RECEIVED

ARCADIS U.S., Inc.
100 Montgomery Street, Suite 300
San Francisco, CA 94104
Tel 415.374.2744
Fax 415.374.2745
www.arcadis-us.com

ACEH Low Threat Closure Policy Checklist and Site Conceptual Model

Former BP Station #11109, 4280 Foothill Blvd Oakland, California ACEH Case #RO0000426

ENVIRONMENT

"I declare that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Date:

June 28, 2013

Contact:

Hollis E. Phillips

Phone:

415.432.6903

Email:

Hollis.phillips@arcadis-

us.com

Our ref:

GP09BPNA.C106.N0000

Submitted by:

ARCADIS U.S., Inc

Hollis E. Phillips, PG Project Manager

Executive Summary

ACEH Low Threat Closure Policy Checklist and Site Conceptual Model Former BP Service Station No. 11109 4280 Foothill Boulevard Oakland, California

Executive Summary

This Alameda County Environmental Health (ACEH) Low Threat Closure (LTC) Policy Checklist and Site Conceptual Model (SCM) was prepared by ARCADIS U.S., Inc. (ARCADIS) on behalf of Atlantic Richfield Company (ARCO), a BP affiliated company, for the former BP service station No.11109 located at 4280 Foothill Boulevard in Oakland, California (the Site; Appendix A). This report has been prepared in response to discussions between ARCADIS and ACEH during a meeting on March 26, 2013. In the meeting ACEH presented ARCADIS with a draft version of ACEH's LTC Policy Checklist and stated that the LTC Policy Checklist, along with a SCM would be required to determine if the Site is a candidate for closure as a low-threat fuel site.

This report package presents relevant site background information, summarizes previous site investigations, lists the removal action activities and results, presents an assessment of risk to public health and the environment, and includes an evaluation of site conditions relevant to the State Water Resources Control Board (State Water Board) *Low-Threat Underground Storage Tank Case Closure Policy*, adopted by the State Water Board on May 1, 2012 (State Water Board 2012) per the ACEH-provided LTC Policy Checklist.

The objective of this report is to provide the documentation required for ACEH to approve site closure as a low-risk fuel site as described in the LTC Policy (State Water Board 2012). This report is organized into the following sections:

Section 1 - Executive Summary

Section 2 – SCM and Appendices

Section 3 – ACEH LTC Policy Checklists

General Criteria A through H

Media Specific Criteria - Groundwater

Media Specific Criteria – Petroleum Vapor Intrusion to Indoor Air

Media Specific Criteria – Direct Contact and Outdoor Air Exposure

Section 4 – Supplemental ACEH SCM Forms

Site Well Construction Details

Well Survey

Site data collected to date has demonstrated that both the general and applicable media-specific criteria are satisfied according to the measures described in the State Water Board LTC Policy, and therefore, the leaking

Executive Summary

ACEH Low Threat Closure Policy Checklist and Site Conceptual Model Former BP Service Station No. 11109 4280 Foothill Boulevard Oakland, California

UST case is generally considered to present a low threat to human health, safety, and the environment for the following reasons:

- Petroleum hydrocarbon sources, including free product and other potential secondary sources, have been removed to the extent practical.
- Current groundwater concentrations are: Gasoline Range Organics (GRO) ranging from below detection (<50 micrograms per liter [μg/L]) to 16,000 μg/L, benzene ranging from below detection (<0.50 μg/L) to 250 μg/L, toluene ranging from below detection (<0.50 μg/L) to 620 μg/L, ethylbenzene ranging from below detection (<1.0 μg/L) to 2,200 μg/L, and methyl tert-butyl ether (MTBE) ranging from below detection (<0.50 μg/L) to 17 μg/L. Concentrations of constituents of potential concern (COPCs) above screening levels are limited to the site and not migrating off-site, as indicated by historical data collected at downgradient monitoring well, C-10, located on the adjacent Chevron Site (ACEH Case #RO0000427).</p>
- The Site has been adequately characterized.
- The dissolved GRO, benzene, and MTBE plumes are stable and/or decreasing and do not exceed the maximum extents from the point of release as specified in the LTC Policy.
- Sensitive receptors are not likely to be impacted, including surface-water bodies, municipal wells and drinking water sources based on the limited historical extent of the dissolved GRO, benzene, and MTBE plumes and plume stability.
- The Site presents no current or potential risk to human health or the environment.

Petroleum-hydrocarbon affected groundwater appears to be limited to monitoring wells located at the southern extent of the site (MW-5, MW-10, MW-11 and MW-12), which have reported the highest historical groundwater concentrations. Concentrations of COPCs above ESLs were also detected at MW-4, which is downgradient of the dispenser islands. Separate phase hydrocarbons (SPH) were detected in the most recent monitoring event (March 2013) in monitoring locations MW-5, MW-10, and MW-12, located onsite the southwestern corner of the site and downgradient of the USTs.

In 17 monitoring events conducted between the First Quarter 2006 through the First Quarter 2013 both a southwest and northwest groundwater flow direction were reported at the Site. Historical interpretation of groundwater monitoring data by previous consultants indicated a shift in the groundwater flow direction from southwest to northwest in the third quarter 2009. However, review of historical field notes and groundwater contours indicates that the interpretation of groundwater contours following 2009 did not consider groundwater measurements from the adjacent property, and thus the observed shift in flow direction is not an accurate depiction of local groundwater flow direction. Groundwater elevations collected onsite in March 2013 and groundwater elevations collected at the adjacent Chevron Site during the first quarter 2013, support the current interpretation that the overall groundwater flow direction in the vicinity of the Site is to the southwest, as observed prior to 2009. No data for the site was available prior to 2006.

Executive Summary

ACEH Low Threat Closure Policy Checklist and Site Conceptual Model Former BP Service Station No. 11109 4280 Foothill Boulevard Oakland, California

A cumulative 187 gallons of free product and free product/water mixture have been removed from the site to date. SPH was detected on-site during the most recent monitoring event (March 2013) at thicknesses ranging from sheen to 0.04 feet in monitoring wells MW-5, MW-10, and MW-12. Absorbent socks were placed in each of these wells in May 2013 to remove the minimal SPH observed in March 2013. Results from dual-phase extraction and SPH bail-down events presented in the summary letter submitted to ACEH in June 2013 indicate that SPH remaining at the site is limited in extent and mobility. Additionally, historical SPH has not been detected at off-site monitoring well C-10 (adjacent Chevron Site) located downgradient of the impacted wells, indicating that SPH is not migrating.

All the wells that contain (or recently contained) COPC concentrations in groundwater generally indicate decreasing or stable trends. Groundwater samples collected from MW-11, which is located in the vicinity of MW-5, MW-10, and MW-12, during the most recent sampling event (First Quarter 2013) indicated that COPCs have decreased from initial concentrations observed following installation in 2009. Similarly, historical data indicate concentrations of MTBE at MW-4 located cross gradient of the dispenser islands have steadily decreased. Trends for COPCs in wells MW-5, MW-10, and MW-12 cannot currently be determined due to the presence of free product; however, concentrations of COPCs are anticipated to continue to decrease following removal actions discussed above and continued attenuation of residual free product. COPCs (with the exception of MTBE which was below ESLs during the most recent sampling event) have not been detected in downgradient well C-10, indicating that impacts to groundwater due to residual free product on-site are not migrating off-site.

Site data collected to date has demonstrated that both the general and applicable media-specific criteria are satisfied according to the measures within State Water Board LTC Policy, and therefore, the leaking UST case is generally considered to present a low threat to human health, safety, and the environment. As presented in Section 3 of this report, the site fulfills each of the *General Media Specific* criteria (classes A through H) in accordance with the State Water Board LTC Policy. Class A of the *Groundwater-Media Specific* criteria is fulfilled according to available site data. The Site qualifies for an exemption from the *Petroleum Vapor Intrusion to Indoor Air* criteria as the Site is an active commercial fueling facility and the historical release characteristics are comparatively insignificant relative to exposures from small surface spills and fugitive vapor releases that typically occur at active fueling facilities. The Site satisfies the *Direct Contact and Outdoor Air Exposure* criteria as it fulfills the requirements in the soil 0 to 5 feet bgs, 5 to 10 feet bgs, and 0 to 10 feet bgs scenarios and Volatilization to Outdoor Air scenario.

Available data from the Site suggests that the Site is adequately characterized and there are no additional data gaps. The Site appears to be a candidate for closure as a low-risk fuel site as described in the State Water Board LTC Policy. ARCADIS recommends that a status of no further action (NFA) be granted, and the Site be granted regulatory closure. During case closure evaluation ARCADIS requests the following:

- Suspension of groundwater monitoring and reporting, which includes the August 2013 sampling event, pending approval of site closure by the ACEH.
- Preparation of a work plan for monitoring well decommissioning upon site closure approval by ACEH.

SCM Table

SCM Element	SCM Sub-Element	Description	Potential Data Gaps	How To Address	References
Geology and Hydrology	Regional	Geology: According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the Oakland Sub-Area of the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains a sequence of alluvial fans. The alluvial fill thickness ranges from 300 to 700 feet deep. There are no well-defined aquitards such as estuarine muds. The largest and deepest wells in this sub-area historically pumped one to two million gallons per day at depths greater than 200 feet. Overall, sustainable yields are low due in part to low recharge potential. The Merritt sand in West Oakland was an important part of the early water supply for the City of Oakland. It is shallow (up to 60 feet), but before the turn of the last century, septic systems contaminated the water supply wells.	None	NA	ARCADIS U.S. Inc. 2010. Revised Feasibility Study and Corrective Action Plan, Former BP Service Station No. 11109. October 8.
		Hydrology: Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of ground-water flow is from east to west or from the Hayward Fault to the San Francisco Bay. Ground-water flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east to west direction. In the southern end of the study area however, near the San Lorenzo Sub-Area, the direction of flow may not be this simple. According to information presented in East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, the small set of water level measurements available seemed to show that the ground water in the upper aquifers may be flowing south, with the deeper aquifers, the Alameda Formation, moving north. The nearest natural drainage is Peralta Creek, located approximately 1,500 feet west of the Site. Peralta Creek flows generally north to south at its closest distance from the Site.			
	Site	Geology: Soils underlying the Site have been consistently characterized as interbedded layers of sandy clay or silty clay, clayey silt, clayey sand, and clayey gravel with occasional sand or gravelly sand.	None	NA	ARCADIS U.S. Inc. 2010. Revised Feasibility Study and Corrective Action Plan, Former BP Service Station No. 11109. October 8.
		Hydrology: Groundwater has typically been encountered at the site from approximately 6 to 30 feet bgs. Resulting groundwater elevations have varied from approximately 10 ft above mean sea level to 35 ft amsl. DTW measurements in the most recent sampling event (March 2013) ranged from 9.48 ft below top of casing (bTOC) at MW-10 to 14.36 ft bTOC at MW-6. Resulting groundwater surface elevations on-site ranged from 29.05 feet above mean sea level (ft msl) at MW-8 to 34.06 ft msl at MW-9.			ARCADIS U.S. Inc. 2013. Fourth Quarter 2012 and First Quarter 2013 Semi-Annual Groundwater Monitoring Report, Former BP Station #11109, 4280 Foothill Blvd, Oakland, California. April 30.
		Groundwater flow at the Site has historically been reported as varying between northwest and southwest at gradients ranging from 0.05 ft/ft to 0.006 ft/ft. Historical interpretation of groundwater monitoring data by previous consultants indicated a shift in the groundwater flow direction from southwest to northwest in the third quarter 2009. However, review of historical field notes and groundwater contours indicates that the interpretation of groundwater contours following 2009 did not consider groundwater measurements from the adjacent property, and thus the observed shift in flow direction is not entirely supported. Groundwater elevations collected in March 2013 and consideration of groundwater measurements collected at the adjacent Chevron Site support the current interpretation that the overall groundwater flow direction in the vicinity of the Site is to the southwest, as observed prior to 2009. Groundwater elevations calculated for the Site and the adjacent Chevron facility yielded an average horizontal gradient of approximately 0.03 ft/ft.			
Surface Water Bodies and other potential receptors		The closest surface water body is Peralta Creek, located approximately 3,500 feet west of the site. No other surface water bodies are located within a one-half mile radius of the site.	None	NA	Broadbent & Associates, Inc. 2008. Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California. November 7.
Nearby Wells		A sensitive receptors survey was conducted by Alton Geoscience on 29 January 1992. This survey concluded that no public water supply wells are located within 2,500 feet of the site and no private water supply wells are located within 1,000 feet of the site. In 2013 the East Bay Municipal Utility District (EBMUD) confirmed no public water supply wells exist within 2,500 feet of the site. The nearest residence was stated to be adjacent the site. The playing fields of Fremont High School are located approximately 100 feet from the Site and the nearest hospital is approximately 6,000 feet away.	None	NA	Broadbent & Associates, Inc. 2008. <i>Initial Site Conceptual Model, Former BP Station #11109</i> , 4280 Foothill Boulevard, Oakland, California. November 7. Phone conversation with Tom Francis, Senior Civil Engineer of EBMUD, on June 27, 2013.
Beneficial Uses		According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, the City of Oakland does not have "any plans to develop local groundwater resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." However, the California Regional Water Quality Control Board – San Francisco Bay Region's Basin Plan denotes existing beneficial uses of municipal and domestic supply (MUN), industrial process supply (PROC), industrial service supply (IND), and agricultural supply (AGR) for the East Bay Plain ground-water basin.	None	NA	Broadbent & Associates, Inc. 2008. Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California. November 7.

SCM Element	SCM Sub-Element	Description	Potential Data Gaps	How To Address	References
Local Water Supply		Local water is supplied by the East Bay Municipal Water District (EBMUD). The supplier's water source is provided by Sierra snow melt and the Pardee Reservoir. The current water supply management plan for EBMUD indicates potential use of the East Bay Plain Basin for temporary storage of drinking water in wet years for eventual extraction; however, planned injection and extraction wells are located 8 miles south the site and will be screened within the deep aquifer.	None	NA	Broadbent & Associates, Inc. 2008. Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California November 7. East Bay Municipal Utility District. 2012 Water Supply Management Program 2040 Plan. April.
Consituents of Potential Concern		Soil: The constituents of potential concern (COPCs) in soil at the Site include Total Petroleum Hydrocarbons as Gasoline (TPH-g), benzene, toluene, ethylbenzene, and xylenes (collectively BTEX).	None	NA	Broadbent & Associates, Inc. 2008. Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California November 7. Broadbent & Associates, Inc. 2009. Soil and Ground-Water Investigation Report, Former BP Service Station No. 11109, 4280 Foothill Boulevard, Oakland, California. June 17.
		Groundwater: The constituents of potential concern (COPCs) in soil at the Site include Total Petroleum Hydrocarbons as Gasoline (TPH-g), benzene, toluene, ethylbenzene, and xylenes (collectively BTEX).	None	NA	ARCADIS U.S. Inc. 2013. Fourth Quarter 2012 and First Quarter 2013 Semi-Annual Groundwater Monitoring Report, Former BP Station #11109, 4280 Foothill Blvd, Oakland, California. April 30.
Potential Sources		Historical reports and observed contaminant concentrations indicate the primary source area is the UST complex located in the northeastern portion of the Site. Concentrations of petroleum hydrocarbons have also been observed in shallow soils beneath the dispenser pump islands.	HC in southern portion appear to be smear-zone mass	NA	Broadbent & Associates, Inc. 2008. Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California November 7.
Nature and Extent of Environmenta Impacts	COC Extent in Soil	Petroleum-hydrocarbon affected soil has been encountered during removal of USTs, excavation activities, and soil boring and monitoring well installation events at the site. Laboratory analysis of soil samples collected from soil borings confirmed the presence of petroleum hydrocarbons in soils beneath the site at concentrations exceeding SFR-RWQCB Environmental Screening Levels (ESLs) for TPHg and BTEX constituents (Table K-2). Elevated petroleum hydrocarbon concentrations were primarily detected in soil samples collected at 10 to 30 feet bgs from soil borings installed downgradient of the UST complex and dispenser islands. Maximum concentrations of COCs appear to primarily have been detected within the range of historical groundwater elevations, indicating historical impacts are primarily within the smear zone. Maximum concentrations of COCs, detected in samples collected from soil boring location MW-11 at 24 feet bgs, are as follows: TPHg at 6,500 mg/kg, benzene at 22 mg/kg, toluene at 86 mg/kg, ethylbenzene at 95 mg/kg, and xylenes at 460 mg/kg. Elevated concentrations of TPH (greater than 1,000 mg/kg) were also observed at boring locations MW-5, MW-10, and MW-12, additionally within the range of historical groundwater elevation fluctuations. Soil analytical data collected during the monitoring well installation activities in 1990 by AGS and subsurface investigations in 1990 by KEI and 1994 by EMCON indicate that the lateral extent of COCs in the vicinity of the USTs and at the northwestern, northeastern, and southeastern boundaries have been delineated. The extent of COCs in soil on the southwestern boundary has not been delineated on-site beyond exceedances observed in soil boring locations MW-5, MW-11, MW-11, and MW-12; however, historical soil analytical data indicates that impacts are primarily limited to the smear zone at all four boring locations. Soil boring data collected from downgradient monitoring well C-10 at the adjacent Chevron site indicates that COCs from the Site were not detected above	None	NA	Broadbent & Associates, Inc. 2008. Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California. November 7. Broadbent & Associates, Inc. 2009. Soil and Ground-Water Investigation Report, Former BP Service Station No. 11109, 4280 Foothill Boulevard, Oakland, California June 17. Cambria Environmental Technology, Inc. 2003. Well Installation Report/Site Summary, Chevron Station #9-0076, 4265 Foothill Boulevard, Oakland, California. October 8. SFRWQCB. 2013. Environmental Screening Levels, Interim Final. May.
	COC Extent in Groundwater	The site specific clean up limits used are based on SFR-RWQCB ESLs (Table F-3) for TPHg (100 μg/L), benzene (1 μg/L), toluene (150 μg/L), ethylbenzene (300 μg/L), total xylenes (1,800 μg/L) and MTBE (13 μg/L). Groundwater has been sampled and analyzed for fuel hydrocarbons and oxygenates on a quarterly or semi-annual basis since 1990. Historically, analytes detected above ESLs in groundwater include TPHg, Benzene, Toluene, Ethylbenzene, Xylenes, and MTBE. Historical and recent groundwater data indicates that groundwater impacts are limited to the southern portion of the site downgradient of the former USTs. Maximum TPHg and BTEX concentrations were detected at wells MW-5, MW-10, and MW-12, at the southern extent of the site. Data collected during the most recent groundwater sampling event (March 2013) indicate that MTBE is still above screening levels in well MW-4 and TPHg and benzene are above screening levels in well MW-11. Monitoring wells MW-5, MW-10, and MW-12 were not sampled due to the presence of SPH. Offsite downgradient well, C-10, has not indicated the presence of site COCs since monitoring began in 2003 with the exception of MTBE which has been below ESLs since 2012. The nature and extent of COCs exceeding ESLs at the site is discussed below by analyte.		NA	ARCADIS U.S. Inc. 2013. Fourth Quarter 2012 and First Quarter 2013 Semi-Annual Groundwater Monitoring Report, Former BP Station #11109, 4280 Foothill Blvd, Oakland, California. April 30. SFRWQCB. 2013. Environmental Screening Levels, Interim Final. May.

ARCADIS

SCM Element	SCM Sub-Element	Description	Potential Data Gaps	How To Address	References
Nature and Extent of Environmental Impacts	COC Extent in Groundwater	TPH-g: The historical maximum concentration of 270,000 μg/L was detected in a groundwater sample collected on October 7, 1994 from well MW-5, located at the southern extent of the site. The most recently observed concentration at MW-5 was 67,000 μg/L in March 2010.During the most recent sampling event on March 20, 2013, TPHg was detected in monitoring well MW-11 above the ESL at a concentration of 16,000 μg/L. Concentrations of TPHg above ESLs have been observed within the past two years at wells MW-4, MW-7, and MW-11. Samples have not been collected from monitoring wells MW-5 and MW-12 since March 2010 and well MW-10 since February 2011 due to the presence of free product; however the TPHg concentrations in the most recently collected samples exceeded ESLs. (67,00 μg/L at MW-5; 61,000 μg/L at MW-10; 39,000 μg/L at MW-12). **Benzene**: The historical maximum concentration of 13,000 μg/L was detected in a groundwater sample collected on October 3, 1991 from well MW-5, located at the southern extent of the site. The most recently	None	NA NA	ARCADIS U.S. Inc. 2013. Fourth Quarter 2012 and First Quarter 2013 Semi-Annual Groundwater Monitoring Report, Former BP Station #11109, 4280 Foothill Blvd, Oakland, California. April 30. SFRWQCB. 2013. Environmental Screening Levels, Interim Final. May.
		observed concentration at MW-5 was 1,400 μg/L in March 2010. During the most recent sampling event on March 20, 2013, benzene was detected in monitoring well MW-11 above the ESL at a concentration of 250 μg/L. Concentrations of benzene above ESLs have been observed within the past two years at wells MW-7 and MW-11. Samples have not been collected from monitoring wells MW-5 and MW-12 since March 2010 and well MW-10 since February 2011 due to the presence of free product; however the benzene concentrations in the most recently collected samples exceeded ESLs (1,400 μg/L at MW-5; 7,000 μg/L at MW-10; 4,800 μg/L at MW-12).			
		Toluene: The historical maximum concentration of 7,400 μg/L was detected in a groundwater sample collected on October 3, 1991 from well MW-5, located at the southern extent of the site. The most recently observed concentration at MW-5 was 380 μg/L in March 2010. During the most recent sampling event on March 20, 2013, toluene was detected in monitoring well MW-11 above the ESL at a concentration of 620 μg/L. Concentrations of toluene above ESLs have been observed within the past two years at well MW-11 only. Samples have not been collected from monitoring wells MW-5 and MW-12 since March 2010 and well MW-10 since February 2011 due to the presence of free product; however the toluene concentrations in the most recently collected samples exceeded ESLs (380 μg/L at MW-5; 5,300 μg/L at MW-10; 1,000 μg/L at MW-12).			
		Ethylbenzene: The historical maximum concentration of 3,100 μg/L was detected in groundwater samples collected on October 28, 2009 and March 23, 2010 from wells MW-10 and MW-12, respectively. Both wells are located at the southern extent of the site. During the most recent sampling event on March 20, 2013, ethylbenzene was detected in monitoring well MW-11 above the ESL at a concentration of 680 μg/L. Concentrations of ethylbenzene above ESLs have been observed within the past two years at well MW-11 only. Samples have not been collected from monitoring wells MW-5 and MW-12 since March 2010 and well MW-10 since February 2011 due to the presence of free product; however the ethylbenzene concentrations in the most recently collected samples exceeded ESLs (620 μg/L at MW-5; 2,800 μg/L at MW-10; 3,100 μg/L at MW-12).			
		Total xylenes: The historical maximum concentration of 12,000 μg/L was detected in a groundwater sample collected on October 28, 2009 from well MW-10, located at the southern extent of the site. The most recently observed concentration at MW-5 was 1,800 μg/L in March 2010. During the most recent sampling event on March 20, 2013, xylenes were detected in monitoring well MW-11 above the ESL at a concentration of 2,200 μg/L. Concentrations of xylenes above ESLs have been observed within the past two years at well MW-11 only. Samples have not been collected from monitoring wells MW-5 and MW-12 since March 2010 and well MW-10 since February 2011 due to the presence of free product; however the xylenes concentrations in the most recently collected samples exceeded ESLs (1,800 μg/L at MW-5; 6,400 μg/L at MW-10; 12,000 μg/L at MW-12).			
		MTBE: The historical maximum concentration of 2,002 μg/L was detected in a groundwater sample collected on April 7, 1994 from well MW-5, located at the southern extent of the site. During the most recent sampling event on March 20, 2013, MTBE was detected in monitoring well MW-4 above the ESL at a concentration of 17 μg/L. Concentrations of MTBE above ESLs have been observed within the past two years at wells MW-3, MW-4, and MW-11.Samples have not been collected from monitoring wells MW-5 and MW-12 since March 2010 and well MW-10 since February 2011 due to the presence of free product; however the MTBE concentrations in the most recently collected samples were below method detection limits (<5.0 μg/L at MW-5; <100 μg/L at MW-10; <25 μg/L at MW-12).			

ARCADIS Page 3 of 6

SCM Element	SCM Sub-Element	Description	Potential Data Gaps	How To Address	References
Nature and Extent of Environmental Impacts	SPH Extent in Groundwater	SPH was first detected in on-site well MW-5 during quarterly monitoring and sampling activities conducted on December 4, 1991 by KEI. Free product has been historically observed in wells MW-5, MW-10, MW-11, and MW-12 with thicknesses ranging from sheen to 1.30 ft. Consistent free product measurement and removal began in 1992 for MW-5 and 2009 for MW-10, MW-11, and MW-12. A cumulative volume of 187 gallons of free product and free product/water mixture has been removed at the site to date. Free product thicknesses increased at MW-5, MW-10, and MW-12 following a dual-phase extraction pilot study; therefore, three LNAPL bail-down events were performed monthly from November 2012 to January 2013 to characterize the extent of residual LNAPL. Results from the bail-down test indicate the extent of LNAPL remaining at the site is limited, and decreasing rates of LNAPL recharge during bailing activities indicate the mobility of LNAPL at the site is very limited. Additionally, LNAPL has not been detected at downgradient off-site well C-10 at the adjacent Chevron station, indicating that LNAPL is not migrating.	None	NA NA	Broadbent & Associates, Inc. 2008. <i>Initial Site Conceptual Model, Former BP Station #11109, 4280 Foothill Boulevard, Oakland, California.</i> November 7. ARCADIS U.S. Inc. 2013. Results of DPE Test and SPH Removal, Former BP Station #11109, 4280 Foothill Blvd, Oakland, California. May.
Migration Pathways	Potential Conduits	Although ARCADIS has not conducted a utility survey at this Site, typical utility trenches are located at a depth of 2 to 4 feet bgs. Although historically, groundwater has been encountered as shallow as 2.3 feet bgs, groundwater has generally been encountered 7 to 15 feet bgs.	None	NA	ARCADIS U.S. Inc. 2013. Fourth Quarter 2012 and First Quarter 2013 Semi-Annual Groundwater Monitoring Report, Former BP Station #11109, 4280 Foothill Blvd, Oakland, California. April 30.
Potential Release Mechanisms and Exposure Pathways	Volatilization	A potential release mechanism at the Site may include volatilization of COPCs in subsurface soil to indoor air of current and future onsite commercial buildings, outdoor air, or air within a trench used by a future onsite utility worker. Another potential release mechanism at the Site may include volatilization of COPCs in groundwater to indoor air of current and future onsite commercial buildings, outdoor air, and/or indoor air of offsite commercial buildings or future offsite residences, or air within a trench used by a future onsite utility worker. In general, exposure to petroleum vapors migrating from soil or groundwater to indoor air may pose unacceptable human health risks. However, in many petroleum release cases, potential human exposures to vapors are mitigated by bioattenuation processes as vapors migrate toward the ground surface. Additionally, exposures to volatile petroleum hydrocarbon constituents associated with historical fuel system releases are insignificant relative to typical exposures from surface spills and fugitive vapors at active service stations. Therefore, the exposure pathway for inhalation of indoor air from possible volatilization of site-related soil and groundwater constituents is potentially complete but insignificant for current and future onsite service station workers. However, to support risk-based decision making for the Site, it is assumed that COPCs in groundwater may volatilize into current and future offsite buildings. Although the COPCs may volatilize from subsurface soil and/or groundwater to outdoor air or air within a utility trench and may be inhaled by onsite or offsite potential receptors, this exposure pathway is considered to be insignificant given the atmospheric dilution effects from wind.	None	NA	
	Leaching to Groundwater	Petroleum hydrocarbons released from USTs and associated piping and dispensers also may leach from soil to groundwater. This release mechanism is likely responsible for the majority of historical groundwater impacts. However this release mechanism has likely been partially mitigated through the removal of impacted soil, weathering, remediation, and natural attenuation. Current leaching to groundwater risks are due to the presence of free product in monitoring wells MW-5, MW-10, and MW-12. Historical and recent LNAPL removal activities have removed a significant fraction of recoverable LNAPL at the site to the extent practicable. Residual LNAPL may serve as a source to groundwater; however, downgradient concentrations at the adjacent Chevron site indicate that impacts to groundwater are limited in extent and are not migrating off-site.	None	NA NA	
	Direct Contact with Groundwater	As described previously, groundwater at the Site is not used as a potable source at this time and is not expected to be used as a drinking water source in the near future. No water wells are located within a 1,000-foot radius of the site. Therefore, potential direct contact exposures to COPCs in groundwater, such as tap water ingestion, dermal contact with tap water and inhalation of volatile organic compounds (VOCs) released from tap water, are not expected to occur for current and future onsite commercial workers, and current and future offsite commercial workers. In the future, onsite construction workers may be directly exposed to groundwater while performing routine utility activities in subsurface trenches. Typical utility trenches are located at a depth no greater than 8 feet bgs. During the March 2013 groundwater monitoring event, groundwater was encountered at depths ranging from approximately 10 to 15 feet bgs. Typically at construction sites when groundwater is exposed, dewatering occurs or workers are not required to work in standing water. Thus, it is unlikely that future onsite utility trench workers will be directly exposed to constituents in groundwater.	None	NA	

BP 11109 SCM ARCADIS

Page 4 of 6

SCM Element	SCM Sub-Element	Description	Potential Data Gaps	How To Address	References
Potential Release Mechanisms and Exposure Pathways	Direct Contact with Soil	Constituents adhered onto dust particles may migrate from exposed subsurface soil by wind erosion to outdoor air and be breathed by potential onsite and offsite receptors. This transport mechanism is unlikely given that re-development of the Site is not planned, and the Site is either covered with a building, fuel dispensers, landscaping or asphalt pavement and soil is not exposed at the surface. However, potential receptors including future onsite construction/utility trench workers may be directly exposed to constituents in surface and subsurface soil via incidental ingestion, dermal contact and inhalation of dust particles in trench air. If subsurface work is conducted at the Site, monitoring may be required during excavation.	None	NA	
Potential Receptors	Potential Ecological Receptors	Since the Site is devoid of ecological habitat and surface water is absent, it is reasonable to assume that ecological receptors are absent from the Site and will also not be present in the future. As discussed previously, the Site is located approximately 3,500 feet east of Peralta Creek, which is the nearest surface water body to the Site. Based on the approximate groundwater flow direction at the Site (southwest), it is not possible that groundwater from the Site may migrate towards the surface water receptor, with subsequent exposures to aquatic organisms. Additionally, given the sizable distance to the creek and the potential for COPCs to bioattenuate and dilute, this transport mechanism is considered insignificant. Based on this analysis, potential exposure pathways for ecological receptors are incomplete. Potentially complete exposure pathways for human receptors are presented in the following section.	None	NA	
	On-site and Off-site	Potential receptors were identified based on current and future land use(s) at the Site. Current and reasonably anticipated future land use at the Site are commercial (i.e., continued operation as a service station). Potential current and future human receptors at the Site include: • on-site commercial workers, • off-site commercial workers on adjacent, downgradient properties, and • future on-site construction/utility workers. Although residential properties are located adjacent to the northwestern boundary of the Site (crossgradient), the downgradient Site is commercial service station (LUST Cleanup Site; Case # R00000427) and likely to remain commercial use in the future. However, future hypothetical off-site residents are considered potential receptors to support conservative risk-based decision making for the Site.	None	NA	
Exposure Pathway Evaluation	Current and Future On-site Commerical Workers	No complete exposure pathways The COPCs may volatilize from soil and groundwater to soil gas and migrate to the indoor air of on-site building structures. Inhalation of volatile COPCs in indoor air by on-site commercial workers at this site may be a potentially complete exposure pathway. However, the potential vapor migration exposure pathway for current and future onsite indoor service station workers is likely to be insignificant compared to routine exposures associated with the profession. The workplace vapor concentrations are routinely much higher than any levels expected from vapor migration from the subsurface. Given the presence of indoor and exterior building sources of petroleum hydrocarbons, and the fact that fuel operations are currently conducted at the Site and that operations at the Site are likely to remain the same in the future, subsurface residual impacts are unlikely to contribute significantly to indoor VOC levels. Thus, inhalation of volatile COPCs in indoor air by current and future on-site commercial workers is not a significant exposure pathway.	None	NA NA	
	Current and Future Off-Site Commercial Workers	Groundwater transport off-site and vapor migration into indoor air The COPCs may volatilize from groundwater to soil gas and migrate to the indoor air of off-site building structures. Inhalation of volatile COPCs in indoor air by current and future off-site commercial workers is a potentially complete exposure pathway. However, given that the downgradient Site is commercial service station (LUST Cleanup Site; Case # RO0000427) and likely to remain commercial use in the future inhalation of volatile COPCs in indoor air by current and future off-site commercial workers is likely to be insignificant compared to routine exposures associated with the profession. Direct-contact exposure pathways (i.e., ingestion, dermal contact, and inhalation of volatile emissions from tap water) from groundwater are currently incomplete, since the community uses municipal-supplied water for potable uses. It is assumed that current land and beneficial water uses will continue in the foreseeable future. Therefore, these pathways are also assumed to be incomplete in the reasonably foreseeable future for off-site commercial workers located on downgradient, adjacent properties.	None	NA	

