

June 26, 1996

Mr. Scott Seery
Alameda County Health Care Services
Department of Environmental Health
131 Harbor Bay Parkway, Suite 250
Anneda, CA 94502-6577

Chevron U.S.A. Products Company 6001 Bollinger Canyon Road Building L San Ramon, CA 94583 P.O. Box 5004 San Ramon, CA 94583-0804

Marketing - Northwest Region Phone 510 842 9500

Re: Former Chevron Service Station #9-4930 336 Castro Valley Blvd., Castro Valley, California

Dear Mr. Seery:

I am enclosing a copy of the Tier 2 Risk-Based Corrective Action Site Evaluation that was prepared by Chevron Research and Technology Company for the above noted site. The results of the evaluation was based on available soil and groundwater data for benzene, ethylbenzene, toluene and xylene constituents.

Baseline risks and site-specific target levels (SSTL's) were estimated for potential exposures to on site workers and off site residents. These potentially exposure pathways are:

- On site worker inhalation of indoor air ve vapor intrusion to buildings from subsurface soils).
- On site worker inhalation of indoor air (i.e. wapor intrusion to buildings from groundwater).
- On site worker ingestion of groundwater.
- Off site resident ingestion of groundwater.

The Tier 2 RBCA Worksheet was used to evaluate for risk at this site, with site specific parameters used as appropriate in the calculations. Based on these calculations, the potential for human or ecological exposure to hydrocarbon impacted soil, air and groundwater is minimal. Using the 90th % upper confidence limit concentration for benzene in groundwater, 0.068mg/l; this amount does not exceed the groundwater SSTL of 0.99mg/l. Also, the estimated excess cancer risk for the detected concentrations of benzene in groundwater and subsurface soil is 6.9x10-6, which is within the acceptable excess risk limit range from 10-6 to 10-4.

The groundwater at the site is not currently being used as a drinking water source, and is not expected to be used as a source in the future. There is no continuing source for hydrocarbon emissions as the site was excavated extensively in the northerly portion. Natural attenuation of the hydrocarbon constituents is expected to continue and this will lower the concentrations than currently detected.

Therefore, the recommend corrective action at this site is closure. It appears that the dissolved hydrocarbons in the groundwater will not adversely effect the operation of the restaurant proposed on the site, and that no special remedial actions will need to be taken.

Due to the findings of this report, I believe it may be appropriate to reconsider installing the two additional monitoring wells that was proposed further downgradient of the site. Additional data that would have been secured from the monitoring wells for the risk evaluation is not now needed. The geoprobe GP-2, crossgradient of monitoring well MW-4 showed a lower concentration of benzene which could indicate that

June 26, 1996
Mr. Scott Seery
Former Chevron Service Station # 9-4930
3369 Castro Valley Blvd., Castro Valley, California
Page 2

the extent of the hydrocarbon plume is along the west side of Willbeam Avenue. Chevron now proposes to continue to monitor the site for the next year to confirm that natural attenuation is occurring, at which time we will review the data and determine if the site is ready for closer.

Your early and timely review of this information, and more particularly that pertaining to the risk evaluation and its effect on the construction proposed at the site, will be appreciated.

Sincerely,

CHEVRON PRODUCTS COMPANY

Philip R. Briggs

Site Assessment and Remediation Project Manager

Enclosure

Mr. Kevin Graves, RWQCB-San Francisco Bay Region 2101 Webster St., Suite 500, Oakland, CA 9461

> Anna Counelis & Tula Gallanes 109 Casa Vieja Place, Orinda, CA 94563

Mr. Mark Sullivan, Pacific Environmental Group, Inc. 2025 Gateway Place, Suite 440, San Jose, CA 95110

Mr. Peder Kruger
Director of Construction
BC Golden Gate
411 Borel Ave., Suite 550
San Mateo, CA 94402

Ms. Bette Owen, Chevron Products Co.

Mne 21, 1996

Chevron Research and Technology Company 1003 West Cutting Boulevard P.O. Box 4054 Richmond, CA 94804-0054

Toxicology & Health Risk Assessment

Mr. Phil R. Briggs Chevron Products Company 6001 Bollinger Canyon Road San Ramon, California 94583-0804

RE:

FINAL TIER & RBCA SUMMARY REPORT FORMER CHEVRON SERVICE STATION NO. 9-4930 CASTRO VALLEY, CALIFORNIA

Dear Phil,

Attached are five copies of the Final Ther 2 Risk-Based Corrective Action Site Evaluation for the Former Service Station No. 9-4930 located in Castro Valley, California. Based on the available soil and groundwater data for benzene, ethylbenzene, toluene and xylenes, baseline risks and site-specific target levels (SSTLs) were estimated for potential exposures to onsite workers and offsite residents. The estimated risks were within the acceptable excess risk limit range of 1 x 10⁻⁶ to 1 x 10⁻⁴. In addition, the representative concentrations for the chemicals of concern were all less than the estimated SSTL values.

If you have any questions or would like additional information, please do not hesitate to call me at CTN 2-3365.

Sincerely,

Michele Emerson

attachment

cc:

C. A. Peck R. I. Magaw THRA Files

Michele Emerson

SUMMARY REPORT

☐TIER 1 / ■ TIER 2 RBCA SITE EVALUATION

FINAL

PREPARED FOR

Former Chevron Service Station No. 9-4930

3369 Castro Valley Boulevard Castro Valley, California

LOCATION

Chevron Research and Technology Company

PREPARED BY

June 20, 1996

DATE ISSUED

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location: Castro Valley, California

Completed By:

CRTC

Page 1 of 2

		= = E	NCLOSED
		ier I	Tier 2
1.0 EXECUTIVE SUMMARY			
1.1 Tier 1 Executive Summary Checklist		۵	
1.2 Tier 2 Executive Summary Checklist	•		
1.3 Executive Summary Discussion		۵	■ (u)
1.4 Baseline Exposure/Control Strategy Flowchart		0	(u)
2.0 SITE HISTORY		200	
2.1 Site Description	TF	a 1	(u)
2.2 Site Ownership & Activity Record	-	0	(u)
2.3 Past Releases or Source Areas		0	(u)
2.4 Summary of Current & Completed Site Activities		0	□ (ω)
2.5 Summary of Potential Near-Term Site Activities		0	(u)
3.0 SITE ASSESSMENT INFORMATION		ле	- 100
3.1 Regional Hydrogeologic Conditions	1 1	a	□ (w)
3.2 Hydrogeologic Site Conditions	-	0	□ (w)
3.3 Beneficial Use Summary	-	0	(u)
3.4 Well Inventory Survey			□ (u)
3.5 Ecological Assessment Summary	-	0	(w)
4.0 BASELINE EXPOSURE ASSESSMENT			- III
4.1 Site Classification Summary	1 1	_	
4.2 Baseline Exposure Flowchart	-	0	□ (n)
4.3 Tier 2 Exposure Factor Checklist			(u)
4.4 Tier 2 Exposure Pathway Screening		۵	□ (n)
4.5 Tier 2 Exposure Scenarios & Risk Goals			-
5.0 SITE PARAMETERS			
5.1 Site Parameter Checklist for RBSLs	1 1	_	
5.2 Summary of Media Investigation and			■ (u)
Chemical Analyses			(u)
5.3 Summary of Source Zone Characteristics		0	(u)
5.4 Surface Soil Concentration Data Summary		0	(u)
5.5 Subsurface Soil Concentration Data Summary	-	0	(u)
5.6 Groundwater Concentration Data Summary	-	a	= (u)
5.7 Tier 2 Exposure Pathway Transport Parameters		5-m1/	= (u)
6.0 TIER 1 RISK-BASED SCREENING LEVEL EVALUATION	DN		
6.1 Tier 1 RBSL Evaluation: Surface Soil	1 1		ľ.
6.2 Tier 1 RBSL Evaluation: Subsurface Soil	<u> </u>		

^{* =} Required for Tier 2 Evaluation only

⁽u) = For Tier 2, update Tier ! version as needed.

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location: Castro Valley, California

Completed By:

CRTC

Page 2 of 2

		■ = E	NCLOSED
7.0 MATHOM ATTENDED	145	Tier 1	Tier 2
7.0 NATURAL ATTENUATION FACTORS			
7.1 Tier 2 NAF Calculation Methods & Results	•		
8.0 TIER 2 BASELINE RISK CALCULATION			
8.1 Tier 2 Exposure Concentration & Intake Calculation			
8.2 Tier 2 Pathway Risk Calculation			
8.3 Tier 2 Baseline Risk Summary Table	•		
9.0 TIER 2 SSTL EVALUATION			
9.1 Surface Soil SSTL Values	1 . 1		1 0
9.2 Subsurface Soil SSTL Values			
9.3 Groundwater SSTL Values			
10.0 TIER 1 / TIER 2 CORRECTIVE ACTION ASSESSME	NT		0111
10.1 Exposure Control Flowchart	1 1		(w)
10.2 Soil Remediation Technology Screening Matrix	-		(u)
10.3 Groundwater Remediation Technology Screening Matrix		0	□ (w)
ATTACHMENTS			310
ATTACHMENTS Figure 1 Site Location Map		0	■ (w)
ATTACHMENTS Figure 1 Site Location Map Figure 2 Extended Site Map	- H	0	■ (u)
Figure 1 Site Location Map	-		(u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos		_	■ (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map		0	■ (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s)		0	■ (u) ■ (u) □ (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps		0	(u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s)		0	(u) (u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps		0	(u) (u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps Figure 8 Time Series Groundwater Data		0	(u) (u) (u) (u) (u)
Figure 1 Site Location Map Figure 2 Extended Site Map Figure 3 Site Plan View Figure 4 Site Photos Figure 5 Groundwater Elevation Map Figure 6 Geological Cross-Section(s) Figure 7 Groundwater Plume Maps Figure 8 Time Series Groundwater Data		0	(u) (u) (u) (u) (u)

^{* =} Required for Tier 2 Evaluation only

⁽u) = For Tier 2, update Tier 1 version as needed.

