SITE INVESTIGATION REPORT

Port of Oakland
Oakland International Airport
United Airlines Hangar Area - Economy Parking Lot Site
1100 Airport Drive
Oakland, California

Project No. 10-250-02-004

SITE INVESTIGATION REPORT

Port of Oakland, Oakland International Airport United Airlines Hangar Area - Economy Parking Lot Site 1100 Airport Drive Oakland, California

Project No. 10-250-02-004

Prepared for:

Port of Oakland 530 Water Street Oakland, California

Prepared by:

Alisto Engineering Group 1575 Treat Boulevard, Suite 201 Walnut Creek, California

July 27, 1995

Brady Nagle

Project Manager

Al Sevilla, P.E. Principal

reseil

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	FIELD METHODS22.1 Drilling and Soil Sampling22.2 Monitoring Well Installation and Construction22.3 Monitoring Well Development and Sampling32.4 Groundwater Level Monitoring and Well Surveying3
3.0	SITE GEOLOGY AND HYDROGEOLOGY 3
4.0	ANALYTICAL METHODS 4
5.0	DISCUSSION OF RESULTS
REFE	RENCES
TABL	ES
1 2 3 4	Results of Soil Sampling Results of Groundwater Sampling - Analysis for Petroleum Hydrocarbons, BTEX, and Total Dissolved Solids Results of Groundwater Sampling - Analysis for Volatile and Semi-Volatile Organic Compounds Results of Groundwater Sampling - Analysis for Metals
FIGU	RES
1 2 3 4 APPE	Site Vicinity Map Site Plan Potentiometric Groundwater Elevation Contour Map Concentrations of Petroleum Hydrocarbons in Groundwater NDICES
A B	Well Installation Permit Field Procedures for Drilling, Soil Sampling, and Groundwater Monitoring Well Installation
C D E F G	Boring Logs and Well Construction Details Field Procedures for Groundwater Monitoring Well Development and Sampling Groundwater Monitoring Well Development and Sampling Field Survey Forms Well Elevation Survey Map Field Procedures for Chain of Custody Documentation, Laboratory Reports, and Chain of Custody Records

1.0 INTRODUCTION

Alisto Engineering Group was retained by the Port of Oakland to perform a site investigation at Oakland International Airport, United Airlines Hangar Area - Economy Parking Lot Site, 1100 Airport Drive, Oakland, California. The work was performed under Port of Oakland Work Order No. 028691, dated February 28, 1995. A site vicinity map is shown in Figure 1.

1.1 Purpose and Scope of Work

This work was performed to assess the nature and extent of hydrocarbons in the subsurface soil and/or groundwater at the site and to comply with applicable regulations of the governing regulatory agencies. The scope of work for this investigation included the following:

- Procured permits to install groundwater monitoring wells.
- Drilled and logged two exploratory soil borings and collected soil samples.
- Installed groundwater Monitoring Wells MW-2 and MW-3.
- Developed Wells MW-2 and MW-3 and surveyed MW-1, MW-2, and MW-3.
- Monitored and sampled Wells MW-1, MW-2, and MW-3.
- Analyzed the soil and groundwater samples for specific hydrocarbon constituents.
- Evaluated the data and analytical results and prepared this report.

The above tasks and related field and sampling activities were performed in accordance with the requirements of the Alameda County Flood Control and Water Conservation District (Zone 7), Alameda County Health Care Services Agency (ACHCSA), and the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB).

1.2 Site Description and Background

The site is in the Economy Parking Lot, approximately 700 feet southwest of the United Airlines hangar, at the Oakland International Airport. Two underground storage tanks, MF-25 and MF-26, were formerly located at the site as shown in Figure 2.

In March 1992, the tanks were removed and approximately 700 cubic yards of soil excavated from the sidewalls of the tank cavity. Compliance soil samples were collected after tank removal. Analysis of the samples detected up to 11000 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPH-G), 190 mg/kg benzene, 1000 mg/kg total petroleum hydrocarbons as diesel (TPH-D), and 19000 mg/kg total oil and grease (TOG). Analysis of the soil samples for volatile organic compounds (VOCs) detected up to 140 mg/kg 1,1,1-trichloroethane, 30 mg/kg 1,1-dichloroethane, 450 mg/kg dichloroethane, and

100 mg/kg tetrachloroethene. Analysis of the samples for semi-volatile organic compounds (SVOCs) detected 107 mg/kg dibenzofuran, and metals analysis detected 25 mg/kg chromium, 29 mg/kg nickel, 3.7 mg/kg lead, and 20 mg/kg zinc (Uribe and Associates, 1992).

Analysis of soil samples collected at the limits of the excavation detected up to 0.3 mg/kg TPH-G, 0.02 mg/kg benzene, and 7 mg/kg TPH-D. TOG and VOCs were not detected above reported detection limits in soil samples collected from the limits of the excavation (Uribe and Associates, 1992).

In May 1992, one groundwater monitoring well, MW-1, was installed at the site during a preliminary site investigation. Analysis of groundwater samples collected from Well MW-1 detected TPH-G, TPH-D, and total petroleum hydrocarbons as jet fuel (TPH-JF) at concentrations of up to 70, 5200, and 800 micrograms per liter (Uribe and Associates, 1994).

2.0 FIELD METHODS

The following field methods were used during this investigation for soil sampling, well construction, development, sampling, and surveying. A permit to install monitoring wells was acquired from Zone 7 and is presented in Appendix A.

2.1 Drilling and Soil Sampling

On April 19, 1995, two exploratory soil borings were drilled to approximately 11.5 feet below grade. Drilling was performed by Soils Exploration Services, Benicia, California, using a CME 75 drilling rig equipped with 8-inch-diameter, hollow-stem augers. Soil samples were collected at approximately 2, 7, and 10 feet below grade and field-screened using an organic vapor meter. Drilling and soil sampling procedures are presented in Appendix B. The samples were transported in an iced cooler to a state-certified laboratory following chain of custody procedures.

Boring logs were prepared using the Unified Soil Classification System, including a description of soil characteristics such as color, moisture, consistency, and grain size. The boring logs generated during this investigation are presented in Appendix C.

2.2 <u>Monitoring Well Installation and Construction</u>

The two soil borings were converted into Monitoring Wells MW-2 and MW-3 in accordance with the field procedures for groundwater monitoring well installation presented in Appendix B. The wells were constructed of 2-inch-diameter, flush-threaded, Schedule 40 PVC casing. Blank casing was installed from surface grade to approximately 1.5 feet below grade and 0.010-inch slotted casing from approximately 1.5 to 11 feet below grade. Well construction details are included on the boring logs in Appendix C.

2.3 Monitoring Well Development and Sampling

Well development and sampling was performed in accordance with the guidelines of the governing regulatory agencies (State Water Resources Control Board, 1989 and United States Environmental Protection Agency, 1986). The field procedures for groundwater monitoring well development and sampling are presented in Appendix D.

Monitoring Wells MW-2 and MW-3 were developed on April 19, 1995, after placing the filter pack and before installing the bentonite pellets and cement seal. Well development was accomplished by removing at least 10 casing volumes while alternately using a surge block and pump. The well development data are presented in the field survey forms in Appendix E.

On April 25, 1995, groundwater samples were collected from Monitoring Wells MW-1, MW-2, and MW-3. The wells were purged of at least 3 casing volumes before sample collection, while monitoring pH, specific conductivity, and temperature. The samples were transported in an iced cooler to a state-certified laboratory following chain of custody procedures. The groundwater sampling data are presented in the field survey forms in Appendix E.

2.4 Groundwater Level Monitoring and Well Surveying

Monitoring Wells MW-1, MW-2, and MW-3 were surveyed to the top of the well casing by a licensed land surveyor, James H. Frame, Davis, California, in reference to the Port of Oakland datum. On April 25, 1995, the depth to groundwater in Wells MW-1, MW-2, and MW-3 was measured from the top of the well casing to the nearest 0.01 foot, using an electronic sounder. The survey data and relative groundwater elevation measurements are presented in Table 2, and a graphical interpretation of the groundwater gradient beneath the site is shown in Figure 3. The well elevation survey map for the monitoring wells is presented in Appendix F.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

The site is in the Coast Range Geomorphic Province, on the eastern side of San Francisco Bay, approximately 7 miles to the west of the Hayward Fault. The uppermost geologic member consists primarily of Quaternary alluvial deposits. The Quaternary alluvium is composed of unconsolidated to semi-consolidated bay mud, silt, sand, and gravel. The site is approximately 4 feet above mean sea level. The topography of the vicinity is generally flat, gradually sloping to the west, toward San Francisco Bay (Page, Ben M., 1966).

Soil types encountered in MW-2 and MW-3 generally consisted of sand and clay with sand. In MW-2, sand was encountered from surface grade to approximately 7 feet below grade, underlain by clay with sand to the total depth of the boring at approximately 11.5 feet. In MW-3, sand was encountered from surface grade to approximately 10 feet below grade, underlain by clay with sand to the total depth of the boring at approximately 11.5 feet.

During drilling, groundwater was observed at approximately 2.5 feet below grade. During sampling, groundwater was measured to be between 2.20 and 2.78 feet below the top of the casing in Wells MW-1, MW-2, and MW-3. Groundwater elevations as measured on April 25, 1995 were used to develop the groundwater potentiometric surface map shown in Figure 3. The groundwater elevation data indicate a gradient of approximately 0.005 foot per foot in a west-southwesterly direction across the site.

4.0 ANALYTICAL METHODS

Soil and groundwater samples were analyzed by Clayton Environmental Consultants, Inc., a state-certified laboratory, using standard test methods of the U.S. Environmental Protection Agency (EPA) and the California Department of Health Services.

Soil samples collected at the capillary fringe above groundwater were analyzed for the following:

- TPH-G and benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Methods 8015 and 8020
- TPH-D, TPH-JF, and total petroleum hydrocarbons as motor oil (TPH-MO) using EPA Method 8015 (modified)
- Volatile organic compounds (VOCs) using EPA Method 8240

Soil samples collected below the shallow water-bearing zone and in the clay material were analyzed for the following:

- VOCs using EPA Method 8240
- Semi-volatile organic compounds (SVOCs) using EPA Method 8270

Groundwater samples were analyzed for the following:

- TPH-G and BTEX using EPA Methods 8015 and 8020
- TPH-D, TPH-JF, and total petroleum hydrocarbons as motor oil (TPH-MO) using EPA Method 8015 (modified)
- VOCs using EPA Method 8240
- Cadmium, chromium, nickel, lead, and zinc using EPA Method 200.7
- Total dissolved solids (TDS) using EPA Method 160.1
- SVOCs using EPA Method 8270

The laboratory results for the soil and groundwater samples are summarized in Tables 1 through 4. The field procedures for chain of custody documentation and the laboratory reports and chain of custody records are included in Appendix G. The concentrations of petroleum hydrocarbons detected in the groundwater are also graphically shown in Figure 4.

5.0 DISCUSSION OF RESULTS

The results of this site investigation based on field observations and laboratory analysis are discussed below:

- Soil types encountered in the two borings generally consisted of sand from surface grade to approximately 7 and 10 feet below grade, underlain by clay with sand to the total depth of the boring at approximately 11.5 feet.
- Groundwater was observed at approximately 2.5 feet below grade during installation
 of Wells MW-2 to MW-3 stabilizing at approximately 2.20 and 2.78 feet below the top
 of the well casings.
- Groundwater elevation data indicate a gradient of approximately 0.005 foot per foot in a west-southwesterly direction across the site.
- TPH-G and TPH-D were detected at concentrations of 4.9 and 13 mg/kg in the soil sample collected from MW-2 at 2.0 to 2.5 feet below grade, which is at the capillary fringe. VOCs, including BTEX were not detected above reported detection limits in this sample. VOCs and SVOCs were also not detected above reported detection limits in the soil sample collected from MW-2 at 7.0 to 7.5 feet below grade at the sand/clay interface.
- TPH-G, TPH-JF, and TPH-MO were detected at concentrations of 6300, 11000, and 1600 mg/kg in the soil sample collected from MW-3 at the capillary fringe at 2.0 to 2.5 feet below grade. VOCs including toluene, ethylbenzene, and total xylenes were detected in this sample. VOCs and SVOCs were not detected above reported detection limits in the soil sample collected from MW-3 at 10.0 to 10.5 feet below grade at the sand/clay interface.
- Dissolved-phase petroleum hydrocarbons (TPH-G, TPH-JF, TPH-D, and TPH-MO)
 were detected at concentrations of up to 7200, 38000, 1400, and 31000 micrograms per
 liter (ug/l), respectively, in the groundwater samples collected from Wells MW-1,
 MW-2, and MW-3. Laboratory chromatographs indicate jet fuel as the primary
 dissolved petroleum product in Wells MW-2 and MW-3.
- TDS concentrations detected in the groundwater samples ranged from 1700 to 5600 milligrams per liter (mg/l).

- VOCs and SVOCs were not detected above reported detection limits in the groundwater sample collected from MW-1.
- VOCs and SVOCs were detected in the groundwater samples collected from MW-2 and MW-3 as indicated in Table 3. The SVOCs detected are constituents of fuel products.
- Metals were detected in the groundwater samples collected from MW-1, MW-2, and MW-3 as presented in Table 4. The highest concentrations were detected in the sample collected from MW-3.

REFERENCES

Uribe and Associates, 1992. Report of Removal of Inactive Tanks MF-25 and MF-26, 1100 Airport Drive, Oakland. Prepared for the Port of Oakland. May.

Uribe and Associates, 1994. Quarterly Groundwater Monitoring Report, United Hangar (Economy Parking Lot Site), 1100 Airport Drive, Oakland, California. Prepared for the Port of Oakland. October.

Page, Ben M., 1966. Geology of the Coastal Ranges of California. California Division of Mines and Geology, Bulletin 190, pp. 255-276.

State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual. October.

United States Environmental Protection Agency, 1986. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document. September.

TABLE 1 - RESULTS OF SOIL SAMPLING PORT OF OAKLAND, OAKLAND INTERNATIONAL AIRPORT UNITED AIRLINES HANGAR AREA - ECONOMY PARKING LOT SITE 1100 AIRPORT DRIVE, OAKLAND, CALIFORNIA

ALISTO PROJECT NUMBER 10-250

SAMPLE ID	SAMPLE DEPTH (Feet)	DATE OF SAMPLING	TPH-G (mg/kg)	TPH-JF (mg/kg)	TPH-D (mg/kg)	TPH-MO (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	VOCs (mg/kg) (a)	SVOCs (mg/kg) (a)	LAB
MW-2 MW-2	2.0 to 2.5 7.0 to 7.5	04/19/95 04/19/95	4.9	ND<1	13	ND<4 	ND<0.5 ND<0.005	ND<0.5 ND<0.005	ND<0.5 ND<0.005	ND<0.5 ND<0.005	ND ND	nd	CEC
MW-3 MW-3	2.0 to 2.5 10.0 to 10.5	04/19/95 04/19/95	6300	11000	ND<5000 (c)	1600 	ND<5 ND<0.005	61 ND<0.005	22 ND<0.005	135 ND<0.005	ND (b) ND	ND	CEC
ABBREVIA	ATIONS:					· · · · · · · · · · · · · · · · · · ·		NOTES:					<u> </u>
TPH-G TPH-JF	Total petroleur	n hydrocarbons n hydrocarbons	as jet fuel u	sing EPA M	ethod 8015 (mo	dified)		()		on limits; see t detected abo	•		

TPH-D Total petroleum hydrocarbons as diesel using EPA Method 8015 (modified)

TPH-MO Total petroleum hydrocarbons as motor oil using EPA Method 8015 (modified)

B Benzene using EPA Method 8240 T Toluene using EPA Method 8240

E Ethylbenzene using EPA Method 8240

X Total xylenes using EPA Method 8240

VOCs Volatile organic compounds using EPA Method 8240 SVOCs Semi-volatile organic compounds using EPA Method 8270

mg/kg Milligrams per kilogram

-- Not analyzed

ND Not detected above reported detection limit

CEC Clayton Environmental Consultants

- (b) VOCs were not detected above reported detection limits using EPA Method 8240 except toluene, ethylbenzene, and total xylenes.
- (c) Detection limit increased due to concentration of TPH-JF.

TABLE 2 - RESULTS OF GROUNDWATER SAMPLING ANALYSIS FOR PETROLEUM HYDROCARBONS, BTEX, AND TOTAL DISSOLVED SOLIDS PORT OF OAKLAND, OAKLAND INTERNATIONAL AIRPORT UNITED AIRLINES HANGAR AREA - ECONOMY PARKING LOT SITE 1100 AIRPORT DRIVE, OAKLAND, CALIFORNIA

ALISTO PROJECT NUMBER 10-250

WELL ID	DATE OF SAMPLING/ MONITORING	CASING ELEVATION (a) (Feet)	DEPTH TO WATER (Feet)	GROUNDWATER ELEVATION (b) (Feet)	TPH-G (ug/l)	TPH-JF (ug/l)	TPH-D (ug/l)	TPH-MO (ug/l)	TOG (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	(ug/l)	TDS (mg/l)	LAE
MW-1	05/15/92	6.97	3.16	3.81	ND<50			_	ND<5000	ND<0.4	ND<0.3	ND<0.3	ND<0.4	5900	
MW-1	08/07/92	6.97	3.26	3.71	ND<50	800			ND<5000	ND<0.4	ND<0.3	ND<0.3	ND<0.4	-	
MW-1	11/24/92	6.97	4.10	2.87	ND<50	ND<50	•••		ND<5000	ND<0.4	ND<0.3	ND<0.3	ND<0.4		
MW-1	02/12/93	6.97		-	ND<50			_	ND<5000	ND<0.4	ND<0.3	ND<0.3	ND<0.4	_	
MW-1	03/11/93	6.97	2.15	4.82	***	-					_	_		-	
MW-1	05/17/93	6.97	3.20	3.77	ND<50	_			ND<5000	ND<0.4	ND<0.3	ND<0.3	ND<0.5	4100	
MW-1	08/03/93	6.97	3.21	3.76	ND<50		5200	_	ND<5000	ND<0.5	ND<0.5	ND<0.5	ND<0.5	7700	
MW-1	11/25/93	6.97	3.65	3.32	70	_	_		ND<5000	ND<0.6	ND<0.5	ND<0.5	0.7	3790	
MW-1	03/24/94	6.97	3.27	3.70	_				_				_	_	
MW-1	05/09/94	6.97	3.05	3.92	ND<50		_	_	ND<930	ND<0.5	ND<0.5	ND<0.5	ND<0.5	9600	
MW-1	08/29/94	6.97	3.40	3.57	ND<50	_	_		ND<1000	ND<0.5	ND<0.5	2.7	ND<0.5	3900	D&.
MW-1	09/27/94	6.97	3.57	3.40	-	_				_		 .			_
MW-1	04/25/95	6.91	2.38	4.53	ND<50	ND<50	1400	610	-	ND<5	ND<5	ND<5	ND<5	4000	CEC
MW-2	04/25/95	6.63	2.20	4.43	5200	13000	ND<10000 (e) 19000		340	570	110	580	1700	CEC
MW-3	04/25/95	7.36	2.78	4.58	7200	38000	ND<40000 (e) 31000	_	150	600	100	580	5600	CEC
QC-1 (c)	04/25/95	7.36	-	-	5600		_ `			120	630	78	450		CEC
QC-2 (d)	04/25/95	-		_	ND<50	_				ND<0.4	ND<0.3	ND<0.3	ND<0.4		CEC
AB8REVIA	TIONS:		· ·			N	OTES:								
TPH-G	Total petroleum h	ydrocarbons as gaso	line using EPA N	lethod 8015		(a)			ations surveye						
TPH-JF	Total petroleum h	ydrocarbons as jet fu	el using EPA Me	thod 8015 (modified)			rela	tive to mean lo	wer low water	3.2 feet below	/ mean sea				
TPH-D	Total petroleum h	ydrocarbons as diese	el using EPA Met	thod 8015 (modified)			leve	I, Port of Oakle	and Datum).						
TPH-MO	 Total petroleum h 	ydrocarbons as moto	or oil using EPA I	Viethod 8015 (modified	J)										
TOG	Total oil and grea	se using EPA Method	d 5520			(b)) Gro	undwater eleva	ations expresse	d in feet abov	e mean lower				
В		PA Method 8020 or 8					low	water.							
T		A Method 8020 or 82													
E		ng EPA Method 8020				(c)) Blin	d duplicate.							
Х	-	ng EPA Method 8020													
TDS		olids using EPA Meth	od 160.1			(d) Tre	vel blank.							
ug/l	Micrograms per l							10 . 10 . 14 °			ATOLL IT				
mg/l	Milligrams per lite					(ө) Det	ection limit inci	reased due to o	oncentration o	DI LEH-JE.				
	Not analyzed/app		14 4.												
ND		ve reported detection	ı lımit												
D&M	D&M Laboratorie														
CEC	Clayton Environm														

TABLE 3 - RESULTS OF GROUNDWATER SAMPLING ANALYSIS FOR VOLATILE AND SEMI-VOLATILE ORGANIC COMPOUNDS PORT OF OAKLAND, OAKLAND INTERNATIONAL AIRPORT UNITED AIRLINES HANGAR AREA - ECONOMY PARKING LOT SITE 1100 AIRPORT DRIVE, OAKLAND, CALIFORNIA

ALISTO PROJECT NUMBER 10-250

				VOCs	;						SVOCs				
WELL ID	DATE OF SAMPLING	2-Butanona (ug/l)	1,1-DCA (ug/l)	Trans-1,2- DCE (ug/l)	Acetone (ug/l)	PCE (ug/l)	4-Methyl- 2-pentanone (ug/l)	2,4-Dimethyl- phenol (ug/l)	2-Methyl- phenol (ug/l)	4-Methyl- phenol (ug/l)	Phenol (ug/l)	bis (2-ethylhexyl) phthalate (ug/l)	2-Methyl naphthalene (ug/l)	Naphthalene (ug/l)	LAB
MW-1	05/15/92				N-0-0								-	***	-
MW-1	08/07/92	-						-							
MW-1	11/24/92	ND	ND	ND	ND	ND	ND		***		***	_		_	
MW-1	02/12/93	ND	ND	ND	ND	ND	ND		***			_			
MW-1	03/11/93	_	_	_		_			_				_	445	_
MW-1	05/17/93	ND	ND	ND	ND	ND	ND	ND	ND	9	260	ND	ND	ND	
MW-1	08/03/93	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
MW-1	11/25/93	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	4000	ND	ND	-
MW-1	03/24/94			_	_		_			_		_			I
MW-1	05/09/94	ND	ND	ND	ND	5.5	ND	ND	ND	ND	ND	ND	ND	NĐ	-
MW-1	08/29/94		_	_			-								1
MW-1	09/27/94	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĐ	ND	D&M
MW-1	04/25/95	ND<20	ND<5	ND<5	ND⊲20	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	CEC
MW-2	04/25/95	200	50	NID<50	ND<200	ND<50	ND<200	60	40	60	ND<30	ND<50	50	100	CEC
MW-3 (a)	04/25/95	300	30	ND<30	300	ND<30	200	•	_	e-s	-				CEC

ABBREVIATIONS:

VOCs Volatile organic compounds using EPA Method 8240 SVOCs Semi-volatile organic compounds using EPA Method 8270

DCA Dichloroethane
DCE Dichloroethene
PCE Tetrachloroethene
ug/l Micrograms per liter

-- Not analyzed
ND Not detected above reported detection limit

D&M D&M Laboratories

CEC Clayton Environmental Consultants

NOTE:

(a) Insufficient sample volume to analyze for SVOCs.

