 2.5                                          | !                                      | I            |                                         | 1                                            | 980            |          |      | 1                                      |        | 4.77            | l'       | 1.2        | -            |
| <u> </u>               | l                          |                          | ļ                            | <b></b>                         | l                               | ļ                                      | <u>                                     </u> |                                        |              |                                         |                                              |                |          |      | 1                                      |        | 1.,,,,          | <b></b>  | ·          |              |
| <b>├</b>               |                            |                          | <b> </b>                     | ļ                               | i                               | ļ                                      | ļ                                            | ļ                                      | l            | 1                                       |                                              |                |          |      |                                        |        |                 | <u> </u> | 1          |              |
| <b> </b>               |                            |                          | ļ                            | <del> </del>                    |                                 |                                        | ļ                                            | ļ                                      |              | _                                       | l I                                          | .              |          |      |                                        |        |                 |          |            | 1            |
|                        |                            |                          | <del> </del>                 | <del> </del>                    | <del>[</del>                    |                                        | <b>↓</b>                                     | <del> </del>                           |              |                                         | l                                            | <b>- </b>      |          | ļ    | ļ                                      |        |                 |          |            |              |
| <del> </del>           | ļ                          |                          | <del> </del>                 | <del> </del>                    |                                 | <u> </u>                               | <del> </del>                                 | - <del> </del>                         |              | -                                       | <b>∤                                    </b> |                | <u> </u> |      | <del></del>                            |        | _               | <u> </u> |            |              |
| L                      | ٠                          | <b>.</b>                 | ·                            | <del></del>                     | I                               | 1                                      | <u> </u>                                     | ــــــــــــــــــــــــــــــــــــــ | J            | ــــــــــــــــــــــــــــــــــــــ  | J L                                          |                |          | l    | ــــــــــــــــــــــــــــــــــــــ | L      | _LL             | l        | J          | Ll           |
|                        |                            | DEPTH TO                 | ) WATER                      |                                 |                                 |                                        |                                              | DEPTH TO                               | WATER        |                                         |                                              |                |          |      |                                        |        |                 |          |            |              |
| WELL                   | DTW                        | TIME                     | DTW                          | TIME                            |                                 | WELL                                   | DTW                                          | TIME                                   | DTW          | TIME                                    |                                              |                |          |      |                                        |        |                 |          |            |              |
| MW1                    | 1/78                       | 12.30                    |                              | L                               |                                 | R\$9                                   | 7.32                                         | 1137                                   | 1            | T                                       | ) ( <del></del>                              | T              |          | Г    | ו                                      | F      |                 | T        | 1          | 1            |
| RS2                    | 10.73                      | 12.30                    |                              |                                 |                                 | RS10 2                                 | 100                                          | 1130                                   |              |                                         |                                              |                |          |      | 1                                      |        |                 | †        | 1          | 1            |
| RS5                    | 16,414                     | 77.30                    | <b>'</b>                     | ļ <u> </u>                      | Į.                              | 131                                    | 14.34                                        | 1230                                   |              |                                         |                                              |                |          |      |                                        |        |                 | 1        | -i         | 1            |
| R50<br>R57             | 12:33                      | 1719                     | ļ <del></del>                | ļ                               |                                 | 15.5                                   | 1/3:55                                       | 1230                                   |              |                                         | <b> </b>                                     | -1             |          |      | ]                                      |        |                 |          |            | 1            |
| 1858                   | - 68                       | - in V                   | ļ                            | <del> </del>                    |                                 | R3                                     | ļ                                            | ·                                      |              | -}                                      |                                              |                |          | I    | 4                                      |        |                 |          |            | ]            |
| 14,34                  |                            |                          | ·                            | ·                               | 1                               |                                        | ·                                            | <del></del>                            |              | - <del> </del>                          | <b>!</b>                                     |                |          |      | 4                                      |        |                 | ļ        | -l         |              |
|                        |                            | 1                        | I                            | <del> </del>                    | 4                               | ļ                                      | 1                                            |                                        |              | -                                       |                                              | — i            |          | ·    | -{                                     |        |                 | <b></b>  | - <b> </b> | 4            |
|                        |                            | <b></b>                  |                              | •                               | .1                              | ************************************** | 1                                            | . L                                    | J            |                                         | ,                                            |                |          |      |                                        | ·      | l               |          | _1         | 1            |
| COMMEN                 | īs                         |                          |                              |                                 |                                 |                                        |                                              |                                        |              |                                         |                                              |                |          |      |                                        |        |                 |          |            |              |
|                        |                            |                          |                              |                                 |                                 | ,                                      |                                              |                                        |              |                                         |                                              |                |          |      |                                        |        |                 |          |            |              |
|                        |                            |                          |                              |                                 |                                 |                                        |                                              |                                        |              |                                         |                                              | 1              | 12/2     | 1/1  |                                        |        |                 |          | WASTEWA"   | I <b>E</b> R |
|                        |                            | ELECTION                 | C METER_                     |                                 |                                 |                                        |                                              |                                        |              |                                         | WATER                                        | MCTER/_/       | 210      | 7/   |                                        |        |                 |          | INFLUENT   | EFFLUENT     |
|                        |                            | •                        | _                            |                                 |                                 |                                        |                                              |                                        |              | 12-                                     |                                              | METER //       |          |      |                                        |        | TIME            |          |            |              |
| SAMPLE                 |                            |                          |                              |                                 |                                 |                                        | SOLE MO                                      | 40175OL7511                            | v            | URB                                     | RAN                                          | AIR            |          |      |                                        |        | 140             |          | <b>\</b>   |              |
| Shown (11              |                            |                          |                              |                                 |                                 |                                        | SHE WO                                       | F41 14 29 41 12 12                     | т            |                                         |                                              |                |          |      |                                        |        | Conductiv       | •        |            |              |
|                        |                            |                          |                              |                                 |                                 |                                        |                                              |                                        |              |                                         |                                              | $\mathcal{O}$  |          |      |                                        |        | Femperak<br>PID | иe       | ļ          |              |
|                        |                            |                          |                              |                                 |                                 |                                        |                                              |                                        |              |                                         |                                              |                |          |      |                                        |        | PIO             |          | l          | 1            |
| WATER I                | REALMEN                    | ī                        |                              |                                 |                                 |                                        |                                              |                                        |              |                                         |                                              |                |          |      |                                        |        |                 |          |            |              |
| 11110W<br>12110W       | RATI<br>RATI               | ∑ GAI<br>GAI             | LONS/                        | MINUTE                          | S<br>S                          | GALLON<br>GALLON                       | S PURGEO<br>S PURGEO                         | )                                      |              |                                         | PRESS                                        | JRE WATER C    | CARBONS  | #1   | <b>8</b> , PSI, #2                     |        | PSI,            |          |            |              |
| FILTERIN               | SPECTION                   | N AND COM                | MENTS                        |                                 |                                 |                                        |                                              |                                        |              |                                         | ······································       | ···            |          |      |                                        |        |                 |          |            |              |
| WATER                  | HASE CAR                   | BON UNIT                 | S INSPECT                    | ION COM                         | CENTS                           | OK                                     |                                              |                                        |              |                                         |                                              |                |          |      |                                        |        |                 |          |            |              |
| COMBIN                 | DN OF COL                  | APOUND C                 | OMMENTS                      |                                 | Clea                            | M                                      |                                              |                                        |              | <del></del>                             |                                              |                |          |      |                                        |        |                 |          |            |              |
| Acceptant<br>Acceptant | ce of water<br>ce of water | phase carb<br>phase carb | on units oni<br>on units oni | ly if complet<br>ly if pH is te | ely flooxled v<br>55 than 8 5 a | vilh water                             | yes<br>are in good                           | no - re                                | ekirn to cai | rbon manula                             | clure                                        | arbon manulaci | ture     |      |                                        |        |                 |          |            |              |



FORMER DESERT PETROLEUM SITE DP 793

4035 PARK DEVD OAKLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM. DAILY 2800 GALLONS

|                                                              |                                               | Wt:tl I1                  |                                       |                |                                        |                  | WELL 12                          |                |              | VEOR SITE V |                | 1WELL T3          | ·!        |      |             |              | I WELL TA                            |                | <del></del> |                   |
|--------------------------------------------------------------|-----------------------------------------------|---------------------------|---------------------------------------|----------------|----------------------------------------|------------------|----------------------------------|----------------|--------------|-------------|----------------|-------------------|-----------|------|-------------|--------------|--------------------------------------|----------------|-------------|-------------------|
| IMI.<br> 2_/2>                                               | PID                                           | DIW                       | pr1                                   | 1EMP           | COND                                   | PID              |                                  | D) t           | TEMP         | COND        | PID            | orw               | pH        | TEMP | COND        | PID          | wid                                  | pH             | 1EMP        | COND              |
|                                                              |                                               | 2.73                      | <del> </del>                          | ·              |                                        |                  | 2.6/                             | <del> </del> - |              |             | l              | _                 |           |      |             |              |                                      |                |             |                   |
|                                                              |                                               |                           | 1                                     | 1              |                                        |                  | <del> </del>                     | <del> </del>   |              |             | { <del> </del> | -                 | 7-2-      |      |             |              |                                      | <i>R</i>       | _           | _                 |
|                                                              |                                               |                           |                                       |                |                                        |                  |                                  |                |              |             | ]              |                   | */        |      |             | <del> </del> |                                      | 4              |             | <del></del>       |
| <del></del>                                                  |                                               | -                         | ļ                                     | <del> </del>   | <u> </u>                               |                  |                                  |                |              |             | )              |                   |           |      | <del></del> |              |                                      | <del> </del>   |             |                   |
|                                                              |                                               |                           | ļ. <u> </u>                           | -l             | <b></b>                                | ļ                | <b>↓</b>                         | ļ              |              | 4           | }              |                   |           |      |             |              |                                      | - <del> </del> |             |                   |
|                                                              |                                               |                           |                                       | ٠              | لـــــــــــــــــــــــــــــــــــــ | L                | 1                                | 1              |              | _l          | J L            | _1                | _ <b></b> |      | <u> </u>    |              |                                      | Ī              |             |                   |
|                                                              |                                               | DEP1H I                   | N3TAW C                               |                |                                        |                  |                                  | DEPTH I        | O WATER      |             |                |                   |           |      |             |              |                                      |                |             |                   |
| t:ct                                                         | OTW                                           | TIME                      | DIW                                   | TIME           |                                        | WELL             | WTO                              | TIME           | DIW          | TIME        |                |                   |           |      |             |              |                                      |                |             |                   |
| WI                                                           |                                               |                           | <u> </u>                              |                | ]                                      | RS9              | L                                | Τ              |              | _r          | ] [            | T                 | ``I       |      | 7           | ſ            | т —                                  | т              |             | ¬                 |
| 52                                                           |                                               |                           | ļ                                     |                |                                        | RS10             |                                  |                |              |             |                |                   |           |      | -1          |              | -                                    | <del> </del>   |             | -                 |
| 55<br>S6                                                     |                                               |                           | ļ                                     |                | -1                                     | R1               |                                  |                |              |             |                |                   |           |      |             |              |                                      |                |             | 7                 |
| 157                                                          |                                               |                           | ł                                     | <del> </del>   | -1                                     | R2<br>R3         | <del></del> -                    | <del> </del>   | <del>-</del> |             | <b>∤</b>       |                   | _         |      | _           |              |                                      |                |             |                   |
| 50                                                           |                                               |                           | ··                                    | ·              |                                        | 18.1             | -                                | ·              |              |             | ł I            |                   |           |      | -           | <b> </b>     |                                      | ļ              |             |                   |
|                                                              |                                               |                           | · · · · · · · · · · · · · · · · · · · |                | -1                                     |                  |                                  | ļ              | -            |             | l I—           |                   | [         |      | 4           | }            |                                      | - <b> </b>     | <b>⊣</b> —— |                   |
|                                                              |                                               |                           |                                       |                |                                        |                  |                                  |                |              |             |                |                   |           |      |             |              |                                      |                |             |                   |
| изммс                                                        | i. <u> </u>                                   | TR                        | 452                                   | pun            | s br                                   | ska              | ــــاـ                           | Low            | oil          | /           |                |                   |           |      |             |              |                                      | <u> </u>       |             |                   |
| Оммен                                                        | rs                                            |                           |                                       | •              | p ba                                   |                  |                                  |                |              |             | WATER          | METER             |           |      |             |              |                                      | <u> </u>       | WASTEW      |                   |
| OMMEN                                                        | rs                                            |                           |                                       | •              | p ba                                   |                  |                                  |                |              |             | WATER          | METER             |           |      |             |              | TIME                                 |                |             |                   |
|                                                              |                                               | ELECTR                    | C METER_                              |                |                                        |                  |                                  |                |              |             | WATER          | METER             |           |      |             |              | TIME pH                              |                |             |                   |
|                                                              |                                               |                           | C METER_                              |                |                                        |                  |                                  |                |              |             | WATER          | METER_            |           |      |             |              |                                      | nty            |             |                   |
|                                                              |                                               | ELECTR                    | C METER_                              |                |                                        |                  |                                  |                |              |             | water          | METER_            |           |      |             |              | pH<br>Conduction<br>Temperat         | •              |             |                   |
|                                                              |                                               | ELECTR                    | C METER_                              |                |                                        |                  |                                  |                |              | Broke       | WATER          | METER_            |           |      | <u></u>     |              | pH<br>Conducto                       | •              |             | ATER<br>T EFFLUEF |
|                                                              |                                               | ELECTR                    | C METER_                              |                |                                        |                  |                                  |                |              |             | water          | METER_            |           |      | <u></u>     |              | pH<br>Conduction<br>Temperat         | •              |             |                   |
| AMPLE(<br>VATER T                                            | REATMER                                       | ELECTR#                   | C METER_                              |                |                                        |                  | SHE MOR                          | VITORED (      | 3Y <b>_</b>  | BroK        | e we           |                   |           |      |             |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |
| AMPLE(<br>VATER T<br>1 FLOW                                  | REATMER                                       | ELECTR#                   | C METER_                              |                |                                        |                  | SHE MOR                          | VITORED (      | 3Y <b>_</b>  | BroK        | e we           |                   |           |      | PSI, #2     |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |
| AMPLE(                                                       | REATMER                                       | ELECTR                    | C METER_                              |                |                                        |                  |                                  | VITORED (      | 3Y <b>_</b>  | BroK        | e we           |                   |           |      |             |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |
| AMPLE(<br>VATER T<br>1 FŁOW<br>2 FŁOW                        | REATMEN<br>RATE<br>RATE                       | ELECTRIC<br>NT GAL<br>GAL | C METER_                              | MINUT          | ES<br>ES                               |                  | SHE MOR                          | VITORED (      | 3Y <b>_</b>  | BroK        | e we           |                   |           |      |             |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |
| AMPLE(<br>VATER T<br>1 FŁOW<br>2 FŁOW<br>ILTER IN            | REATMEN<br>RATE<br>RATE<br>SPECTIO            | ELECTRIC                  | LONS/                                 | MINUT<br>TUNIM | ES<br>ES                               | GALLON<br>GALLON | SITE MON<br>S PURGED<br>S PURGED | NITORED I      | 3v <i>_</i>  | BRoK        | PRESSO         | O JA<br>JRE WATER | ₹ CARBON  |      |             |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |
| AMPLE(<br>VATER T<br>1 FLOW<br>2 FLOW<br>ILTER IN            | REATMEN<br>RATE<br>RATE<br>SPECTIO            | ELECTRIC                  | LONS/                                 | MINUT<br>TUNIM | ES<br>ES                               | GALLON<br>GALLON | SITE MON<br>S PURGED<br>S PURGED | NITORED I      | 3v <i>_</i>  | BRoK        | PRESSO         | O JA<br>JRE WATER | ₹ CARBON  |      |             |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |
| AMPLE(<br>VATER T<br>1 FLOW<br>2 FLOW<br>ILTER IN<br>VATER P | REATMEN<br>RATE<br>RATE<br>SPECTIO<br>HASE CA | ELECTRIC                  | LONS/LONS/                            | MINUT          | ES<br>ES                               | GALLON<br>GALLON | SITE MON<br>S PURGED<br>S PURGED | NITORED I      | 3v <i>_</i>  | BRoK        | PRESSO         | O JA<br>JRE WATER | ₹ CARBON  |      |             |              | pH<br>Conduction<br>Temperate<br>PID | •              |             |                   |