Worksheet 1.2

Site Name:

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location: Castro Valley, California

Completed By:

CRTC

Page 1 of 1

	CULATION ME	THOD	/ M on 6 TO SE	(ECT)		
STL Calculation C		mob	(■ OR ● TO SE	AF Calculation	Mathad	
	ite-Specific Scree	ning Levels	_			
	idividual Constitu		u	Fate and Tran	-	-
	umulative Consti		ne.	RBCA Spr	•	em
				O Other Mod Empirical NAI		
			_	Empiricai NAI	r Calculation	
SITE DATA INVEN	VTORY					
Source Zone Invest	igation Complete	Expe	osure Pathway Info	rmation Comp	iled:	
Surface Soil (e.	Contraction and the contraction	-	Air Pathway			ton Datharas
	(e.g., > 3 ft BGS	, =	Groundwater Pathw	av 🗅	Surface Wa	ter rathway lassification
Groundwater	(-6, -1,-00		Soil Pathway	ay U		and off-site)
TIER 1 WORKSHEETS	41-4240052.5		DATED TO INCLUDE NE			ale vii-site;
***************************************	The This Miles St. S V	S HAVE BEEN UPU	NATED TO INCLUDE NE	W TIER 2 INFORM	ATION.	
TASKS COMPLET	TED					
☐ Tier I Evaluation	on	Tier 2 Evalua	stion	Tier 2 Fir	nal Corrective	Action
Tier Interim		Tier 2 Interin	n Corrective Action	☐ Tier 3 Ev		
Corrective Ac	ction			_		
CURRENT SITE C	LASSIFICATIO	N				
Classification No.	Scenario	Description	Prescri	bed Interim Ac	tion	Date Implemented
						1
TIER 2 CORRECT	Tier 2 SST	L Applic	eable Excess Risk L	imits (specify v	alue)	Other Applicab
	Tier 2 SST Exceeded	Applic Indiv.	Total	Hazard	Hazard	Exposure Limi
Affected Medium	Tier 2 SST Exceeded Yes N	Applic Indiv.				Other Applicab Exposure Limi (specify, if any)
Affected Medium	Tier 2 SST Exceeded Yes N	Applic Indiv. o Risk	Total	Hazard	Hazard	Exposure Limi
Affected Medium	Tier 2 SST Exceeded Yes N	Applic Indiv. o Risk	Total	Hazard	Hazard	Exposure Limi
Affected Medium • Surface Soil (≤ 3ft • Subsurface Soil (>	Tier 2 SST Exceeded Yes N BGS) 3ft BGS)	Application Indiv.	Total	Hazard	Hazard	(specify, if any)
Affected Medium Surface Soil (≤ 3ft Subsurface Soil (>	Tier 2 SST Exceeded Yes N	Applic Indiv. o Risk	Total	Hazard	Hazard	Exposure Limi (specify, if any)
Affected Medium Surface Soil (≤ 3ft Subsurface Soil (> Groundwater	Tier 2 SST Exceeded Yes N BGS) 3ft BGS)	Application Indiv.	Total	Hazard	Hazard	(specify, if any)
Affected Medium Surface Soil (< 3ft Subsurface Soil (> Groundwater	Tier 2 SST Exceeded Yqs N BGS)	Application Indiv. No Risk 10-4 10-4	Total Risk	Hazard	Hazard	(specify, if any)
Affected Medium Surface Soil (< 3ft Subsurface Soil (> Groundwater PROPOSED ACTI No Action: Ti	Tier 2 SST Exceeded Yes N BGS) 3ft BGS) ON ier 2 SSTLs not	Application indiv. Name of Risk 10-4 10-4 exceeded. Application in the second indiv.	Total Risk	Hazard Index	Hazard	(specify, if any)
Affected Medium Surface Soil (< 3ft Subsurface Soil (> Groundwater PROPOSED ACTI No Action: Ti	Tier 2 SST Exceeded Yes N BGS)	Application indiv. New York Application in Applica	Total Risk ly for closure. I, near-term risks s	Hazard Index	Hazard	(specify, if any)
• Surface Soil (≤ 3ft • Subsurface Soil (> • Groundwater • PROPOSED ACTI • No Action: Ti	Tier 2 SST Exceeded Yes N BGS)	Application indiv. New York Application in Applica	Total Risk	Hazard Index	Hazard Quotent	(specify, if any)
Affected Medium Surface Soil (≤ 3ft Subsurface Soil (> Groundwater PROPOSED ACTI No Action: Ti Interim Correct Final Correction	Tier 2 SST Exceeded Yes N BGS) 3ft BGS) ON ier 2 SSTLs not ctive Action: A we Action: Ren	Application Indiv. No Risk 10-4 10-4 exceeded. Application App	Total Risk ly for closure. I, near-term risks s	Hazard Index	NOTE: Rationale for	(specify, if any) 10-6 10-6 r proposed action on Worksheets 1.3

Worksheet 1.3

Site Name:

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location:

Castro Valley, California

Completed By:

CRTC

Page 1 of 2

EXECUTIVE SUMMARY DISCUSSION

Instructions: Provide brief description of site history, hydrogeologic conditions, ecological assessment, possible exposure pathways, RBSL / SSTL results, and the scope of work for proposed corrective action activity. Address proposed methods, implementation schedule, cost, and anticipated risk reduction at or near the site.

SITE DESCRIPTION AND HISTORY

Worksheets 2.1 - 2.5
 Figures 1 - 4

Briefly discuss site chronology, operations, features of potential concern, and future plans for site use.

In February 1993, the former service station No. 9-4930 and adjacent car wash buildings were demolished. In March 1993, the three underground fuel storage tanks and associated underground piping, product dispenser islands, and car wash wastewater reclamation tanks were removed. As a result of an apparent release from the underground fuel tank system, the entire northern portion of the site was excavated down to depths from 8 to 15 feet below ground surface (bgs). Approximately, 7,500 cubic yards (yd³) of soil were excavated and removed from the site. Subsequent to excavation activities, four groundwater monitoring wells were installed onsite, and quarterly monitoring and sampling have been performed since October 1993. Historically, contamination has been detected in 3 of the 4 wells. The expected future land use of the site is commercial (specifically, a Boston Market restaurant, Noah's Bagal Shop, and parking lot with landscaping). Current offsite land uses are commercial and residential.

SITE ASSESSMENT INFORMATION

GEOLOGIC AND HYDROGEOLOGIC SUMMARY

Worksheets 3.1 - 3.4
 Figures 5 and 6

Briefly describe regional site features, climate, vadose zone soils, and groundwater depth, quality, and use.

The site lies at an elevation of approximately 170 feet above mean sea level (MSL). Surface topography at the site slopes toward the south-southwest. Soils underlying the site consist primarily of silty to gravely clay to depths of approximately 8 to 12 feet bgs. Surficial soils are clay underlain by clayey silts. In areas of the 1993 overexcavation activities, the site is underlain by a combination of 2-inch drain rock, geotextile fabric, and Class II aggregate base rgas. The depth to groundwater varies from 4.8 to 8 feet bgs, with flow to the south-southwest. The hydraulic gradient ranges from approximately 0.005 to 0.010. No groundwater quality or use data are available. In the area of the site the average mean temperature is about 57°F, and the mean annual precipitation is approximately 19 inches.

BASELINE EXPOSURE ASSESSMENT

COMPLETE EXPOSURE PATHWAYS AND APPLICABLE RECEPTORS

• Worksheets 4.1 - 4.5

Discuss current or potentially complete pathways for human or ecological exposure to site constituents.

There are no current complete exposure pathways. Potentially complete future exposure pathways include:

- Onsite worker inhalation of indoor air (i.e., vapor intrusion to buildings from subsurface soils).
- Onsite worker inhalation of indoor air (i.e., vapor intrusion to buildings from groundwater).
- Onsite worker ingestion of groundwater.
- Offsite resident ingestion of groundwater.

There are no identified complete ecological exposure pathways.

ECOLOGICAL ASSESSMENT SUMMARY

Worksheet 3.5

Discuss potentially sensitive ecological receptors and habitat in the vicinity of site, if any

Areas surrounding the site do not contain wetlands, streams or springs. The nearest surface water to the site is an unnamed tributary of San Lorenzo Creek which flows south-southwest to the San Francisco Bay. The unnamed tributary is located approximately 1,500 feet to the east of the site. Potentially sensitive ecological receptors are not known.

Worksheet 1.3

Site Name:

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location:

Castro Valley, California

Completed By:

CRTC

Page 2 of 2

EXECUTIVE SUMMARY DISCUSSION Continued

TIER 1 RBSL OR TIER 2 SSTL EVALUATION

COMPARISON TO SOURCE MEDIA CONCENTRATIONS

Worksheets 5.1 - 5.7
 Figures 7 and 8

For complete pathways, compare representative source concentrations to applicable RBSL or SSTL values.

The subsurface soil (> 3 ft bgs) SSTL value for inhalation of benzene in indoor air is 1.5 mg/kg. (See Tier 2 Worksheet 9.2).

The representative (point of exposure) onsite subsurface soil concentratration of benzene is 0.43 mg/kg.

The groundwater SSTL value for inhalation of benzene in indoor air is 0.99 mg/L. (See Tier 2 Worksheet 9.3).

The representative (point of exposure) onsite groundwater concentratration of benzene is 0.068 mg/L.

QUALITATIVE UNCERTAINTY ASSESSMENT

Worksheets 4.2, 4.4, and 5.1 - 5.7

Discuss uncertainty / conservatism of the site data and calculation methods used in deriving RBSL or SSTL values.

The potential for human or ecological exposure to hydrocarbon impacted soil, air and groundwater is minimal because SSTL values maintain a degree of conservativism that would be protective of human health and the environment. Estimation of SSTL values tend to err on the side of conservativism and likely results in risks below the acceptable excess risk limit range.

PROPOSED CORRECTIVE ACTION

Worksheets 10.1 - 10.3

Describe rationale for proposed action (i.e., no action, interim action, final action, or tier upgrade), considering site classification and land use. Discuss basis for remedy selection, if applicable.

The recommended final corrective action for the site is closure. Based on the results of the Tier 2 evaluation, the 90° percent upper confidence limit concentration of benzene in groundwater, 0.068 mg/L, which does not exceed the groundwater SSTL of 0.99 mg/L. In addition, the estimated excess cancer risk for the detected concentrations of benzene in groundwater and subsurface soil is 6.9 x 10°, which is within the acceptable excess risk limit range from 10° to 10°. In addition, it should be noted that the hazard index for ethylbenzene, toluene, and xylenes detected in subsurface soil and groundwater is 2.5 x 10°3, which is less than the acceptable excess risk limit of 1.0. Moreover, groundwater at the site is currently not used as a drinking water source, and is not expected to be used as a drinking water source in the future. Future potential receptors are likely to receive groundwater from a municipal drinking water source. Finally, there is no continuing source of hydrocarbon emissions. The UST system and associated piplines have been removed, and in the northern portion of the site 7,500 yd³ of soil have been excavated and removed down to 15 ft bgs. Through natural attenuation, concentrations of chemicals are expected to decrease to lower concentrations than currently detected.

REFERENCE DOCUMENTS

Appendices

List the document sources for the data cited in this report.

- Blaine Tech Services. 1996. Groundwater Monitoring and Sampling Results. Former Chevron Service Station 9-4930. Project No. 960/16-T-1. May 21.
- Pacific Environmental Group, Inc. 1996. Soil and Groundwater Investigation. Former Chevron Service Station 9-4930. Project No. 320-156.1A. April 18.
- Touchstone Developments. 1993. Tank/Line Removal and Over-Excavation Report. Former Chevron Service Station 9-4930. Project No. 4930. June 5.