TABLE 4 - RESULTS OF GROUNDWATER SAMPLING ANALYSIS FOR METALS PORT OF OAKLAND, OAKLAND INTERNATIONAL AIRPORT UNITED AIRLINES HANGAR AREA - ECONOMY PARKING LOT SITE 1100 AIRPORT DRIVE, OAKLAND, CALIFORNIA

ALISTO PROJECT NUMBER 10-250

WELL ID	DATE OF SAMPLING	CADMIUM (mg/l)	CHROMIUM (mg/l)	LEAD (mg/l)	NICKEL (mg/l)	ZINC (mg/l)	LAB
MW-1	04/25/95	ND<0.005	ND<0.01	ND<0.05	ND<0.02	0.02	CEC
MW-2	04/25/95	ND<0.005	0.02	ND<0.05	0.04	0.01	CEC
MW-3	04/25/95	0.009	0.31	0.08	0.51	0.47	CEC

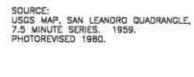
ABBREVIATIONS:

NOTE:

Metals analyzed using EPA Method 200.

mg/l

Milligrams per liter

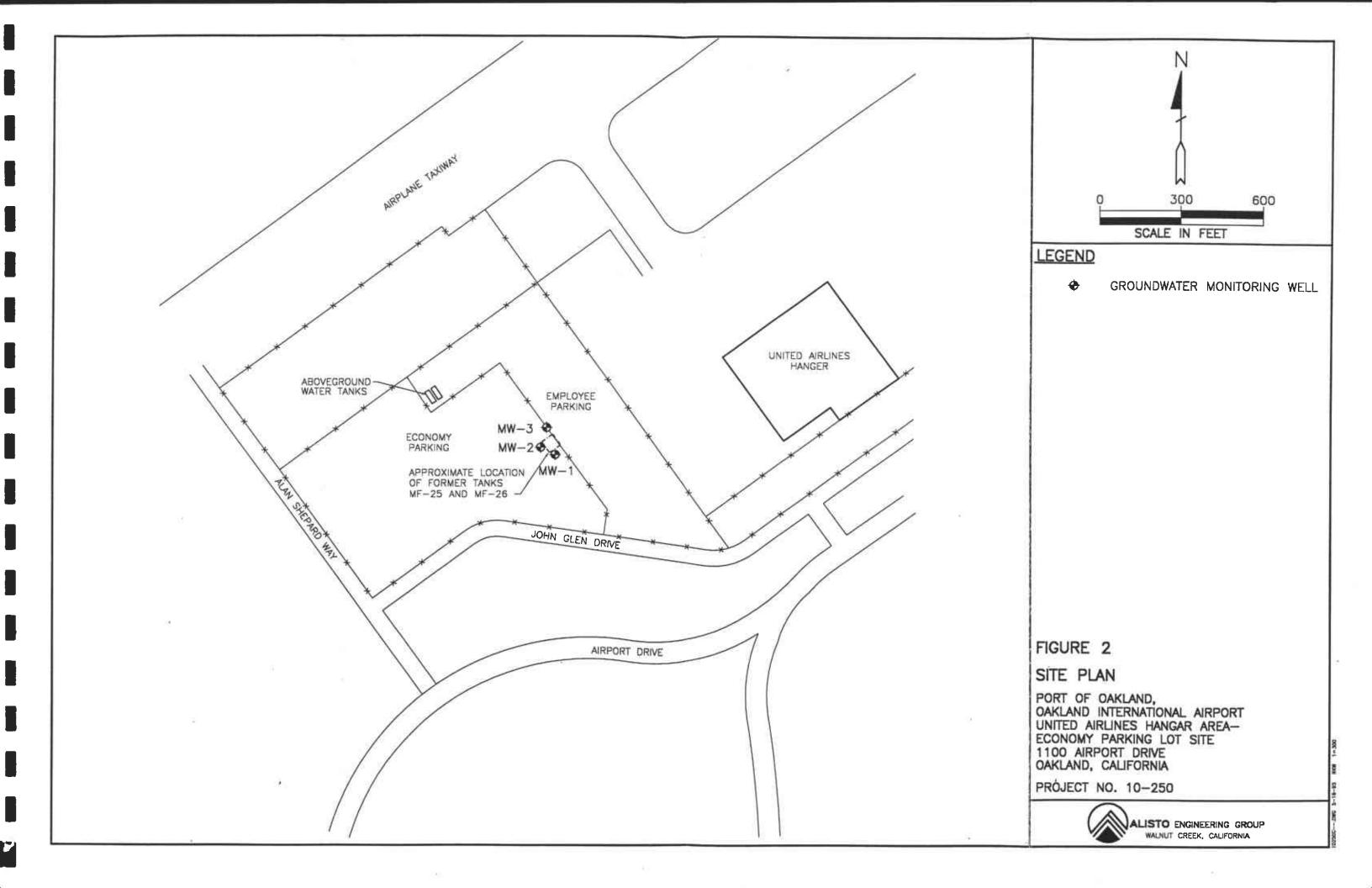

Not analyzed

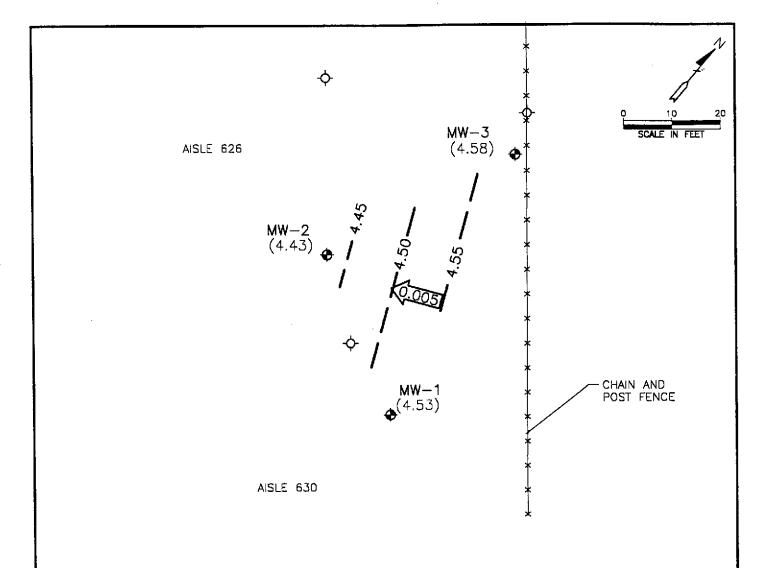
ND

Not detected above reported detection limit

CEC

Clayton Environmental Consultants


1000


2000"

PORT OF OAKLAND,
OAKLAND INTERNATIONAL AIRPORT
UNITED AIRLINES HANGAR AREA—
ECONOMY PARKING LOT SITE
1100 AIRPORT DRIVE
OAKLAND, CALIFORNIA

PROJECT NO. 10-250

LEGEND

♦ GROUNDWATER MONITORING WELL

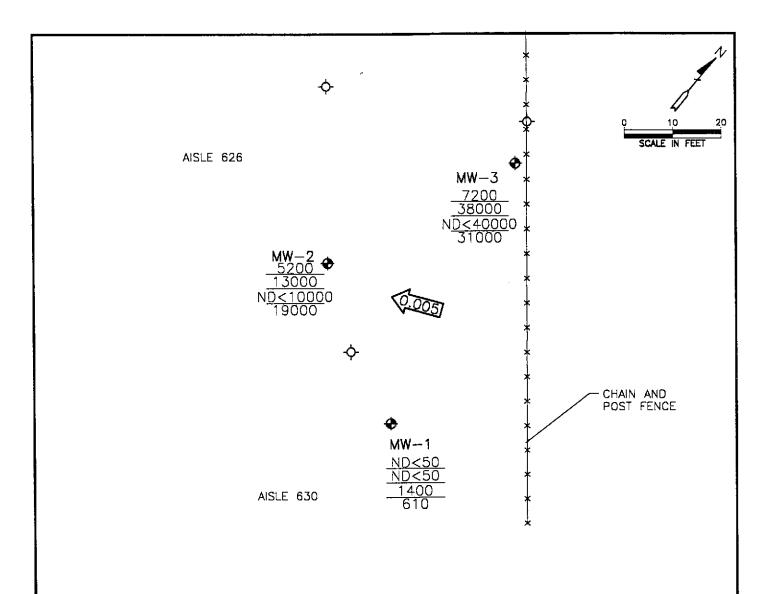
→ AREA LIGHT

(4.43) GROUNDWATER ELEVATION IN FEET ABOVE MEAN LOWER LOW WATER

4.45 — GROUNDWATER ELEVATION
 CONTOUR IN FEET ABOVE
 MEAN LOWER LOW WATER
 (CONTOUR INTERVAL – 0.05 FOOT)

CALCULATED GROUNDWATER
GRADIENT DIRECTION AND
MAGNITUDE IN FOOT PER FOOT

FIGURE 3


POTENTIOMETRIC GROUNDWATER ELEVATION CONTOUR MAP

APRIL 25, 1995

PORT OF OAKLAND,
OAKLAND INTERNATIONAL AIRPORT
UNITED AIRLINES HANGAR AREA—
ECONOMY PARKING LOT SITE
1100 AIRPORT DRIVE
OAKLAND, CALIFORNIA

PROJECT NO. 10-250

<u>LEGEND</u>

• GROUNDWATER MONITORING WELL

AREA LIGHT ÷

TPH-G CONCENTRATION OF CONSTITUENTS TPH-JF TPH-D IN MICROGRAMS PER LITER TPH-MO

TOTAL PETROLEUM TPH-G HYDROCARBONS AS GASOLINE

TOTAL PETROLEUM TPH-JF HYDROCARBONS AS JET FUEL

TOTAL PETROLEUM TPH-D

HYDROCARBONS AS DIESEL

TOTAL PETROLEUM TPH-MO

HYDROCARBONS AS MOTOR OIL NOT DETECTED ABOVE REPORTED

ND DETECTION LIMIT

CALCULATED GROUNDWATER GRADIENT DIRECTION AND MAGNITUDE IN FOOT PER FOOT (0.005)

FIGURE 4

CONCENTRATIONS OF PETROLEUM HYDROCARBONS IN GROUNDWATER

APRIL 25, 1995

PORT OF CAKLAND, OAKLAND INTERNATIONAL AIRPORT UNITED AIRLINES HANGAR AREA-ECONOMY PARKING LOT SITE 1100 AIRPORT DRIVE OAKLAND, CALIFORNIA

PROJECT NO. 10-250

APPENDIX A WELL INSTALLATION PERMIT

ZONE 7 WATER AGENCY

APPLICANTS AND H. ... W 1.00

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588 VOICE (510) 484-2600

FAX (510) 462-3914

DRILLING PERMIT APPLICATION

DICEDITO I EXTEN	
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT Oakland International Airport	PERMIT NUMBER 95210 LOCATION NUMBER
Economy Parking Lot CLIENT Name Port of Oakland Address 530 Water St. Volce City Oakland, CA Zip 94604 APPLICANT Name Alisto Engineering Grove	PERMIT CONDITIONS Circled Permit Requirements Apply (A.) GENERAL
Address 1777 Cakland Blud Voice 510-295-1650 City Walnut Creek Cra Zip 441596e TYPE OF PROJECT Well Construction General Water Supply Contamination Monitoring Well Destruction Wall Destruction Wall Destruction Wall Destruction	1. A permit application should be submitted so as to arrive at it Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitte work the original Department of Water Resources Water We Drillers Report or equivalent for well Projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approvadate. 8. WATER WELLS, INCLUDING PIEZOMETERS
PROPOSED WATER SUPPLY WELL USE Domestic Industrial Other Municipal Irrigation DRILLING METHOD: Mud Rotary Air Rotary Augar X Cable Other	1. Minimum surface seal thickness is two inches of cement graphaced by tramie. 2. Minimum seal depth is 50 feet for municipal and industrial vor 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grouphall be used in place of compacted cuttings.
ORILLER'S LICENSE NO. 582696 WELL PROJECTS Orill Hole Diameter 8 In. Maximum Casing Diameter 2 in. Depth 15 ft. Surface Seal Depth 2 ft. Number 2	D. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft.	·
ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE 1 hereby agree to comply with all requirements of this permit and Alamed County Ordinance No. 73-68.	Approved Wyman Hong Date 14 Ap

APPENDIX B

FIELD PROCEDURES FOR DRILLING, SOIL SAMPLING, AND GROUNDWATER MONITORING WELL INSTALLATION

FIELD PROCEDURES FOR DRILLING, SOIL SAMPLING, AND GROUNDWATER MONITORING WELL INSTALLATION

Drilling Procedures

The soil borings were drilled using 8-inch-diameter, continuous-flight, hollow-stem augers. To avoid cross-contamination, drilling equipment in contact with potentially contaminated material was decontaminated by steam cleaning before and after each use. Decontamination fluids were placed into DOT-approved drums for disposal.

Soil Sampling Procedures

During drilling, samples were collected at 2, 7, and 10 feet below grade. Before and after each use, the sampler was washed using a phosphate-free detergent followed by tap water and deionized water rinses. Soil sampling was accomplished using a California-modified split-spoon sampler lined with brass tubes. A 140-pound slide hammer falling 30 inches was used to advance the sampler 18 inches ahead of the hollow-stem augers into undisturbed soil, and blow counts were recorded for every 6 inches of penetration to evaluate the consistency of the soil.

After retrieval from the augers, the sampler was split, the sample tubes removed, and a soil sample was selected for possible chemical analysis. The sample was retained within the brass tube, and both ends were immediately covered with Teflon sheeting and polyurethane caps. The caps were sealed with tape and labeled with the following information: Alisto Engineering project number, boring number, sample depth interval, sampler's initials, and date of collection. The soil sample was immediately placed in a waterproof plastic bag and stored in a cooler containing blue or dry ice. Possession of the soil samples was documented from the field to a state-certified analytical laboratory by using a chain of custody form.

Soil samples and, when representative, drill cuttings were described by Alisto personnel using the Unified Soil Classification System, and field estimates of soil type, color, moisture, density, and consistency were noted on the boring logs. The logs were reviewed by a civil engineer registered in the State of California.

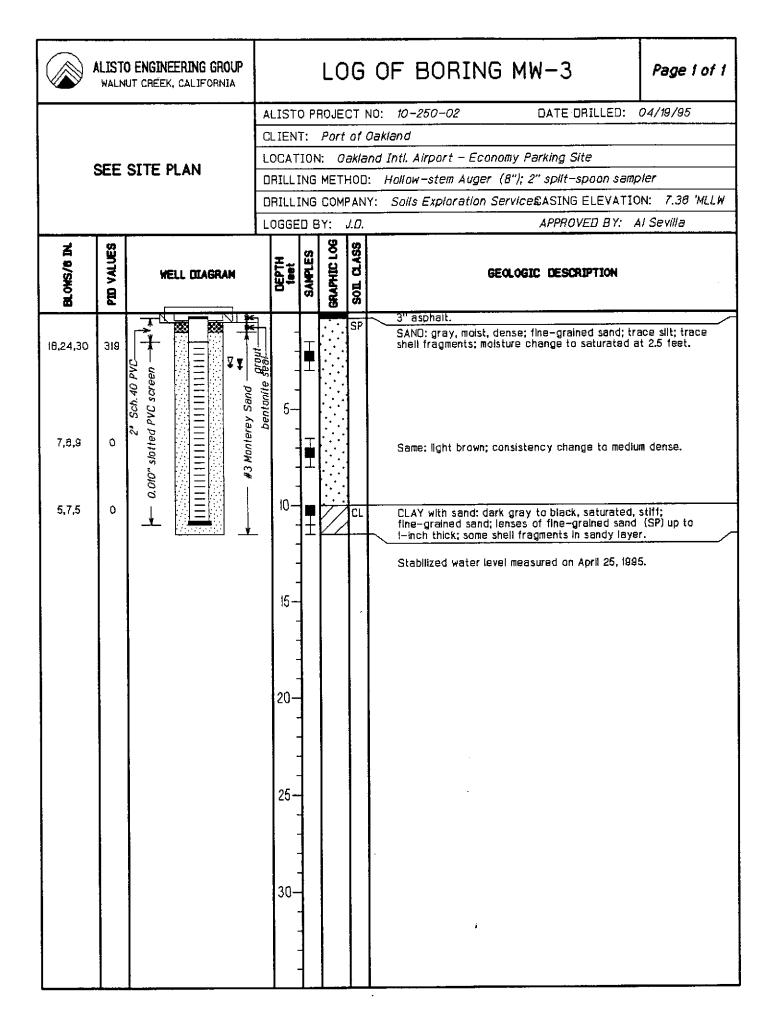
Groundwater Monitoring Well Installation

Construction of the groundwater monitoring wells was based on the stratigraphy encountered in the soil borings. The well construction materials were introduced into the boring through the hollow-stem augers to centralize the well casing and minimize the possibility of native material entering the annular space of the well.

The 2-inch-diameter PVC well casing consisted of 0.010-inch slotted casing from the bottom of the boring to a depth interval above the highest anticipated water level, and solid casing was installed from the top of the slotted casing to approximately 4 inches below grade.

The annular space surrounding the screened portion was backfilled with No. 3 Lonestar sand (filter pack) to approximately 1 foot above the top of the screened section. An approximately 0.5-foot-thick interval of bentonite pellets was added to the annulus above the filter pack and hydrated with approximately 2 gallons of deionized water to minimize intrusion of well seal into the filter pack. A 0.5-foot-thick interval of concrete was placed above the bentonite and a traffic-rated utility box was installed around the top of the well casing. An expanding, watertight well cap and lock were installed on top of the well casing to secure the well from surface fluid and tampering.

APPENDIX C BORING LOGS AND WELL CONSTRUCTION DETAILS


		···			GE	OLO	OGIC	LEGEND
				LITTLE OR NO FINES		GW	Well—ç no fin	graded gravels, gravel—sand mixtures, little or les
		thar	1/2	LON		GP	Poorly	-graded gravels, gravel—sand mixtures
SOILS	7	oarse o. 4	fraction Sieve	APPRECIABLE NO FINES		GM	Silty	gravels, gravel—sand—silt mixtures
				APPRE NO		GC	Clayey	gravels, gravel—sand—clay mixtures
-GRAI				LE OR FINES	0 0 0	SW	Well-ç	graded sands, gravelly sands, little or no fines
OARSE	SANDS more than 1/2 of coarse fraction					SP	Poorly	graded sands, gravelly sands, little or no fines
	10.0	odrse o. 4		APPRECIA(3), E NO FINES		SM	Siity s	sands, sand—silt mixtures
				APPRE NO F		SC	Clayey	sands, sand-clay mixtures
FINE-GRAINED	SIIIS		AND CLAY	- 1		ML	lnorga clayey	nic silts and very fine sands, rock flour, silty or fine sands or clayey silts with slight plasticity
FINE-C	llos					CL	lnorga clays,	nic clays of low to medium plasticity, gravelly sandy clays, silty clays, lean clays
	SYME	30L_L	EGEND:					
			Cement					Sample preserved for possible analysis
			Sand				Ţ	Stabilized water level
	[Bentonite	Pellet	ts		Ā	Groundwater level encountered during drilling
		I	Driven In Soil Sam		of			LEGEND TO BORING LOGS PORT OF OAKLAND, OAKLAND INTERNATIONAL AIRPORT UNITED AIRLINES HANGAR AREA— ECONOMY PARKING LOT SITE 1100 AIRPORT DRIVE OAKLAND, CALIFORNIA PROJECT NO. 10—250

CEO-11C DWC 9-30-93 RKW 1-1

ALISTO ENGINEERING GROUP WALNUT CREEK, CALIFORNIA

			NEERING GROUP EK, CALIFORNIA		LOG OF BORING MW-2 Page 1 of 1								
				ALIST	O PI	ROJE	CT I	NO: 10-250-02 DATE DRILLED:	04/19/95				
				CLIEN	T;	Port	of	Dakland					
			0.44	LOCAT	ION	i: 0	akla	nd Intl. Airport – Economy Parking Lot Site					
	SEE	SHE	PLAN	DRILL:	ING	MET	ДОН	: Hollow-stem Auger (8"); 2" spilt-spoon sam	pler				
				DRILL	ING	COM	PAN	Y: Soils Exploration Service LASING ELEVATI	ON: 0.03 'MLLW				
				LOGGE	DB	Y:	J.D.	APPROVED BY:	Al Sevilla				
BLOMS/6 IN.	PID VALUES	,	FELL DIAGRAM	DEPTH	SAMPLES	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION					
				<u>.</u>			SP	3" asphalt.	ind: trace silt:				
22,30,38 8,10,12	143	2. Sch. 40 PVC 0.010" slatted PVC screen	#3 Manterey Sand ##	bentonite seaf				SAND: gray, moist, very dense; fine-grained sa trace shell fragments; moisture change to satu feet.					
8,7,8	0	0.010" sla	#3 Ma	10-			CL	CLAY with sand: dark gray to black, saturated stiff; fine-grained sand; lenses of fine-grained to 1-inch thick.	stiff to very isand (SP) up				
								Stabilized water level measured on April 25, 19	95.				
				20-									
				25-									
				30-				·	·				

.