ARCADIS Page 5 of 6

SCM Element	SCM Sub-Element	Description	Potential Data Gaps	How To Address	References
Exposure Pathway Evaluation	Future On-Site Construction/ Utility Workers	Inhalation (outdoor air) of vapors Inhalation (outdoor air) of dust particles Incidental ingestion of surface and subsurface soil Potential future on-site utility trench workers may be directly exposed to COPCs in surface and subsurface soil via incidental ingestion, dermal contact and inhalation of dust particles in trench air. Since soil data indicates that the Site satisfies the Direct Contact and Outdoor Air Exposure — Utility Worker (soil: 0 to 10 feet bgs) criteria stated in the State Water Resources Control Board (State Water Board) Low Threat Closure (LTC) Policy14, these pathways are also assumed to be incomplete in the reasonably foreseeable future for utility workers located on onsite.	None	NA	
	Current and Future Hypothetical Off- Site Residents	Groundwater transport off-site and vapor migration into indoor air The COPCs may volatilize from groundwater to soil gas and migrate to the indoor air of off-site building structures. Inhalation of volatile COPCs in indoor air by current and future off-site residents is a potentially complete exposure pathway. However, given that the downgradient Site is commercial service station (LUST Cleanup Site; Case # RO0000427) and likely to remain commercial use in the future, completion of the exposure pathway is unlikely.	None	NA	

<u>Abbreviations</u>

bgs = below ground surface

msl = mean sea level

ft/ft = feet per foot

btoc = below top of casing

ACEH = Alameda County Environmental Health

DPE = dual-phase extraction

LUFT = leaking underground fuel tank
EBMUD = East Bay Municipal Utility District

COPCs = constituents of potential concern

GRO/TPH-G = Total Petroleum Hydrocarbons as Gasoline Range Organics

DRO/TPH-D = Total Petroleum Hydrocarbons as Diesel Range Organics

MTBE = methyl tertiary-butyl ether

USTs = underground storage tanks

SPH = separate phase hydrocarbons
SFRWQCB = San Francisco Bay Regional Water Quality Control Board

ESLs = environmental screening levels

mg/kg = milligrams per kilogram

μg/L = migrograms per liter

VOCs = volatile organic compouns

List of Appendices

Appendix A - Site Location and Site Plan Figures

Appendix B - Groundwater Flow Direction and Historical Gradients Table

Appendix C - Soil Boring Logs

Appendix D - Historical Soil Data
Appendix E - Groundwater Data and Figures

Appendix F - Historical Soil Vapor Data

Appendix A

Site Location Map and Site Plan Figures

ARCADIS

2

Appendix B

Groundwater Flow Direction and Historical Gradients Table

Table 2 Historical Groundwater Flow Direction and Gradient CA-11109

4280 Foothill Blvd., Oakland, CA 94601

Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
3/6/2006	Southwest	0.05
9/5/2006	Southwest	0.05
2/21/2007	Southwest	0.02
9/7/2007	Southwest	0.03
3/6/2008	Southwest	0.01
9/3/2008	Southwest	0.006
3/4/2009	Southwest	0.02
9/30/2009	Northwest	0.07
10/28/2009	Northwest	0.04
3/23/2010	Northwest	0.03
6/10/2010	Northwest	0.02
9/16/2010	Northwest	0.07
2/23/2011	Northwest	0.04
9/28/2011	Northwest	0.02
3/8/2012	Northwest	0.06
9/5/2012	West-Northwest	0.04
3/20/2013	Southwest	0.03

Notes:

N/A = Not Available

ft/ft = Feet per foot

Note: All data collected following April 2006 was collected by Broadbent & Associates, Inc. The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants.

Appendix C

Soil Boring Logs

PROJECT NO. 30-103 DATE 01/29/90 CLIENT Mobil Oil Corporation ALTON GEOSCIENCE BORING NO LOCATION 4280 Foothill Blvd., Cakland LOGGED BY B. Nagle ORILLER Bayland LOG OF Sheet _ EXPLORATORY BORING Drilling method Hollow-stem auger Field location of boring: Hole Dia .. Casing Installation Data 4" perforated (0.020") pipe 32-20', #3 lonestar sand 33-18', bentonite pellets 18-17'; cement seal to surface. NIGH Ground Elev. Datum Water Level 6.72 20.28 Depart Thro. 11:00 13:51 Litte-Bow 29475 Group graphic Symbol Symbol (utcs) 1/29/90 2/05/90 Dele Countr DESCRIPTION 3" asphalt; 6" baserock CLSILTY CLAY: Black, moist, high plasticity. 25 Appearance of fine to coarse grained sand; color change to dark brown. 50 3,4,8 CL6_ SILTY CLAY: Mottled olive green/brown, moist, 8. moderate plasticity, stiff; gravels up to $rac{1}{4}$ ". 10 SANDY CLAY: Brown, moist, low plasticity, very CL0.13,1 40 stiff; gravels up to ½". 12 Driller felt auger out of gravels at 13' 14 SILTY CLAY: Tan, damp to moist, medium plasticity, stiff, 40 16 5,7,9 blue-gray staining along occasional rootlets. Y 18. CL 20. Change to very moist, increase in 1" carbon granules. 5,9,10 25 22 24 SANDY CLAY: Blue-gray to tan, moist, low plasticity, stiff. 4,9,15 50 26 100 color change to light gray. Shoe 28 CL 30 5, 6, 9 Top of 32'-331' sample wet with sandy gravel stringers ∇ up to 2". 7,10,14 32 SILTY CLAY: Mottled brown and gray, damp, medium plasticity, very stiff. Boring terminated at 331'. Free ground water encountered at approximately 31'.

	ALI		-	USCIE LO ORAT	G OF	BORING	PROJECT CLIENT LOCATION	No. 30-1 Mobil Oi 4280 Fo H. Nag	03 1 Corpor othill B	re 01/30 ation lvd., Oa	/90 kland	BORIN B-4 Sheet	- 4
- Circled	locatio	-	-				LOGGED	thed HOII	OW-STEED	LER		01	
Ling	10cmic		Q-Q1	ung:			Orilling ma	thad	approximately a	Hole Dia	10"		
	7 7	1 1	n	Π!			Cautas bas	taketina Anta	4" per	forated	0.020	'l páp	p p
1	POTH	0	U	L-1				taliation Data #3 Tone	-		-		-
1	Œ	<u></u>	0	,	40		183-17	; neat c	ement se	al 174 to	surfa	perre	LS
Groun	id Elev	. A	164		Datum						***************************************		
			Τ.			Water Level	17,07	16.32			T	1	
Blow	PYD	0	3 4 m	Soll Group	6.ft/ho-	Throw	13:30	13:15			1		
Counts	OVA	b	1	Symbol (uses)	graphic Symbol	Oate	1/30/90	2/05/90					
			L	3,555,540					SCRIPTION				~~~~
				The same of the sa	1700	4" aspha	al t, 6" 1	aserock					
		2											
						SILTY CLAY:	Dark br	cwn, dam	o to mois	st, high	plasti	city,	
		4_				stiff.							
			口	-	1414		******						
4,7,7	20	6_				SILTY CLAY:			and the second second second				
			_			stiff; mino	or fine s	and and	angular ç	ravels u	ip to 4	",	
		8_			1111				Market Street				
						SANDY CLAY:	Light b	rown, dar	mp, mediu	m plasti	city,	stiff	;
		10_				occasional	carbon g	ranules.					
3,5,7	40												•
		12			141	Driller fel	t increa	se in res	sistance	at 13½ f	eet.		
		14				CLAYEY SAND				nse; occ	asiona	l fine	e to
						coarse grai	ned grav	els up to) ‡",				
		16_					+						
6,9,11	25				7/7/	Driller fel	t smooth	er drilli	ng at ap	proximat	ely 17	'	
	-	18					- ANN CONTROL TO				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		20_	口	∇									
4,5,13		夏			4411	SANUY CLAY:			A Company of the second	and the complete to the first of the control of the		iff	
		22_				CLAYEY SAND	: Light	brown, we	et, međiu	m dense.			
					///A								
		24		_72	U.I.A								
					7//A	SILIY CLAY:	Mottle	d blue gr	ay and b	rown, lo	w plas	ticity	(,
5.9.12	75	26_		1		very stiff;	minor v	ery fine	sand.				
		1		1	9/4/A								
		26_				utiller nee	ded more	pressure	to dril	l at 27'			
3,7,10	70		Ш	ļ									
		Ī		× 1		CLAYEY SILT	: Whitei	sh gray t	o tan, m	oist, lo	w plas	ticity	(,
) : <u>{</u>	4//	very stiff;	some fi	ne sand.	- Contract - Contract				
				ſ	8/4								
						Boring term		Control of the Contro	Contract of the contract of th				
				1		Free ground	water e	ncountere	d at app	roximate	ly 20	feet.	
								Colorador Company	· · · · · · · · · · · · · · · · · · ·				
				.									
		-1		1	1			N-					

MONITORING WELL CONSTRUCTION DETAIL

PROJECT #30-103

NOTE DRAWING SHOT TO SCALE

ALTON GEOSCIENCE 1170 BURNETT AVE., STE'S CONCORD, CA. 94520

MONITORING WELL CONSTRUCTION DETAIL

ALTON GEOSCIENCE 1170 BURNETT AVE., STE S CONCORD, CA. 94520

ALTON GEOSCIENCE LOG OF EXPLORATORY BORING		L_{I}	CLIENT BP	30-0248 DA Dil Co., Service Sta 280 Foothill Blvd., C B. Nagle APPF	Dakland, CA	BORING NO. MW-5 WELL NO. MW-5 Page 1 of 1
FIELD SKETCH OF BORING LOCATI	ЮN		DOLLING METH	10D C.M.E. 55, H		IAM. 10"
(SEE SITE PLAN)			CAMPIED TYPE	: California Modif	ied Split-Spoon Sample	<u> </u>
			CASING DATA	4" diameter, Sch	edule 40 PVC, 18 blank	, 15' slotted
TOP OF CASING ELEVATION36	.55		DRILLER_S	oils Exploration		
		ГТ	DEPTH TO WATER	18.08'	18.55'	18,66
8 F 9		1 111	DATE	10/03/91	10/15/91	12/16/91
NOW COUNTS per 1/2 foot sample Sample Construction	92	PROFILE	TIME		prò	
BLOW COLMTS (per 1/2 fox) SAMPLE DEPTH (FT) Well Construction	USCS	医上		COM	IMENTS	
			4" Asphalt, 2" Road	Base		
- 2 Christy	Ī		SE TV CLAY	: dark brown, dan	np, moderate plasticit	y.
Box	l	M				
	CL		SILTY CLAY	: dark brown with	olive gray mottling, st	iπ;
3, 4, 10 6 4"	100	1//		and and gravel.	imp, low plasticity.	
- sch. 40 - 8 PVC		1//	SANUYCL	(1 : Olika Ölesti, de	Hib! toss biggins.	
Casing		144	CDAVELVS		n, damp, medium der	166.
9, 16, 14 1 - 10	Si		GRAVELI	MI4D: 01140 8100.	.,	
- 12	SY		SAND: olive	green, damp, fin	e grained.	
	—	1000				
- 14	Si		GRAVELY	SAND: olive greet	i, damp.	
4. 5, 10 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18	C		olive green grained sar	staining along oc id.	np, medium plasticity casional rootlets, min	OI IRI B
7, 9, 11 -20	s	P	GRAVELY	SAND: olive gray rocarbon sheen.	to brown to gray, moi	st, medium
1 2 4 1 1		1			f, with minor sands; b	slue-gray
6, 11, 14 T - 24 PVC			staining ald	ong occasional roc	otlets at 25'.	
6, 11, 14 3 0.020" Slot	N	ıL				
6, 11, 14			SAME, firm	1 .		
1 I-1:28 IE	11.		CLAVEYS	AND: mottled far	and bluish gray, wet	very stiff.
	1	C	S CRAVELY	AND TEN WAR	t, loose to medium de	nse;
4, 6, 9	1 8	P.	abundant	silty sand lenses.		
- 32 End Cap	計	- I		ND: light brown, n	noist, stiff to very stiff;	occasional
5, 8, 12 34 36 36	<u></u>	ВС	ORING TERMINATE		BELOW GRADE.	

							-					
1	OF	EXP	SCIENC LORATO					PROJECT NO. 30-0248 DATE DRILLED 9/09/91 CLIENT BP Oil Co., Service Station No. 30-0248 LOCATION 4280 Foothill Blvd., Oakland, CA MW-6 LOGGED BY B. Nagle APPROVED BY				
FIELC	SKE	TCH C	F BORING	LOÇA	TION		-				Page 1 of 1	
(\$EE	SITE	PLAN)								ISA HOLE D		
										fied Spilt-Spoon Sample edule 40 PVC, 20' blank		
TOP	OE C	A CILICA	ELEVATIO	ak i					oils Exploration	30018 40 1 10, 20 Blaim	, To diction	
101	O1 02	20114				-		DENIL DIEN				
ह		6	Well	2			DEPT	H TO WATER	20.73*	21.20'	21.12	
2 fox	Щ	(F)				ш	DATE		10/03/91	10/15/91	12/16/91	
BLOW COUNTS (per 1/2 foot)	SAMPLE	XEPTH (FT)	35		nscs	PROFILE	TIME		-uar	**	-	
ಹರತ	in .	5	30	2] 5	4			with the same of the same	IMENTS		
		-	~ 1	П	-	777	4" As	phair 1* Road	Base and Pea Gr	avel		
		- 2	Christy Box					SILTY CLAY	dark brown, dam	p.		
		- 4										
2, 3, 4		- 6	4.		CL			SILTY OLAV	tan damn firm o	some sand, occasiona	i oravel	
		. 0	sch. 40					SILTI OLAT	itan, danp, iiin,	30116 3410, 0004516114	9. 4. 0	
	1	- 8	PVC Casing					Abundant pe	a gravel at approx	rimately 7 to 9 feet.		
	_	- 10	0209									
2, 3, 3					SW	7.7.7			n, damp, loose, fil	ne grained, no fines; v	vith thin	
		12				MAI	SAME AND THE P			e green, damp,: occas	sional	
		- 14			SM			gravels to 1/2		5 , 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,		
2, 9, 10	I	- - 16										
	NAME OF TAXABLE PARTY.	- 10				VA			•	e green, damp, mediu	m	
		- 18		H F	CL			plasticity, stif	f. -			
		- 20		L		144		a correct a t	OR VALUE IN	The desired		
4, 8, 14			d*	相			X	grained.	ND: Ian, damp, m	edium dense, fine to d	xyaro#	
		- 22	sch, 40	IB			******					
		- 24	PVC 0.020"	IB								
4, 8, 12		- 26	Slot	IB					ase in sand conte	nt, bluish gray staining	g at	
		- 20		目	SC			25.5' to 26'.				
	1	- 28		目目								
		- 30		目								
7, 13, 16	丄	-	1	目				SILTY - CLA	YEY SAND: light 1	lan, moist, medium de	nse.	
		- 32										
	1	- 34	End Cap			M		OII TV OARIO	1996	n dense; with occasio	nai	
9, 17, 20	t	-			i SM		$ \times $	gravel lenses		n gondo, min ucada	r IQI	
	1	- 36				TIGHT.			******************	1 014 02102		
	1	- 38				ВО	RING "	TERMINATED	AT 36.5 FEET BI	ELUW GRADE.		

ALTON GEOSC LOG OF EXPLO BORING		4	<u> </u>	CLIENT BP	Oil Co., Service : 280 Foothill Blvd	DATE DRILLED 9/09/ Station No. 30-0248 ., Oakland, CA PROVED BY	91 MW-7 WELL NO. MW-7 Page 1 of 1			
FIELD SKETCH OF E	SORING LOCATI	ЮN								
(SEE SITE PLAN)						HSAHOL	E DIAM. 12"			
				SAMPLER TYP	E Continuous	V - 4.1 - 40 OVC 10 EX	Nank 15 slotted			
				CASING DATA	6" diameter, Se	chedule 40 PVC, 19.5 b	Siaria, 13 sionad			
TOP OF CASING EL	EVATION		-	ORILLER	clis Exploration		COLUMN TO THE PROPERTY OF THE			
	<u> </u>	Г	I	DEPTH TO WATER	14.93'	15.16	15.21"			
	Weil		щ	DATE	10/03/91	10/1\$/91	12/16/91			
SAMPLE DEPTH (FT)	# 55	nscs	PROFILE	TIME	+	4.59				
	\$3	S	E C		CC	MMENTS				
	1		阿	3" Asphalt, 6" Boad	i Base					
- 2	Christy	CL	1//	SILTY CLAY	r: dark brown, d	amp, medium plastici	ity.			
-	Вох	-	1//	CLAYEY SA	ND: bluish gray	, damp; occasional g	ravel up to			
4	.41			1" diameter.						
III 6	6"			SAME: brown to bluish gray, damp; abundant gravel,						
-	sch. 40 PVC	SC	1//	occasional sility clay lens.						
8	Casing									
- 10										
			177	SILTY CLA	: mottled bluish	gray - orange brown	ı, damp,			
- 12		C	1//		medium plasticity; stained along rootiets. SILTY SAND: bluish gray to brown, damp.					
- 14		Sh	499				n damn			
			1//	SILTY CLA	SILTY CLAY: mottled bluish gray - orange brown, damp, medium plasticity; stiff.					
16			1//			- orange brown, dan	np.			
- 18	100		1//	Medium pla	asticity; stiff.	- Oldingo Breisin ess				
B			1//	2		the grach	damp medium			
20	. 1	C		plasticity, v	ery stiff.	lsh gray - olive green				
- 22	sch. 40		1//	SILTY CLA	Y: brown, damp	, medium plasticity, \	very stiff.			
- 24	PVC 0.020*		W	SANDY CL	AY: olive green	, wet, low plasticity.				
H-~	Slot	s	c ///	7	COLOR DESCRIPTION OF THE PROPERTY OF THE PROPE	et, medium dense.				
- 26		c	1//	SANDY CL	.AY: tan, moist t	o wet, low plasticity.				
- 28			1	CLAVEVE	AND ten wat	medium dense; som	e orange			
		S	c//	brown mo	itling.	modium admes				
1 30		-	-19	2		en de se se se se se se est de de se	will incressing			
- 32)L//	SANDY C	LAY: tan, moist	to wet, low plasticity, along horizontal plar	5\III, IIKI 643IIIY 186.			
-34	End Cap		1	sand at 34	, day nachons	aloug course par	.,			
36			В	ORING TERMINATE	D AT 34.5 FEET	BELOW GRADE.				

or property

A

1.	OF	EXP	SCIENCE LORATORY				PROJECT NO. 30-0248 DATE DRILLED 9/11/91 CLIENT BP Oil Co., Service Station No. 30-0248 LOCATION 4280 Foothill Blvd., Oakland, CA MW-8 WELL NO. MW-8					
FIELD	SKE	TCH O	F BORING LOCAT	LION			LOGGED BY B. Nagle APPROVED BY Page 1 of 1					
(SEE :	SITE	PLAN)				1	DRILLING MET	HOD C.M.E. 55	, HSAHO	LE DIAM. 9"		
,									odified Split-Spoon Sa			
				2" diameter, S	chedule 40 PVC, 19'	blank, 13' slotted						
TOP	OF CA	ISING	ELEVATION		_		DRILLER	Soils Exploration		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Ê			5	Г	[DE	PTH TO WATER	22.37'	22.70	22.47		
15 2 for	쁘	Ē	- CCF		9	DA	TE	10/03/91	10/15/91	12/16/91		
BLOW COUNTS (per 1/2 foot)	SAMPLE	ОЕРТН (FT)	Well	SSS	PROFILE	TIN	Æ			**		
ಹರತ	\$	O	30	Š	H			CC	DMMENTS			
			Christy			3*	Asphalt, 4" Con	crete, 12" Road	Base and Pea Gra	vel		
		- 2	Box				SILTY CLAY	': dark brown, da	amp, moderate plas	sticity.		
		- 4	141			1						
1, 1, 2	П	- 6	2.				SANDY CLA	Y: mottled light	- dark brown, moist	. low		
		•	sch, 40 PVC			1			arse grained sand.			
		- 8	Casing									
1, 3, 5	П	- 10		CL		1						
	щ	- 12				1	SAME: light	brown, moist, fi	rm; fine grained sa	nd.		
		-				1						
		- 14				1						
5, 6, 9		- 16				1	CH TV ČLAV	hour dome	low plasticity, stiff;	ahv indant		
		- 18					coarse grain		iow plasticity, still,	alamanı		
				GC	16	-	7-800000		-			
11, 7, 9		- 20		72				RAVEL: lens.				
		- 22	sch. 40	CL			SILTY CLAY coarse grain		edium plasticity, sti	ft; abundant		
		- 24	PVC E		111	1	- Warse grain	CU SQINJ.				
6, 10, 11			0.020*			T						
.,, .	Ш	- 26		sc			CLAYEY SA	ND: light brown	ı, wet, medium den	\$ 0 .		
		- 28		 -								
		- 30	End Cap	CL		1	SILTY CLAY	': light brown, da	ımp, medium plastk	citv. stiff:		
5, 7, 9		-			1//	1_			and and black rootl			
		- 32			BORI	NG.	TERMINATED A	T 31.5 FEET BE	LOW GRADE.			
		- 34				-						
		- - 38										
		-										
	L	- 38	L									

FELD SKETCH OF BORING LOCATION (SEE SITE PLAN) TOP OF CASING ELEVATION TOP OF CASING ELEVATION DHILLING METHODC.M.E. 55, HSAHOLE DIAM8* SAMPLER TYPECalifornia Modified Split-Spoon Sampler CASING DATA2* diameter, Schedule 40 PVC, 20* blank, 10* elotted DRILLERSolls Exploration DEPTH TO WATER	ALTON GEO LOG OF EX BORING	DSCIENCE PLORATORY		1	CLIENT BP (30-0248 D. Oil Co., Service St. 280 Foothill Blvd., B. Nagle APP	ation No. 30-0248 Oakland, CA	BORING NO. 1/91 MW-9 WELL NO. MW-9 Page 1 of 1
DATE 10/03/91 10/15/91 12/16/91 TIME COMMENTS 3" Asphalt, 6" Concrete, 12" Road Base and Pea Gravel CL SILTY CLAY: dark brown, damp, high plasticity, firm. SANDY CLAY: dark brown, damp, firm, soft; fine to coarse grained sand. SANDY GRAVEL: olive green to brown, damp, medium dense; with clay matrix. SANDY CLAY: brown, damp, stiff; with abundant gravel. No gravels at 16'. SAME: very stiff, occasional carbonacious gravels. SAME: stiff, with orangish brown mottling, SANDY SAME: stiff.	(SEE SITE PLA	N)		-	SAMPLER TYPE CASING DATA	California Modi 2" diameter, Sch	fied Split-Spoon Sa	LE DIAM. 8 ⁴
3" Asphalt, 6" Concrete, 12" Road Base and Pea Gravel CL SILTY CLAY: dark brown, damp, high plasticity, firm. SANDY CLAY: dark brown, damp, firm, soft; fine to coarse grained sand. SANDY GRAVEL: olive green to brown, damp, medium dense; with clay matrix. SANDY CLAY: brown, damp, stiff; with abundant gravel. No gravels at 16'. SAME: very stiff, occasional carbonacious gravels. SAME: stiff, with orangish brown mottling, SANDARD SAME: stiff; with orangish brown mottling, SANDARD SAME SAME: stiff; with orangish brown mottling, SANDARD SAME SAME SAME SAME SAME SAME SAME SAME	BLOW COUNTS (per 1/2 fact) SAMPLE	Well	USCS	PROFILE	DATE	10/03/91	10/15/91	
5, 12, 13 -30 SILTY CLAY: Blown, damp, median places, 15, 12, 13 minor fine to coarse grained sand. BORING TERMINATED AT 31.5 FEET BELOW GRADE.	2, 2, 4 9, 18, 14 1 3, 7, 11 4, 10, 14 5, 12, 13	Box 4 6 2° sch. 40 PVC Casing 0 2 4 6 8 20 22 sch. 40 PVC 0.020° Slot 26 28 End Cap 30 32	GM		SANDY CLAY grained sand SANDY GRA with day mail SANDY CLA No gravels a SAME: very SAME: stiff, minor fine to	: dark brown, dark Y:dark brown, dark brown, dark brown, damp, 1 16'. Stiff,occasional of with orangish brown, damp, o coarse grained	mp, high plasticity mp, firm, soft; fin to brown, damp stiff; with abundary carbonacious gra rown mottling, 57	e to coarse o, medium dense; ant gravel.

Client	Former BP Station 11109	Date	March 23, 2009					
Address 4280 Foothill Boulevar		Drilling Co.	Woodward Drilling rig type: BK-81					
	Oakland, CA	Driller	Dave					
Project No.	E11109	Method	Hollow Stem Auger Hole Diamete	r; 10 inches				
Logged By:	Collin Fischer	Sampler:	24-inch length split spoon					
Well Pack	sand: 6 ft. to 30 ft	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 7 ft. to 30 ft.				
	bent.: 4 ft. to 6 ft.	_	Casing Diameter: 4 in.	Screen Slot Size: 0.020-in.				
	grout: 0 ft. to 4 ft.	Depth to GW:	first encountered; 13' bgs.	tatic				

No.	Blow Count	Time	1	1	Wel	Dep				l Ditt
		Hille	Recov.		Detai			ithologic Column	Descriptions of Materials and Conditions	PID (PPM)
				, a		- ·			Cleared to 6.5' bgs, with air knife	
				*			1			
							,			
		ļ	 	1			4			
							з			
]							
			ļ			'— ایر	4		***************************************	
							_			
						% – .	٥			
					ļ	$\mathbb{Z}_{ -}$	6			
					_		7		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
					\equiv		_			
		L			\equiv	:: 	8		Clavou sit with eard MI dark gravish brown maint hard townstantials	
					\equiv		9			197
	17				\equiv	::: !!	<u> </u>	17:1-	20 70 000 000 000 000 000 000 000 000 00	
/W-10 10'	20	0835	75		\equiv		10			
	21				\equiv					447
					≣[∷. 7—1	11	SC	65% coarse grained sand, 20% clay, 15% fine gravel	
/\\\-10 12'	50/5	กรสก	50		≣₿	⊞/ ⊢ ,	12 .			
10 12	27	0070			≣₿		12		Silty sand, SM, dark gravish brown, wet, very dense	1027
	36				≣₿		13 🗸	SM		1021
	42				≣₿		'			
1W-10 14'		0850	100		≣[# 1	14	<i>/</i>	***************************************	
ĺ					≣∄	⊞/ ⊢ ,	4	ممر		
					Ξŀ		15	1		
1W-10 16'		0855	0		≣ŀ		'رر 16			
********	12				≣₿			CL	Clay, CL, dark yellowish brown, moist, hard, high plasticity	70.9
					≣⊩	1	17		100% clay	
0444046	1	0000	- I		≣!					
100-10 18		0900	/5		≣⊫		18		Clavey sand with grayel SC dark grayish brown, wat dance	366
					≣∄	1	19			300
	18				≣∄					
IW-10 20'	20	0905	100		<u>=</u> [2	20		Market Company of the	
			Pagava	. mu					Comments: Strong hydrogarhon odar from surface to total death	
			Recove	y		··········			Comments. Strong hydrocarbon odor from surface to total depth.	
								Ì		
			Sample							
									GTD 4T1 1G	
									ENVIRONMENTAL, INC.	
	1W-10 12' 1W-10 14' 1W-10 16'	1W-10 10' 20 21 36 50/5" 1W-10 12' - 27 36 42 1W-10 14' 50/5" 10 10 10 114 1W-10 16' 15 12 12 12 12 12 12 16 18	14 17 17 17 18 18 18 18 18	14		14	9 14 17 18 19 19 14 17 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	10	9 14 17 18 9 14 19 10 11 SC 11	Sc

SOIL BORING LOG

Boring No. MW-10

Sheet: 2 of 2

Client	Former BP Station 11109	Date	March 23, 2009
Address	4280 Foothill Boulevard	Drilling Co.	Woodward Drilling rig type: BK-81
	Oakland, CA	Driller	Dave
Project No.	E11109	Method	Hollow Stem Auger Hole Diameter: 10 inches
Logged By:	Collin Fischer	Sampler:	24-inch length split spoon
Well Pack	sand: 6 ft. to 30 ft	Well Construction	Casing Material: Schedule 40 PVC Screen Interval: 7 ft. to 30 ft
	bent.: 4 ft. to 6 ft.		Casing Diameter: 4 in. Screen Slot Size: 0.020-in.
	grout: 0 ft. to 4 ft.	Depth to GW:	: Virst encountered: 13' bgs. static

	Sample	Blow	Sa	mple	Well	Depth	Lithologic		PID
уре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPN
		12 25 32				21	sc	Clayey sand with gravel, SC, dark grayish brown, wet, very dense 65% coarse grained sand, 25% clay, 15% fine gravel	176
	MW-10 22'	36 17 18	0915	75		22			70.8
	MVV-10 24'	20 26 10	0920	75		24	CL	Clay, CL, dark yellowish brown, moist, hard, high plasticity 100% clay	245
		18 20				25	OL.	Sandy clay, CL, dark grayish brown, moist, hard, medium plasticity	245
5	MW-10 26'	22 10 18	0930	100		26 27		70% clay, 30% fine grained sand	43.2
	MW-10 28'	20 23 12	0935	100		 28	SC	Clayey sand, SC, grayish brown, moist, dense 70% very fine grained sand, 30% clay	33.8
 6	MW-10 30'	12 15 18	0940	100		29 30	CL	Silty clay, CL, dark grayish brown, moist, hard, medium plasticity 60% clay, 40% silt	
					, , <u>, , , , , , , , , , , , , , , , , </u>	31			
						³³ ₃₄	:		
~ ~									
						37 38			
				~~~~~~		39			
_				<del></del>		40		0	
								Comments:	

STRATUS ENVIRONMENTAL, INC.