Site Name:

Former Service Station No. 9-4930

Date Completed: June 20, 1996

Site Location:

Castro Valley, California

Completed by:

ed by: CRTC

Page 1 of 1

BASELINE EXPOSURE FLOWCHART

Instructions: To characterize baseline exposure conditions, check boxes to identify applicable primary sources, secondary sources (affected media), potential transport mechanisms, and current or potential exposure pathways and receptors (= applicable to site). Identify types(s) of both on-site and off-site receptors, if applicable. Provide detailed information on complete pathways, exposure factors, and risk goals on Worksheets 4.3 - 4.5.

Site Name: Form

Former Service Station No. 9-4930

Date Completed: June 20, 1996

Site Location: Castro Valley, California

Completed By:

CRTC

Page 1 of 2

		T	IER 2 E	EXPOSURE	PAT	ΗИ	AY SCRE	ENING						
3) Exposure Medi applicable Tier 1	n: Compare maxin ay. hanism: Transport nsport from source to um: Far pathways exposure limit for	is active at o receptor under stea	ituent conce site if: a) re could occur dy-state tran	entration in relevant elevant source medi under current or as sport conditions (e.	ium is aff nticipatea g., air), c	ectei futi	l, b) exposure me tre use. are measured CO	dium or recepto OC concentratio	r exists, <u>a</u> n at POE	ind to	Notes RBSL POE COC	= Ris Sci = Po Ex = Co	int of posur	ng Level re nent of
federal water qua 4) Complete Pathy	(2)	pathway c	onsidered co	omplete if "Yes" rep	orted in 6	Colu	mn A and either	Column B or C.			NM	= No	t Mea	isured
PATHWAY	A) SOURCE	Pathway	Tier I	B) TRAN	SPORT A		in the	C) I		sure l		?	PA (Che	OMPLETE ATHWAY? eck if yes & cify status)
AIR EXPOSURE PA	THWAYS	(■ TO S	ELECT)										-	
Surface Soits: Vapor Inhalation and Dust Ingestion	Surface Soil	□ Yes	■ No	Volatilization /Dust Transport	■ No	_	Yes - Current Yes - Future	Ambient Air	■ NM	□ t	40 🗖	Yes		Current Potential
2) Subsurface Soils: Volatilization to Ambient Air	Subsurface Soil	☐ Yes	■ No	Volatilization	■ No	_	Yes - Current Yes - Future	Ambient Air	■ им	Q 1	40 🗖	Yes		Current Potential
3) Subsurface Soils: Volatilization to Enclosed Space	Subsurface Soil	■ Yes	□ No	Volatilization	□ No		Yes - Current Yes - Future	Indoor Air	■ NM	1	10 🗖	Yes	ALC: UNKNOWN	Current Potential
4) Groundwater: Volatilization to Ambient Air	Groundwater	☐ Yes	■ No	Volatilization	■ No	_	Yes - Current Yes - Future	Ambient Air	■ им	0 1	4o 🗖	Yes		Current Potential
5) Groundwater: Volatilization to Enclosed Space	Groundwater	■ Yes	□ No	Volatilization	□ No	-	Yes - Current Yes - Future	Indoor Air	■ NM	Q N	40 🗖	Yes	-	Current Potential
GROUNDWATER E	KPOSURE PATHW	VAYS												
6) Soll: Leaching to Groundwater. Ingestion	Surface or Subsurface Soils	☐ Yes	III No	Leaching /Groundwater Flow	■ No		Yes - Current Yes - Future	Groundwater	□ им		No 🔳 Y	'es	1 -	Current Potential
r) Dissolved or Free- Phase Groundwater Plume: Ingestion	Groundwater	■ Yes	□ No	Groundwater Flov	y 🔲 No		Yes - Current Yes - Future	Groundwater	□ мм		No ■ Y	es		Current Potential
SOIL EXPOSURE P	ATHWAY													
8) Surface Soils: Dermal Contact /Ingestion	Surface Soil	☐ Yes	■ No	Direct Contact	■ No		Yes - Current Yes - Future	Soil	■ NM	O N	。 口 ,	Yes	_	Current Potential

Worksheet 4.4

Site Name:

Former Service Station No. 9-4930

Date Completed: June 20, 1996

Site Location:

Castro Valley, California

Completed By: CRTC

Page 2 of 2

		TIER 2 EXP	OSURE PATH	WAY SCREENING C	ONTINUED			
	A) SOURC	E MEDIUM	B) TRA	NSPORT MECHANISM	C) E)	COMPLETE PATHWAY?		
PATHWAY	Pathway Tier 1 Type RBSL Exceeded?		Type Active at Site?		Туре	Exposure Limit Exceeded at POE?	(Check if yes & specify status)	
SURFACE WATER F	PATHWAYS						_	
9) Soil: Leaching to Groundwater /Discharge to Surface Water: Recreation or Fish	Surface or Subsurface Soils	Yes No	Leaching /Groundwater Flow	No Yes - Current Yes - Future	Surface Water	■ NM Q No Q Yes	Current Potential	
10) Groundwater Plume: Discharge to Surface Water: Recreation or Fish	Groundwater	Yes No	Groundwater Flow	No Yes - Current Yes - Future	Surface Water	■ NM □ No □ Yes	Current Potential	
11) Sail : Lesching to Stormwater / Discharge to Surface Water: Recreation or Fish	Surface Soils	☐ Yes ■ No	Overtand Flow	No Yes - Current Yes - Future	Surface Water	■ NM □ No □ Yes	Cerrent Potential	

Additional Information: Provide necessary background discussion for data provided above. Also, if ecological exposure pathway identified on Worksheet 3.5, identify relevant source medium, transport mechanism, exposure medium, and receptor type below.

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location:

Castro Valley, California

Completed By:

CRTC

Page 1 of I

TIER 2 EXPOSURE SCENARIOS AND RISK GOALS

Instructions: For each exposure pathway, indicate i) Point of Exposure (POE) location (on-site, off-site, or both), ii) applicable exposure scenario at each POE (residential or commercial / industrial), and iii) applicable risk goals. Distance from source corresponds to shortest lateral distance to applicable POE from point of maximum COC concentration in source medium along possible migration pathway. Provide exposure limit information if applicable (e.g., OSHA Limits, MCLs, etc.).

			TARC	ET RKSK	S AT POE	
DISTANCE EXPOSURE FROM	EXPOSURE	Individual Constituent Effects		Cumulative Constituent Effects		Other Exposure Limit
PATHWAY SOURCE	SCENARIO AT POE	Indiv. <u>Risk</u>	<u>H</u> Q	Additive <u>Risk</u>	<u>HI</u>	(specify if applicable)
AIR EXPOSURE PATHWAYS	COMPLETE (pro	vide data)	□ NOT C	OMPLETE (skip to nex	t pathway)
		3 11		4		
On-Site POE: 0 ft	☐ Residential ☐ Commercial /Industrial	10 ⁻⁸ , 10 ⁻⁴	1.0	-		☐ PEL/TL
□ Off-Site POE:ft	Residential Commercial			-	_	PEL/IL
GROUNDWATER EXPOSURE PA	THWAYS COMPLETE (pro	vide data)	□ NOT 0	OMPLETE (skip to nex	t pathway)
■ On-Site POE:ft	Residential Commercial			-		□ MCL
■ Off-Site POE:ft	Residential Commercial	10-5, 10-4	1.0	-		☐ MCL
SOIL EXPOSURE PATHWAY	☐ COMPLETE (pr	ovide data)	NOT CO	MPLETE (ok	ip to next p	athway)
☐ On-Site POE: (at source)	Residential Commercial	-		_		٥
☐ Off-Site POE:(at source)	Residential Commercial /Industrial	-	_	-	_	<u> </u>
SURFACE WATER EXPOSURE I	PATHWAYS COMPLETE (pr	ovide data) i	■ NOT CO	MPLETE (sk	ip to next p	athway)
On-Site POE:ft		_				0
☐ Off-Site POE:ft	limit only)			_		٥
ADDITIONAL INFORMATION:	Innii Ontyj	L.		d.		
If exposure limit is specified, limits, water quality criteria,	provide reference for concentrat	ion limits to	o be appli	ed to each	COC (e.g.,	, OSHA
	,					

why not to

Site Name: Site Location:

0, 0, 10, 6

Former Service Station No.9-4930

Castro Valley, California

Date Completed: Completed By:

June 20, 1996 CRTC

Page 1 of 1

3 "

SITE PARAMETER CHECKLIST FOR RISK-BASED SCREENING LEVELS

Instructions: For Tier I evaluation (generic screening levels), review specified default parameters (*) to ensure values are conservative for site. For Tier 2 Option 1 SSTL calculation (site-specific screening levels), provide site-specific values for sensitive parameters (§). Indicate parameter value used in evaluation by completing check box (•).

Note: * Confirm conservatism of these values for Tier 1 evaluation.

§ Provide site-specific measurement or estimate for Tier 2 evaluation.

Soil Para		Defe	ult Value Used	Site-Specific Value Used	_
- 1	soil type		sandy soil	silty sand soil *§	
Θ_T	Soil porosity		0.38 (dim)	D §	ĵ
Θ_{ws}	water content - vadose zone		0.12 (dim)	§	
9 _{as}	air content - vadose zone $(=\Theta_T - \Theta_{ws})$		0,26 (dim)	·	
Э _{wcap}	water content - capillary fringe		0.342 (dim)		
9 _{acap}	air content - capillary fringe $(=\Theta_T - \Theta_{\text{weap}})$		0.038 (dim)	0	
o _s	Soil density		1.7 g/cm ³		;
Foc .	mass fraction of organic carbon in soil		0.01 (dim)	□ § □ § ■182.88 cm §	;
_S	Depth to contaminated soil		100 cm	■ 182.88 cm §	
_gw	Depth to groundwater		300 cm	■ 198.12 cm §	
Сар	capillary zone thickness		5 cm	■ 3.3 cm	
ıv	vadose zone thickness (= Lgw - hc)		295 cm	■ 194.8 cm	
oH -	Soil/water pH		6.5	o	
	water Parameters				
	Water infiltration rate		30 ст/уг	0 §	
gw	groundwater velocity		82.0 ft/yr	■ 0.79 ft/yr *§	
gw	groundwater mixing zone depth		200 cm	■ 198.12 cm *§	ì
DF	aquifer dilution factor (= 1 + $V_{gw} \delta_{gw} / (IW)$)		12.1	_	
Surface	Parameters				
U _{air}	Amb. air velocity in mixing zone		225 cm/s	· *8	}
δ _{air}	Mixing zone height		200 ст	· *8	}
A	Contaminated Area	o.	2250000 cm ²	■ 8,000,000 cm ²	
W	Width of Contaminated Area		1500 cm	2,828 cm	•
t	Thickness of Surficial Soils		100 cm	91.44 cm	
Pe	Particulate areal emission rate		2.17E-10 g/cm ² -s	§	
Building	Parameters			N ====================================	
Lcrack	Foundation crack thickness		15 cm	O	
η	Foundation crack fraction		0.01 (dim)	<u> </u>	
Lb _r	Building Volume/Foundation Area Ratio (res.)		200 cm		
Lbc	Building Volume/Foundation Area Ratio (com./ind.)		300 cm	a	
er _r	Building vapor volume exchange rate (res.)		12 dy ⁻¹		
ER _c	Building vapor volume exchange rate (com/ind.)		20 dy-1		

Ls, Depth to contaminated soil = Sample location NE-6 with benzene concentration of 0.056 mg/kg.