APPENDIX D

FIELD PROCEDURES FOR GROUNDWATER MONITORING WELL DEVELOPMENT AND SAMPLING

FIELD PROCEDURES FOR GROUNDWATER MONITORING WELL DEVELOPMENT AND SAMPLING

Groundwater Monitoring Well Development

The groundwater monitoring wells were developed to consolidate and stabilize the filter pack to optimize well production and reduce the turbidity of subsequent groundwater samples. Monitoring wells were developed by alternately using a surge block and pump to evacuate the water and sediment. Development continued until the groundwater was relatively free of sediment. Well development fluids were placed into DOT-approved drums for disposal.

Groundwater Level Measurement

Before groundwater sampling, the groundwater level in each well was measured from the permanent survey reference point at the top of the well casing. Groundwater in each well was monitored for free-floating product or sheen. The depth to groundwater was measured to an accuracy of 0.01 foot from the top of the PVC well casing using an electronic sounder.

Groundwater Monitoring Well Sampling

To ensure that the groundwater sample was representative of the aquifer, the wells were purged of 3 casing volumes, using a bailer, while monitoring stabilization of pH, electrical conductivity, and temperature.

The groundwater samples were collected using a disposable bailer, and were carefully transferred into laboratory-supplied containers. The samples were labeled with well number, site identification, date of collection, and sampler's initials, and transported in an iced cooler to a state-certified laboratory following preservation and chain of custody protocol. The sampling technician wore nitrile gloves during purging and well sampling.

APPENDIX E

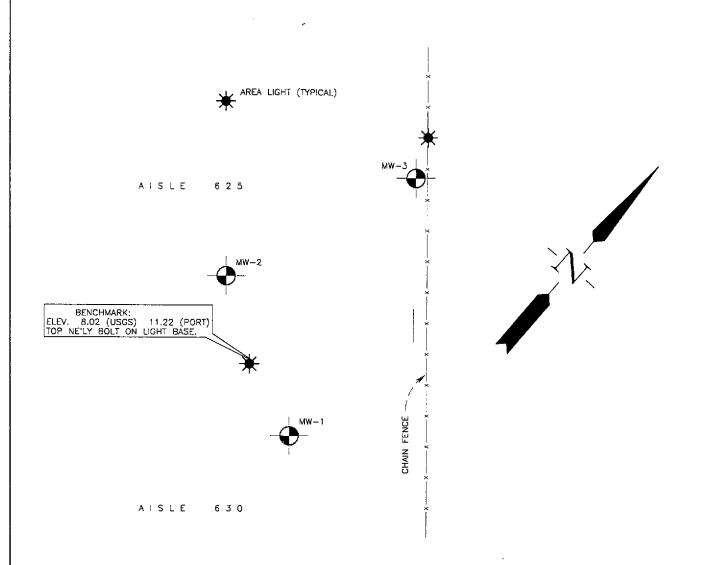
GROUNDWATER MONITORING WELL DEVELOPMENT AND SAMPLING FIELD SURVEY FORMS

ALISTO ENGINEERING GROUP Groundwater Development and Sampling Form

Client: Voca of OAV	10061		Date: 4	119195	5							
Alisto Project No: 10, 750, 57, 503 Field Personnel: NC												
Service Station No: No.			Address:_	Dr. KIE	ne Airport	*						
Well ID: Mu-L Field Activ	ity: <u>/</u> Well Deve	lopmentWell S	Campling _	Produ	ed Parking act Bailing	[10+)						
Casing Diameter:	Purge Method:		Well Data:	:								
✓2Inch (0.16 Gal/foot)Pump (dispos. Poly Tubing)♣ Depth to Product_3Inch (0.37 Gal/foot)✓ Disposable Bailers♣ Product Thickness_4Inch (0.65 Gal/Foot)_ Other_ Depth to Water_4.5Inch (0.83 Gal/foot)_ 1.66 PVC Standard Bailer_6Inch (1.47 Gal/foot)_ 3.50 PVC Standard Bailer												
Sampling Method: Decontamination Method:												
Sampling Method: Decontamination Method: Disposable Bailer Triple Rinse (Liquinox) Pump Steam Cleaned												
Calculated Purge Volume	_											
210 -22.00	= <u>* </u>	Gal/Ft = 1.78	_Gal X	<u> </u>	15.20	•						
$\frac{210}{\text{Total Depth Depth to}} = \frac{8}{\text{ ft X}} \frac{\text{ft X}}{\text{Ib}} \frac{\text{Gal/Ft}}{\text{Gal/Ft}} = \frac{1.78}{\text{Casing Vol}} \frac{\text{Gal X}}{\text{Vols to}} = \frac{12.80}{\text{Total}}$												
of Well Water Column Factor Casing voi vois to Total												
			ol Vo. Pui									
	Column Factor		ol Vo. Pui									
of Well Water	Column Factor pling Parameters Purge Comment	s/ 1 1	Ol VO Pur Analysis Required									
of Well Water Well Development/Sam Time Temp pH Cond (umber temp)	Column Factor pling Parameters Purge Comment OS Vol Turbidity (Gal)	s/ 1 1	Pu	Contai	Volume							
of Well Water Well Development/Sam Time Temp pH Cond (umhor/cm) OGO2 — — —	Column Factor pling Parameters Purge Comment Turbidity (Gal) Lots w /ors of	i grey send, grant in buch 2 = 10 ghll of send in the	Pur Analysis Required TPH-	Contai ner Type	Volume Preserv							
of Well Water Well Development/Sam Time Temp pH Cond (umhor/cm) OPOR — — —	Column Factor pling Parameters Purge Comment Turbidity (Gal) Lots w /ors of	i grey send, grans in buch 2 2 10 ghil	Analysis Required TPH- G/BTEX TPH-	Contai ner Type VOA	Preserv . HCL Solvent							
of Well Water Well Development/Sam Time Temp pH Cond (umhor/cm) OGO2 — — —	Column Factor pling Parameters Purge Comment Turbidity (Gal) Lots w /ors of	i grey send, grant in buch 2 = 10 ghll of send in the	Analysis Required TPH- G/BTEX TPH- Diesel	Contai ner Type VOA Amber Liter	Preserv . HCL Solvent							
of Well Water Well Development/Sam Time Temp pH Cond (umhor/cm) OPOR — — —	Column Factor pling Parameters Purge Comment Turbidity (Gal) Lots w /ors of	i grey send, grant in buch 2 = 10 ghll of send in the	Analysis Required TPH- G/BTEX TPH- Diesel EPA 601 TOG	Contai ner Type VOA Amber Liter VOA	Preserv . HCL Solvent Rinsed							
Well Development/Sam Time Temp of F PH Cond (umber/cm) OGOS — 09/2 —	Purge Comments Vol Turbidity (Gal) Lots w 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	i grey send greins in buckt of send in thea i grey send	Analysis Required TPH- G/BTEX TPH- Diesel EPA 601 TOG 5520BF	Contai ner Type VOA Amber Liter VOA Amber Liter	Preserv HCL Solvent Rinsed H_SO_4							
of Well Water Well Development/Sam Time Temp pH Cond (umhor/cm) OPOR — — —	Column Factor pling Parameters Purge Comment Turbidity 5 /ors of	i grey serred, greins in bount D = 10 ghll of serd in Hea i grey some II - Noy	Analysis Required TPH- G/BTEX TPH- Diesel EPA 601 TOG 5520BF	Contai ner Type VOA Amber Liter VOA	Preserv HCL Solvent Rinsed H.504							
Well Development/Sam Time Temp pH Cond (umh-/cm) O902 O908 O909 O909	Column Factor pling Parameters Purge Comment Turbidity 5 /ors of	i grey serred, greins in brush D = 10 ghll of serd in Hea i grey some II ary some	Analysis Required TPH- G/BTEX TPH- Diesel EPA 601 TOG 5520BF	Contai ner Type VOA Amber Liter VOA Amber	Preserv HCL Solvent Rinsed H.504							

ALISTO ENGINEERING GROUP Groundwater Development and Sampling Form

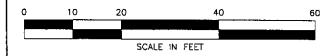
Client: Port of Ogrand Alisto Project No: 10-750-02-003 Service Station No: MA Well IDMW3 Field Activity: Well Development Well Sampling Product Bailing																
Casing D	iameter		<u>P</u>	urge M	ethod:	<u>W</u> el	1 Data									
Sampling Method: Decontamination Method:																
Disp Pum	Disposable Bailer Triple Rinse (Liquinox) Steam Cleaned															
of Well	w W	ater		Column	Factor	Ga GVol		c Z====================================	12.80 Total Volume							
Time	Temp %F	pН	Cond. (umhos /cm)	Purge Voi (Gal)	Comments/ Turbidity	Analy Requi		Contai ner Type	Preserv							
1030		_	-	5	Lots of sand (special)	_	PH- /BTEX	VOA	HCL							
1040		_	1	10	14 11		PH- iesel	Amber Liter	Solvent Rinsed							
1040 Diesel Liter Rinsed																
1050			_	1050 — — 15 11 EPA 601 VOA TOG Amber H ₂ SO ₄ 5520BF Liter												
1050			-	13	•	Т		1	H ₂ SO ₄							
1050		-	-	12		Т	og	Amber	H ₂ SO ₄							
		b	ud d cus i4		= 7galls	T 5.	OG 520BF	Amber Liter								


FORM: FS3/121592

ALIS	TO			Field Re	eport /					- ,		
ENGINEERIN		- K G	roundw	rater Samp	ling	Date: Day:	4/2 M(T) W	5/95 Th F	Project No. Facility No.	<u> ۱۷- 5</u> منت	250 - 03 ong Park	:003
GROUP 1777 OAKLA	AND BLVD, ST BEEK CA 94596	E 200 3 (510) 29		Barometric pr FAX 295-183			Temp.	280E	Address	100/	tugaif	Dir.
Well ID	SAMPLE #	WATER.	lime	Well ID	SAMPLE	//	WATER/	timo	Well ID		SAMPLE	WATER / I
mW-1		2.34/			_		-					_
MW-Z		2.20/	743									
Mu-3.		2.78/	745				-		-			_
Ī	I	1	li i		(1					

FIELD INSTRUMENT	CALIBE	RATION	DATA		CONTRACTOR (TED O) N
Ph METER 1-100 7.00 10.00	TIM	1E <u>064S</u>	TEMP	ERATURE	COMPERSA	HED C) N
-TURBIDI METER 5.0 NTU STANDARD OTHER	R						
CONDUCTIVITY METER Hydre 10,000 / OTHER							
CONDUCTION		T	Tana *E	pH	E.C.	D.O.	O EPA 601 X VATIO
Well ID Depth to Water Diem Cap/Lock Depth to prod. Iridescence	Gal.	Time	Temp *F	[1.07		O TPH-GIBTEX_ Anclys
MW-1 2.38 2" OK P Y (1)	1.5	<u>759</u>	61.3	7.04			O TEH Diasal
Total Depth - Water Level = x Well Vol. Factor = x#vol. to Purge = Purgavol.	3	803	61.7	7.45	1.68		O 700 5620
11.80 - 2.38 = 9.42 x.16 = 1.51 x 3 = 4.52	4.75	307	41.2	7.91	1,73		-{ -
Purge Method: Surface Pump ODisp. Tube OWinch ODisp. Beiter(s) OSys Port							Time/Sample
Comments:					<u> </u>		1300
Well ID Depth to Water Diam Cap Lock Depth to prod. Iridescence	Gal.	Time	Temp *F	pH.	E.C.	D.Ö.	O EPA 601 VAV.
Y W	1	912	59.3	7.33	1.04		O TPH-G/BTEX See C
Total Depth - Water Lavel = x Well Vol. Factor = x#vol. to Purge = PurgaVol.	2	914	61.9	7.18	0.92		U TPH Dissol
6.27 - 2.20 = 4.07 x.16 = 0.65 x3 = 1.95	3	816	42.3	7.08	0.90		O 10G 5520
							Time/ Sample
Purge Mathod: OSye Pump ODiep. Tube OWinch ODiep. Baller(e) OSye Port		 -				I	- (325
Comments:	Gal.	Time	Temp *F	pH	E.C.	D.O.	O EPA GOI Arcion
Well ID Depth to Water Diam Cap Lock Depth to prod. Irideacence		830	54.2	1772	1.00		O TPH-G/BTEX_ See COL
MW-) A-7 - MC-2	12	824	1	7.71	1.00		O TPH Diosol
Total Dopth - Water Level X Well Vol. Factor - Miller to Vol.	3	 	61.0		1.00		O TOG 5520
1090-279'= 912 y.16=13+3=3.79		936	59.6	796			Time /Sample
Purge Method: Surface Pump ODIsp. Tube OWinch ODIsp. Bailer(s) OSys Port	 						1350
Comments: QL-1 from this well	<u> </u>	l	<u> </u>		<u> </u>		<u> </u>
PAGE	αń						

WATER / time


APPENDIX F WELL ELEVATION SURVEY MAP

DESCRIPTION		NORTHING	EASTING	
	MW-1 MW-2	2088031. 4 2088048. 2	6066545. 0 6066513. 6	
	MW-3	2088089, 2	6066530. 3	

USGS MSL DATUM		PORT OF OAKLAND DATUM		
ELEV (GROUND)	ELEV (PVC)	ELEV (GROUND)	ELEV (PVC)	
4. 1 3. 7 4. 4	3. 71 3. 43 4. 16	7. 3 6. 9 7. 6	6. 91 6. 63 7. 36	

HORIZONTAL COORDINATES ARE REFERENCED TO THE CALIFORNIA COORDINATE SYSTEM, ZONE III, AS DERIVED FROM PORT OF OAKLAND MONUMENTS A081 (SAM C) AND A082 (SAM D).

FRAME SURVEYING & MAPPING

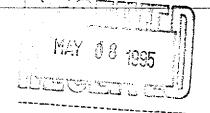
2038 East 8th Street (916) 758-8584 (TEL)

Davis, CA 95616 (916) 756-8201 (FAX)

MONITORING WELL EXHIBIT

OAKLAND INTERNATIONAL AIRPORT, OAKLAND, CA UNITED AIRLINES HANGAR AREA ECONOMY PARKING LOT SITE ALISTO ENGINEERING GROUP APRIL, 1995 SCALE: 11= 20'

APPENDIX G


FIELD PROCEDURES FOR CHAIN OF CUSTODY DOCUMENTATION, LABORATORY REPORTS, AND CHAIN OF CUSTODY RECORDS

FIELD PROCEDURES FOR CHAIN OF CUSTODY DOCUMENTATION

Samples were handled in accordance with the California Department of Health Services guidelines. Each sample was labeled in the field and immediately stored in a cooler and preserved with blue or dry ice for transport to a state-certified laboratory for analysis.

A chain of custody record accompanied the samples and included the site and sample identification, date of collection, analysis requested, and the name and signature of the sampling technician. When transferring possession of the samples, the transferee signed and dated the chain of custody record.

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

May 5, 1995

Mr. John DeGeorge ALISTO ENGINEERING GROUP 1777 Oakland Blvd. #200 Walnut Creek, CA 94596

> Client Ref.: 10-250 Clayton Project No.: 95042.71

Dear Mr. DeGeorge:

Attached is our analytical laboratory report for the samples received on April 20, 1995. For EPA Method 8270 Laboratory Control sample recoveries are high for Phenol and 2,4-Dinitrotoluene. The matrix spikes are within quality control limits for all analytes except Pentachlorophenol, which had a high RPD due to matrix interferences. Also enclosed is a copy of the Chain-of-Custody record acknowledging receipt of these samples.

Please note that any unused portion of the samples will be discarded after June 4, 1995, unless you have requested otherwise.

We appreciate the opportunity to assist you. If you have any questions concerning this report, please contact Suzanne Haus, Client Services Supervisor, at (510) 426-2657.

Sincerely,

Harriotte A. Hurley, CIH

Director, Laboratory Services San Francisco Regional Office

HAH/caa

Attachments

of 24 Page 2

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-2 2-2.5

9504271-01A

Lab Number:

SOIL

Sample Matrix/Media: Preparation Method:

EPA 5030

Method Reference:

EPA 8240

Date Sampled: Date Received: 04/19/95 04/20/95

Date Prepared:

05/02/95

Date Analyzed:

05/02/95

Analyst:

JΡ

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)

Analyte	CAS #	Concentration (mg/kg)	Limit (mg/kg)
Purgeable Organics			
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone Methylene chloride	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 95-50-1 541-73-1 106-46-7 75-35-4 156-59-2 156-60-5 78-87-5 10061-01-5 10061-02-6 100-41-4 76-13-1 591-78-6 75-09-2	ND N	20000200000000000000000000000000000000
4-Methyl-2-pentanone	108-10-1	ND	2

Page 3 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-2 2-2.5 Date Sampled: 04/19/95 Lab Number: Date Received: 04/20/95 9504271-01A Sample Matrix/Media: SOIL Date Prepared: 05/02/95 Preparation Method: EPA 5030 Date Analyzed: 05/02/95 Method Reference: EPA 8240 Analyst: JΡ

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics (Continued)			
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Surrogates		Recovery (%)	QC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460-00-4 17060-07-0 2037-26-5	103 107 99	74 - 121 70 - 121 81 - 117

ND: Not detected at or above limit of detection --: Information not available or not applicable

Results are reported on a wet-weight basis, as received.

Note: Detection limits increased due to matrix interference.

of 24 Page 4

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-2 7-7.5

Lab Number:

9504271-02A SOIL

Sample Matrix/Media: Preparation Method:

EPA 5030

Method Reference:

EPA 8240

Date Sampled:

04/19/95 Date Received: 04/20/95

Date Prepared: Date Analyzed:

05/02/95 05/02/95

Analyst:

JΡ

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics			
Acetone Benzene	67-64-1 71-43 - 2	ND ND	0.02 0.005

Purgeable Organics	_		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	67-64-1 71-43-2 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 110-75-8 67-66-3 74-87-3 124-48-1 95-50-1 541-73-1 106-46-7 75-34-3 107-06-2 75-35-4 156-59-2 156-60-5	ND N	0.02 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene	156-60-5 78-87-5 10061-01-5	ND ND ND	0.005 0.005
trans-1,3-Dichloropropene Ethylbenzene Freon 113 2-Hexanone Methylene chloride	10061-02-6 100-41-4 76-13-1 591-78-6 75-09-2	ND ND ND ND ND ND	0.005 0.005 0.005 0.02 0.005 0.02
4-Methyl-2-pentanone	108-10-1	IATA	0.02

Page 5 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-2 7-7.5

Lab Number: Sample Matrix/Media:

Preparation Method:

Method Reference:

9504271-02A

SOIL EPA 5030

EPA 8240

Date Sampled: 04/19/95

04/20/95 Date Received: 05/02/95 Date Prepared: 05/02/95 Date Analyzed:

Analyst.

ллата	56.	UF	

Method Reference:	EPA 8240		Alialyst.	0.5
Analyte		CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics (C	ontinued)			
Styrene 1,1,2,2-Tetrachloro Tetrachloroethene Toluene 1,1,1-Trichloroetha 1,1,2-Trichloroetha Trichloroethene Trichlorofluorometh Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	ne ne	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
<u>Surrogates</u>			Recovery (%)	OC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane- Toluene-d8	d4	460-00-4 17060-07-0 2037-26-5	98 111 99	74 - 121 70 - 121 81 - 117

Not detected at or above limit of detection Information not available or not applicable

Results are reported on a wet-weight basis, as received.

Date Sampled: 04/19/95

Page 6 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-3 2-2.5

 Preparation Method:	9504271-04A		Date Received: Date Prepared: Date Analyzed: Analyst:	
Analyte		CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics				
Acetone		67-64-1	NĎ	20
Benzene		71-43-2	ND	5
Bromodichloromethane		75-27-4	ND	5
Bromoform		75-25-2	ND	5
Bromomethane		74-83-9	ND	5
2-Butanone		78-93-3	ND	20
Carbon disulfide		75-15-0	ND	5
Carbon tetrachloride		56-23-5	ND	5
Chlorobenzene		108-90-7	ND	5 5
Chloroethane	1	75-00-3	ND	5
2-Chloroethylvinyl et	cner	110-75-8	ND ND	5 5
Chloroform		67-66-3	ND ND	5
Chloromethane		74-87-3 124-48-1	ND	5
Dibromochloromethane		95-50-1	ND ND	5
1,2-Dichlorobenzene 1,3-Dichlorobenzene		541-73-1	ND	5
1,4-Dichlorobenzene		106-46-7	ND	5
1,1-Dichloroethane		75-34-3	ND	5
1,2-Dichloroethane		107-06-2	ND	5
1,1-Dichloroethene		75-35-4	ND	5
cis-1,2-Dichloroether	20	156-59-2	ND	5
trans-1,2-Dichloroeth		156-60-5	ND	5
1,2-Dichloropropane	.10110	. 78-87-5	ND	5
cis-1,3-Dichloroprop	ene	10061-01-5	ND	5
trans-1,3-Dichloropro		10061-02-6	ND	5
Ethylbenzene	opene	100-41-4	22	5
Freon 113		76-13-1	ND	5
2-Hexanone		591-78-6	, ND	20
Methylene chloride		75-09-2	ND	5
4-Methyl-2-pentanone		108-10-1	ND	20

Page 7 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

04/19/95 Sample Identification: MW-3 2-2.5 Date Sampled: Date Received: 04/20/95 Lab Number: 9504271-04A 05/02/95 Date Prepared: Sample Matrix/Media: SOIL Preparation Method: EPA 5030
Mothod Reference: EPA 8240 05/02/95 Date Analyzed:

Analyst:

Method Reference: EPA 8240		Analyst:	JP
Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics (Continued)			
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Surrogates		Recovery (%)	OC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460-00-4 17060-07-0 2037-26-5	107 109 99	74 - 121 70 - 121 81 - 117

Not detected at or above limit of detection Information not available or not applicable

Results are reported on a wet-weight basis, as received. Note: Detection limits increased due to matrix interference.