Client	Former BP Station 11109	Date	March 23, 2009
Address	4280 Foothill Boulevard	Drilling Co.	Woodward Drilling rig type: BK-81
	Oakland, CA	Drîller	Dave
Project No.	E11109	Method	Hollow Stem Auger Hole Diameter: 10 inches
Logged By:	Collin Fischer	Sampler:	24-inch length split spoon
Well Pack	sand: 6 ft. to 30 ft	Well Construction	Casing Material: Schedule 40 PVC Screen Interval: 7 ft. to 30 ft.
	bent.: 4 ft. to 6 ft,	············	Casing Diameter: 4 in. Screen Slot Size: 0.020-in.
	grout: 0 ft. to 4 ft.	Depth to GW:	V first encountered: 13'bgs. static ▼

	Sample	Blow	Sar	nple			1				
Туре	No.	Count	Time	Recov.	1	Well etail		epth icale	Lithologic Column	Descriptions of Materials and Conditions	PID
			71110				- -	1 1 2	Octuani	Cleared to 6.5' bgs. with air knife	(PPM
							// <u>-</u>	3 4 5 6	W		
		12 17					 		ML	Clayey silt with gravel, ML, dark grayish brown, moist, hard, low plasticity 60% silt, 25% clay, 15% fine gravel	155
S	MW-11 10'	20 23 16 23 29	1305	50				10 11	CL	Clay with gravel, CL, dark grayish brown, moist, hard, low plasticity 70% clay, 30% medium to coarse grained sand	118
	MW-11 12'	32 26 28 30	1315	75				12 12 13		Silty sand with gravel, SM, dark grayish brown, wet, very dense 60% medium to coarse grained sand, 25% silt, 15% medium gravel	51,3
	MW-11 14'	32 7 8 10	1320	100				_ 14  _ 15		Silty sand with gravel, SM, dark grayish brown, wet, medium dense 60% medium to coarse grained sand, 25% silt, 15% medium gravel Sandy clay, CL, dark grayish brown, moist, very stiff, medium plasticity	205
S	MW-11 16'	12 10 12 15	1330	100				16 - 17		75% clay, 25% coarse grained sand Clay with gravel, CL, dark yellowish brown, moist, hard, medium plasticity 85% clay, 15% fine to medium gravel	51.1
	MW-11 18'	18 12 13 15	1335	100				18  19		Sandy clay, CL, dark yellowish brown, moist, very stiff, medium plasticity 80% clay, 20% coarse grained sand	42,8
	MW-11 20'	16	1340	100 Recove		1		20		Comments: Strong hydrocarbon odor from surface to total depth.	
				Sample	_						
										STRATUS ENVIRONMENTAL, INC.	

SO	П		$\cap$	DI	IN	C	1 /	$\sim$	2
ഠവ	IL.	0	u	м	IIV	•	L	U	"

Boring No. MW-11

Sh	eet:	2	of	2
		_	•	_

Client	Former BP Station 11109	Date	March 23, 2009	
Address	4280 Foothill Boulevard	Drilling Co.	Woodward Drilling	rig type: BK-81
	Oakland, CA	Driller	Dave	
Project No.	E11109	Method	Hollow Stem Auger	Hole Diameter: 10 inches
Logged By:	Collin Fischer	Sampler:	24-inch length split spo	on
Well Pack	sand: 6 ft. to 30 ft	Well Construction	Casing Material: Sch	edule 40 PVC Screen Interval; 7 ft. to 30 ft.
	bent.: 4 ft. to 6 ft.		Casing Diameter: 4 in	Screen Slot Size; 0.020-in.
	grout: 0 ft. to 4 ft.	Depth to GW:	first encountered: 1	3'bgs. static

;	Sample	Blow	Sa	mple	Well	Depth	Lithologic		PID
Туре	No.	Count	Time	Recov.	Details	Scale	Column	Descriptions of Materials and Conditions	(PPM
		30					CL		397
	i	32				21			
		50/4"	T *********					Clayey sand with gravel, SC, dark yellowish brown, moist, very dense	
	MW-11 22'	-	1345	100		22		65% medium graiend sand, 25% clay, 15% fine gravel	
		25	]				SC		1397
		27			J:: ∃ :::	23			
		30		ļ				Clayey sand with gravel, SC, dark yellowish brown, wet, very dense	
S	MW-11 24'	32	1355	75		24		60% medium grained sand, 20% clay, 20% fine gravel	-
İ	Ì	13							97.9
		16				25			
ļ		20						Sandy clay, CL, dark grayish brown, moist hard, medium plasticity	
	MW-11 26'	26	1400	100		26	CL	70% clay, 30% fine frained sand	
	İ	15	ļ						473
		15				27			
-		20						Clayey sand, SC, dark grayish brown, moist to wet, dense	
	MW-11 28'	21	1405	100		28	SC	60% fine grained sand, 40% clay	
İ		12							214
		18				29	<u>.</u> .		
		20					CL	Clay, CL, dark grayish brown, moist to wet, hard, medium plasticity	
S	MW-11 30'	26	1425	100		30		100% clay	
i						_			
						31		***************************************	
					ĺ	_			
						— ³²			
İ									
						— ³³			
·						— ³⁴		***************************************	
I					İ				
						— ³⁵		***************************************	
	-								
						—36			
						-,,			
						$-^{37}$		***************************************	
						-,			
						— ³⁸		***************************************	
	-					39			
						-"			
						- ₄₀	ĺ		
		,			l l	40			
								Comments:	

STRATUS Environmental, inc.

ARCO_11109 Boring_Log_MWY-11_032300

Client	Former BP Station 11109	Date	March 24, 2009	
Address	4280 Foothill Boulevard	Drilling Co.	Woodward Drilling rig type: BK-8	1
	Oakland, CA	Driller	Dave	
Project No.	E11109	Method	Hollow Stem Auger Hole Diameter	er: 10 inches
Logged By:	Collin Fischer	Sampler:	24-inch length split spoon	
Well Pack	sand: 6 ft. to 30 ft	Well Construction	Casing Material: Schedule 40 PVC	Screen Interval: 7 ft. to 30 ft.
	bent.: 4 ft. to 6 ft.	annav•	Casing Diameter: 4 in.	Screen Slot Size: 0.020-in.
	grout: 0 ft. to 4 ft.	Depth to GW:	first encountered: 13' bgs. s	tatic

·		1	Ι				<u>-</u> -		7		
	Sample	Blow	San	nple	-	Wel		Depth	Lithologic		PID
Туре	No.	Count	Time	Recov.	ļ	Detai	ls	Scale	Column	Descriptions of Materials and Conditions	(PPM)
						1		<b>—</b> .		Cleared to 6.5' bgs. with air knife	
			ļ		- 199		10 miles	1			
			İ					2			
				<del> </del>	1		Ser				
					1		- A-A-3	3			
							30.00				
				ļ			الرر	_4			
						ļ					
						ļ		5			
								— ₆			
						:		_		***************************************	
						ŀ		<b>—</b> 7			
						≣∄		_			
						ΞĿ	:::L	8			
		10				≣!		L		Clayey silt, ML, dark grayish brown, moist, very stiff, low plasticity	
		11 14				≣[:		9		60% silt, 40% clay	
S	MW-12 10'	16	0835	50		≣∄	₩/	H ₁₀	ML		
	14144 12 10	10	-0000			≣ŀ		10	IVIL	Clayey silt with sand, ML, dark grayish brown, moist, hard, low plasticity	
		15				≣ŀ		<b>⊢</b> 11		60% silt, 30% clay, 10% fine grained sand	
		50/6"				≣Ė	#17				
	MW-12 12'		0840	67		Ξŀ	<u> </u>	12			
		28				≣∄			700	Clayey sand with gravel, SC, dark grayish brown, moist, very dense	
		50/6"				≣∄	11:	13	▽sc _	65% coarse grained sand, 20% clay, 15% fine to medium gravel	
ĺ	MW-12 14'	-	0845	100		Ξŀ	111/	H ₁₄	annound the second		
	10104-12 14	12	0040			≣₿		├ '*		Clay trace gravel, CL, dark grayish brown, moist, hard, high plasticity	
		15				≣₿		 15		95% clay, 5% fine gravel	
		20				≣₿					1
S	MW-12 16	23	0850	100		≣∄		16			
		19				≣∄		L .		Clay, CL, dark brown, moist, hard, high plasticity, 100% clay	
		20 20				≣∄		— ¹⁷	CL		
	MW-12 18'	24	0900	100		≣∄		 18			
	11144-15 10	14	3030					<b>一</b> "		Silty clay with sand, CL, dark yellowish brown, moist, hard, medium plasticity	
		18				<b>=</b>		19		60% clay, 25% silt, 15% fine grained sand	
		20				≣[		Ľ			
	MW-12 20'	21	0905	100		≣.E	: ; :	20		W1907-	
				Recove	n,					Comments: Strong hydrocarbon odor from surface to total depth.	
				IVECOVE	ı y —					PID readings not available.	
								ŀ		<b>v</b>	
				Sample	_			_			
				-							
										677017	
										STRATUS	
										ENVIRONMENTAL, INC.	
									i		

SOIL BORING LOG

Boring No. MW-12

Sheet: 2 of 2

Client	Former BP Station 11109	Date	March 24, 2009	· · · · · · · · · · · · · · · · · · ·	
Address	4280 Foothill Boulevard	Drilling Co.	Woodward Drilling	rig type: BK-8	1
	Oakland, CA	Driller	Dave		
Project No.	E11109	Method	Hollow Stem Auger	Hole Diamete	er: 10 inches
Logged By:	Collin Fischer	Sampler:	24-inch length split spo	on	
Well Pack	sand: 6 ft. to 30 ft	Well Construction	Casing Material: Sch	edule 40 PVC	Screen Interval: 7 ft. to 30 ft.
	bent.: 4 ft. to 6 ft.		Casing Diameter: 4 in		Screen Slot Size: 0.020-in.
	grout: 0 ft. to 4 ft.	Depth to GW:	√ first encountered	static	<b>V</b>

Sample Sample								1			
Sample		Blow	Sample Time Recov.		Well		Depth	Lithologic			
Туре	No.	Count 15	ilme	Recov.		etails = ::::	Scale	Column	Descriptions of Materials and Conditions	(PPM	
		19	<u> </u>			<b>=</b>	21				
_		20				$\equiv   \dots  $			Clayey sand with gravel, SC, dark grayish brown, wet, very dense		
<u>S</u>	MW-12 22'	42	0910	100	4:1	≣	22	sc	65% coarse grained sand, 25% clay, 15% fine gravel		
		15 20					/— ₂₃	200			
	<del> </del>	30	†			<b>≣</b>  ∷::	//="s	100			
	MW-12 24'	32	0920	0		<b>≣</b>  :::}	24	مم			
		12				≣ !!!		٥,			
		12 14	<del> </del>			≣і∷і	— ²⁵	CL	Sandy clay, CL, dark grayish brown, wet, very stiff, medium plasticity		
	MW-12 26'	17	0930	100		≣⊯			70% clay, 30% fine grained sand		
		10				$\equiv      $	_ ~				
	ļ	10					27				
	   NA) A ( A O O O O O	17	0040	100		≣ ;;;			Clayey sand, SC, dark grayish brown, wet, dense		
	MW-12 28'	20 17	0940	100		$\equiv   : : : :$	$-^{28}$		70% very fine grained sand, 30% clay		
	İ	20	ļ				— 29	sc			
		23		*********		$\equiv   \cdots  $			Clayey sand, SC, dark grayish brown, wet, dense		
<u>s</u>	MW-12 30'	24	0950	100	]::: <u>L</u>	≣∄∷	30		60% very fine grained sand, 40% clay		
							—				
					-		— ³¹		***************************************		
							32				
					1		_		**************************************		
					ļ		33		***************************************		
							<b>—</b>				
							— ³⁴		***************************************		
							35				
					1				***************************************		
		***		 			36		***************************************		
					1	İ	$-^{37}$		***************************************		
							38				
							_		***************************************		
							39				
							- 40				
							40		A MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE MARINE		
									Comments:		
									6TD 4T1 16		
									STRATUS		
									ENVIRONMENTAL, INC.		

ARCO_11109 Boring_Log_MW 12_032100



### Appendix D

Historical Soil Data

TABLE 2

#### Summary of Analytical Results of Soil Samples BP Oil Company Service Station No. 11109 4280 Foothill Boulevard, Oakland, California

Project No.: 30-0248

#### Concentrations in parts per million (ppm)

******	***********		**********			***********	**********		*******	
SAMPLE 10	DATE OF SAMPLING	SAMPLE DEPTH (feet)	TPH-G	В	ī	E	X	TOTAL ORGANIC PB	LAB	<i>K</i>
MV-8	09/11/91	16	ND<1	NO<.003	MD<.003	MO<.003	800.>dk	***	SAL	A65 - 91
HW-9 HW-9 HW-9	09/11/91 09/11/91 09/11/91	10.5 16 21	ND<1 ND<1 ND<1	ND<.003 ND<.003 ND<.003	MD<.003 MD<.003 MD<.003	МО<.003 МО<.003	ND<.003 ND<.003 ND<.003	•••	SAL SAL SAL	A65-91

#### EXPLANATION OF ABBREVIATIONS:

TPH-G	:Total Petroleum Hydrocarbons as Gasoline
В	: Benzene
T	:Toluene
E	:Ethylbenzene
x	:Xylenes
NO	:Not detected above given detection limits
SAL	:Superior Analytical Lab

Source: Alton, March 24, 1992a

Table C-3 Page 2 of 2



### KAPREALIAN ENGINEERING, INC.

Consulting Engineers

PO BOX 996 • BENICIA, CA 94510 (707) 746-6915 • (707) 746-6916 • FAX: (707) 746-5581



### SITE PLAN Figure 1

### LEGEND

* Sample Point Location



BP Service Station 4280 Foothill Boulevard Oakland, CA

KEI-J90-0911.R1 November 1, 1990

TABLE 1

SUMMARY OF LABORATORY ANALYSES

SOIL SAMPLES COLLECTED FROM THE FUEL TANK PIT

AND PRODUCT DISPENSER AREA

(Collected between September 14 to 28, and on October 16, 1990)

	<u>Sample</u>	Depth (feet)	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Xylenes	Ethylbenzene	
	/ A1	14.5	ND	0.10	0.006	ND	0.006	1440 last
	/ A2	14.5	ND	ND	0.0080	ND	ND	
	B1*	14.5	ND	0.034	0.014	ND	ND	
	B2*	14.5	ND	0.0060	ND	ND	ND	
	SW1	12	ND	0.018	ND	ND	ND	
	SW2-19	19	ND	0.12	ND	0.071	0.10	
	SW3-9.5	9.5	ND	0.051	ND	ND	0.0050	
	SW4-16	16	140	0.89	0.79	0.44	4.4	
	SW5	17	4.2	0.040	0.029	0.058	0.069	
	SW6-11	11	16	0.033	0.16	0.38	0.097	
wa	A3-16	16	4.3	0.044	0.010	0.22	0.20	
	A4-16.5	16.5	5.3	0.058	0.026	ND	0.19	
	A4-19	19	ND	0.010	ND	0.037	0.050	
	B3-14.5	14.5	910	6.0	13	82	19	
	B3-24	24	91	1.7	0.46	ND	0.17	
	D1-4	4	ND	ND	ND	ИD	ND	
	D2-11	11	31	0.38	1.2	2.8	0.60	
	D3**	4	ND	ND	0.011	ND	ND	
	D4**	6	1.9	0.054	0.094	0.20	0.046	
	D5**	4	6.8	0.0010	0.028	0.018	0.045	
	D6**	5.5	15	0.51	0.038	1.7	0.62	

^{*} Total lead for B1 and B2 were detected at 10 ppm and 12 ppm, respectively.

ND = Non-detectable.

Results in parts per million (ppm), unless otherwise indicated.

(qu'o

^{**} Total lead for D3, D4, D5 and D6 were detected at 2.5 ppm, 4.5 ppm, 4.0 ppm and 2.0 ppm, respectively.



### KAPREALIAN ENGINEERING, INC.

Consulting Engineers

PO BOX 996 • BENICIA, CA 94510 (707) 746-6915 • (707) 746-6916 • FAX: (707) 746-5581



Figure 2

#### LEGEND

★ Sample Point Location

Additional Excavation



BP Service Station 4280 Foothill Boulevard Oakland, CA 1989 RZA



Western Region 4080-C Pike Ln., Concord, CA 94520 {415} 685-7852 In CA: (800) 544-3422 Outside CA: (800) 423-7143

04/25/89 KF

PAGE 1 OF 1

WORK ORD#:C904459

CLIENT:

STEVE EVANS/SHAUN DONNAN RITTENHOUSE-ZEMAN & ASSOC.

1400 140TH AVENUE NE

BELLEVUE, WA 98005

PROJECT#: SEA-0101-5

LOCATION: DAKLAND, CA

SAMPLED: 04/19/89

BY: S. EVANS

RECEIVED: 04/21/89 ANALYZED: 04/24/89

BY: K. PATTON

MATRIX:

SOIL

W-6095

UNITS:

mg/Kg (ppm)

PARAMETER	l !	MDL	ISAMPLE	#	I I	01 S-1A	1	02 5-2A	1	1	1	
Benzene		0.5				(0,5		(0.5				<del></del>
Toluene		0.5	140			(0.5		(0.5	;			
Ethylbenzene		0.5				(0.5		(0.5	i			
Xylenes		0.5				(0.5		(0.5				
Total BTEX		0.5				(0.5		(0.5				

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020

TABLE 1

EMMA P. POPEK, Laboratory Director

1980 R3A



Western Region 4080-C Pike Ln., Cancord, CA 94520 (415) 685-7852 In CA: (800) 544-3422 Outside CA: (800) 423-7143 04/26/89MT

Page 1 of 1

WORK ORD#:C904461

CLIENT: STEVE

STEVE EVANS/SHAUN DONNAN

RITTENHOUSE-ZEMAN & ASSOC.

1400 140TH AVENUE NE BELLEVUE, WA 98005

PROJECT#: SEA-0101-7 LOCATION: DAKLAND, CA

SAMPLED: 04/19/89

BY: S. EVANS

RECEIVED: 04/20/89

BY: T. ALUSI

B,

ANALYZED: 04/24/89

J. FLORO

MATRIX: UNITS:

Soil

mg/Kg (ppm)

JOB# 6095

Total Petroleum Hydrocarbons

5

15

(5

MDL = Method Datection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: APHA Standard Methods 503D/E

Table 2

EMMA P. POPEK, Laboratory Directo



ENVIRONMENTAL

**Western Region** 4080-C Pike Ln., Concord, CA 94520 (415) 685-7852 In CA: (800) 544-3422 Outside CA: (800) 423-7143

04/25/89 јр

PAGE I OF 1

WORK ORD#:C904460

CLIENT:

STEVE EVANS/SHAUN DONNAN

RITTENHOUS-ZEMAN & ASSOCIATES, INC.

1400 140TH AVENUE

BELLEVUE, WASHINGTON 98005

PROJECT#: SEA-0101-6 LOCATION: OAKLAND, CA

SAMPLED: 04/19/89

BY: STEVE EVANS

RECEIVED: 04/20/89

ANALYZED: 04/23/89

BY: C. MANUEL

MATRIX:

WATER

W-6095

UNITS:

ug/L (ppb)

PARAMETER	I MD	L ISAMPLE # II.D.	1 01 1 5-3A	1	1	1	1
Benzene	v. 5	-	860			**********	
Toluene	ø. 5		160				
Ethylbenzene	0.5		570				
Xyleries	0.5		1200				
Total BTEX	0.5		2800				

MSL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020

TABLE 3

EMMA P. POPEK. Director

TABLE 2

Summary of Analytical Results of Soil Samples

BP Oil Company Service Station No. 11109

4280 Foothill Boulevard, Oakland, California

Project No.: 30-0248

Concentrations in parts per million (pom)

				CORENTLACI	ons in parts po	er million (ppr	m)				
SAMPLE ID	DATE OF SAMPLING	SAMPLE DEPTH (feet)	TPH-G	8	T	E	X	TOTAL ORGANIC	LA8		
HW-3	01/29/90	5	ND<1	WD<.005	***********			PB			
MV-3 MV-3 MV-3 MV-3	01/29/90 01/29/90 01/29/90 01/29/90	10 15 20 25	ND <1 ND <1 ND <1	ND<.005 ND<.005 ND<.005	ND<.005 ND<.005 ND<.005 ND<.005	ND<.005 ND<.005 ND<.005 ND<.005	MD<.005 MD<.005 MD<.005 MD<.005	***	SAL SAL SAL	A69	ζ
MV-3	01/29/90	29	ND <1	ND<.005	ND<.005	ND<.005	ND < . 005		SAL		
MU-4 MU-4 MU-4 MU-4 MU-4 MU-4	01/30/90 01/30/90 01/30/90 01/30/90 01/30/90 01/30/90	5 10 15 20 25 29	HD<1 HD<1 HD<1 HD<1 HD<1	ND <.005 ND <.005 ND <.005 ND <.005 ND <.050 ND <.005	ND < .005 ND < .005 ND < .005 NO < .005 ND < .050 ND < .005	NO<.005 ND<.005 NO<.005 NO<.005 NO<.050 NO<.050	ND < .005 ND < .005 ND < .005 ND < .005 .170 ND < .005		SAL SAL SAL SAL SAL SAL SAL	A65	
MV-5 MV-5 MV-5 MV-5 MV-5	09/09/91 09/09/91 09/09/91 09/09/91 09/09/91	6 11 15.5 21 26	ND<1 4400 240 6100 89	.003 8.5 1 14 .23	ND<.003 58 1.4 47 .390	MO<.003 55 2.5 34	.003 260 9.5 120	NO <2 NO <2 NO <2	SAL SAL SAL	A65	-91
MU-6 MU-6 MU-6	09/09/91 09/09/91 09/09/91	16 21 25.5	ND<1 ND<1 270	ND<.003 ND<.003 ND<.030	ND<.003 ND<.003 .780	MD<.003 MD<.003 .340	NO<.003 NO<.003 .510	•••	SAL SAL SAL SAL	400	al.
MW-7 MW-7 MW-7 MW-7 MW-7	09/10/91 09/10/91 09/10/91 09/10/91 09/10/91	6 9.5 13 18.5 24	310 11 38 17 ND<1	ND<.150 ND<.003 .120 .053	.860 .035 .110 .035	.690 .013 .089 .160	1.6 .028 .120 .098	ND <2 ND <2 ND <2 ND <2	SAL SAL SAL	1765	91
	• •		HUNT	.003	MD<.003	.003	ND<.003	ND<2	SAL SAL	AGS	-91

Source: Alton, March 24, 1992a

Table C-3 Page 1 of 2 The laboratory analytical reports for soil boring samples, including chain-of-custody documentation, are provided in Appendix B. Soil laboratory analytical results are also summarized in tabular format below.

Soil Boring Samples - Laboratory Analytical Results (mg/kg)

Sample ID	GRO	В	T	E	X	MTBE	TBA	DIPE
MW-10 14'	420	2.4	5.1	20	- 84	<0.50	< 5.0	<1.0
MW-10 20'	3,900	11	31	48	230	<1.0	<10	<2.0
MW-10 26'	1,300	0.67	0.43	2.1	2.9	< 0.10	<1.0	< 0.20
MW-10 30'	21	0.48	0.020	0.033	0.037	< 0.0010	0.065	0.0035
MW-11 10'	55	< 0.10	< 0.10	1.6	0.21	< 0.10	<1.0	< 0.20
MW-11 16'	< 0.50	0.0014	0.0013	0.0051	0.0076	0.0028	< 0.010	< 0.0020
MW-11 24'	6,500	22	86	95	460	<2.0	<20	<4.0
MW-11 30'	15	0.58	0.44	0.69	3.1	< 0.10	<1.0	< 0.20
MW-12 10'	8.5	0.025	0.0019	0.013	0.0039	< 0.0010	0.014	< 0.0020
MW-12 16'	9.8	0.065	0.012	1.3	0.40	< 0.0010	< 0.010	< 0.0020
MW-12 22'	1,300	2.6	0.94	24	6.7	< 0.20	<2.0	< 0.40
MW-12 30'	0.76	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	0.013	< 0.0020

Hydrocarbon concentrations detected above laboratory reporting limits are represented with bold-typed font. Concentrations of EDB, ETBE, TAME, and 1,2-DCA are not included in the above table as the results for these constituents were below their respective laboratory reporting limits. No significant irregularities were reported during laboratory analysis of the soil boring samples. From review of the tabulated data and historic depths to ground water as low as 30 ft bgs, it appears that a 20 ft thick 'smear zone' may be present. Concentrations do dramatically decrease down to the historic low ground-water level of 30.00 ft bgs (MW-5, 4/7/1994), approximately defining the vertical extent of contamination. The laboratory results for soil sample analyses were uploaded to the GeoTracker AB2886 database. Copies of the GeoTracker upload confirmation receipts (EDF) are provided within Appendix D.

#### 4.4 Monitoring Well Construction

Monitoring wells MW-10, MW-11, and MW-12 were constructed using flush-threaded, four-inch diameter, 0.020-inch factory-slotted Schedule 40 PVC pipe. The screen interval in each well extends from 7.0 feet bgs to 30 feet bgs. The filter pack surrounding the screen intervals consists of No.2/12 silica sand from the bottom of the well boring to one foot above the screen intervals. Each wellhead was secured with a locking well cap, and protected by a traffic-rated well vault set flush with the local ground surface. Additional details of well construction are provided in the field notes, lithologic boring logs and well construction logs provided in Appendix B. Well construction information was uploaded to the GeoTracker AB2886 database. Copies of GeoTracker upload confirmation receipts are provided within Appendix D.

Error 94 - COT

#### Table A-1

### Site Number 11109 4280 Foothill Boulevard, Oakland, California

### Soil Sample Results of Analyses (ppm)

			California DHS LUFT Method TPH-G		DHS LUFT ocarbon Scan		BTI EPA Method						
Sample Number	Depth (feet)	Date Collected	TPH-G	TPH-D	ТРН-О	Benzene	Toluene	Ethylbenzene	Total Xylenes				
THP1-S-9.5-10**	9.5-10	10/19/94	nd	nd	nd	nd	nd	nd	nd				
THP1-S-17-17.5	17-17.5	10/19/94	nd	nd	nd	nd	nd	nd	nd				
TB1-S-17-17.5***	17-17.5	10/19/94	nd	nd	nd	nd	nd	nd	nd				
TB1-S-24.5-25	24.5-25	10/19/94	nd	nd	33	nd	nd	nd	nd				
TB2-S-16-16.5	16-16.5	10/19/94	51	nd	8	0.09	nd*	0.4	0.8				
TB2-S-27-27.5	27-27.5	10/19/94	nd :	nd	nd	nd	nd	nd	nd				
NOTE: TPH-G = Total petroleum hydrocarbons as gasoline.  TPH-D = Total petroleum hydrocarbons as diesel.  TPH-O = Total petroleum hydrocarbons as oil.  TPH-O = Total petroleum hydrocarbons as oil.  TD = Tosco dispenser soil sample.  TD = Tosco dispenser soil sample.  THP = Tosco HydroPunch.  SGP = Soil gas probe.  * = Raised method reporting limits (see laboratory report in Attachment D).  ** = THP1 is referred to as HP1 on the lab report.  ** = TB1 and TB2 are referred to as SB1 and SB2 on the lab report.													