FORMER DESERT PETROLEUM SITE OF 793

4035 PARK BLVID CAKLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 I

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM, DAILY 2880 GALLONS

| DATE 8-24-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del>                  | TOTAGE           | WELL T2                           |               |               |               |              | nect s        |         |                 | ·              |              | · · · · · · · · · · · · · · · · · · · |              |                |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|-----------------------------------|---------------|---------------|---------------|--------------|---------------|---------|-----------------|----------------|--------------|---------------------------------------|--------------|----------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEMP COND                    | PID              | Totw                              | pH            | TEMP          | ICCNIO.       |              | WELL 13       | ·       | 1               | T              | <u> </u>     | H WELL 14                             |              |                |                    |
| 1545 2.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEMP COMMO                   | - 10             |                                   | - Pr1         | It:MP         | COND.         | PIO          |               | DH      | 1EMP            | COND           | PHO          | DTW                                   | pH           | TEMP           | COND               |
| <del>'                                    </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·····                        |                  | 126_                              | ···           | 1             |               |              | 987           |         |                 | <del> </del>   |              | 4.8                                   |              |                | <u> </u>           |
| 1800 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                  | 3,47                              | <del> </del>  | <del> </del>  |               | <del> </del> | 9.75          |         |                 | - <del> </del> | <del> </del> | CAR                                   | -            |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                  |                                   |               |               | <del> </del>  | <del> </del> | 7.73          |         |                 | <del> </del>   | }            | - AA                                  | <del> </del> |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                  |                                   |               |               |               |              | ·  ····       | *       | +               | <del> </del> - |              |                                       | <del> </del> | +              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                  |                                   |               |               |               |              |               |         | 1               |                |              | <del>- </del>                         |              |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ll                           | <b>⋰</b>         | ,                                 | <u> </u>      |               |               |              |               |         |                 |                | 1 [          |                                       |              | 1              |                    |
| DEPTH TO WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                  |                                   |               |               |               |              |               |         |                 |                |              |                                       | -            |                | '                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME                         | WELL             | DTW                               | TIME          | O WATER       |               |              |               |         |                 |                |              |                                       |              |                |                    |
| AWI 1/9 1/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7111112                      | RS9              |                                   | 1545          |               | TIME          |              |               | r       |                 | ٦              |              | <del></del>                           | <del></del>  |                |                    |
| 152 15 24 12 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | RS10             | 7.21                              | 1.2.2.2       | 1             | <del>- </del> | ļ            | -             |         |                 |                |              |                                       |              | -              |                    |
| 155 16.71 16.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | R1               | 100                               | 1545          | 4             |               | ·            | <del></del> - |         |                 |                |              |                                       | <del> </del> |                | _                  |
| 356 14.2 1615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | R2               | 122                               | 1///          | +             |               | ·            | +             |         |                 | ┨              |              | <del></del>                           |              | <del> </del> - | <b>⊣</b>           |
| 181 4.06, 1645 4.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (8781)                       | R3               | 10.42                             | 1613          |               |               |              | <del> </del>  |         | ┪               | ┨              | ·            |                                       | <del> </del> | - <del> </del> | <b>⊣</b>           |
| 7,56 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                  |                                   | 100           | 1             | ~             |              | -             |         | -               | -1             |              |                                       | <del> </del> | - <del> </del> | →                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                  |                                   |               |               |               |              |               |         |                 |                |              |                                       |              |                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                  | -                                 |               |               |               |              |               |         | -               | 1              |              |                                       | ·            | 1              | 1                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                            | ,                |                                   |               |               |               |              |               |         |                 |                |              |                                       |              |                |                    |
| COMMENTS New 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pump a                       | vorks            | - g R                             | eat           |               |               |              |               |         |                 | ]              |              |                                       |              |                |                    |
| THE PART OF THE PA |                              | VORKS            | gri                               | eat           |               |               |              |               | 12/     | estr.           |                |              |                                       |              | WASTEW         | VATER              |
| COMMENTS Vew I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | vorKs            | gri                               | eAT           |               |               | WATER        | METER_/       | 12/     | 8 <b>4</b> 6.   | <u></u>        |              |                                       |              |                |                    |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | vorKs            | gr                                | EAT           |               |               | WATER        | METER_/       | 12/     | 8 <b>4</b> 6.   | <u> </u><br>   |              | TIME                                  |              |                |                    |
| filectric meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | vorks            | g R                               | RAT           | 3y 13         | Broad         | WATER!       | METER_/       | 12/     | 846.            | <u> </u>       |              | pH                                    |              |                |                    |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | VORKS            | g R.                              | RAT.          | BY            | Broad         | WATER        | METER_/       | 12/     | 8 <b>4</b> 6.   |                |              | pH<br>Conductiv                       |              |                |                    |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | vorKs            | g R s                             | EAT NITOREO E | )<br>         | Broad         | WATER        | METER_/       | 12/     | 846.            |                |              | pH                                    |              |                | VATER<br>IT EFFLUE |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | vorks            | G R O                             | EAT NITORED I | BY            | Broad         | WATER        | METER_/       | 121     | 846.            | 2              |              | pH<br>Conductiv<br>Temperat           |              |                |                    |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | vorks            | G R (                             | EAT NITORED P | IY _ B        | Broad         | WATER        | METER_/       | 121     | 836.            | 2              |              | pH<br>Conductiv<br>Temperat           |              |                |                    |
| ELECTRIC METERSAMILE(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | <u> </u>         | SITE MO                           | NITORED E     | 9Y _ <i>B</i> | broadi        | WATER I      | METER_/       | 121     | 846.            | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <u> </u>         | SITE MO                           | NITORED E     | 9Y _ <i>B</i> | broadi        | WATER I      | METER_/       | 121     | 846.            | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |
| ELECTRIC METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | <u> </u>         | SITE MO                           | NITORED E     | 9Y _ <i>B</i> | broadi        | WATER I      | METER_/       | 121     | 846.            | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |
| ELECTRIC METER_  SAMPLE(  WATER TREATMENT  STELOW RATE GALLONS/ 2 FLOW RATE GALLONS/  REFER INSPECTION AND COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MINUTES<br>MINUTES           | GALLON<br>GALLON | SITE MO<br>IS PURGED<br>IS PURGED | NITORED E     | BY            | bundi         | WATER I      | METER/        | CARBONS | 8 <b>3.6.</b> 6 | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |
| SAMPLE (  WATER TREATMENT OF FLOW RATE GALLONS/ 12 FLOW RATE GALLONS/ 12 FLOW RATE GALLONS/ 13 FLOW RATE GALLONS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MINUTES<br>MINUTES           | GALLON<br>GALLON | SITE MO<br>IS PURGED<br>IS PURGED | NITORED E     | BY            | bundi         | WATER I      | METER/        | CARBONS | 8 <b>3.6.</b> 6 | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |
| ELECTRIC METER_ SAMIPLE  WATER TREATMENT  11 FLOW RATE GALLONS/ 12 FLOW RATE GALLONS/ FILTER INSPECTION AND COMMENTS_ WATER PHASE CARRON UNITS INSPECTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINUTES MINUTES ON COMMICULA | GALLON<br>GALLON | SITE MO                           | NITOREO E     | BY            | Broadi        | PRESSL       | METER         | CARBON: | 846.            | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |
| ELECTRIC METER_ SAMPLE(  WATER TREATMENT TO FLOW RATE GALLONS/ T2 FLOW RATE GALLONS/ FLOW RATE GALLONS/ FLOW RATE GALLONS/ FLOW RATE GALLONS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MINUTES MINUTES ON COMMICULA | GALLON<br>GALLON | SITE MO                           | NITOREO E     | BY            | Broadi        | PRESSL       | METER         | CARBON: | 846.            | <u>Q</u>       |              | pH<br>Conductiv<br>Temperat<br>PIO    |              |                |                    |

