

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700

www.CRAworld.com

Fax: (510) 420-9170

	a a transfer		TR	<u> ANS</u>	MITT	AL		
DATE:	August	3, 2011		Refe	RENCE NO).:	2408	97
				Proj	ECT NAMI	E:	4411	Foothill Boulevard, Oakland
To:	Jerry W	ickham						
	Alamed	la Coun	ity Environmental H	ealth		·		RECEIVED
	1131 Ha	arbor Ba	ay Parkway, Suite 25	0				10:41 am, Aug 04, 2011
•	Alamed	la, Calif	ornia 94502-6577					Alameda County
				· · · · · · · · · · · · · · · · · · ·		<u> </u>		Environmental Health
Please find	d enclosed	l: - -	Draft Originals Prints		Final Other			
Sent via:			Mail Overnight Courier		Same Dar Other	-		r and Alameda County FTP
QUAN	TITY				DESCI	RIPTI	ON	
1		Soil Va	apor Sampling Repo	rt	DLJCI	XXI I I	014	
					,			
	Requested Your Use		For	Review	and Comr	ment	······································	
COMME	NTS:		•					
		estions	regarding the conte	nts of t	his docum	nent, p	lease	call Peter Schaefer at
(510) 420-	3319.			······································				
Copy to:			rown, Shell Oil Prod a, Foothill Blvd. LLC			-	• /	CA 04610
)111 1 11U	a, roouiiii biva. LLC	, I .O. I	DOX 10004	, Caki	ariu,	CA 94010
							1	
Complete	ed by: _I	Peter Sc	haefer	· .	Signed	ı: <u>fl</u>	H	Odefr
Filing:	Correspor	ndence I	ile					

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Re:

Former Shell Service Station 4411 Foothill Boulevard Oakland, California SAP Code 135686 Incident No. 98995746 ACEH Case No. RO0000415

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown

Senior Program Manager

SOIL VAPOR SAMPLING REPORT

FORMER SHELL SERVICE STATION 4411 FOOTHILL BOULEVARD OAKLAND, CALIFORNIA

SAP CODE

135686

INCIDENT NO.

98995746

AGENCY NO.

RO0000415

AUGUST 3, 2011 REF. NO. 240897 (16) This report is printed on recycled paper.

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700

Fax: (510) 420-9170

web: http:\\www.CRAworld.com

TABLE OF CONTENTS

						<u>Page</u>
EXEC	CUTIVE SU	MMARY	***************************************	•••••	•••••	i
1.0	INTROD	UCTION	•••••	•••••	•••••	1
2.0	SAMPLI 2.1 2.2 2.3	NG ACTIVITIES PERSONNEL PRESENTSAMPLING DATESOIL VAPOR SAMPLING		••••••		
3.0	FINDING 3.1 3.2	SOIL VAPOR LEAK TESTING				2
4.0	CONCLI	JSIONS AND RECOMMENDATION	ONS			3

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SOIL VAPOR DATA MAP

LIST OF TABLES (Following Text)

TABLE 1

HISTORICAL SOIL VAPOR ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A

SITE HISTORY

APPENDIX B

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. -

LABORATORY REPORT

EXECUTIVE SUMMARY

- On May 9, 2011, CRA sampled soil vapor probes V-1 through V-9 and V-11 for TPHg, BTEX, MTBE, and TBA.
- Soil vapor probes V-10 and V-12 could not be sampled on May 9, 2011 due to water in the sampling tubing.
- Soil vapor probes V-2 through V-6 and V-8 contained TPHg at concentrations exceeding RWQCB ESLs for commercial land use. It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX, MTBE, and TBA would be the appropriate related chemicals, and of these, only benzene was detected at a concentration above ESLs as discussed below.
- No toluene, ethylbenzene, total xylenes, MTBE, or TBA was detected at concentrations exceeding RWQCB ESLs for commercial land use.
- Soil vapor probes V-2 and V-3 contained benzene at concentrations exceeding RWQCB ESLs for commercial land use.
- Soil vapor results from the May 9, 2011 sampling event are generally within historical norms. Based on results of previous sub-slab soil vapor sample results, there is no demonstrated risk of soil vapor intrusion to on-site buildings; therefore, no further soil vapor monitoring is warranted.

į

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent soil vapor probe monitoring event, as requested in Alameda County Environmental Health's (ACEH's) April 4, 2011 letter.

The site is a former Shell service station located on the southern corner of the intersection of Foothill Boulevard and High Street in Oakland, California (Figure 1). The former station layout included three first-generation underground storage tanks (USTs) (1958 to 1971), three second-generation USTs (1971 to 1984), three third-generation gasoline USTs (1984 to 2002), a waste oil UST (removed 1992), and four product dispensers (removed 2002) as shown on Figure 2. Land use in the vicinity of the site is a mix of commercial and residential, with gasoline service stations occupying the northern and western corners of the intersection. The subject property is currently developed as a strip mall with a variety of commercial and retail uses.

A summary of previous work performed at the site and additional background information is contained in Appendix A.

2.0 <u>SAMPLING ACTIVITIES</u>

2.1 PERSONNEL PRESENT

CRA Staff Geologist Erin Swan sampled soil vapor probes V-1 through V-9 and V-11 under the supervision of California Professional Geologist Peter Schaefer.

2.2 SAMPLING DATE

May 9, 2011.

2.3 SOIL VAPOR SAMPLING

CRA sampled soil vapor probes V-1 through V-9 and V-11 using a lung box and Tedlar[®] bag. Soil vapor probes V-10 and V-12 could not be sampled on May 9, 2011 due to water in the sampling tubing. Approximately one liter of water was evacuated from each probe prior to abandoning the soil vapor sampling attempt.

Prior to sampling, CRA purged at least three tubing volumes of air from each vapor probe using a vacuum pump. Immediately after purging, a soil vapor sample was collected using a laboratory-supplied Tedlar® bag. During sampling, the Teflon® tubing for the vapor probe was connected to a lung box containing the Tedlar® bag, and the lung box chamber was connected to the vacuum pump. The sample was then drawn into the Tedlar® bag by reducing the pressure in the lung box with the vacuum pump. The samples were labeled, documented on a chain-of-custody, and submitted to Calscience Environmental Laboratories, Inc. of Garden Grove, California for analysis within 72 hours.

To check the system for leaks, a containment unit (or shroud) was placed to cover the soil gas probe surface casing and sampling manifold. Prior to soil gas probe purging, helium was introduced into the containment unit to obtain a minimum 50 percent helium content level. The helium content within the containment unit was confirmed using a helium meter. The helium meter reading is presented in Section 3.2. The sample was analyzed by the laboratory for helium, and CRA presents the results in Section 3.2 and on Table 1.

3.0 <u>FINDINGS</u>

3.1 SOIL VAPOR

The soil vapor samples collected from V-2 through V-9 and V-11 on May 9, 2011 contained up to 66,000,000 micrograms per cubic meter ($\mu g/m^3$) total petroleum hydrocarbons as gasoline (TPHg), $8,100~\mu g/m^3$ benzene, $220~\mu g/m^3$ ethylbenzene, and $280~\mu g/m^3$ total xylenes. No toluene, methyl tertiary-butyl ether (MTBE), or tertiary-butyl alcohol (TBA) was detected in the soil vapor samples collected May 9, 2011.

Table 1 summarizes historical soil vapor analytical data. TPHg and benzene, toluene, ethylbenzene, and total xylenes (BTEX) results are shown on Figure 2, and the laboratory analytical report is presented in Appendix A.

3.2 LEAK TESTING

CRA performed leak testing as described above, and up to 0.0161 percent by volume (%v) helium was detected in the samples. As shown in the following table, the

detections are less than 10 percent of the concentration detected in the shroud, and the samples are considered valid.

Probe ID	Helium concentration in sample (%v)	Minimum helium detected in shroud (%v)	Maximum acceptable helium concentration in sample (%v)
V-1	<0.0100	50	5.0
V-2	0.0161	50	5.0
V-3	<0.0100	58	5.8
V-4	<0.0100	58	5.8
V-5	<0.0100	52	5.2
V-6	<0.0100	50	5.0
V-7	<0.0100	52	5.2
V-8	< 0.0100	51	5.1
V-9	< 0.0100	58	5.8
V-11	<0.0100	54	5.4

The laboratory analytical reports for helium are presented in Appendix A, and CRA includes the results on Table 1.

4.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

No toluene, ethylbenzene, total xylenes, MTBE, or TBA was detected at concentrations exceeding San Francisco Bay Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs) for soil gas (Table E)¹ for commercial land use. Soil vapor probes V-2 through V-6 and V-8 contained TPHg at concentrations exceeding RWQCB ESLs for commercial land use. It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, BTEX, MTBE, and TBA would be the appropriate related chemicals, and of these, only benzene detections in probes V-2 and V-3 exceeded ESLs. These results are consistent with previous sampling events.

Sub-slab soil vapor concentrations in samples collected from SSV-1 and SSV-2 located in the on-site laundromat during May 2009 were below RWQCB commercial and residential ESLs. Since these results indicate no demonstrated risk of soil vapor intrusion to on- or off-site buildings, no further soil vapor monitoring is warranted.

Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final – November 2007 [Revised May 2008]

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Anhey K Cool. Aubrey K. Cool, PG

FIGURES

Former Shell Service Station

4411 Foothill Boulevard Oakland, California

Vicinity Map

Former Shell Service Station

FIGURE

Total Sample Ethyl-TPHg Benzene Toluene benzene Xylenes V-4 2,700,000 <430 <870 Ethyl-Total <320 <380 Sample TPHg |Benzene | Toluene FOOTHILL BOULEVARD benzene Xylenes <4,300 <8,700 66,000,000 8,100 <3,800 V-3 4411 Foothill S-2 ⊠ Wood Moulding & Doors 4413 Foothill Former Shell Station Sample Ethyl-Total TPHg 4411 Foothill BLDG. A Benzene Toluene ID benzene Xylenes V-5 960,000 <130 <150 220 <350 /V-4 **★** BW-A V-5 Total Sample Ethyl-TPHg Toluene Benzene Xylenes ID benzene <7,000 V-1 <16 <19 110 160 S-6 Total Sample Ethyl-SSV-1 TPHg Benzene Toluene benzene **Xylenes** SSV-2 240,000 V-6 <40 <47 170 280 V-6 4417 Foothill BLDG. B S-8 Sample Ethyl-Total TPHg Benzene Toluene benzene **Xylenes** <7,000 V-7 <16 42 <19 48 V-2 Planter V-7. S-3 🔯 Ethyl-Total Sample TPHg Benzene Toluene benzene Xylenes S-4 🗟 <2,200 36,000,000 2,400 <940 <1,100 Parking Jackson & Hewitt ∕v-10♣ Tax Services 4421 Foothill `O. Nails & Spa V-8 -**♦**- S-10 4423 Foothill Total Ethyl-Sample TPHg S-9 Benzene Toluene benzene Xylenes V-11_ V-8 250,000 <64 <75 150 <170 Residential 1724 High St. 4340 Bond St. Parking Total Ethyl-Sample TPHg Benzene Toluene benzene Xylenes V-11 <7,000 <16 <19 43 49 V-9 💠 S-11

Ethyl-

130

Sample

ID

V-9

40

Scale (ft)

TPHg

<7,000

Benzene Toluene

<16

Residential 4320 Bond St. <19

Total

170

V-12 💠

◆ S-12

benzene Xylenes

TABLE

TABLE 1

HISTORICAL SOIL VAPOR ANALYTICAL DATA FORMER SHELL SERVICE STATION 4411 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

Sample ID	Depth (fbg)	Date	TPHg (µg/m³)	Β (μg/m³)	Τ (μg/m³)	Ε (μg/m³)	Χ (μg/m³)	MTBE (μg/m³)	TBA (µg/m³)	Helium (%v)	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)
V-1	4.5-4.8	1/14/2008	16,000,000	<1,200	<1,400	<1,700	<5,000	<5,500	<4,600				
V-1	4.5-4.8	6/26/2008	1,000,000	<160	<190	<220	<220	<180	<610			-	
V-1	4.5-4.8	10/22/2008	340,000	<45	<53	<61	<120	<51	<170				
V-1	4.5-4.8	4/21/2009 b		58	<38	49	<170			< 0.0100			
V-1	4.5-4.8	5/9/2011 b	<7,000	<16	<19	110	160	<36	<30	<0.0100	<0.500	16.2	3.01
V-2	4.5-4.8	1/14/2008	15,000,000	9,000	<1,100	20,000	7,700	<4,100	<3,500				
V-2	4.5-4.8	5/22/2008	8,300,000	7,000	2,400	5,600	<1,400	<1,200	<4,000				
V-2	4.5-4.8	10/22/2008	5,000,000 a	8,300	<380	9,800	<i>7,</i> 700	<360	<1,200				
V-2	4.5-4.8	4/21/2009 b		7,100	2,900	3,100	<6,100	~~~		< 0.0100			
V-2	4.5-4.8	5/9/2011 b	36,000,000	2,400	<940	<1,100	<2,200	<1,800	<1,500	0.0161	<0.500	14.7	2.30
V-3	4.5-4.8	1/14/2008	20,000,000	3,800	<2,800	<3,300	<9,800	<11,000	<9,100				
V-3	4.5-4.8	5/22/2008	22,000,000	1,600	1,700	<1,300	<1,300	<1,100	<3,700				
V-3	4.5-4.8	10/22/2008	51,000,000 a	4,200	<4,600	<5,200	<10,000	<4,400	<15,000				
V-3	4.5-4.8	4/21/2009 b		25,000	17,000	<8,700	<35,000		and distant	0.0205			
V-3	4.5-4.8	5/9/2011 b	66,000,000	8,100	<3,800	<4,300	<8,700	<7,200	<6,100	<0.0100	4.59	13.7	2.14
V-4	4.5-4.8	1/14/2008	1,300,000	<150	<180	<210	<620	<680	<570				
V-4	4.5-4.8	6/26/2008	980,000	<160	<190	<220	<220	<180	<620			, ,	
V-4	4.5-4.8	10/22/2008	4,300,000	270	<240	<280	< 560	<230	<780				
V-4	4.5-4.8	4/21/2009 b		65	<75	360	520			0.0171			
V-4	4.5-4.8	5/9/2011 b	2,700,000	<320	<380	<430	<870	<720	<610	<0.0100	0.964	7.98	2.18
V-5	4.5-4.8	1/14/2008	2,500,000	<290	<340	<400	<1,190	<1,300	<1,100				
V-5	4.5-4.8	5/22/2008	3,300,000	<1,600	3,100	<2,200	<2,200	<1,800	<6,100				
V-5	4.5-4.8	10/22/2008	2,400,000	<340	<400	<460	<920	<380	<1,300				
V-5	4.5-4.8	4/21/2009 b		<64	110	350	510			1.24			
V-5	4.5-4.8	5/9/2011 b	960,000	<130	<150	220	<350	<290	<240	<0.0100	<0.500	9.30	3,29
V-6	4.5-4.8	1/14/2008	15,000,000	9,100	<270	<310	<930	<1,000	<860				
V-6	4.5-4.8	5/22/2008	2,300,000	<130	<150	<180	<180	<140	<490	<u></u>			
V-6	4.5-4.8	10/22/2008	5,400,000	<970	<1,100	<1,300	<2,600	<1,100	<3,700				
V-6	4.5-4.8	4/21/2009 b		<20	34	55	<110			< 0.0100			
V-6	4.5-4.8	5/9/2011 b	240,000	<40	<47	170	280	<90	<76	<0.0100	<0.500	8.67	6.92
V-7	4.5-4.8	1/14/2008	170,000	<19	<22	<25	<76	<84	<71				~~~
V-7	4.5-4.8	5/22/2008	790	<4.2	<5.0	<5. <i>7</i>	<5.7	<4.8	<16				
V-7	4.5-4.8	10/22/2008	3 ,7 00	<2.6	<3.0	26	120	<2.9	<9.8				
V-7	4.5-4.8	5/9/2011 b	<7,000	<16	<19	42	48	<36	<30	<0.0100	<0.500	4.95	15.2
V-8	5.0-5.2	10/23/2008	7,000	<3.8	<4.5	<5.2	<10	<4.3	<14				
V-8	5.0-5.2	5/9/2011 b	250,000	<64	<75	150	<170	<140	<120	<0.0100	<0.500	13.9	6.39
V-9	5.0-5.2	10/23/2008	870	<3.7	<4.4	<5.0	<10	<4.2	>14	·			
V-9	5.0-5.2	5/9/2011 b	<7,000	<16	<19	130	170	<36	<30	<0.0100	<0.500	6.75	16.4
V-10	4.5-4.8	1/14/2008	Unable to sa		to water	in sample	tube						-
V-10	4.5-4.8	5/22/2008	750	<4.1	<4.9	<5.6	<5.6	<4.6	<16				
V-10	4.5-4.8	10/23/2008	280	<4.2	<5.0	<5.7	<11	<4.8	<16				

CRA 240897 (16)

TABLE 1

HISTORICAL SOIL VAPOR ANALYTICAL DATA FORMER SHELL SERVICE STATION 4411 FOOTHILL BOULEVARD, OAKLAND, CALIFORNIA

												Carbon	Oxygen	
Sample ID	Depth (fbg)	Date	TPHg (µg/m³)	В (µg/m³)	T $(\mu g/m^3)$	$E \\ (\mu g/m^3)$	X $(\mu g/m^3)$	MTBE (μg/m³)	$TBA \ (\mu g/m^3)$	Helium (%v)	Methane (%v)	Dioxide (%v)	+ Argon (%v)	
V-10	4.5-4.8	5/9/2011	Unable to s	ample du	e to water	in sample	tube							
V-11	4.5-4.8	1/14/2008	18,000	<2.2	5	<3.0	<8.9	<9.8	<8.2					
V-11	4.5-4.8	6/26/2008	<260	<4.0	<4.8	<5.5	<5.5	<4.6	<15					
V-11	4.5 - 4.8	10/23/2008	<220	<3.5	<4.1	<4.8	<9.6	<4.0	<13			-		
V-11	4.5-4.8	5/9/2011 b	<7,000	<16	<19	43	49	<36	<30	<0.0100	< 0.500	7.76	12.6	
V-12	4.2-4.3	10/1/2009	Unable to s	ample due	e to water	in sample	tube				·			
V-12	4.2-4.3		Unable to s											
V-12	4.2-4.3	7/29/2010 c	<5,700	<32	<38	<43	<87	<72	<61	< 0.0100				
V-12	4.2-4.3	5/9/2011 b	Unable to s	ample du	e to water	in sample	tube			*******				
SSV-1	0.58	5/19/2009		8.8	11	4.4	<12	·		0.251				
SSV-2	1	5/15/2009		<2.1	<2.4	<2.8	<11			0.261				
Ambient Air	,	1/14/2008	<17,000	<2.4	4	<3.2	<9.7	<11	<9.0		·		<u></u>	
RWQCB ESL	s for	Commercial Land Use	29,000	280	180,000	3,300	58,000	31,000	NA	NA:	NA	NA	NA	7 A A
Soil Gas ^d		Residential Land Use	10,000	84	63,000	980	21,000	9,400	ŇA	NA	NA	ŇĀ	NA	Company of the Compan

Notes:

fbg = Feet below grade

 $\mu g/m^3$ = Micrograms per cubic meter

%v = Percent by volume

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method TO-3M; before 5/9/11, analyzed by modified EPA Method TO-3 GC/FID BTEX = Benzene, toluene, ethylbenzene and total xylenes analyzed by EPA Method 8260B (M); before 7/29/09, analyzed by modified EPA Method TO-15

MTBE = Methyl-tertiary butyl ether analyzed by EPA Method 8260B (M); before 7/29/09, analyzed by modified EPA Method TO-15 TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B (M); before 7/29/09, analyzed by Modified EPA Method TO-15

Helium analyzed by ASTM D-1946 (M)

Methane, carbon dioxide, and oxygen + argon analyzed by ASTM D-1946

x = Not detected at reporting limit x

--- = Not applicable

ESL = Environmental screening level

RWQCB = San Francisco Bay Regional Water Quality Control Board

NA = No applicable ESL

Results in **bold** exceed ESL for commercial land use

All samples were collected in Summa canisters unless otherwise noted.

- a = Exceeds quality control limits, possibly due to matrix effects.
- b = Samples collected in Tedlar bags.
- c = Sample received by laboratory with very low volume.
- d = From Table E of RWQCB ESLs. Ref: Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater Interim Final November 2007 (Revised May 2008).