(continue on next page if needed)

Former Service Station No. 9-9430

Date Completed June 20, 1996

Site Location: Castro Valley, California

Completed By:

CRTC

Page 1 of 1

SUBSURFACE SOIL CONCENTRATION DATA SUMMARY (>3 FT BGS)

Instructions: Indicate type and concentrations of hazardous constituents detected in subsurface soil. Provide statistical data (maximum value, mean value, upper 90% confidence limit on mean) on detectable concentrations only. Do not include non-detects from outside of source zone. Select "representative concentration" value for comparison to cleanup standard (SSTL or RBSL) and calculation of baseline risk. Provide detailed lab data table(s) as Appendix A to this report.

	ANALYTIC	AL METHOD			DETECTE	D CONCENTS	RATIONS	REPRESE
TS DETECTED		Typical Detection	No. of	No. of	Conc.	Mean Conc.	Conc.	CONC. (mg/kg)
Name	Method No.	Limit (etg/sg)	Samples	Detects	(mth.pt)	(mg/mg)	((mg/ng)
Benzene	8020	0.005	(24)	24	3.9	0.27	0.43	0.43
Ethylbenzene	8020	0.005	24	24	77	2	3.6	3.6
Toluene	8020	0.005	24	24	14	0.39	0.66	0.66
Xylene (mixed isomers)	8020	0.005	24	24	360	6.5	12	12
	Name Benzene Ethylbenzene Toluene	Name Method No. Benzene 8020 Ethylbenzene 8020 Toluene 8020	Detection Limit (mg/kg)	ANALYTICAL METHOD POPUL	Name Neihod No. Typical Detection Limit (mg/kg) No. of Detects	ANALYTICAL METHOD POPULATION DETECTE	ANALYTICAL METHOD POPULATION DETECTED CONCENTS	ANALYTICAL METHOD POPULATION DETECTED CONCENTRATIONS

which sample pts

Former Service Station No. 9-4930

Date Completed:

June 20, 1996

Site Location:

Castro Valley, California

CRTC Completed By:

Page 1 of 1

GROUNDWATER CONCENTRATION DATA SUMMARY

Instructions: Indicate type and concentrations of hazardous constituents detected in groundwater. Provide statistical data (maximum value, mean value, upper 90% confidence limit on mean) on detectable concentrations only. Do not include non-detects from outside of source zone. Select "representative concentration" value for comparison to cleanup standard (SSTL or RBSL) and calculation of baseline risk. Provide detailed lab data table(s) as Appendix A to this report.

		ANALYTIC	AL METHOD	SAM POPUL		DETECT	ED CONCENT		REPRESEN
CONSTITUE	NAME	Method No.	Typical Detection Limit (mg/L)	No. of Samples	No. of Detects	Mas Conc. (mg/L)	Mean Conc. (mg/L)	Upper 90%CL Conc. (mg/L)	CONC. (mg/L)
71-43-2	Benzene	8020	0.005	31	31	0.18	0.056	0.068	0.068
100-41-4	Ethylbenzene	8020	0.005	31	31	0.14	0.019	0.026	0.026
108-88-3	Toluene	8020	0.005	31	31	0.017	0.0024	0.003	0.003
1330-20-7	Xylene (mixed isomers)	8020	0.005	31	31	0.33	0.009	0.014	0.014

Sample pop. = 30 unclede GP 2

Former Service Station No 9-4930

Date Completed:

June 20, 1996

Site Location:

Castro Valley, California

Completed By:

CRTC

Page 1 of 2

TIER 2 EXPOSURE PATHWAY TRANSPORT PARAMETERS

Instructions: For complete exposure pathways, provide site-specific values for transport parameters. In absence of direct measurements, default values may be selected for some parameters, as shown below. If no default value shown, site-specific value must be provided.

RANSP	ORT PARAMETER	SITE-SPECIFIC VALUE	DEFAULT VALUE (■ TO SELECT)
AIR PARA	AMETERS		(
δ_{air}	Air mixing zone height (cm)		■ 200
Uair	Ambient air velocity in mixing zone (cm/sec)		■ 225
Pe	Soil particulate areal emission rate (g/cm ² -sec)		■ 2.17E-10
σ_{y}	Transverse air dispersion coeff. (m)		■ 100
$\sigma_{\rm z}$	Vertical air dispersion coeff. (m)		■ 10
	WATER PARAMETERS		
δ_{gw}	Groundwater mixing zone depth (cm)	198.12	□ 200
I	Water infiltration rate (cm/yr)		■ 30
Vgw	Groundwater Darcy velocity (ft/yr)	0.79	0.1
K	Saturated hydraulic conductivity (cm/sec)	0.0001	
ⁱ grad	Lateral groundwater flow gradient (dim)	0.0075	
(BC) _i	Available biodegradation capacity of electron acceptors for constituent I		
x	Distance to POE from point of maximum COC concentration in groundwater (ft)	0 and 50	
α_{χ}	Longitudinal groundwater dispersion coeff. (cm)		■ 10% of x
α_y	Transverse groundwater dispersion coeff. (cm)		■ 33% of α _x
α	Vertical groundwater dispersion coeff. (cm)		■ 5% of α ₂
SOIL PAR	RAMETERS		
hcap	Capillary zone thickness (cm)	3.3	0 5
hv	Vadose zone thickness (cm)	194.8	
ρ_{s}	Soil bulk density (g/cm ³)		1.7
foc_S	Fraction organic carbon in soil leaching zone (dim)		■ 0.01
focgw	Fraction organic carbon in water-bearing unit (dim)		■ 0.001
Lgw	Depth to groundwater (cm)	198.12	
Θ_T	Soil porosity (dim)		■ 0.38
- 4	Soil volumetric water content (dim)		
Θ_{weap}	Capillary zone		■ 0.342
$\Theta_{\mathbf{ws}}$	Vadose zone		■ 0.12
Θ _{wcracl}	• Foundation crack		■ 0.12

Worksheet 5.7

Site Name:

Former Service Station No.9-4930

Date Completed: June 20, 1996

Site Location: Castro Valley California

RANSF	ORT PARAMETER	SITE-SPECIFIC VALUE	DEFAUL¹ (■ TO SEE	
	RAMETERS (Continued)	[INFO TALGE BELOW)	(1 0 SEI	EC1)
35	Soil volumetric air content (dim)			
Θ _{acap}	Capillary zone		■ 0,038	
Θas	•Vadose zone		■ 0.26	
Θ _{acrack}	•Foundation crack		■ 0.26	
đ	Thickness of surficial soil zone (cm)	91,44	□ 100 cr	n
BUILDIN	G PARAMETERS			
			Resid.	Comm/ Ind.
Lb	Building volume/area ratio (cm)		□ 200	■ 300
ER	Building air exchange rate (dy-l)		□ 12	2 0
L _{crack}	Foundation crack thickness (cm)		□ 15	
η	Foundation crack fraction		□ 0.01	
tional In	formation:			

Worksheet 7.1

Site Name:

Former Service Station No. 9-4930

Date Completed: June 20, 1996

Site Location:

Castro Valley, California

Completed By:

CRTC

Page I of 6

TIER 2 NATURAL ATTENUATION FACTOR CALCULATION METHODS AND RESULTS

Instructions: For complete pathways involving constituent transport from source to receptor (e.g., air, groundwater, or surface water), specify method used to calculate Natural Attenuation Factor (NAF) and provide results for each constituent of concern (COC) at relevant POE location(s). "Distance to POE" represents lateral distance along transport pathway from point of maximum COC concentration in source medium to on-site or off-site POE. (Note: If the RBCA Spreadsheet System is used, NAF calculation results for all complete pathways can be found on the Excel "Calculations" worksheet.)

NOTE:

- 1) Cpoe = Steady-state COC concentration in exposure medium at POE
- 2) C_s = Representative COC concentration in source medium
- 3) POE = Point of exposure

AIR EXPOSURE PATHWAYS				
 SURFACE SOILS: VAPOR INHALATI 	ON AND DUST INGESTION Complete: (pr	ovide data) Not Complete: (skip	p)	
NAF CALCULATION METHOD	NAF CALCULATION RESULTS			
(■ OR • TO SELECT)			Distance to POE	
☐ Empirical Measurement:	Л	ft	n	f
O Measured C ₅ / C _{poe} Ratio	Constituents of Concern	<u>NAF</u> (m ³ /kg)	<u>NAF</u> (m ³ /kg)	<u>NAF</u> (m³/kg)
O RBCA Spreadsheet Calculation	1			
O Other (Describe below)	2			
☐ Fate and Transport Modeling Used:	3			
O RBCA Spreadsheet Model	4			
O Other Model (Describe below)	5			
☐ Bioattenuation Considered:	6			
O Yes O No	7			
If yes, define method below.	8			

Additional Information on NAF Calculation Method:		

Worksheet 7.1

R EXPOSURE PATHWAYS Con	ntinued			
SUB-SURFACE SOILS: VAPOR INH	ALATION Complete: (provide data) Not Complete	lete: (skip)		
F CALCULATION METHOD	NAF CALCULATION RESULTS			
OR • TO SELECT)			Distance to POE	
Empirical Measurement:		n	ft	n
O Measured Cs / Cpoe Ratio	Constituents of Concern	<u>NAF</u> (m ³ /kg)	NAF (m ³ /kg)	<u>NAF</u> (m ³ /kg)
O RBCA Spreadsheet Calculation	1			
O Other (Describe below)	2			
Fate and Transport Modeling Used:	3			
O RBCA Spreadsheet Model	4			
O Other Model (Describe below)	5			
Bioattenuation Considered:	6			
O Yes O No	7			
If yes, define method below.	8			
	9			
	0			

what about soil
samples a
leptis major from
16-1/86
do those not
count

Worksheet 7.1

Date Completed: June 20, 1996 Site Name: Former Service Station No. 9-4930 Page 3 of 6 Completed By: CRTC Site Location: Castro Valley, California TIER 2 NATURAL ATTENUATION FACTOR CALCULATION METHODS AND RESULTS Continued **GROUNDWATER EXPOSURE PATHWAYS** ■ SOIL: LEACHING TO GROUNDWATER / INGESTION ☐ Complete: (provide data) ■ Not Complete: (skip) NAF CALCULATION METHOD NAF CALCULATION RESULTS Distance to POE OR TO SELECT) ☐ Empirical Measurement: NAF (L/kg) NAF (L/kg) NAF (L/kg) Constituents of Concern O Measured Cs / Cpoe Ratio O RBCA Spreadsheet Calculation O Other (Describe below) ☐ Fate and Transport Modeling Used: O RBCA Spreadsheet Model O Other Model (Describe below) ☐ Bioattenuation Considered: O Yes O No If yes, define method below. Additional Information on NAF Calculation Method:

Worksheet 7.1

Site Name:

Former Service Station No. 9-4930

Date Completed: June 20, 1996

Site Location: Castro Valley, California

Completed By: CRTC Page 4 of 6

GROUNDWATER: INGESTION	Complete: (provide data)	ip)		
NAF CALCULATION METHOD	NAF CALCULATION RESULTS			
(■ OR ● TO SELECT)			Distance to POE	
☐ Empirical Measurement:		<u> </u>	f1	
O Measured Cs / Cpoe Ratio	Constituents of Concern	NAF (dim)	NAF (dim)	NAF (dim)
RBCA Spreadsheet Calculation	1 Benzene	1.0	2300	
O Other (Describe below)	CA Spreadsheet Calculation 1 Benzene		23,000,000	
Fate and Transport Modeling Used:	3 Toluene	1,0	4.8E+24	
O RBCA Spreadsheet Model	4 Xylenes (mixed isomers)	1.0	11,000,000	
O Other Model (Describe below)	5			
Bioattenuation Considered:	6			
O Yes • No	7			
If yes, define method below.	8			
	9			
	0			

Additional Information on NAF Calculation Method:		

Worksheet 7.1

Former Service Station No. 9-4930 Date Completed: June 20, 1996 Site Name: Page 5 of 6 Castro Valley, California Completed By: **CRTC** Site Location TIER 2 NATURAL ATTENUATION FACTOR CALCULATION METHODS AND RESULTS Continued SURFACE WATER EXPOSURE PATHWAYS ■ SOIL: LEACHING TO GROUNDWATER / DISCHARGE TO SURFACE WATER: ☐ Complete: (provide data) ■ Not Complete: (skip) CONTACT RECREATION OR FISH CONSUMPTION NAF CALCULATION METHOD NAF CALCULATION RESULTS Distance to POE (■ OR ● TO SELECT) ☐ Empirical Measurement: NAF (L/kg) NAF (L/kg) NAF (L/kg) Constituents of Concern O Measured Cs / Cpoe Ratio O RBCA Spreadsheet Calculation O Other (Describe below) ☐ Fate and Transport Modeling Used: O RBCA Spreadsheet Model O Other Model (Describe below) ☐ Bioattenuation Considered: O Yes O No If yes, define method below. Additional Information on NAF Calculation Method:

Worksheet 7.1

AF CALCULATION METHOD	NAF CALCULATION RESULTS			
■ OR ● TO SELECT)			Distance to POE	
Empirical Measurement:	11	fi	n:	-
O Measured Cs / Cpoe Ratio	Constituents of Concern	NAF (dim)	NAF (dim)	NAF (dim)
O RBCA Spreadsheet Calculation	i .			
O Other (Describe below)	2			
Fate and Transport Modeling Used:	3			
O RBCA Spreadsheet Model	4			
O Other Model (Describe below)	5			
Bioattenuation Considered:	6			
O Yes O No	7			
If yes, define method below.	8			
	9			
	0			

	RBC	CA SITE ASSESSMENT			Tier Z Worksheet 8.1	
Site Name: Former Service Station No. 9-4930		ite Location: Castro Valley, ER 2 EXPOSURE CONCE	RTC ION	Date Completed: 6/20/1996	5 OF	
GROUNDWATER EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)			
SOIL: LEACHING TO GROUNDWATER	Expusure Concentration					
WESTICH	1) Source Medium	2) NAF Value (L/kg) Receptor	Ground Exposure Medium(mg4.) (19(2)	4) Exposure Multiplier (IRxEFxEDI/BWWAT) (UAp-day)	5) Average Daily Intake Rate (mg/kg-day)	
Constituents of Concern	See Concentration (mg/kg)					
Benzene	4.3E-1					
Ethylbenzene	3.6E+0					
Toluene	6.6E-1					
Xylene (mixed isomers)	1.2E+1					

NOTE	AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exp. duration (yrs)	EF = Exposure frequencey (days/yr) :R = Intake rate (L/day)	POE = Point of exposure

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Serial: G-411-ZHX-574

Software: GSI RBCA Spreadsheet Version: v 1 0

		RBC	A SITE ASSESSM	ENT					Tier 2 Wo	orksheet 8.1	
Site Name: Former Service	Station No. 9-4930		Site Location: Ca	sstro Valley, California Completed By: CRTC			TC		Date Completed	6/20/1996	6 OF 6
ARTICLE CONTRACTOR OF THE CONTRACTOR OF T			TIER 2 EX	POSURE CON	CENTRATION AN	ID INTAKE CALCU	ILATION			Ver. 11 - 12 - 12 - 12 - 12 - 12 - 12 - 12	
GROUNDWATER EXPOSURE	PATHWAYS			(CHECKED IF PA	THWAY IS ACTIVE						
GROUNCHWATER PROCESSION	Exposure Concentration						CARLES (B.)			MAX. PATHWAY INTA	IKE (mg/kg-day)
Constituents of Concern	1) Source Medium	NAF Value (dim) Receptor		3) Exposure Medium Groundwater: POE Conc. (mg/L) (1)/(2)		4) Exposure Multiplier (IRxEFxED)(BWxAT) (LAg-day)		 Average Daily Intake Rate (mg/kg-day) 		(Missimum intake of active pathwa anti teaching & groundwater route	
	Groundwater Concentration (mg/L)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential
Benzene	6.8E-2	1.0E+0	2.3E+3	6.8E-2	3.0E-5	3.5E-3	1.2E-2	2.4E-4	3.5E-7	2.4E-4	3.5E-7
Ethylbenzene	2.6E-2	1.0E+0	2.3E+7	2.6E-2	1.1E-9	9.8E-3	2.7E-2	2.5E-4	3.1E-11	2.5E-4	3.1E-11
Toluene	3.0E-3	1.0E+0	4.8E+24	3.0E-3	6.2E-28	9.8E-3	2.7E-2	2.9E-5	1.7E-29	2 9E-5	1 7E-29
Xylene (mixed isomers)	1.4E-2	1.0E+0	1.1E+7	1.4E-2	1.3E-9	9.8E-3	2.7E-2	1.3E-4	3.5E-11	1 3E-4	3.5E-11

NOTE: AT = Averaging time (days):

BW = Body Weight (kg) CF = Units conversion factor

ED = Exp. duration (yrs)

EF = Exposure frequencey (days/yr) IR = Intake rate (L/day or mg/day)

POE = Point of exposure

Senal: G-411-ZHX-574

Software GSI RBCA Spreadsheet Version: v 1 0

90ges 1-5?

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

		RBC	A SITE ASSESSM	ENT					Tier 2 W	orksheet 8.1	
Site Name: Former Service	Station No. 9-4930		Site Location: Ca	stro Valley, Calif	omia	Completed By: CR	тс		Date Complete	6/20/1996	6.OF
			TIER 2 EX	POSURE CONC	ENTRATION AN	ID INTAKE CALCU	LATION				
GROUNDWATER EXPOSURE	PATHWAYS			(CHECKED IF PA	THWAY IS ACTIVE						
BROUNDWATER: INGESTION	Exposure Concentration									MAX. PATHWAY INT	LKE (mg/kg-dky)
	1) Source Medium	The state of the s		3) Exposure Medium Groundweter: POE Conc. (mg/L) (1)/(2)		4) Exposure Multiplier (IRsEFxED)/(BMxAT) (L/kg-day)		5) Average Daily Intake Rate (mg/kg-day)		(Maximum intake of active paths and leaching & groundwater room	
Constituents of Concern	Groundwater Concentration (mg/L)	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-5 te Residential
Benzene	6.8E-2	1.0E+0	2.3E+3	6.8E-2	3.0E-5	3.5E-3	1.2E-2	2.4E-4	3.5E-7	2.4E-4	3 5E-7
Ethylbenzene	2.6E-2	1.0E+0	2.3E+7	2.6E-2	1.1E-9	9.8E-3	2.7E-2	2.5E-4	3.1E-11	2.5E-4	3 1E-11
Toluene	3.0E-3	1.0E+0	4.8E+24	3.0E-3	6.2E-28	9.8E-3	2.7E-2	2.9E-5	1.7E-29	2.9E-5	1.7E-29
Xylene (mixed isomers)	1.4E-2	1.0E+0	1.1E+7	1.4E-2	1.3E-9	9.8E-3	2.7E-2	1.3E-4	3.5E-11	1.3E-4	3.5E-11

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

BW = Body Weight (kg) CF = Units conversion factor ED = Exp. duration (yrs)

NOTE: AT = Averaging time (days)

Senal G-411-ZHX-574

EF = Exposure frequencey (days/yr) IR = Intake rate (L/day or mg/day)

Software: GSI RBCA Spreadsheat Version: v 1.0

POE = Point of exposure

		WEST STATE	E ASSESSME	NA P						Vorksheet 8.2		
Site Name: Former Service :	Station No. 9-493	0	Site Location:	Castro Valley,	California	Completed By	CRTC		Date Complete	d: 6/20/1996		3 OF
				TIER 2 PATE	WAY RISK	CALCULATIO	N					_
GROUNDWATER EXPOSURE P	TATHWAYS					(CHECKED IF P	ATHWAYS ARE	ACTIVE)				
			CA	RCINOGENIC R	isk				TOXIC EFFECTS			
	(1) EPA		arcinogenic (mg/kg/day)	(3) Oral Stope Factor	#15 0/200	duel COC 2) x (3)	10.7311100000	Toxicant (mg/kg/day)	(6) Oral Reference Dose	100000000000000000000000000000000000000	dual COC stent (5) / (6)	
Constituents of Concern	Carcinogeni c Classificati on	On-Site Commercial	Off-Site Residential	(mg/kg-day)*-1	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	(mg/kg-day)	On-Site Commercial	Off-Site Residential	
Benzene	Α .	2.4E-4	3.5E-7	2.9E-2	6.9E-6	1.0E-8						
Ethylbenzene	D		35(4)2(1)	172.4.32.0	7943961995 []		2.5E-4	3.1E-11	1.0E-1	2.5E-3	3.1E-10	_
Toluene	D						2.9E-5	1.7E-29	2.0E-1	1.5E-4	8.5E-29	-1
Xylene (mixed isomers)	D						1.3E-4	3.5E-11	2.0E+0	6.6E-5	1.8E-11	_
		Total Path	way Carcinog	enic Risk = [6.9E-6	1.0E-8	Tot	al Pathway H	azard Index = [2.7E-3	3.2E-10]_

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Senal G-411-ZHX-574

Software: GSI RBCA Spreadsheet Version: v 1.0

Tages I and 2?