FORMER DESERT PETROLEUM SITE DP 793

4035 PARK BLVD OAKLAND, CALIFORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT, SEDIMENT SETTLING TANK AND 2 IN SERIES CARBON WATER SCRUB UNITS PEAK HOURLY DISCHARGE 2 GPM, DAILY 2880 GALLONS

|         |                 | 00                                               | <del></del>                           |                |              |                                         |                |                | REASON                                           | REASON FOR SITE VISIT Weekly Inspect & MAINTANNACE |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |
|---------|-----------------|--------------------------------------------------|---------------------------------------|----------------|--------------|-----------------------------------------|----------------|----------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------|-------------|---------------|--------------------------------------------------|-------------|---------------|-----------------|--------------|---------------------------------------|--------------------------------------------------|
|         |                 | I WELL TI                                        |                                       | <del></del>    |              | TRENCH                                  | WELL T2        |                | •                                                |                                                    | TRENCH                              | VELL TO     |               | ····                                             |             | [ <del></del> |                 |              |                                       |                                                  |
| TIME    | PID             | DTW                                              | рН                                    | TEMP.          | CONO         | PID                                     | DTW            | рн             | TEMP.                                            | COND.                                              | TRENCH WELL TO PID DTW PH TEMP COND |             |               |                                                  |             | PID           | DTW             | TEMP         | 15000                                 |                                                  |
|         | -               | 2.75                                             | <del> </del>                          | ļ              | <del> </del> |                                         | 1.60           | 4              | ļ                                                |                                                    |                                     | CAL         | 9             |                                                  | 100         | 1,40          | 7.76            | pн           | TEMP                                  | COND                                             |
|         |                 | <del> </del>                                     | <del> </del>                          | <del> </del> - | ╁──          |                                         | <del> </del> - | <del> </del>   | <del>                                     </del> | <del> </del>                                       |                                     | <u> </u>    | <b>-</b>      |                                                  |             |               |                 |              |                                       |                                                  |
|         |                 |                                                  |                                       |                |              |                                         | ļ              | 1              | <del>                                     </del> | ·                                                  | <del></del>                         | <del></del> | <del> </del>  | <del>                                     </del> | <del></del> | <u> </u>      |                 | -            |                                       |                                                  |
|         |                 | +                                                |                                       | <del> </del>   | <u> </u>     |                                         | ļ              |                |                                                  |                                                    |                                     |             |               |                                                  | 1           |               | <del> </del>    | -{           |                                       | <del></del>                                      |
|         | 1               |                                                  | 1                                     | <del> </del>   | ╁            |                                         | <del> </del>   | <del> </del> - | <del> </del>                                     | ļ — i                                              |                                     | ļ           |               |                                                  |             |               |                 |              |                                       |                                                  |
|         |                 | DEPTH T                                          | O WATER                               |                |              | · • • • • • • • • • • • • • • • • • • • |                |                | <b></b>                                          | <u> </u>                                           | -                                   | L_,         | L             | .1                                               |             | L             | <u> </u>        | <u> </u>     |                                       | .1                                               |
| TIME    | MW1             | RS2                                              | RS5                                   | RS6            | 1            | net                                     | Tese -         | Inco           | 15                                               | 1                                                  | ,                                   | ···         | •             |                                                  | _           |               |                 |              |                                       |                                                  |
|         | 12.20           | 5 7/33                                           | 76.32                                 | 74.35          | 1            | V.01                                    | R.09           | 7.74           | RS 10                                            | }                                                  | R1 /4 < 4                           | R2<br>73.74 | R3            |                                                  |             |               |                 |              |                                       | 7                                                |
|         | <u> </u>        | 11103                                            |                                       |                | ]            |                                         |                | 77.7           |                                                  | ]                                                  |                                     | 7.7.77      | 122.61        | <u> </u>                                         | -           | <u> </u>      |                 | <del> </del> | - <del> </del>                        | -                                                |
|         | <u> </u>        | <del>                                     </del> | · · · · · · · · · · · · · · · · · · · | <del> </del>   | 1            |                                         | <del> </del>   | 1              | <del> </del>                                     | -                                                  |                                     |             |               |                                                  |             |               | 1               | <u> </u>     |                                       | -                                                |
|         |                 |                                                  |                                       |                | 1            |                                         |                | 1              |                                                  | ]                                                  | <b> </b>                            |             | ļ <del></del> | <del> </del>                                     | 4           | <del></del>   |                 | ł            |                                       |                                                  |
|         | <del>- </del> - |                                                  | <del></del>                           | <del> </del>   | 1            |                                         | -              |                | ļ                                                |                                                    |                                     |             |               |                                                  | 1           |               |                 | ļ            |                                       | -                                                |
| СОММЕ   | NTS             |                                                  | rudu                                  | - NO           | T 10         | HOT                                     | <u> </u>       | · I            | J                                                | 1                                                  | <u> </u>                            | L.,         |               | I                                                | J           |               |                 | .L           |                                       |                                                  |
|         |                 |                                                  | 0                                     |                |              |                                         |                |                |                                                  |                                                    |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |
|         |                 | ELECTR                                           | C METER_                              |                |              | <u> </u>                                |                |                |                                                  |                                                    | WATER M                             | ETER        | 122           | <u> </u>                                         | 2           |               |                 |              | WASTEWA                               | TER<br>EFFLUEN                                   |
|         |                 |                                                  |                                       |                |              | _                                       |                |                |                                                  | ,                                                  | /                                   |             |               |                                                  | <u>-</u>    |               | TIME            |              |                                       | L                                                |
| SAMPLE  | <u> معکد</u> ۱۰ | ue.A.                                            | Q3 $A$ 4                              | BGC            | <u>/</u> 3/: | 2                                       | SITE MOI       | NITORED B      | Y:/                                              | GROND                                              | dwan                                |             |               |                                                  |             |               | pH<br>Conductiv | d.           |                                       |                                                  |
|         |                 |                                                  |                                       | 0              |              |                                         |                |                |                                                  |                                                    | 1                                   | -           |               |                                                  |             |               | Temperate       |              | · · · · · · · · · · · · · · · · · · · | <del>                                     </del> |
|         |                 |                                                  |                                       |                |              |                                         |                |                |                                                  |                                                    | $\mathcal{U}$                       |             |               |                                                  |             |               | PID             |              |                                       |                                                  |
| WATER   | TREATMEN        | NT                                               |                                       |                |              |                                         |                |                |                                                  |                                                    |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |
| TI FLOW | / RATE          | _ <u>5</u>                                       | LONS/_ /                              | /<br>MINUTE    | s            | GALLONS                                 | PURGED         |                |                                                  |                                                    |                                     |             | PPECPIE       | 7.4" 1.4.4 mm                                    |             | . 0           |                 |              |                                       |                                                  |
| TZ FLOW | RATE            | GAL                                              | LONS/                                 | MINUTE         | 5            | GALLONS                                 | PURGED         |                |                                                  |                                                    |                                     |             | rKE 290F      | CE WATER                                         | CARBONS     | #1 <u>•/</u>  | PSI, #2         |              | PSI,                                  |                                                  |
|         |                 |                                                  |                                       |                |              |                                         |                |                |                                                  |                                                    |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |
| WATER   | PHASE CA        | RBON UNIT                                        | S INSPECT                             | ION COMM       | ENTS         | OK                                      |                |                |                                                  |                                                    |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |
| CONDITI | ON OF CO        | MPOUND C                                         | OMMENTS.                              | <              | Len.         | v                                       |                |                |                                                  |                                                    |                                     |             |               | <del>_</del>                                     |             |               |                 |              |                                       |                                                  |
|         |                 |                                                  |                                       |                |              |                                         |                |                |                                                  | <del></del>                                        |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |
|         | ica of week     | , nhan                                           | on with                               |                |              | with water                              |                |                |                                                  |                                                    |                                     |             |               |                                                  |             |               |                 |              |                                       |                                                  |

FORMER DESERT PETROLLOM SHE OP 793

40.5 PARK BLVD OAKLAND, CALIFORNIA 94602 WAS H: WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTE WATER PRETREATMENT, SCOMENT SETTLING TANK AND Z IN SERIES CARRION WATER SCRUB UNITS
PEAK HOURLY DISCHARGE 2 GPM DAILY 2880 GALLONS

| DATE                            | 9-:                        | 7-02                     | <del></del>                |                                 |                                 | REASON FOR SITE VISIT IMPECT & MAINTAIN                         |               |                     |                 |             |       |               |           |                 |           |                  |        |                                           |             |              |           |
|---------------------------------|----------------------------|--------------------------|----------------------------|---------------------------------|---------------------------------|-----------------------------------------------------------------|---------------|---------------------|-----------------|-------------|-------|---------------|-----------|-----------------|-----------|------------------|--------|-------------------------------------------|-------------|--------------|-----------|
|                                 | TRENCH                     | WELL 71                  |                            |                                 |                                 | TRENCE                                                          | WELL T2       |                     |                 | ·           | 7     | TRENCE        | WELL 13   | <del></del>     |           |                  | liocus |                                           |             |              |           |
| TIME                            | PID                        | OIM                      | I tet                      | TEMP                            | COND                            | PIO                                                             | OTW           | pH                  | TEMP            | COND        | -     | PID           | lotw      | pH              | TEMP      | ICOND            | PID    | DIW                                       | pH          | TEMP         | leeus.    |
| 1110<br>1243                    |                            | 7.78                     |                            |                                 |                                 |                                                                 | 1.91          |                     |                 |             |       |               |           | AK              |           |                  | 7 12   | CA                                        | R           | TCMF         | COND      |
| WELL<br>MW1                     | otw<br>L2,3                | DEPTH TO                 | D WATER<br>DIW             | TIME                            | ]                               | WELL<br>RS9                                                     | 01W           | OEPTH<br>TIME       | TO WATER<br>DIW | TIME        |       |               |           | _1              | <u>.</u>  | _i               |        |                                           | <u> </u>    | _],          |           |
| RS2<br>RS5<br>RS6<br>RS7<br>RS8 |                            |                          |                            |                                 |                                 | RS10<br>R1<br>R2<br>R3                                          | 13.9          |                     |                 |             |       |               |           |                 |           | -<br>-<br>-<br>- |        |                                           |             |              |           |
| <u> </u>                        |                            |                          |                            | <u> </u>                        | _                               | ļ                                                               |               |                     | <u> </u>        | -           | _     |               |           |                 |           | -]               |        |                                           |             |              |           |
| COMMEN                          | 1S                         | _RYC                     | J TR                       | 15h                             | ermp                            |                                                                 | آعر           | ttin                | 9 5             | PRU         | r.    | 9 4           | eak       | 570             | 7990 e    | ed,              | pung   | p,                                        | 12 1        | 45<br>WASTEW |           |
| SAMPLE                          |                            |                          |                            |                                 |                                 |                                                                 | SITE MO       | NITORED             | ву              | SKO         | 42    | WATER<br>LIPA | METER/    | 700             | <u>~/</u> | <u>d</u> ,       |        | TIME<br>pH<br>Conducte<br>Temperal<br>PIO | vity<br>ure | INFLUEN      | T EFFLUEN |
| WATER 1                         | REATMEN                    | 1                        |                            |                                 |                                 |                                                                 |               |                     |                 |             |       | -             |           |                 |           |                  |        |                                           |             | •            |           |
|                                 |                            |                          |                            |                                 |                                 | GALLONS PURGED PRESSURE WATER CARBONS #1 Z PSI, #2 PSI, #2 PSI, |               |                     |                 |             |       |               |           |                 |           |                  |        |                                           |             |              |           |
| FILTERIA                        | ISPECTION                  | A AND COM                | MENTS_                     |                                 |                                 |                                                                 |               |                     |                 | 7-000       |       |               |           |                 |           |                  |        |                                           |             |              |           |
| WATER P                         | HASE CAR                   | чий иов                  | S INSPEC                   | TION COM                        | MCNIS (                         | OK                                                              |               | ··-                 |                 |             |       |               |           |                 |           |                  |        |                                           |             |              |           |
| CONDITION                       | ON OF COM                  | MPOUND C                 | OWNENT                     | 5                               | Cles                            | 1//                                                             |               |                     |                 |             |       |               |           |                 | -         |                  |        |                                           |             |              |           |
| Acceptant<br>Acceptant          | ce of water<br>re of water | phase carb<br>phase carb | on units on<br>on units on | ly if coinple<br>ly if pH is le | tely flooded v<br>ss Bvan 8 5 a | vilh water<br>nd container                                      | yes<br>yesyes | no -<br>1 condition | return to ca    | nton manula | o - m | ekun to ca    | rbon manu | factur <b>e</b> |           |                  |        |                                           |             |              |           |