Page 8 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-3 10-10.5

9504271-06A

Date Sampled: 04/19/95 04/20/95

Lab Number: Sample Matrix/Media:

SOIL

Date Received: Date Prepared: 05/01/95

Preparation Method:

EPA 5030

Date Analyzed: 05/01/95

Method Reference:	EPA 8240	Analyst:	JΡ

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics			
Acetone	67-64-1	ND	0.02
Benzene	71-43-2	ND	0.005
Bromodichloromethane	75-27-4	ND	0.005
Bromoform	75-25-2	ND	0.005
Bromomethane	74-83-9	ND	0.005
2-Butanone	78-93-3	ND	0.02
Carbon disulfide	75-15-0	ND	0.005
Carbon tetrachloride	56-23-5	ND	0.005
Chlorobenzene	108-90-7	ND	0.005
Chloroethane	75-00-3	ND	0.005
2-Chloroethylvinyl ether	110-75-8	ND	0.005
Chloroform	67-66-3	ND	0.005
Chloromethane	74-87-3	ND	0.005
Dibromochloromethane	124-48-1	ND ·	0.005
1,2-Dichlorobenzene	95-50-1	ND	0.005
1,3-Dichlorobenzene	541-73-1	ND	0.005
1,4-Dichlorobenzene	106-46-7	ND	0.005
1,1-Dichloroethane	75-34-3	ND	0.005
1,2-Dichloroethane	107-06-2	ND	0.005
1,1-Dichloroethene	75-35-4	ND	0.005
cis-1,2-Dichloroethene	156-59-2	ND	0.005
trans-1,2-Dichloroethene	156-60-5	ND	0.005
1,2-Dichloropropane	78-87-5	ND	0.005
cis-1,3-Dichloropropene	10061-01-5	ND	0.005
trans-1,3-Dichloropropene	10061-02-6	ND	0.005
Ethylbenzene	100-41-4	ND	0.005
Freon 113	76-13-1	ND	0.005
2-Hexanone	591-78-6	ND	0.02
Methylene chloride	75-09-2	ND	0.005
4-Methyl-2-pentanone	108-10-1	ND	0.02

Page 9 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250

Clayton Project No. 95042.71

Sample Identification: MW-3 10-10.5

Lab Number: 9504271-06A SOIL

Sample Matrix/Media: Preparation Method: EPA 5030

04/19/95 Date Sampled:

Date Received: 04/20/95 Date Prepared: 05/01/95

Date Analyzed:

05/01/95

Method Reference: EPA 8240 Analyst: JΡ

incomed iterations.			
Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics (Continued)			
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	0.005 0.005 0.005 0.005 0.005 0.005 0.01 0.005 0.005
Surrogates Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460-00-4 17060-07-0 2037-26-5	Recovery (%) 97 106 94	OC Limits (%) 74 - 121 70 - 121 81 - 117
		•	

Not detected at or above limit of detection Information not available or not applicable

Results are reported on a wet-weight basis, as received.

Page 10 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: METHOD BLANK

Lab Number:

9504271-07A

Sample Matrix/Media:

SOIL

Preparation Method: EPA 5030

Method Reference:

EPA 8240

Date Sampled:

Date Received: 05/01/95

Date Prepared: Date Analyzed:

Analyst:

05/01/95 JΡ

		-	Method Detection
Analyte	CAS #	Concentration (mg/kg)	Limit (mg/kg)

Analyte	CAS #	Concentration (mg/kg)	Detection Limit (mg/kg)
Purgeable Organics			
Acetone	67-64-1	ND	0.02
Benzene	71-43-2	ND	0.005
Bromodichloromethane	75-2 7 -4	ND	0.005
Bromoform	75-25-2	ND	0.005
Bromomethane	74-83-9	ND	0.005
2-Butanone	78-93-3	ND	0.02
Carbon disulfide	75-15-0	ND	0.005
Carbon tetrachloride	56-23-5	ND	0.005
Chlorobenzene	108-90-7	ND	0.005
Chloroethane	75-00-3	ND	0.005
2-Chloroethylvinyl ether	110-75-8	ND	0.005
Chloroform	67-66 - 3	ND	0.005
Chloromethane	74-87-3	ND	0.005
Dibromochloromethane	124-48-1	ND	0.005
1,2-Dichlorobenzene	95-50-1	ND	0.005
1,3-Dichlorobenzene	541-73-1	\mathbf{N} D	0.005
1,4-Dichlorobenzene	106-46-7	ND	0.005
1,1-Dichloroethane	75-34-3	ND	0.005
1,2-Dichloroethane	107-06-2	ND	0.005
1,1-Dichloroethene	75-35-4	ND	0.005
cis-1,2-Dichloroethene	156-59-2	ND	0.005
trans-1,2-Dichloroethene	156-60-5	ND	0.005
1,2-Dichloropropane	78-87 - 5	ND	0.005
cis-1,3-Dichloropropene	10061-01-5	ND	0.005
trans-1,3-Dichloropropene	10061-02-6	ND	0.005
Ethylbenzene	100-41-4	ND	0.005
Freon 113	76-13-1	ND	0.005
2-Hexanone	591-78-6,	ND	0.02
Methylene chloride	75-09-2	ND	0.005
4-Methyl-2-pentanone	108-10-1	ND	0.02

Page 11 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: METHOD BLANK Date Sampled:

Lab Number: 9504271-07A Date Received: -Sample Matrix/Media: SOIL Date Prepared: 05/01/95
Preparation Method: EPA 5030 Date Analyzed: 05/01/95

Preparation Method: EPA 5030 Date Analyzed: 05/Method Reference: EPA 8240 Analyst: JP

Method Reference: EPA 8240		Analyst:	JP
Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Purgeable Organics (Continued)			
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.01 0.005 0.005
Surrogates		Recovery (%)	OC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460-00-4 17060-07-0 2037-26-5	97 103 98	74 - 121 70 - 121 81 - 117

ND: Not detected at or above limit of detection --: Information not available or not applicable

Results are reported on a wet-weight basis, as received.

Page 12 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Date Sampled: 04/19/95 Sample Identification: MW-2 7-7.5 Date Received: 04/20/95 9504271-02A Lab Number: Date Extracted: 04/28/95 Sample Matrix/Media: SOIL 05/02/95 Date Analyzed: Extraction Method: EPA 3550 ASC EPA 8270 Analyst: Method Reference: Mothod

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Acid Extractables			
4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol 4-Methylphenol 4-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	59-50-7 95-57-8 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 106-44-5 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2	ND N	0.2 0.2 0.2 0.2 1 1 0.2 0.2 0.2 1 1 0.2
Base/Neutral Extractables			
Acenaphthene Acenaphthylene Anthracene Benzidine Benzoic acid Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Benzo(a)pyrene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy)methane	83-32-9 208-96-8 120-12-7 92-87-5 65-85-0 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 100-51-6 85-68-7 111-91-1	ND N	0.2 0.2 0.2 5 0.8 0.2 0.2 0.2 0.2 0.2 0.2

Page 13 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-2 7-7.5

Lab Number:

9504271-02A

Sample Matrix/Media: Extraction Method:

SOIL

Method Reference:

EPA 3550 EPA 8270 Date Received:

04/19/95 04/20/95

Date Extracted: 04/28/95

Date Sampled:

Date Analyzed:

05/02/95

Analyst:

ASC

 	Method
	Detection

Analyte	CAS #	Concentration (mg/kg)	Detection Limit (mg/kg)
Base/Neutral Extractables (Contin	ued)		
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate 4-Bromophenyl phenyl ether 4-Chloroaniline 2-Chloronaphthalene 4-Chlorophenyl phenyl ether Chrysene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butylphthalate 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine Diethylphthalate Dimethylphthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachloroethane	111-44-4 108-60-1 117-81-7 101-55-3 106-47-8 91-58-7 7005-72-3 218-01-9 53-70-3 132-64-9 84-74-2 95-50-1 541-73-1 106-46-7 91-94-1 84-66-2 131-11-3 121-14-2 606-20-2 117-84-0 206-44-0 86-73-7 118-74-1 87-68-3 77-47-4 67-72-1	ND N	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Indeno(1,2,3-cd)pyrene Isophorone 2-Methyl naphthalene Naphthalene	193-39-5 78-59-1 91-57-6 91-20-3	ND , ND ND ND	0.2 0.2 0.2 0.2

Page 14 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-2 7-7.5 Date Sampled: 04/19/95
Lab Number: 9504271-02A Date Received: 04/20/95
Sample Matrix/Media: SOIL Date Extracted: 04/28/95
Extraction Method: EPA 3550 Date Analyzed: 05/02/95

Method Reference: EPA 8270 Analyst: ASC

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Base/Neutral Extractables (Cont	inued)		
2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene N-Nitrosodiphenylamine N-Nitrosodi-n-propylamine	88-74-4 99-09-2 100-01-6 98-95-3 86-30-6 621-64-7	ND ND ND ND ND	1 1 0.2 0.2 0.2
Phenanthrene Pyrene 1,2,4-Trichlorobenzene	85-01-8 129-00-0 120-82-1	ND ND	0.2 0.2 0.2
<u>Surrogates</u>		Recovery (%)	QC Limits (%)
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol	321-60-8 367-12-4 4165-60-0 13127-88-3 98904-43-9 118-79-6	87 83 81 85 84 89	30 - 115 25 - 121 23 - 120 24 - 113 18 - 137 19 - 122

ND: Not detected at or above limit of detection --: Information not available or not applicable

Results are reported on a wet-weight basis, as received.

Page 15 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-3 10-10.5

Lab Number: 9504271-06A

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550

Method Reference: EPA 8270

Date Sampled: 04/19/95

Date Received: 04/20/95

Date Extracted: 04/28/95

Date Analyzed: 05/02/95

Analyst: ASC

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Acid Extractables			
4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	59-50-7 95-57-8 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 106-44-5 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2	ND N	0.2 0.2 0.2 0.2 1 1 0.2 0.2 0.2 1 1 0.2
Base/Neutral Extractables			
Acenaphthene Acenaphthylene Anthracene Benzidine Benzoic acid Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(ghi) perylene Benzo(a) pyrene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy) methane	83-32-9 208-96-8 120-12-7 92-87-5 65-85-0 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 100-51-6 85-68-7 111-91-1	ND N	0.2 0.2 5 0.8 0.2 0.2 0.2 0.2 0.2 0.4 0.2

Page 16 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: MW-3 10-10.5 Lab Number:

9504271-06A

Sample Matrix/Media:

SOIL

Extraction Method: Method Reference:

EPA 3550 EPA 8270

Date Sampled: Date Received:

04/19/95 04/20/95

Date Extracted: 04/28/95 Date Analyzed:

05/02/95

ASC

\na	Lyst	:	AS

### Base/Neutral Extractables (Continued) ### Bis (2-chloroethyl) ether	Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Bis (2-chloroisopropyl) ether 108-60-1 ND 0.2 Bis (2-ethylhexyl) phthalate 117-81-7 ND 2 4-Bromophenyl phenyl ether 101-55-3 ND 0.2 4-Chloroaniline 106-47-8 ND 1 2-chloronaphthalene 91-58-7 ND 0.2 4-Chlorophenyl phenyl ether 7005-72-3 ND 0.2 Chrysene 218-01-9 ND 0.2 Dibenzo (a, h) anthracene 53-70-3 ND 0.2 Dibenzo furan 132-64-9 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluorantene 86-73-7 ND 0.2 Fluorantene 86-73-7 ND 0.2 Fluorantene 87-68-3 ND 0.2 Fluoranthorobutadiene 87-68-3 ND 0.2 Hexachlorobutadiene 77-47-4 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Indeno (1,2,3-cd) pyrene 193-39-5 ND 0.2 Indeno (1,2,3-cd) pyrene 193-39-5 ND 0.2 C-Methyl naphthalene 91-57-6 ND 0.2	Base/Neutral Extractables (Contin	ued)		
Bis(2-chloroisopropyl)ether 108-60-1 ND 0.2 Bis(2-ethylhexyl)phthalate 117-81-7 ND 2 4-Bromophenyl phenyl ether 101-55-3 ND 0.2 4-Chloroaniline 106-47-8 ND 1 2-Chloronaphthalene 91-58-7 ND 0.2 4-Chlorophenyl phenyl ether 7005-72-3 ND 0.2 Chrysene 218-01-9 ND 0.2 Dibenzo(a,h) anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,3-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 0.2 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 12-14-2 <td< td=""><td>Bis(2-chloroethvl)ether</td><td>111-44-4</td><td>ND</td><td>0.2</td></td<>	Bis(2-chloroethvl)ether	111-44-4	ND	0.2
Bis(2-ethylhexyl)phthalate 117-81-7 ND 2 4-Bromophenyl phenyl ether 101-55-3 ND 0.2 4-Chloroaniline 106-47-8 ND 1 2-Chloronaphthalene 91-58-7 ND 0.2 4-Chlorophenyl phenyl ether 7005-72-3 ND 0.2 Chrysene 218-01-9 ND 0.2 Dibenzo(a,h) anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 0.2 Diethylphthalate 131-11-3 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 606-20-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND <t< td=""><td></td><td>108-60-1</td><td>ND</td><td>0.2</td></t<>		108-60-1	ND	0.2
4-Bromophenyl phenyl ether 101-55-3 ND 0.2 4-Chloroaniline 106-47-8 ND 1 2-Chloronaphthalene 91-58-7 ND 0.2 4-Chlorophenyl phenyl ether 7005-72-3 ND 0.2 Chrysene 218-01-9 ND 0.2 Dibenzo(a,h)anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,3-Dichlorobenzene 106-46-7 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 606-20-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 86-73-7 ND 0.2 Fluoranthene 186-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Fluorene 188-74-1 ND 0.2 Fluorene 188-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2		117-81-7	ND	
4-Chloroaniline 106-47-8 ND 1 2-Chloronaphthalene 91-58-7 ND 0.2 4-Chlorophenyl phenyl ether 7005-72-3 ND 0.2 Chrysene 218-01-9 ND 0.2 Dibenzo(a,h) anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Dibenzofuran 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 0.2 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Fluoranthene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2		101-55-3	ND	
4-Chlorophenyl phenyl ether 7005-72-3 ND 0.2 Chrysene 218-01-9 ND 0.2 Dibenzo(a,h)anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,4-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachlorocyclopentadiene 67-72-1 ND 0.2 Indeno(1,2,3-cd) pyrene 193-39-5 ND 0.2 S-Methyl naphthalene 91-57-6 ND 0.2		106-47-8	ND	
Chrysene 218-01-9 ND 0.2 Dibenzo(a,h)anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachlorocyclopentadiene 67-72-1 ND 0.2 Indeno(1,2,3-cd) pyrene 193-39-5 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	2-Chloronaphthalene	91-58-7	ND	
Chrysene 218-01-9 ND 0.2 Dibenzo(a,h) anthracene 53-70-3 ND 0.2 Dibenzofuran 132-64-9 ND 0.2 Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 0.2 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 67-72-1 ND 0.2	4-Chlorophenyl phenyl ether	7005-72-3	ND	
Dibenzofuran Di-n-butylphthalate Di-n-butylphthal		218-01-9	ND	
Di-n-butylphthalate 84-74-2 ND 0.2 1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluoranthene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachlorocyclopentadiene 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2		53-70-3	ND	
1,2-Dichlorobenzene 95-50-1 ND 0.2 1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachlorocyclopentadiene 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 Lsophorone 78-59-1 ND 0.2	Dibenzofuran	132-64-9	ND	
1,3-Dichlorobenzene 541-73-1 ND 0.2 1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachlorocyclopentadiene 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 Lsophorone 78-59-1 ND 0.2	Di-n-butylphthalate	84-74-2	ND	
1,4-Dichlorobenzene 106-46-7 ND 0.2 3,3'-Dichlorobenzidine 91-94-1 ND 5 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	1,2-Dichlorobenzene	95-50-1	ND	
3,3'-Dichlorobenzidine 91-94-1 ND 0.2 Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	1,3-Dichlorobenzene	541-73-1	ND	
Diethylphthalate 84-66-2 ND 0.2 Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	1,4-Dichlorobenzene	106-46-7	ND	
Dimethylphthalate 131-11-3 ND 0.2 2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	3,3'-Dichlorobenzidine			
2,4-Dinitrotoluene 121-14-2 ND 0.2 2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Diethylphthalate			
2,6-Dinitrotoluene 606-20-2 ND 0.2 Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 7,8-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Dimethylphthalate			
Di-n-octylphthalate 117-84-0 ND 0.2 Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	2,4-Dinitrotoluene			
Fluoranthene 206-44-0 ND 0.2 Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	2,6-Dinitrotoluene			
Fluorene 86-73-7 ND 0.2 Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Di-n-octylphthalate			
Hexachlorobenzene 118-74-1 ND 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Fluoranthene			
Hexachlorobutadiene 87-68-3 ND 0.2 Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 7,8-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Fluorene	86-73-7		
Hexachlorocyclopentadiene 77-47-4 ND 2 Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 78-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Hexachlorobenzene			
Hexachloroethane 67-72-1 ND 0.2 Indeno(1,2,3-cd)pyrene 193-39-5 ND 0.2 Isophorone 7,8-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Hexachlorobutadiene	87 - 68-3		
Indeno(1,2,3-cd) pyrene 193-39-5 ND 0.2 Isophorone 7,8-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Hexachlorocyclopentadiene	77-47-4		
Isophorone 7.8-59-1 ND 0.2 2-Methyl naphthalene 91-57-6 ND 0.2	Hexachloroethane			
2-Methyl naphthalene 91-57-6 ND 0.2		=		
a modifications		-		
Naphthalene 91-20-3 ND 0.2	2-Methyl naphthalene			
	Naphthalene	91-20-3	ND	0.2

ASC

0.2

0.2

0.2

Page 17 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Analyst:

ND

ND

ND

Date Sampled: 04/19/95 Sample Identification: MW-3 10-10.5 Date Received: 04/20/95 9504271-06A Lab Number: Date Extracted: 04/28/95 Sample Matrix/Media: SOIL 05/02/95 Date Analyzed: Extraction Method: EPA 3550

EPA 8270

Method Detection Limit Concentration (mg/kg) CAS # (mg/kg) Analyte Base/Neutral Extractables (Continued) 1 2-Nitroaniline 88-74-4 ND 1 99-09-2 ND 3-Nitroaniline 1 100-01-6 ND4-Nitroaniline

98-95-3

86-30-6

621-64-7

Phenanthrene Pyrene 1,2,4-Trichlorobenzene	85-01-8	ND	0.2
	129-00-0	ND	0.2
	120-82-1	ND	0.2
Surrogates		Recovery (%)	OC Limits (%)
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol	321-60-8	90	30 - 115
	367-12-4	83	25 - 121
	4165-60-0	86	23 - 120
	13127-88-3	92	24 - 113
	98904-43-9	90	18 - 137
	118-79-6	88	19 - 122

Not detected at or above limit of detection ND: Information not available or not applicable

Method Reference:

Nitrobenzene

N-Nitrosodiphenylamine

N-Nitrosodi-n-propylamine

Results are reported on a wet-weight basis, as received.