### Appendix E

Groundwater Dat a and Figures

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (µg/L)	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Ethanol (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-1	1/31/1990		38.19	15.41		22.78	-	-	-		-	-	-	-	-	-	-	-	-	-
MW-1	9/16/2010					-	-	5,500	400	250	320	410	11	<20	<2.5	<2.5	<2.5	<500	<2.5	<2.5
MW-2	2/5/1990		41.22	21.90		19.32		1,300	14	<0.1	9	13		-					-	-
MW-2	2/14/1991		41.22	21.16		20.06	<10,000	<50	<0.3	<0.3	<0.3	<0.3	-	-		-	-		-	-
MW-2	5/13/1991		41.22	21.32		19.90	<50	<50	<0.3	<0.3	<0.3	<0.3		-			-		-	-
MW-2 MW-2	7/24/1991 10/3/1991		41.22 41.22	22.92 24.90		18.30 16.32	 <50	 <50	<0.3	0.8	<0.3	<0.3					-			-
MW-2	10/15/1991		41.22	24.10		17.12							-	-		-				
MW-2	12/16/1991		41.22	23.95		17.27					-	-	-	-						-
MW-2	1/6/1992		41.22	23.30		17.92	<50	<50	<0.3	<0.3	<0.3	<0.3	-	-		-	-		-	-
MW-2 MW-2	1/22/1992 1/28/1992		41.22 41.22	23.14 22.99		18.08 18.23	-				-		-			-	-	-		
MW-2	2/5/1992		41.22	22.63		18.59	-	-	-		_	_	_			-	-		-	_
MW-2	2/12/1992		41.22	22.04		19.18					-	-	-	-						-
MW-2	2/17/1992		41.22	20.84		20.38	-	-			-	1	-	-		-	-		-	-
MW-2 MW-2	4/3/1992 4/8/1992		41.22 41.22	18.29 18.86		22.93 22.36	63	 <50	 <0.5	<0.5	<0.5	<0.5	-	-		-			-	-
MW-2	4/14/1992		41.22	19.45		21.77							-				-		<del>-</del>	-
MW-2	4/29/1992		41.22	20.35		20.87	-	-			-	-	-	-		-	-		-	-
MW-2	5/7/1992		41.22	20.84		20.38	-	-			-	-	-	-		-	-		-	-
MW-2 MW-2	7/3/1992		41.22 41.22	22.34		18.88 17.49		<50 <50	<0.5	<0.5	<0.5	<0.5					-			-
MW-2	10/8/1992 12/31/1992		41.22	23.73 21.12		20.10	-	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<del>-</del>	-		-	-	<del></del>	<del>-</del> -	+ = -
MW-2	4/21/1993	а	41.22	17.68		23.54	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-						-
MW-2	7/7/1993		41.22	20.30		20.92	-	<50	<0.5	<0.5	<0.5	<0.5		-		-	-	-	-	-
MW-2 MW-2	9/21/1993 12/17/1993		41.22 41.22	21.93 21.48		19.29 19.74		<50	0.9	0.7	0.7	2.6	21.54	-					-	
MW-2	12/17/1993		41.22	21.40		19.74	-	<50	<0.5	<0.5	<0.5	0.7	-				-		-	
MW-2	4/7/1994		41.22	20.25		20.97		<50	<0.5	<0.5	<0.5	<0.5	12.2							-
MW-2	7/6/1994		41.22	20.59		20.63	-	<50	<0.5	<0.5	<0.5	<0.5		-					-	-
MW-2 MW-2	10/7/1994		41.22	22.04		19.18		<50	<0.5	<0.5	<0.5	<0.5	15.2	-				-	-	-
MW-2	1/27/1995 3/30/1995		41.22 41.22	26.12 12.34	-	15.10 28.88	440	<50 <50	<0.5 <0.50	<0.50	<0.5 <0.50	<1.0 <1.0							-	<del>-</del> -
MW-2	6/20/1995		41.22	16.42		24.80	-	<50	<0.50	<0.50	<0.50	<1.0	-			-	-		-	_
MW-2	10/3/1995		41.22	20.06		21.16		<50	<0.50	< 0.50	<0.50	<1.0	<5.0	-						-
MW-2	12/6/1995		41.22	21.31		19.91		<50	<0.50	<0.50	<0.50	<1.0	46	-			-		-	
MW-2 MW-2	3/21/1996 6/21/1996		41.22 41.22	12.28 13.28		28.94 27.94	-	<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <10	-					-	
MW-2	9/6/1996		41.22	13.94		27.28	-						-			-	-		-	+
MW-2	9/9/1996							<50	<0.5	<1.0	<1.0	<1.0	<10	-						-
MW-2	12/19/1996		41.22	12.19		29.03	-	<50	<0.5	<1.0	<1.0	<1.0	<10	-		-	-		-	-
MW-2 MW-2	3/17/1997 8/12/1997		41.22 41.22	11.59 13.21		29.63 28.01					-	-	-			-	-		-	
MW-2	12/10/1997		41.22	12.34		28.88	-	-				-	-				-		<del>-</del>	<del></del>
MW-2	3/12/1998		41.22	11.04		30.18					-		-							
MW-2	6/23/1998		41.22	11.77		29.45	-	-			-	-	-						-	-
MW-2	3/31/1999		41.22	12.38		28.84	-	-			-	-	-	-		-	-		-	
MW-2 MW-2	8/25/1999 3/9/2000		41.22 41.22	17.72 11.94	<del>                                     </del>	23.50 29.28	-	-			-	-	-			-	<del>-</del>	-	-	+ = -
MW-2	3/8/2001		41.22	10.31		30.91						-		-						
MW-2	3/8/2002		41.22	14.35		26.87	-	-	-	-	-	-	-	-	-	-	-	-		
MW-2 MW-2	3/18/2002 3/11/2003		41.22 41.22	13.11 13.24		28.11 27.98	-				-		-				-		-	
MW-2	12/9/2003	ь	41.22	13.24		27.98	-	350	<0.50	<0.50	0.56	2.8	24	<20	<0.50	<0.50	<0.50	<100	-	+
MW-2	3/9/2004	-	41.22	12.52	t e	28.70	-	74	<0.50	<0.50	0.83	4.7	27	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-2	9/17/2004		41.22	18.05		23.17	-	59	<0.50	<0.50	<0.50	<0.50	21	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-2	3/7/2005	С	41.22	2.32		38.90	-					0.70								
MW-2 MW-2	9/5/2006 3/5/2007	c	41.22 41.22	10.46 12.25	<del>                                     </del>	30.76 28.97	-	79 	<0.50	5.1	<0.50	0.73	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-2	3/6/2008	d	41.22	12.25	-	28.89	-	-	-		-	-	-	-		-		-	-	+
MW-2	9/5/2012						-	-			-		-				-		-	
MW-2	9/5/2012		41.22			-	-	-			-	-	-	-		-	-		-	
MW-3	2/5/1990		40.74	17.45		23.29		1,400	15	<2.5	11	8			ı	ı		1	1	
MW-3	2/5/1990		40.74	17.45		23.29	-	1,400	15 8	<2.5	11 8	1				-	-	-	-	
MW-3	5/13/1991		40.74	19.32	t	21.42		640	13	<0.3	18	1	-	-		-	-	-	-	
MW-3	7/24/1991		40.74	20.69		20.05	-				-	-	-	-		-	-		-	
MW-3	10/3/1991		40.74	19.47		21.27	-	940	21	<0.3	23	2.1		-			-		-	-
MW-3 MW-3	10/15/1991 12/4/1991		40.74 40.74	20.46 18.29	<del>                                     </del>	20.28 22.45	-	-				-	-	-			-		-	
IVIVV-3	12/4/1991		40.74	10.29	L	22.40		_												

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-3	12/16/1991		(ft msl) 40.74	(ft) 18.34		(ft msl) 22.40	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-3	1/6/1992		40.74	18.50		22.24	-	580	6.1	1	6.1	7.1	_	-		-		_	-	
MW-3	1/22/1992		40.74	17.86		22.88		-			-									
MW-3	1/28/1992		40.74	15.84		24.90		-			-	-	-	-		-	-	-	-	
MW-3 MW-3	2/5/1992 2/12/1992		40.74 40.74	17.53 17.15		23.21 23.59					-		-						-	-
MW-3	2/12/1992		40.74	16.18		24.56					-		-			-			-	
MW-3	4/3/1992		40.74	14.80		25.94					-	-	-			-			-	-
MW-3	4/8/1992		40.74	17.06		23.68		1,100	30	4.6	32	11	-			-		-	-	-
MW-3	4/14/1992		40.74	15.22		25.52					-		-						-	-
MW-3 MW-3	4/29/1992 5/7/1992		40.74 40.74	15.90 16.35		24.84 24.39	-						-		-		-			
MW-3	7/3/1992		40.74	17.74		23.00	-	1,200	38	<2.5	24	<2.5		-	-	-		-	-	<del></del>
MW-3	10/8/1992		40.74	19.06		21.68		1,400	31	<0.5	25	13	-			-		-	-	-
MW-3	12/31/1992		40.74	16.61		24.13		820	12	4.1	13	5.9							-	
MW-3	12/31/1992	е	40.74	16.61		24.13	-	960	11	3.6	10	3.8						-	-	
MW-3 MW-3	4/21/1993 4/21/1993	e	40.74 40.74	14.24 14.24		26.50 26.50	-	420 390	5.6 5	<0.5 <0.5	3.9 3.7	1.4 1.5	-		-		-			
MW-3	7/7/1993	f	40.13	15.19		24.94		54	0.6	0.6	<0.5	<0.5	12.68				-	-	-	
MW-3	9/21/1993		40.13	16.58		23.55		540	7.9	0.9	4.7	2.4	-			-		-	-	-
MW-3	12/17/1993		40.13	15.82		24.31	-	-	-		-	-	-	-	-	-	-	-		
MW-3	12/23/1993					-	-	500	9.8	1.5	3.3	2.1	-		-	-		-	-	<del></del>
MW-3 MW-3	12/23/1993 4/7/1994	е	40.13	28.50		11.63	-	480 460	9.2 20	<0.5 7.4	5.4 8.9	5.3 11	18.2					-	-	<del>-</del> -
MW-3	4/7/1994	е	40.13	28.50		11.63	-	460	20	7.7	9	11				-	-	-		
MW-3	7/6/1994					-		300	10	0.6	1.7	6.4	5.54			-		-	-	-
MW-3	10/7/1994		40.13	27.65		12.48	-	620	28	<0.5	2.2	12	31.4				-	-	-	
MW-3 MW-3	1/27/1995		40.13 40.13	27.65		12.48		300			3.4		-			-		-	-	-
MW-3	3/30/1995 6/20/1995		40.13	26.05 19.49		14.08 20.64		170	10 7.2	6 3.4	0.85	18 15	-	-			-	-		
MW-3	10/3/1995		40.13	24.93		15.20		170	2.1	<0.50	0.81	8	6.7							
MW-3	12/6/1995		40.13	25.14		14.99		1,700	6.7	3.1	2.8	210	64			-		-	-	-
MW-3	12/6/1995	е	40.13	25.14		14.99		1,400	6.1	3	1.7	190	53			-		-	-	-
MW-3 MW-3	3/21/1996 6/21/1996		40.13 40.13	9.48 11.60		30.65 28.53		<50 <50	0.5 13	<1.0 <1.0	<1.0 <1.0	1 <1.0	<10 12			-		-	-	-
MW-3	9/6/1996		40.13	12.23		27.90		<50		<1.0	<1.0	<1.0				-		-	-	
MW-3	9/9/1996					-		<250	6.5	<5.0	<5.0	<5.0	<50							
MW-3	12/19/1996		40.13	10.46		29.67		<50	4.1	<1.0	<1.0	<1.0	<10					-	-	-
MW-3	3/17/1997		40.13	9.86		30.27		50	<5.0	<1.0	<1.0	<1.0	<10					-	-	-
MW-3 MW-3	8/12/1997 12/10/1997		40.13 40.13	12.11 10.90		28.02 29.23		<50 <50	0.79 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	10 <10		-		-		-	
MW-3	3/12/1998		40.13	10.20		29.93		<50	<0.5	<1.0	<1.0	<1.0	<10				-	-	-	
MW-3	3/12/1998	е	40.13	10.20		29.93		<50	<0.5	<1.0	<1.0	<1.0	<10							-
MW-3	6/23/1998		40.13	10.17		29.96		50	<0.5	<1.0	<1.0	<1.0	<10						-	-
MW-3	3/31/1999		40.13	11.45		28.68	-	60	<1.0	<1.0	<1.0	<1.0	6.2				-	-	-	-
MW-3 MW-3	8/25/1999 3/9/2000		40.13 40.13	12.52 12.39		27.61 27.74		<50 <50	<1.0 <0.5	<1.0 0.54	<1.0 <0.5	<1.0 1.7	7.7 6.3	-				-	-	
MW-3	3/8/2001		40.13	10.41		29.72		<50	<0.5	<0.5	<0.5	0.59	7.7	-		-		-	-	-
MW-3	3/8/2002		40.13	9.83		30.30		62	<0.5	<0.5	<0.5	<1.0	11.6				-			-
MW-3	3/18/2002		40.13	9.20		30.93	-	-					-				-		-	
MW-3 MW-3	3/11/2003 12/9/2003		40.13 40.13	10.54 12.88		29.59 27.25		<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	6.7 6.4	 <20	<0.50	<0.50	<0.50	 <100	-	-
MW-3	3/9/2003		40.13	9.49		30.64	-	<50 <50	<0.50	<0.50	<0.50	0.63	6.9	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	9/17/2004		40.13	12.76		27.37		-			-	-				-				-
MW-3	3/7/2005		40.13	7.30		32.83	-	<50	<0.50	<0.50	<0.50	0.52	5.1	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	9/6/2005		42.92	10.81		32.11 34.07										-0.50				
MW-3 MW-3	3/6/2006 9/5/2006		42.92 42.92	8.85 9.86		34.07 33.06	-	<50	<0.50	<0.50	<0.50	<0.50	6.9	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	3/5/2007		42.92	8.33		34.59	-	<50	<0.50	<0.50	<0.50	<0.50	5.4	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	9/7/2007		42.92	11.10		31.82		-			-		-						-	
MW-3	3/6/2008		42.92	8.92		34.00	-	<50	<0.50	<0.50	<0.50	<0.50	4.2	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-3	9/3/2008		42.92	12.19		30.73			<0.50							-0.50			<0.50	-0.50
MW-3 MW-3	3/4/2009 9/30/2009		42.92 42.92	8.28 11.60		34.64 31.32	-	<50 <50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	4.9 6.8	<10 <10	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<300 <300	<0.50	<0.50 <0.50
MW-3	10/28/2009		42.92	10.40		32.52	-													
MW-3	3/23/2010		42.92	8.27		34.65		<50	<0.50	<0.50	<0.50	<1.0	3.2	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3	6/10/2010		42.92	9.40		33.52	-	-	-		-	-	-		-	-	-	-		-
MW-3	9/16/2010		42.92	11.14		31.78 34.21		<50	<0.50	<0.50	<0.50	<1.0	5.9	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-3 MW-3	2/23/2011 9/28/2011		42.92 42.92	8.71 11.14		34.21 31.78	-	-			-	-	0.58 3.2			-	-	-		
MW-3	3/8/2012		42.92	11.01		31.76	-	-	-		-	-	<0.50(*)		-	-	-	-	_	
					•				•		•	•	/	•			•		•	

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (μg/L)	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (µg/L)	Ethanol (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)
MW-3	9/5/2012		42.92	11.42		31.50	-	-				-	6.5			-			-	
MW-3	3/20/2013		42.92	10.30		32.62	-	-			-	-	2.6					-	-	-
MW-4	2/5/1990		40.11	20.75	1	19.36	-	620	<0.5	9	<0.5	10	-					-	-	
MW-4	2/14/1991		40.11	21.73		18.38		180	<0.3	<0.3	0.4	2							-	
MW-4	5/13/1991		40.11	18.55		21.56		72	0.7	<0.3	<0.3	<0.3							-	-
MW-4 MW-4	7/24/1991 10/3/1991		40.11 40.11	21.31 22.57		18.80 17.54	-	 57	<0.3	<0.3	<0.3	<0.3	-			-		-	-	-
MW-4	10/3/1991		40.11	22.88		17.54			<0.3	<0.3	<0.3	<0.3	-						-	
MW-4	12/4/1991		40.11	22.54		17.57	-						-						-	
MW-4	12/16/1991		40.11	22.59		17.52	-	-					-			-			-	
MW-4	1/6/1992		40.11	22.00		18.11		480	0.8	3.2	1.9	7.7							-	
MW-4 MW-4	1/22/1992 1/28/1992		40.11 40.11	21.58 21.42		18.53 18.69	-	-					-			-			-	
MW-4	2/5/1992		40.11	21.10		19.01	_	-	-	-	-	-	-	-					-	-
MW-4	2/12/1992		40.11	20.74		19.37		-											-	
MW-4	2/17/1992		40.11	19.78		20.33	-	-		-	-	-	-	-		-			-	
MW-4 MW-4	4/3/1992 4/8/1992		40.11 40.11	16.80 17.13		23.31 22.98	-	 <50	<0.5	<0.5	<0.5	<0.5	-						-	
MW-4	4/14/1992		40.11	17.74		22.37							-					-	-	
MW-4	4/29/1992		40.11	18.56		21.55	-	-				-	-					-	-	-
MW-4	5/7/1992		40.11	19.10		21.01	-	-	-	-	-	-	-			-			-	-
MW-4 MW-4	7/3/1992 10/8/1992		40.11 40.11	20.71 22.43		19.40 17.68	-	<50 270	0.6 <0.5	<0.5 2.1	<0.5 2.5	<0.5 3.2	-			-		-	-	-
MW-4	12/31/1992		40.11	19.58		20.53	-	150	<0.5	<0.5	<0.5	1.3	-			-		-	-	-
MW-4	4/21/1993		40.11	17.79		22.32		<50	<0.5	<0.5	<0.5	<0.5							-	
MW-4	7/7/1993		40.11	18.44		21.67	-	160	1.2	5.4	3.8	19	5.51	-		-			-	
MW-4 MW-4	9/21/1993 12/17/1993		40.11 40.11	20.14 19.80		19.97 20.31	-	71	<0.5	1.9	<0.5	2.1		-					-	-
MW-4	12/17/1993		40.11	19.60		20.31	-	<50	3.1	1.6	0.8	3.8	5.7						-	
MW-4	4/7/1994		40.11	19.12		20.99		<50	<0.5	<0.5	<0.5	<0.5	11.7					-	-	-
MW-4	7/6/1994		40.11	19.90		20.21	-	62	<0.5	<0.5	<0.5	<0.5	-	-					-	-
MW-4	10/7/1994		40.11	20.07		20.04	-	<50	<0.5	<0.5	<0.5	<0.5	7.38						-	-
MW-4 MW-4	1/27/1995 3/30/1995		40.11 40.11	13.72 11.46		26.39 28.65	-	<50 <50	<0.50	<0.50	<0.5 <0.50	<1.0 <1.0				-			-	
MW-4	6/20/1995		40.11	14.78		25.33	_	<50	<0.50	<0.50	<0.50	<1.0	_	-				-	_	-
MW-4	10/3/1995		40.11	19.62		20.49		<50	<0.50	<0.50	<0.50	<1.0	5						-	
MW-4	12/6/1995		40.11	19.91		20.20		<50	<0.50	<0.50	<0.50	<1.0	47						-	
MW-4 MW-4	3/21/1996 6/21/1996		40.11 40.11	11.12 12.21		28.99 27.90	-	<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10							
MW-4	9/6/1996		40.11	12.89		27.22	_						-	-					_	-
MW-4	9/9/1996					-		<50	<0.5	<1.0	<1.0	<1.0	<10						-	
MW-4	12/19/1996		40.11	11.01		29.10	-	<50	<0.5	<1.0	<1.0	<1.0	<10	-		-			-	
MW-4 MW-4	3/17/1997 8/12/1997		40.11 40.11	10.42 12.77		29.69 27.34							-			-			-	
MW-4	12/10/1997		40.11	11.22		28.89	-	-	-		-	-	-						-	-
MW-4	3/12/1998		40.11	10.81		29.30		-			-	-	-	-					-	
MW-4	6/23/1998		40.11	10.61		29.50	-	_	_		_	_	-		-	-	_	_	-	-
MW-4 MW-4	3/31/1999 8/25/1999		40.11 40.11	11.46 16.16		28.65 23.95	-									-			<del></del>	-
MW-4	3/9/2000		40.11	12.23		27.88	-	-	-		-	-		-	-	-		-	<del>-</del>	-
MW-4	3/8/2001		40.11	11.04		29.07	-	-				-						-		-
MW-4	3/8/2002		40.11	12.73		27.38	-	-	_	-	=	_	-	-	-	-	-	-	-	_
MW-4 MW-4	3/18/2002 3/11/2003		40.11 40.11	11.62 13.44		28.49 26.67	-						-			-		-	-	
MW-4	12/9/2003		40.11	15.03		25.08	-	<250	<2.5	<2.5	<2.5	<2.5	130	<100	<2.5	<2.5	2.7	<500	-	-
MW-4	3/9/2004		40.11	11.04		29.07	-	<50	<0.50	<0.50	<0.50	<0.50	35	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-4	9/17/2004		40.11	16.75		23.36	-	<250	<2.5	<2.5	<2.5	<2.5	140	<100	<2.5	<2.5	2.6	<500	<2.5	<2.5
MW-4	3/7/2005		40.11	11.02		29.09	-	67	<0.50	<0.50	<0.50	<0.50	42	<20	<0.50	<0.50	0.56	<100	<0.50	<0.50
MW-4 MW-4	9/6/2005 3/6/2006		42.88 42.88	14.64 12.42		28.24 30.46	-	81 <100	<0.50 <1.0	<0.50 <1.0	<0.50 <1.0	<1.5 <1.0	180 110	<10 <40	<0.50 <1.0	<0.50 <1.0	2.8 1.4	<150 <600	<0.50 <1.0	<0.50 <1.0
MW-4	9/5/2006		42.88	13.81		29.07	-	130	<1.0	<1.0	<1.0	<1.0	190	<40	<1.0	<1.0	1.7	<600	<1.0	<1.0
MW-4	3/5/2007		42.88	10.63		32.25	-	<50	<0.50	<0.50	<0.50	<0.50	13	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-4	9/7/2007		42.88	14.77		28.11	-	90	<0.50	<0.50	<0.50	<0.50	130	<20	<0.50	<0.50	1.7	<300	<0.50	<0.50
MW-4 MW-4	3/6/2008 9/3/2008		42.88 42.88	11.30 16.11	ļ	31.58 26.77	-	<50 <50	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	<0.50 <5.0	170 150	14 <100	<0.50 <5.0	<0.50 <5.0	2.1 <5.0	<300 <3,000	<0.50 <5.0	<0.50 <5.0
MW-4	9/3/2008 3/4/2009		42.88 42.88	16.11		32.10	-	<50 140	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	150	<100 <100	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<3,000	<5.0 <5.0	<5.0 <5.0
MW-4	9/30/2009		42.88	16.48		26.40	-	240	<2.0	<2.0	<2.0	<2.0	140	<40	<2.0	<2.0	<2.0	<1,200	<2.0	<2.0
MW-4	10/28/2009		42.88	15.07		27.81		-											-	
MW-4	3/23/2010		42.88	10.82		32.06	-	<50	<0.50	<0.50	<0.50	<1.0	84	18	<0.50	<0.50	0.88	<100	<0.50	<0.50
MW-4	6/10/2010		42.88	12.67	l	30.21		-			-	-	-	-			-		-	

			TOC	DTW		GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
Well ID	Date	Notes	(ft msl)	(ft)	DTP	(ft msl)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-4	9/16/2010		42.88	15.72		27.16	-	120	<0.50	< 0.50	<0.50	<1.0	72	8.0	<0.50	<0.50	0.82	<100	<0.50	<0.50
MW-4	2/23/2011		42.88	11.43		31.45	-	<50			-	-	55	-	-	-			-	
MW-4	9/28/2011		42.88	15.34		27.54	1	150			-	-	62		-	-		-	-	
MW-4 MW-4	3/8/2012 9/5/2012		42.88 42.88	15.03 15.90		27.85 26.98	-	120 56	<0.50	<0.50	<0.50	 <1.0	42 47	 18	<0.50	<0.50	<0.50	 <250	<0.50	<0.50
MW-4	3/20/2012		42.88	13.80		29.08	-	<50	<0.50	<0.50	<0.50	<1.0	17	18	<0.50	<0.50	<0.50	<250	<0.50	<0.50
10100-4	3/20/2013		42.00	13.00		29.00		<b>430</b>				-				-				
MW-5	10/3/1991		39.55	18.08		21.47		79,000	13,000	7,400	1,400	6,200								
MW-5	10/15/1991		39.55	18.55		21.00	-	-	-		-	-	-	-	-				-	-
MW-5	12/4/1991	g	39.55	18.44		20.98	-							-		-			-	
MW-5	12/16/1991	g	39.55	18.66		20.88	-	-			-	-	-	-	-	-	-		-	
MW-5	1/6/1992	g	39.55	19.12		20.32	1	-			-								-	
MW-5 MW-5	1/22/1992 1/28/1992		39.55 39.55	14.59 15.25		24.96 24.30		-					-			-		-	-	
MW-5	2/5/1992	b	39.55	15.25	-	23.97	-		-		-		-	-				-	_	-
MW-5	2/12/1992	g	39.55	15.54		24.00		-					-	-						
MW-5	2/17/1992	b	39.55	13.98		25.57														
MW-5	4/3/1992	g	39.55	13.63		25.88	-	-	-		-	-	-	-	-				-	-
MW-5	4/8/1992	g	39.55	13.17		26.37	ı	-			-	-		-		-			-	
MW-5	4/14/1992	g	39.55	13.45		26.09	-	-			-	-	-	-		-		-	-	_
MW-5	4/29/1992	g	39.55	13.75		25.73		-												
MW-5	5/7/1992	g	39.55 39.55	16.15		23.36	-						-	-		-				-
MW-5 MW-5	7/3/1992 9/1/1992	g q	39.55 39.55	17.67 17.83	-	21.80 21.22		-					-			-			<del>-</del> -	
MW-5	10/8/1992	g g	39.55	17.86		20.77					-		-						-	
MW-5	12/31/1992	b	39.55	15.20		24.35	-												-	
MW-5	4/21/1993	g	39.55	12.64		26.89	-	-				-	-						-	
MW-5	7/7/1993	g,f	39.14	12.68		25.64	-	-					-						-	
MW-5	9/21/1993	b	39.14	14.35		24.79	-	-			-	-	-	-	-	-	-		-	
MW-5	12/17/1993	g	39.14	12.61		26.12	-	-			-	-	-							
MW-5 MW-5	4/7/1994 7/6/1994		39.14	30.00		9.14		66,000	3,000 1,900	1,700 330	250	6,800	2,002 1,141	-				-		-
MW-5	10/7/1994		39.14	28.70	-	10.44	-	29,000 250,000	2,600	660	63 830	2,700 5,200	37.7	-	-			-		-
MW-5	10/7/1994	e	39.14	28.70		10.44		45,000	2,900	540	260	2,600		-						
MW-5	1/27/1995		39.14	28.70		10.44														
MW-5	3/30/1995		39.14	28.95		10.19	-	50,000	7,900	2,600	520	6,400	-	-	-				-	-
MW-5	3/30/1995	е	39.14	28.95		10.19	-	43,000	7,900	2,500	440	6,200	-						-	
MW-5	6/20/1995		39.14	22.54		16.60	-	34,000	5,100	1,900	300	3,700		-					-	
MW-5	6/20/1995	е	39.14	22.54		16.60		26,000	3,500	290	<25	3,300						-	-	
MW-5 MW-5	10/3/1995 10/3/1995	e	39.14 39.14	18.84 18.84		20.30	-	12,000 12,000	68 46	42 39	11 10	1,600 1,600	330 320							
MW-5	12/6/1995	e	39.14	19.07	-	20.07		16,000	1,200	93	51	700	600	-			-			-
MW-5	3/21/1996		39.14	7.43		31.71	-	1,500	89	28	6	250	<10	-	-			-	-	_
MW-5	3/21/1996	е	39.14	7.43		31.71		1,900	92	30	7	270	<10						-	
MW-5	6/21/1996		39.14	9.87		29.27	1	3,500	740	150	19	400	<100							
MW-5	6/21/1996	е	39.14	9.87		29.27		2,700	680	140	20	400	<50	-			-		-	-
MW-5	9/6/1996		39.14	10.52		28.62	-							-	-				-	
MW-5	9/9/1996					-	-	82,000	3,100	1,700	850	9,100	<2,500	-	-				-	
MW-5 MW-5	9/9/1996 12/19/1996	e	39.14	8.62	-	30.52	-	90,000 41,000	2,900 790	1,600 820	670 120	6,900 2,040	<2,500 <500	-		-			<del>-</del> -	
MW-5	12/19/1996	e	39.14	8.62	1	30.52		26,000	490	430	63	1,140	<500	<del>-</del>	-	-		-	<del>-</del>	-
MW-5	3/17/1997		39.14	8.22		30.92	-	5,500	1.9	2.4	<1.0	<1.0	29						-	
MW-5	3/17/1997	е	39.14	8.22		30.92	-	6,600	2.5	2.7	<1.0	<1.0	28	-	-		-		-	-
MW-5	8/12/1997	g	39.14	12.18		26.74		33,000	6,400	2,400	680	4,400	<1,000	-				-	-	
MW-5	8/12/1997	е	39.14	12.18		26.74	-	36,000	6,100	2,500	720	4,500	<500			-		-	-	
MW-5	12/10/1997	g	39.14	10.78		28.30		31,000	3,000	2,500	560	5,100	500	-				-	-	
MW-5 MW-5	12/10/1997 3/12/1998	e	39.14 39.14	10.78 10.11		28.30 28.81		37,000 100,000	2,900 1,600	2,500 870	440 250	4,800 2,600	 <250	-		-			-	
MW-5	6/23/1998	g	39.14	10.11	-	28.92	-	27,000	2,500	840	370	2,600	<250 <250	-					-	
MW-5	6/23/1998	е	39.14	10.20		28.92	-	27,000	2,600	840	400	2,950	<500		-	-			_	
MW-5	8/25/1999	g	39.14	14.69		24.07		180,000	2,700	400	830	2,800	26			-				
MW-5	3/9/2000	g	39.14	14.83		23.71	-	53,000	12,000	2,600	1,900	9,100	<5.0	-				-	-	-
MW-5	3/8/2002	g	39.14	11.45		26.19	1	33,000	8,240	1,080	1,010	2,900	34.3	-		-			-	
MW-5	3/18/2002		39.14	8.03		31.11	-	-				-	-	-	-				-	-
MW-5	3/11/2003	g	39.14	9.60		29.09													-	
MW-5	12/9/2003	g	39.14	11.44	-	27.72	-			4 400				-2.000						
MW-5 MW-5	3/9/2004 9/17/2004		39.14 39.14	7.91 12.13		31.23 27.13	-	31,000	3,900	1,100	780	3,600	<50 	<2,000	<50 	<50 	<50 	<10,000	96	<50 
MW-5	3/7/2004	g g	39.14	8.62	1	30.52	-	-				-	-	-				-	-	-
MW-5	9/6/2005	g	39.14	11.16		27.98	-	-			-	-		-	-	-		-		-
MW-5	3/6/2006	g,b	39.14	8.60		30.54	-	32,000	7,500	810	1,200	2,300	<50	<2,000	60	<50	<50	<30,000	<50	<50
		V.																		