FORMER DESERT PETROLEUM SITE DP 793

ADISPARK REVO OAKEAND CALIEORNIA 94602 WASTE WATER DISCHARGE PERMIT NUMBER 5043550 1

WASTEWATER PRETRICATION SERVICE OF THE SET OF AND 2015 SERIES CARROLI WATER SCROB UNITS PLAK DOURLY DISCUARGE 2 GPM DAILY 2800 (2011 ODS

| DATE                                         | 9-14                         | -00                      |                              |                                 |                                 |                                           |                                       |                       | REASON              | FOR SITE V  | ısıı Z~                | p & 1       | mun/                                  | PINANG           | ce.                 |     |                                                   |    |          |          |
|----------------------------------------------|------------------------------|--------------------------|------------------------------|---------------------------------|---------------------------------|-------------------------------------------|---------------------------------------|-----------------------|---------------------|-------------|------------------------|-------------|---------------------------------------|------------------|---------------------|-----|---------------------------------------------------|----|----------|----------|
| TREACHWELL 12                                |                              |                          |                              |                                 |                                 |                                           |                                       | ·                     |                     | rW(11-13    |                        |             | <del></del>                           | Herebus West, 14 |                     |     |                                                   |    |          |          |
| I'ME                                         | (3)                          | 101W                     | pH                           | IL WIS                          | (*ni)                           |                                           |                                       | pH                    | I EMP               | CONLI       | eib<br>———             | ыw<br>СД,   | <u> #1</u>                            | 1EMP             | COND                | PH) | ,                                                 | pH | 1€ MP    | COND     |
|                                              |                              |                          |                              |                                 |                                 |                                           |                                       |                       |                     |             |                        |             |                                       |                  |                     |     |                                                   |    |          |          |
|                                              |                              | DEPTHE                   | ) WATER                      | •                               |                                 | •                                         |                                       | DEPRET                | O WATER             |             | L                      |             |                                       | 1                |                     | L   | · <del></del>                                     |    | ı        | . L      |
| MT 11<br>MW1<br>FRS5<br>RRS6<br>RRS6<br>RRS6 | 7.//                         | TIME                     | OIW                          | TIME                            |                                 | HC(9<br>HC(10)<br>HC(1)<br>HC(2)<br>HC(3) | 2.24<br>                              | TIME                  | OTW                 | 1IMi:       |                        |             |                                       |                  |                     |     |                                                   |    |          |          |
| COMME                                        | NIS                          |                          |                              |                                 |                                 |                                           | - <i>N</i>                            | eed                   | CON                 | tanne       |                        | METER /     |                                       | 819              | <b></b> ,           |     |                                                   |    | WASTEWA  |          |
| SAMPLE                                       | ٠                            |                          |                              |                                 | -                               |                                           | SITE MON                              | NTORED1               | w                   | Toon        |                        |             |                                       | ····             |                     |     | TIME<br>pH<br>Conductivity<br>Ferriperatur<br>PIO |    | INFLOENT | EFFLUENT |
| WATER                                        | TREATMEN                     | 1                        |                              |                                 |                                 |                                           |                                       |                       |                     |             |                        |             |                                       |                  |                     |     |                                                   |    |          | ···      |
| TELLOV<br>TELLOV                             |                              | .Z. GAI                  | LONS/                        | MINUTE                          | 'S                              | GALLONS<br>GALLONS                        | FORGED,                               |                       |                     |             | PRESSU                 | IRL WATER   | CARBON                                | 5 #1 <u></u>     | PSI, #2 <sub></sub> | F   | SI,                                               |    |          |          |
|                                              | NSPECTION                    |                          |                              |                                 |                                 |                                           |                                       |                       |                     |             |                        |             | · · · · · · · · · · · · · · · · · · · |                  |                     |     |                                                   |    |          |          |
| WALLIE                                       | PHASE CAL                    | RIANT MORE               | S INSPECT                    | ION COMP                        | ens ge                          | this                                      | 9 5/                                  | sa.                   | to s                | TART        | 1 500                  | dfh         | Sa                                    |                  |                     |     |                                                   |    |          |          |
| COMDIT                                       | ION OF CO                    | MPONIND C                | OMMENIS                      |                                 | ean.                            |                                           | · · · · · · · · · · · · · · · · · · · |                       | ····                |             | 0                      |             |                                       | -                |                     |     |                                                   |    |          |          |
| Acceptar<br>Acceptar                         | ice of water<br>ice of water | phase carb<br>phase carb | on units onl<br>on units onl | y if coinplet<br>y if pH is le: | ely Booded wa<br>ss than 8.5 an | iti waterd containers                     | yes<br>are in good                    | no - r<br>- condition | eturn to car<br>yes | bon manufac | ture<br>• return to ca | rhon manula | clure                                 |                  |                     |     |                                                   |    |          |          |



### CERTIFICATE OF ANALYSIS

Lab Number:

00-1136

Client:

Western Geo-Engineers

Project:

DP793 PARK BLVD

Date Reported: 08/17/2000

Gasoline, BTEX and MTBE by Methods 8015M and 8020

| Analyte       | Method       | Result    | Unit         | Date Sampled | <u> Date Analyzed</u> |
|---------------|--------------|-----------|--------------|--------------|-----------------------|
| Sample: 00-11 | .36-01 Clien | t ID: MWl |              | 08/09/2000   | WATER                 |
| soline        | 8015M        | 62        | ug/L         |              | 08/10/2000            |
| Benzene       | 8020         | 1         | ug/L         |              |                       |
| Ethylbenzene  | 8020         | ND        |              |              |                       |
| MTBE          | 8020         | ND        |              |              |                       |
| Toluene       | 8020         | 2         | ${\tt ug/L}$ |              |                       |
| Xylenes       | 8020         | 2         | ug/L         |              |                       |
| Sample: 00-11 | .36-02 Clien | t ID: R1  |              | 08/09/2000   | WATER                 |
| Gasoline      | 8015M        | 10000     | ug/L         |              | 08/10/2000            |
| Benzene       | 8020         | 910       | ug/L         |              |                       |
| Ethylbenzene  | 8020         | 2100      | ug/L         |              |                       |
| MTBE          | 8020         | ND        |              |              |                       |
| Toluene       | 8020         | 76        | ${\tt ug/L}$ |              |                       |
| Xylenes       | 8020         | 390       | ug/L         |              | ,                     |
| Sample: 00-13 | .36-03 Clien | t ID: R2  |              | 08/09/2000   | WATER                 |
| Gasoline      | 8015M        | 30000     | ug/L         |              | 08/10/2000            |
| Benzene       | 8020         | 13000     | ug/L         |              |                       |
| Ethylbenzene  | 8020         | 1000      | ug/L         |              |                       |
| MTBE          | 8020         | ND        |              |              |                       |
| luene         | 8020         | 250       | ug/L         |              |                       |
| lenes         | 8020         | 2700      | ug/L         |              |                       |
|               |              |           |              |              |                       |

<sup>\*</sup>Confirmed by GC/MS method 8260.



### CERTIFICATE OF ANALYSIS

Lab Number:

00-1136

Client:

Western Geo-Engineers

Project:

DP793 PARK BLVD

Date Reported: 08/17/2000

Gasoline, BTEX and MTBE by Methods 8015M and 8020

| <u>Analyte</u> | Method | Result         | <u>Unit</u> | Date Sampled | Date Analyzed |
|----------------|--------|----------------|-------------|--------------|---------------|
| Sample: 00-11  | 36-04  | Client ID: R3  |             | 08/09/2000   | WATER         |
| soline         | 8015M  | 72             | ug/L        |              | 08/10/2000    |
| Benzene        | 8020   | ND             |             |              |               |
| Ethylbenzene   | 8020   | ND             |             |              |               |
| MTBE           | 8020   | ND             |             |              |               |
| Toluene        | 8020   | ND             |             |              | •             |
| Xylenes        | 8020   | ND             |             |              |               |
| Sample: 00-11  | 36-05  | Client ID: RS2 |             | 08/09/2000   | WATER         |
| Gasoline       | 8015M  | 60             | ug/L        |              | 08/10/2000    |
| Benzene        | 8020   | ND             |             |              |               |
| Ethylbenzene   | 8020   | ND             |             |              |               |
| MTBE           | 8020   | ND             |             |              |               |
| Toluene        | 8020   | ND             |             |              |               |
| Xylenes        | 8020   | ND             |             |              |               |
| Sample: 00-11  | 36-06  | Client ID: RS5 |             | 08/09/2000   | WATER         |
| Gasoline       | 8015M  | 14000          | ug/L        |              | 08/10/2000    |
| Benzene        | 8020   | 330            | ug/L        |              |               |
| Ethylbenzene   | 8020   | 1400           | ug/L        |              |               |
| MTBE           | 8020   | ND             |             |              |               |
| Toluene        | 8020   | 500            | ug/L        |              |               |
| Lenes          | 8020   | 6500           | ug/L        |              |               |
|                |        |                |             |              |               |

<sup>\*</sup>Confirmed by GC/MS method 8260.



90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

# CERTIFICATE OF ANALYSIS

Lab Number:

00-1136

Client:

Western Geo-Engineers

Project:

DP793 PARK BLVD

Date Reported: 08/17/2000

Gasoline, BTEX and MTBE by Methods 8015M and 8020

| <u>Analyte</u> | <u> Method</u> | Result        | Unit                     | Date Sampled | <u>Date Analyzed</u> |
|----------------|----------------|---------------|--------------------------|--------------|----------------------|
| Sample: 00-11  | .36-07 C       | lient ID: RS6 |                          | 08/09/2000   | WATER                |
| Soline         | 8015M          | 660           | ug/L                     |              | 08/10/2000           |
| Benzene        | 8020           | 2             | ug/L                     |              |                      |
| Ethylbenzene   | 8020           | 2             | ug/L                     |              |                      |
| MTBE           | 8020           | ND            |                          |              |                      |
| Toluene        | 8020           | 3             | ug/L                     |              |                      |
| Xylenes        | 8020           | 6             | ug/L                     |              |                      |
| Sample: 00-11  | .36-08 C.      | lient ID: RS7 |                          | 08/09/2000   | WATER                |
| Gasoline       | 8015M          | 11000         | ug/L                     |              | 08/10/2000           |
| Benzene        | 8020           | 2300          | ug/L                     |              |                      |
| Ethylbenzene   | 8020           | 430           | ug/L                     |              |                      |
| MTBE           | 8020           | ND            |                          |              |                      |
| Toluene        | 8020           | 150           | $\mathtt{ug}/\mathtt{L}$ |              |                      |
| Xylenes        | 8020           | 520           | ug/L                     |              |                      |
| Sample: 00-11  | 36-09 C        | lient ID: RS8 |                          | 08/09/2000   | WATER                |
| Gasoline       | 8015M          | 100000        | ug/L                     |              | 08/10/2000           |
| Benzene        | 8020           | 24000         | ug/L                     |              |                      |
| Ethylbenzene   | 8020           | 2300          | ug/L                     |              |                      |
| MTBE           | 8020           | *ND           |                          |              |                      |
| luene          | 8020           | 40000         | ug/L                     |              |                      |
| lenes          | 8020           | 9900          | ug/L                     |              |                      |
|                |                |               |                          |              |                      |

<sup>\*</sup>Confirmed by GC/MS method 8260.



90 South Spruce Avenue, Suite V • South San Francisco, CA 94080 • (650) 266-4563 • FAX (650) 266-4560

# CERTIFICATE OF ANALYSIS

Lab Number:

00-1136

Client:

Western Geo-Engineers

Project:

DP793 PARK BLVD

Date Reported: 08/17/2000

Gasoline, BTEX and MTBE by Methods 8015M and 8020

| Analyte      | Method      | Result       | Unit         | Date Sampled | <u> Date Analyzed</u> |
|--------------|-------------|--------------|--------------|--------------|-----------------------|
| Sample: 00-1 | 136-10 Cli  | ent ID: RS9  |              | 08/09/2000   | WATER                 |
| asoline      | 8015M       | 4900         | ug/L         |              | 08/10/2000            |
| Benzene      | 8020        | 500          | ug/L         |              |                       |
| Ethylbenzen  | ≥ 8020      | 160          | ${\tt ug/L}$ |              |                       |
| MTBE         | 8020        | ND           |              |              |                       |
| Toluene      | 8020        | 430          | ug/L         |              |                       |
| Xylenes      | 8020        | 530          | ${\tt ug/L}$ |              |                       |
| Sample: 00-1 | .136-11 Cli | ent ID: RS10 |              | 08/09/2000   | WATER                 |
| Gasoline     | 8015M       | 460          | ug/L         |              | 08/10/2000            |
| Benzene      | 8020        | 2            | ug/L         |              |                       |
| Ethylbenzen  | € 8020      | 2            | ${\tt ug/L}$ |              |                       |
| MTBE         | 8020        | ND           |              |              |                       |
| Toluene      | 8020        | 2            | ug/L         |              |                       |
| Xylenes      | 8020        | 7            | ug/L         |              |                       |
| Sample: 00-1 | .136-12 Cli | ent ID: T1   |              | 08/09/2000   | WATER                 |
| Gasoline     | 8015M       | 8900         | ug/L         |              | 08/10/2000            |
| Benzene      | 8020        | 1600         | ug/L         |              |                       |
| Ethylbenzen  |             | 260          | ug/L         |              |                       |
| MTBE         | 8020        | ND           | ug/L         |              |                       |
| Coluene      | 8020        | 760          | ug/L         |              |                       |
| ylenes       | 8020        | 870          | ug/L         |              |                       |
|              |             |              |              |              |                       |

<sup>\*</sup>Confirmed by GC/MS method 8260.

#### CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

Lab Number:

00-1136

Client:

Western Geo-Engineers

Project:

DP793 PARK BLVD

Date Reported: 08/17/2000

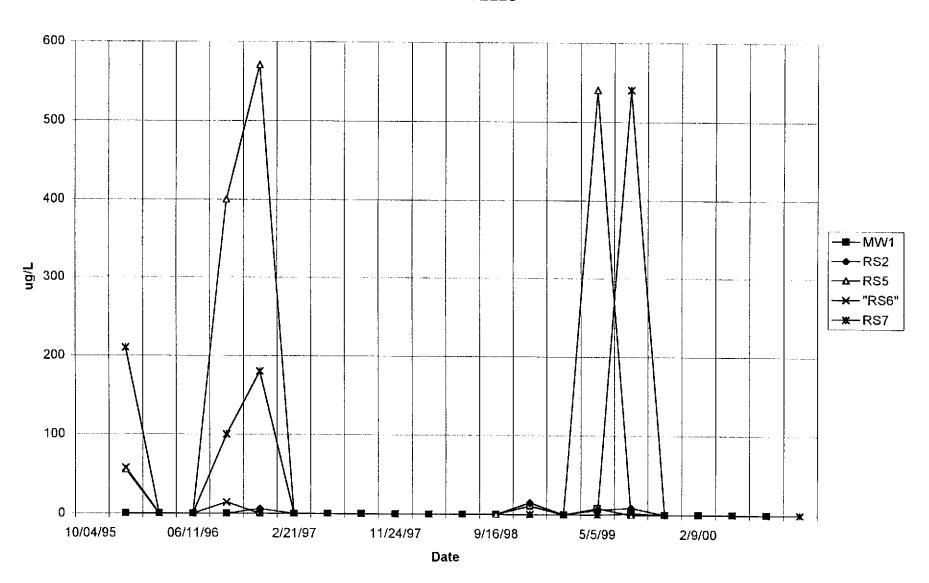
Gasoline, BTEX and MTBE by Methods 8015M and 8020

| Analyte      | Method | Reporting<br>Limit | Unit | Blank | Avg MS/MSD<br>Recovery | RPD |
|--------------|--------|--------------------|------|-------|------------------------|-----|
| Gasoline     | 8015M  | 50                 | ug/L | ND    | 116                    | 1   |
| Benzene      | 8020   | 0.5                | ug/L | ND    | 108                    | 2   |
| Ethylbenzene | 8020   | 0.5                | ug/L | ND    | 108                    | 1   |
| Toluene      | 8020   | 0.5                | ug/L | ND    | 108                    | 4   |
| Xylenes      | 8020   | 1.0                | ug/L | ND    | 107                    | 1   |
| MTBE         | 8020   | 0.5                | ug/L | ND    | 113                    | 4   |

ELAP Certificate NO:1753 Reviewed and Approved

John A.Murphy ory Director Page 5 of 5




# North State Environmental Analytical Laboratory 90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Chain of Custody / Request for Analysis Lab Job No.:\_\_\_\_\_Page\_\_\_of\_\_

Phone: (650) 266-4563 Fax: (650) 266-4560

| Client: WEGE                                           |                |                         | Report           | t to: WEGE              |                 | Phone: 536-668-5366 |                 | 306 | Turnaround Time |                    |
|--------------------------------------------------------|----------------|-------------------------|------------------|-------------------------|-----------------|---------------------|-----------------|-----|-----------------|--------------------|
| Mailing Address:  Western Geo Engineers  1386 Bermerst |                | Billing                 | Billing to: WEGE |                         |                 | Fax: 530-662-0273   |                 |     |                 |                    |
| 1386 BEAME                                             | Ast            | 00,                     |                  | WEGL                    |                 | PO#/B               | illing Referenc | e:  | Date:           | 8-9-00             |
| woodland,                                              | CA 95          | 776                     |                  |                         |                 |                     |                 |     | Sample          | BRONDWAY           |
| Project / Site Address:                                |                | PARK,                   | hlad             | Analys<br>Requested     | is LUTY         |                     |                 |     |                 |                    |
| Sample ID                                              | Sample<br>Type | Container<br>No. / Type | Pres.            | Sampling<br>Date / Time | is the state of | / /                 | / /             |     |                 | Comments / Hazards |
| MWI                                                    | 420            | 2 1045                  | HCL              | 8/4/00 1307             |                 |                     |                 |     |                 |                    |
| 2 R/                                                   | 1              |                         |                  | 1422                    |                 |                     |                 |     |                 |                    |
| 3 RZ                                                   |                |                         |                  | 1356                    |                 |                     |                 |     |                 |                    |
| R3                                                     |                |                         |                  | 1435                    |                 |                     |                 |     |                 |                    |
| R52                                                    |                | 1.                      |                  | 1320                    |                 |                     |                 |     |                 |                    |
| R55                                                    |                |                         |                  | 1416                    |                 |                     |                 |     |                 |                    |
| 7 RS6                                                  |                |                         |                  | 1345                    |                 |                     |                 |     |                 |                    |
| 8 RS7                                                  |                |                         |                  | 1240                    |                 |                     |                 |     |                 |                    |
| 158                                                    |                |                         |                  | 1154                    |                 |                     |                 |     |                 |                    |
| o 159                                                  |                |                         |                  | 1227                    |                 |                     |                 |     |                 |                    |
| ( RS10                                                 |                |                         |                  | 1209                    |                 |                     |                 |     |                 |                    |
| <sup>2</sup>                                           |                |                         |                  | 1242                    |                 |                     |                 |     |                 |                    |
|                                                        |                |                         |                  |                         |                 |                     |                 |     |                 |                    |
|                                                        |                |                         |                  |                         |                 |                     |                 |     |                 |                    |
| Relinquished by:                                       | ROWEN          |                         | 0                | Pate: 08 09 OF ime:     | 2. 2. Receiv    | ed by:              | $\Delta V$      |     | $\mathcal{I}$   | Lab Comments       |
| Relinquished by:                                       | 1              |                         | D                | Pate: Time:             | Receiv          | ed by:              | TX              | /   |                 |                    |
| Relinquished by:                                       |                |                         | D                | oate: Time:             | Receiv          | ed by:              | U               |     |                 |                    |

# MTBE IN WELLS



# APPENDIX E. WORKPLAN – AUGMENT BIODEGRADATION

August 29, 2000

Mr. John Rutherford Desert Petroleum P.O. Box 1601 Oxnard, California 93032 (805) 644-6784 FAX (805) 654-0720

Dear Mr. Rutherford:

The following is the Workplan for nutrient augmentation into wells R1, R2 and R3 at former. Desert Petroleum Station #793.

### 1 SITE LOCATION AND DESCRIPTION

Former Desert Petroleum #793 is a non-active service station, located on the northwest corner of the intersection of Park Boulevard and Hampel Street at 4035 Park Blvd., Oakland, California (Figure 1). The site is located in projected section 32; T1S; R3W; MDB&M at an approximate elevation of 210 feet above mean sea level (Figure 2).

#### 2 INTRODUCTION

The following is a workplan to augment the ongoing natural bioremediation at former Desert Petroleum Inc. station DP 793. Gasoline was discovered trickling into a sewer manway on Brighton Avenue on November 30, 1989. The station was closed and all contents removed from the tanks by December 7, 1989. The UST's were removed on June 23,1994 and over-excavation of on-site contaminated soils occurred August 14, 1995. Various assessments have delineated the gasoline plume and show that the gasoline release followed the sewer main from the station to Brighton Avenue sewer manway. A receptor trench was installed along Brighton Avenue on August 12, 1999. On August 26, 1999 during the 1/4ly sampling round selected wells were also tested for the potential of natural biodegradation, see Western Geo-Engineers report "Further Assessment, Installation of Brighton Avenue Receptor Trench and 3<sup>rd</sup> Quarter 1999 Groundwater monitoring". The following workplan has been developed to enhance the natural biodegradation that is occurring along the parameters of the groundwater plume associated with this site.

### 3 BIOREMEDIATION

Bacteria native to the soil at hydrocarbon contamination sites normally degrade hydrocarbons. The most effective hydrocarbon degraders (eaters) are the aerobic (oxygen using) bacteria. The amount of available dissolved oxygen is usually the factor controlling the rate that these bacteria degrade the gasoline.

A much slower degradation process starts when the dissolved oxygen is depleted. The plume begins to become anaerobic and the bacterium commences to reduce nitrate, ferric iron, and sulfate to further degrade the hydrocarbons. Eventually, as these compounds and the oxygen are used, the bacteria begin methogenesis, in which the hydrocarbons are converted to methane.

The results of prior bioremediation sampling indicate that natural attenuation/bioremediation is active at this site and methogenesis is occurring. In a number of the wells the biodegradation has proceeded to the point that nearly all of the electron acceptors and the nutrients that bacteria require to degrade gasoline have been consumed while a significant amount of hydrocarbons remain. This makes it necessary to augment the electron acceptors and nutrients.

All of the wells show the impact of active biodegradation. It is not therefore possible to determine a background level of the compounds. The closest approximation for background levels at this site is the highest concentrations of electron acceptors and the lowest levels of by-products.

| Compound                           | Function          | Concentration | Well    |
|------------------------------------|-------------------|---------------|---------|
| Dissolved Oxygen (O <sub>2</sub> ) | Electron Acceptor | 4.9 mg/l      | MW1     |
| Nitrate                            | Electron Acceptor | 2.7 mg/l      | RS2     |
| Sulfate                            | Electron Acceptor | >77 mg/l      | R2 & R3 |
| Ferrous Iron                       | By-product        | 0.25 mg/l     | MW1     |
| Methane                            | By-product        | <0.00001 mg/l | MW1     |
| Carbon Dioxide                     | By-product        | 0.058 mg/l    | RS8     |
| Aerobic Bacteria                   | By-product        | 10 CFU/ml     | MW1     |

mg/L milligrams per liter (parts per million) CFU/ml plate count per milliliter

All of the tested wells have reduced levels of dissolved oxygen.

Both Nitrate and Sulfate have been reduced, with Nitrate being reduced to non-detectable levels in down gradient well RS9 and Sulfate reduced to non-detectable levels in well RS8, see Figures 7 and 8.

The presence of Ferrous Iron and Methane in the wells indicates that biodegradation has progressed to the point that the system is oxygen deficient and the bacteria have started to reduce the iron to provide oxygen for the degradation.

The carbon dioxide (CO<sub>2</sub>) levels in the groundwater indicate that a portion of the hydrocarbons have been degraded. CO<sub>2</sub> and water are the final byproducts of the biodegradation of hydrocarbons. The carbon in CO<sub>2</sub> results from the oxidation of the hydrocarbon radical CH<sub>2</sub> and as such 1 mg of CO<sub>2</sub> = 0.41 mg of CH<sub>2</sub> (CH<sub>2</sub> (12+1+1 = 14) / (CO<sub>2</sub> (12+16+16=34)).

The presence of methane (CH<sub>4</sub>) indicates that a number of the wells have progressed into methogenesis.

The levels of electron acceptors present and the presence of the reaction products, carbon dioxide, methane and ferrous iron indicate that the bacteria in the soil and the compounds in the groundwater have the capability to consume a significant amount of hydrocarbons.