APPENDIX A

SITE HISTORY

SITE HISTORY

1958 Underground Storage Tank (UST) Piping Leak: On April 19, 1958, a gasoline shortage was discovered at the operating Shell-branded service station. It was determined that there was a piping leak into a concrete pump pit and then into the soil in the vicinity of the storage tanks. Separate phase hydrocarbons (SPHs) were found in an irrigation well located at 4320 Bond Street, adjacent to the Shell site. Shell Oil Products US (Shell) installed 22 8-inch diameter wells to depths of 15 feet below grade (fbg) along the property boundary and 1 well within the tank complex. Groundwater was pumped from the wells, and the extracted water was transported to a separator. Though the volume of the release is not known, Shell reported in a June 2, 1958 letter to Traveler's Insurance Company that they recovered 650 gallons of gasoline from the wells.

1971 UST Removal and Replacement: A Shell document dated July 15, 1971 notes plans to remove the then-existing 6,000-gallon USTs. An invoice dated September 17, 1971 indicates the delivery of one 10,000-gallon UST, one 8,000-gallon UST, and one 550-gallon underground waste oil tank.

1977 Dispenser Piping Leak: A Shell Oil Company Oil Spill Report dated October 19, 1977 documents the release of 2,000 gallons of gasoline from a leaking pipe that ran from the USTs to the dispenser located closest to High Street. The report noted that the damaged section of pipe was replaced and that leak detectors were installed on all systems.

1984 UST Removal and Replacement: A Shell purchase order dated October 1, 1984 indicates the removal of the then-existing USTs and installation of three 10,000-gallon fiberglass USTs.

1991 Waste Oil Tank Leak: On June 5, 1991, Shell submitted an Underground Storage Tank Unauthorized Release (Leak)/Site Contamination Report (Unauthorized Release Report) detailing a release from the 550-gallon waste oil tank at the site. The report stated that the release was caused by tank failure, that the volume of release was unknown, and that the contents of the tank had been removed.

1992 Waste Oil Tank Removal: In February 1992, Delta/Bay Builders, Inc. removed the 550-gallon waste oil tank. GeoStrategies Inc. (GeoStrategies) collected a soil sample from the bottom of the excavation at a depth of approximately 11 fbg. No total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX), oil and grease, halogenated

volatile organic compounds, or cadmium were detected in the sample. The soil sample contained 79 milligrams per kilogram (mg/kg) chromium, 6.7 mg/kg lead, 180 mg/kg nickel, and 56 mg/kg zinc. Details of the waste oil tank removal and sampling activities are presented in GeoStrategies' March 26, 1992 report.

1992 Subsurface Investigation: In November 1992, GeoStrategies installed one groundwater monitoring well (S-1) in the vicinity of the waste oil UST. Soil samples collected from the well boring contained up to 390 mg/kg total petroleum hydrocarbons as motor oil (TPHmo), 180 mg/kg TPHd, 110 mg/kg TPHg, 0.45 mg/kg benzene, 0.51 mg/kg toluene, 2.2 mg/kg ethylbenzene, and 8 mg/kg total xylenes. GeoStrategies' January 19, 1993 Monitoring Well Installation Report provides well installation details.

1993 Subsurface Investigation: In May 1993, Hydro Environmental Technologies, Inc. (HETI) installed two groundwater monitoring wells (S-2 and S-3). Soil samples collected from the well borings contained up to 36 mg/kg TPHd, 1,300 mg/kg TPHg, 0.019 mg/kg toluene, 35 mg/kg ethylbenzene, and 200 mg/kg total xylenes. No benzene was detected in soil samples from the well borings. Well installation details are presented in HETI's July 22, 1993 report.

1995 Subsurface Investigation: In June 1995, Pacific Environmental Group (PEG) drilled eight on-site soil borings and two off-site borings. Soil samples collected from the borings contained up to 380 mg/kg TPHd, 840 mg/kg TPHg, 0.13 mg/kg benzene, 6.0 kg/kg toluene, 20 mg/kg ethylbenzene, and 98 mg/kg total xylenes. Grab groundwater samples collected from borings GP-2 and GP-10 contained up to 820 micrograms per liter (μ g/L) TPHmo, 850 μ g/L TPHd, 1,100 μ g/L TPHg, 34 μ g/L benzene, 41 μ g/L ethylbenzene, and 71 μ g/L total xylenes. No toluene was detected in the grab groundwater samples. PEG's September 12, 1995 Site Investigation report presents investigation details.

1998 Fuel System Upgrades: In November 1998, Paradiso Mechanical (Paradiso) upgraded the service station by adding secondary containment to the gasoline turbines and dispensers. Cambria Environmental Technology Inc. (Cambria) collected soil samples (D-1 through D-4) from beneath each of the dispensers. These soil samples contained up to 1,500 mg/kg TPHg, 9.2 mg/kg benzene, 4.3 mg/kg toluene, 15 mg/kg ethylbenzene, 61 mg/kg total xylenes, and 13 mg/kg methyl tertiary-butyl ether (MTBE). Details of dispenser upgrade and sampling activities are presented in Cambria's November 30, 1998 Dispenser Soil Sampling Report.

1999 - 2000 Oxygen Releasing Compound (ORC) Remediation: In September 1999, Cambria purged well BW-A with a vacuum truck and installed ORC socks in wells S-1, S-2, and BW-A. These activities are detailed in Cambria's October 15, 1999 Second Quarter 1999 Monitoring Report. According to field notes attached to Blaine Tech Services, Inc.'s (Blaine's) January 23, 2001 Fourth Quarter 2000 Groundwater Monitoring report, Blaine removed the ORC socks in December 2000.

1999 Site Conceptual Model (SCM) and Conduit Study: In December 1999, Cambria conducted a subsurface conduit study which identified several conduits that may provide limited preferential groundwater flow at times of shallow groundwater depth. Cambria also submitted additional data and analysis to complete the SCM for the site. Cambria's December 13, 1999 Letter Response and Work Plan presents the conduit study results and the additional portions of the SCM.

2000 Subsurface Investigation: In January 2000, Cambria installed one well (S-4) adjacent to the southeast corner of the station building and drilled one soil boring (SB-4) northwest of the station building. Soil samples contained up to 244 mg/kg TPHd, 786 mg/kg TPHg, 2.27 mg/kg benzene, 4.35 mg/kg toluene, 8.1 mg/kg ethylbenzene, 26.5 mg/kg total xylenes, and 0.893 mg/kg MTBE. Grab groundwater samples collected from boring SB-4 contained up to 180,000 μ g/L TPHg, 31,000 μ g/L benzene, 6,900 μ g/L toluene, 5,900 μ g/L ethylbenzene, 26,000 μ g/L total xylenes, and 7,100 μ g/L MTBE. Investigation details are contained in Cambria's November 17, 2000 Site Investigation Report.

2000 Sensitive Receptor Survey (SRS): In February 2000, Cambria conducted an SRS which identified 58 monitoring, test, or industrial wells located within a ½-mile radius of the site. No municipal, domestic, or irrigation wells were identified. The SRS is included in Cambria's November 17, 2000 Site Investigation Report.

2001 *Mobile Dual-Phase Extraction (DPE):* From April to September 2001, Cambria conducted monthly mobile DPE from wells BW-A and S-2. Mobile DPE removed approximately 18,588 gallons of groundwater containing approximately 1.05 pounds of TPHg and 0.39 pounds of MTBE. Mobile DPE results are summarized in Cambria's November 7, 2001 *Third Quarter 2001 Monitoring Report.*

2001 Preferential Pathway Analysis: In June 2001, Cambria conducted a preferential pathway analysis using a San Francisco Bay Regional Water Quality Control Board (RWQCB) dilution attenuation factor (DAF) analysis originally developed for a similar analysis at San Francisco International Airport in 1998. The analysis determined that

groundwater containing approximately 10 $\mu g/L$ benzene and 218 $\mu g/L$ MTBE could potentially reach San Francisco Bay (the nearest groundwater receptor). The DAF analysis is summarized in Cambria's June 26, 2001 First Quarter 2001 Monitoring Report and Letter Response.

2001 Corrective Action Plan (CAP): In November 2001, Cambria submitted a CAP in preparation for impending site demolition and fueling facility removal which recommended over-excavation following removal of the underground facilities, removing groundwater from the excavation, and placing ORC at the base of the excavation to enhance biological degradation of residual-impacted soil and groundwater. Cambria's November 12, 2001 CAP details these recommendations.

2002 UST Removal: In February 2002, Paradiso removed the gasoline USTs and hydraulic hoists, and over-excavated approximately 1,250 cubic yards of impacted soil around and beneath the USTs, product dispenser islands, and hydraulic hoists. Phillips Services Corporation extracted approximately 16,000 gallons of groundwater from the excavations. Cambria collected 54 soil samples and 2 grab groundwater samples from the excavation. Soil samples collected following the over-excavation contained up to 230 mg/kg hydraulic oil, 1,800 mg/kg TPHg, 9.6 mg/kg benzene, 42 mg/kg toluene, 100 mg/kg ethylbenzene, 590 mg/kg total xylenes, and 0.48 mg/kg MTBE. The grab groundwater sample collected following over-excavation contained 590 µg/L TPHg, $2.7 \,\mu\text{g/L}$ benzene, $2.3 \,\mu\text{g/L}$ toluene, $6.4 \,\mu\text{g/L}$ total xylenes, and $1,900 \,\mu\text{g/L}$ MTBE. No ethylbenzene, di-isopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), tertiary-amyl methyl ether (TAME), tertiary butyl alcohol (TBA), or ethanol was detected in this sample. Following over-excavation, Paradiso placed 810 pounds of ORC powder on the bottom of the excavation. Details of the fuel facilities removal and corrective action are presented in Cambria's February 25, 2002 Underground Storage Tank Closure Report.

2002 Subsurface Investigation: In May 2002, Cambria installed one groundwater monitoring well (S-5). The well installation is described in Cambria's July 2, 2002 Monitoring Well Installation Report.

2005 SCM: In August 2005, Cambria submitted an SCM which recommended destroying all on-site wells and replacing them after site development was completed, defining the horizontal extent of soil and groundwater impacts southeast of well S-4 and south of the 1958 fuel release, and continued groundwater monitoring. Cambria's August 16, 2005 Subsurface Investigation Work Plan and SCM details these recommendations.

2005 *Well Destructions:* In anticipation of redevelopment of the site, Cambria properly destroyed five wells (S-1 through S-5) in July 2005. The well destructions are described in Cambria's August 19, 2005 *Well Destruction Report*.