Page 18 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9504271-07A

Date Received:

 Sample Matrix/Media: Extraction Method:

SOIL EPA 3550 Date Extracted: 04/28/95 Date Analyzed: 05/02/95

Method Reference:

EPA 8270

Analyst:

ASC

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Acid Extractables			
4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	59-50-7 95-57-8 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 106-44-5 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2	ND N	0.2 0.2 0.2 0.2 1 1 0.2 0.2 0.2 1 1 0.2
Acenaphthene Acenaphthylene Anthracene Benzidine Benzoic acid Benzo(a) anthracene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(ghi) perylene Benzo(a) pyrene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy) methane	83-32-9 208-96-8 120-12-7 92-87-5 65-85-0 56-55-3 205-99-2 207-08-9 191-24-2 50-32-8 100-51-6 85-68-7 111-91-1	ND N	0.2 0.2 0.2 0.2 5 0.8 0.2 0.2 0.2 0.2 0.2

Page 19 of 24

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: METHOD BLANK

Lab Number:

9504271-07A SOIL

|Sample Matrix/Media: Extraction Method: EPA 3550

Metho

Date Sampled: Date Received:

Date Extracted: 04/28/95 Date Analyzed: 05/02/95

od Reference: EPA 8270 Analyst	: ASC
--------------------------------	-------

Analyte	CAS #	Concentration (mg/kg)	Method Detection Limit (mg/kg)
Base/Neutral Extractables (Contin	ued)		
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	111-44-4 108-60-1	ND ND	0.2 0.2
Bis (2-ethylhexyl) phthalate	117-81-7	ND	2
4-Bromophenyl phenyl ether	101-55-3	ND	0.2
4-Chloroaniline	106-47-8	ND	1
2-Chloronaphthalene	91-58-7	ND	0.2
4-Chlorophenyl phenyl ether	7005-72-3	ND	0.2
Chrysene	218-01-9	ND	0.2
Dibenzo(a,h)anthracene	53 - 70-3	ND	0.2
Dibenzofuran	132-64-9	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
1,2-Dichlorobenzene	95-50-1	ND	0.2
1,3-Dichlorobenzene	541-73-1	ND	0.2
1,4-Dichlorobenzene	106-46-7	ND	0.2
3,3'-Dichlorobenzidine	91-94-1	ND	5
Diethylphthalate	84-66-2	ND	0.2
Dimethylphthalate	131-11-3	ND	0.2
2,4-Dinitrotoluene	121-14-2	ND	0.2
2,6-Dinitrotoluene	606-20-2	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2
Fluoranthene	206-44-0	ND	0.2
Fluorene	86 - 73-7	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Hexachlorobutadiene	87-68 - 3	ND	0.2
Hexachlorocyclopentadiene	77-47-4	ND	2
Hexachloroethane	67-72-1	ND	0.2 0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Isophorone	78-59-1	ND	0.2
2-Methyl naphthalene	91-57-6	ND ND	0.2
Naphthalene	91-20-3	חת	0.2

Page 20 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9504271-07A SOIL

Date Received:

> Sample Matrix/Media: Extraction Method:

EPA 3550

Date Extracted: 04/28/95 Date Analyzed: 05/02/95

Method Reference:

EPA 8270

Analyst: ASC

			Method
			Detection
		Concentration	Limit
Analyte	CAS #	(mg/kg)	(mg/kg)
Base/Neutral Extractables (Cont	inued)		
2-Nitroaniline	88-74-4	ND	1 1
3-Nitroaniline	99-09-2	ND	1
4-Nitroaniline	100-01-6	ND	1
Nitrobenzene	98-95-3	ND	0.2
N-Nitrosodiphenylamine	86-30 - 6	ND	0.2
N-Nitrosodi-n-propylamine	621-64-7	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Pyrene	129-00-0	ND	0.2
1,2,4-Trichlorobenzene	120-82-1	ND	0.2
<u>Surrogates</u>		Recovery (%)	OC Limits (%)
2-Fluorobiphenyl	321-60-8	96	30 - 115
2-Fluorophenol	367-12-4	93	25 - 121
Nitrobenzene-d5	4165-60-0	91	23 - 120
Phenol-d5	13127-88-3	91	24 - 113
Terphenyl-d14	98904-43-9	87	18 - 137
2,4,6-Tribromophenol	118-79-6	83	19 - 122

Not detected at or above limit of detection Information not available or not applicable

Results are reported on a wet-weight basis, as received.

Page 21 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: See Below

Date Received: 04/20/95

Lab Number:

9504271

Date Extracted: 04/24/95

Sample Matrix/Media:

SOIL

Date Analyzed: 04/29/95

Extraction Method: Method Reference:

EPA 3550

EPA 8015 (Modified)

Lab Number	Sample Identification	Date Sampled	Jet Fuel (mg/kg)	Method Detection Limit (mg/kg)
-01	MW-2 2-2.5	04/19/95	ND	1
-04	MW-3 2-2.5	04/19/95	11000	1
-07	METHOD BLANK	'	ND	1

ND: Not detected at or above limit of detection --: Information not available or not applicable

Jet Fuel = Extractable petroleum hydrocarbons in the range of C8 to C16 matching the typical Jet Fuel pattern.

Page 22 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250

Clayton Project No. 95042.71

Sample Identification: See Below

Date Received: 04/20/95

Lab Number:

9504271

Sample Matrix/Media:

SOIL

Date Extracted: 04/24/95 Date Analyzed: 04/29/95

Extraction Method: Method Reference:

EPA 3550

EPA 8015 (Modified)

Lab Number	Sample Identification	Date Sampled	TPH-D (mg/kg)	Method Detection Limit (mg/kg)				
-01	MW-2 2-2.5	04/19/95	13 a	1				
-04	MW-3 2-2.5	04/19/95	ND	5000 ы				
-07	METHOD BLANK		ND	1				

ND: Not detected at or above limit of detection

--: Information not available or not applicable

Results are reported on a wet-weight basis, as received.

TPH-D = Extractable petroleum hydrocarbons from C10 to C26 quantitated as diesel.

- a Unidentified hydrocarbons present in diesel range; quantitation based on diesel.
- b Detection limits increased due to matrix interference.

of 24 Page 23

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: See Below

04/20/95 Date Received:

Lab Number:

9504271

Sample Matrix/Media:

SOIL

Date Extracted: 04/24/95

Extraction Method:

Date Analyzed: 04/29/95

Method Reference:

EPA 3550

EPA 8015 (Modified)

Sample dentification	Date Sampled	TPH-O (mg/kg)	Detection Limit (mg/kg)
W-2 2-2.5	04/19/95	ND	4
W-3 2-2.5	04/19/95	1600 a	4
ETHOD BLANK	- -	ND	4
_ [dentification W-2 2-2.5 W-3 2-2.5	dentificationSampledW-2 2-2.504/19/95W-3 2-2.504/19/95	dentification Sampled (mg/kg) W-2 2-2.5 04/19/95 ND W-3 2-2.5 04/19/95 1600 a

ND: Not detected at or above limit of detection Information not available or not applicable

Results are reported on a wet-weight basis, as received.

TPH-O = Extractable petroleum hydrocarbons from C20 to C42 quantitated as motor oil.

a Unidentified hydrocarbons present in oil range; quantitation based on motor oil.

Page 24 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250 Clayton Project No. 95042.71

Sample Identification: See Below

Date Received:

04/20/95

Lab Number:

9504271

Date Prepared:

04/26/95

Sample Matrix/Media:

SOIL

Date Analyzed:

04/27/95

Preparation Method: Method Reference:

EPA 5030

EPA 8015 (Modified)

Lab Number	Sample Identification	Date Sampled	TPH-G (mg/kg)	Method Detection Limit (mg/kg)
-01	MW-2 2-2.5	04/19/95	4.9 a	0.3
-04	MW-3 2-2.5	04/19/95	6300 a	0.3
-07	METHOD BLANK	- -	ND	0.3

ND: Not detected at or above limit of detection

Information not available or not applicable

Results are reported on a wet-weight basis, as received. TPH-G = Volatile petroleum hydrocarbons from C5 to C10 quantitated as gasoline.

a Purgeable hydrocarbons quantitated as gasoline may be due to heavier petroleum product.

REQUEST FOR LABORATORY ANALYTICAL SERVICES

For Clayton Use Only Page	of							
Project No.								
Batch No. 9504271								
Ind. Code	W.P.							
Date Logged In 44	By 5015							

•									Date	a Logg		_	011	Бу	
O Name Tolo De Chericae Title	Geolo	2.5+		Purch	ase Or	der No	. 0;	286	91		Clien	t Job ^t i	10. E) 2 8	669+10-250
p Name John DeGreerae Title To Company Alisto Engineering Court Mailing Address 1777 Cayland Blud City, State, Zip Walnut Creek, CA		ept.		, iii	Nan	ne (?	atric	ثاعر ا	ω_{cc}	phy					ID4
Mailing Address 1777 Carland Blyd	Ste 2	200		물용	O Con	pany (201	cia rof yw	$\mathcal{O}_{\!\scriptscriptstyle{\Delta}}$	<u> 1610</u>	مطب				Dept.
Mailing Address 1777 Cayland Blud E. City, State, Zip Walnut Creek, CA	9459	6		띯	Add	ress <	<u>530</u>	ن ر	ate	<u>- S</u>	tree	7	C = 1		
Telephone No. 510- 295-1650 Telefax No.	o	1823			TORY	, State	<u>, 2 P</u>	<u> </u>	<u> </u>	AL VCI	S DEC	LIEST	<u>(იტ</u>	_	
Date Results Req.: Rush Charges Authorized? Phone /	Fax Hesuits	Samples		S.	/Enter	an 'X'	in the	box be	dow to	indicat	e tedn	est; E	nter a '	'P' if P	reservative added. *)
Normal TAT Lives Line Li La (check if applicable)				j je	(21.10)		7	2	×/	$\overline{\mathcal{Y}}$	/	7.	7	7	77/
Special Instructions: (method, limit of detection, etc.)	04 C 01	Drinki	ing Water	Containers				7. 3	9				/ /		/ / /
*Quantify TPH as diesel and ju	1		ted in the	Ö			3	Je 7	S)						/_ /
Explanation of Preservative:	1	State	of New York	6	,		N/S	¥ \$			/ ,	/ /	/ /	/ /	\ <u>\</u>
	DATE	MATRIX	AIR VOLUME	Ę	/	2	SZ		Ž,	\sqrt{Z}				<i>[</i> :	FOR LAB USE ONLY
CLIENT SAMPLE IDENTIFICATION	SAMPLED	•	(specify units)	ž	/ a	/*************************************	Y		2	<u>Z</u>	<u> </u>		<u> </u>	<u> </u>	Y A TUSE ONLY
mw-2 2-2.5	4-19-95		286556	1	X	X		$[\times]$,	1A B 01A
	1 1	1	1	1				X	X						2A 02
mw-2 7-7.5		 	 	<u> </u>										X	3A 03
mw-2 10-10.5		 	<u> </u>	 ', 	<u> </u>	X		X		-					UA-B 04
$m\omega - 3 2 - 2.5$		 	2x68C	'-		 ^		$\vdash \triangle$		 	-		\vdash	X	5A 05
mw-3 7-7.5			 	1 1	·	<u> </u>				_					17
mw-3 10-10.5	↓	__\	1 ₩	/_	<u> </u>			X	X	ļ	ļ				06 4
1100 0 10 10 10 10 10 10 10 10 10 10 10				İ	i	<u></u>					<u> </u>			·	
							L					ļ			
				1						1		_			
	<u> </u>	·		1		1									
Collected but T \ O C	<u> </u>		(print)	Coll	ector's	Signat	ure:	\bigcirc	2 10	5	91,	0.40			
Collected by: John DeGrean	ge	Date/Time		 			, 	- W	0 01	2	1	7		Date/	Time @ 11:00 Aa
OF Relinquished by:	79-		11:00 Acr			/		z Xe	 / /					Date/	/me/4 -
CUSTODY Relinquished by: (Lint Charles	<u> </u>	1924	@ 1425	1	eived a				PAG					7	her (explain)
Method of Shipment: CFC (ourier	''' / '		Sam	iple Co	ndition	Upon	Receip	ســـ :ti	ts A	ccepta	DIE	ι		ner (axhiam)
Authorized by: (Client Signature Must Accompany F)ate <u>4/19</u>	195	P	x+	Λf		akl	4 UC	l, t	_ 	rov	14	Parl	eing Site
(Cheffit Signature must recompany)		iroomootal	Consultants In										(V

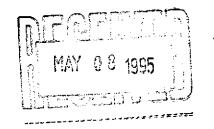
Please return completed form and samples to one of the Clayton Enviro

22345 Roethel Drive Novi, MI 48375 (313) 344-1770

Raritan Center 160 Fieldcrest Ave. Edison, NJ 08837 (908) 225-6040

400 Chastain Center Blvd., N.W.

Suite 490 Kennesaw, GA 30144 (404) 499-7500


1252 Quarry Lane Pleasanton, CA 94566 (510) 426-2657

DISTRIBUTION:

- Clayton Laboratory WHITE YELLOW - Clayton Accounting PINK Client Retains

2/92

Quality Assurance Results Summary

Matrix Spike/Matrix Spike Duplicate Results

for

Clayton Project No. 95042.71

Clayton Lab Number: Ext./Prep. Method:

9504366-01a EPA5030

Date:

05/01/95

Analyst: Std. Source: JP M950206-02W

Sample Matrix/Media:

SOIL

Analytical Method: Instrument ID: EPA8240 02831 05/01/95

Date: Time:

05/01/95 16:12 JP MG/KG

Analyst: Units:

MS MSD Average LCL UCL RPD UCL Matrix Recovery Matrix Spike Recovery Recovery (%) (%) (% R) (% R) (% R) (%) (%RPD) Spike Result Duplicate Result Analyte Sample Result Spike Level 0.0390 78 72 59 172 17 22 1,1-DICHLOROETHENE ND 0.0500 0.0330 66 142 1.8 21 BENZENE 0.0500 0.0540 108 0.0550 110 109 66 ND 133 3,5 21 CHLOROBENZENE 0.0500 0.0560 112 0.0580 116 114 60 ND 59 139 3.7 21 0.0500 0.0550 110 0.0530 106 108 TOLUENE ND 137 3,6 24 TRICHLOROETHENE ND 0.0500 0.0570 114 0.0550 110 112 62

Clayton Lab Number: Ext./Prep. Method:

9504271-01A EPA5030

Date:

05/02/95

Analyst: Std. Source: JP M950206-02W

Sample Matrix/Media:

SOIL

Analytical Method: Instrument ID:

05/02/95

Time: Analyst: Units:

Date:

17:14 JΡ MG/KG

EPA8240

02831

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1,1-DICHLORGETHENE	ND	5,00	2.80	56	3.40	68	62	59	172	19	22
BENZENE	- ND	5.00	5.10	102	5.50	110	106	66	142	7.5	21
CHLOROBENZ ENE	ND	5.00	5.50	110	5.90	118	114	60	133	7.0	21
TOLUENE	ND	5.00	5.20	104	5.60	112	108	59	139	7.4	21
TRICHLOROETHENE	ND	5.00	5.00	100	5.50	110	105	62	137	9.5	24

Clayton Lab Number: Ext./Prep. Method:

9504271-LCS:

Date:

EPA3550 04/24/95

Analyst: Std. Source: MBN

Sample Matrix/Media:

E950330-01W SOIL

Analytical Method: Instrument ID: Date:

EPA8015 02883 04/28/95 09:53

Time: Analyst: Units:

GUD MG/KG

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
DIESEL	ND	20.0	18.5	93	18.5	93	93	51	147	0.0	30

Page 4 of 7

Clayton Lab Number: Ext./Prep. Method:

9504240-03A EPA3550

Date: Analyst: 04/24/95 MBN

Std. Source:

E950330-01W

Sample Matrix/Media:

SOIL

Analytical Method: Instrument ID: Date: Time:

EPA8015 02883 04/29/95 22:45 GUD

Analyst: Units:

MG/KG

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
DIESEL	10,200	20.0	13,300	SOR	12,400	SOR	SOR	51	147	6.7	30

Clayton Lab Number: Ext./Prep. Method:

9504236-02A

Date: Analyst:

Std. Source: Sample Matrix/Media:

WAS

EPA 5030 04/26/95

V950313-01W SOIL

Analytical Method:

Instrument ID:

EPA8015 8020 05587 04/27/95 12:23 WAS

Date: Time: Analyst: Units:

MG/KG

Analyte		Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	ጸPD (%)	UCL (%RPD)
BENZENE	(PID)	ND	0.0410	0.0449	110	0.0448	109	109	53	140	0.2	28
ETHYLBENZENE	(PID)	ND	0.0327	0.0373	114	0.0397	121	118	56	134	6.2	25
GASOLINE	(FID)	ND	2.50	3.00	120	3.00	120	120	41	164	0,0	37
TOLUENE	(PID)	ND	0.141	0.162	115	0,167	118	117	60	139	3.0	22
TOTAL XYLENE	(PID)	ND	0.200	0.227	114	0.243	122	118	61	129	6.8	26

Clayton Lab Number: Ext./Prep. Method:

9504271-LCS EPA 3550 04/28/95

Date:

GTL

Analyst: Std. Source:

E950406-01W

Sample Matrix/Media:

SOIL

Analytical Method: Instrument ID: Date: Time: Analyst:

Units:

EPA8270 07477 05/02/95 13:03 ASC MG/KG

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
(A) Phenol	ND	3.33	3.25	98	3,28	98	98*	26	90	0.9	35
(B) 2-Chlorophenol	, ND	3.33	3.24	97	3.11	93	95	25	102	4.1	50
(C) 1,4-Dichlorobenzene	ND	3.33	3.12	94	2.97	89	91	28	104	4.9	27
(D) N-Nitrosodipropylamine	ND	3.33	3.35	101	3.29	99	100	41	126	1.8	38
(E) 1,2,4-Trichlorobenzene	ND	3.33	3.19	96	3.09	93	94	38	107	3.2	23
(F) 4-Chloro-m-cresal	ND	3,33	3.28	98	3.37	101	100	26	103	2.7	33
(G) Acenaphthene	NĐ	3,33	3.82	115	3.81	114	115	31	137	0.3	19
(H) 4-Nitrophenol	ND	3,33	2.92	88	2.96	89	88	11	114	1.4	50
(I) 2,4-Dinitrotoluene	ND	3.33	3.50	105	3.51	105	105*	28	89	0.3	47
(J) Pentachlorophenol	ND	3.33	2.49	75	2.45	74	74	17	109	1.6	47
(K) Pyrene	ND	3.33	3.63	109	3.58	108	108	35	142	1.4	36

Ctayton Lab Number: Ext./Prep. Method:

9504271-02A EPA 3550

Date:

04/28/95

Analyst: Std. Source: GTL E950406-01W

Sample Matrix/Media:

SOIL

Analytical Method: Instrument ID: EPA8270 07477 05/02/95 16:07 ASC

Date: Time: Analyst: Units:

16:07 ASC MG/KG

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
(A) Phenot	ND	3.33	2.70	81	3.31	99	90	26	90	20	35
(B) 2-Chlorophenol	ND	3,33	2.43	73	3,00	90	82	25	102	21	50
(C) 1,4-Dichtorobenzene	ND	3.33	2.14	64	2.64	79	72	28	104	21	27
(D) N-Nitrosodipropylamine	ND	3,33	2.50	75	3.04	91	83	41	126	20	38
(E) 1,2,4-Trichlorobenzene	ND	3.33	2.38	71	2,81	84	78	38	107	17	23
(F) 4-Chloro-m-cresol	ND	3.33	2.90	87	3.36	101	94	26	103	15	33
(G) Acenaphthene	ND	3.33	2.94	88	3.44	103	96	31	137	16	19
(H) 4-Nitrophenol	ND	3.33	2.75	83	3.35	101	92	11	114	20	50
(I) 2,4-Dinitrotoluene	ND	3,33	2.75	83	3.17	95	89	28	89	14	47
(J) Pentachlorophenol	ND	3,33	1.32	40	2.26	68	54	17	109	53*	47
(K) Pyrene	ND	3.33	3.01	90	3.66	110	100	35	142	20	36 '

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

May 17, 1995

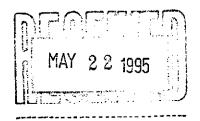
Mr. Brady Nagle ALISTO ENGINEERING GROUP 1575 Treat Blvd., Suite 201 Walnut Creek, CA 94588

> Client Ref.: 10-250-02-003 Clayton Project No.: 95043.59

Dear Mr. Nagle:

Attached is our analytical laboratory report for the samples received on April 27, 1995. The Laboratory Control Sample for EPA Method 8270 showed high recovery for 2,4-Dinitrotoluene. Surrogates and calibration checks for this method are within quality control limits. Also enclosed is a copy of the Chain-of-Custody record acknowledging receipt of these samples.

Please note that any unused portion of the samples will be discarded after June 16, 1995, unless you have requested otherwise.


We appreciate the opportunity to assist you. If you have any questions concerning this report, please contact Suzanne Haus, Client Services Supervisor, at (510) 426-2657.

Sincerely,

Harriotte A. Hurley, CIH Director, Laboratory Services San Francisco Regional Office

HAH/tjb

Attachments

of 24 Page 2

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-1 (1300)

Lab Number:

9504359-01C WATER

Sample Matrix/Media: Preparation Method:

EPA 5030

Method Reference:

EPA 8240

Date Sampled:

04/25/95

Date Received:

04/27/95 05/06/95

Date Prepared: Date Analyzed:

05/06/95

Analyst:

JΡ

			Method Detection
		Concentration	Limit
Analyte	CAS #	(ug/L)	(ug/L)

Analyte	CAS #	Concentration (ug/L)	Limit (ug/L)
Purgeable Organics			
Acetone	67-64-1	ND	20
Benzene	71-43-2	ND	5
Bromodichloromethane	75-27-4	ND	
Bromoform	75-25-2	ND	5 5 5
Bromomethane	74-83-9	ND	5
2-Butanone	78-93-3	ND	20
Carbon disulfide	75-15-0	ND	
Carbon tetrachloride	56-23-5	ND	5
Chlorobenzene	108-90-7	ND ·	5
Chloroethane	75-00-3	ND	5
2-Chloroethylvinyl ether	110-75-8	ND	5
Chloroform	67-66-3	ND	5
Chloromethane	74-87-3	ND	5 5 5 5 5 5 5 5
Dibromochloromethane	124-48-1	ND	5
1,2-Dichlorobenzene	95-50-1	ND	5
1,3-Dichlorobenzene	541-73-1	ND	5
1,4-Dichlorobenzene	106-46-7	ND	5
1,1-Dichloroethane	75-34-3	ND	5 5
1,2-Dichloroethane	107-06-2	ND	. 5
1,1-Dichloroethene	75-35-4	ND	5
cis-1,2-Dichloroethene	156-59-2	ND	
trans-1,2-Dichloroethene	156-60-5	ND	5 5
1,2-Dichloropropane	78-87-5	ND	5
cis-1,3-Dichloropropene	10061-01-5	ND	5
trans-1,3-Dichloropropene	10061-02-6	ND	5
	100-41-4	ND	5
Ethylbenzene	76-13-1	ND	5
Freon 113	591-78-6	ND	20
z-nexalione	75-09-2	ND	5
Methylene chloride 4-Methyl-2-pentanone	108-10-1	ND	20

Page 3 of 24

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-1 (1300) Lab Number: 9504359-01C

WATER

Method Reference.