Comparison of the hydrocarbon degrader counts (amount of bacteria) to the TPHg concentration, electron acceptors, byproducts, and nutrients, indicate that the addition of phosphate and ammonia sulfate can have a significant effect on the bioactivity, see Table 3 of Third Quarter 2000 report.

Five of the wells contain greater than 10 mg/l of TPHg with a high of 100 mg/L at RS8. This indicates that it would be beneficial to increase the biodegradation capacity of the aquifer. The most cost beneficial way to do this is by adding dissolved oxygen.

#### 3.1 BIO~AUGMENTATION

#### 3.1.1 Air Sparging

Air sparging should be performed by pumping, filtered, oil free compressed, air into RS5 and R2. The air would be delivered by a 3/8-inch polyethylene tube to an air-defusing filter set at a depth of 21 feet in well RS5 and 16 feet in well R2. The top of the wells will be sealed. The top of slots in RS5 is at 15 feet below surface and at 10 feet below the surface in R2. Sparging would be expected to pressure the casing until air escapes into the formation. Ideally this will cause the water near the well to become saturated with oxygen.

RS5 and R2 are recommended to be used for air sparging because they are at the upgradient edge of the plume and are associated with the soil plume. Laterals have already been run to these wells.

The pump would be placed in the treatment compound inside a noise and weather protection shed were the laterals are exposed and now terminate.

#### 3.1.2 NUTRIENT ADDITION

As found during the September 2, 1999 sampling round the phosphate and ammonia levels are reduced to levels that negatively effects the biodegradation rate. Sodium hexametaphosphate and ammonium sulfate will be added to the wells in order to augment the levels of these compounds.

#### 3.1.2.1 Phosphate

Research of the current literature indicates that the direct addition of orthophosphate may cause the precipitation of insoluble phosphate salts, thus plugging the infiltration wells and the surrounding aquifer, see Appendix F.

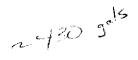
In sodium hexametaphosphate (SHMP), the phosphate is in the form of polyphosphate which and forms complex ions with the calcium and iron ions and does not precipitate out of solution. Additional sodium SHMP has a neutral pH of 7 and may be used in the treatment of potable water.

The current groundwater plume covers an area of approximately 22,800 square feet. The affected water bearing strata is an estimated 16 feet thick and extends from 10 to 26 feet below the surface at well RS5. The plume volume is 364,800 cubic feet. Assuming a porosity of 0.3, the plume contains 109,440 cubic feet, 818,611 gallons or 3,098,443 liters of water.

We hope to raise the initial phosphate concentration in the contaminated aquifer to 1 mg/l. To do this 2323 grams (1mg/l x 3098443 1 x1g/1000mg) or 6.83 pounds (3098.4 g x 1lb/453.6 g) of phosphate will be added to the formation. Sodium hexametaphospate has a phosphate content of 66.5 percent; therefore, 6.83/.665= 10.3 pounds of SHMP has to be added to the formation. 15 pounds of SHMP will be mixed with 417 pounds or 50 gallons of water; the resulting 3.6 percent solution shall be decanted into R3 on a weekly basis. This concentration may be adjusted if later laboratory results indicate a change would be beneficial.

#### 3.1.2.2 Ammonium Sulfate

In addition to the SHMP, 15 pounds of ammonium sulfate as an ammonia source shall be mixed into the water mixture. In addition to ammonia, this will also supply some sulfate, an important electron acceptor, to the system.


Fifteen pounds of ammonium sulfate should raise the concentration of ammonia and sulfate to the following:

$$(NH_4)_2SO_4 = 132g/mole$$
  
 $N=14, H=1, (NH_4)_2 = 36g/mole = 36g/mole/132g/mole = 0.273$   
 $S=32, O=16, SO_4 = 96g/mole = 96g/mole/132g/mole = 0.727$   
 $NH_4 = 15 \times 0.273 = 4.1 \text{ pounds}$   
 $SO_4 = 15 \times 0.727 = 10.9 \text{ pounds}$ 

From phosphate addition calculations above, 6.87 pounds of a substance is equivalent to 1 mg/l in the contaminated aquifer. As with the phosphate, above, the concentration of ammonium sulfate may be changed, if warranted.

 $NH_4$  4.1/6.87 = 0.6 mg/l in the formation.  $SO_4$  10.9/6.87 = 1.6 mg/l in the formation.

# 4 HYDROCARBON CONTAMINATION



The primary mass of hydrocarbon contamination left after over-excavation on site and installation of the receptor trench was found in the soil (2885 pounds) with significant amounts to be found in the groundwater (102 pounds). The soil contamination is present in three phases; absorbed onto the soil, vapor and free phase. The free phase product has been found either coating the sand grains or as a floating product layer. Presently there is no significant floating product plume associated with this site.

The amount bound to the soil (2885 pounds) was found by contouring the results of the soil samples taken during test borings to find the resulting areas and volumes, see Table 4 and Figures 5 – 9 of Third Quarter 2000 report.

The mass in groundwater (102 pounds) was found by contouring the August 24, 1999 ground water results and calculating the volume of contaminated water, as shown in Table 4 and Figures 10 and 11.

Past experience has shown that significant levels of soil hydrocarbons can be removed through vapor extraction. Examinations of lithology beneath this site and along Brighton Avenue show that the formation is too clayey for this technology to have any degree of success.

## 5 INTERESTED PARTIES

| Mr. John Rutherford               | Mr. Thomas Peacock, Manger         |
|-----------------------------------|------------------------------------|
| Desert Petroleum                  | Environmental Health Services      |
| P.O. Box 1601                     | Environmental Protection (LOP)     |
| Oxnard, California 93032          | 1131 Harbor Bay Parkway, Suite 250 |
| (805) 644-6784 FAX (805) 654-0720 | Alameda, CA 94502-6577             |
|                                   | (510) 567-6782, Fax (510) 337-9335 |
|                                   |                                    |
| Mr. Leroy Griffin                 | Steve Marquez                      |
| Oakland Fire Dept.                | SWRCB, Cleanup Fund                |
| OES Haz Mat Mgmt Program          | 2014 T Street                      |
| 1605 Martin Luther King Jr. Drive | Sacramento, CA 95814               |
| Oakland, CA 94612                 |                                    |
|                                   |                                    |

## **6 LIMITATIONS**

This report is based upon the following:

- The observations of field personnel.
- The results of laboratory analyses performed by a state certified laboratory.
- Referenced documents.
- Our understanding of the regulations of the State of California and Alameda County, Hazardous Materials Section and/or City of Oakland, California.

Changes in groundwater conditions can occur due to variations in rainfall, temperature, local and regional water usage and local construction practices. In addition, variations in the soil and groundwater conditions could exist beyond the points explored in this investigation.

State certified analytical results are included in this report. This laboratory follows EPA and State of California approved procedures; however, WEGE is not responsible for errors in these laboratory results.

The services performed by Western Geo-Engineers, a corporation, under California Registered Geologist #3037 and/or Contractors License #513857, have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the State of California and the Oakland area. Our work and/or supervision of remediation and/or abatement operations, active or preliminary, at this site is in no way meant to imply that we are owners or operators of this site. Please note that known contamination of soil and/or groundwater must be reported to the appropriate agencies in a timely manner. No other warranty, expressed or implied, is made.

If you have any questions concerning this report or if we can be of further assistance, please don't hesitate to contact us at (530) 668-5300.

Respectfully,

George Converse Project Geologist Jack E. Napper Registered Geologist #3037

No. 3037

NAPPER

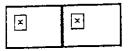
# APPENDIX F. RESEARCH WORKPLAN – AUGMENT BIODEGRADATION

## SCOPE NEWSLETTER

Year: 1996 - Country: GERMANY
Bioremediation of an old fuel oil-contaminated site using hexametaphosphate

Groundwater is often found to be contaminated with various organic chemicals whereby heterotrophic bacteria dominate. Phosphate is a required electron acceptor, an essential nutrient, and an important limiting factor of hydrocarbon degradation in bioremediation.

This case concerns contamination, 40-50 years ago, by a leaking pipeline, of 15 000-17 000 L. Most of the oil floating on the groundwater was removed in the 70's; the pollution now lies 4-9m below ground level.


The in situ remediation design consists of 2 infiltration wells, production wells, plus a groundwater processing plant. Before infiltration, hydrogen peroxide and nitrate were added to the reinfiltrated water to meet the electron acceptor demand, plus phosphate to meet nutrient demand.

Initial results suggested that phosphorus was the limiting factor for heterotrophic bacterial activity. It is probable that the phosphate stopped the limitation and oxygen was used in and next to the infiltration wells. However, during the use of diphosphate, problems occurred with the precipitation of insoluable phosphate salts and thus plugging of the infiltration wells and the surrounding aquifer occurred.

After 2 months the phosphorus source was stopped, the wells regenerated with H202 and acid, then 6 weeks later was replaced by sodium hexametaphosphate. This eliminated problems of precipitation and plugging in the infiltration wells. For the first time a phosphorus supply for the whole contaminated area was observed.

Although all the work to date on polyphosphates in bioremediation has concentrated on tripolyphosphates, this study showed the superiority of polyphosphate over orthophosphate on a field scale. It was also found that sodium hetamexaphosphate is superior over commonly used phosphates in transporting phosphorus over long aquifer distances.

Martin Steiof/Wolfgang Dott. Applied Bioremediation of Petroleum Hydrocarbons (301-309)



# APPENDIX G. MSDS WORKPLAN – AUGMENT BIODEGRADATION

×

# Coatings Performance Materials

# Sodium Hexametaphosphate (SHMP)

PRODUCT:

Sodium Hexametaphosphate (SHMP)

NSF® Certified to ANSI / NSF Std. 60

GRADE:

Technical

CODE NO.:

7890-310

GENERAL DESCRIPTION: Clean, clear glass plates of amorphous sodium polyphosphate

FORMULA:

 $Na_{(n+2)}P_nO_{(3n+1)}$ ; n = 9-15

MOLECULAR WEIGHT:

978-1592

CAS NO .:

68915-31-1

DATE EFFECTIVE:

June 21, 1996

CHARACTERISTICS

SPECIFICATION LIMITS

 $P_{2}O_{5}, \%$ 

66.5 Minimum

pH, 1% Solution

6.8 - 7.2

Plate Size:

Thickness, inches

 $\pm 1/16$ 

Width, inches

1.5 Maximum

Solutia Sodium Hexametaphosphate is a glassy, amorphous sodium polyphosphate with a Na<sub>2</sub>O/P<sub>2</sub>O<sub>5</sub> molar ratio of approximately 1.1.

NOTE: Specification Limits are subject to change from time to time.

Production Location:

Trenton, MI

Packaging:

50 lb. multiwall bags

Labeling Requirements: Product label

Shipping

Sodium Phosphate

Classification:

Handling Precautions: No precautionary statement required on label.

Handle in accordance with good industrial hygiene and safety practices. These include avoiding unnecessary exposure and removal of material from

eyes, skin, and clothing.

Key Properties:

Sequestration

• Neutral Salt

• Buffer Capacity

Infinite Solubility in Water

#### Deflocculation

Applications:

- Consumer Products: The unique combination of SHMP's ability to sequester water hardness and its infinite solubility in water makes it a product of choice in applications such as laundry boosters, water conditioners and in bath beads.
- Industrial Water Treatment: SHMP can be used in continuously recycled industrial water as a softener and to control scale formation in condensers, heat exchangers, pipelines and boilers. SHMP has two particular advantages over the pyro- and tripolyphosphates in industrial water treatment. First, it maintains polyphosphate properties longer in high temperature systems at mildly alkaline pH's. Second, its infinite solubility in water allows very concentrated stock solutions to be prepared.
- Potable Water Treatment: Due to the sequestration and threshold properties of SHMP, it is commonly added to potable water to aid in corrosion control and antiscaling of distribution equipment and lines. Solutia sodium hexametaphosphate conforms to the requirements of ANSI / NSF Standard 60, Maximum Use Level 11.9 mg/L, and meets or exceeds ANSI / AWWA Standard B502-88.
- Industrial Cleaning: In the textile industry, SHMP is used to chelate calcium and iron, hence keeping their salts from being redeposited on the surface of the fabric. It also provides good dispersion in pigmenting and dyeing operations.
- Film Development: The excellent sequestering properties of SHMP improve the efficiency of the photographic film developing process by chelating foreign metal ions.
- Oil Well Drilling Muds: Deflocculants are required in oil well
  drilling muds to maintain high specific gravity at the low viscosity
  necessary for easy pumping. SHMP is an excellent deflocculant and
  offers superior cost-performance in wells with depths down to 5,000
  feet.
- Kaolin Clay Processing: SHMP is effective as a deflocculant in the
  preparation of high solids slurries with sufficient fluidity to allow
  rapid settling of coarse impurities. Another advantage occurs in the
  final bleaching of the clay with sulfuric acid. With SHMP's neutral
  pH, a minimal amount of sulfuric acid is required to lower the pH to
  3.5, which is required for effective bleaching.