2005 Subsurface Investigation and Over-Excavation: In August 2005, Cambria drilled two soil borings (TB-1 and TB-3) to investigate extent petroleum-hydrocarbon-impacted soil and groundwater from the 1958 piping leak. Soil samples from the borings contained up to 1,600 mg/kg TPHg, 2.2 mg/kg benzene, 11 mg/kg ethylbenzene, 48 mg/kg total xylenes, 0.0062 mg/kg MTBE, 0.021 mg/kg TBA, and 291 mg/kg lead. No toluene, DIPE, ETBE, TAME, 1,2-dichloroethane (1,2-DCA), or ethylene dibromide (EDB) was detected in the soil samples from the borings. Grab groundwater samples from the borings contained up to 180,000 µg/L TPHg, 22,000 μg/L benzene, 9,700 μg/L toluene, 5,200 μg/L ethylbenzene, 25,000 μg/L total xylenes, 890 μg/L MTBE, 1,600 μg/L DIPE, and 13.4 μg/L lead. No TBA, ETBE, TAME, 1,2-DCA, or EDB was detected in the samples. Because the former UST area was located within the proposed footprint of a new building to be constructed at the site, K.E. Curtis Construction excavated soil to the extent feasible in order to remove hydrocarbon-impacted soil beneath the building prior to site redevelopment. excavation was completed to dimensions of 20 feet long by 25 feet wide by 20 feet deep. Following excavation, Cambria collected one confirmation soil sample from each sidewall and two soil samples from the excavation base. The excavation soil samples contained up to 0.050 mg/kg benzene, 0.0083 mg/kg ethylbenzene, 0.040 mg/kg xylenes, 0.029 mg/kg TBA, and 0.023 mg/kg DIPE. No TPHg, toluene, MTBE, ETBE, or TAME was detected in the excavation samples. No water was observed in the bottom of the excavation. The activities are described in their entirety in Cambria's November 16, 2005 Subsurface Investigation and Over-Excavation Report.

2006 Subsurface Investigation: In May 2006, Cambria drilled five soil borings (SB-5 through SB-8, and SB-12) to assess the vertical extent of soil and groundwater impacts. Soil samples collected from the borings contained up to 110 mg/kg TPHd, 3,000 mg/kg TPHg, 3.7 mg/kg benzene, 60 mg/kg toluene, 47 mg/kg ethylbenzene, 270 mg/kg total xylenes, and 0.46 mg/kg MTBE. Grab groundwater samples contained up to 2,400 μ g/L TPHd, 5,900 μ g/L TPHg, 3,300 μ g/L benzene, 470 μ g/L toluene, 260 μ g/L ethylbenzene, 420 μ g/L total xylenes, 880 μ g/L MTBE, and 630 μ g/L TBA. The vertical extent of petroleum constituents in groundwater at the site was defined by the groundwater results from boring SB-12, located down gradient of the first- and second-generation USTs. The results from the grab groundwater sample from 31 to 35 fbg in this boring indicated that the petroleum constituent concentrations attenuate by one to two orders

of magnitude with depth. The activities are described in Cambria's July 25, 2006 Subsurface Investigation Report and Monitoring Well Installation Work Plan.

2007 Subsurface Investigation: In February 2007, Cambria installed four replacement wells (S-6 through S-9). Soil samples collected from the well borings contained up to 62 mg/kg TPHd, 230 mg/kg TPHg, 2.6 mg/kg benzene, 2.5 mg/kg toluene, 7.1 mg/kg ethylbenzene, 24 mg/kg total xylenes, 0.28 mg/kg MTBE, 1.6 mg/kg TBA, and 12 mg/kg lead. No 1,2-DCA or EDB was detected in the soil samples. The well reinstallation activities are described in Conestoga-Rovers & Associates' (CRA's) April 19, 2007 Site Investigation and First Quarter 2007 Groundwater Monitoring Report.

2007 *Soil Vapor Investigation:* CRA installed nine on-site soil vapor probes (V-1 through V-7, V-10, and V-11) at depths of approximately 5 fbg. The probe installation details are presented in CRA's March 13, 2008 *Soil Vapor Probe Installation and Sampling Report*.

2008 Soil Vapor Monitoring: CRA conducted three rounds of soil vapor monitoring from the on-site soil vapor probes. TPHg, benzene, and ethylbenzene were detected at concentrations exceeding RWQCB environmental screening levels (ESLs) for soil gas with commercial land use. The monitoring results are presented in CRA's November 10, 2008 Soil Vapor Probe Installation and Sampling Report.

2009 Sub-Slab Soil Vapor Investigation: In March of 2009, CRA installed two sub-slab soil vapor probes (SSV-1 and SSV-2) into the subsurface beneath the on-site laundromat's building footprint to further assess soil vapor concentrations beneath the site. The sub-slab soil vapor probe sample collected from SSV-2 did not contain BTEX, and BTEX detections in SSV-1 were below ESLs. Details of this investigation are presented in CRA's June 22, 2009 Sub-Slab Soil Vapor Probe Installation and Sampling Report.

2009 Subsurface Investigation: In August and September 2009, CRA installed three off-site groundwater monitoring wells (S-10 though S-12) and one off-site soil vapor probe (V-12) and destroyed two on-site sub-slab soil vapor probes (SSV-1 and SSV-2). BTEX, fuel oxygenates, and lead scavengers were not detected in soil samples collected during this investigation. All TPHg detections in soil samples collected during this investigation were below RWQCB ESLs. Only one TPHd detection in soil exceeded ESLs (S-12-5.5'; 880 mg/kg). The laboratory noted that the TPHd reported does not match the diesel standard chromatographic pattern. The soil vapor probe could not be sampled, because water was present in the probe's Teflon® tubing. CRA's January 5, 2010 Subsurface Investigation Report provides investigation details.

2010 *Soil Vapor Monitoring:* In July 2010, CRA conducted soil vapor monitoring from off-site soil vapor probe V-12. No TPHg, BTEX, MTBE, or TBA was detected in the soil vapor sample. The monitoring results are presented in CRA's August 16, 2010 *Soil Vapor Sampling Report*.

Groundwater Monitoring Program: Groundwater has been monitored at the site since December 1992. Groundwater depths have ranged from approximately 6 to 12 fbg. The calculated groundwater gradient typically trends southwesterly.

APPENDIX B

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. - LABORATORY REPORT

May 17, 2011

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject: Calscience Work Order No.: 11-05-0596

Client Reference: 4411 Foothill Blvd., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/10/2011 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Xuan Dang Project Manager

FAX: (714) 894-7501

Case Narrative

Work Order # 11-05-0596 Modified EPA 8260 in Air

This method is used to determine the concentration of BTEX/Oxygenates/Naphthalene having a vapor pressure greater than 10⁻¹ torr at 25°C at standard pressure in an air matrix. The method is similar to EPA TO-15 and uses air standards for calibration. Method specifics are listed in the table below. A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of CalscienceTO-15(Modified) versus EPA 8260 (Modified) in Air

Requirement	જેસકલભાગમાં માંગમાંક((માં))	Calsciance EPA SOMOVI) TO AST
BFB Acceptance Criteria	SW846 Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <=40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Analytes contained in the LCS standard evaluated against historical control limits for the LCS	BTEX and MTBE only - <= 30%D
Daily Calibration Verification (CCV)	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%	BTEX and MTBE only - <= 30%D
	Target List Analysis: Allowable % Difference for each target analytes is <= 30%	
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 50% (Range: 50% to 150%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 50% of the mean area response of most recent Calibration Verification (Range: 50% to 150%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

Units:

05/10/11

11-05-0596 N/A

ASTM D-1946 %v

Project: 4411 Foothill Blvd., Oakland, CA

Page 1 of 2

Troject: 44111 cottini E	iva., Califa		·							- aş	96 1 01 2
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
V-1			11-05-	0596-1-A	05/09/11 14:05	Air	GC 36	N/A	05/10 . 1/2:	7/11 07	1105101-01-
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Methane Carbon Dioxide	ND 16.2	0.500 0.500	1 1		Oxygen + Argo	n		3.01	0.500	1	
V.2			ericane Samurill	0596-2-A	05/09/11 13:10	Air	GC 36	N/A	05/1 12:		1105101.01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	n		2.30	0.500	1	
Carbon Dioxide	14.7	0.500	1				integration se	egratus and the	ace energy in		lokitika esta kirile
			(1) <u>13</u>	0596-3-A	05/09/11 12:40	Air	GC 36	N/A	. 12.	477	110510101
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Methane	4.59	0.500	1		Oxygen + Argo	n		2.14	0.500	1	
Carbon Dioxide V-4	13.7	0.500	1 11-05	0596-4-A	1 05/09/11 12:00	Air	GC 36	N/A	05/1 13:		110510L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Methane	0.964	0.500	1		Oxygen + Argo	n		2.18	0.500	1	
Carbon Dioxide V 5	7.98	0.500	1 - 11-05	0596-5-A		Air -	G0 36	- NA	7. 05/1 13	0/11:	110510101
Parameter Methane	<u>Result</u> ND	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>	_		Result	<u>RL</u>	DE	<u>Qual</u>
Methane Carbon Dioxide	9.30	0.500 0.500	1 1		Oxygen + Argo	on		3.29	0.500	1	
V-6 : - /			-11-05	0596-6-4	05/09/11 13:44	Aufair Aufair		NA	1154 115		110510001
Parameter Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	Parameter			Result	RL	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	on		6.92	0.500	1	
Carbon Dioxide	8.67	0.500		15 - 2 A C J 3 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Magazi e 252 kwa c <u>amb</u>	Driesenski se			
V.7			-11-05	0596-7-A	05/09/11 12:20	Art	GC 36	NA	, , , , , , , , , , , , , , , , , , ,		. 110510L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Methane Carbon Dioxide	ND 4.95	0.500 0.500	1		Oxygen + Argo	on		15.2	0.500	1	
Saludii Biomas	7.00	0.000									