Sample Matrix/Media:

Preparation Method: EPA 5030 FPA A

Date Sampled: Date Received:

04/25/95 04/27/95

Date Prepared: Date Analyzed:

05/06/95 05/06/95

vst:

240	Analy
-----	-------

JP

Method Reference:	EPA 8240		Analyst:	JP
Analyte		CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Purgeable Organics (C	Continued)			
Styrene 1,1,2,2-Tetrachloro Tetrachloroethene Toluene 1,1,1-Trichloroethene 1,1,2-Trichloroethene Trichloroethene Trichlorofluorometh Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	ane ane	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
<u>Surrogates</u>			Recovery (%)	OC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane- Toluene-d8	-d4	460-00-4 17060-07-0 2037-26-5	96 103 96	86 - 115 76 - 114 88 - 110

Not detected at or above limit of detection Information not available or not applicable

Page 4 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification:	MW-2 (1325)	Date Sampled:	04/25/95
Lab Number:	9504359-02C	Date Received:	04/27/95
Sample Matrix/Media:	WATER	Date Prepared:	05/05/95
Preparation Method:	EPA 5030	Date Analyzed:	05/05/95
Method Reference:	EPA 8240	Analyst:	JP

Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Purgeable Organics			
Acetone	67-64-1	ND	200
Benzene	71-43-2	340	50
Bromodichloromethane	75-27-4	ND	50
Bromoform	75-25-2	ND	50
Bromomethane	74-83-9	ND	50
2-Butanone Carbon disulfide	78-93-3 75-15-0	200 ND	200 50 50
Carbon tetrachloride Chlorobenzene Chloroethane	56-23-5 108-90-7 75-00-3	ND ND ND	50 50
2-Chloroethylvinyl ether Chloroform	110-75-8 67-66-3	ND ND	50 50 50
Chloromethane Dibromochloromethane 1,2-Dichlorobenzene	74-87-3	ND	50
	124-48-1	ND	50
	95-50-1	ND	50
1,3-Dichlorobenzene	541-73-1	ND	50
1,4-Dichlorobenzene	106-46-7	ND	50
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene	75-34-3	50	50
	107-06-2	ND	50
	75-35-4	ND	50
cis-1,2-Dichloroethene	156-59-2	ND	50
trans-1,2-Dichloroethene	156-60-5	ND	50
<pre>1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene</pre>	78-87-5	ND	50
	10061-01-5	ND	50
	10061-02-6	ND	50
Ethylbenzene	100-41-4	110	50
Freon 113	76-13-1	ND	50
2-Hexanone	591-78-6	ND	200
Methylene chloride	75-09-2	ND	50
4-Methyl-2-pentanone	108-10-1	ND	200

Page 5 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-2 (1325) Date Sampled: 04/25/95 9504359-02C Date Received: 04/27/95 Lab Number: Date Prepared: 05/05/95 Sample Matrix/Media: WATER Date Analyzed: 05/05/95 Preparation Method: EPA 5030 Method Reference: EPA 8240 Analyst: JΡ

Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Purgeable Organics (Continued)			
Styrene	100-42-5	ND	50
1,1,2,2-Tetrachloroethane	79-34-5	ND	50
Tetrachloroethene	127-18-4	ND	50
Toluene	108-88-3	570	50
1,1,1-Trichloroethane	71-55-6	ND	5.0
1,1,2-Trichloroethane	79-00-5	ND .	50
Trichloroethene	79-01-6	ND	50
Trichlorofluoromethane.	75-69-4	ND	50
Vinyl acetate	108-05-4	ND	100
Vinyl chloride	75-01-4	ND	50
o-Xylene	95-47-6	220	50
p,m-Xylenes		360	50
Surrogates		Recovery (%)	QC Limits (%)
Bromofluorobenzene	460-00-4	104	86 - 115
1,2-Dichloroethane-d4	17060-07-0	107	76 - 114
Toluene-d8	2037-26-5	100	88 - 110
	•		

ND: Not detected at or above limit of detection --: Information not available or not applicable

Note: Detection limits increased due to matrix interference.

of 24 Page 6

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003

Clayton Project No. 95043.59

Sample Identification: MW-3 (1350) Lab Number:

9504359-03C

Sample Matrix/Media:

WATER

Preparation Method: Method Reference:

EPA 5030

EPA 8240

Date Sampled:

04/25/95

Date Received: 04/27/95

Date Prepared: Date Analyzed:

05/15/95 05/15/95

JΡ

Analyst:

		Commentantion	Method Detection Limit
Analyte	CAS #	Concentration (ug/L)	(ug/L)

Analyte	CAS #	Concentration (ug/L)	Limit (ug/L)
Purgeable Organics			
Acetone	67-64-1	300	100 30
Benzene	71-43-2 75-27-4	150 ND	30
Bromodichloromethane	75-27-4	ND	30
Bromoform	74-83-9	ND	30
Bromomethane 2-Butanone	78-93-3	300	100
Carbon disulfide	75-15-0	ND	30
Carbon disulfide Carbon tetrachloride	56-23-5	ND	30
Chlorobenzene	108-90-7	ND	30
Chloroethane	75-00-3	ND	30
2-Chloroethylvinyl ether	110-75-8	ND	30
Chloroform	67-66-3	ND	30
Chloromethane	74-87-3	ND	30
Dibromochloromethane	124-48-1	ND	30
1,2-Dichlorobenzene	95-50-1	ND	30
1,3-Dichlorobenzene	541-73-1	ND	30
1,4-Dichlorobenzene	106-46-7	ND	30
1,1-Dichloroethane	75-34-3	30	30
1,2-Dichloroethane	107-06-2	ND ·	30
1,1-Dichloroethene	75-35-4	ND	30
cis-1,2-Dichloroethene	156-59-2	ND	30
trans-1,2-Dichloroethene	156-60-5	ND	30
1,2-Dichloropropane	78-87 - 5	ND	30
cis-1,3-Dichloropropene	10061-01-5	ND	30
trans-1,3-Dichloropropene	10061-02-6	ND	30
Ethylbenzene	100-41-4	100	30
Freon 113	76-13-1	ND	30
2-Hexanone	591-78-6	ND	100
Methylene chloride	75-09-2	ND	30
4-Methyl-2-pentanone	108-10-1	200	100

Page 7 of 24

Analytical Results

_ for

Alisto Engineering Group Client Reference: 10-250-02-003

Clayton Project No. 95043.59

Sample Identification: MW-3 (1350) Date Sampled: 04/25/95 Lab Number: 9504359-03C Date Received: 04/27/95 Sample Matrix/Media: Date Prepared: 05/15/95 WATER Preparation Method: EPA 5030 Date Analyzed: 05/15/95 Method Reference: EPA 8240 Analyst: .TP

Method Reference: EPA 824	40	Analyst:	JP
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Purgeable Organics (Continued)	<u>)</u>		
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND ND ND 600 ND ND ND ND ND ND ND ND 220 360	30 30 30 30 30 30 30 30 50 30 30
<u>Surrogates</u>		Recovery (名)	OC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460-00-4 17060-07-0 2037-26-5	101 100 102	86 - 115 76 - 114 88 - 110

ND: Not detected at or above limit of detection --: Information not available or not applicable

Note: Detection limits increased due to matrix interference.

Sample analyzed past recommended holding times for this analysis.

Page 8 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

Lab Number:

9504359-06A

Sample Matrix/Media: Preparation Method:

EPA 5030

Method Reference:

WATER

EPA 8240

Date Sampled:

Date Received:

Date Prepared:

Date Analyzed:

JР

Analyst:

05/05/95

05/05/95

Method Reference. Era 8240		Andryse.	01
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Purgeable Organics			
Acetone	67-64-1	ND	20
Benzene	71-43-2	ND	5
Bromodichloromethane	75-27-4	ND	5
Bromoform	75-25-2	ND	5 5
Bromomethane	74-83-9	ND	
2-Butanone	78-93-3	ND	20
Carbon disulfide	75-15-0	ND	5
Carbon tetrachloride	56-23-5	ND	5
Chlorobenzene	108-90-7	ND	5
Chloroethane	75-00-3	ND	5
2-Chloroethylvinyl ether	110-75-8	ND	5
Chloroform	67-66-3	ND	5
Chloromethane	74-87-3	ND	5
Dibromochloromethane	124-48-1	ND	5
1,2-Dichlorobenzene	95-50-1	ND	5
1,3-Dichlorobenzene	541-73-1	ND	5
1,4-Dichlorobenzene	106-46-7	ND	5
1,1-Dichloroethane	75-34-3	ND	5
1,2-Dichloroethane	107-06-2	ND -	5
1,1-Dichloroethene	75-35-4	ND	5
cis-1,2-Dichloroethene	156-59-2	ND	5
trans-1,2-Dichloroethene	156-60-5	ND	5
1,2-Dichloropropane	78-87-5	ND	5
cis-1,3-Dichloropropene	10061-01-5	ND	5
trans-1,3-Dichloropropene	10061-02-6	ND	5
Ethylbenzene	100-41-4	ND	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Freon 113	76-13-1	ND	5
2-Hexanone	591-78-6	ND	20
Methylene chloride	75-09-2	ND	5
4-Methyl-2-pentanone	108-10-1	ND	20

Page 9 of 24

Analytical Results

for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

Lab Number:

9504359-06A

Sample Matrix/Media: Preparation Method:

WATER EPA 5030

Method Reference:

EPA 8240

Date Sampled:

Date Received:

Date Prepared:

Date Analyzed:

05/05/95 05/05/95

Analyst:

JΡ

- -

method Reference. EPA 0240		Aldryst.	OF
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Purgeable Organics (Continued)			
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl acetate Vinyl chloride o-Xylene p,m-Xylenes	100-42-5 79-34-5 127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 108-05-4 75-01-4 95-47-6	ND N	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
<u>Surrogates</u>		Recovery (%)	OC Limits (%)
Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460-00-4 17060-07-0 2037-26-5	100 103 99	86 - 115 76 - 114 88 - 110

Not detected at or above limit of detection Information not available or not applicable

Page 10 of 24

Analytical Results

for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-1 (1300)

Lab Number: 9504359-01G

Sample Matrix/Media: WATER

Extraction Method: EPA 3510

Date Sampled: 04/25/95

Date Received: 04/27/95

Date Extracted: 05/02/95

Date Analyzed: 05/06/95

Method Reference: EPA 8270 Analyst: ASC

method Reference: EPA 02/0		Andryse.	1100
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Acid Extractables			
4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol 4-Methylphenol 4-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	59-50-7 95-57-8 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 106-44-5 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2	ND N	5 5 5 20 20 5 5 20 20 5 5 5 5 5
Base/Neutral Extractables			
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a) anthracene Benzo(b) fluoranthene Benzo(ghi) perylene Benzoic acid Benzo(k) fluoranthene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy) methane	83-32-9 208-96-8 120-12-7 92-87-5 56-55-3 50-32-8 205-99-2 191-24-2 65-85-0 207-08-9 100-51-6 85-68-7 111-91-1	ND N	5 5 30 5 5 5 5 20 5 10 5

Page 11 of 24

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-1 (1300) Lab Number:

9504359-01G

Date Sampled: 04/25/95 04/27/95

Sample Matrix/Media:

WATER

Date Received: Date Extracted: 05/02/95 05/06/95

Extraction Method: EPA 3510

Date Analyzed:

Method Reference:

EPA 8270

Analyst: ASC

Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)

Analyte	CA5 #	(49/1)	(49/11/
Base/Neutral Extractables (Contin	ued)		
Bis(2-chloroethyl)ether	111-44-4	ND	5 5
Bis(2-chloroisopropyl)ether	108-60-1	ND	
Bis(2-ethylhexyl)phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	5
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	5
4-Chlorophenyl phenyl ether	7005-72-3	ND	5
Chrysene	218-01-9	ND	, 5
Dibenzo(a,h)anthracene	53-70-3	ND	5 5 5 5
Dibenzofuran	132-64-9	ND	
1,2-Dichlorobenzene	95-50-1	ND	5
1,3-Dichlorobenzene	541-73-1	ND	5
1,4-Dichlorobenzene	106-46-7	ND	5
3,3'-Dichlorobenzidine	91-94-1	ND	40
Diethylphthalate	84-66-2	ND	5
Dimethylphthalate	131-11-3	ND	10
Di-n-butylphthalate	84-74-2	ND	5
2,4-Dinitrotoluene	121-14-2	ND	5
2,6-Dinitrotoluene	606-20-2	ND .	5
Di-n-octylphthalate	117-84-0	ИD	5 5
Fluoranthene	206-44-0	ND	
. Fluorene	86-73-7	ND	5
Hexachlorobenzene	118-74-1	ND	5
Hexachlorobutadiene	87-68-3	ND	5
Hexachlorocyclopentadiene	77-4 7-4	ND	5
Hexachloroethane	67-72-1	ND	5 5 5
Indeno(1,2,3-cd)pyrene	193-39-5	ND	5
Isophorone '	78-59-1	ND	
2-Methyl naphthalene	91-57-6	ND	5
Naphthalene	91-20-3	ND	5

Page 12 of 24

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Date Sampled: 04/25/95 Sample Identification: MW-1 (1300) 04/27/95 Date Received: Lab Number: 9504359-01G Sample Matrix/Media: WATER Date Extracted: 05/02/95 Extraction Method: EPA 3510 Date Analyzed: 05/06/95 Method Reference: EPA 8270 ASC Analyst: Method Detection Limit Concentration CAS # (ug/L) (ug/L) Analyte Base/Neutral Extractables (Continued) 2-Nitroaniline ND 20 88-74-4 20 3-Nitroaniline ND 99-09-2 20 4-Nitroaniline 100-01-6 ND 5 Nitrobenzene 98-95-3 ND 5 621-64-7 ND N-Nitrosodi-n-propylamine 5 N-Nitrosodiphenylamine 86-30-6 ND 5 85-01-8 ND Phenanthrene 5 Pyrene 129-00-0 ND 1,2,4-Trichlorobenzene 120-82-1 ND 5 Recovery (多) QC Limits (%) Surrogates 77 43 - 116 2-Fluorobiphenyl 321-60-8 2-Fluorophenol 367-12-4 38 21 - 100 35 - 114 Nitrobenzene-d5 4165-60-0 75 10 - 94 Phenol-d5 13127-88-3 37 33 - 141 Terphenyl-d14 98904-43-9 78 10 - 123 2,4,6-Tribromophenol 118-79-6 60

ND: Not detected at or above limit of detection --: Information not available or not applicable

Page 13 of 24

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-2 (1325) 9504359-02G Lab Number:

Sample Matrix/Media: Extraction Method: EPA 3510

Method Reference:

WATER

EPA 8270

04/25/95 Date Sampled:

Date Received: 04/27/95 Date Extracted: 05/02/95 Date Analyzed: 05/06/95

ASC Analyst:

Method Reference: EPA 82/0		Aliatysc.	ASC .	
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)	
Acid Extractables				
4-Chloro-3-methylphenol	59-50-7	ND	30	
2-Chlorophenol	95-57-8	ND	30	
2,4-Dichlorophenol	120-83-2	ND	30	
2,4-Dimethylphenol	105-67-9	60	30	
2,4-Dinitrophenol	51-28-5	ND	100	
2-Methyl-4,6-dinitrophenol	534-52-1	ND	100	
2-Methylphenol	95-48-7	40	30	
4-Methylphenol	106-44-5	60	30	
2-Nitrophenol	88-75 - 5	ND	30	
4-Nitrophenol	100-02-7	ND	100	
Pentachlorophenol	87-86-5	ND	100	
Phenol	108-95-2	ND	30	
2,4,5-Trichlorophenol	95-95-4	ND	30	
2,4,6-Trichlorophenol	88-06-2	ND	30	
Base/Neutral Extractables			·	
Acenaphthene	83-32-9	ND	30	
Acenaphthylene	208-96-8	ND	, 30	
Anthracene	120-12-7	ND	30	
Benzidine	92-87-5	ND	200	
Benzo(a)anthracene	56-55 - 3	ND	30	
Benzo(a) pyrene	50-32-8	ND	30	
Benzo(b) fluoranthene	205-99-2	ND	30	
Benzo(ghi)perylene	191-24-2	ND	30	
Benzoic acid	65 - 85-0	ND	100	
Benzo(k)fluoranthene	207-08-9	ND	30	
Benzyl alcohol '	100-51-6	ND	50	
Benzyl butyl phthalate	85-68 - 7	ND	30	
Bis(2-chloroethoxy)methane	111-91-1	ND	30	

Page 14 of 24

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-2 (1325)

Lab Number:

9504359-02G

Sample Matrix/Media: Extraction Method:

WATER EPA 3510

Method Reference:

EPA 8270

Date Sampled: Date Received:

04/25/95 04/27/95

Date Extracted: 05/02/95 Date Analyzed:

05/06/95

Analyst:

ASC

			Metnod Detection
Analyta	CAS #	Concentration (ug/L)	Limit (ug/L)
Analyte	CAD #	(49/2/	(-3/-/

Analyte	CAS #	Concentration (ug/L)	Limit (ug/L)
Base/Neutral Extractables (Contin	ued)		
Bis(2-chloroethyl)ether	111-44-4	ND ND	30 30
Bis(2-chloroisopropyl)ether	108-60-1 117-81-7	ND ND	50 50
Bis(2-ethylhexyl)phthalate	101-55-3	ND ND	30
4-Bromophenyl phenyl ether	101-55-5	ND ND	100
4-Chloroaniline	91-58-7	ND	30
2-Chloronaphthalene	7005-72-3	ND	30
4-Chlorophenyl phenyl ether	218-01-9	ND	30
Chrysene Dibenzo(a,h)anthracene	53-70-3	ND	30
Dibenzofuran	132-64-9	ND	30
1,2-Dichlorobenzene	95-50-1	ND	30
1,3-Dichlorobenzene	541-73-1	ND	30
1,4-Dichlorobenzene	106-46-7	ND	30
3,3'-Dichlorobenzidine	91-94-1	ND	200
Diethylphthalate	84-66-2	ND	30
Dimethylphthalate	131-11-3	ND	50
Di-n-butylphthalate	84-74-2	ND	30
2,4-Dinitrotoluene	121-14-2	ND	30
2,6-Dinitrotoluene	606-20-2	. ND	30
Di-n-octylphthalate	117-84-0	ND	30
Fluoranthene	206-44-0	ND	30
Fluorene	86-73-7	ND	30
Hexachlorobenzene	118-74-1	ND	30
Hexachlorobutadiene	87-68-3	ND	30
Hexachlorocyclopentadiene	77-47-4	ND	30
Hexachloroethane	67-72-1	ND	30
Indeno(1,2,3-cd)pyrene	193-39-5	ND	30
Isophorone '	78-59-1	ND	30
2-Methyl naphthalene	91-57-6	50	30
Naphthalene	91-20-3	100	30

Page 15 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250-02-003

Clayton Project No. 95043.59

04/25/95 Sample Identification: MW-2 (1325) Date Sampled: Date Received: 04/27/95 9504359~02G Lab Number: Date Extracted: 05/02/95 Sample Matrix/Media: WATER EPA 3510 Date Analyzed: 05/06/95 Extraction Method: ASC Method Reference: EPA 8270 Analyst:

Method Reference: EPA 0270		Andly Se.	1100
Analyte	Concentration CAS # (ug/L)		Method Detection Limit (ug/L)
Base/Neutral Extractables (Conti	nued)		
2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene	88-74-4 99-09-2 100-01-6 98-95-3 621-64-7 86-30-6 85-01-8 129-00-0 120-82-1	ND	100 100 100 30 30 30 30 30
<u>Surrogates</u>		Recovery (%)	OC Limits (%)
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol	321-60-8 367-12-4 4165-60-0 13127-88-3 98904-43-9 118-79-6	105 81 102 60 100 91	43 - 116 21 - 100 35 - 114 10 - 94 33 - 141 10 - 123

ND: Not detected at or above limit of detection --: Information not available or not applicable

Note: Detection limits increased due to matrix interference.

of 24 Page 16

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003

Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

Lab Number:

9504359-06A

Sample Matrix/Media: Extraction Method:

Method Reference:

EPA 3510

WATER

EPA 8270

Date Sampled:

Date Received:

Date Extracted: 05/02/95 05/03/95 Date Analyzed:

Analyst:

ASC

Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Acid Extractables			
4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2-Methyl-4,6-dinitrophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	59-50-7 95-57-8 120-83-2 105-67-9 51-28-5 534-52-1 95-48-7 106-44-5 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4 88-06-2	ND N	5 5 5 20 20 5 5 20 20 5 5 5
Base/Neutral Extractables			
Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a) anthracene Benzo(b) fluoranthene Benzo(ghi) perylene Benzoic acid Benzo(k) fluoranthene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy) methane	83-32-9 208-96-8 120-12-7 92-87-5 56-55-3 50-32-8 205-99-2 191-24-2 65-85-0 207-08-9 100-51-6 85-68-7 111-91-1	ND N	5 5 5 5 5 5 5 5 5 5 5 5 10 5 5

Page 17 of 24

Analytical Results

for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

Lab Number:

9504359-06A

Sample Matrix/Media: WATER
Extraction Method: EPA 3510

Method Reference:

EPA 8270

Date Sampled:

Date Received:

Date Extracted: 05/02/95

Date Analyzed: 05/03/95

Analyst:

ASC

Method Reference. Bir 6270						
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)			
Base/Neutral Extractables (Contin	ued)					
Bis(2-chloroethyl)ether	111-44-4	ND	5			
Bis(2-chloroisopropyl)ether	108-60 - 1	ND	5			
Bis(2-ethylhexyl)phthalate	117-81-7	ND	10			
4-Bromophenyl phenyl ether	101-55-3	ND	5			
4-Chloroaniline	106-47-8	ND	20			
2-Chloronaphthalene	91-58 - 7	ND	5			
4-Chlorophenyl phenyl ether	7005-72-3	ND	5			
Chrysene	218-01-9	ND	5			
Dibenzo(a,h)anthracene	53-70-3	ND	. 5			
Dibenzofuran	132-64-9	ND	5			
1,2-Dichlorobenzene	95-50-1	ND	5 5			
1,3-Dichlorobenzene	541-73-1	ND	5			
1,4-Dichlorobenzene	106-46-7	ND	5			
3,3'-Dichlorobenzidine	91-94-1	ND ·	40			
Diethylphthalate	84-66-2	ND	5			
Dimethylphthalate	131-11-3	ND	10			
Di-n-butylphthalate	84-74-2	ND	5			
2,4-Dinitrotoluene	121-14-2	ND	5			
2,6-Dinitrotoluene	606-20-2	ND .	5			
Di-n-octylphthalate	117-84-0	ND	5			
Fluoranthene	206-44-0	ND	5			
Fluorene	86-73 - 7	ND	5			
Hexachlorobenzene	118-74-1	ND	5			
Hexachlorobutadiene	87-68-3	ND	5			
Hexachlorocyclopentadiene	77-47-4	ND	5 5 5 5 5 5 5 5			
Hexachloroethane	67-72-1	ND	5			
Indeno(1,2,3-cd)pyrene	193-39-5	ND	5			
Isophorone	78-59 - 1	ND	5			
2-Methyl naphthalene	91-57-6	ND	5			
Naphthalene	91-20-3	ND	5			

Page 18 of 24

Analytical Results

for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

9504359-06A

Sample Matrix/Media:

Lab Number:

EPA 3510

Extraction Method: Method Reference:

WATER

EPA 8270

Date Sampled:

Date Received:

Date Extracted: 05/02/95

Date Analyzed:

05/03/95

Analyst:

ASC

Method Reference: EPA 82/0		Analyst:	ASC
Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
Base/Neutral Extractables (Conti	inued)		
2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Nitrobenzene N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene	88-74-4 99-09-2 100-01-6 98-95-3 621-64-7 86-30-6 85-01-8 129-00-0 120-82-1	ND	20 20 20 5 5 5 5 5 5
<u>Surrogates</u>		Recovery (%)	QC Limits (%)
2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Phenol-d5 Terphenyl-d14 2,4,6-Tribromophenol	321-60-8 367-12-4 4165-60-0 13127-88-3 98904-43-9 118-79-6	87 65 89 50 97 89	43 - 116 21 - 100 35 - 114 10 - 94 33 - 141 10 - 123

Not detected at or above limit of detection ND: Information not available or not applicable --:

Page 19 of 24

04/25/95

04/27/95

Analytical Results for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-1 (1300) Lab Number: 9504359-01

Sample Matrix/Media:

WATER

Date Sampled: Date Received:

Method Prep Method Date Date Detection Reference Method Prepared Analyzed Analyte Concentration Limit Units EPA 200.7 0.005 05/03/95 05/04/95 EPA 200.7 <0.005 mg/L Cadmium 05/04/95 EPA 200.7 EPA 200.7 05/03/95 0.01 mg/L <0.01 Chromium EPA 8015* 05/05/95 EPA 3510 05/01/95 50 ug/L Jet Fuel ND EPA 200.7 EPA 200.7 05/04/95 <0.05 0.05 mg/L 05/03/95 Lead EPA 200.7 05/03/95 05/04/95 EPA 200.7 0.02 <0.02 mg/L Nickel EPA 8015* 05/01/95 05/05/95 EPA 3510 50 1400 ug/L TPH-D 05/05/95 EPA 5030 EPA 8015* 05/05/95 50 ug/L TPH-G ND EPA 8015* EPA 3510 05/01/95 05/05/95 200 610 ug/L TPH-O EPA 160.1 05/01/95 10 mg/L Total Dissolved Solids 4000 EPA 200.7 05/03/95 05/04/95 EPA 200.7 0.02 0.01 mg/L

ND: Not detected at or above limit of detection

Information not available or not applicable

Jet Fuel = Extractable petroleum hydrocarbons in the range of C8 to C16 matching the typical Jet Fuel pattern.

TPH-D = Extractable petroleum hydrocarbons from C10 to C26 quantitated as diesel.

* = Modified

Zinc

TPH-G = Volatile petroleum hydrocarbons from C6 to C10 quantitated as gasoline.

TPH-O = Extractable petroleum hydrocarbons from C20 to C42 quantitated as motor oil.

a Unidentified hydrocarbons and unidentified peaks present in diesel range; quantitation based on diesel.

Page 20 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-2 (1325)

Lab Number:

9504359-02

Sample Matrix/Media:

WATER

Date Sampled:

04/25/95

Date Received:

04/27/95

Analyte	Concentration	Method Detection Limit	n Units	Date Prepared	Date Analyzed	Prep Method	Method Reference
Cadmium	<0.005	0.005	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.
Chromium	0.02	0.01	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Jet Fuel	13000 Ь	50	ug/L	05/01/95	05/09/95	EPA 3510	EPA 8015
Lead	<0.05	0.05	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Nickel	0.04	0.02	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.
TPH-D	ND	10000	a ug/L	05/01/95	05/09/95	EPA 3510	EPA 8015
TPH-G	5200	50	ug/L	05/08/95	05/08/95	EPA 5030	EPA 8015
TPH-O	19000	200	ug/L	05/01/95	05/09/95	EPA 3510	EPA 8015
Total Dissolved Solids	1700	10	mg/L		05/01/95		EPA 160.
Zinc	0.01	0.01	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.

ND: Not detected at or above limit of detection

Jet Fuel = Extractable petroleum hydrocarbons in the range of C8 to C16 matching the typical Jet Fuel pattern.

TPH-D = Extractable petroleum hydrocarbons from C10 to C26 quantitated as diesel.

* = Modified

TPH-G = Volatile petroleum hydrocarbons from C6 to C10 quantitated as gasoline.

TPH-O = Extractable petroleum hydrocarbons from C20 to C42 quantitated as motor oil.

- b Some portion of jet fuel result may be attributed to the presence of some unidentifiable peaks.
- a Detection limit increased due to presence of Jet Fuel.

^{--:} Information not available or not applicable

Page 21 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: MW-3 (1350)

Lab Number:

9504359-03

Sample Matrix/Media:

WATER

Date Sampled: 04/25/95
Date Received: 04/27/95

•		Method Detection		Date	Date	Prep	Method
Analyte	Concentration	Limit	Units	Prepared	Analyzed	Method	Reference
Cadmium	0.009	0.005	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200,7
Chromium	0.31	0.01	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Jet Fuel	38000 ь	50	ug/L	05/01/95	05/09/95	EPA 3510	EPA 8015*
_Lead	0.08	0.05	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Nickel	0.51	0.02	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200,7
TPH-D	ND	40000	a ug/L	05/01/95	05/09/95	EPA 3510	EPA 8015*
TPH-G	7200 c	50	ug/L	05/10/95	05/10/95	EPA 5030	EPA 8015*
TPH-O	31000	200	ug/L	05/01/95	05/09/95	EPA 3510	EPA 8015*
Total Dissolved Solids	5600	10	mg/L		05/01/95		EPA 160.1
Zinc	0.47	0.01	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7

ND: Not detected at or above limit of detection

--: Information not available or not applicable

Jet Fuel = Extractable petroleum hydrocarbons in the range of C8 to C16 matching the typical Jet Fuel pattern.

TPH-D = Extractable petroleum hydrocarbons from C10 to C26 quantitated as diesel.

* = Modified

TPH-G = Volatile petroleum hydrocarbons from C6 to C10 quantitated as gasoline.

TPH-O = Extractable petroleum hydrocarbons from C20 to C42 quantitated as motor oil.

- b Some portion of jet fuel result may be attributed to the presence of some unidentifiable peaks.
- a Detection limit increased due to presence of Jet Fuel.
- c Sample analyzed past recommended holding times for this analysis due to dilution necessary for quantitation.

Page 22 of 24

Analytical Results for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: QC-1

Lab Number:

9504359-04

Sample Matrix/Media:

WATER

Date Sampled:

04/25/95

Date Received: 04/27/95

Analyte	Concentration	Method Detection Limit	Units	Date Prepared	Date Analyzed	Prep Method	Method Reference
TPH-G	5600	50	ug/L	05/10/95	05/10/95	EPA 5030	EPA 8015*

ND: Not detected at or above limit of detection --: Information not available or not applicable

TPH-G = Volatile petroleum hydrocarbons from C6 to C10 quantitated as gasoline.

* = Modified

Page 23 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250-02-003

Clayton Project No. 95043.59

Sample Identification: QC-2

Lab Number:

9504359-05

Sample Matrix/Media: WATER

Date Sampled:

04/25/95

Date Received: 04/27/95

Analyte	Concentration	Method Detection Limit	Units	Date Prepared	Date Analyzed	Prep Method	Method Reference
TPH-G	ND	50	ug/L	05/05/95	05/05/95	EPA 5030	EPA 8015*

ND: Not detected at or above limit of detection --: Information not available or not applicable

TPH-G = Volatile petroleum hydrocarbons from C6 to C10 quantitated as gasoline.

* = Modified

Page 24 of 24

Analytical Results for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

Lab Number:

9504359-06

Sample Matrix/Media:

WATER

Date Sampled: Date Received:

		Method Detection		Date	Date	Prep	Method
Analyte	Concentration	Limit	Units	Prepared	Analyzed	Method	Reference
Cadmium	<0.005	0.005	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Chromium	<0.01	0.01	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Jet Fuel	ND	50	ug/L	05/01/95	05/05/95	EPA 3510	EPA 8015*
Lead	<0.05	0.05	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
Nickel	<0.02	0.02	mg/L	05/03/95	05/04/95	EPA 200.7	EPA 200.7
TPH-D	ND	50	ug/L	05/01/95	05/05/95	EPA 3510	EPA 8015*
TPH-G	ND	50	ug/L	05/05/95	05/05/95	EPA 5030	EPA 8015*
TPH-O	ND	200	ug/L	05/01/95	05/05/95	EPA 3510	EPA 8015*
Total Dissolved Solids	<10	10	mg/L		05/01/95		EPA 160.1

Not detected at or above limit of detection

Jet Fuel = Extractable petroleum hydrocarbons in the range of C8 to C15 matching the typical Jet Fuel pattern.

TPH-D = Extractable petroleum hydrocarbons from C10 to C26 quantitated as diesel.

* = Modified

TPH-G = Volatile petroleum hydrocarbons from C6 to C10 quantitated as gasoline.

TPH-O = Extractable petroleum hydrocarbons from C20 to C42 quantitated as motor oil.

Information not available or not applicable

REQUEST FOR LABORATORY **ANALYTICAL SERVICES**

For Clayton Use Only Page	<u> </u>
Project No.	
Batch No. 950 4	1359
Ind. Code	W.P.
Date Logged In 471615	By

								Dat	e Logg	jea in	412	<u> </u>	<u> </u>	1917		
O Name A Tohn N. Govern	Company Alisto Everinger Dept.										Clien	t Job!	Nd.	ი - ა	50~ 0ス~ 0	50
C S Company - Aisto & winger	3, D	ept.	8	ш	Nan	16	PAX	رم ر مرزر	- Δ	W	MA	A				
A Hailing Address 1777 DALL	2 BWG			SEND INVOICE	Con	рапу	P:	54 ×	2 Fc	ن ۸۰۷	رير	917			Dept.	
E O City, State, Zip Warnt week		159 V		S >	Add	ress	5	30	<u>~~</u>	W						
Telephone No.(510) 295 1650 Te	lefax No. (50) a	55 193	ひ	=	City	State	, Zip 1	MAG	راحب	<u>ā</u>	<u>(a</u>		46	<u>,07</u>		
Date Results Req.: Rush Charges Authorized?	Phone / Fax Results			SIS	(Enter	an 'X'	in the	box be	AN low to	ALYSI indica	S REQ te requ	UEST est; E	ED nter a	'P' if P	reservative a	dded. *)
		'	f applicable)	Containers	\ <u></u>		/	7	7	7	7:	ブ	7	1	11	7
Special Instructions: (method, limit of detection,		ŧ	ing Water	ont			5	/s.5	Y /	/ /	(° 3	/ /	/ /	/ ,	/ / /	_
Quantify D, J, MO, seperately	4		cted in the	Q Q		12	5/2	S		Α.	Ž	\sqrt{c}				
* Explanation of Preservative:		State	of New York	9.70	ر ا		/o`\	Z0,	[0]	/_	スミ		/ ,		/	
	AIR VOLUME	Number			# /	Ž,		/ / /	57				FOR	LAB		
CLIENT SAMPLE IDENTIFICATION	(specify units)	Z	/ /×	/ /×	/ "	y A	3/3	1/	7				/ USE 0			
mw-1 1300	(opening strike)	/S	X	\sim	\times	\times	×	×		-			01 A-3	5		
		10	文	\Box	1	V	1	1					021			
	· · · · · · · · · · · · · · · · · · ·	7	$\overline{\times}$		1		1	1/		•			03 A-H			
MW-3 1350	4/26			a		7			->4	<u> ¥</u>					04 A.B	
QC-1 —		 		3									\vdash	<u> </u>	,	
QC-2				1	\geq									ļ	05 C	
														ļ		
																Ţ
		<u></u>	 													
		<u> </u>		· · ·			·									
Collected by:			Sack (print)	Colle	ector's S	Signatu	ıte:)		- <u>/</u>				<u></u>		1.,	
/ VANE CO	ACCC LOS	Date/Time	SOCK"				2	7	7 //	<u> </u>				Date/	finge 🕝	
OF HOME					ived by	140	<u>=nu</u>	SZK	ell	<u> </u>				4/2	1/95	705
CUSTODY Relinquished by: Last high has the Date 1800					eived a	Lab b	y: (arsk) H	mm	espe	19		173195		100
Method of Shipment: CEC Courses					ple Con	dition	Upon I	Receip	t:	Z I Ac	ceptab	(عها	E	☐ (Oth	ner (explain)	
Authorized by:									,							
	(Client Signature Must Accompany Request)													_		
, ,	•		0	1.1.	المعال							· T				
Please return completed form and samples to on	e of the Clayton Envi	ronmental	Consultants, Ind	c. Iaps	listed b	elow:						١,	NETOL	DUTIC	M.	

22345 Roethel Drive Raritan Center

Novi, MI 48375 160 Fieldcrest Ave. (810) 344-1770 Edison, NJ 08837 (908) 225-6040

400 Chastain Center Blvd., N.W. Suite 490

Kennesaw, GA 30144

(404) 499-7500

1252 Quarry Lane Pleasanton, CA 94566 (510) 426-2657

Economy Parking Lot Site 2/92 DISTRIBUTION:

- Clayton Laboratory YELLOW - Clayton Accounting

- Client Retains PINK

Quality Assurance Results Summary

Matrix Spike/Matrix Spike Duplicate Results

for

Clayton Project No. 95043.59

MAY 2 2 1995

Clayton Lab Number: Ext./Prep. Method:

9505008-01A EPA5030

Date:

05/05/95

Analyst: Std. Source: JР M950206-02W

Sample Matrix/Media:

WATER

Analytical Method:

EPA624_8240 02831 05/05/95

Instrument ID: Date:

16:46

Time: Analyst: Units:

JΡ UG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1,1-DICHLOROETHENE	ND	50.0	48.0	96	44.0	88	92	61	145	8.7	14
BENZENE	ND	50.0	54.0	108	54.0	108	108	76	127	0.0	11
CHLOROBENZENE	ND	50.0	59.0	118	59.0	118	118	75	130	0.0	13
TOLUENE	ND	50.0	57.0	114	55.0	110	112	76	125	3.6	13
TRICHLOROETHENE	ND	50.0	56.0	112	55.0	110	111	71	120	1.8	14

Clayton Lab Number: Ext./Prep. Method: Date:

9505074-01A EPA5030 05/09/95

JΡ

Analyst: Std. Source: M950206-02W WATER

Sample Matrix/Media:

Analytical Method: Instrument ID: Date:

EPA624_8240 02831 05/09/95 16:37 J₽ UG/L

Time: Analyst: Units:

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1,1-DICHLOROETHENE	ND	50.0	46.0	92	40.0	80	86	61	145	14	14
BENZENE	ND	50.0	48.0	96	52.0	104	100	76	127	8.0	11
CHLOROBENZENE	ND	50.0	52.0	104	59.0	118	111	7 5	130	13	13
TOLUENE	ND	50.0	49.0	98	54.0	108	103	76	125	9.7	13
TRICHLOROETHENE	ND	50.0	48.0	96	54.0	108	102	71	120	12	14

Quality Assurance Results Summary for

Clayton Project No. 95043.59

Clayton Lab Number: Ext./Prep. Method:

9504304-LCS EPA3510 05/01/95

Date: Analyst: Std. Source:

HYT

Sample Matrix/Media:

E950330-01W WATER

Analytical Method:

Instrument ID: Date:

02893 05/02/95 23:08

EPA8015

Time: Analyst: Units:

GUD UG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
DIESEL	ND	1,000	1,010	101	974	97	99	56	137	3.6	25

Clayton Project No. 95043.59

Clayton Lab Number: Ext./Prep. Method:

9504359-LCS EPA3510

Date: Analyst:

HYT

Std. Source: Sample Matrix/Media: 05/01/95

E940909-01W WATER

Analytical Method: Instrument ID:

Date: Time: Analyst: Units:

EPA8015 02893 05/05/95 07:35 GUD UG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
JET FUEL	ND	1,000	549	55	549	55	55	40	140	0.0	40

Quality Assurance Results Summary for

Clayton Project No. 95043.59

Clayton Lab Number: Ext./Prep. Method:

9504359-LCS EPA3510 05/01/95

Date: Analyst:

HYT

Std. Source:

E950330-01W

Sample Matrix/Media: WATER

Analytical Method:

Instrument ID:

02893 05/05/95 18:02

EPA8015

Date: Time:

18:02 GUD UG/L

Analyst: Units:

MS MSD Average LCL UCL RPD UCL Recovery Matrix Spike Recovery Recovery Matrix (% R) (%RPD) (%) (%) (% R) (%R) (%) Analyte Sample Result Spike Level Spike Result Duplicate Result DIESEL ND 1,000 1,080 108 1,060 106 107 56 137 1.7 25

Clayton Lab Number: Ext./Prep. Method: Date: 9504379-01K EPA 200.7 05/03/95 KDM

Analyst:

Std. Source: Sample Matrix/Media: 05/03/95 KDM JMEB 41062 WATER Analytical Method: Instrument ID: Date:

Date: Time: Analyst: Units: EPA200_7 03891 05/04/95 13:49 RAH MG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
ANTIMONY	ND	2.00	1.93	97	1.92	96	96	81	115	0.5	20
ARSENIC	ND	2.00	1.92	96	1. 9 6	98	97	89	111	2.1	20
BARIUM	0.115	2.00	2.03	96	2.03	96	96	78	115	0.0	20
BERYLLIUM	ND	2.00	1.90	95	1.91	96	95	82	113	0.5	20
CADMIUM	ND	2.00	1.92	96	1.93	97	96	79	114	0.5	20
CALCIUM	27.1	2.00	28,9	SOR	28.8	SOR	SOR	67	135	0.3	20
CHROMIUM	ND	2.00	1.90	95	1,90	95	95	87	111	0.0	20
COBALT	ND	2.00	1,88	94	1,89	95 .	94	86	115	0.5	20
COPPER	ND	2.00	1.92	96	1.92	96	9 6	80	114	0.0	20
LEAD	ND	2.00	1.87	94	1.89	95	94	81	116	1.1	20
MAGNESIUM	34.5	2.00	36.4	SOR	36.2	SOR	SOR	70	127	0.6	20
MOLYBOENUM	ND	2.00	1.91	96	1.92	96	96	82	118	0.5	20
NICKEL	ND	2.00	1.89	95	1.88	94	94	74	117	0.5	20
POTASSIUM	18.0	20.0	37.2	96	37.1	96	96	85	114	0.3	20
SELENIUM	ND	2.00	1.91	96	1.92	96	96	60	130	0.5	20
SILVER	ND	2.00	1.88	94	1,88	94	94	74	123	0.0	20
THALLIUM	ND	2.00	1.88	94	1.90	95	95	65	124	1.1	20
VANADIUM	ND	2.00	1.93	97	1.93	97	97	86	109	0.0	20
ZINC	0.0140	2.00	1.92	95	1.92	95	95	67	127	0.0	20

Clayton Lab Number: Ext./Prep. Method:

9504380-03A EPA 200.7 05/03/95

Date: Analyst:

Sample Matrix/Media:

Std. Source:

KDM

Analytical Method: Instrument ID: Date: Time:

Analyst:

Units:

EPA200_7 03891 05/04/95 13:57 RAH MG/L

JEMB 41062 WATER

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD	UCL (%RPD)
ANT I MONY	ND	2.00	1.99	100	1.96	98	99	81	115	1.5	20
ARSENIC	ND	2.00	2.01	101	1.93	97	99	89	111	4.1	20
BARIUM	0.333	2.00	2.35	101	2.29	98	99	78	115	2.6	20
BERYLLIUM	ND	2.00	1.98	99	1.93	97	98	82	113	2.6	20
CADMIUM	ND	2.00	1.99	100	1.95	98	99	79	114	2,0	20
CALCIUM	13.2	2.00	15.5	SOR	15.4	SOR	SOR	67	135	0.6	20
CHROMIUM	0.160	2.00	2.15	100	2.09	97	98	87	111	2.8	20
COBALT	ND	2.00	1.98	99	1.93	97	9 8	86	115	2.6	20
COPPER	0.0590	2.00	2.06	100	2.01	98	99	80	114	2.5	20 `
LEAD	0.598	2.00	2,60	100	2.55	97	99	81	116	1.9	20
MAGNESIUM	2.92	2.00	4.96	102	4.93	101	101	70	127	0.6	20
MOLYBDENUM	0.0549	2.00	2.05	100	2.00	97	99	82	118	2.5	20
NICKEL	ND	2,00	1.97	99	1,92	96	97	74	117	2.6	20
POTASSIUM	3.11	20.0	22.7	98	22.5	97	97	85	114	0.9	20
SELENIUM	ND	2.00	1.99	100	1.93	97	98	60	130	3,1	20
SILVER	ND	2.00	1.61	81	1.59	80	80	74	123	1.3	20
SODIUM	159	2.00	166	SOR	163	SOR	SOR	60	123	1.8	20
THALLIUM	ND	2.00	1.98	99	1.95	98	98	65	124	1.5	20
VANADIUM	ND	2.00	2.01	101	1.96	98	99	86	109	2.5	20
ZINC	0.760	2.00	2.76	100	2.72	98	99	67	127	1.5	20

LCS = Laboratory Control Sample ND = Not detected at or above limit of detection LCL = Lower Control Limit

UCL = Upper Control Limit SOR = Spike out of range due to high sample concentration.