FOR MORE COMPLETE INFORMATION ON PROPERTIES AND SAFE HANDLING OF THIS MATERIAL, SEE THE Solutia MATERIAL SAFETY DATA SHEET (MSDS).

NOTICE: Although the information and recommendations set forth herein (hereinafter "Information") are presented in good faith and believed to be correct as of the date hereof, Solutia Inc. makes no representations or warranties as to the completeness or accuracy thereof. Information is supplied upon the condition that the persons receiving same will make their own determination as to its suitability for their purposes prior to use. In no event will Solutia Inc. be responsible for damages of any nature whatsoever resulting from the use of or reliance upon Information or the product to which Information refers. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment or formulation in conflict with any patent, and Solutia Inc. makes no representation or warranty, express or implied, that the use thereof will not infringe any patent. The data set forth herein are based on samples tested and are not guaranteed for all samples or applications. Such data are intended as guides and do not reflect product specifications for any particular product. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OR MERCHANTABILITY, FITNESS FOR A PARTICULAR

# PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS.

Solutia Inc. © June, 1996

For Technical Service assistance, call 314-674-4671 or FAX 314-674-2298.
For Customer Order assistance, call toll-free 800-325-4330 or FAX 314-674-2490.
Additional information follows.

Technical Bulletins | Ask the Experts | Literature & Sample Request

<sup>®</sup>Registered Trademark of Solutia Inc.

```
MONSANTO -- SODIUM HEXAMETAPHOSPHATE - SODIUM HEXAMETAPHOSPHATE, TECHNICAL
MATERIAL SAFETY DATA SHEET
NSN: 6810008238109
Manufacturer's CAGE: 76541
 Part No. Indicator: A
 Part Number/Trade Name: SODIUM HEXAMETAPHOSPHATE
 General Information
Item Name: SODIUM HEXAMETAPHOSPHATE, TECHNICAL
Company's Name: MONSANTO COMPANY
Company's Street: 800 N LINDBERGH BLVD
Company's City: ST LOUIS
Company's State: MO
Company's Country: US
Company's Zip Code: 63167
Company's Emerg Ph #: 314-694-1000,900-424-9300 (CHEMTREC)
Company's Info Ph #: 314-694-1000
Distributor/Vendor # 1: WALTRON LTD (201-534-5100)
Distributor/Vendor # 1 Cage: 71229
Record No. For Safety Entry: 007
Tot Safety Entries This Stk#: 009
Status: SE
Date MSDS Prepared: 03FEB92
Safety Data Review Date: 04APR95
Supply Item Manager: CX
MSDS Preparer's Name: NONE
MSDS Serial Number: BWSTG
Hazard Characteristic Code: N1
Unit Of Issue: DR
Unit Of Issue Container Qty: 100 PCUNDS
Type Of Container: DRUM
Net Unit Weight: 100 LBS
________
            Ingredients/Identity Information
Proprietary: NO
Ingredient: SODIUM HEXAMETAPHOSPHATE
Ingredient Sequence Number: 01
Percent: UNKNOWN
NIOSH (RTECS) Number: TR4950250
CAS Number: 68915-31-1
OSHA FEL: 15 MG/M3 TOTAL DUST
ACGIH TLV: 10 MG/M3 TDUST 9394
Other Recommended Limit: NONE RECOMMENSED
Physical/Chemical Characteristics
Appearance And Odor: WHITE POWDER, GRANULES, OR GLASS PLATES. ODORLESS.
Boiling Point: NOT GIVEN
Melting Point: 1162F,628C
Vapor Pressure (MM Hg/70 F): NOT GIVEN
Vapor Density (Air=1): NOT GIVEN
Specific Gravity: 81 LBS/FT3 FWD
Decomposition Temperature: UNKNOWN
Evaporation Rate And Ref: NOT APPLICABLE
Solubility In Water: INFINITE
pH: 7.0
Corrosion Rate (IPY): UNKNOWN
Fire and Explosion Hazard Data
Flash Point: NOT APPLICABLE
```

MONSANTO -- SODIOM HEXAMETAPHOSPHATE - SODIUM HEXAMETAPHOSP.. Page 2 01 3

Lower Explosive Limit: NOT GIVEN Upper Explosive Limit: NOT GIVEN

Extinguishing Media: NONFLAMMABLE, USE EXTINGUISHING MEDIA SUITABLE FOR

SURROUNDING FIRE.

Special Fire Fighting Proc: NONFLAMMABLE. USE STANDARD FIREFIGHTING

PROCEDURES FOR SURROUNDING MATERIALS IN THE FIRE.

Unusual Fire And Expl Hazrds: MATERIAL IS NOT COMBUSTIBLE.

#### Reactivity Data

Cond To Avoid (Stability): NONE SPECIFIED BY MANUFACTURER.

Materials To Avoid: NONE SPECIFIED BY MANUFACTURER.

Hazardous Decomp Products: NONE SPECIFIED BY MANUFACTURER.

Hazardous Poly Occur: NO

Conditions To Avoid (Poly): DOES NOT CCCUR.

#### Health Hazard Data

LD50-LC50 Mixture: LD50 RAT CRAL 6600 MG/KG.

Route Of Entry - Inhalation: YES

Route Of Entry - Skin: YES

Route Of Entry - Ingestion: NO

Health Hat Acute And Chronic: PRODUCT REPORTED NOT TO CAUSE SIGNIFICANT EYES: SLIGHTLY IRRITATING. SKIN: NON-IRRITATING. INGESTION: PRACTICALLY

NCN-TOXIC. CHRONIC: NONE SPECIFIED.

Carcinogenicity - NTP: NO

Carcinogenicity - IARC: NO

Carcinogenicity - OSHA: NO

Explanation Cardinogenicity: THIS COMPOUND CONTAINS NO INGREDIENTS AT CONCENTRATIONS OF 0.1% OR GREATER THAT ARE CARCINOGENS OR SUSPECT CARCINOGENS.

Signs/Symptoms Of Overexp: EYES: SLIGHT IRRITATION. SKIN: NON- IRRITATING.

INGESTION: NON-TOXIC.

Med Cond Aggravated By Exp: NONE SPECIFIED BY MANUFACTURER. Emergency/First Aid Proc: NONE SPECIFIED BY MANUFACTURER.

#### Precautions for Safe Handling and Use

Steps If Matl Released/Spill: SWEEP UP AND PLACE BULK MATERIAL IN CONTAINER. FLUSH SMALL SPILLS TO SEWER WITH PLENTY OF WATER. FLUSH SPILL AREA WITH WATER.

Neutralizing Agent: NONE SPECIFIED BY MANUFACTURER.

Waste Disposal Method: DISPOSE OF WASTE IN A LANDFILL IN ACCORDANCE WITH LOCAL, STATE AND FEDERAL REGULATIONS.

Precautions-Handling/Storing: PRODUCT IS VERY HYGROSCOPIC AND SHOULD BE STORED IN A DRY AREA IN POLY OR VAPOR BARRIER BAGS TO PREVENT MOISTURE PICKUP AND CAKING.

Other Precautions: HANDLE IN ACCORDANCE WITH GOOD INDUSTRIAL HYGIENE AND SAFETY PRACTICES, INCLUDING AVOIDING UNNECESARY EXPOSURE AND REMOVAL OF MATERIAL FROM EYES, SKIN AND CLOTHING. AVOID EYE CONTACT. MINIMIZE SKIN CONTAMINATION. AVOID EREATHING DUST.

#### Control Measures

Respiratory Protection: USE NIOSH APPROVED EQUIPMENT WHEN AIRBORNE

EXPOSURE IS EXCESSIVE.

Ventilation: PROVIDE VENTILATION TO MINIMIZE EXPOSURE. USE LOCAL EXHAUST AT SOURCES OF AIR CONTAMINATION.

Protective Gloves: NONE NORMALLY REQUIRED.

Eye Protection: NONE NORMALLY REQUIRED.

Other Protective Equipment: NCNE SPECIFIED BY MANUFACTURER.

Work Hygienic Practices: WASH AFTER HANDLING AND BEFORE EATING, DRINKING,

OR SMOKING, LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.

Suppl. Safety & Health Data: NONE SPECIFIED BY MANUFACTURER.

#### Transportation Data

#### 118/350.0010/ Data

Trans Data Review Date: 95094

DOT PSN Code: ZZZ

DOT Proper Shipping Name: NOT REGULATED BY THIS MODE OF TRANSPORTATION

IMO PSN Code: ZZZ

IMO Proper Shipping Name: NOT REGULATED FOR THIS MODE OF TRANSPORTATION

IATA PSN Code: ZZZ

IATA Proper Shipping Name: NOT REGULATED BY THIS MODE OF TRANSPORTATION

AFI FSN Code: 222

AFI Prop. Shipping Name: NOT REGULATED BY THIS MODE OF TRANSPORTATION

Disposal Data

Label Data

\_\_\_\_\_\_\_

Label Required: YES

Technical Review Date: 04APR95

Label Status: F

Common Name: SODIUM HEXAMETAPHOSPHATE

Chronic Hazard: NO Signal Word: CAUTION!

Acute Health Hazard-Slight: X

Contact Hazard-Slight: X

Fire Hazard-None: X

Reactivity Hazard-None: X

Special Hazard Precautions: PRODUCT REPORTED NOT TO CAUSE SIGNIFICANT EYES: SLIGHTLY IRRITATING. SKIN: NON-IRRITATING. INGESTION: PRACTICALLY NON-TOXIC. CHRONIC: NONE SPECIFIED. PRODUCT IS VERY HYGROSCOPIC AND SHOULD BE STORED IN A DRY AREA IN POLY OR VAPOR BARRIER BAGS TO PREVENT MOISTURE PICKUP AND CAKING. FIRST AID: NONE SPECIFIED BY MANUFACTURER. TARGET

ORGENS; UNKNOWN. Protect Eye: Y Protect Skin: Y

Protect Respiratory: Y

Label Name: MONSANTO COMPANY

Label Street: SOO N LINDBERGH BLVD

Label City: ST LOUIS

Label State: MO

Label Zip Code: 63167 Label Country: US

Label Emergency Number: 314-694-1000,800-424-9300(CHEMTREC)

Year Procured: 1995

URL for this msds http://siri.org. If you wish to change, add to, or delete information in this archive please sent updates to dan@siri.org.

FISHER SCIENTIFIC -- AMMONIUM SULFATE - AMMONIUM SULFATE, ACS

MATERIAL SAFETY DATA SHEET

NSN: 6810002646546

Manufacturer's CAGE: 22527

Part No. Indicator: B

Part Number/Trade Name: AMMCNIUM SULFATE

#### General Information

Item Name: AMMONIUM SULFATE, ACS Company's Name: FISHER SCIENTIFIC CO Company's Street: 585 ALPHA DR Company's City: PITTSBURGH

Company's State: PA Company's Country: US

Company's Zip Code: 15238-2911

Company's Emerg Ph #: 412-526-8300 201-796-7100 Company's Info Ph #: 412-526-8300 201-796-7100

Record No. For Safety Entry: 003 Tot Safety Entries This Stk#: 007

Status: SĒ

Date MSDS Prepared: 10JUN92 Safety Data Review Date: 10JUL95

Supply Item Manager: CX

Preparer's Company: FISHER SCIENTIFIC CHEMICAL DIV

Preparer's St Or P. O. Box: 1 REAGENT IN

Preparer's City: FAIR LAWN

Preparer's State: NJ

Preparer's Zip Code: 07410-5000

MSDS Serial Number: BXFQH Specification Number: O-C-265 Hazard Characteristic Code: C3

Unit Of Issue: BT

Unit Of Issue Container Qty: 500 GRAM

Type Of Container: BOTTLE Net Unit Weight: UNKNOWN

# Ingredients/Identity Information

Proprietary: NO

Ingredient: AMMONIUM SULFATE (2:1), DIAMMONIUM SULFATE; SULFURIC ACID,

DIÁMMONIUM SALT

Ingredient Sequence Number: 01

Percent: 100

NIOSH (RTECS) Number: BS4500000

CAS Number: 7783-20-2 CSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED

Other Recommended Limit: NOT ESTABLISHED

#### Physical/Chemical Characteristics

Appearance And Odor: ODORLESS, COLORLESS RHOMBIC CRYSTALS/WHITE GRANULES

Melting Point: 455F,235C Specific Gravity: 1.769 Solubility In Water: 76.7%

pH: 5.5

# Fire and Explosion Hazard Data

Extinguishing Media: DRY CHEMICAL, CARBON DIOXIDE, WATER SPRAY, OR REGULAR

FOAM. FOR LARGE FIRES, USE WATER SPRAY, FOG OR REGULAR FOAM.