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (μg/L)	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	Ethanol (μg/L)	1,2-DCA (µg/L)	EDB (µg/L)
MW-5	9/5/2006	g	39.14	6.16		32.98	(P9'-/	(Pg/-/	(P9'-/	(P9/2/ 	(P9,2) 	(P9/2/ 	(P9') 	(P9'-/	(Pg/2/	(P9/-/	(Pg/2)	(P9'-/	(P9'-/	(F9'-/ 
MW-5	3/5/2007	b	39.14	8.34		30.80	-	90,000	10,000	4,200	1,900	7,900	<50	<2,000	57	<50	<50	<30,000	<50	<50
MW-5 MW-5	9/7/2007 1/14/2008	g	39.14 39.14	15.15 10.30		23.99 28.84	-	-				-		-						-
MW-5	2/27/2008	g q	39.14	13.22		25.92	-	-					-			-				
MW-5	3/6/2008	g	39.14	12.90		26.24	-											-		-
MW-5	9/3/2008	g	39.14	12.90		26.24	1	-				-		-		-		-		-
MW-5	3/4/2009	g	39.14	8.45		30.69	-	-		-		-		-	-	-	-	-		-
MW-5 MW-5	4/8/2009 5/11/2009	g q	39.14 39.14	9.05 9.10		30.09 30.04	-	-				-				-		-		-
MW-5	6/16/2009	q	39.14	9.15		29.99					-	-	-				-	-	-	-
MW-5	7/22/2009	g	39.14	9.33		29.81						-								-
MW-5	8/6/2009	g	39.14	10.05		29.09						-	-	-	-				-	
MW-5	9/30/2009	g	39.14	10.55		28.59	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW-5 MW-5	10/28/2009 3/23/2010		39.14 39.14	10.48 7.10		28.66 32.04	-	67,000	1,400	380	620	1,800	<5.0	<40	<5.0	<5.0	<5.0	<1,000	<5.0	<5.0
MW-5	6/10/2010	q	39.14	8.26		30.88			1,400											
MW-5	9/16/2010	g	39.14	9.14		30.00						-								-
MW-5	2/23/2011	g	39.14	8.33		30.81						-	-	-	-				-	
MW-5	9/28/2011	g	39.14	10.46		28.68	-	-				-	-		-	-	-		-	-
MW-5 MW-5	3/8/2012 9/5/2012	g q	39.14 39.14	10.27 11.80		28.87 27.69	-	-				-								-
MW-5	3/20/2013	g	39.14	9.73	9.71	29.43	-	-	-	-		-	-	-	-	-	-	-	-	_
											•		•					•	•	
MW-6	10/3/1991		41.59	20.73		20.86	-	<50	0.7	0.8	<0.3	1.3		-	-		-	-		
MW-6 MW-6	10/15/1991 12/4/1991	ļ	41.59 41.59	21.20 21.26		20.39 20.33	-	-				-		-						
MW-6	12/4/1991		41.59	21.26		20.33	-	-	-			-		-	-		-	-		
MW-6	1/6/1992		41.59	20.29		21.30	-	<50	<0.5	<0.5	<0.5	1.6				-		-		-
MW-6	1/22/1992		41.59	20.12		21.47	-	-				-		-						-
MW-6	1/28/1992		41.59	20.20		21.39	-	-		-		-		-	-	-	-	-		-
MW-6 MW-6	2/5/1992 2/12/1992		41.59 41.59	20.09 19.15		21.50 22.44	-	-										-		-
MW-6	2/12/1992		41.59	18.02		23.57	-	-				-								
MW-6	4/3/1992		41.59	16.62		24.97														-
MW-6	4/8/1992		41.59	17.06		24.53	1	<50	0.6	<0.5	0.8	<0.5		-		-		-		-
MW-6	4/14/1992		41.59	17.23		24.36														-
MW-6 MW-6	4/29/1992 5/7/1992		41.59 41.59	18.12 18.52		23.47 23.07	-	-	-			-		-						
MW-6	7/3/1992		41.59	19.71		21.88		<50	<0.5	<0.5	<0.5	<0.5					-	-	-	-
MW-6	10/8/1992		41.59	21.22		20.37		<50	<0.5	<0.5	<0.5	<0.5								-
MW-6	10/8/1992	е	41.59	21.22		20.37		<50	<0.5	<0.5	<0.5	<0.5	-	-	-				-	
MW-6	12/31/1992		41.59	21.33		20.26	-	<50	<0.5	<0.5	<0.5	<0.5		-		-	-	-		
MW-6 MW-6	4/21/1993 7/7/1993		41.59 41.59	16.45 18.68		25.14 22.91		<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	28.96	-						
MW-6	9/21/1993		41.59	19.64		21.95	_	<50	<0.5	<0.5	<0.5	1.6				-	-	-	-	_
MW-6	12/17/1993		41.59	21.08		20.51	-	-				-		-	-	-	-	-		-
MW-6	12/23/1993		-			-	-	<50	<0.5	0.5	<0.5	0.6	13.95	-	-	-	-	-	-	
MW-6 MW-6	4/7/1994 7/6/1994		41.59 41.59	21.27 19.81		20.32 21.78	-	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	35.1					-	-	-
MW-6	7/6/1994	е	41.59	19.81		21.78	-	<50 <50	<0.5	<0.5	<0.5	<0.5		-		-	-	-	-	-
MW-6	10/7/1994	<u> </u>	41.59	21.25		20.34	-	<50	<0.5	<0.5	<0.5	<0.5	24.3			-	-	-		
MW-6	1/27/1995		41.59	12.39		29.20	1	<50	<0.5	<0.5	<0.5	<1.0	-	1	-		-		-	
MW-6 MW-6	3/30/1995		41.59 41.59	11.34		30.25	-	<50	<0.50	<0.50	<0.50	<1.0		-	-	-		-	-	-
MW-6 MW-6	6/20/1995 10/3/1995	-	41.59 41.59	15.12 20.68		26.47 20.91	-	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	66			-		-		-
MW-6	12/6/1995	1	41.59	23.77		17.82	-	<50	<0.50	<0.50	<0.50	<1.0	45	-	-	-	-	-	-	-
MW-6	3/21/1996		41.59	11.55		30.04	-	<50	<0.5	<1.0	<1.0	<1.0	41	-			-	-		
MW-6	6/21/1996		41.59	12.60		28.99	-	<50	<0.5	<1.0	<1.0	<1.0	<10	-	-	-	-	-	-	-
MW-6 MW-6	9/6/1996 9/9/1996		41.59	13.25		28.34	-	 <50	 <0.5	<1.0	 <1.0	<1.0	- 22	-						-
MW-6	12/19/1996	<b> </b>	41.59	11.45		30.14	-	<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10	-			-	-		
MW-6	3/17/1997	1	41.59	10.80		30.79	-							-	-	-	-	-	-	
MW-6	8/12/1997		41.59	13.11		28.48	-	-				-		-			-	-		
MW-6	12/10/1997		41.59	13.84		27.75	-				-	-	-					-	-	
MW-6 MW-6	3/12/1998		41.59	11.17		30.42	-	-				-	-	-				-		
MW-6 MW-6	6/23/1998 3/31/1999	-	41.59 41.59	13.27 12.91		28.32 28.68	-	-								-				-
MW-6	8/25/1999	<b> </b>	41.59	15.93		25.66	-	-				-	-	-		-	-	-	-	-
MW-6	3/9/2000		41.59	11.49		30.10	-	-						-		-	-	-		-
MW-6	3/8/2001		41.59	10.81		30.78	-	-	-	-		-	-	-	-		-	-	-	-
		· ·					· · · · · · · · · · · · · · · · · · ·	· ·		· · · · · · · · · · · · · · · · · · ·	·	· ·		· ·		· ·			·	

			TOC	DTW		GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
Well ID	Date	Notes	(ft msl)	(ft)	DTP	(ft msl)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6	3/8/2002		41.59	14.28		27.31	-				-		-						-	
MW-6	3/18/2002		41.59	13.10		28.49	-				-	-	-	-		-			-	-
MW-6	3/11/2003		41.59	13.63		27.96	1	-			-	-	-			-			-	
MW-6 MW-6	12/9/2003 3/9/2004		41.59 41.59	14.26 11.87		27.33 29.72	-	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	12 10	<20 <20	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<100 <100	0.58	 <0.50
MW-6	9/17/2004		41.59	16.45		25.14	-	<50	<0.50	<0.50	<0.50	<0.50	10	<20	<0.50	<0.50	<0.50	<100	0.58	<0.50
MW-6	3/7/2005		41.59	13.65		27.94		<50	<0.50	<0.50	<0.50	<0.50	5.8	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-6	9/6/2005		44.37	14.23		30.14	-													
MW-6	3/6/2006		44.37	12.89		31.48		<50	<0.50	<0.50	<0.50	<0.50	8.1	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	9/5/2006		44.37	14.10		30.27	-				-	-	-			-			-	
MW-6	3/5/2007		44.37	11.43		32.94	-	<50	<0.50	<0.50	<0.50	<0.50	5.6	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	9/7/2007		44.37	16.00		28.37	1				-		-						-	-
MW-6 MW-6	3/6/2008		44.37 44.37	11.84 16.24		32.53 28.13		<50 	<0.50	<0.50	<0.50	<0.50	1.9	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	9/3/2008 3/4/2009		44.37	11.68	-	32.69	-	<50	<0.50	<0.50	<0.50	<0.50	2.8	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	9/30/2009		44.37	16.83		27.54		<50	<0.50	<0.50	<0.50	<0.50	4.4	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-6	10/28/2009		44.37	15.63		28.74	-						-							
MW-6	3/23/2010		44.37	11.48		32.89		<50	< 0.50	< 0.50	<0.50	<1.0	1.0	<4.0	< 0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-6	6/10/2010		44.37	12.54		31.83	ı	-			-	-	-	-		-			-	-
MW-6	9/16/2010		44.37	15.95		28.42	-	<50	<0.50	<0.50	<0.50	<1.0	0.80	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-6	2/23/2011		44.37	12.34		32.03							<0.50							
MW-6 MW-6	9/28/2011		44.37 44.37	15.81 15.51		28.56 28.86	-				-		3.4 0.58			-				
MW-6	3/8/2012 9/5/2012		44.37	15.51 15.88		28.86	-				-	-	2.1	-				-	-	-
MW-6	3/20/2013		44.37	14.36		30.01	-	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-7	10/3/1991		40.64	14.93		25.71	-	360	62	13	3.4	20	-	-		-			-	
MW-7	10/15/1991		40.64	15.16		25.48		-			-	-	-				-			-
MW-7	12/4/1991		40.64	15.41		25.23	-				-	-	-	-					-	
MW-7	12/16/1991		40.64	15.21		25.43	-				-		-						-	
MW-7 MW-7	1/6/1992 1/22/1992		40.64 40.64	14.56 14.63		26.08 26.01		1,100	170	<0.5	24	23	-	-				-	-	
MW-7	1/28/1992		40.64	14.63	-	25.91	-				_	-	-	-					_	-
MW-7	2/5/1992		40.64	14.58		26.06	-		_		-	_	_		-		-	-	-	_
MW-7	2/12/1992		40.64	13.94		26.70					-		-						-	
MW-7	2/17/1992		40.64	13.10		27.54	-					-								
MW-7	4/3/1992		40.64	12.66		27.98		-			-	-	-				-			-
MW-7	4/8/1992		40.64	12.77		27.87	-	750	150	<0.5	23	9.9	-	-					-	
MW-7	4/14/1992		40.64	13.02		27.62	-	-	-		-	-	-	-			-	-	-	-
MW-7 MW-7	4/29/1992 5/7/1992		40.64 40.64	13.59 13.95		27.05 26.69	-	-	-			-	-	-		-	-	-		-
MW-7	7/3/1992		40.64	14.73		25.91	-	660	210	<2.5	33	8	-						-	
MW-7	10/8/1992		40.64	15.75		24.89	-	320	49	1.4	13	6.2	-	-				-	-	-
MW-7	12/31/1992		40.64	13.57		27.07		900	100	<2.5	28	4.3							-	
MW-7	4/21/1993		40.64	14.56		26.08	1	510	83	1.2	10	5.8								
MW-7	7/7/1993	f	40.32	13.40		26.92		1,100	160	2	27	4	10.84		-				-	-
MW-7	7/7/1993	е	40.32	13.40		26.92	-	1,100	170	1.9	29	2.84	9.84	-					-	
MW-7	9/21/1993		40.32	14.40		25.92	-	690	150	3.1	26	5.7	-	-				-	-	-
MW-7 MW-7	9/21/1993 12/17/1993	e	40.32 40.32	14.40 13.65	-	25.92 26.67	-	640	140	1.7	23	2.4	-			-			-	
MW-7	12/17/1993				1			250	64	1.2	9	1.8	7.81	<del>-</del>	-	-			<del></del>	
MW-7	4/7/1994		40.32	30.62		9.70	-	140	32	1.4	<0.5	<0.5	6.32						-	
MW-7	7/6/1994		40.32	16.88		23.44	-	410	94	1.3	10	3.5	<5.0	-			-	-	-	-
MW-7	10/7/1994		40.32	25.59		14.73		<50	9.2	<0.5	<0.5	<0.5	<5.0						-	
MW-7	1/27/1995		40.32	9.82		30.50	-	810	570	3	60	17				-	-	-	-	
MW-7	1/27/1995	е	40.32	9.82		30.50		930	620	4	77	21	-						-	-
MW-7 MW-7	3/30/1995 6/20/1995		40.32 40.32	9.15 11.38		31.17 28.94		180 2,800	65 980	0.53 <5.0	2 <5.0	<1.0 43				-			-	
MW-7	10/3/1995		40.32	29.95	-	10.37	-	2,800 <50	<0.50	<0.50	<5.0 <0.50	<1.0	<5.0	-					-	
MW-7	12/6/1995		40.32	29.85		10.47	-	<50	<0.50	<0.50	<0.50	<1.0	<5.0	-		-	-			-
MW-7	3/21/1996		40.32	9.76		30.56		1,000	390	2	40	13	<10			-				
MW-7	6/21/1996		40.32	11.01		29.31	-	<250	40	<5.0	<5.0	<5.0	<50	-			-	-	-	-
MW-7	9/6/1996		40.32	11.68		28.64	-				-		-	-		-			-	
MW-7	9/9/1996					-	-	<250	13	<5.0	<5.0	<5.0	<50	-					-	-
MW-7	12/19/1996		40.32	10.78		29.54	-	70	1.2	<1.0	1	<1.0	<10	-					-	
MW-7	3/17/1997		40.32	9.96	-	30.36	-				-	-	-	-		-	-		-	-
MW-7 MW-7	8/12/1997 12/10/1997		40.32 40.32	11.44 10.42		28.88 29.90	-	-			-		-	-					-	
MW-7	3/12/1998		40.32	9.51	-	30.81	-				-	-	-							
MW-7	6/23/1998		40.32	9.51	1	30.34	-				-		-			-			-	-
MW-7	3/31/1999		40.32	10.38		29.94	_				-								-	
									•	•		•		•	•	•	•	•	•	

Well ID	Date	Notes	TOC	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
MW-7	8/25/1999		(ft msl) 40.32	(ft) 12.38		(ft msl) 27.94	(μg/L)	(μg/L) 	(μg/L) 	(μg/L)	(μg/L) 	(μg/L)	(μg/L)	(μg/L)	(μg/L) 	(μg/L)	(μg/L)	(μg/L)	(μg/L) 	(μg/L) 
MW-7	3/9/2000		40.32	8.48		31.84	-					-				-				
MW-7	3/8/2001		40.32	8.37		31.95	-				-	-		-		-		-	-	
MW-7 MW-7	3/18/2002 3/11/2003		40.32 40.32	9.94 11.26		30.38 29.06	-	-			-	-					-	-		-
MW-7	12/9/2003		40.32	11.26		29.06	-	270	26	<0.50	<0.50	<0.50	8.7	<20	<0.50	<0.50	<0.50	<100		
MW-7	3/9/2004		40.32	10.91		29.41	-	320	49	0.73	1.8	0.59	6.9	<20	<0.50	<0.50	<0.50	<100	1.2	<0.50
MW-7	9/17/2004		40.32	13.20		27.12	1	330	17	< 0.50	<0.50	<0.50	7.0	<20	< 0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-7 MW-7	3/7/2005 9/6/2005		40.32 43.10	8.18 11.80		32.14 31.30		340 1,100	41 130	0.79	0.79	0.73 <1.5	7.2 16	<20 30	<0.50 0.60	<0.50	<0.50 <0.50	<100 <150	<0.50 <0.50	<0.50
MW-7	3/6/2005		43.10	8.39		31.30	-	1,100	31	1.2 0.78	1.8 0.74	<1.5 0.81	8.3	<20	<0.50	<0.50 <0.50	<0.50	<300	<0.50	<0.50 <0.50
MW-7	9/5/2006		43.10	11.45		31.65	-	2,000	260	3.1	5.9	<2.5	12	<100	<2.5	<2.5	<2.5	<1,500	<2.5	<2.5
MW-7	3/5/2007		43.10	9.31		33.79	-	2,200	110	2.2	4.0	1.8	7.6	<40	<1.0	<1.0	<1.0	<600	<1.0	<1.0
MW-7	9/7/2007		43.10	12.18		30.92	-	220	8.4	<0.50	<0.50	<0.50	1.2	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7 MW-7	3/6/2008 9/3/2008		43.10 43.10	10.05 13.17		33.05 29.93	-	1,800 540	54 13	1.2 0.69	1.1 <0.50	<1.0 <0.50	<1.0 5.5	<20 17	<1.0 <0.50	<1.0 <0.50	<1.0 <0.50	<600 <300	<1.0 <0.50	<1.0 <0.50
MW-7	3/4/2009		43.10	8.25		34.85	-	720	15	0.69	0.53	<0.50	3.4	12	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7	9/30/2009		43.10	12.70		30.40		1,200	44	1.0	0.74	0.79	3.3	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-7	10/28/2009		43.10	11.17		31.93		-			-	-				-	-	-		
MW-7	3/23/2010		43.10	9.28		33.82		610	11	<0.50	<0.50	<1.0	<0.50	12	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-7 MW-7	6/10/2010 9/16/2010		43.10 43.10	10.24 12.16		32.86 30.94	-	4,700	130	<5.0	7.4	<10	<5.0	<40	<5.0	 <5.0	 <5.0	<1,000	 <5.0	 <5.0
MW-7	2/23/2011		43.10	9.62		33.48	-	2,200	26	1.1	1.4	1.6	4.0	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-7	9/28/2011		43.10	11.80		31.30	-	3,800	380	4.8	28	4.3	9.5	13	< 0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-7	3/8/2012		43.10	11.69		31.41	-	550	1.4	<0.50	<0.50	<1.0	2.3	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
MW-7 MW-7	9/5/2012 3/20/2013		43.10 43.10	11.60 10.88		31.50 32.22	-	830	16	1.3	0.66 3.4	1.4	3.0	<4.0	<0.50	<0.50	<0.50	<250	<0.50	<0.50
10100-7	3/20/2013		43.10	10.00		32.22	-				3.4	-	-		-		-	-		
MW-8	10/3/1991		38.18	22.37		15.81	-	<50	< 0.3	0.6	<0.3	0.9						-		
MW-8	10/15/1991		38.18	22.70		15.48	1				-	-		-			-	-		
MW-8	12/4/1991		38.18	22.44		15.74	-				-	-					-	-		
MW-8 MW-8	12/16/1991 1/6/1992		38.18 38.18	22.47 21.94		15.71 16.24	-	 <50	<0.5	 <0.5	<0.5	<0.5					-	-		
MW-8	1/22/1992		38.18	21.44		16.74							-	-		-		-		
MW-8	1/28/1992		38.18	21.20		16.98					-	-								
MW-8	2/5/1992		38.18	20.88		17.30		-			-	-							-	
MW-8	2/12/1992		38.18	20.54		17.64	-	-			-	-		-			-	-		-
MW-8 MW-8	2/17/1992 4/3/1992		38.18 38.18	19.99 16.75		18.19 21.43	-		-				-			-				
MW-8	4/8/1992		38.18	16.57		21.61		<50	<0.5	<0.5	<0.5	<0.5		-	-		-	-	_	_
MW-8	4/29/1992		38.18	18.61		19.57	-				-	-								
MW-8	5/7/1992		38.18	18.41		19.77	-	-			-	-	-	-	-	-	-	-	-	
MW-8 MW-8	7/3/1992 10/8/1992		38.18 38.18	20.35 21.74		17.83 16.44	-	<50	<0.5	<0.5	<0.5	<0.5					-	-		
MW-8	12/31/1992		38.18	19.09		19.09	-	<50	<0.5	<0.5	<0.5	<0.5						-		
MW-8	4/21/1993		38.18	18.92		19.26	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	-		-	-		
MW-8	7/7/1993		38.18	17.76		20.42		<50	<0.5	<0.5	<0.5	<0.5	<5.0					-		
MW-8	9/21/1993		38.18	19.71		18.47		<50	2.9	2.2	2.2	7.1								
MW-8 MW-8	12/17/1993 12/23/1993		38.18	21.33		16.85	-	<50	<0.5	<0.5	<0.5	0.6	<5.0					-		
MW-8	4/7/1994		38.18	21.51		16.67	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0				-	-		
MW-8	7/6/1994		38.18	17.41		20.77	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-		-	-	-		
MW-8	10/7/1994		38.18	19.20		18.98	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-		-	-	-		
MW-8 MW-8	1/27/1995 3/30/1995		38.18 38.18	12.25 10.35	1	25.93 27.83	-	<50 <50	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	<1.0 <1.0	-			-	-	-	-	
MW-8	6/20/1995		38.18	13.37	1	24.81	-	<50 <50	<0.50	<0.50	<0.50	<1.0		-			-	-	-	
MW-8	12/6/1995		38.18	18.42		19.76	_	<50	< 0.50	< 0.50	<0.50	<1.0	47							-
MW-8	6/21/1996		38.18	13.03		25.15	-	<50	<0.5	<1.0	<1.0	<1.0	<10	-		-	-	-	-	
MW-8	9/6/1996		38.18	13.70	ļ	24.48	-					1.0		-	-	-	-	-	-	-
MW-8 MW-8	9/9/1996 12/19/1996		38.18	11.93		26.25	-	<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10					-	-	
MW-8	3/17/1997		38.18	11.29		26.89	-							-			-	-	-	
MW-8	8/12/1997		38.18	13.73		24.45	-	-				-		-		-	-	-	-	
MW-8	12/10/1997		38.18	11.88		26.30	1	-			-	-				-	-			
MW-8 MW-8	3/12/1998		38.18 38.18	11.89	ļ	26.29 26.85	-	-			-	-		-	-	-	-	-	-	-
MW-8	6/23/1998 3/31/1999		38.18	11.33 12.68		25.50	-	-			-	-					-	-	-	-
MW-8	8/25/1999		38.18	14.93	1	23.25	-		-		-			-	-	-	-	-	-	
MW-8	3/9/2000		38.18	9.14		29.04	-	-				-		-		-	-	-	-	
MW-8	3/8/2001		38.18	8.41		29.77	-	-			-	-	-	-		-	-	-	-	
MW-8	3/8/2002		38.18	11.18		27.00	-	-	-			-		-	-	-		-	-	-

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (μg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	Ethanol (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)
MW-8	3/18/2002		38.18	10.72		27.46	(F9-2)	(P9'-)	(Pg/2)	(149-2)	(F9-2) 	(P9/2/	(P9/2)	(P9/2/ 	(Pg/2)	(Pg/ =/	(19/2)	(Pg/2/	(F9-2)	(Pg/2)
MW-8	3/11/2003		38.18	10.46		27.72	-				-	-						-	-	-
MW-8 MW-8	3/9/2004 9/17/2004		38.18 38.18	9.79 15.35		28.39 22.83	-	<50	<0.50	<0.50	<0.50	<0.50	0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8	3/7/2004		38.18	7.94		30.24	-	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8	9/6/2005		40.95	13.06		27.89		-			-	-		-			-		-	-
MW-8	3/6/2006		40.95	9.26		31.69		<50	<0.50	<0.50	<0.50	<0.50	0.59	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8 MW-8	9/5/2006 3/5/2007		40.95 40.95	12.61 9.12		28.34 31.83	-	 <50	<0.50	<0.50	<0.50	0.53	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8	9/7/2007		40.95	13.56		27.39	-	<50	<0.50	<0.50	<0.50	0.53	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8	3/6/2008		40.95	9.80		31.15	-	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8	9/3/2008		40.95	14.20		26.75	1				-	-		-		-	-		-	
MW-8	3/4/2009		40.95	9.51		31.44	1	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-8 MW-8	9/30/2009 10/28/2009		40.95 40.95	14.92 13.56		26.03 27.39	-					-		-			-	-	-	
MW-8	6/10/2010		40.95	11.06		29.89	-	-			_	_	-				-	-	-	
MW-8	9/16/2010		40.95	14.41		26.54	-	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<4.0	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-8	9/28/2011		40.95	13.87		27.08	-	-		-	-	-		-			-	-	-	
MW-8 MW-8	3/8/2012		40.95 40.95	13.27		27.68	-	-				-		-			-	-	-	-
MW-8	9/5/2012 3/20/2013		40.95 40.95	11.90		29.05	-	-			-	-		-			-	-	-	
	G/EG/2010		10.00			20.00	-	-	I			-			I					
MW-9	10/3/1991		41.25	14.12		27.13	-	<50	<0.3	0.4	<0.3	<0.3		-			-	-	-	
MW-9	10/15/1991		41.25	14.27		26.98	-				-	_		-		-		-	-	
MW-9 MW-9	12/4/1991 12/16/1991		41.25 41.25	13.84 14.18		27.41 27.07					-	-					-	-	-	-
MW-9	1/6/1991		41.25	13.42		27.07	-	<50	<0.5	<0.5	<0.5	0.9		-			-	-		
MW-9	1/22/1992		41.25	13.75		27.50					-	-							-	
MW-9	1/28/1992		41.25	14.76		26.49	1				-	-		-		-	-		-	
MW-9	2/5/1992		41.25	13.38		27.87	-	-			-	1	-	-		-	-		-	-
MW-9 MW-9	2/12/1992 2/17/1992		41.25 41.25	11.86 10.78		29.39 30.47	-	-				-					-	-	-	
MW-9	4/3/1992		41.25	11.63		29.62	-				-	-					-		-	
MW-9	4/8/1992		41.25	12.25		29.00	-	<50	<0.5	<0.5	<0.5	<0.5					-		-	
MW-9	4/14/1992		41.25	12.32		28.93	1				-	-		-		-	-		-	
MW-9	4/29/1992		41.25	13.07		28.18					-						-		-	
MW-9 MW-9	5/7/1992 7/3/1992		41.25 41.25	14.43 13.85		26.82 27.40	-	 <50	 <0.5	<0.5	<0.5	<0.5				-	-	-	-	
MW-9	10/8/1992		41.25	14.89		26.36		<50	<0.5	<0.5	<0.5	<0.5	-				-	-	-	
MW-9	12/31/1992		41.25	11.90		29.35	-	<50	<0.5	<0.5	<0.5	<0.5	-	-			-	-	-	-
MW-9	4/21/1993		41.25	13.68		27.57	-	<50	<0.5	<0.5	<0.5	<0.5					-	-	-	-
MW-9	7/7/1993		41.25	13.12		28.13	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-			-	-	-	
MW-9 MW-9	9/21/1993 12/17/1993		41.25 41.25	14.00 12.98		27.25 28.27		<50	<0.5	<0.5	<0.5	0.9		-						
MW-9	12/23/1993						-	<50	<0.5	<0.5	<0.5	0.9	<5.0				-	-	-	
MW-9	4/7/1994		41.25	13.24		28.01	1	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1					-	
MW-9	7/6/1994		41.25	13.77		27.48	-	<50	<0.5	<0.5	<0.5	<0.5		-			-		-	
MW-9	10/7/1994		41.25	14.60		26.65	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0				-		-	
MW-9 MW-9	1/27/1995 3/30/1995		41.25 41.25	8.47 8.19		32.78 33.06	-	<50 <50	<0.5 <0.50	<0.5 <0.50	<0.5 <0.50	<1.0 <1.0					-		<del>-</del>	<del></del>
MW-9	6/20/1995		41.25	11.25		30.00	-	<50	<0.50	<0.50	<0.50	<1.0		-			_			
MW-9	10/3/1995		41.25	14.68		26.57	-	<50	<0.50	<0.50	<0.50	<1.0	<5.0	-			-	-	-	
MW-9	12/6/1995		41.25	16.07		25.18	-	<50	<0.50	<0.50	<0.50	<1.0	46	-		-	-	-	-	
MW-9 MW-9	3/21/1996 6/21/1996		41.25 41.25	9.60 10.86		31.65 30.39	-	<50 <50	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10 <10					-		<del>-</del>
MW-9	9/6/1996		41.25	11.52		29.73	-							-	-	-	-	-	-	
MW-9	9/9/1996						-	<50	<0.5	<1.0	<1.0	<1.0	21	-				-		
MW-9	12/19/1996		41.25	10.43		30.82	-	<50	<0.5	<1.0	<1.0	<1.0	<10	-		-	-	-	-	
MW-9	3/17/1997		41.25	9.87		31.38	-	-	-		-	-	-	-		-	-	-	-	
MW-9 MW-9	8/12/1997 12/10/1997		41.25 41.25	11.44 10.44		29.81 30.81	-	-			-	-				-		-	-	<del></del>
MW-9	3/12/1998		41.25	9.50		31.75	-	_	-		-	-		-		-	-	-	-	_
MW-9	6/23/1998		41.25	10.06		31.19	-	-				-		-		-	-	-		
MW-9	3/31/1999		41.25	9.06		32.19	1	-			-	-		-		-	-	-	-	
MW-9 MW-9	8/25/1999		41.25 41.25	12.00 10.57		29.25 30.68	-	-			-	-		-		-	-	-	-	-
MW-9	3/9/2000 3/8/2001		41.25 41.25	9.73		30.68	-				-	-		-			-			-
MW-9	3/8/2001		41.25	11.89		29.36	-		-		-	-	-	-	-	-	-	-	-	-
MW-9	3/18/2002		41.25	9.68		31.57		-			-	-	-	-			-	-	-	-
MW-9	3/11/2003		41.25	9.21		32.04	-	-	-		-	-		-			-	-	-	
MW-9	3/9/2004		41.25	10.99	ļ	30.26		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50

Well ID	Date	Notes	тос	DTW	DTP	GW Elev	DRO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2-DCA	EDB
		Notes	(ft msl)	(ft)	DIF	(ft msl)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-9	9/17/2004		41.25	13.35		27.90	-													
MW-9	3/7/2005		41.25	8.94		32.31		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<100	<0.50	<0.50
MW-9 MW-9	9/6/2005 3/6/2006		44.06 44.06	11.99 8.26		32.07 35.80	-	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-9	9/5/2006		44.06	11.63		32.43		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-9	3/5/2007		44.06	9.33		34.73	-	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<0.50	<300	<0.50	<0.50
MW-9	9/7/2007		44.06	12.28		31.78				<0.50		<0.50								
MW-9	3/6/2008		44.06	10.11	1	33.95		<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<10	<0.50	<0.50	< 0.50	<300	<0.50	< 0.50
MW-9	9/3/2008		44.06	13.49		30.57			-		-	-		-				-	-	
MW-9	3/4/2009		44.06	8.15		35.91		<50	<0.50	<0.50	< 0.50	<0.50	< 0.50	<10	< 0.50	< 0.50	<0.50	<300	<0.50	< 0.50
MW-9	9/30/2009		44.06	12.98		31.08													-	
MW-9	10/28/2009		44.06	11.98		32.08	-		-		-	-	-	-	-	-		-	-	-
MW-9	3/23/2010		44.06	10.59		33.47		<50	< 0.50	<0.50	< 0.50	<1.0	< 0.50	<4.0	< 0.50	< 0.50	<0.50	<100	< 0.50	< 0.50
MW-9	6/10/2010		44.06	10.25		33.81														-
MW-9	2/23/2011		44.06	9.71		34.35	-		-	-		-		-	-			-	-	-
MW-9	9/28/2011		44.06	11.66		32.40	-	-	-		-	-	-	-	-	-	-	-	-	-
MW-9	3/8/2012		44.06	11.56		32.50	-		-		-	-	-			-		-	-	-
MW-9	9/5/2012		44.06	11.18		32.88	-		-		-	-						-	-	-
MW-9	3/20/2013		44.06	10.00		34.06														-
100/40	0/40/0005		00.70	0.00		04.40		ı	ı	ı		ı	1	ı	ı	ı	1	ı		
MW-10	6/16/2009	g	39.78	8.60		31.19	-	-	-		-	-	-	-			-	-	-	-
MW-10 MW-10	7/22/2009 8/6/2009	g	39.78 39.78	9.68 9.48		30.11 30.30	-		-		-	-		-				-	-	-
MW-10	9/30/2009	_	39.78	9.48		30.30	-		-	-		-			-					-
MW-10	10/28/2009	g	39.78	8.53		31.25		62,000	8,300	5,300	3,100	12,000	<50	<400	<50	<50	<50	<10,000	<50	<50
MW-10	3/23/2010	ь	39.78	7.70		32.08	_	59,000	6.500	4.800	2.300	9.700	<100	<800	<100	<100	<100	<20.000	<100	<100
MW-10	6/10/2010	q	39.78	8.93		30.86	-													
MW-10	9/16/2010	g	39.78	9.69		30.10			-										-	-
MW-10	2/23/2011	9	39.78	7.99		31.79		61.000	7,000	5,300	2.800	12,000	<100	<800	<100	<100	<100	<50.000	<100	<100
MW-10	9/28/2011	g	39.78	10.36		29.64														-
MW-10	3/8/2012	g	39.78	10.51		29.51	-		-		-	-	-	-	-	-		-	-	-
MW-10	9/5/2012	g	39.78	10.25		29.54														-
MW-10	3/20/2013	g	39.78	9.48	9.47	30.31	-		-	-		-		-	-			-	-	-
MW-11	9/30/2009		40.04	10.55		29.49	-	30,000	850	1,400	1,000	3,700	27	<200	<10	<10	<10	<6,000	<10	<10
MW-11	10/28/2009		40.04	8.00		32.04		27,000	1,100	2,300	1,500	5,800	<50	<400	<50	<50	<50	<10,000	<50	<50
MW-11	3/23/2010	ļ	40.04	7.25		32.79	-	21,000	530	830	790	2,200	<25	<200	<25	<25	<25	<5,000	<25	<25
MW-11	6/10/2010	b	40.04	9.65		30.39		-	-		-	-					-	-	-	-
MW-11	9/16/2010	-	40.04	9.42	1	30.62											 -F 0	-2 500	 0	
MW-11 MW-11	2/23/2011 9/28/2011	-	40.04 40.04	7.60 9.88	-	32.44 30.16	-	10,000 5,900	380 230	260	330 260	540 370	7.2 6.4	<40 26	<5.0 <2.5	<5.0 <2.5	<5.0 <2.5	<2,500 <1,300	<5.0	<5.0 <2.5
MW-11	3/8/2012	-	40.04	9.88	-	30.16	-	5,000	280	92 170	250	370	<5.0	<40	<2.5 <5.0	<2.5 <5.0	<2.5 <5.0	<2,500	<2.5 <5.0	<2.5 <5.0
MW-11	9/5/2012	-	40.04	10.60	-	29.44	-	22,000	1,000	1,600	1,200	4,500	<5.0 6.2	<40 <40	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<2,500	<5.0 <5.0	<5.0 <5.0
MW-11	3/20/2013		40.04	9.54		30.50		16,000	250	620	680	2,200	<10	<40 <80	<10	<10	<10	<5,000	<10	<10
1414.4-1.1	3/20/2013	· · ·	70.07	3.54		30.30		10,000	230	020	000	2,200	V10	<b>~00</b>	\10	V10	×10	<5,000	110	×10
MW-12	9/30/2009		40.32	11.02		29.32					-									
MW-12	10/28/2009		40.32	10.40		29.92		43,000	5,800	800	2,900	6,800	<50	<400	<50	<50	<50	<10,000	<50	<50
MW-12	3/23/2010	b	40.32	11.46		28.86		39,000	4,800	1,000	3,100	6,400	<25	<200	<25	<25	<25	<5,000	<25	<25
MW-12	6/10/2010	b	40.32	11.35		29.87														-
MW-12	9/16/2010	g	40.32	11.54		28.80	-	-	-		-	-		-		-	-	-	-	-
MW-12	2/23/2011	g	40.32	10.80		29.60	-		-		-	-						-	-	-
MW-12	9/28/2011	g	40.32	11.48		28.99	-		-			-	-		-			-	1	-
MW-12	3/8/2012	g	40.32	11.92		28.64			-										-	-
MW-12	9/5/2012	g	40.32	11.63		29.76	-		-			-							-	-
MW-12	3/20/2013	g	40.32	10.13	10.09	30.22	-		-	-	-	-		-	-			-	-	-

1,2-DCA = 1,2-Dichloroethane
DIPE = Di-isopropyl ether
DO= Dissolved oxygen
DRO = Diesel range organics, range C10-C28
DTW = Depth to water in ft bgs

EDB = 1,2-Dibromomethane

ETBE = Ethyl tert butyl ether

GRO = Gasoline range organics, range C4-C12

GWE = Groundwater measured in ft

MTBE = Methyl tert butyl ether TAME = Ter-amyl methyl ether

TBA = Ter-butyl alcohol

TOC = Top of casing measured in ft

### Table 1 Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses CA-11109

#### 4280 Foothill Blvd., Oakland, CA 94601

Well ID	Date	Notes	TOC (ft msl)	DTW (ft)	DTP	GW Elev (ft msl)	DRO (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Ethanol (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)
---------	------	-------	-----------------	-------------	-----	---------------------	---------------	---------------	-------------------	-------------------	------------------------	-------------------	----------------	---------------	----------------	----------------	----------------	-------------------	-------------------	---------------

μg/L= Micrograms per liter

ft bgs = Feet below ground surface

- --- = Not analyzed/applicable/measured/ available
- < = Not detected at or above reported detection limit
- (a) Sample exceeded EPA recommened holding time
- (b) Sheen in well
- (c) Well not sampled due to damage during site construction
- (d) Insufficient water to sample
- (e) Blind duplicate
- (f) TOC lowered
- (g) Free product in well
- (h) Trip Blank
- (i) Hydrocarbon odor observed at wellhead

GWE adjusted assuming specific gravity of 0.75 for free product

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present.