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 05/10/11 11-05-0596 N/A

ASTM D-1946 %v

Project: 4411 Foothill Blvd., Oakland, CA

Page 2 of 2

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
V-8			-11-0	5-0596-8-A	05/09/11 14:30	Air	GC 36	N/A	05/10 14:2		110510L01::-
Parameter Methane Carbon Dioxide	Result ND 13.9	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	Parameter Oxygen + Argor	n		Result 6.39	<u>RL</u> 0.500	DF 1	Qual
V-9			11-0	5-0596-9-A	05/09/11 15:00	Air	GC 36	N/A	05/10 143		110510101
Parameter Methane Carbon Dioxide	Result ND 6.75	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	Parameter Oxygen + Argor	n		Result 16.4	<u>RL</u> 0.500	<u>DF</u> 1	Qual
V-11	a original year		11-0	5-0596-10-A	05/09/11 15:25	Air - gasestata	GC 36	N/A	05/10 14/		1/10510L01
Parameter Methane Carbon Dioxide	Result ND 7.76	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	Parameter Oxygen + Argor	n		Result 12.6	<u>RL</u> 0.500	<u>DF</u> 1	Qual
Method Blank			099-	03=002=1,298	N/A	Air	GC 36	N/A	05/10 10:		:110510L01-
Parameter Methane Carbon Dioxide	<u>Result</u> ND ND	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	<u>Parameter</u> Oxygen + Argor	n		Result ND	<u>RL</u> 0.500	<u>DF</u> 1	Qual

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

05/10/11 11-05-0596 N/A EPA TO-3M

Project: 4411 Foothill Blvd., Oakland, CA

Page 1 of 2

Project: 4411 Foothill Blvd., (Dakland, CA						Pa	ge 1 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
V-1		11-05-0596-1-A	05/09/11 14:05	Air	GC 53	N/A	05/10/11 13-36	1105101011
Parameter TPH as Gasoline	<u>Result</u> ND	<u>RL</u> 7000	<u>DF</u> 1	Qual	<u>Units</u> ug/m3			
		11-05-0596-2-A	05/09/11 13:10	Air	- GC 53	N/A	i osinoida ii (1874)	14,0510,01
Parameter TPH as Gasoline	Result 3600000	<u>RL</u> 35000	<u>DF</u> 5	Qual	<u>Units</u> ug/m3			
V-3		11-05-0596-3-A	. 105/09/11 . 112:40	Air	GC 53	N/A	05/f0/ff 16:47	(10510L01)
Parameter TPH as Gasoline	Result 66009000	<u>RL</u> 350000	<u>DF</u> 50	Qual	<u>Units</u> ug/m3			
V4		11-05-0596-4-A	05(05)(1	Air	GC 53	N/A	405/rj0/1(74 718:35	110510101
Parameter TPH as Gasoline	<u>Result</u> 2700000	<u>RL</u> 35000	<u>DF</u> 5	Qual	<u>Units</u> ug/m3			
V-5		11-05-0596-5-A	05/09/11 11:35	Alp.	ĞC 53	N/A	105/10/d*1 14:50	110510101
Parameter TPH as Gasoline	<u>Result</u> 960000	<u>RL</u> 7000	<u>DF</u> 1	Qual	<u>Units</u> ug/m3			
V-6		11-05-0596-6-A	05/09/11 13:44	Air	GC 53	N/A	08/10/11 17:30	-ijiostolok
Parameter TPH as Gasoline	<u>Result</u> 240000	<u>RL</u> 7000	<u>DF</u> 1	Qual	<u>Units</u> ug/m3			

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 05/10/11 11-05-0596 N/A EPA TO-3M

Project: 4411 Foothill Blvd., Oakland, CA

Page 2 of 2

· · • j • ; · · · · · · · · · · · · · · ·	train Carmanian C							190 2 01 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
y-7:	n.	11-05-0596-7-A	05/09/11 12:20	Air	GC 53	N/A	(05/10/11 18:00	. 1 (0510L0).
Parameter TPH as Gasoline	<u>Result</u> ND	<u>RL</u> 7000	<u>DF</u> 1	Qual	<u>Units</u> ug/m3			
Ti Ti do Gasonne	NB	7000	'		ug/iiio			
V-8		11-05-0596-8-A	05/09/41 14:30	Air	GC 53	N/A	1934 1934	110510L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	250000	7000	1		ug/m3			
ve.		11-05-0596-9-A	05/09/11 15:00	Air	GC 83	NA .	7 (05) (0/(1) 18:11	: 110510101
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	7000	1		ug/m3			
V-n	ere en en en en en en en en en	11 05:0596-10;	1 05/09/11 15:25	Äir	GC 53	N/A	r olavnojski Siralija	
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	7000	1		ug/m3		•	
Method Blank		098-01-005-3,11	N/A	Air	GC 53	N/A	05/10/11 10:08	110510L01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	7000	1		ug/m3			

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

05/10/11

Work Order No: Preparation:

11-05-0596 N/A

Method:

ASTM D-1946 (M)

Project: 4411 Foothill Blvd., Oakland, CA

Page 1 of 2

Troject. 44111 Cottill Diva., C	Jakiailu, CA						Га	ige i oi z
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
		11-05-0596-1-A	05/09/11 14:05	Air	GC 55	N/A	05/10/11 15:26	110510L01
<u>Parameter</u> Helium	Result ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
rieliuiti	ND	0.0100		·	70 V			* 1
V·Z	***************************************	11-05-0596-2-A	05/09/11 13:10	Air	GC 55	N/A	.:: 05/10/11 15:47	110610101
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Helium	0.0161	0.0100	1		%v			
V3		11-05-0596-3-A	05/09/11 12:40	Air	GC 55	N/A	05/10/11 16:08	110510001
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			
V-4 (1) (2) (1) (1) (2) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		11-05-0596-4-A	105/09/1-1 12:00	Alz	:: Gelsk	, AVA	1400400/ii 1416361	110610001 /:
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			
V-5/		11-05-0596-5-A	05/09/11 11:35	Air	GC 55	N/A	05/10/11 16753	110510L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		% v			, T
V-6		11-105-0596-6-A	05/09/14 13:44	Air:	GC-55	NA	08/10/41 17/17/1	110510-01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		%v			

RL - Reporting Limit ,

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

05/10/11 11-05-0596 N/A ASTM D-1946 (M)

Project: 4411 Foothill Blvd., Oakland, CA

Page 2 of 2

Froject. 4411 Footiiii Biva., C	Jakianu, CA						Page 2 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed QC Batch ID
V-7	100 (100 (100 (100 (100 (100 (100 (100	11-05-0596-7-A	05/09/11 12:20	Air	GC 55	N/A	05/10/11 110510L01 17:48
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>		•
Helium	ND	0.0100	1		%v		
V-8		11-05-0596-8-A	::05/09//11 ::14:30	Air	GC 55	N/A	05/10/411 110510101 18/17
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>		
Helium	ND	0.0100	1		%v		
V.9		11-05-0596-9-A	05/09/11 15:00	Ar	GC:56	WA.	05/10/11 110510L01 18:55
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>		
Helium	ND	0.0100	1.		%v	,	
(V-11)		.11-05-0596-10-A	05/09/11 15/25	Air	GC 55	NA.	05/10/11 110510L01 19:26
<u>Parameter</u>	Result ND	<u>RL</u> 0.0100	<u>DF</u>	Qual	<u>Units</u>		
Helium	ND	0.0100	. 1		%v		
Method Blank	And the second s	099-12-872-103	N/A.	Air	GC 55	N/A	05/10/11 110510E01 15:01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>		
Helium	ND	0.0100	1		%v		

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

Units:

05/10/11 11-05-0596

N/A

EPA 8260B (M) ug/m3

Project: 4411 Foothill Blvd., Oakland, CA

Page 1 of 3

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
V4. Programme programme in the contract of the			1 <u>1</u> 1=05=0!	596-(1-A	.05/09/11 14:05	Air	GC/MS YY		05/10 387 187		(#10 <u>61)0L</u> 04.
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	16	1		Xylenes (total)			160	43	1	
Toluene	ND	19	1		Methyl-t-Butyl I	Ether (MTI	3E)	ND	36	1,	
Ethylbenzene	110	22	1		Tert-Butyl Alco	hol (TBA)		ND	30	1	
<u>Surrogates:</u>	REC (%)	Control Limits	<u>Qual</u>		Surrogates:			REC (%)	Control Limits	<u>Q</u> ı	<u>ual</u>
I,4-Bromofluorobenzene	107	47-156			1,2-Dichloroeth	ane-d4		93	47-156		
Toluene-d8	97	47-156									
V-2			11-05-0	596-2-A	05/09/11 13:10	Air	GC/MS ZZ	N/A	05/11 15:		110511L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	2400	800	50		Xylenes (total)			ND	2200	50	
Toluene -	ND	940	50	•	Methyl-t-Butyl		BE)	ND	1800	50	
Ethylbenzene	ND	1100	50		Tert-Butyl Alco	hol (TBA)		ND	1500	50	
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			REC (%)	Control Limits	Q	<u>ual</u>
1,4-Bromofluorobenzene	115	47-156			1,2-Dichloroeth	nane-d4		99	47-156		
Foluene-d8	75	47-156			*						
V37 has a shift of the same of	reporting	38,495,495,4 1880	11-05-0	596-3-A	05/09/11 12:40	Air	GC/MS ZZ	N/A	05/11 16:		1105111101
The many text the first space of the second	Result	RL	<u>DF</u>	596-3-A <u>Qual</u>	12:40 Parameter	Air	GC/MS ZZ	N/A Result	16. <u>RL</u>	42 <u>DF</u>	110511L01 Qual
Parameter Benzene	5100	3200	DF 200	175-375	Parameter Xylenes (total)	TAN SPINSING		Result ND	16: RL 8700	42 <u>DF</u> 200	
Parameter Benzene Foluene	5100 ND	3200 3800	DF 200 200	175-375	Parameter Xylenes (total) Methyl-t-Butyl	Ether (MT		Result ND ND	RL 8700 7200	DF 200 200	
Parameter Benzene Foluene Ethylbenzene	5100 ND ND	3200 3800 4300	DF 200 200 200	Qual	Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco	Ether (MT		Result ND ND ND ND	RL 8700 7200 6100	DF 200 200 200 200	<u>Qual</u>
Parameter Benzene Foluene Ethylbenzene Surrogates:	5100 ND ND REC (%)	3200 3800 4300 <u>Control</u> <u>Limits</u>	DF 200 200	Qual	Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco Surrogates:	Ether (MT		Result ND ND ND ND REC (%)	RL 8700 7200 6100 Control Limits	DF 200 200 200 200	
Parameter Benzene Foluene Ethylbenzene Surrogates:	5100 ND ND REC (%)	3200 3800 4300 Control Limits 47-156	DF 200 200 200	Qual	Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco	Ether (MT		Result ND ND ND ND	RL 8700 7200 6100 Control	DF 200 200 200 200	<u>Qual</u>
Parameter Benzene Foluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Foluene-d8	5100 ND ND REC (%)	3200 3800 4300 <u>Control</u> <u>Limits</u>	DF 200 200 200	Qual	Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco Surrogates:	Ether (MT		Result ND ND ND ND REC (%)	RL 8700 7200 6100 Control Limits	DF 200 200 200 200	<u>Qual</u>
Parameter Benzene Foluene Ethylbenzene Surrogates:	5100 ND ND REC (%)	3200 3800 4300 Control Limits 47-156	DF 200 200 200	Qual	Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco Surrogates:	Ether (MT		Result ND ND ND ND REC (%)	RL 8700 7200 6100 Control Limits	DF 200 200 200 Q	Qual ual
Parameter Benzene Foluene Ethylbenzene Burrogates: 1,4-Bromofluorobenzene Foluene-d8 V-4 Comment(s): -Reporting limit is elevat	5100 ND ND REC (%) 117 65	3200 3800 4300 Control Limits 47-156 47-156	DF 200 200 200 Qual 11:05-0	Qual 596-4-A	Parameter Xylenes (total) Methyl-t-Butyl Alco Surrogates: 1,2-Dichloroett B5/09/11 12:00	Ether (MT shol (TBA) nane-d4	BE)	Result ND ND ND ND REC (%)	RL 8700 7200 6100 Control Limits 47-156	DF 200 200 200 Q	Qual ual
Parameter Benzene Foluene Ethylbenzene Burrogates: 1,4-Bromofluorobenzene Foluene-d8 V-4 Comment(s): -Reporting limit is elevat	5100 ND ND ND REC (%) 117 65	3200 3800 4300 Control Limits 47-156 47-156	DF 200 200 200 Qual	Qual	Parameter Xylenes (total) Methyl-t-Butyl Alco Surrogates: 1,2-Dichloroett B5/09/11 12:00	Ether (MT shol (TBA) nane-d4	BE)	Result ND ND ND ND REC (%)	RL 8700 7200 6100 Control Limits 47-156	DF 200 200 200 Q	Qual ual
Parameter Benzene Foluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Foluene-d8 V-4 Comment(s): -Reporting limit is elevated	5100 ND ND REC (%) 117 65 ted due to h Result ND	3200 3800 4300 Control Limits 47-156 47-156 igh levels RL 320	DF 200 200 200 Qual 11:05:0 of non-ta DE 20	Qual 596-4-A	Parameter Xylenes (total) Methyl-t-Butyl Alco Surrogates: 1,2-Dichloroett 05/09/11 12:00 ccarbons. Parameter Xylenes (total)	Ether (MT shol (TBA) nane-d4	BE)	Result ND ND ND REC (%) 85	RL 8700 7200 6100 Control Limits 47-156	DF 200 200 200 Q	Qual ual 1105111601
Parameter Benzene Foluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Foluene-d8 V-4 Comment(s): -Reporting limit is elevate Parameter Benzene Foluene	5100 ND ND REC (%) 117 65 ted due to h Result ND ND	3200 3800 4300 Control Limits 47-156 47-156 iigh levels RL 320 380	DF 200 200 200 Qual 11:05:0 of non-ta DE 20 20	Qual 596-4-A	Parameter Xylenes (total) Methyl-t-Butyl Alco Surrogates: 1,2-Dichloroett 05/09/11 12:00 ccarbons. Parameter Xylenes (total) Methyl-t-Butyl	Ether (MT shol (TBA) nane-d4 Air Ether (MT	BE) BE)	Result ND ND ND REC (%) 85	RL 8700 7200 6100 Control Limits 47-156 05/11 22: RL 870 720	DE 200 200 Q	Qual ual 1105111601
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-4 Comment(s): -Reporting limit is elevate Parameter Benzene Toluene Ethylbenzene	5100 ND ND REC (%) 117 65 ded due to h Result ND ND ND	3200 3800 4300 Control Limits 47-156 47-156 iigh levels RL 320 380 430	DF 200 200 200 Qual 11:05:0 of non-ta DE 20 20 20	Qual singet hydro Qual	Parameter Xylenes (total) Methyl-t-Butyl Alco Surrogates: 1,2-Dichloroett 1,2-Dichloroett 2,2-Dichloroett 2,2-	Ether (MT shol (TBA) nane-d4 Air Ether (MT	BE) BE)	Result ND ND ND REC (%) 85	RL 8700 7200 6100 Control Limits 47-156 05/1 22/ RL 870 720 610	DE 200 200 Q	Qual 110511E01 Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-4 Comment(s): -Reporting limit is elevat Parameter Benzene Toluene Ethylbenzene Surrogates:	5100 ND ND REC (%) 117 65 ted due to h Result ND ND ND REC (%)	3200 3800 4300 Control Limits 47-156 47-156 iigh levels RL 320 380 430 Control Limits	DF 200 200 200 Qual 11:05:0 of non-ta DE 20 20	Qual singet hydro Qual	Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco Surrogates: 1,2-Dichloroett 05/09/11 12:00 ccarbons. Parameter Xylenes (total) Methyl-t-Butyl Tert-Butyl Alco Surrogates:	Ether (MT shol (TBA) nane-d4 Air Ether (MT shol (TBA)	BE) BE)	Result ND ND REC (%) 85 Result ND ND REC (%) REC (%)	RL 8700 7200 6100 Control Limits 47-156 05/1 222 RL 870 720 610 Control Limits	DE 200 200 Q	Qual ual 110511101
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-4 Comment(s): -Reporting limit is elevate Parameter Benzene Toluene Ethylbenzene	5100 ND ND REC (%) 117 65 ded due to h Result ND ND ND	3200 3800 4300 Control Limits 47-156 47-156 iigh levels RL 320 380 430 Control	DF 200 200 200 Qual 11:05:0 of non-ta DE 20 20 20	Qual singet hydro Qual	Parameter Xylenes (total) Methyl-t-Butyl Alco Surrogates: 1,2-Dichloroett 1,2-Dichloroett 2,2-Dichloroett 2,2-	Ether (MT shol (TBA) nane-d4 Air Ether (MT shol (TBA)	BE) BE)	Result ND ND ND REC (%) 85	RL 8700 7200 6100 Control Limits 47-156 05/1 22: RL 870 720 610 Control	DE 200 200 Q	Qual 1105111001

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: 05/10/11 11-05-0596 N/A

Method: Units:

EPA 8260B (M) ug/m3

Project: 4411 Foothill Blvd., Oakland, CA

Page 2 of 3

Client Sample Number		Lab Sample Number	Date/Time Collected Matrix Instrument	Date Prepared	Date/Time Analyzed QC Batch ID
V-5		11-05-0596-5-A	05/09/11 Air GC/MS ZZ	N/A	,05/11/11 11:05111:01 18:50
<u>Parameter</u>	Result RL	DF Qual	Parameter	Result	<u>RL</u> <u>DF</u> <u>Qual</u>
Benzene	ND 130	8	Xylenes (total)	ND	350 8
Foluene	ND 150	. 8 -	Methyl-t-Butyl Ether (MTBE)	ND	290 8
Ethylbenzene	220 170	8	Tert-Butyl Alcohol (TBA)	ND	240 8
Surrogates:	REC (%) Conf Limit		Surrogates:	REC (%)	Control Qual Limits
1,4-Bromofluorobenzene	111 47-1		1,2-Dichloroethane-d4	91	47-156
Toluene-d8	56 47-1	56			
V-6		.11-05-0596-6-A	05/09/11 Air GC/MS ZZ 13:44	N/A	05/11/11 11/0511L01 19:36
<u>Parameter</u>	Result RL	DF Qual	Parameter	Result	RL DF Qual
Benzene	ND 40	2.5	Xylenes (total)	280	110 2.5
Foluene	ND 47	2.5	Methyl-t-Butyl Ether (MTBE)	ND	90 2.5
Ethylbenzene	170 54	2.5	Tert-Butyl Alcohol (TBA)	ND BEC (%)	76 2.5
Surrogates:	REC (%) Conf	<u>ts</u>	Surrogates:	REC (%)	Control Qual Limits
1,4-Bromofluorobenzene	162 47-1		1,2-Dichloroethane-d4	86	47-156
Toluene-d8	53 47-1	CHINE AND THE RESERVE OF MARKET PAGE AND COMMERCE COMME			
V.7	ALIC POST ISSUED SHEET STREET	11-05-0596-7-A	05/09/11 Air GC/MS YY	NIEK .	
			12:20		01:08
	Result RL	DF Qual	12:20 Parameter	Result	01:08 RL DF Qual
<u>Parameter</u> Benzene	ND 16		Parameter Xylenes (total)		01:08
<u>Parameter</u> Benzene Foluene	ND 16 ND 19	<u>DF</u> <u>Qual</u> 1 1	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result 48 ND	01:08 <u>RL</u> <u>DF</u> <u>Qual</u> 43 1 36 1
Parameter Benzene Foluene Ethylbenzene	ND 16 ND 19 42 22	<u>DF</u> <u>Qual</u> 1 1 1	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA)	Result 48 ND ND	01:08 RL DF Qual 43 1 36 1 30 1
<u>Parameter</u> Benzene Toluene Ethylbenzene	ND 16 ND 19 42 22 REC (%) Cont	DF Qual 1 1 1 1 1 trol Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result 48 ND	RL DF Qual 43 1 36 1 30 1 Control Qual
Parameter Benzene Foluene Ethylbenzene Surrogates:	ND 16 ND 19 42 22 REC (%) Cont Limit	DF Qual 1 1 1 1 1 trol Qual ts	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates:	Result 48 ND ND ND REC (%)	01:08 RL DF Qual 43 1 36 1 30 1 Control Qual Limits
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1	DF Qual 1 1 1 1 1 trol Qual ts 56	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA)	Result 48 ND ND	RL DF Qual 43 1 36 1 30 1 Control Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8	ND 16 ND 19 42 22 REC (%) Cont Limit	DF Qual 1 1 1 1 1 trol Qual ts 56	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates:	Result 48 ND ND REC (%) 104	RL DF Qual 43 1 36 1 30 1 Control Qual Limits
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1	DF Qual 1 1 1 1 trol Qual ts 56 56	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ	Result 48 ND ND REC (%) 104	01:08 RL DF Qual 43 1 36 1 30 1 Control Qual Limits 47-156
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-8 Parameter	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1 108 47-1	DE Qual 1 1 1 1 1 Crol Qual 15 56 56 11-05-0596-8-A	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30	Result 48 ND ND REC (%) 104	01:08 RL DF Qual 43 1 36 1 30 1 Control Qual Limits 47-156 05/11/11 110511L01
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-8 Parameter Benzene	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1 108 47-1 Result RL ND 64 ND 75	DE Qual 1 1 1 1 1 trol Qual 25 56 56 111-05-0596-8-A	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30 Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result 48 ND ND REC (%) 104 N/A Result	01:08 RL DF Qual 43 1 36 1 30 1 Control Qual Limits 47-156 05/11/11 110511L01 RL DF Qual
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8	ND 16 ND 19 42 22 REC (%) Con Limi 108 47-1 108 47-1 Result RL ND 64 ND 75 150 87	DE Qual 1 1 1 1 100 Qual 25 56 56 56 11-05-0596-8-A DE Qual 4 4 4 4	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30 Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA)	Result 48 ND ND REC (%) 104 N/A Result ND ND ND ND	01:08 RL DF Qual 43 1 36 1 30 1 Control Qual Limits 47-156 RL DF Qual 170 4 140 4 120 4
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-8 Parameter Benzene Toluene	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1 108 47-1 Result RL ND 64 ND 75	DE Qual 1 1 1 1 1 1 56 56 56 56 11-05-0596-8-A DE Qual 4 4 4 4 4 trol Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30 Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result 48 ND ND REC (%) 104 Result ND ND Result ND ND	01:08 RL DF Qual 43 1 36 1 30 1 Control Qual Limits 47-156 05/11/11 110511L01 20:21 RL DF Qual 170 4 140 4 120 4
Parameter Benzene Toluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Toluene-d8 V-8 Parameter Benzene Toluene Ethylbenzene Ethylbenzene	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1 108 47-1 Result RL ND 64 ND 75 150 87 REC (%) Cont	DE Qual 1 1 1 1 1 556 56 56 11-05-0596-8-A DE Qual 4 4 4 4 4 trol Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30 Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA)	Result 48 ND ND REC (%) 104 N/A Result ND ND ND ND	RL DF Qual
Parameter Benzene Foluene Ethylbenzene Surrogates: ,4-Bromofluorobenzene Foluene-d8 V-8 Parameter Benzene Foluene Ethylbenzene Surrogates: ,4-Bromofluorobenzene	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1 108 47-1 Result RL ND 64 ND 75 150 87 REC (%) Cont Limit Cont Cont Limit Cont Limit Cont Cont Cont Cont Cont Cont Cont Con	DE Qual 1 1 1 1 1 100 Qual 25 56 56 11-05-0596-8-A DE Qual 4 4 4 4 trol Qual 55 56	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30 Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates:	Result 48 ND ND REC (%) 104 Result ND ND ND ND ND REC (%)	RL DF Qual
Parameter Benzene Foluene Ethylbenzene Surrogates: 1,4-Bromofluorobenzene Foluene-d8 V-8 Parameter Benzene Foluene Ethylbenzene Ethylbenzene Surrogates:	ND 16 ND 19 42 22 REC (%) Cont Limit 108 47-1 108 47-1 Result RL ND 64 ND 75 150 87 REC (%) Cont Limit 144 47-1	DE Qual 1 1 1 1 1 100 Qual 25 56 56 11-05-0596-8-A DE Qual 4 4 4 4 trol Qual 55 56	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 05/09/11 Air GC/MS ZZ 14:30 Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates:	Result 48 ND ND REC (%) 104 Result ND ND ND ND ND REC (%)	RL DF Qual