Special Fire Fighting Proc: NO ACUTE HAZARD. MOVE CONTAINER FROM AREA IF

POSSIBLE, AVOID BREATHING VAPORS/DUSTS, KEEP UPWIND. Unusual Fire And Expl Hazrds: NEGLIGIBLE FIRE HAZARD WHEN EXPOSED TO HEAT/

#### Reactivity Data

Stability: YES

Cond To Avoid (Stability): STABLE UNDER ABNORMAL TEMPERATURESS & PRESSURES.

Materials To Avoid: AMMONIUM NITRATE & PCTASSUIM/SCDIUM-PCTASSIUM ALLOY, BASES, CHLORATES, CHLORINE, CONCRETE, COPPER & ALLOYS (SEE SUPP) Hazardous Decomp Products: GASEOUS AMMONIA, OXIDES OF SULFUR, TOXIC OXIDES OF NITROGEN, NITROGEN TRICHLORIDE

Hazardous Poly Occur: NO

Conditions To Avoid (Poly): MAZARDOUS FOLYMERIZATION HAS NOT BEEN REPORTED TO OCCUR UNDER NORMAL TEMPERATURES AND FRESSURES.

#### Health Hazard Data

LD50-LC50 Mixture: ORAL LD50(RAT): 2840 MG/KG

Route Of Entry - Inhalation: YES

Route Of Entry - Skin: NO

Route Of Entry - Ingestion: NO

Health Haz Acute And Chronic: INHALATION: MILD RESPIRATORY SYSTEM IRRITATION, ASTHMATIC ATTACK. SKIN: IRRITATION, CHRONIC CONTACT MAY CAUSE DERMATITIS. EYES: IRRITATION, CHRONIC CONTACT MAY CAUSE CONJUNCTIVITIS. INGESTION: IRRITATION OF THE MOUTH, ESOFHAGUS & STOMACH.

Carcinogenicity - NTP: NO Carcinogenicity - IARC: NO

Carcinogenicity - OSHA: NO

Explanation Carcinogenicity: NONE

Signs/Symptoms Of Overexp: IRRITATION, SCRE THROAT, COUGH, SHORTNESS OF BREATH, SYMPTOMS OF PULMONARY EDEMA, REDNESS, EYE PAIN, ABDOMINAL PAIN, NAUSEA, VOMITING, DIARRHEA.

Med Cond Aggravated By Exp: PERSONS WITH ASTHMA.

Emergency/First Aid Proc: INHALATION: REMOVE TO FRESH AIR. IF BREATHING HAS STOPPED, PERFORM CPR. KEEP PERSON WARM & AT REST. SKIN: WASH W/SOAP/MILD DETERGENT & LARGE AMOUNT OF WATER 15-20 MINS. EYES: WASH ASPIRATION HAZARD. OBTAIN MEDICAL ATTENTION IN ALL CASES. NOTE TO PHYSICIAN: NO SPECIFIC ANTIDOTE. TREAT SYMPTOMATICALLY & SUPPORTIVELY.

\*\*\*\*\*\*

#### Precautions for Safe Handling and Use

Steps If Matl Released/Spill: SWEEP UP & FLACE IN SUITABLE CLEAN, DRY CONTAINERS FOR RECLAMATION/LATER DISPOSAL, DON'T FLUSH INTO SEWER. KEEP UNNECESSARY PEOPLE AWAY.

Neutralizing Agent: NONE SPECIFIED BY MANUFACTURER.

Waste Disposal Method: DISPOSE OF IN ACCORDANCE WITH FEDERAL, STATE & LOCAL REGULATIONS. NFPA HAZARDOUS CHEMICAL 49.

Precautions-Handling/Storing: CESERVE ALL FEDERAL, STATE & LOCAL

REGULATIONS WHEN STORING. PROTECT CONTAINERS FROM PHYSICAL DAMAGE. Other Precautions: SEPARATE FROM STRONG CXIDIZERS SUCH AS CHLORATES, NITRATES, NITRITES & ALL OTHER INCOMPATIBLE SUBSTANCES. PREVENT EYE & SKIN CONTACT W/MATERIAL.

#### Control Measures

Respiratory Protection: NIOSH/MSHA APPROVED RESPIRATOR SELECTED BASED ON CONTAMINATION LEVELS IN THE WORK PLACE, THE SPECIFIC OPERATION & THE WORKING LIMITS OF THE RESPIRATOR.

Ventilation: LOCAL EXHAUST VENTILATION SYSTEM

Protective Gloves: REQUIRED

Eye Protection: SPLASH-PROOF/DUST-RESISTANT GOGGLES

Other Protective Equipment: EYE WASH, IMPERVIOUS CLOTHING & EQUIPMENT

Work Hygienic Practices: REMOVE & LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.

Suppl. Safety & Health Data: MATERIALS TO AVOID: NITRATES, STRONG OXIDIZERS, POTASSIUM CHLORATE, POTASSIUM NITRATE, POTASSIUM NITRITE, SODIUM HYPOCHLORITE, ZINC

#### Transportation Data

Trans Data Review Date: 95191

DOT PSN Code: ZZZ

DOT Proper Shipping Name: NOT REGULATED BY THIS MODE OF TRANSPORTATION

IMO PSN Code: ZZZ

IMO Proper Shipping Name: NOT REGULATED FOR THIS MODE OF TRANSPORTATION

IATA PSN Code: ZZZ

MATA Proper Shipping Name: NOT REGULATED BY THIS MODE OF TRANSPORTATION

AFI PSN Code: ZZZ

AFI Prop. Shipping Name: NOT REGULATED BY THIS MODE OF TRANSPORTATION

MMAC Code: NR

#### Disposal Data

#### label Data

label Required: YES

Technical Review Date: 10JUL95

Label Status: F

Common Name: AMMONIUM SULFATE

Chronic Hazard: YES Signal Word: CAUTION!

Acute Health Hazard-Slight: X

Contact Hazard-Slight: X

Fire Hazard-None: X

Reactivity Hazard-None: X

Special Hazard Precautions: INHALATION: MILD RESPIRATORY SYSTEM IRRITATION, ASTHMATIC ATTACK. SKIN: IRRITATION, CHRONIC CONTACT MAY CAUSE DERMATITIS. EYES: IRRITATION, CHRONIC CONTACT MAY CAUSE CONJUNCTIVITIS. INGESTION: IRRITATION OF THE MOUTH, ESCHAGUS & STOMACH. IRRITATION, SORE THROAT, COUGH, SHORTNESS OF BREATH, SYMPTOMS OF PULMONARY EDEMA, REDNESS, EYE PAIN, ABDOMINAL PAIN, NAUSEA, VOMITING, DIARRHEA.

Protect Eye: Y

Protect Skin: Y

Protect Respiratory: Y

Label Name: FISHER SCIENTIFIC CC

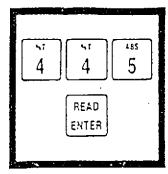
Label Street: 585 ALPHA DR

Label City: PITTSBURGH

Label State: PA

...

Label Zip Code: 15238-2911

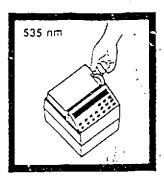

Label Country: US

Label Emergency Number: 412-526-9300 000-796-7100

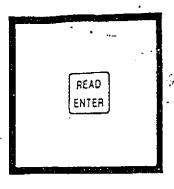
URL for this msds http://siri.org. If you wish to change, add to, or delete information in this archive please sent updates to dan@siri.org.

# APPENDIX H. HACH SPECTROPHOTOMETER FIELD TEST METHODS WORKPLAN – AUGMENT BIODEGRADATION

#### HRDO Method



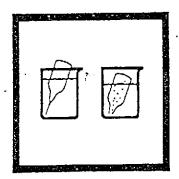

1. Enter the stored program number for dissolved oxygen.


Press: 4 4 5 READ/ENTER

The display will show: DIAL nm TO 535

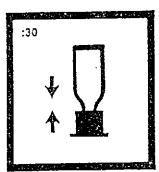
Note: Samples must be analyzed on site and cannot be stored; see Sampling and Storage below.




2. Rotate the wavelength dial until the small display shows:
535 nm



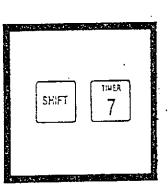
3. Press: READ/ENTER
The display will show:
mg/l O<sub>2</sub> HRDO



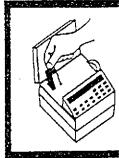

4. Fill a zeroing via (the blank) with at le 10 mL of sample. Fill blue ampul cap with sample.



5. Fill a High Range Dissolved Oxygen AccuVac Ampul with sample.

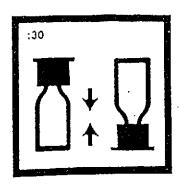

Note: Keep the tip immened while the ampul fills completely.




6. Without inverting the ampul, immediately place the ampul cap that has been filled with sample securely over the tip of the ampul. Shake the ampul for approximately 30 seconds.

Note: A small amount of the undissolved HRDO Reagent does not affect results.

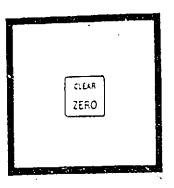
Note: The cap prevents contamination with atmospheric oxygen.



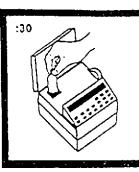

7. Press: SHIFT TIMER A two-minute reaction period enables oxygen, which was degassed during aspiration, to redissolve and react.



8. Place the Accuvation of the holder.


Note: Place the grip tab a rear of the cell holder.




9. When the timer beeps, the display will show:
mg/l O<sub>2</sub> HRDO
Shake the ampul for 30 seconds.



10. Place the blank impurhe cell holder. Close the light shield.



11. Press: ZERO
The display will show:
WAIT
then:
0.0 mg/l O<sub>2</sub> HRDO



12. Place the Accuvace ampul into the cell holder. Close the light shield. Wait approximate 30 seconds for the air bubbles to disperse from the light path.

Press: READ/ENTER

The display will show:
WAIT
then the result in mg/L
dissolved oxygen will b
displayed.

Note: In the constant-on more pressing READ/ENTER is not required. WAIT will not appear when the display stabilizes, read the result.

# SAMPLING AND STORAGE

The foremost consideration in sampling with the High Range Dissolved Oxygen AccuVae Ampul is to prevent the sample from becoming contaminated with atmospheric oxygen. This is accomplished by capping the ampul with an ampul cap in the interval between breaking open the ampul and reading the absorbance. If the ampul is securely capped, the ampul should be safe from contamination for several hours. The absorbance will decrease by approximately 3% during the first hour and will not change significantly afterwards.

Sampling and sample handling are important considerations in obtaining meaningful results. The dissolved oxygen content of the water being tested can be expected to change with depth, turbulence, temperature, sludge deposits, light, microbial action, mixing, travel time and other factors. A single dissolved oxygen test rarely reflects the accurate over-all condition of a body of water. Several samples taken at different times, locations and depths are recommended for most reliable results. Samples must be tested immediately upon collection although only a small error results if the absorbance reading is taken several hours later.

### ACCURACY CHECK

The results of this procedure may be compared withe results of a titrimetric procedure or dissolved oxygen meter.

#### PRECISION

In a single laboratory, using a standard solution of 7.22 mg/L  $O_2$  determined by the Winkler method and two representative lots of reagent with the DR/2000, a single operator obtained a standard deviation of  $\pm$  0.20 mg/L  $O_2$ .

### INTERFERENCES

The following do not interfere at a level of 10 mg which is in excess of naturally occurring levels of Cr3+, Mn2+, Fe2+, Ni2+, Cu2+ and NO<sub>2</sub>-