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.





### Appendix F

Historical Soil Vapor Data

TARGET ENVIRONMENTAL SERVICES, 3/1989

### TABLE 1

### Solu GAS LABORATORY RESULTS FLAME IONIZATION DETECTOR ANALYSIS CONCENTRATIONS IN MICROGRAMS-PER-LITER

	PENTANE/			ETHYL-	m- & p-	0-	TOTAL
SAMPLE	MTBE	BENZENE	TOLUENE	BENZENE	XYLENE	XYLENE '	VOLATILES ²
1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.5
	<b>9</b> 73	<b>17.</b> 2	21	13	9.6	8.9	·聲\$643
•	45,497	<b>#150</b>	<b>9</b> 1	*345	<b>18</b> 81	<b>453</b>	<b>467500</b>
4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	13	<1.0	4.3	<1.0	<1.0	<1.0	<b>1</b>
6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
7	3.8	<1.0	<1.0	<1.0	<1.0	<1.0	30
8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<b>*</b>	2.4	<1.0	3.3	2.4	<1.0	<1.0	9 .
10	4.5	<1.0	<1.0	<1.0	<1.0	<1.0	89
11	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<b>4</b>	6.5	<1.0	6.3	<1.0	<1.0	<1.0	<b>1128</b>
13	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	19
<b>4</b>	10	3.0	112	64	291	120	<b>1279</b> 50
15	2.9	<1.0	<1.0	<1.0	<1.0	<1.0	25
16	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
FIELD C	CONTROL SE	MPLES					
17	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
18	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
LABORA	ORY SYRIN	IGE BLANKS	1				
BM1-1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
DUPLICA	TE ANALYS	ES					
10	4.5	<1.0	<1.0	<1.0	<1.0	<1.0	89
10R	4.1	<1.0	<1.0	<1.0	<1.0	<1.0	84

¹CONCENTRATIONS BASED ON RESPONSE FACTOR OF MTBE

²CALCULATED USING THE SUM OF THE AREAS OF ALL INTEGRATED CHROMATOGRAM PEAKS, AND THE INSTRUMENT RESPONSE FACTOR FOR TOLUENE



FOOTHILL BOULEVARD



FIGURE 1. Sample Locations



This map is integral to a written report and should be viewed in that context.

FOOTHILL BOULEVARD



FIGURE 2. FID Total Volatiles (calc'd  $\mu$ g/l)



ENVIRONMENTAL SERVICES, INC.

This map is integral to a written report and should be viewed in that context.

MOBIL SERVICE STATION #10-H69 4280 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

HIGH STREET





FOOTHILL BOULEVARD



FIGURE 3. MTBE and Pentane (µg/I)



ENVIRONMENTAL SERVICES, INC.

This map is integral to a written report and should be viewed in that context.



FOOTHILL BOULEVARD



FIGURE 4. Benzene  $(\mu g/I)$ 



This map is integral to a written report and should be viewed in that context.



FOOTHILL BOULEVARD



. SOIL GAS SAMPLE LOCATION

FIGURE 5. Toluene  $(\mu g/I)$ .



This map is integral to a written report and should be viewed in that context.



FOOTHILL BOULEVARD



FIGURE 6. m- and p- Xylene  $(\mu g/I)$ 



ENVIRONMENTAL SERVICES, INC.

This map is integral to a written report and should be viewed in that context.



FOOTHILL BOULEVARD



- . SOIL GAS SAMPLE LOCATION
- APPROXIMATE BORING & WELL LOCATION
- TOTAL VOLATILE CONCENTRATIONS FROM SOIL GAS SURVEY (ug/l)

BASED ON FIGURE PROVIDED BY TARGET ENVIRONMENTAL SERVICES, INC.

This map is integral to a written report and should be viewed in that context.

MOBIL SERVICE STATION #10-H69 4280 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

SITE & EXPLORATION PLAN
APR 1989 W-6095
FIGURE 1



**ACEH Checklists** 

### LOW THREAT CLOSURE POLICY - GENERAL CRITERIA A

Steen   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Compan	General Criteria a:				
LTCP Statement: "This policy is protective of existing water supply wells. New water supply wells are unlikely to be installed in the shallow groundwater near former UST release sites. However, it is difficult to predict, on a statewide basis, where new wells will be installed, particularly in rural areas that are undergroing new development. This policy is limited to areas with available public water systems to reduce the likelihood that new wells in developing areas will be inadvertently impacted by residual petroleum in groundwater. Case closure outside of areas with a public water system should be evaluated based upon the fundamental principles in this policy, and a site specific evaluation of developing water supplies in the area. For purposes of this policy, a public water system is a system for the provision of water for human consumption through pipes or other constructed conveyances that has 15 or more service connections or regularly serves at least 25 individuals daily at least 60 days out of the year."  If the unauthorized release is located within the service area of a public water supply system, then  Name of public water system agency?  East Bay Municipal Utility District  Zone 7 Water Agency  City of Hayward Water  Alameda County Water District  Other:  Are there existing water supply wells or other sources of water in the vicinity of the site? Use General Criteria e - CSM Well Survey sheet to support answer  If the unauthorized release is located outside the service area of a public water supply system, then  Are there existing water supply wells or other sources of water in the vicinity of the site? Use General Criteria e - CSM Well Survey sheet to support answer  If the unauthorized release is located outside the service area of a public water supply system, then  Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the san		ublic W	ater	Y	′
to be installed in the shallow groundwater near former UST release sites. However, it is difficult to predict, on a statewide basis, where new wells will be installed, particularly in rural areas that are undergoing new development. This policy is limited to areas with available public water systems to reduce the likelihood that new wells in developing areas will be inadvertently impacted by residual petroleum in groundwater. Case closure outside of areas with a public water system should be evaluated based upon the fundamental principles in this policy and a site specific evaluation of developing water supplies in the area. For purposes of this policy, a public water system is a system for the provision of water for human consumption through pipes or other constructed conveyances that has 15 or more service connections or regularly serves at least 25 individuals daily at least 60 days out of the year."  If the unauthorized release is located within the service area of a public water supply system, then  Name of public water system agency?  East Bay Municipal Utility District  Zone 7 Water Agency  City of Hayward Water  Alameda County Water District  Other:  Are there existing water supply wells or other sources of water in the vicinity of the site? Use General Criteria e - CSM Well Survey sheet to support answer Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then  Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been	System?				
Name of public water system agency?    East Bay Municipal Utility District	to be installed in the shallow groundwater near former UST release sites. He a statewide basis, where new wells will be installed, particularly in rural development. This policy is limited to areas with available public water system wells in developing areas will be inadvertently impacted by residual closure outside of areas with a public water system should be evaluated principles in this policy and a site specific evaluation of developing water sup this policy, a <u>public water system</u> is a system for the provision of water for he or other constructed conveyances that has 15 or more service connection	owever, areas tems to repetroleuded based burner to the common to the common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common common co	it is diffice that are reduce the main group of the area on sumpti	cult to pre undergoi he likeliho oundwate the fund . For purp on throug	edict, on ng new bood that r. Case amental boses of th pipes
East Bay Municipal Utility District  Zone 7 Water Agency City of Hayward Water Alameda County Water District Other:  Are there existing water supply wells or other sources of water in the vicinity of the site?  Wee General Criteria e - CSM Well Survey sheet to support answer Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water supply shall nity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the	If the unauthorized release is <u>located within</u> the service area of a public	water s	upply s	ystem, th	en
Zone 7 Water Agency	Name of public water system agency?				
City of Hayward Water  Alameda County Water District  Other:  Are there existing water supply wells or other sources of water in the vicinity of the site?  Was General Criteria e - CSM Well Survey sheet to support answer  Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then  Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perch					
Alameda County Water District Other:  Are there existing water supply wells or other sources of water in the vicinity of the site? Use General Criteria e – CSM Well Survey sheet to support answer Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable					
Other:  Are there existing water supply wells or other sources of water in the vicinity of the site? Use General Criteria e - CSM Well Survey sheet to support answer  Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then  Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Ar					
site? Use General Criteria e – CSM Well Survey sheet to support answer  Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then  Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water supply or N NE NA  Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the					
Note: If yes, the site must still satisfy the groundwater media specific criteria for distance from the contaminant plume boundary to existing wells  If the unauthorized release is located outside the service area of a public water supply system, then  Are there additional characteristics to consider that might result in a low-threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water			ΠΥ	□N	□NE
Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential water supply?  Are impacted perched water zones not a viable potential wa	Note: If yes, the site must still satisfy the groundwater media specific criteria				
threat designation?  Has a site-specific evaluation of developing water supplies in the area been conducted?  Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the					
Is impacted groundwater shallower than the sanitary seal requirement for supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the		☐ Y	□ N	□ NE	□NA
supply wells in the applicable county?  Applicable County Sanitary Seal Requirements:  Are impacted perched water zones not a viable potential water supply?  Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the	conducted?	ΠY	□N	□NE	□NA
Are impacted perched water zones not a viable potential water supply?  Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the		□Y	□N	□NE	□NA
Does high salinity or low yield negate the impacted groundwater from drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the	Applicable County Sanitary Seal Requirements:				
drinking water beneficial use per State Water Board Resolution 1988-0063, or de-designated areas of the applicable Basin Plans?  Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the	Are impacted perched water zones not a viable potential water supply?	ΠY	□N	☐ NE	□NA
Will Water Quality Objectives (WQOs) in the groundwater plume be attained through natural attenuation within a reasonable time, prior to the Y NE NA	drinking water beneficial use per State Water Board Resolution 1988-0063,	□Y	□N	□NE	□NA
	Will Water Quality Objectives (WQOs) in the groundwater plume be	ΠY	□N	□ NE	□NA

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

### LOW THREAT CLOSURE POLICY - GENERAL CRITERIA A

General Criteria a: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

### LOW THREAT CLOSURE POLICY - GENERAL CRITERIA B

General Criteria b:	☐ YES	□NO	□NE
Does the Unauthorized Release Consist only of Petroleum?			
LTCP Statement: "For purposes of this policy, petroleum is defined as crude oil, o liquid at standard conditions and temperature and pressure, which means 60 degree per square inch absolute including the following substances: motor fuels, jet fuels, oils, lubricants, petroleum solvents and used oils, including any additives and blend contained in the formulation of the substances."	es Fahrenho distillate fuel	eit and 14.7 բ oils, residua	oounds I fuel
Have adequate site investigation activities been conducted to evaluate unauthorized releases of potential chemicals of concern (PCOCs) and chemicals of concern (COCs) from on-site sources due to historical site activities and chemical usage?	□ Y □	] N	□NA
Have areas of concern been identified based on historical site activities and chemical usage?		N NE	□ NA
Have unauthorized releases from underground storage tanks been identified?		] N	□ NA □ NA
Have unauthorized releases from above ground storage tanks been identified?  Have unauthorized releases from site infrastructure (i.e., sumps, drains, sanitary sewer, etc) been identified?		N NE	□ NA
Have unauthorized releases from surface spills at dispenser islands, tank fill ports, etc. been identified?	ПΥ	N NE	□NA
Have unauthorized releases from other on-site sources been identified?	□ Y □	N NE	☐ NA
Has the site been impacted by off-site sources?	☐ Y ☐	N NE	□ NA
Are detected COCs consistent with reported site use?		N NE	□ NA
If detected COCs <u>are not consistent</u> with reported site use, then are there other regulatory cases in the vicinity of the site?		] N	□ NA
Identify regulatory case number(s):			
If there <u>are not other regulatory cases</u> in the vicinity of the site, then has an investigation of other potential sources and contaminant migration pathways been conducted?		]N   □NE	□ NA
Use General Criteria e – Conceptual Site Model (Off-site sources) sheets to support answer			
Has site contamination in all affected media been fully characterized?		] N	│ □ NA │
Use page b-2 and General Criteria e – Conceptual Site Model COCs and PCOCs sheets to identify site contaminants			
Soil?		N NE	□ NA
Soil Gas? Groundwater?		N NE	NA
Surface Water?		N □ NE N □ NE	☐ NA
Has a data quality review verified the validity of historic analytical data?	ΠΥ	N NE	□ NA
Use General Criteria e – Conceptual Site Model Analytical Data Quality Review sheets to support answers			
Have appropriate protocols been followed for obtaining representative samples?	□ Y	N NE	□NA
Are the analytical methods currently being used consistent with the recommended "best practices" in the CA LUFT Manual?	ПΥ	N NE	□NA
Have appropriate method detection limits been used (i.e., less than the LTCP media specific criteria for groundwater, vapor intrusion to indoor air, and direct contact and outdoor air exposure, and/or current environmental screening levels as appropriate?	Υ	] N	□ NA

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

General Criteria b: Case Notes	
Case File Reference Documents:	
Attachments:	
Case Notes:	

Chemicals of Concern (COCs - detected) and Potential Chemicals of Concern (PCOCs - i.e., not detected but used in site operations) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC		S	oil			Grour	ndwater	3.5	Soil G		Crawl Spar For Air 🗌	ace 🔲,		Surfa	ce Water	
Gasoline ²	XY	□ N	☐ NE	□ NA	×Υ		☐ NE	☐ NA	□ Y	⊠N	☐ NE	☐ NA	□ Y	N	☐ NE	□ NA
Fuel Oils ³	×Υ	□N	☐ NE	□ NA	×Ν		☐ NE	☐ NA	□ Y	□ N	☐ NE	<b>□</b> NA	□ Y	N	☐ NE	NA NA
Diesel	ΠY	<b>⊠</b> N	☐ NE	□ NA	XY	N	☐ NE	☐ NA		□ N	☐ NE	□ NA	☐ Y	∐ N	☐ NE	□ NA
Stoddard Solvent	□Y	□N	□NE	⊠ NA	□Y	□N	□ NE	□ NA	□Y	□N	□ NE	□ NA	□Y	□N	□ NE	□ NA
Jet Fuels	ΠY	□N	☐ NE	<b>⊠</b> NA	ΠY	□ N	□ NE	□ NA	□ Y	□N	☐ NE	□ NA	Y	□ N	☐ NE	II NA
Kerosene	ΠY	□N	☐ NE	<b>⋈</b> NA	ΠΥ	□ N	☐ NE	□ NA	□ Y	□ N	☐ NE	☐ NA	☐ Y	□N	☐ NE	N/
Home Heating Fuel	ΠY	□N	□ NE	<b>⊠</b> NA	□Y	□N	□ NE	□ NA	□Y	□N	□ NE	□ NA	□Y	□N	□ NE	□ NA
Bunker Fuel	ΠY	□ N	☐ NE	<b>⋈</b> NA	ΠY	□N	☐ NE	□ NA	ΠΥ	□N	☐ NE	☐ NA	☐ Y	□ N	□ NE	□ N/
Others	☐ Y	□ N	☐ NE	<b>⋈</b> NA	Y	□ N		□ NA	Y	N	NE NE	☐ NA	Ŭ Y	□ N	☐ NE	N/
Oils	Y	□N	☐ NE	<b>⊠</b> NA	Y		☐ NE	□ NA	Y	□ N	☐ NE	☐ NA	∐ Y	□ N	☐ NE	□ N/
Waste Oil4	ΠY	×Ν	□NE	□NA	ΠY	□N	☐ NE	☐ NA	ΠΥ	□N	│	☐ NA	☐ Y	□ N	☐ NE	□ N/
Hydraulic Oil	☐ Y	□N	☐ NE	<b>⊠</b> NA	ΟΥ	□N	☐ NE	□ NA	☐ Y	□ N	│ │ NE	☐ NA	ЦΥ	N	☐ NE	□ N/
Lubricating Oil	ΠY	□N	☐ NE	<b>⊠</b> NA	□ Y	□N	☐ NE	☐ NA	☐ Y	□ N	□ NE	□ NA	LY	∐ N	□ NE	□ N/
Oil and Grease	□Y	□N	□ NE	⊠ NA	□Y	□N	□ NE	□ NA	ΠY	□N	□ NE	□ NA	□Y	□N	□NE	D N
Motor Oil	ΠY	□N	☐ NE	<b>⊠</b> NA	ΠY	□N	□NE	□ NA	ΠY	□N	☐ NE	☐ NA	ΓΥ	□ N	☐ NE	I N.
Others	ПУ	ΠN	□NE	NA NA	ПУ	ПП	□NE	NA	$\square$	$\square$ N	☐ NE	□ NA	ITY	$\square$ N	│	

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC		;	Soil			Grou	ndwater		Soi	l Gas, C Inde	rawl Spa oor Air	се ог		Surfac	ce Water	
TPH															N.	
TPH-g	XY	□N	☐ NE	☐ NA	X Y	□N	☐ NE	☐ NA	ΠY	N	☐ NE	□NA	ПΥ	ΠN	□ NE	NA NA
GRO	XY	□ N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	ΠY	⊠ N	☐ NE	☐ NA	ΠY	ΠN	NE	NA NA
Others	□ Y	□N	☐ NE	.K NA	□ Y	□ N	☐ NE	⊠ NA	ΠY	□ N	□ NE	NA NA	ПΥ	ΠN	□ NE	III NA
Aromatics																
Benzene	XY	□N	☐ NE	□NA	XY	Пи	INE	□NA	XY	ПИ	□NE	□NA	ПУ	ΠN	□NE	∏ NA
Toluene	XY	□ N	☐ NE	□NA	XY	□N	□ NE	□ NA	XY	ΠN	□ NE	□ NA	TY	□ N	NE	I NA
Ethylbenzene	XY	□N	□ NE	□NA	XY	Пи	□ NE	□ NA	×Υ	Пи	□NE	□ NA			□ NE	NA NA
Xylenes	XY	□N	NE	☐ NA	XY	ΠN	□ NE	NA	MY	IIN	□ NE	□ NA	HY	HN	NE NE	III NA
Napthalene	ΠY	□N	M NE	□ NA	☐ Y	□N	NE NE	□ NA	ΙΥ	ΠN	NE NE	□NA	ΠY	ΠN	NE	III NA
Fuel Oxys⁵																1
MTBE ⁶	XY	ΠN	NE	□NA	XY	ΠN	□ NE	□NA	ΧY	Пи	ПNE	□NA	ПΥ	Пи	□NE	II NA
ETBE	ΠY	ΜN	NE	□ NA	TY	1X N	NE	□ NA		ΠN	H NE	NA NA	<del>                                     </del>	HN	□ NE	II NA
TAME	ΠY	ΝN	□ NE	□ NA	XY	ΠN	NE	□ NA	ΠY	Π̈́N	NE	X NA	<b>⊢</b>	HN	□ NE	NA NA
TBA	XY	□ N	☐ NE	□ NA	XY	ΠN	NE	□ NA	ΠY	ΠN	□ NE	X NA	HŸ	HN	I NE	NA NA
DIPE	XY	□N	☐ NE	☐ NA	XY	□N	NE	NA	ПΥ	ΠN	NE	NA NA	HY	ΠN	NE	II NA
Ethanol	ΠY	□ N	NE NE	☐ NA	Y	N	☐ NE	□ NA	ΠY	ΠN	□NE	M NA	ΠŸ	ΠN	NE	IINA
Methanol	ΠY	□N	<b>⋈</b> NE	☐ NA	Y	□N	X NE	☐ NA	ΠY	□ N	□NE	⊠ NA	ΠY	ΠN	NE	II NA
Others	☐ Y	□N	NE	<b>⊠</b> NA	Y	□N	☐ NE	<b>™</b> NA	ΠY	□ N	□ NE	<b>⊠</b> NA	ΠY	ΠN	NE	□ NA
Leaded Gas										, Inder					N 1 = 4=1	
TML®	□ Y	Ŋ N	☐ NE	□NA	\   	√⊠N	☐ NE	□NA	ΠY	□ N	☐ NE	M NA	ΠY	$\square$ N	□NE	□ NA
EDC [®]	ΠΥ	⊠N	☐ NE	☐ NA	XY	ПИ	☐ NE	☐ NA	Y	□ N	□ NE	<b>⊠</b> NA	ΠY	ΠN	NE	III NA
EDB ⁸	$\square$	×Ν	NE	□ NA	ПY	N	□ NE	□ NA		Пи	□ NE	M NA	ΠV	ΠN	□NE	III NA

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)
■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

COC/PCOC		5	Soil	. 7		Groui	ndwater		Soil G	as 🔀, C	rawl Sp	ace 🔲,		Surfac	e Water	
TPH				100												4
TPH-d	☐ Y	Ŋ N	☐ NE	□ NA	MY	N	☐ NE	☐ NA	☐ Y	□N	☐ NE	<b>⋉</b> NA	L Y	L N	☐ NE	NA NA
DRO	ΠY	N	☐ NE	□ NA	XY	N	☐ NE	□ NA	□ Y		☐ NE	<b>⊠</b> NA	□ Y	N	☐ NE	III NA
TEPH	ΠY	×Ν	☐ NE	☐ NA	☐ Y	□N	☐ NE	<b>⋈</b> NA	□ Y	□N	☐ NE	<b>⊠</b> NA	□ Y	□N	☐ NE	☐ NA
Aromatics	MELV			18	77 12					TIME	VITTE I		113.0	1 180		
Benzene	XY	N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	ΣY	N	☐ NE	☐ NA	□ Y	N N	☐ NE	NA NA
Toluene	XY	□ N	☐ NE	□ NA	XY	□ N	☐ NE	□ NA	XY	$\square$ N	☐ NE	☐ NA	□ Y	□ N	NE NE	☐ NA
Ethylbenzene	XY	□N	□ NE	□NA	XY	□ N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	□ Y	N N	☐ NE	III NA
Xylenes	XY	□ N	☐ NE	☐ NA	MY	□ N	☐ NE	□ NA	XY	□ N	☐ NE	☐ NA	☐ Y	N	☐ NE	III NA
Napthalene	ΠY	□N	<b>I</b> NE	□ NA	ΠY	□N	<b>⊠</b> NE	☐ NA	ΠΥ	□ N	☐ NE	<b>⊠</b> NA	∐ Y	□ N	☐ NE	III NA
Others												-				
PAHs ⁹	ПΥ	N N	NE	NA NA	ΠY	N	□ NE	NA ⊠	Y	$\square$ N	☐ NE	X NA		N	☐ NE	N/

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

Milator	O) OILS		*		_											
COC/PCOC			Soil			Grou	ndwater		Soil C		Crawl Sp or Air 🗌	ace □,		Surfac	ce Water	
TPH																
TPH-g	XY	□ N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	☐ Y	N 💢	☐ NE	☐ NA	□ Y	□N	☐ NE	I NA
GRO	XY	□ N	☐ NE	☐ NA	XY	□ N	☐ NE	□ NA	☐ Y	M M	☐ NE	☐ NA	□ Y	□N	☐ NE	III NA
TPH-d	Y	N N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	Y	□ N	☐ NE	<b>⋈</b> NA	☐ Y	□N	☐ NE	NA NA
DRO	☐ Y	<b>▼</b> N	☐ NE	☐ NA	XY	□ N	☐ NE	☐ NA	□ Y	□N	☐ NE	<b>⋈</b> NA	☐ Y	□ N	NE	NA NA
TPH-mo	Y	□ N	☐ NE	NA 🔀	☐ Y	□ N	☐ NE	<b>™</b> NA	☐ Y	□ N	☐ NE	X NA	ΠY	ΠN	NE	III NA
TEPH	□ Y		☐ NE	✓ NA	☐ Y	$\square$ N	☐ NE	<b>⊠</b> NA	☐ Y	□ N	☐ NE	<b>⋈</b> NA	ΠY	□N	□ NE	NA NA
MORO	□ Y	□ N	☐ NE	X NA	ΠY	□N	☐ NE	<b>⋉</b> NA	□ Y	□ N	☐ NE	<b>⋈</b> NA	ΠY	□ N	□ NE	II NA
Others	☐ Y	N	☐ NE	☑ NA	ΠY	□N	☐ NE	<b>⋈</b> NA	☐ Y	□ N	☐ NE	<b>⋈</b> NA	ΠY	ΠN	NE	III NA
Aromatics																
Benzene	XY	□ N	☐ NE	☐ NA	ΜY	□N	☐ NE	□NA	XY	□N	☐ NE	□NA	ΠY	□N	□NE	□ NA
Toluene	XY	□N	☐ NE	☐ NA	XY	$\square$ N	☐ NE	□NA	XY	□ N	☐ NE	□NA	ПΥ	ΠN	NE	III NA
Ethylbenzene	X Y	□N	☐ NE	☐ NA	XY	□N	□ NE	☐ NA	MY	□ N	☐ NE	□ NA	ПΥ	ΠN	NE	T NA
Xylenes	XY	□N	☐ NE	☐ NA	XY	N	☐ NE	□ NA	XY		☐ NE	□NA	ΠY	ΠN	□NE	MA
Napthalene	☐ Y	□ N	X NE	☐ NA	ΠY	$\square$ N	<b>⋈</b> NE	☐ NA	☐ Y	□ N	X NE	□ NA	ПΥ	IN	□ NE	III NA
Fuel Oxys																
MTBE	XY	□ N	☐ NE	☐ NA	XY	$\square$ N	☐ NE	□NA	XY		☐ NE	NA	ПΥ	Пи	□NE	□ NA
TBA	XY	□N	☐ NE	☐ NA	XY	□ N	☐ NE	□NA	ΠY	N	NE	□NA	ΠY	ΠN	□ NE	INA
Others	XY	$\square$ N	☐ NE	☐ NA	X Y	□N	☐ NE	□ NA	TY	N	□ NE	□NA	ΠY	ΠN	□NE	II NA
Wear Metals ¹⁰	X								197							
Total Lead	☐ Y	X N	☐ NE	□NA	ΠY	□ N	☐ NE	<b>⋈</b> NA	ΠY		□ NE	NA NA	ПΥ	ΠN	□NE	□ NA
Cadmium	☐ Y	□N	X NE	<b>⋈</b> NA	ΠY	□N	☐ NE	NA NA	ΠY	ΠN	NE	⊠ NA	ΠŸ	□ N	□ NE	T NA
Chromium	ΠY	□ N	☐ NE	<b>⊠</b> NA	ΠY	□N	☐ NE	⊠ NA	ΠY	ΠN	NE	NA NA	FY	ΠN	NE	NA NA
Zinc	□ Y	□N	☐ NE	<b>⊠</b> NA	ΠY	□N	☐ NE	X NA	ΠY	ΠN	NE	NA NA	ΠŸ	ΠN	NE	I NA
Nickel	ΠY	□N	☐ NE	NA 🔼	ΠY	□N	☐ NE	X NA	ПΥ	ΠN	NE	NA NA	ΠY	ΠN	NE	NA NA
Others																14/
CVOCs ¹¹	□ Y	□N	☐ NE	<b>⋈</b> NA	ΠY	□N	□NE	<b>⋈</b> NA	ПΥ	ПИ	□ NE	M NA	ПУ	ΠN	□NE	II NA
PCBs	Y	□N	☐ NE	X NA	ΠY	□ N	□ NE	XINA	Π̈́Υ	ΠN	□ NE	NA NA	Π̈́Υ	TN.	NE	III NA
PCPs	ΠY	□N	☐ NE	NA NA	ΠY	ΠN	NE	X NA	ПУ	ΠN	NE	NA NA	Π̈́Υ	ΠN	□ NE	III NA
Dioxins &	□ Y	□ N	☐ NE	NA NA	ΠY	ΠN	□ NE	NA NA	ΠŸ	ΠN	NE	M NA	ΠÝ	FN	NE	III NA
Furans ¹²								,,	J.	LJ ''		١٠٠١ کټا	□'	· · ·		TT 14/4

Key: ■ Y = Detected at site

[■] N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

[■] NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

[■] NA = Not Applicable (never present at site – validated by case review)

Chemicals of Concern (COC	s) and Potential Chemical	s of Concern (PCOCs)	in Soil, Groundwate	er, Soil Gas, and/o	r Surface Water ¹

NON PETROL	EUM HYDROC	ARBON SOUR	CE - REL	LATED	CONTA	MINAN	TS		2		K			
COC/PCOC	So	oil		Grour	ndwater		Soil G	as ⊡, C Indoo	rawl Spa r Air 🗌	ice 🔲,		Surfac	e Water	
	□Y □N	☐ NE ☐ NA	□ Y	□N	☐ NE	□ NA	ΠΥ	N	☐ NE	□ NA	□ Y	□N	□ NE	□ NA
VOCs ¹¹	□Y □N	□ NE □ NA	ΠY	□N	□NE	□ NA	Y	□N	□ NE	■ NA	☐ Y	N	□ NE	Ⅲ NA
SVOCs ¹³	□Y □N	□ NE □ NA	□ Y	□N	☐ NE	Ŭ NA	□ Y	□N	☐ NE	□ NA	☐ Y	N	☐ NE	□ NA
OCPs ¹⁴	□Y □N	☐ NE ☐ NA	□ Y	□N	☐ NE	□ NA	□ Y	$\square$ N	□ NE	☐ NA	ΠY	□ N	☐ NE	□ NA
Herbicides ¹⁵	□Y □N	☐ NE ☐ NA	□ Y		☐ NE	Ⅲ NA		$\square$ N	☐ NE	☐ NA	☐ Y	□N	☐ NE	■ NA
Metals ¹⁶	$\square$ Y $\square$ N	□ NE □ NA	□ Y	$\square$ N	☐ NE	□ NA	□ Y	Пи	□ NE	☐ NA	□ Y	□N	│	I NA I
Others	□Y □N	□ NE □ NA	ΠΥ	□N	□NE	□ NA	ΠΥ	$\square$ N	☐ NE	☐ NA	ΠY	□N	│	■ NA

REMEDIATION	N - RELATE	D BYPRO	DUCTS											
COC/PCOC		Soil			Grou	ndwater		Soil G	as □, 0 Indoo	Crawl Spa r Air □	ice 🔲,		Surfac	ce Water
Remediation Byproducts	□ Y □ I	N NE	□ NA	ΠY	N	□ NE	□ NA	□ Y	N	□ NE	□ NA	□ Y	□N	□ NE □ NA
Chromium VI Other Metals ¹⁶		N NE	□ NA □ NA	□ Y	□ N	□ NE	□ NA □ NA			□ NE □ NE	☐ NA ☐ NA	□ Y		□ NE □ NA □ NE □ NA □ NE □ NA
Others		N NE	NA L	<u>  Y</u>	I N	│	NA	<u>                                   </u>		☐ NE	□ NA		N	I INE   INA

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)
■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

#### LOW THREAT CLOSURE POLICY - CONCEPTUAL SITE MODEL

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water

Compound	S	SG	GW	SW					Compound	S	SG	SW	GW				T
Benzene	N	X	K		XY	ПИ	ПиЕ	ITINA			36		GW				1_
Bromobenzene	A	A		-	XII		NE		2,2-Dichloropropane	Ш	4				□ N	☐ NE	K
Bromochloromethane	H	H	-	-		□ N		NA NA	1,3-Dichloropropane	Ш	14		Ц_			□ NE	K
Bromodichloromethane	H	H	<b>H</b>	H	H	□ N	□ NE	NA NA	1,1-Dichloropropene	Ц				ПΥ	□и	☐ NE	×
	H	<u> </u>	-	-	LY	N	□ NE	NA NA	Ethylbenzene	X	X		Z	MY	□и	☐ NE	
Bromoform		부		4	□ Y	□ N	□ NE	NA NA	Hexachlorobutadiene	Ш				Y	□N	☐ NE	×
Bromomethane		<u> </u>			ПΥ	□ N	☐ NE	NA NA	Isopropylbenzene					□ Y	□ N	☐ NE	X
n-Butylbenzene	Щ	Ц				□ N	☐ NE	NA ⊠	p-Isopropyltoluene					□ Y	□ N	☐ NE	
sec-Butylbenzene					ΠY	□ N	☐ NE	<b>™</b> NA	Methylene chloride					□ Y	□N	☐ NE	
tert-Butylbenzene					□ Y	□ N	☐ NE	NA NA	Naphthalene					□ Y	Пи	☐ NE	D
Carbon tetrachloride					☐ Y	□ N	☐ NE	<b>⊠</b> NA	n-Propylbenzene					Y	□N	☐ NE	D
Chlorobenzene					ΠY	□ N	☐ NE	<b>№</b> NA	Styrene					□ Y	□N	☐ NE	5
Chlorodibromomethane		Ш			ПΥ	□N	□ NE	M NA	1,1,1,2- Tetrachloroethane					□ Y	□N	□ NE	Z
Chloroethane					ΠY	ПИ	☐ NE	X NA	1,1,2,2- Tetrachloroethane					ПΥ	□N	□ NE	×
Chloroform					□ Y	□N	☐ NE	<b>⋈</b> NA	Tetrachloroethene	П				ПΥ	$\square$ N	□ NE	K
Chloromethane					TY	□N	□ NE	<b>⊠</b> NA	Toluene	X	X		N	TY	ΠN	□ NE	Ť
2-Chlorotoluene					ΠY	□ N	☐ NE	<b>⊠</b> NA	1,2,4-Trichlorobenzene	Ī		Ħ	<b>X</b>	ΠY	ΠN	□ NE	×
4-Chlorotoluene					ΠY	Пи	□NE	NA NA	1,2,3-Trichlorobenzene			Ĭ	Ħ	ΠY	ΠN	□ NE	X
1,2-Dibromo-3- chloropropane					ΠY	□N	□ NE	⊠ NA	1,1,1-Trichloroethane	ō			ă	ΠŸ	□N	□ NE	Ž
1,2-Dibromoethane	X		M		TY	N	ΠNE	□ NA	1,1,2-Trichloroethane				П	ПУ	Пи	□NE	Þ
Dibromomethane					ΠY	ΠN	☐ NE	₩ NA	Trichloroethene	Ħ	Ħ	Ħ	Ħ	HV	ΠN	□ NE	×
1,2-Dichlorobenzene					ΠY	□N	□ NE	Ĭ NA	Trichlorofluoromethane		H		Ħ	FIV	ΠN	□ NE	K
1,3-Dichlorobenzene					ΠY	Пи	□ NE	<b>⊠</b> NA	1,2,3-Trichloropropane		Ħ	H	Ħ		ΠN	☐ NE	
1,4-Dichlorobenzene	Ī			Ō	ΠŸ	□N	□ NE	⊠, NA	1,2,4- Trimethylbenzene	Ö		Ĭ	Ö	ΠΥ	□N	□ NE	Ď
Dichlorodifluoromethane					ΠΥ	□N	□ NE	Ŋ NA	1,3,5- Trimethylbenzene					ΠY	□N	☐ NE	W
1,1-Dichloroethane			X		NY	ΠN	NE	□NA	Vinyl chloride				T	ПУ	ΠN	□NE	D
1,2-Dichloroethane					ПΥ	ΠN	□ NE	NA NA	o-Xylene	×	×	F	V	XY	ĦΝ	□ NE	Ι¥
1.1-Dichloroethene	F	n		fi	ΠY	Пи	□ NE	NA NA	m-Xylene	X	X		N	XY	HN	I NE	+
cis-1,2-Dichloroethene	Ħ	青十		Ħ	HY	ΠN	DNE	NA NA	p-Xylene	X	X		X	XY		□ NE	-
trans-1,2-Dichloroethene	H			H	Η̈́Υ	ΠN	□ NE	NA NA	Methyl-t-butyl ether	K	X		X	NY			+
1,2-Dichloropropane	H				1		□ NE	NA NA	Dichlorofluoromethane					I Y	□ N	☐ NE	×

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

## LOW THREAT CLOSURE POLICY - CONCEPTUAL SITE MODEL

Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water

Compound	S	SG	GW	SW		7			Compound	S	SG	SW	GW				
1.2-Dichlorobenzene				П	ПУ	ΠN	□NE	ITINA	Benzo(a)pyrene	П	П			ПҮ	ΠN	☐ NE	II N
1,2,4-Trichlorobenzene	Ħ		Ħ	П	ΠŸ	ΠN	□ NE	INA	Benzo(b)fluoranthene	ā	n			ΠY	□ N	□ NE	□ N
1.3-Dichlorobenzene	Ħ	Ħ	П	Ħ	HY	ΠN	□ NE	III NA	Benzo(g,h,i)perylene					ПΥ	ΠN	☐ NE	I N
1.4-Dichlorobenzene	青	H	H	П	ΠŸ	ΠN	□NE	MA	Benzo(k)fluoranthene	Ī				ΠY	□N	☐ NE	□ N
2-Chloronaphthalene		ä			ΠY	□N	□NE	□ NA	bis(2-Chloroethoxy)- methane					ΠY	□N	□ NE	T N
2-Chlorophenol	$\Box$				ПΥ	Пи	□NE	II NA	bis(2-Chloroethyl) ether					□ Y	□ N	☐ NE	□ N
2-Methylnaphthalene	Ħ		In-		ΠY	ΠN	□ NE	□ NA	bis(2-Ethylhexyl)phthalate					□ Y	N	□ NE	□ N
2-Methylphenol	Ħ		i i	n	ΠY	ΠN	□NE	NA NA	Butylbenzylphthalate					□ Y	N	☐ NÉ	I □ N
2-Nitroaniline	T		n		TY	□N	☐ NE	NA NA	Carbazole					□ Y	N	☐ NE	I □ N
2-Nitrophenol					ΠY	□N	☐ NE	□ NA	Chrysene					□ Y	□N	☐ NE	IIN
2,2'-oxybis (1- Chloropropane)					ΠΥ	□N	□ NE	□ NA	Di-n-butylphthalate					ΠY	□N	□ NE	
2,4-Dichlorophenol					□ Y	□N	□NE	I NA	Di-n-octylphthalate					□ Y	N	☐ NE	1 III N
2,4-Dimethylphenol					□ Y	□N	☐ NE	■ NA	Dibenz(a,h)anthracene					□ Y	□ N	☐ NE	
2,4-Dinitrophenol					□ Y	□N	☐ NE	■ NA	Dibenzofuran					□ Y	□ N	☐ NE	
2,4-Dinitrotoluene					ΠY	□N	☐ NE	□ NA	Diethylphthalate					□ Y	□N	☐ NE	□ N
2,4,5-Trichlorophenol					ΠY	□N	☐ NE	□ NA	Dimethylphthalate					□ Y	□N	☐ NE	□ N
2,4,6-Trichlorophenol					□ Y	□ N	☐ NE	□ NA	Fluoranthene					□ Y	□N	☐ NE	
2,6-Dinitrotoluene					☐ Y	□N	☐ NE	□ NA	Fluorene					□ Y	□ N	☐ NE	
3-Nitroaniline					□ Y	□N	☐ NE	□ NA	Hexachlorobenzene					□ Y	□N	☐ NE	
3,3'-Dichlorobenzidine					□ Y	□N	☐ NE	□ NA	Hexachlorobutadiene					□ Y	□ N	☐ NE	II   N
4-Bromcphenyl-phenylether					ΠY	□N	☐ NE	□ NA	Hexachlorocyclopentadie ne					□ Y	□ N	□ NE	
4-Chlorc-3-methylphenol					□ Y	□N	☐ NE	☐ NA	Hexachloroethane					U Y	L N	□ NE	
4-Chlorcaniline					□ Y	$\square$ N	☐ NE	☐ NA	Indeno(1,2,3-cd)pyrene					I I Y	□ N	☐ NE	1 III N
4-Chlorcphenyl-phenyl ether					☐ Y	$\square$ N	☐ NE	□ NA	Isophorone						□ N	☐ NE	
4-Methy phenol					ΠY	□N	☐ NE	□ NA	N-Nitroso-di-n- propylamine					□ Y	□N	□ NE	P
4-Nitroaniline					ΠY	□N	☐ NE	☐ NA	N-nitrosodiphenylamine					Y	□ N	☐ NE	
4-Nitrophenol					Y	□ N	☐ NE	□ NA	Naphthalene					I L	□ N	□ NE	1 11
4,6-Dinitro-2-methylphenol					Y	□N	☐ NE	□ NA	Nitrobenzene					ΙUΥ	□ N	□ NE	1 🖺 1
Acenaphthene			3		Y	□N	☐ NE	☐ NA	Pentachlorophenol					□ Y	□ N	☐ NE	1 1
Acenaphthylene					ΠY	□N	☐ NE	☐ NA	Phenanthrene					Y	□ N	☐ NE	1 1
Anthracene					ΠY	□N	□ NE	☐ NA	Phenol		-			□ Y	□ N	□ NE	

Key: ■ Y = Detected at site

■ N = Tested for but never detected (method reporting limit less than current screening levels – validated by case review)

■ NE = Identified Data Gap - Needs Further Evaluation (Tested for but never detected (method reporting limit greater than current screening levels)

## Chemicals of Concern (COCs) and Potential Chemicals of Concern (PCOCs) in Soil, Groundwater, Soil Gas, and/or Surface Water¹

#### Notes:

CVOCS = Chlorinated Volatile Organic Compounds

DIPE = di-isopropyl either

EDC (ethylene dichloride) or 1,2-DCA (1,2-dichloroethane or ethylene dibromide)

EDB = 1,2-dibromomethane

ETBE = ethyl tert butyl ether

MTBE = methyl tert butyl ether (banned in CA since 2004)

OCPs = Organochlorine Pesticides

PAH = Polycyclic Aromatic Hydrocarbons or Polynuclear Aromatic Hydrocarbons

PCPs = Pentachlorphenol (wood preservative)

TAME = tert amyl methyl ether

TBA = t-Butyl Alcohol

TEL = tetra ethyl lead TML = tetra methyl lead

SVOCs = Semi-volatile Organic Compounds

VOCs = Volatile Organic Compounds

- 1 = The analytes listed below are recommended in the CA LUFT Manual to ensure that site characterization is complete. Note that more analytes are recommended than are used as "criteria" chemicals in the LTCP for the various media.
- 2 = CA LUFT Manual recommended analyses for gasoline releases include BTEX, napthalene, and fuel oxygenates (MTBE and TBA) and/or lead scavengers if gasoline release was pre-1992.
- 3 = CA LUFT Manual recommended analyses for fuel oil releases include BTEX, and napthalene. Additionally, for heavy fuel oil such as bunker fuel the priority pollutant PAHs should be added to the list of analytes.
- 4 = CA LUFT Manual recommended analyses for waste (used) motor oils include BTEX, the 16 priority pollutant PAHs, chlorinated solvents (which will include EDB and EDC), and fuel oxygenates (MTBE and TBA). For soil only analysis for the five "wear metals" is also recommended.
- 5 = ACEH recommended analysis of all fuel oxygenates
- 6 = MTBE to be analyzed at all LUFT sites unless the tank contained only diesel or jet fuel per California Health and Safety Code 25296.15(a). MTBE was added to gasoline in California starting in approximately the late 1980's/early 1990's and was banned in 2004.
- 7 = Samples to be analyzed for tetra methyl lead
- 8 = Samples to be initially analyzed for lead scavengers EDC and EDB for all release sites and fuel oxygenates
- 9 = Use page b-8 to identify priority PAHs
- 10 = Wear metals need only be analyzed for soil
- 11 = Use page b-7 to identify specific VOCs
- 12 = Analyzed for dioxins and furans if PCBs and/or PCPs are detected
- 13 = Use page b-8 to identify specific SVOCs
- 14 = Use page b- to identify OCPs
- 15 = Use page b- to identify herbicides
- 16 = Use page b- to identify metals (in addition to the 5 wear metals)

General Crite Has the Unau System been	uthorized (		') Release	from the UST		□ Y	□ N	I DN	IE 🗆 NA			
environment (i	.e. the prima	ary source)	has been re	appurtenant s emoved, repaire estem to qualify f	d or repl	aced. It is	not the					
Fuel Dispens	ing Facility	History (li	st in chron	ological order,	starting	with ope	rationa	al in-plac	e tanks)			
	Contents (gas - (leaded, unleaded), diesel, waste oil, etc.)	Type (steel, fiberglass single- walled, double- walled)	Evidence of Release? (Y/N)	Closed in Place, Removed, or Upgraded?		oonsible Pa nization Na Type)	me,	Date Installed	Date Removed			
Tank (capacity in gallons)	010.7	wanea										
Piping												
Dispensers												
Other Structures												
						_						
Is the site cu			•	g facility? s at the site?			□ N	+=	$+ \equiv -$			
Have there I	been multiple previous/dif	e releases a	at the site?			□ Y □ Y	□ N	□ NE	_ NA			
Identify prev	nous case n	uilibel.										
	Is there evidence of releases from other on-site sources besides the UST system(s)?											
Is there indi		acts from o	offsite sourc	es?		ΓΥ	□N	□ NE	□NA			
Use General C	riteria e – Co	nceptual Si	te Model (S	ources) sheets to	support	answers						

General Criteria c:
Has the Unauthorized ("Primary") Release from the UST System been Stopped?
Case File Reference Documents:
Attachments:
Case Notes:

General Criteria d:							E NA		
Has Free Product been Removed to the Maximum Extent Practicable?									
LTCP Statement: "At petroleum unauthorized release sites where investigations indicate the presence of free product, free product shall be removed to the maximum extent practicable. In meeting the requirements of this section:  (a) Free product shall be removed in a manner that minimizes the spread of the unauthorized release into previously uncontaminated zones by using recovery and disposal techniques appropriate to the hydrogeologic conditions at the									
uncontaminated zones by using recovery and disposal techniques appropriate to the hydrogeologic conditions at the site, and that properly treats, discharges or disposes of recovery byproducts in compliance with applicable laws;  (b) Abatement of free product migration shall be used as a minimum objective for the design of any free product removal									
system; and (c) Flammable products shall be stored for disposal in a safe and competent manner to prevent fires or explosions."									
Has free product (m wells?	igrating of mobile LNA	APL) been detec	ted in site	e monitoring	ΠY	□N	□ NE	□NA	
MW ID	Date FP First Observed	Max FP App Thickness (f sheen, or glo	eet),	Most Recently FP Apparent T (feet)	hickness	Date	e of Most F P Observa		
Has a description of product in wells bee	the standard operatir	ng procedures us	sed to me	easure free	ПΥ	□N	□ NE	□ NA	
-	NAPL Conceptual Site	Model been de	veloped?		ΠY	□N	□ NE	□NA	
•	bbserved during tank i				ΠY	□N	☐ NE	□NA	
appropriateness of	of the adequacy of the screen interval to de	tect free product	been co	nducted?	□Y	□N	□NE	□NA	
observations durin	ther indications of the g tank removal, obser ase concentrations of ndwater, etc.)	vations during e	xplorator	y drilling, bore	□Y	□N	□ NE	□NA	
free product encou	pathway study been on the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	anthropogenic p	referentia	al pathways	□Y	□N	□ NE	□NA	
	dy spatial distribution	`			ΠY	□N	□NE	□NA	
	exposure issues attrib				ΠY	□ N	☐ NE	□NA	
	of whether free produ cription of the condition				ПΥ	□N	□NE	□NA	
	ia e - Conceptual Sit	•	Product)	sheets to supp	ort answe				
Has free product rer	moval been implemen	ted?			☐ Y	□ N	☐ NE	□ NA	
Location/ Method (Absorbent Materials, Bailing, MW ID Skimmer, DPE, Excavation, etc.)  Cumulative Gallons/Volume/Mass Removed  Dates Implemented						ented			
Does data indicate rebound of free product subsequent to product removal?									

Case File Reference Documents:  Attachments:
Attachments:
Attachments:
Attachments:
Attachments:
Case Notes:

General Criteria e:								
Has a Conceptual Site Model that Assesses the Nature, Extent, and	$\square$ N	☐ NE						
Mobility of the Release been Developed?								
LTCP Statement: "The Conceptual Site Model (CSM) is a fundamental element of a comprehensive site investigation. The CSM establishes the source and attributes of the unauthorized release, describes all affected media (including soil, groundwater, and soil vapor as appropriate), describes local geology, hydrogeology and other physical site characteristics that affect contaminant environmental transport and fate, and identifies all confirmed and potential contaminant receptors (including water supply wells, surface water bodies, structures and their inhabitants). The CSM is relied upon by practitioners as a guide for investigative design and data collection. Petroleum release sites in California occur in a wide variety of hydrogeologic settings. As a result, contaminant fate and transport and mechanisms by which receptors may be impacted by contaminants vary greatly from location to location. Therefore, the CSM is unique to each individual release site. All relevant site characteristics identified by the CSM shall be assessed and supported by data so that the nature, extent and mobility of the release have been established to determine conformance with applicable criteria in this policy. The supporting data and analysis used to develop the CSM are not required to be contained in a single report and may be contained in multiple reports submitted to the regulatory agency over a period of time."								
	ПҮ							
Has a CSM been prepared that is representative of current site conditions?	□'							
Document Title Author Date								
If the CSM is provided in multiple documents, provide additional document titles,								
authors and dates in the Case File Reference document section on page e-2								
Is the CSM comprehensive enough to show compliance with all the LTCP criteria and that								
final closure review is appropriate?								
General Criteria	1							
a The unauthorized release is located within the service area of a public water system	] Y   [	] N						
b The unauthorized release consists only of petroleum	] Y [	] N						
c The unauthorized ("primary") release from the UST system has been stopped	] Y [	] N						
d Free product has been removed to the maximum extent practicable	] Y [	N						
e A CSM that assesses the nature, extent, and mobility of the release has been developed	] Y   [	] N						
f Secondary source has been removed to the extent practicable	] Y [	N						
g Soil or groundwater has been tested for MTBE and results reported in accordance with Health and Safely Code section 25296.15	] Y [	N						
h Nuisance as defined by Water Code section 13050 does not exist at the site	1Υ Г	] N						
Media-Specific Criteria								
Groundwater	] Y [	N						
Vapor Intrusion to Indoor Air	] Y [	N						
Direct Contact and Outdoor Air Exposure	] Y [	N						
If the CSM is not comprehensive enough to show compliance with all the LTCP criteria, then								
Has a data gap investigation work plan been prepared that is guided by the CSM?	Υ [	] N						

General Criteria e: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

General Criteria f: Has Secondary Source been Removed to the Extent Practicable?							
The decondary course seen removed to the Extent Fractionsic.							
LTCP Statement: "Secondary source" is defined as petroleum-impacted soil or groundwater located at or immediately beneath the point of release from the primary source. Unless site attributes prevent secondary source removal (e.g. physical or infrastructural constraints exist whose removal or relocation would be technically or economically infeasible), petroleum-release sites are required to undergo secondary source removal to the extent practicable as described herein. "To the extent practicable" means implementing a cost-effective corrective action which removes or destroys-in-place the most readily recoverable fraction of source-area mass. It is expected that most secondary mass removal efforts will be completed in one year or less. Following removal or destruction of the secondary source, additional removal or active remedial actions shall not be required by regulatory agencies unless (1) necessary to abate a demonstrated threat to human health or (2) the groundwater plume does not meet the definition of low threat as described in this policy."							
Has corrective action been implemented at the in-place the most readily recoverable fraction of		□Y	□N	□NE	□NA		
Soil remediation		□ Y	N	☐ NE	□NA		
Method Mass/Volume Removed Dates of Implementation							
adequately?  If soil remediation is no longer being conducted then, has confirmation sampling results confirmed that additional corrective actions are not					□ NA		
necessary? Are additional soil remedial actions necessary criteria of the Policy or to abate a demonstrate		ПΥ	□N	□ NE	□NA		
Groundwater Remediation		Y	N	☐ NE	∐ NA		
Method	Mass/Volume Removed	Date	s of Im	plementa	ation		
If groundwater remediation is currently being conducted, then is it Y N N rogressing adequately?					□ NA		
If groundwater remediation is no longer being conducted then, has verification monitoring confirmed that additional corrective actions are not necessary?  Are additional groundwater remedial actions necessary to meet the media-specific criteria of the Policy or to abate a demonstrated threat to human health?			□ N	□ NE	□ NA		
	Jse sheet f-2 - Maximum Detected Contaminant Concentrations Before and After Corrective Action to						

# <u>General Criteria f</u>: Maximum Documented Contaminant Concentrations Before and After Correction Action

0 1 1 1	Soil (	(ppm)	Water (ppb) Historical Maximum   Current Maxim		
Contaminant	Historical Maximum	Current Maximum	Historical Maximum Current Maxim		

Ge	neral Criteria f: Case Notes
С	Case File Reference Documents:
A	Attachments:
С	Case Notes:

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA

■ NA = Not Applicable

General Criteria g:							
Has Soil or Groundwater been Tested for MTBE and Results Reported in Accordance with Health and Safety Code Section 25296.15?	☐ Y	□N	□ NE	□ NA			
LTCP Statement: "Health and Safety Code section 25296.15 prohibits closing a UST case unless the soil, groundwater, or both, as applicable have been tested for MTBE and the results of that testing are known to the Regional Water Board. The exception to this requirement is where a regulatory agency determines that the UST that leaked has only contained diesel or jet fuel. Before closing a UST case pursuant to this policy, the requirements of section 25296.15, if applicable, shall be satisfied."							
<b>Exemption</b> - Has sufficient data been presented to determine that the UST that leaked has only contained diesel or jet fuel?	ΔΑ	□N	☐ NE	□NA			
If the site does not qualify for the exemption then							
Has sufficient data been presented to assess whether MTBE is or was present in soil at or in the vicinity of the site?	ΠΥ	N	□ NE □	□ NA			
Has sufficient data been presented to assess whether MTBE is or was present in groundwater at or in the vicinity of the site?	ΠΥ	□N	□ NE	□ NA			
Have all results been verified by the appropriate analytical laboratory method?	ΠΥ	□N	□ NE	□ NA			
Use General Criteria b pages b-3 and General Criteria e – Conceptual Site answer	e Model :	sheets t	o suppor	t			
Attachments:							
Case Notes:							

General Criteria h:						
Does a Nuisance as Defined by Water Code Section 13050 Exist a Site?	t the		□N	☐ NE		
<ul> <li>LTCP Statement: "Water Code section 13050 defines "nuisance" as anything which meets <u>all</u> of the following requirements:</li> <li>(1) Is injurious to health, <u>or</u> is indecent or offensive to the senses, <u>or</u> an obstruction to the free use of property, so as to interfere with the comfortable enjoyment of life or property.</li> <li>(2) Affects at the same time an entire community or neighborhood, <u>or</u> any considerable number of persons, although the extent of the annoyance or damage inflicted upon individuals may be unequal.</li> <li>(3) Occurs during, <u>or</u> as a result of, the treatment <u>or</u> disposal of wastes.</li> <li>For the purpose of this policy, waste means a petroleum release."</li> </ul>						
Does a nuisance condition currently exist (or potentially could exist) that meets all of the following criteria?	□ Y [	□ N	] NE	□NA		
Is injurious to health? -OR- Is indecent or offensive to the senses? -OR- Is an obstruction to the free use of property so as to interfere with the comfortable enjoyment of life or property?	Y [ Y [	N N N	NE [ ] NE [ ] NE [	NA NA NA		
Affects at the same time an entire community, although the extent of the annoyance or damage inflicted upon individuals may be unequal? -OR-Affects at the same time an entire neighborhood, although the extent of the annoyance or damage inflicted upon individuals may be unequal? -OR-Affects at the same time any considerable number of persons, although the extent of the annoyance or damage inflicted upon individuals may be unequal?	Y	N	] NE [	NA NA NA		
Occurs during the treatment of waste? -OR- Occurs during the disposal of waste? -OR- Occurs as a result of the treatment of waste? -OR- Occurs as a result of the disposal of waste?	Y	N [ ] N [ ] N [	NE [ ] NE [ ] NE [ ] NE [	NA NA NA NA		
Has an evaluation of whether site contamination is present in locations that have the potential to pose nuisance conditions during common or reasonably expected site activities been conducted?	Y [	N   [	] NE	□NA		
Surface soils?  Utility corridors?  Groundwater?  Surface water?  Soil gas?  Basements or other subsurface structures?  Use the following to support your answer:  General Criteria a (site located within a service area of a public water supply system)  General Criteria b (identified chemicals of concern and potential chemicals of concern General Criteria d (free product evaluation)  General Criteria e (results of preferential pathway and sensitive receptor survey)  Media Specific Criteria for Groundwater  Media Specific Criteria for Vapor Intrusion to Indoor Air  Media Specific Criteria for Direct Contact and Outdoor Air Exposure		N	NE C NE C NE C NE C	NA NA NA NA NA NA		

General Criteria h: Case Notes
Case File Reference Documents:
Attachments:
Case Notes:

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

Does the site qualify for the Soil Only Case exemption? -OR-	<b>□</b> Y	□ N	□ NE		
Does the site satisfy the Media-Specific Criteria for Groundwater?	□ Y	□N	□ NE		
LTCP Statement: "This policy describes criteria on which to base a determination that threats anticipated beneficial uses of groundwater have been mitigated or are de minimis, including cannot affected groundwater.					
State Water Board Resolution 92-49, <i>Policies and Procedures for Investigation and Cof Discharges Under Water Code Section 13304</i> is a state policy for water quality competroleum UST cases. Resolution 92-49 directs that water affected by an unauthorized background water quality or the best water quality that is reasonable if background water restored. Any alternative level of water quality less stringent than background must be maximum benefit to the people of the state, not unreasonably affect current and anticaffected water, and not result in water quality less than that prescribed in the water quality be met at the time of case closure; it specifies compliance with cleanup goals reasonable time frame.	trol and a d release ater qual e consiste ipated be lality con requisite	applies to attain eart with eneficial trol plan	either ot be the use of for the water		
Water quality control plans (Basin Plans) generally establish "background" water qual endpoint. This policy recognizes the regulatory authority of the Basin Plans but under contained in Resolution 92-49.					
It is a fundamental tenet of this low-threat closure policy that if the closure criteria described in this policy are satisfied at a petroleum unauthorized release site, attaining background water quality is not feasible, establishing an alternate level of water quality not to exceed that prescribed in the applicable Basin Plan is appropriate, and that water quality objectives will be attained through natural attenuation within a reasonable time, prior to the expected need for use of any affected groundwater.					
If groundwater with a designated beneficial use is affected by an unauthorized release, to satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites listed below. A plume that is "stable or decreasing" is a contaminant mass that has expanded to its maximum extent: the distance from the release where attenuation exceeds migration."					
"Sites with Releases that Have Not Affected Groundwater - Sites with soil that does not contain sufficient mobile constituents [leachate, vapors, or light non-aqueous-phase liquids (LNAPL)] to cause groundwater to exceed the groundwater criteria in this policy shall be considered low-threat sites for the groundwater medium. Provided the general criteria and criteria for other media are also met, those sites are eligible for case closure. For older releases, the absence of current groundwater impact is often a good indication that residual concentrations present in the soil are not a source for groundwater pollution."					
Has adequate data been collected to demonstrate that soil does not contain sufficient mobile constituents to cause groundwater to exceed the groundwater criteria in this policy?	☐ Y	□N	□ NE		
Leachate?         Y         N         NE         NA           Soil gas?         Y         N         NE         NA           LNAPL?         Y         N         NE         NA					
If the site does not qualify for the soil only exemption, then  Does groundwater in the vicinity of the site have beneficial use designations?	ΩΥ	□N	□NE		
Use General Criteria e – Conceptual Site Model sheets to support answer					

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

GROUNDWATER PLUME STABILITY						
If the site <u>does not</u> qualify designated beneficial uses	for the soil only exemption, and groundwater has					
Is the contaminant plume	stable or decreasing in areal extent?		□N	□ NE	□ NA	
Technical Justification for Groundwater Media-Specific Criteria: "A plume is considered stable or decreasing if a contaminant mass has expanded to its maximum extent: the distance from the release where attenuation exceeds migration. There are two common ways to demonstrate plume stability. The first common way is to routinely observe non-detect values for groundwater parameters in down-gradient wells. The second common way is to show stable or decreasing concentration levels in down-gradient wells at the distal end of the plume. It should be noted that concentration levels may exhibit fluctuation due to seasonal variations. These variations may be also attributed to man-made factors, including but not limited to: varying sampling techniques, false positive results, or laboratory inconsistencies."  "Requiring that a plume must be stable or decreasing reduces uncertainty as to how long the plume might become in the future.  Has the maximum stabilized plume length been defined?  "Y N NE NA						
the distal end of the plume	r groundwater parameters in down-gradient wells at been routinely observed?	□ Y   [	N   [	] NE   [	□ NA	
MW ID's	Dates of GW Monitoring Events Demonstrating Non-	Detect Va	alues?			
Have stable or decreasing the distal end of the plume		Y	1	NE D	1A	
MW ID's	Dates of GW Monitoring Events Demonstrating Stabi	lity?				
Do concentration levels ex  Varying Sampling Techni False Positive Results?  Laboratory Inconsistencie		☐ Y	N [ N ] N ] N ]	NE 🗌	NA NA NA NA NA	

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

	GROUNDWATER CONTAMINANT PLUME CLASSIFICATION CHARACTERISTICS											
Do	If the Contaminant Plume is Stable or Decreasing, then  Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of at least one of the five (5) LTCP classes listed below?								□N	□ NE	□ NA	
		Plume Length ¹ (feet)	Free Product Remaining 2 (Yes/No)	Distance of Nearest Water Supply Well from Plume Boundary ³ (feet)	Distance of Nearest Surface Water Body from Plume Boundary ⁴ (feet)	Stable or Decreasing Plume ⁵	Maximum Dissolved Benzene Concentration ⁶ (µg/L)	Maximum Dissolved MTBE Concentration ⁶ (µg/L)	Property Owner Willing to Accept Land Use Restriction	,		
	Site Site											
		the contames listed be		hat exceeds wate	er quality objectives	s meet all of the	<u>characteristics</u> o	f at least <u>one of th</u>	e five LTCP	☐ Y	□N	□ NE
	1 ^a	< 100	No	>250	>250	Yes	NA	NA	NA	□ Y	□ N	☐ NE
	2 ^b	<250	No	>1,000	>1,000	Yes	<3,000	<1,000	NA	☐ Y	□ N	☐ NE
	3 ^c	<250	Yes	>1,000	>1,000	> 5 Years	NA	NA	Yes	Y	N	☐ NE
	4 ^d	<1,000	No	>1,000	>1,000	Yes	<1,000	<1,000	NA	<u> </u>	N	☐ NE
	5 ^e	plume pos		t to human health	der current and reaso and safety and to the					Υ	□N	□ NE
Notes:  1 = The length of the plume is the maximum extent from the point of release of any petroleum related constituent in groundwater that exceeds the WQOs. The plume boundary is where the constituent(s) furthest from the point of release concentration level equals the WQOs (Technical Justification for Groundwater Specific Criteria). General Criteria – Conceptual Site Model pages e through e to support plume length determination.  2 = A "Yes" designation signifies free product remains at the site, has been removed to the maximum extent practicable, but does not extend off-site. A "No" designation means free product does not exist onsite or off-site. See General Criteria – Conceptual Site Model pages e through e to support free product status.												
					(See page	gw-4 for a coı	ntinuation of not	es)				

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 gw-3

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

#### LTCP Groundwater Contaminant Plume Classification Characteristics

#### Notes (continued):

- 3 = See General Criteria Conceptual Site Model sheets to support distance to nearest water supply well.
- 4 = See General Criteria Conceptual Site Model sheets to support distance to nearest surface water body.
- 5 = The specified concentrations are maximums, and typically occur in source area monitoring wells. See General Criteria Conceptual Site Model sheets to support length of time plume has been stable or decreasing.
- 6 = The specified concentrations are maximums, and typically occur in source area monitoring wells. See General Criteria Conceptual Site Model sheets to support dissolved benzene and MTBE concentrations.
- 7 = See General Criteria Conceptual Site Model sheets to support Property Owner's willingness to accept Land Use Restrictions.
- a = Class 1: Represents a short, stabilized plume that is indicative of a small or depleted source and/or very high natural attenuation rate. (CA LUFT Manual)
- b = Class 2: Represents a moderate, stabilized plume length (plume boundary is <250 feet from point of release) that approximates the average benzene plume length from cited studies. The maximum concentration of benzene (3,000 µg/L) and MTBE (1,000 µg/L) in groundwater are conservative indicators that free product is not present. These concentrations are approximately 10% and 0.02%, respectively, of the typical effective solubility of benzene and MTBE in unweathered gasoline. (CA LUFT Manual)
- c = Class 3: Represents a moderate, stabilized plume length (plume boundary is <250 feet from point of release) that approximates the average benzene plume length from cited studies. The on-site free product and/or high dissolved concentrations in the plume remaining after secondary source removal to the maximum extent practicable as per the General Criteria in the Policy require that the plume has been stable or decreasing for a minimum of five years of monitoring to validate plume stability/natural attenuation (i.e., to confirm that the rate of natural attenuation exceeds the rate of LNAPL dissolution and dissolved-phase migration). (CA LUFT Manual)
- d = Class 4: Represents a long, stabilized plume length (plume boundary is <1,000 feet from point of release) that approximates the maximum MTBE plume length cited. (CA LUFT Manual)
- e = Class 5: For other low-threat site-specific scenarios not captured in Class 1 through 4, use a fate-and-transport model to evaluate the potential migration and attenuation of the chemicals using site-specific calibration data when available. It is important to use models that consider mass balance whenever possible. (CA LUFT Manual)

NA = Not applicable

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 gw-4

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: GROUNDWATER

Groundwater: Case Notes						
Case File References (Document File Names):						
Technical References:						
Case Notes:						

Key:  $\blacksquare$  NE = Identified Data Gap - Needs Further Evaluation  $\blacksquare$  NA = Not Applicable

Does the site qualify for the active commercial fueling facility exemption? -OR-	□ Y	□ N	□ NE					
Does the site meet <u>one of the three</u> petroleum vapor intrusion to indoor air specific criteria (a, b, or c)?	□ Y	□N	□ NE					
LTCP Statement: "Exposure to petroleum vapors migrating from soil or groundwater to indoor air may pose unacceptable human health risks. This policy describes conditions, including bioattenuation zones, which if met will assure that exposure to petroleum vapors in indoor air will not pose unacceptable health risks. In many petroleum release cases, potential human exposures to vapors are mitigated by bioattenuation processes as vapors migrate toward the ground surface. For the purposes of this section, the term "bioattenuation zone" means an area of soil with conditions that support biodegradation of petroleum hydrocarbon vapors.								
The low-threat vapor-intrusion criteria described below apply to sites where the release or potentially impacted adjacent parcels when:	originate	ed and in	npacted					
(1) existing buildings are occupied or may be reasonably expected to be occupied in the	he future	e, <u>or</u>						
(2) buildings for human occupancy are reasonably expected to be constructed in the f	uture.							
Appendices 1 through 4 (attached) illustrate four potential exposure scenarios and des criteria associated with each scenario. Petroleum release sites shall satisfy the m petroleum vapor intrusion to indoor air and be considered low-threat for the vap pathway if:	edia-spe	ecific crit	eria for					
<ul> <li>a. Site-specific conditions at the release site satisfy all of the characteristics and through 3 as applicable, or all of the characteristics and criteria of scenario 4 as applicable.</li> </ul>			narios 1					
<ul> <li>b. A site-specific risk assessment for the vapor intrusion pathway is conducted and d health is protected to the satisfaction of the regulatory agency; or</li> <li>c. As a result of controlling exposure through the use of mitigation measures or through or engineering controls, the regulatory agency determines that petroleum vapor groundwater will have no significant risk of adversely affecting human health.</li> </ul>	gh the us	se of inst	itutional					
<b>Exception:</b> Exposures to petroleum vapors associated with historical fuel system release insignificant relative to exposures from small surface spills and fugitive vapor release active fueling facilities. Therefore, satisfaction of the media-specific criteria for petroleum indoor air is not required at active commercial petroleum fueling facilities, except indoor characteristics can be reasonably believed to pose an unacceptable health risk."	es that ty leum va	ypically o	occur at usion to					
Does the site qualify for an <u>exemption</u> from the Petroleum Vapor Intrusion to Indoor Air criteria?	□ N	□ NE	□NA					
Is the site is an active commercial petroleum fueling facility?	□N	☐ NE	□NA					
Are release characteristics reasonably believed to pose an unacceptable health risk to facility users or nearby facilities?	□N	□ NE	□NA					
If the site does not qualify for an exemption, then								
<ul> <li>a. Do site-specific conditions at the release site satisfy all of the characteristics and criteria of scenarios 1 through 3 as applicable, or all of the characteristics and criteria of scenario 4? -OR-</li> </ul>	∐N	□ NE	□NA					
(Use page vi-2 through vi-10 to support answer)								
b. Has a site-specific risk assessment for the vapor intrusion pathway been conducted that demonstrates that human health is protected? -OR-	□N	☐ NE	□NA					
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	□N	□ NE	□NA					
Use General Criteria e - Conceptual Site Model pages to support answer								

SCENARIO 1 - UNWEATHERED LNAPL IN GROUNDWATER							
Do site specific conditions at the site satisfy all the characteristics of Scenario 1?	□ Y	□N	□ NE	□NA			
Scenario 1 Existing Building or Potential Future Construction							
LNAPL Characteristics:  Unweathered – petroleum product that has not been subjected to significant volatilization or solubilization, and therefore has not lost a significant portion of its volatile or soluble constituents (e.g., comparable to recently dispensed fuel)							
Bioattenuation Zone Required Characteristics:  Minimum 30 foot vertical separation distance between the bottom of building foundations and LNAPL in groundwater,  Total TPH concentrations in soil < 100 mg/kg							



Is the LNAPL unweathered?		□N	☐ NE	☐ NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet vertically</u> between the LNAPL in groundwater and the foundation of existing buildings?; - <u>and</u> -	\ 	N	□NE	□NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet vertically</u> between the LNAPL in groundwater and the foundation of <u>potential buildings?</u> ; -and-	ΠY	□N	□NE	□NA
Are total TPH concentrations in soil less than 100 mg/kg throughout the entire vertical extent of the 30 foot bioattenuation zone?	ΠΥ	□N	□NE	□NA

Use Criteria e – Conceptual Site Model sheets to support answers

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 vi-2

# SCENARIO 2 - UNWEATHERED LNAPL IN SOIL Do site specific conditions at the site satisfy all the characteristics of Scenario 2? Scenario 2 Existing Building or Potential Future Construction LNAPL Characteristics: Unweathered – petroleum product that has not been subjected to significant volatilization or solubilization, and therefore has not lost a significant portion of its volatile or soluble constituents (e.g., comparable to recently dispensed fuel) Bioattenuation Zone Required Characteristics: Minimum 30 foot vertical separation distance between the bottom of building foundations and LNAPL in soil,

Total TPH concentrations in Soil < 100 mg/kg



Is the LNAPL unweathered?		□N	☐ NE	☐ NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet both laterally and vertically</u> between the LNAPL in soil and the foundation of existing buildings?; - <u>and</u> -	□Y	□N	□NE	□NA
Does the site have a continuous bioattenuation zone that provides a separation of <u>at least 30 feet both laterally and vertically</u> between the LNAPL in soil and the foundation of <u>potential buildings?</u> ; - <u>and</u> -	□Y	□N	□NE	□NA
Are total TPH concentrations in soil less than 100 mg/kg throughout the entire lateral and vertical extent of the 30 foot bioattenuation zone?	ПΥ	□N	□ NE	□NA

Use Criteria e - Conceptual Site Model sheets to support answers

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 vi-3

SCENARIO 3 – LOW CONCENTRATION GROUNDWATER SCENARIO (FIGURE A)							
Does the Sit Scenario 3 F	e Satisfy all of the Characteristics and Requirements of igure A?	□ Y	□ N	□ NE	□NA		
	Figure A Existing Building or Future Construction						
	Dissolved Phase Benzene Concentrations in Groundwater R < 100 μg/L	<u>Requirem</u>	nents:				
Minim	Bioattenuation Zone Required Characteristics: um 5 Foot Vertical Separation Distance between Bottom of Building Fo No Soil Gas Oxygen Data or Measured Soil Gas Oxygen Conce Total TPH Concentrations in Soil < 100 mg/kg	undation		ater Table	€,		
	Without O ₂ Data or O ₂ <4%  TPH < 100 mg/kg  Benzene < 100 µg/L						
	m dissolved benzene concentrations in groundwater < 100 μg/L? -and-	Y	□N	☐ NE	□ NA		
5 feet vertica existing build		ПΥ	□N	□NE	□NA		
5 feet vertica	enuation zone a continuous zone that provides a separation of at least ally between the dissolved phase benzene and the foundation of dings? -and-	ПΥ	□N	□NE	□NA		
combined) c the 5 foot bid	nt data been collected to determine that Total TPH (TPH-g and TPH-d concentrations in soil are < 100 mg/kg throughout the entire depth of pattenuation zone?	□Y	□N	□ NE	□NA		
Use Criteria e	- Conceptual Site Model sheets to support answers						

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

ACEH LTCP DGIT_2013-03-25 vi-4

SCENARIO 3 – LOW CONCENTRATION GROUNDWATER SCENARIO (FIGURE B)								
Does the Site Satisfy all of the Characteristics and Requirements of Scenario 3 - Figure B?								
Figure B Existing Building or Future Construction								
Dissolved Phase Benzene Concentrations in Groundwater Requirements: ≥ 100 μg/L but < 1,000 μg/L								
Bioattenuation Zone Required Characteristics:  Minimum 5 Foot Vertical Separation Distance between Bottom of Building Foundations and Water Table,  Measured Soil Gas Oxygen Concentrations< 4%,  Total TPH Concentrations in Soil < 100 mg/kg								
Without O₂ Data or O₂ < 4%  TPH < 100 mg/kg  Benzene ≥ 100 μg/L and < 1000 μg/L								
Are maximum dissolved benzene concentrations in groundwater ≥ 100 μg/L but								
Is the bioattenuation zone a continuous zone that provides a separation of <u>at</u> least 10 feet vertically between the dissolved phase benzene and the foundation of existing <b>buildings</b> ?; <u>-and-</u>								
Is the bioattenuation zone a continuous zone that provides a separation of <u>at</u> least 10 feet vertically between the dissolved phase benzene and the foundation of <b>potential buildings</b> ?; <u>-and-</u>								
Has sufficient data been collected to determine that Total TPH (TPH-g and TPH-d combined) concentrations in soil are < 100 mg/kg throughout the entire depth of the 10 foot bioattenuation zone?								
Use Criteria e – Conceptual Site Model sheets to support answers								

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = Not Applicable

vi-5

ACEH LTCP DGIT_2013-03-25

SCENARIO 3 – LOW CONCENTRATION GROUNDWATER SCENARIO (FIGURE C)								
pes the Site Satisfy all of the Characteristics and Requirements of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property of Property o								
Figure C Existing Building or Future Construction								
Dissolved Phase Benzene Concentrations in Groundwater Requirements: < 1,000 μg/L								
Bioattenuation Zone Required Characteristics:  Minimum 5 Foot Vertical Separation Distance between Bottom of Building Foundations and Water Table,  Measured Soil Gas Oxygen Concentrations ≥ 4%,  Total TPH Concentrations in Soil < 100 mg/kg								
TPH < 100 mg/kg 5'								
Are maximum dissolved benzene concentrations in groundwater $\geq$ 100 µg/L but $\square$ Y $\square$ N $\square$ NE $\square$ NA $<$ 1,000 µg/L?; -and- $\square$ Is the bioattenuation zone a continuous zone that provides a separation of at $\square$ Y $\square$ N $\square$ NE $\square$ NA								
least 10 feet vertically between the dissolved phase benzene and the foundation of existing buildings?; -and-								
Is the bioattenuation zone a continuous zone that provides a separation of <u>at</u> least 10 feet vertically between the dissolved phase benzene and the foundation of <u>potential buildings</u> ?; -and-								
Has sufficient data been collected to determine that Total TPH (TPH-g and TPH-d combined) concentrations in soil are < 100 mg/kg throughout the entire depth of the 10 foot bioattenuation zone?								
Use Criteria e – Conceptual Site Model sheets to support answers								

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS

(WITH A BIOATTENUATION ZONE)									
Does the Site Satisfy all of the Characteristics and Requirements of Scenario 4 – With Bioattenuation Zone?	□ Y	□N	□ NE	□NA					
Soil Gas Sampling – With Bioattenuation Zone Existing Building or Future Construction									
Bioattenuation Zone Required Characteristics:  Minimum 5 foot vertical feet of soil between the soil vapor measurement and the foundation of an existing building or ground surface of future construction;  Total TPH concentrations in soil < 100 mg/kg (measured in at least two depths within the five-foot zone);  Soil gas oxygen concentrations ≥ 4% at the bottom of the five-foot bioattenuation zone									
Soil Gas Sample Location Requirements:									
Existing Buildings - At least five feet below the bottom of the building foundation Future Construction - The soil gas sample shall be collected from at least five feet below ground surface									
Existing Building Fut	ure Con	structi	on						
TPH < 100 mg/kg  Sample location  Oxygen ≥ 4% at lower end of zone  Oxygen ≥ 4% at lower end of zone	lo	location Oxygen ower end	≥ 4% at d of zone						
Are the required bioattenuation zone characteristics satisfied?		□ N	☐ NE	□ NA					
Is there a minimum 5 foot vertical feet of soil between the soil vapor measurement and	□ Y	$\square$ N	☐ NE	□NA					
the foundation of existing buildings?									
Is there a minimum 5 foot vertical feet of soil between the soil vapor measurement and	☐ Y	$\square$ N	☐ NE	□ NA					
the ground surface of future construction?									
Has sufficient data been collected to determine that total TPH concentrations in soil are < 100 mg/kg (measured in at least two depths within the five-foot zone)?	ΠY	∐N	☐ NE	□NA					
Has sufficient data been collected to determine that soil gas oxygen concentrations are ≥	ΠY	ПИ	□NE	□NA					
4% at the bottom of the five-foot bioattenuation zone?		□ IN	□ INE	LINA					

Use Criteria e – Conceptual Site Model sheets to support answers

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS (WITH A BIOATTENUATION ZONE)							
If the required bioattenuation zone characteristics have been met then,							
Have soil gas samples been collected in accordance with required protocols?		□ N	☐ NE	□ NA			
For existing buildings, were soil gas samples collected from at least five feet below the bottom of building foundations?	Υ	□N	☐ NE	□NA			
For sites where future construction is planned, were soil gas samples collected from at least five feet below ground surface within the footprints of future buildings?	ΠY	□N	☐ NE	□NA			
Were samples collected in accordance with the guidance provided in the CA LUFT Manual?	ΠΥ	□N	☐ NE	□NA			
Has sufficient data been collected to determine that soil gas concentrations for benzene, ethylbenzene, and napthalene are below the specified <u>residential</u> <u>screening levels</u> ?	ПΥ	□N	□ NE	□NA			
Benzene < 85,000 μg/m ³	□ Y	□N	☐ NE	☐ NA			
Ethylbenzene < 1,100,000 μg/m ³	□ Y	$\square$ N	☐ NE	□NA			
Napthalene < 93,000 μg/m ³	Y	N	☐ NE	□NA			
Has sufficient data been collected to determine that soil gas concentrations for benzene, ethylbenzene, and napthalene are below the specified <u>commercial</u> <u>screening levels</u> ?	☐ Y	□N	□ NE	□ NA			
Benzene < 280,000 μg/m ³	Υ	□N	☐ NE	□NA			
Ethylbenzene < 3,600,000 μg/m ³	☐ Y	N	☐ NE	□NA			
Napthalene < 310,000 μg/m ³	ΠY	□N	☐ NE	☐ NA			
Use Criteria e – Conceptual Site Model sheets to support answers							

If the required bioattenuation zone characteristics have not been satisfied then use Scenario 4 – No Bioattenuation Zone (pages vi-9 and vi-10)

SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS (NO BIOATTENUATION ZONE)								
Does the Site Satisfy all of the Characteristics and Requirements of Scenario 4 – No Bioattenuation Zone?	☐ Y	□N	□ NE	□NA				
Soil Gas Sampling – No Bioattenuation Zon Existing Building or Future Construction	е							
Soil Gas Sample Location Requirements:  Existing Buildings – At least five feet below the bottom of the building found Future Construction - The soil gas sample shall be collected from at least f		elow gro	und surfa	ce				
Existing Building  Future Con  5'  Depth of Foundation  a - sample location	5'	n ole location	on					
Were appropriate protocols followed for collecting soil gas samples?		■ N	NE	NA				
For existing buildings, were soil gas samples collected from at least five feet below the bottom of building foundations?	□ Y	□N	NE [	NA NA				
For sites where future construction is planned, were soil gas samples collected from at least five feet below ground surface within the footprints of future buildings?	Υ	□N	□ NE [	□ NA				
Were samples collected in accordance with the guidance provided in the CA LUFT Manual?	ΠΥ	□N	□ NE [	□ NA				
Has sufficient data been collected to determine that soil gas concentrations for benzene, ethylbenzene, and napthalene are below the specified <u>residential screening levels</u> ?	☐ Y	□ N	□ NE   [	□ NA				
Benzene < 85 μg/m ³	ΠΥ	N	NE [	NA				
Ethylbenzene < 1,100 μg/m ³	ЦΥ		NE [	NA NA				
Napthalene < 93 µg/m ³	<u> </u>	N	NE [	NA NA				
Has sufficient data been collected to determine that soil gas concentrations for benzene, ethylbenzene, and napthalene are below the specified commercial screening levels?			□ NE   [					
Benzene < 280 μg/m ³	□ Y	□ N	NE [	NA				
Ethylbenzene < 3,600 μg/m ³	☐ Y	□ N	NE [	NA				
Napthalene < 310 μg/m ³	☐ Y	□ N	NE [	NA				
Use Criteria e – Conceptual Site Model sheets to support answers								

# SCENARIO 4 – DIRECT MEASUREMENT OF SOIL GAS CONCENTRATIONS (NO BIOATTENUATION ZONE)

For the no bioattenuation zone scenario, the screening criteria provided in the table on the preceding page are the same as the California Human Health Screening Levels (CHSSLs) with engineered fill below sub-slab.

If building crawl space air samples were collected instead of soil gas samples to evaluate vapor intrusion into buildings, then

Were appropriate protocols followed for collecting the crawl space air samples?		□N	□ NE	□ NA
Were samples collected in accordance with the guidance provided in the CA LUFT Manual and referenced documents including the DTSC's Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air?	Y	N	□ NE	□NA
Has sufficient data been collected to determine that crawl space air concentrations for benzene, ethylbenzene, and napthalene are below the appropriate <u>residential screening levels</u> (i.e., CHHSLs for Indoor Air)?		N	□ NE	□ NA
Benzene < 0.084 μg/m ³	□ Y	□N	☐ NE	□NA
Ethylbenzene – No screening number currently available	□ Y	□N	☐ NE	☐ NA
Napthalene < 0.072 μg/m ³	□ Y	N	☐ NE	☐ NA
Has sufficient data been collected to determine that crawl space air concentrations for benzene, ethylbenzene, and napthalene are below the appropriate commercial screening levels (i.e., CHHSLs for Indoor Air)?	<b>□</b> Y	N	□ NE	□NA
Benzene < 0.141 μg/m ³	□ Y	□ N	☐ NE	☐ NA
Ethylbenzene – No screening number currently available		□N	☐ NE	☐ NA
Napthalene < 0.120 μg/m ³	☐ Y	□N	☐ NE	☐ NA

Use Criteria e - Conceptual Site Model sheets to support answers

Case Notes
Case File Document References:
Technical References:
Case Notes:

(	Case Notes	
	Case Notes (continued):	

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

Does the site qualify for an <u>exemption</u> from the media-specific criteria for Direct Contact and Outdoor Air Exposure? -OR-	☐ Yes		No	□ NE				
Does the site meet the media-specific criteria for Direct Contact and Outdoor Air Exposure?	t		No	□ NE				
LTCP Statement: "This policy describes conditions where direct contact of contaminants volatized to outdoor air poses a low threat to human heat exposure may occur satisfy the media-specific criteria for direct contact a be considered low-threat if they meet any of the following:	alth. Release	sites wh	ere hui	man				
a. Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs). The concentration limits for 0 to 5 feet bgs protect from ingestion of soil, dermal contact with soil, and inhalation of volatile soil emissions and inhalation of particulate emissions. The 5 to 10 feet bgs concentration limits protect from inhalation of volatile soil emissions. Both the 0 to 5 feet bgs concentration limits and the 5 to 10 feet bgs concentration limits for the appropriate site classification (Residential or Commercial/Industrial) shall be satisfied. In addition, if exposure to construction workers or utility trench workers is reasonably anticipated, the concentration limits for Utility Worker shall also be satisfied; or								
<ul> <li>Maximum concentration of petroleum constituents in soil are less th assessment demonstrates will have no significant risk of adversely</li> </ul>				risk				
c. As a result of controlling exposure through the use of mitigation mentinstitutional or engineering controls, the regulatory agency determine petroleum constituents in soil will have no significant risk of adverse	es that the c	oncentrat	ions of					
Has adequate data been collected to demonstrate that the upper 10 feet of soil is free of petroleum contamination and therefore qualifier for the exemption?	es Ty	□N	□ NE	□ NA				
If the site does not qualify for the exemption, then does the site satisfy the media-specific criteria (a, b, <u>or</u> c) for direct contact and outdoor air exposure?	☐ Y	□N	□ NE	□ NA				
a. Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth bgs?	Υ	□ N □	NE	□ NA				
b. Are the maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates wi have no significant risk of adversely affecting human health?		□ N □	NE	□NA				
c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversel affecting human health?	у	□ N □	NE	□NA				
Use General Criteria e – Conceptual Site Model sheets to support ye	our answers	•						

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

Maximum Concentrations of Petroleum Constituents in Soil (Scenario a)

# Table 1 – Concentrations of Petroleum Constituents in Soil That will Have No Significant Risk of Adversely Affecting Human Health

	Resid	lential	Commerci	Utility Worker		
Chemical	0 to 5 ft bgs			5 to 10 ft bgs	0 to 10 ft bgs	
Chemical	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Benzene	1.9	2.8	8.2	12	14	
Max Soil Conc ¹						
Ethylbenzene	21	32	89 134		314	
Max Soil Conc ¹						
Napthalene	9.7	9.7	45 45		219	
Max Soil Conc ¹						
PAH ²	0.063	NA	0.68 NA		4.5	
Max Soil Conc ¹						

#### Notes:

- 1. The <u>maximum concentrations of petroleum constituents in soil</u> should be compared to those listed in Table 1 (Technical Justification for Soil Screening Levels for Direct Contact and Outdoor Air Exposure Pathways, SWRCB)
- 2. Based on the seven carcinogenic poly-aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent [BaPe]. Sampling and analysis for PAHs is only necessary where soil is affected by either waste oil or Bunker C oil.

Are all the concentration limits for <u>all</u> the appropriate site classification satisfied?	☐ Y	□ N	☐ NE	□NA
Residential: 0 to 5 feet bgs	□ Y	□N	☐ NE	□NA
Residential: 5 to 10 feet bgs	□ Y	□N	☐ NE	□NA
Commercial/Industrial: 0 to 5 feet bgs		□N	☐ NE	□NA
Commercial/Industrial: 5 to 10 feet bgs	□ Y	N	☐ NE	□NA
Utility Worker: 0 to 10 feet bgs?	Δ	Z	☐ NE	□NA
Have the requirements for using the screening levels in Table 1 been satisfied (i.e., have the model assumptions presented in the SWRCB document entitled "Technical Justification for Soil Screening Levels for Direct Contact and Outdoor Air Exposure Pathways" been met?		<b>_</b> N	∐ NE	∐ NA
Is the area of impacted soil where a particular exposure occurs ≤ 82 feet by 82 feet?		□N	☐ NE	□NA
Is the receptor located at the downgradient edge for inhalation exposure?	□ Y	□N	☐ NE	□NA
Is the wind speed < 2.25 meters per second (7.38 feet per second) on average?	ΔΑ	z	☐ NE	□NA
Are there different exposure scenarios than residential, commercial/industrial, utility worker) at the site?	☐ Y	□N	☐ NE	□NA

# LOW THREAT CLOSURE POLICY MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

Direct Contact and Outdoor Air Exposure: Case Notes						
Case File Reference Documents:						
Technical References:						
Case Notes:						

Key: ■ NE = Identified Data Gap - Needs Further Evaluation ■ NA = I

■ NA = Not Applicable



**ACEH Supplementary Forms** 

## **CONCEPTUAL SITE MODEL** AND DATA GAP IDENTIFICATION CHECKLIST

Well Survey				
Are there existing water supply wells or other sources of water in the vicinity of the site?	ПΥ	□N	□ NE	□NA
Has a recent well survey been conducted to identify all wells within 2,000 feet of the site?	ΠΥ	□N	☐ NE	□NA
Name, author, and date of survey document:				
Have Department of Water Resources records been reviewed?	ПΥ	Пи	□NE	□NA
Have Zone 7 Water Agency records been reviewed?	ΠÝ	ΠN	□ NE	□ NA
Have Alameda County Public Works records been reviewed?	ΠY	□N	□ NE	□ NA
Has a background study of the historical land uses of the site and	ПΥ	ΠN	□ NE	□ NA
properties in the vicinity of the site been conducted to determine the existence of unrecorded/unknown (abandoned) wells?				
Has sufficient data been provided on all wells located within 2,000 feet of the site to identify sensitive receptors and determine potential contaminant migration pathways to and from the site?		N	□ NE	□ NA
Has a figure (with rose diagram) identifying each well location been presented?	ΠΥ	□N	□ NE	□NA
Have DWR well logs (marked as confidential) been provided?	☐ Y	□N	☐ NE	□ NA
Has a table with details of the well search been provided?	Y	□N	☐ NE	□ NA
Identification number (ID) corresponding to the well location on a		□N	☐ NE	□ NA
figure?				
State Well ID, Well Owner ID?	Υ	□N	□ NE	□NA
Well location address?	Y	□N	☐ NE	□ NA
Distance of well from the site?	☐ Y	□ N	□ NE	□NA
Direction of well from the site (downgradient, upgradient, crossgradient)?	☐ Y	□N	□ NE	□ NA
Type of well (monitoring, remediation, irrigation, water supply, industrial, livestock, dewatering, cathodic protection)?		□N	□ NE	□ NA
Well status (active, inactive, decommissioned, unrecorded, and/or abandoned)?	Y	□N	☐ NE	□ NA
Well installation date?	ПΥ	Пи	□NE	□ NA
Well decommissioned date?	Y	□N	□ NE	□ NA
Total Well depth (feet bgs)?	☐ Y	□N	☐ NE	□ NA
Well screen interval (feet bgs)?	☐ Y	□N	☐ NE	□ NA
Well seal interval (feet bgs)?	☐ Y	□N	☐ NE	□ NA
Well diameter (inches)?	☐ Y	□N	☐ NE	□ NA
Are these supply wells or other sources of water used by property owners/tenants in the vicinity of the site?	☐ Y	□N	☐ NE	□NA
Has a neighborhood backyard domestic water/irrigation well	ΠY	□N	☐ NE	□NA
assessment been conducted?				
Have wells been impacted by the release site?	☐ Y	N	☐ NE	☐ NA
Have the wells been sampled for chemicals of concern associated with the release site and analytical results been provided?		□N	∐ NE	□ NA
Have impacted wells been decommissioned and well destruction	ПΥ	□N	□ NE	□NA
records provided?				

## LOW THREAT CLOSURE POLICY - CONCEPTUAL SITE MODEL

## **Site Well Construction Details**

Well ID	Location (Onsite/Offsite,	Highest Measured Depth to Water		Lowest Measured Depth to Water		Screen	Total	Submerged	Dry	Status (Active,
	Well ID	Downwadiant	Date	Feet bgs	Date	Feet bgs	Interval (ft bgs)	Depth	(% of events)	Dry (% of Events)

ACEH LTCP DGIT_2013-03-25 csm-2