DF - Dilution Factor ,

Units:

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: 05/10/11 11-05-0596

N/A EPA 8260B (M) ug/m3

Project: 4411 Foothill Blvd., Oakland, CA

Page 3 of 3

			<u> </u>	1 49	9 0 0 0
Client Sample Number		Lab Sample Number	Date/Time Collected Matrix Instrument	iroperou ruidijeou	2C Batch ID
V ⁹		- 11:05:0596-9-A	05/09/11 Air GC/MS Y\ 15:00	/ N/A 05/11/11 02:42	170510L01
Parameter	Result RL	DF Qual	Parameter	Result RL DF	Qual
Benzene	ND 16	1	Xylenes (total)	170 43 1	
Toluene	ND 19	1	Methyl-t-Butyl Ether (MTBE)	ND 36 1	
Ethylbenzene	130 22	1	Tert-Butyl Alcohol (TBA)	ND 30 1	
Surrogates:	REC (%) Contr	<u>ol Qual</u>	Surrogates:	REC (%) Control Qu	<u>ıal</u>
	<u>Limits</u>	-		<u>Limits</u>	
1,4-Bromofluorobenzene	105 47-15	-	1,2-Dichloroethane-d4	106 47-156	
Toluene-d8	98 47-15	6			
V-11		11-05-0596-10-A	05/09/11 Air GC/MS YY 15:25	Y N/A 05/11/11 03:32	140510Ľ01
<u>Parameter</u>	Result RL	DF Qual	<u>Parameter</u>	Result RL DF	Qual
Benzene	ND 16	1	Xylenes (total)	49 43 1	
Toluene	ND 19	1	Methyl-t-Butyl Ether (MTBE)	ND 36 1	
Ethylbenzene	43 22	1	Tert-Butyl Alcohol (TBA)	ND 30 1	
Surrogates:	REC (%) Contr		Surrogates:	REC (%) Control Qu	ıal
	Limits	=		<u>Limits</u>	
1,4-Bromofluorobenzene	108 47-15		1,2-Dichloroethane-d4	109 47-156	
Toluene-d8	103 47-15	Hard Air Calming Co. (All Carl Carper Science Co. (All			
Method Blank		099-13-041-477	'N/A Air GC/MSY	Y N/A 05/10/11 14:20	110510L01
<u>Parameter</u>	Result RL	DF Qual	Parameter	Result RL DF	<u>Qual</u>
Benzene	ND 16	⁻ 1	Xylenes (total)	ND 43 1	
Toluene	ND 19	1	Methyl-t-Butyl Ether (MTBE)	ND 36 1	
Ethylbenzene	ND 22	. 1	Tert-Butyl Alcohol (TBA)	ND 30 1	
Surrogates:	REC (%) Contr		Surrogates:		<u>ial</u>
4.4 Bramefluorobonnone	Limits 104 47-15		4.0 Diablamanthaman 44	<u>Limits</u> 111 47-156	
1,4-Bromofluorobenzene Toluene-d8	100 47-15		1,2-Dichloroethane-d4	111 47-150	
Method Blank	47-13	099-13-041-478	N/A Air GC/MS Z	Z N/A 05/11/11 14:22	110511L01
Parameter	Result RL	DF Qual	<u>Parameter</u>	Result RL DF	Qual
Benzene	ND 16	1	Xylenes (total)	ND 43 1	
Toluene	ND 19	1	Methyl-t-Butyl Ether (MTBE)	ND 36 1	
Ethylbenzene	ND 22	1 .	Tert-Butyl Alcohol (TBA)	, ND . 30 1	
Surrogates:	REC (%) Control Limits		Surrogates:	REC (%) Control Qu	<u>ual</u>
1,4-Bromofluorobenzene	112 47-15	-	1.2-Dichloroethane-d4	123 47-156	
Toluene-d8	103 47-15		.,_ Signification u_		
i diddio do	, 				

DF - Dilution Factor ,

Quality Control - Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: 05/10/11 11-05-0596 N/A EPA TO-3M

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
V-6	a, in the second of the second	(//: 1 GC 53	N/A	.:: 05/10/11	11051000();
Parameter	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
TPH as Gasoline	242400	240400	1	0-20	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

N/A 11-05-0596 N/A ASTM D-1946

Quality Control Sample ID	Matrix I	nstrument	Date Prepared	Date Analyzed	LCS/LCSD Bar Number	tch
(099=03=002=1)(298	Air	GC 36	N/A	05/10/11	110510L01	
<u>Parameter</u>	LCS %REC	LCSD %R	EC %REG	CCL RPD	RPD CL	Qualifiers
Methane	96	95	80-	120 1	0-30	
Carbon Dioxide	106	106	80-	120 1	0-30	
Carbon Monoxide	103	102	80-	120 1	0-30	
Oxygen + Argon	93	95	80-	120 2	0-30	
Nitrogen	99	102	80-	120 3	0-30	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:

N/A

Work Order No:

11-05-0596

Preparation:

N/A

Method:

ASTM D-1946 (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-872-103	Air	GC 55	N/A	05/10/11	110510L01	an sa de linte de
Parameter	LCS %RI	EC LCSD %F	REC %REC	CL RPD	RPD CL	Qualifiers
Helium	95	94	80-12	0 1	0-30	
Hydrogen	109	109	80-12	0 0	0-30	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: N/A 11-05-0596 N/A

Method: EPA 8260B (M)

Quality Control Sample ID	Matrix Inst	rument F	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch .
099-13-041-477	Air GC7	MSYY	N/A	05/10/11	110510L01	
<u>Parameter</u>	LCS %REC	LCSD %RE	C %REC	CL RPD	RPD CL	Qualifiers
Benzene	104	104	60-1	56 0	0-40	
Toluene	106	105	56-1	46 1	0-43	
Ethylbenzene	110	110	52-1	54 0	0-38	
Xylenes (total)	116	116	52-1	48 0	0-38	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

N/A 11-05-0596 N/A

EPA 8260B (M)

Quality Control Sample ID	Matrix Inst	rument	Date Prepared	Date Analy:	-	LCS/LCSD Bato Number	:h
099-13-041-478	Air GC/	MSZZ	N/A	05/11/	11	.1105111601	
<u>Parameter</u>	LCS %REC	LCSD %RE	<u>:C %RI</u>	EC CL	RPD	RPD CL	Qualifiers
Benzene	99	99	60)-156	0	0-40	
Toluene	97	94	56	S-146	3	0-43	
Ethylbenzene	96	95	. 52	2-154	1	0-38	
Xylenes (total)	97	96	52	2-148	1	0-38	

Glossary of Terms and Qualifiers

Work Order Number: 11-05-0596

—	
Qualifier	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution,
	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
Ŭ	of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E ,	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