Clayton Lab Number: Ext./Prep. Method:

9505123-03 EPA5030 05/15/95

Date: Analyst:

JΡ

Std. Source: Sample Matrix/Media:

M950510-03W WATER

Analytical Method: Instrument ID: Date:

Time:

Units:

Analyst:

EPA624 8240 05381 05/15/95 13:22 JΡ UG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1,1-DICHLOROETHENE	ND	50.0	53.9	108	52.6	105	107	61	145	2.4	14
BENZENE	ND	50.0	55.6	111	53.6	107	109	76	127	3.7	11
CHLOROBENZENE	ND	50.0	54.0	108	51.6	103	106	75	130	4.5	13
TOLUENE	ND	50.2	53.1	106	50.0	100	103	76	125	6.0	13
TRICHLORGETHENE	ND	50.0	52.1	104	49.4	99	102	71	120	5.3	14

Quality Assurance Results Summary for

Clayton Project No. 95043.59

Clayton Lab Number: Ext./Prep. Method:

9504359-01A EPA 5030

Date: Analyst: Std. Source: 05/05/95 WAS

Sample Matrix/Media:

V950301-02W WATER

Analytical Method:

Instrument ID:

EPA8015 8020 05587

Date: Time:

05/05/95 15:23 WAS

UG/L

Analyst: Units:

MSD MS Average LCL UCL. RPD UCL Matrix Recovery Matrix Spike Recovery Recovery (%) Duplicate Result (%) (%R) (% R) (% R) (%) (%RPD) Analyte Sample Result Spike Level Spike Result 3.6 20 10.6 97 99 81 118 BENZENE (PID) ND 11.0 11.0 100 8.36 95 95 81 114 0.7 20 (PID) 8.81 8.42 96 **ETHYLBENZENE** ND 495 99 80 150 1.8 25 GASOLINE (FID) 500 504 101 100 ND 20 42.5 92 93 84 118 1.4 TOLUENE (PID) ND 46.0 43.1 94 20 85 115 0.8 TOTAL XYLENE (PID) ND 50.6 47.8 95 47.4 94 94

Clayton Lab Number: Ext./Prep. Method:

9504348-06C EPA 5030 05/08/95

Analyst: Std. Source:

Date:

WAS V950301-02W

Sample Matrix/Media:

WATER

Analytical Method: Instrument ID:

Date:

EPA8015 8020 05587 05/08/95 11:31 WAS UG/L

Time: Analyst: Units:

Analyte		Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
BENZENE	(PID)	ND	10.3	10.3	100	10.7	104	102	81	118	3.8	20
ETHYLBENZENE	(PID)	ND	8.03	7.99	100	8.18	102	101	81	114	2.4	20
GASOLINE	(FID)	ND	500	507	101	504	101	101	80	150	0.6	25
TOLUENE	(PID)	ND	42.9	42.7	100	43.5	101	100	84	118	1.9	20
TOTAL XYLENE	(PID)	ND	47.8	47.3	99	48.2	101	100	85	115	1.9	20

EPA8015 8020

Quality Assurance Results Summary for Clayton Project No. 95043.59

Clayton Lab Number: Ext./Prep. Method:

95 EF

9504357-02A EPA 5030

Date: Analyst: 05/09/95 WAS

Std. Source:

V950301-02W

Sample Matrix/Media:

WATER

Analytical Method:

Instrument ID:

05587 05/09/95

Date: Time:

Time: Analyst: Units: 01:29 WAS UG/L

Analyte		Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
BENZENE	(PID)	ND	9.98	9.63	96	11.4	114	105	81	118	17	20
ETHYLBENZENE	(PID)	ND	7.76	7.71	99	8,93	115	107	81	114	15	20
GASOLINE	(FID)	ND	500	501	100	530	106	103	80	150	5.6	25
TOLUENE	(PID)	ND	41.4	41.9	101	43.6	105	103	84	118	4.0	20
TOTAL XYLENE	(PID)	ND	45.8	45.1	98	51.9	113	106	85	115	14	20

Clayton Project No. 95043.59

Clayton Lab Number: Ext,/Prep. Method:

Sample Matrix/Media:

9504379-01E EPA 5030 05/09/95

Date: Analyst:

Std. Source:

WAS WATER

V950301-02W

Analytical Method: Instrument ID: Date: Time:

Analyst:

Units:

EPA8015 8020 05587 05/10/95 00:59 WAS UG/L

Analyte		Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
BENZENE	(PID)	· ND	8.99	10.1	112	9.70	108	110	81	118	3.7	20
ETHYLBENZENE	(PID)	NO	7.25	7.91	109	7.64	105	107	81	114	3.5	20
GASOLINE	(FID)	ND	500	523	105	512	102	104	80	150	2,1	25
TOLUENE	(PID)	ND	37.7	40.2	107	39.5	105	106	84	118	1.8	20
TOTAL XYLENE	(PID)	ND	42.8	45.4	106	44.2	103	105	85	115	2.7	20

Quality Assurance Results Summary for Clayton Project No. 95043.59

Clayton Lab Number:

Ext./Prep. Method:

9504374-LCS EPA 3510

Date: Analyst:

HYT

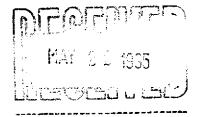
Std. Source: Sample Matrix/Media: 05/02/95 E950406-01W

WATER

Analytical Method:

Instrument ID: Date:

EPA625_8270 07477 05/04/95 11:46 ASC UG/L


Time: Analyst: Units:

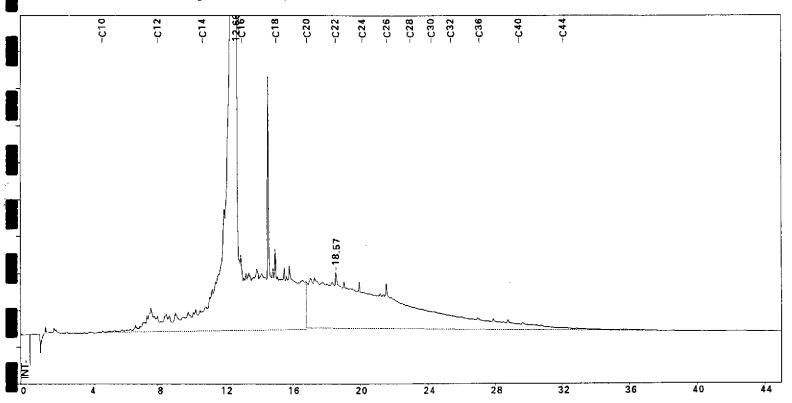
. .

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
(A) Phenol	ND	100	52.2	52	50.7	51	51	12	89	2.9	42
(B)2-Chlorophenol	ND	100	87.5	88	83.4	83	85	27	123	4.8	40
(C)1,4-Dichtorobenzene	ND	100	76.4	76	79.2	79	78	36	97	3.6	28
(D)N-Nitrosodipropylamine	ND	100	94.7	95	91.6	92	93	41	116	3.3	38
(E)1,2,4-Trichlorobenzene	ND	100	79.0	79	83.9	84	81	39	98	6.0	28
(F)4-Chloro-m-cresol	ND	100	90.9	91	90.2	90	91	23	97	8,0	42
(G)Acenaphthene	ND	100	88.9	89	91.7	92	90	46	118	3.1	31
(H)4-Nitrophenol	ND	100	57.3	57	53.7	54	56	10	80	6.5	50
(I)2,4-Dinitrotoluene	ND	100	97.8	98	98.0	98	98*	24	96	0.2	38
(J)Pentachlorophenol	ND	100	98.7	99	92.4	92	96	9	103	6.6	50
(K)Pyrene	ND	100	88.2	88	91.7	92	90	26	127	3.9	31 .

Mass Spectrometry/Chromatograms for EPA 8015 Clayton Project No. 95043.59

e awa=9804387-033 80011 8387 1 27,701 fun. Liw 745,12 eigt (#1)5,12 tv bistru(0,0 -- Gasoline 1**3/94/18/9**5 The state of the s --5.18 [-SURR (TRIFLATOL) -перкале -- 5,84 10 a d & 1 --8.97 <u>--(MSID (4-FI)</u> - lə.bəb-xillini -- 3,38 -- 18,69 --<u>--d</u>,⊵,4-Irimethylbenzn -- 14,93 --18.13 — DODECANE - 17.73 8_ - 19.48 - 19.18 1937 42 1937 493 1937 39 20,21 20,20,39 20,21 38_ 写:接接 /- 22.79

err (CANCAHAKA<mark>0955,000</mark> Basa (2020) sebengan 1475 (1566,6758,00945)


Перия (ВРС) (Д-434) (В <u>ЕД.</u> 17	Pilane promeseváryáryárá (Laes 54,12)	14.	
naja wasaarawadan esi.	11.11 1811	199	
is to take the control of	pylle high elvéylle ny ppamelysyy		
d. <u></u>			
— 3&50,138 -1.871	e _u/24/18/65		*
			
० हैं चर् <u>च देशकेंद्र</u>			
<u> </u>	ipentane		
7-3-39 			
4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 5.0 4	
	nimethuipenka	The state of the s	5.17 T-SURY (TRIFIUTOL)
	===		•
A CONTRACTOR OF THE PARTY OF TH			
·			
0 _ 5 _ 5 _ 5 _ 5 _ 5 _ 5 _ 5 _ 5 _ 5 _			•
<u>, </u>			
<u> </u>	—-6.77 <u>-1</u> /810 (4-71)		
	- C-Strint dending		
7= 12 , 35 2= 341 , 358		TO COMPANY AND AMERICAN	
F-80 488			•
<u> </u>			•
	, 		
4_==10007		42.2 Inimethythenzn	
	TO SAIS		•
1.	ર્ગ, તમે -	——————————————————————————————————————	
	2 W 1		
	7		
	12.25 12.25		•
	- 17.85 - 27 377 DODZCANS - 79 - 19.11	*- 78	
	.79		
	. 19.12		
			·
=- # II II			
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2		•	•
, = ΔΔ.eee			
, ,			•
2 : NT-		•	
		•	
:			
بَ مَا مَا الْمُعَامِينَ الْمُعَامِينَ الْمُعَامِينَ الْمُعَامِينَ الْمُعَامِينَ الْمُعَامِينَ الْمُعَامِينَ ا			

.:

File=M:\CP\GC-7\U04E\$.11R Date printed=05-09-1995 Time= 18:13:05

Sample Name≈9504359-01E

0.0 to 45.0 min. Low Y=-50.0 High Y=320.0 mv Span=370.0

Clayton Environmental Consultants, Pleasanton, California

05-09-1995 18:13:10 Printed:

05-05-1995 08:27:37

Sample Name: 9504359-01E

Date: Operator: GUD

Dilution Factor: 1 Sample Weight: 990.94

Instrument:02893 HP5890(BACK)

Area Rejected: 100 EXTERNAL STD Calibrated

M:\CP\GC-7\U04E\$.11R Cycle# Data File:

Method File: !!!M:\CP\GC-7\UD2.MET..ver# -3 . 02/24/95 17:11:58

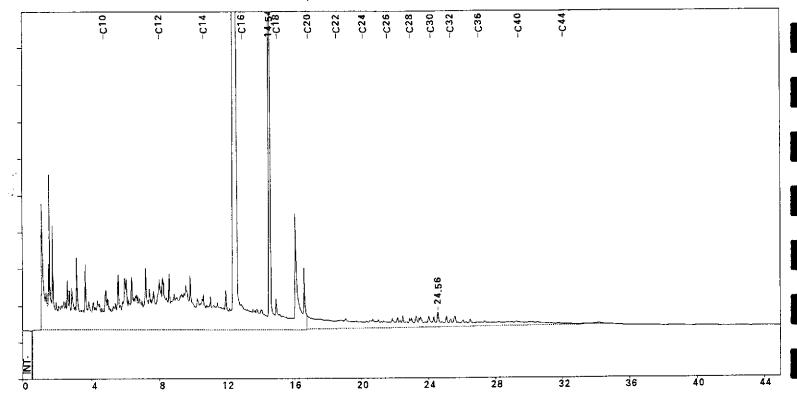
Calibr File: !!!M:\CP\GC-7\UD2.CAL..ver# -32.

Analysis: TPH EXT TEMP 50C(3') 10C/M 310C(10') 2UL

Miscl.

	ver rime		Allount	reak	reak	reak i	Rei F	MIOUITE						
Pk#	(min)	Peak Nar	ne PPM	Area	Туре	Height f	Pk /	Area						
1	12.658		1.4356	46002372	2 88	977015	0.3	5121E-0	7					
2	18.571		0.6144	19686660	BB	55854	0.3	3121E-0	17					
The contract of	+-1 A	~~~ -	ϵ	3 · O 7 ·	T	-	T	_ 44 4 4 4	٦	7	_	2021	270	DI

Potal Area = 6.568903E+07; Instrument Actual Amount = 2031.379 PPM


TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS = 2.049951mg/kg (ppm)

OR 2049.951 ug/L (ppb)

File: M:\CP\GC-7\U04E\$.11R

File:M:\CP\GC-7\U08E\$.24R Date printed=05-11-1995 Time= 14:56:29 Sample Name=9504359-02E 20X

0.0 to 45.0 min. Low Y=-50.0 High Y=320.0 mv Span=370.0

Clayton Environmental Consultants, Pleasanton, California

Printed: 05-11-1995_14:56:35

Sample Name: 9504359-02E 20X

Date:

05-09-1995 18:09:58

Dilution Factor: 20

Sample Weight: 937.11

Operator: GUD

Area Rejected: 100

Instrument: 02893 HP5890 (BACK)

EXTERNAL STD Calibrated

M:\CP\GC-7\U08E\$.24R Cycle# 24

Data File:

Method File: !!!!M:\CP\GC-7\UD2.MET..ver# -3 . 02/24/95 17:11:58

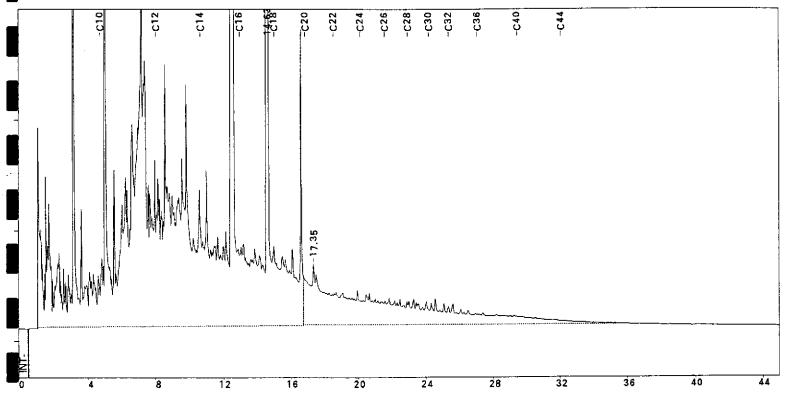
Calibr File: !!!!M:\CP\GC-7\UD2.CAL..ver# -32.

Analysis: TPH EXT TEMP 50C(3') 10C/M 310C(10') 2UL

Miscl.

Mod 05-10-1995 18:49:29

	Ret time			Amount	Peak	Peak	Peak	Ref	Amount	
. <u>Pk#</u>	(min)	Peak	Name	PPM	Area	Type	Height'	Pk	/Area	
1	14.544			28.5272	43223748	88	969831		0.6600E-06	
2	24, 565			3.5502	5379178	88	14947		0.6600F-06	


Total Area = 4.860293E+07; Instrument Actual Amount = 1503.005 PPM

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS = 32.07745mg/kg (ppm)

OR 32077.45 ug/L (ppb)

File: M:\CP\GC-7\U08E\$.24R

.0 to 45.0 min. Low Y=-50.0 High Y=320.0 mv Span=370.0

Clayton Environmental Consultants, Pleasanton, California

Printed: 05-11-1995_14:56:45

Sample Name: 9504359-03E 20X

Date: 05-09-1995 19:02:38
cor: 20 Operator: GUD

Dilution Factor: 20

Sample Weight: 1035.93

Instrument: 02893 HP5890 (BACK)
Area Rejected: 100 EXTERNAL STD Calibrated

Data File: M:\CP\GC-7\U08E\$.25R Cycle# 25

Method File: !!!!M:\CP\GC-7\UD2.MET..ver# -3 . 02/24/95 17:11:58

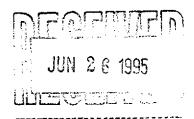
Calibr File: !!!!M:\CP\GC-7\UD2.CAL..ver# -32.

Analysis: TPH EXT TEMP 50C(3') 10C/M 310C(10') 2UL

Miscl.

Mod 05-10-1995 18:49:48

	Ret ti	ime			Amount	Peak	Peak	Peak	Ref	Amount			-		
¹k#	(mir	1) Pe	eak I	Name	e PPM	Area	Туре	Height	Pk	/Area -					
1	14.62	25			59.4097	99508360	88	957940		0.5970E-06					
2	17.39	54			9.8369	16476404	88	61051		0.5970E-06					
To:	tal	Are	ea.	=	1.159848E	+08;	Inst	rume	nt	Actual	Amount	=	3586	.732	PPM


TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS = 69.2466mg/kg (ppm)

OR 69246.6 ug/L (ppb)

File: M:\CP\GC-7\U08E\$.25R

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

June 23, 1995

Mr. Brady Nagle ALISTO ENGINEERING GROUP 1575 Treat Blvd., Suite 201 Walnut Creek, CA 94588

> ADDITIONAL/REVISED REPORT Client Ref.: 10-250-02-003 Clayton Project No.: 95043.59

Dear Mr. Nagle:

Attached is our additional analytical laboratory report for the samples received on April 27, 1995 and originally reported on May 17, 1995. As requested by Phil Cherry, BTEX results have been provided for Samples QC-1 and QC-2.

Also included in this report is revised report page 21. Please note that no results have been changed, but a footnote has been added concerning the holding times for the TPH Gas analysis. This footnote has also been added to page 2 of this additional report. The original analyses for these samples were performed within holding time; however, because of the multiple dilutions required by these sample concentrations, the final analysis was outside of holding times.

We appreciate the opportunity to assist you. If you have any questions concerning this report, please contact Suzanne Haus, Client Services Supervisor, at (510) 426-2657.

Sincerely,

Harriotte A. Hurley, CIH Director, Laboratory Services San Francisco Regional Office

HAH/tjb

Attachments

of 4Page 2

Analytical Results

for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: QC-1

Date Sampled:

04/25/95

Lab Number:

9504359-04A

Date Received:

04/27/95

Sample Matrix/Media:

WATER

Date Prepared:

05/10/95

Preparation Method:

EPA 5030

Date Analyzed:

05/10/95

Method Reference:

EPA 8015/8020

Analyst:

WAS

	Method
	Detection

Analyte	CAS #	Concentration (ug/L)	Detection Limit (ug/L)
BTEX/Gasoline			
Benzene Ethylbenzene Toluene o-Xylene p,m-Xylenes Gasoline	71-43-2 100-41-4 108-88-3 95-47-6	120 78 630 160 290 5600	0.4 0.3 0.3 0.4 0.4
Surrogates		Recovery (%)	QC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	113	50 - 150

ND: Not detected at or above limit of detection

Sample analyzed past recommended holding times for this analysis due to dilution necessary for quantitation.

^{--:} Information not available or not applicable

of 4 Page 3

Analytical Results

for

Alisto Engineering Group Client Reference: 10-250-02-003 Clayton Project No. 95043.59

04/25/95 Date Sampled: Sample Identification: QC-2 04/27/95 Date Received: Lab Number: 9504359-05A Date Prepared: 05/05/95 Sample Matrix/Media: WATER 05/05/95

EPA 5030 Date Analyzed: Preparation Method: EPA 8015/8020 Analyst: WAS Method Reference:

Method Reference:	EPA 8015/8020		Anarysc.	WAS		
Analyte		CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)		
BTEX/Gasoline						
Benzene Ethylbenzene Toluene o-Xylene p,m-Xylenes Gasoline		71-43-2 100-41-4 108-88-3 95-47-6	ND ND ND ND ND	0.4 0.3 0.3 0.4 0.4		
Surrogates			Recovery (%)	OC Limits (%)		
a,a,a-Trifluorotolu	lene	98-08-8	104	50 - 150		

Not detected at or above limit of detection ND: Information not available or not applicable

of 4 Page 4

Analytical Results

for

Alisto Engineering Group

Client Reference: 10-250-02-003 Clayton Project No. 95043.59

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9504359-06A

Date Received: Date Prepared:

05/05/95 05/05/95

Sample Matrix/Media: Preparation Method:

WATER EPA 5030

Date Analyzed:

Method Reference:

EPA 8015/8020

Analyst:

WAS

Analyte	CAS #	Concentration (ug/L)	Method Detection Limit (ug/L)
BTEX/Gasoline			
Benzene Ethylbenzene Toluene o-Xylene p,m-Xylenes Gasoline	71-43-2 100-41-4 108-88-3 95-47-6	ND ND ND ND ND	0.4 0.3 0.3 0.4 0.4
<u>Surrogates</u>		Recovery (%)	OC Limits (%)
a,a,a-Trifluorotoluene	98-08-8	110	50 - 150

Not detected at or above limit of detection ND:

Information not available or not applicable