Site Name: Former Service 5	Station No. 9-493	0	Site Location:	Castro Valley,	California	Completed By	CRTC		Date Complete	6: 6/20/1996	
Description of the second seco	CATALON LA CALLONS		124-11111-4-112-11	TIER 2 PATH	WAY RISK	CALCULATIO	N				
GROUNDWATER EXPOSURE P	ATHWAYS				- 10	(CHECKED IF P	ATHWAYS ARE	ACTIVE)			
Per a constitue de la constitu			CA	RCINOGENIC R	ISK	thin to the same of the same o		V	TOXIC EFFECTS		
	(1) EPA		arcinogenic (mg/kg/day)	(3) Oral Slope Factor		dual COC 2) x (3)		Toxicant (mg/kg/day)	(6) Oral Reference Dose		dual COC tient (5) / (6)
Constituents of Concern	c Classificate on	On-Site Commercial	Off-Site Residential	(mo/ko-day)^-1	On-Site Commercial	Off-Site Residential	On-Site Commercial	Off-Site Residential	(maka-day)	On-Site Commercial	Off-Site Residential
Benzene	A	2 4E-4	3 5E-7	2 9E-2	6.9E-6	1.0E-8					
Ethylbenzene	D						2.5E-4	3 1E-11	1.0E-1	2.5E-3	3.1E-10
Toluene	D						2.9E-5	1.7E-29	2.0E-1	1.5E-4	8 5E-29
Xylene (mixed isomers)	D						1 3E-4	3 5E-11	2.0E+0	6 6E-5	1 8E-11
		Total Patin	vay Carcinog	enic Risk = [6.9E-6	1.0E-8	Tot	al Pathway H	ezard Index =	2.7E-3	3.2E-10

© Groundwater Services, Inc. (GSt), 1995. All Rights Reserved.

Software GSI RBCA Spreadsheet Version v 1 0 Senal G-411-2HX-574

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Former Service Station No. 9-4930 Site Location: Castro Valley, California Completed By: CRTC Date Completed: 6/20/1996

1 of 1

	Individual COC Risk Cumulative COC Risk		Risk Limit(s) Exceeded? Hazard Quotient			INE TOXIC	Toxicity Limit(s) Exceeded?			
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
AIR EXPOSURE	PATHWAYS	1.00	- 1	100-2017 on						
Complete:	0.0E+0	1.0E-4	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
GROUNDWATE	R EXPOSURE P	ATHWAYS						Mark Tolland		
Complete:	6.9E-6	1.0E-4	6.9E-6	N/A		2.5E-3	1.0E+0	2.7E-3	N/A	
SOIL EXPOSURE	E PATHWAYS	- Vi Allandia					un Saulo	FH(7', #	- 1	5500
Complete:	0.0E+0	1.0E-4	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
CRITICAL EXPO	SURE PATHWA	Y (Select M	aximum Value	s From Comple	te Pathways)					
	6.9E-6	1.0E-4	6.9E-6	N/A		2.5E-3	1.0E+0	2.7E-3	N/A	

Serial: G-411-ZHX-

Software: GSI RBCA Spreadsheet

Version: v 1.0

Tier 2 Worksheet 9.2 RBCA SITE ASSESSMENT Site Name: Former Service Station No. 9-4930 Completed By: CRTC 1 OF 1 Date Completed: 6/20/1996 Site Location: Castro Valley, California Calculation Option: 2 ☐ MCL exposure limit? Target Risk (Class A & B) 1 0E-4 SUBSURFACE SOIL SSTL VALUES □ PEL exposure limit? Target Risk (Class C) 1 0E-4 (> 3 FT BGS) Target Hazard Quotient 1.0E+0 SSTL Results For Complete Exposure Pathways ("x" if Complete) SSIL Representative Soil Volatilization to Soil Volatilization to Exceeded Applicable Concentration Soil Leaching to Groundwater X Indoor Air Outdoor Air Required CRF CONSTITUENTS OF CONCERN SSTL 7 Residential | Commercial | Regulatory(MCL) Residential Commercial Residential Commercial CAS No. # If yes Only if "yes" left Name (mg/kg) (on-site) (on-site) (on-site) (on-site) (on-site) (on-site) (on-site) (mg/kg) 4.3E-1 71-43-2 Benzene NA NA NA NA 1.5E+0 NA NA 1.5E+0 <1 3.6E+0 NA NA >Res NA NA >Res <1 100-41-4 Ethylbenzene NA NA 6.6E-1 1.0E+2 <1 NA NA 108-88-3 Toluene NA NA NA NA 1.0E+2 1.2E+1 1330-20-7 Xylene (mixed isomers) >Res NA NA >Res <1 NA NA NA NA

Software: GSI RBCA Spreadsheet

Serial: G-411-ZHX-574

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Version, v 1.0

where are the SSTLS

		RBCA SIT	E ASSESS!	MENT							lier 2 Worksh	eet 9.2	
	ormer Service Station No. 9-4930 : Castro Valley, California	4000,000,000	Completed E Date Comple	By: CRTC eted: 6/20/19	96								1 OF 1
SL	JBSURFACE SOIL SSTL (> 3 FT BGS)	VALUES	Target	k (Class A & B Risk (Class C lazard Quotien	1 0E-4 1 1 0E+0		PEL expo	sure limit? sure limit?		Calcu	lation Option	: 2	
CONSTITUE	NTS OF CONCERN	Representative Concentration	Soi	C 299	Results For Comp Groundwater	X X	Sail Vo	athways ("x" if o latilization to door Air	Soil Vo	tatilization to	Applicable SSTL	SSIL Exceeded 7	Required CRF
CAS No.	Name	(mg/kg)	Residential: Commercial Regulatory(MCL) (on-site) (on-site) (on-site)		.005	sidential: on-site)	Commercial (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/kg)	· III · If yes	Only if "yes" left	
71-43-2	Benzene	4.3E-1	NA	NA	NA		NA	1.5E+0	NA	NA	1.5E+0		<1
100-41-4	Ethylbenzene	3.6E+0	NA	NA.	NA		NA	>Res	NA	NA	>Res		<1
108-88-3		6.6E-1	NA	NA	NA		NA	1.0E+2	NA	NA	1.0E+2		<1
1330-20-7	Xylene (mixed isomers)	1.2E+1	NA	NA	NA		NA	>Res	NA	NA	>Res		<1

Software: GSI RBCA Spreadsheet Version: v 1.0

Serial: G-411-ZHX-574

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

		RBC	A SITE AS	SESSMENT	f					Tier 2 W	orksheet 9.3	3
	ormer Service Station No. 9-4930 Castro Valley, California		Completed E Date Comple	By: CRTC eted: 6/20/199	6							1 OF 1
(GROUNDWATER SSTL V	ALUES	Targe	sk (Class A & B t Risk (Class C Hazard Quotien	1.0E-4 1.0E+0	☐ MCL expo	sure limit?		Calcu	dation Option	1: 2	
				55	TL Results For Com	splete Exposure	Pathways ("x" if Co	omplete)			SSTL	
Representative Concentration CONSTITUENTS OF CONCERN		x i	Groundwater	Ingestion	-51.500000000000000000000000000000000000	ster Volatilization Indoor Air	Groundwater Volatilization to Outdoor Air		Applicable SSTL	Exceeded ?	d Required CRF	
CAS No.	Name	(mg/L)	Residential: 50 feet	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	-■- If yes	Only if "yes" left
71-43-2	Benzene	6.8E-2	6.8E+2	9.9E-1	NA	NA	1.1E+0	NA	NA	9.9E-1		<1
100-41-4	Ethylbenzene	2.6E-2	>Sol	1.0E+1	NA	NA	>Sol	NA	NA	1.0E+1		<1
108-88-3	NAME AND ADDRESS OF THE OWNER, TH	3.0E-3	>Sol	2.0E+1	NA	NA	6.8E+1	NA	NA NA	2.0E+1		<1
	Xylene (mixed isomers)	1.4E-2	>Sol	>Sol	NA	NA	>Sol	NA	NA	>Sol		<1

Software: GSI RBCA Spreadsheet Version: v 1.0

Serial: G-411-ZHX-574

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

		RBC	A SI	TE ASS	SESSMENT						Tier 2 W	orksheet 9.3	F
	Former Service Station No. 9-4930 r. Castro Valley, California				ly: CRTC eted: 6/20/199	6							1 OF 1
3	GROUNDWATER SSTL V	ALUES		Targe	sk (Class A & B) I Risk (Class C) Tazard Quobern	1.0E-4 1.0E+0	54	osure limit?		Calcu	lation Option	: 2	
Representative Concentration			x		Groundwater		Groundw	Pathways ("x" if C vater Volatilization Indoor Air	Groundwa	ter Volatilization utdoor Air	Applicable SSTL	SSTL Exceeded 7	Required CRF
CAS No.	Name	(mg/L)		idential: O feet	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential: (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial: (on-site)	(mg/L	-■" If yes	Only if "yes" left
	Benzene	6.8E-2	6.	8E+2	9.9E-1	NA	NA	1.1E+0	NA	NA	9.9E-1		<1
-	Ethylbenzene	2.6E-2	,	Sol	1.0E+1	NA	NA	>Sol	NA	NA	1.0E+1		<1
	Toluene	3.0E-3	3	Sol	2.0E+1	NA	NA	6.8E+1	NA	NA	2.0E+1		<1
	Xylene (mixed isomers)	1.4E-2	>	Sol	>Sol	NA	NA	>Sol	NA	NA	>Sol		<1

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software GSI RBCA Spreadsheet Version v 1.0

Serial: G-411-ZHX-574

Appendix A

RBCA Tier 2 Evaluation Model Input Parameters

	5.241111	Name: Former Service cation: Castro Valley, (THE RESERVE OF THE PARTY OF THE	Date Completed Completed By	YWTT12541 6/20/96 CRTC		Version	r GSI RRCA Spreadsheet r v 1 0 s which differ from Tier 1 default values are shown	od undarlinad		
		DEFAULT PARA	METEDO				NOTE: VAIUE	S MUKSI CILIER LICHT LIBEL I CHIADII ANDRES SILE SILUMII	III DOIG Italica ar	id di idei ii led	
Exposure		DEFAULT PARA	Residentia		Commen	intilndustrial	Surface			Commerc	isMndustrial
Parameter	Definition (Units)	Adult	(1-Byrs)	(1-16 yrs)	Chronic	Constrctn		Definition (Units)	Residential	Chronic	Construction
ATC	Averaging time for carcinogens (yr)	70	11.92101	11.10.11.11			1	Exposure duration (yr)	30	25	-1
ATn	Averaging time for non-carcinogens (yr)		6	16	25	1	A	Contaminated soil area (cm*2)	8.0E+06		8.0E+08
W		70	15	35	70	200	w	Length of affected soil parallel to wind (cm)	2.8E+03	- (·) <	2.8E+03
	Body Weight (kg) Exposure Duration (yr)	30	6	16	25	1	W.gw	Length of affected soil parallel to groundwater (c.	1.5E+03		- same
D F		350		10	1000	180	Uair	Ambient air valocity in moving zone (cm/s)	2.3E+02		
	Exposure Frequency (days/yr)				250	100	delta	Air mixing zone height (cm)	2.0E+02		
F Derm	Exposure Frequency for dermal expos	ule 350 2			1		Las	Definition of surficial soils (cm)	9.1E+01	3	
Rgw	Ingestion Rate of Water (Vday)	_	200		50	100	Pe	Particulate areal emission rate (g/cm*2/s)	2.2E-10		
Rs	Ingestion Rate of Soil (mg/day)	100	200		9.4E+01	100	1.0	Captiveness misses as unastres () man (Barter 2) a)	2.42 .0		
Radj	Adjusted soiling rate (mg-yr/kg-d)	1.1E+02			20		Commoduate	r Definition (Units)	Value		
Rain	Inhalation rate indoor (m*3/day)	15			20	10	The latest and the second	Groundwater mixing zone depth (cm)	2.0E+02	-	
Ra out	inhalation rate outdoor (m*3/day)	20		0.05.00		5 8E+03	delta gw	Groundwater infiltration rate (cm/yr)	3 0E+01		
SA	Skin surface area (demnal) (cm*2)	5 8E+03		2.0E+03	5 8E+03 1.7E+03	0 05+03	Ugw	Groundwater Darcy velocity (cm/yr)	2.4E+01		
5Aad)	Adjusted dermal area (cm*2-yr/kg)	2.1E+03			1.72+03		Ugw tr	Groundwater Transport velocity (cm/yr)	6.1E+01		
M	Soil to Skin adherence factor	1			CM 00			Saturated Hydraulic Conductivity(cm/s)	1.0E-04		
VAFs.	Age adjustment on soil ingestion	FALSE			FALSE		Ks	Groundwater Gradient (cm/cm)	7.5E-03		
AFd	Age adjustment on skin surface area	FALSE			FALSE		grad		1.5E+03		
DE	Use EPA tox data for air (or PEL based						Sw	Width of groundwater source zone (cm)	9 BE+01		
wMCL?	Use MCL as exposure firnit in groundwi	eter? FALSE					Sd	Depth of groundwater source zone (cm)	3 BC 101		
							BC	Biodegradation Capacity (mg/L)	TRUE		
							8107	is Bioattenuation Considered	3.8E-01		
							phil wff	Effective Porosity in Water-Bearing Unit	1 0E-03		
					2.5420.000.000.00	Charles of Contract Ac-	foc sal	Fraction organic carbon in water-bearing unit	1.05-03		
	osed Persons to	Residential				al/Industrial		and the last of th	Value		
	ogure Pathways				Chronic	Constrctn	Soil	Definition (Units)	3.3E+00		
Groundwater							he	Capillary zone thickness (cm)	1.95+02		
	Groundwaler Ingestion	TRUE			TRUE		hv	Vadose zone thickness (cm)	1.7		
3W v	Volatifization to Outdoor Air	EALSE)		FALSE		rha	Soil density (glorn*3)	0.01		
	Wepor Intrusion to Buildings	FALSE			TRUE		foc	Fraction of organic carbon in vadose zone	0.38		
Soll Pathways							phi	Soil porosity in vadose zone			
5 v	Volatiles from Subsurface Soils	FALSE			FALSE		Lgw	Depth to groundwater (cm)	2.0E+02		
SV	Volatiles and Particulate Inhalation	FALSE			FALSE	FALSE	LS	Depth to top of affected soil (cm)	1.8E+02		
Sd	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	Lauba	Thickness of affected subsurface so is (cm)	1.8E+02		
3.1	Leaching to Groundwater from all Soils	FALSE			FALŞE		pН	Soil/groundwater pH	6.5	73W WEEE	0.2777032222
3 b	Intrusion to Buildings - Subsurface Soils	FALSE			TRUE			1	capillary	vadose	foundation
							ph w	Volumetric water content	0.342	0.12	0.12
							phi.a	Volumetric air content	0.038	0.26	0.26
									200	702	
								Definition (Units)	Residential	Commercial	
					20.000.000.000		Lb	Building volumerares ratio (cm)	2.0E+02	3.0E+02	
Matrix of Rece	eptor Distance	Resid		2		Mindustrial	ER	Building air exchange rate (s^-1)	1.4E-04	2 3E-04	
nd Location	on- or off-site	Distance	On-Site		Distance	On-Site	Lork	Foundation crack thickness (cm)	1.5E+01		
	redirection were	1.734,000					ota	Foundation crack fraction	0.01		
W	Groundwater receptor (cm)	1 5E+03	FALSE			TRUE					
	Inhalation receptor (cm)		FALSE			FALSE	***************************************				
	2.5						Dispersive Tr		1321+5-2-07-2-040	reservation in	
latrix of		2000						Definition (Units)	Residential	Commercial	
arget Risks		Individual	Cumulative				Groundwater				
	Secretary and the second						ax	Longitudinal dispersion coefficient (cm)	1 5E+02		
Rab	Target Risk (class A&B carcinogens)	1.0E-04			-		āy	Transverse dispersion coefficient (cm)	5 0E+01		
Ro	Target Risk (class C carcinogens)	1.0E-04			5-1		az	Vertical dispersion coefficient (cm)	7 6E+00		
HQ.	Target Hazard Quotient	1.0E+00					Vapor	A SECURITION OF SHIP STORY SHIP STORY OF A MARKET AND			
pt	Calculation Option (1, 2, or 3)	2						Transverse dispersion coefficient (cm)			

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Peridential should be: 10-6-10-5 Commercial 1: 10-7-10-4

Cap. 20ne thickness OK?

RBCA CHEMICAL DATABASE

Physical Property Data

													Vapor						
			Molec	ular	0.000	200	sion cients		log (Ko log(K	-	Henry's I	aw Constant	Pressure (@ 20 - 25		Solubility	,			
CAS			Welg (g/mc	ht	In air (cm2/s)	12047	in water		(@ 20 - : (Vkg	25 C)		0 - 25 C) (unitless)	(mm Hg) Pure		(@ 20 - 25 C) (mg/l) Pure		acid	base	
Number	Constituent	type	MW	re	1,000	re		re	Koc	ref	mol	re	Component	ref	Component		pKa	pKb	ref
71-43-2	Benzene	A	78.1	5	9.30E-02	A	1.10E-05	Α	1.58	Α	5.29E-03	2.20E-01 A	9.52E+01	4	1.75E+03	Α	1000		
100-41-4	Ethylbenzene	A	106.2	5	7.60E-02	A	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01 A	1.00E+01	4	1.52E+02	5			
108-88-3	Toluene	A	92.4	5	8.50E-02	A	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01 A	3.00E+01	4	5.15E+02	29			J.
1330-20-7	Xylene (mixed isomers)	Α	106.2	- 5	7.20E-02	A	8.50E-06	A	2.38	A	6.97E-03	2.90E-01 A	7.00E+00	4	1.98E+02	- 5			

Site Name: Former Service Stati Site Location: Castro Valley, Calif Completed By: CRTC

Date Completed: 6/20/1996

Software version: v 1.0

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

	the second second second			_
RBCA	~		 ar. v p. v	-
$\mathbf{E} \in \mathbf{C} \setminus \mathbf{A}$		11 55 1 1 1	 	-
NOWA				

Toxicity Data

			Reference Dose (mg/kg/day)					ay)	EPA Weight	ls	
CAS		Oral		Inhalation	Oral Inhalation				of	Constituent	
Number	Constituent	RfD oral	ref	RfD_inhal	re	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2	Benzene	181	R	1.70E-03	R	2.90E-02	Α	2.90E-02	A	Α	TRUE
100-41-4	Ethylbenzene	1.00E-01	A	2.86E-01	A		R		R	D	FALSE
	Toluene	2.00E-01	A,R	1.14E-01		-	R	(* ·	R	D	FALSE
1330-20-7	Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	A		R	100	R	D	FALSE

Site Name: Former Servic Site Location: Castro Valley, Californi Completed By: CRTC

Date Completed: 6/20/1996

Software version: v 1,0

[©] Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

RBCA CHEMICAL DATABASE

Miscellaneous Chemical Data

CAS		-	laximum aminant Level	Permiss Exposi Limit PEI	ure	Abs	lative orption octors	Groundy (mg/L	vater	Limits Soil (mg/k		(First-Or	If Life der Decay) lays)	
Number	Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Oral	Dermal		ref		re S	Saturated	Unsaturated	re
71-43-2	Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	C	0.005	S	720	720	Н
100-41-4	Ethylbenzene	7.00E-01	6 FR 3526 (30 Jan 91	4.34E+02	ACGIH	1	0.5	0.002	C	0.005	S	228	228	H
108-88-3	Toluene	1.00E+00	6 FR 3526 (30 Jan 91	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	S	28	28	Н
1330-20-7	Xylene (mixed isomers)	1.00E+01	6 FR 3526 (30 Jan 91	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	H

Site Name: Former Servic Site Location: Castro Valley, California

Completed By: CRTC

Date Completed: 6/20/1996

Software version: v 1.0

© Groundwater Services, Inc. (GSI), 1995, All Rights Reserved.

RBCA SITE ASSESSMENT

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

		Representative COC Concentration										
CONSTITUENT	in Groundy	vater	in Surface	Soil	in Subsurfac	e Soil						
	value (mg/L)	note	value (mg/kg)	note	value (mg/kg	note						
Benzene	6.8E-2	UCL	0.00		4.3E-1	UCL						
Ethylbenzene	2.6E-2	UCL			3.6E+0	UCL						
Toluene	3.0E-3	UCL			6.6E-1	UCL						
Xylene (mixed isomers)	1.4E-2	UCL			1.2E+1	UCL						

Site Name: Former Service Station No. 9-4930

Site Location: Castro Valley, California

Completed By: CRTC

Date Completed: 6/20/1996

© Groundwater Services, Inc. (GSI), 1995, All Rights Reserved.

upper 90% CC values not correct

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

CONSTITUENT	Half-Life of Constituent (day)
Benzene	720
Cth. the annual	228

Benzene	720
Ethylbenzene	228
Toluene	28
Xylene (mixed isomers)	360

Site Name: Former Service Station No. 9- Completed By: CRTC Site Location: Castro Valley, California Date Completed: 6/20/1996

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)

Dilution Attenuation Factor

	(DAF) In C	Sroundwater
CONSTITUENT	Residential	Comm./Ind.
	Receptor	Receptor
Benzene	2.3E+3	1.0E+0
Ethylbenzene	2.3E+7	1.0E+0
Toluene	4.8E+24	1.0E+0
Xylene (mixed isomers)	1.1E+7	1.0E+0

Site Name: Former Service Station No. 9-4930 Site Location: Castro Valley, California

Completed By: CRTC Date Completed: 6/20/1996

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

■Carcinogenic Risk

■Series3

■Series4

☐Hazard Index

Appendix B

RBCA Tier 2 Figures

ENVIRONMENTAL GROUP, INC.

3369 Castro Valley Boulevard at Wilbeam Avenue Castro Valley, California

SITE LOCATION MAP

FIGURE: 1 PROJECT: 320-156.1A

CASTRO VALLEY BOULEVARD

CHEVROM9-4930M930-QM.DWG

3369 Castro Valley Boulevard Castro Valley, California

Project # 4930-2

Cumulative Table of Well Data and Analytical Results

		s are in leet.	Descrip		 Алагую	cal results are	n parts per b	mion (ppb)	-			-		
DATE	Well Head Elev.	Ground Water Elev.	To Water	Notes	TPH- Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylene	1,2- DCE	TCE	DCFM	PCE	мтва
MW-1					- Commercial		Statement Land			DOL.	THE REAL PROPERTY.			
10/29/93	172.90	168.15	6.75	-	1000	11	17	22	440					
02/25/94			6.10	_	. 250	6.0	1.0	32 5.0	110	_				-
04/04/94	172.90	166,14	6.76	••					3.0		**	_	-	-
04/29/94	172.90		6.55			-	-			**	_		***	
06/13/94	172.90	166.12	6.78		670	35	0.5	-						
06/30/94	172.90	166.06	6.84				3.5	43	3.9	0.8	16	14	47	-
07/28/94	172.90	166.03	6.87	••	_	-	-			_	**			_
08/31/94	172.90	168.00	6.90		560	40				-			_	-
11/11/94	172.90	167.00	5.90		460	43	9.5	25	5.0	1.3	19	13	65	
02/01/95	172.90	166.88	6.02		240	53 25	4.0	50	3.4		-		••	-
05/18/95	172.90	166.82	6.08		580		0.60	4.0	<0.5	-		-		
08/22/95	172.90	166.52	6.38		840	42	1.0	53	2.6	**		_		-
11/01/95	172.90	166.40	6.50		350	73	1.2	110	1.6		-+	, ,	~~	**
01/26/96	172.90	166.85	6.05	_	210	36 23	<0.5	30	<0.5		_		••	15
					210	23	<0.5	12	⊲0 .5		***			4.7
MW-2														
0/29/93	173.91	166.05	7.66	_	5600	140	3.2	17	200					
2/25/94	173.91		6.95	_	820	41	<0.5	17	330 5.0		-			
4/04/94	173.91	166.18	7.73							-	-	_		-
4/29/94	173.91	166.23	7.68				**		_				-	••
6/13/94	173.91		7.71	- 3	1100	160	0.8	64	~~	-	-		_	**
6/30/94	173.91	165.87	8.04	_			0.0		2.0	⊲0.5	0.9	<0.5	2.0	**
7/28/94	173.91	165.99	7.92	-			_	Period				_		
8/31/94	173,91	165.98	7.93	**	190	7.1	4.1	3.1	_		-		_	-
1/11/94	173.91				440	120	<1.0		1.2	<0.5	1.1	<0.5	4.5	**
2/01/95	173.91		B.14	_	240	81	<1.0	18 <1.0	<1.0					
5/18/95	173.91	166.91	7.00	-	330	74	<0.5	<1.0 26	<1.0		-			
3/22/95	173.91		7.00		390	84	<1.0	20 2.1	1.3	_				
/01/95	173.91	166.54	7.37		190	46	<0.5		<1.0				_	_
/26/96	173.91		70	_	<50	13	<0.5 <0.5	1.6	40.5			**	**	<2.5
					~~	13	<v.j< td=""><td><0.5</td><td><0.5</td><td>••</td><td>-</td><td>**</td><td></td><td><2.5</td></v.j<>	<0.5	<0.5	••	-	**		<2.5

Cumulative Table of Well Data and Analytical Results

	Well	Ground	Depth			cel results are	and the same						Ministra	
DATE	Head	Water	To	Notes	TPH-	Benzene	Toluene	Cal	50 A	*				
	Elev.	Elev.	Water		Gasoline	Delizatio	FOILIBRIDE	Ethyl- Benzene	Xylene	1,2- DCE	TOE	DCFM	PCE	MISE
MW-3								DOMESTIC TO	-	LOL.				
10/29/93	172.60	164.96	7.64		110	<0.5	⊲0.5	<0.5	.0.5					
02/25/94	172.60	166_22	6.38	**	< 50	<0.5	<0.5	<0.5	<0.5 <0.5	-			**	_
04/04/94	172.60	165.21	7.39	_	_	~	10.5	40.3		**	_			**
04/29/94	172.60	165.62	6.98	**			_		**					
06/13/94	172.60	165.15	7.45		<50	<0.5	<0.5	⊲ 0.5	<0.5	A.E.		_		
06/30/94	172.60	165.05	7.55	tru .		-				< 0.5	2.0	40.5	220	-
07/28/94	172.60	164.93	7.67	***	•••		••	_	_	_	_			
08/31/94	172.60	164.81	7.79		€50	<0.5	<0.5	<0.5	<0.5			-		
11/11/94	172.60	165.73	6.87	Sampled biannually			V. 5	<0.5	₹0.5	<0.5	1.6	<0.5	320	_
02/01/95	172.60	167.03	5.57	**	89	<0.5	<0.5	<0.5	<0.5					-
05/18/95	172.60	165.79	5.81	-	_			~~	40.5	-			_	**
08/22/95	172.60	165.35	7.25	-	190	<0.5	<0.5	<0.5	<0.5	_	~			
11/01/95	172.60	165.70	6.90						40.5	_				
01/26/96	172.60	167,35	5.25	••	160	€2.5	<0.5	<0.5	<0.5					25
MW-4														
10/29/93	170.68	165.18	5.50		640	6.7	3.3	0.6	6.7					
02/25/94	170.68	165.86	4.82	_	450	20	0.8	12	5.0		**			_
04/04/94	170.68	165.23	5.45	~				- 12	J.O		-	••	-	
04/29/94	170.68	165.45	5.23	97.00		_	_		_	**	-	-		**
06/13/94	170.68	165.14	5.54		1700	130	1.4	100	11	22	44 670	40	4.00	
06/30/94	170.68	165.13	5.55		-	**	-		-		59	13	180	-
07/28/94	170.68	165.06	5.62	_		-	**							**
08/31/94	170.68	165.00	5.68		800	17	3.5	9.3	4.4	25	53			
11/11/94	170.68	165.46	5.22	dia	500	26	<0.5	30	4.3			22	510	
2/01/95	170.68		5.56	e-q	1600	180	€2.0	31	42		**		_	_
25/18/95	170.68	165.70	4.98	-	1300	130	€2.0	140	5.5	_	-			
x8/22/95	170.68	165.35	5.33		970	50	<1.2	75	<1.2		_			
1/01/95	170.68	165.28	5.40		320	3.3	d).5	4.1	<0.5		_	_	3.2	
1/26/96	170.68	166,40	4.28	_	1400	65	€2.5	96	₹0.5 71					27
						•••	V E.3	90	7.6					100

Cumulative Table of Well Data and Analytical Results

	Well	Ground	Depth			oal results are	base per d	Cal (pro)	(text 1 1 1 1 1 1 1 1 1	-				
Elev. B	Water Bev.	To Water	Notes	TPH- Gasoline	Benzene	Toluena	Ethyl-	Xylene	1,2-	TCE	DCFM	PCE	MTBE	
TRIP B	LANK					-	-	Benzene		DCE		THE PERSON AND PERSON		
02/25/94		_											THE REAL PROPERTY.	
06/13/94	2	_	••	••	<50	<0.5	<0.5	<0.5	≪0.5					
08/31/94			••	-	○ <50	<0,5	<0.5	<0.5	<0.5					-
11/11/94		-	-	-	<50	<0.5	<0.5	<0.5	<0.5	_	*-		_	-
22/01/95				_	ය 50	<0.5	<0.5	<0.5	<0.5	_		_		_
25/18/95					<50	<0.5	<0.5	<0.5	40.5		_	_	**	
8/22/95	-		•=		c50	<0.5	<0.5	<0.5	<0.5	_	-	-	-	_
	33		_		<50	<0.5	<0.5	<0.5	-			_	-	_
1/01/95			_	_	< 50	<0.5			<0.5					•-
1/26/96		**		-			<0.5	<0.5	<0.5	_				
					c50	<0.5	<0.5	<0.5	<0.5	_	-			2.5

Note: Blaine Tech Services, Inc. began routine monitoring of the groundwater wells at this site on November 1, 1994.

Earlier field data and analytical results are drawn from the September 27, 1994 Groundwater Technology, Inc. report.

ABBREVIATIONS:

TPH = Total Petroleum Hydrocarbons

1,2-DCE = 1,2-Dichloroethene

TCE = Trichloroethene

DCFM = Dichlorodifluoromethane

PCE = Tetrachloroethene

MTBE - Motyl I-Butyl Ether

ITH-9/BENZENE (49/1) CASTRO VALLEY BLVD. MW-1166.85 FORMER PUMP FORMER UNDERGROUND ISLANDS WASTE WATER RECLAIM TANKS FORMER PUMP ISLANDS -FORMER UNDERGROUND STOPAGE TANKS MW-2168.13 -FORMER CAR WASH 166.40 FORMER STATION BUILDING FILBEAM AFE FORMER ASTE OIL TANY FORMEH UNDERGROUND TANKS No. EG-1645 CERTIFIED ENGINEERING MW-3 167.35 160/22.5 LEGEND NOTE: PROPERTY LINE CONTOURS REPRESENT APPROXIMATE . MONITORING WELL ELEVATIONS ABOVE MEAN SEA LEVEL. POTENTIOMETRIC SURFACE ELEVATION (FT) X.XX POTENTIOMETRIC SURFACE CONTOUR GROUNDWATER FLOW DIRECTION **AMBRIA** FIGURE invironmental Technology, Inc. Chevron Facility 9-4930 Ground Water Elevation 3369 Castro Valley Blvd

Castro Valley, California

VCHEVROM9-4930M930-OM DWG

January 26, 1996