	LAB (LOCATION)				2 · \$			Sh	ell C)il F	roc	luc	ts (Cha	in C	Of C	ust	ody	/Re	cor	ď					
	SCIENCE ()	:::::::		e Check A						Print Bill To Contact Name: INC									CIDEN	T#4	ENV	SEF	VICE	s) (CHECK IF NO INCIDENT # APPLIES	
SPL XEN	•	ENV.	. SERVICES	□ M	OTIVA	RETAIL		SHELL	RETAIL	Peter	Schaef	er							9	8	. [9 !		7 4	_	DATE: 5/9/1/
	T AMERICA (□ мот	TVA SD&CM	2 co	ONSULT	TANT		LUBES						PO	#						\$	AP#				
ОТН	HER ()	SHEL	LL PIPELINE	0 0	THER _						T	T			1				1	3	5	6	8	6		PAGE: of
Cones	toga-Rovers & Associates				CRA				,	4411	Foot	hill B	lvd, (ıd				State (CA		0600	NO	L		
5900 H	ollis Street, Suite A, Emeryville, CA 94608			11							VERABLE TO						PHON	E NO			E.	MAIL				CONSULTANT PROJECT NO
PROJECT	CONTACT (Hardcopy or PCF Report to)	Peter S	Schaefer				1			SAMPLE	R NAME(S)	er, CR	A, Em	eryville	<u>.</u>		510	420-3	343		s	nell.em	n.edf@	@crawo		m 240897 USB ONLY
TELEPHON	510-420-3319 FAX 510-420-917	70	E-MAIL:	pschae	efer@	craworl	d.com			Erin S	Swan						•								//	1-05-0596
	NROUND TIME (CALENDAR DAYS): NDARD (14 DAY)	C	2 DAYS	□ 24 HOL	JRS		RESUL ON WE	TS NEED! EKEND	D									REQU	ESTE	ANAI	LYSI	S.				
□ \(\mu_{\text{\chi}} \)	RWQCB REPORT FORMAT UST AGENCY:									È	1															
SPE	CIAL INSTRUCTIONS OR NOTES :			SHELL						& TBA	e 6															TEMPERATURE ON RECEIPT C
Mus	t be analyzed within 72 hours.			☐ STATE			II. KAIE	APPLIES		I	Carbon Dloxide, 4 by ASTMd 1946	6 (M)													ļ	
	To analyzoo maini 72,110210,			RECEIF	T VERI	FICATIO	n reque	STED		MTBE, (8260)	on D	1 194													.	
Plea	se report results in µg/m3 for EPA TO-3 & 8260, ar		volume for AST	M D 1946 & 19	46(M).		ERVATIVE		т	2 B	Carb	SM (
LAB USE ONLY	Field Sample Identification	DATE	TIME	MATRIX	но			E OTHER	NO, OF CONT.	TPHg, BT	1 6 6	He by ATSM d 1946 (M)														Container PID Readings or Laboratory Notes
	V-1	5/9/1	1 2:05	VAPOR					1	x	х	х	\Box	+							\top		T		\top	·
2	V-2		1:10	VAPOR				٠.	1	Х	Х	Х														
3	V-3		12:40	VAPOR					1	Х	х	х														
4	V-4		12:00	VAPOR					1	Х	х	х														
y	V-5		11:35	VAPOR					1	х	Х	x														
6	V-6		1:44	VAPOR					1	х	х	х														
7	V-7		12:20	VAPOR						х	X	x	. :													
8	V-8		2:30	VAPOR					1	х	х	×														
q	V-9	w w	3.00	VAPOR					1	х	х	х											-			
									1	-	 	+-														
Relinquist	ed by: (Signature) Sum Sum ed by: (Signature)			Received by: (Sign	Tagores'					>			C	El				-				19	//.	/		1635
Polinquist	2 10 630 5		(73/)	Received by: (Sign	TOA.	l lin		A	2	Û	e_										do:	10/	11			10 - 3 0 D
Relinquist	bd by: (Signalur)			Received by: (Sign	J.	7														P	de:					Time:
							·		<u> </u>										-							05/2/06 Revision O
																			•							of 21

	LAB (LOCATION) SCIENCE (4 18		, ,				She	ell C)il F	roc	luc	ts	Ch	nai	n (Of C	us	to	yk	Re	CO	rd						
	(se Check /	Appi	opri	ate B				Print Bill To Contact Name:									INCIDENT # (ENV SERVICES)								CHECK IF NO INCIDENT # APPLIES		
	ICO (ENV. SE	RVICES		MOTIV	A RETAI	IL.		SHELL S	RETAIL	Peter	Schaef	fer								- 1	9	8	9	9	5	7	4 6	6	DATE: 5/9/11 PAGE: 2 of 2
	T AMERICA (☐ MOTTV	SD&CM		CONSU	LTANT			LUBES		1100				P	O #									SAF					7 7
Оот			SHELL F	IPELINE		OTHER							T	T	T	T	1	1		T	1		1	3	5	6		6	Т	\dashv	PAGE: 2 of 2
SAMPLING (COMPANY			· · · · · · · · · ·		LOGG	:COE			-		SITE A	DDRESS:	Street #	nd City		ــــــــــــــــــــــــــــــــــــــ		<u> </u>			s	tate	- 31	- 1	ाठ		- 0		i	
Cones	toga-Rovers & Ass	ociates				CR	AW						Foot					d				'	0	Α			001	0106	5		
5900 H	lollis Street, Suite A	, Emeryville, CA 94608										EDF DEC	VERABLE I	o (Name, I	ynaqıng.	/, Omce La	oçation)				IONE NO					E-MAIL					CONSULTANT PROJECT NO
PROJECT	CONTACT (Hardcopy or PDF Report	to)	Peter Sci	haefer								Bren SAMPU	da Cart ER NAME(S)	er, CF	KA, E	mery	ville			5	10-420)-334	3			sheli	.em.e	edf@	crawork	LAB L	USE ONLY
TELEPHON	€ 510-420-3319	510-420-9	170	E-MAIL:	pscha	efer@	ocrawo	orld,co	om			Erin :	Swan				٠.												1	/-	or-0176
	AROUND TIME (CALEND NDARD (14 DAY)	AR DAYS):	s □2	DAYS	□ 24 HO	URS			ESULTS WEEK	NEEDE CEND	D .					,					REG	QUE	STEC	AN/	ALYS	sis					
) W-	RWQCB REPORT FORMA	T UST AGENCY:										À	T	T		T							Т							П	
SPE	CIAL INSTRUCTIO	NS OR NOTES .			☑ SHELL							& TBA	e5 (0																		TEMPERATURE ON RECEIPT C
J1 L		NO OK NOTES .			☐ STATE			IENT RA	ATE AP	PLIES		~	19 × 19 × 19 × 19 × 19 × 19 × 19 × 19 ×	Ê								1									
Mus	t be analyzed within	72 hours.			□ EDD N					-		MTBE, (8260)	ig E	946								1		İ	ł						
Plea	se report results in uc	y/m3 for EPA TO-3 & 8260,	and in % by vo	olume for AST	RECEÌ 1946 & 11			ION RE	QUEST	ED		Ø ≥ (8)	AS	ATSM d 1946 (M)												-					
				PLING		Ľ		ESERVA	TIVE			불	P C	TSI											1						}
LAB USE ONLY	Field Sam	ole Identification	DATE	TIME	MATRIX	H.C.	HNO3	HSCOA	NONE	OTHER	NO. OF CONT.	TPHg, BTEX, I EPA Method (Oxygen, Carbon Dioxide, Methane by ASTMd 1946	He by																	Container PID Readings or Laboratory Notes
0	V-11		5/9/11	3:25	VAPOR	1					1	х	х	х																	
	وستواشلين	•			VAROR									+×																	l .
														Т	Π	1				\top											
												T									1		1							\dagger	
						1						<u> </u>		†		T				1	\top									11	
			1			\vdash							1.		T	T														\exists	
				 		1						I^{-}	+	+		1			_	+	1	+	\top							\dashv	
	 -			ļ		-						-	-	+	ļ	1			_	-	+		-		_					+	
																								ļ							
Relinquish	ed by: (Signature)			<u> </u>	Received by: (Sig	gnature)	Λ		$\overline{}$	·		<u>. </u>	1	<u>۔۔۔</u>	·····	_	<u> </u>				'_				Dale:			1.		7	imo:
		men					2					~	<u> </u>	<u>C</u>	لل ر	- <u>(</u>	_									5/	9/	///)	1	1635
(adhqui)	Signature)	-/8/	1	-20	Received by: (Sig	gnature)	_		,	,	. (\	ia_											- 1	Date:	Ì	ol ii			- 1	<i>(</i> 2) -
Reilnauish	ved by: (Signature)	70 65U S	5/9/11	170	Received by: (Sig	gnature)	1	44	4		دمر	- 0	سسای												Dale:	<u>, ·</u>	<u>/ "</u>	•			70 - 30
, quali						·	4		-																						
				l		-							····											1							05/2/06 Revision
				•														,													

(0596)

<WebShip>>>>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: CRA, CARDNO, ERI

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

GARDEN GROVE

D92843A

90947641

Print Date: 05/09/11 16:45 PM

Package 1 of 1

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 11-05-0596

SAMPLE RECEIPT FORM

Box ____ of _____

CLIENT: URA DATE: QF //	0/11
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature°C + 0.5°C (CF) =°C □ Blank □ San	nple
□ Sample(s) outside temperature criteria (PM/APM contacted by:).	•
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.	
☐ Received at ambient temperature, placed on ice for transport by Courier.	
	tial:
CUSTODY SEALS INTACT:	
Box	itial: <u></u>
□ Sample □ □ No (Not Intact) ☑ Not Present Ini	itial: PS
SAMPLE CONDITION: Yes No	N/A
Chain-Of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition	
Proper containers and sufficient volume for analyses requested	
Analyses received within holding time	
pH / Res. Chlorine / Diss. Sulfide / Diss. Oxygen received within 24 hours □	
Proper preservation noted on COC or sample container	
☐ Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace □ □	Ø
Tedlar bag(s) free of condensation	
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve () EnCores® TerraCores®	O
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBn	a₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB	
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □ □	
Air: 🗹 Tedlar® 🗆 Summa® Other: 🗆 Trip Blank Lot#: Labeled/Checked	by: <u>N</u>
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Reviewed	- 1 am /
Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f: Field-filtered Scanned	by: