

# RECEIVED

By Alameda County Environmental Health at 11:17 am, Nov 17, 2014

14 November 2014

Mr. Keith Nowell Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Transmittal of Technical Memorandum Requested by the Alameda

County Health Care Services Agency, Department of Environmental

Health on the Oakland Maintenance Center Site,

1100 Airport Drive Oakland, California

(Site#: RO00000414 – MOIA, United Airlines)

# Dear Keith:

Please find attached the above-referenced technical memorandum on Tier 2 screening of groundwater data, prepared by BASELINE Environmental Consulting, providing evaluations as requested by the Alameda County Environmental Health Care Services Agency, Department of Environmental Health in an email dated 15 October 2014.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please feel free to contact me at the Port of Oakland at (510) 627-1184 if you have any questions.

Sincerely,

Douglas Herman

**Environmental Scientist** 

Port of Oakland

s/epp/Oakland Maintenance Hangar MF-25-26



## **TECHNICAL MEMORANDUM**

**Date:** 14 November 2014 **Job No.:** 12315-20.02282

To: Keith Nowell and Dilan Roe, Alameda County Health Care Agency, Department of

**Environmental Health** 

From: Lydia Huang, P.E. No. 43995

Subject: Exceedance of Tier 2 Screening Values for Total Petroleum Hydrocarbons as Diesel

and Metals in Groundwater, Oakland Maintenance Center Site, Oakland, California

(Toxic Leaks Case RO0000414)

The Port of Oakland ("Port") submitted a request for No Further Action for the Oakland Maintenance Center ("OMC") Site, located at 1100 Airport Drive at the Oakland International Airport, in October 2012 to Alameda County Environmental Health ("ACEH"). In response to comments and requests from the ACEH, BASELINE submitted two technical memoranda, dated 7 February 2014 and 9 May 2014, on behalf of the Port to support the request for No Further Action. This current memorandum was prepared in response to ACEH's 15 October 2014 email to the Port, which directed the Port to evaluate the instances where the Tier 2 screening values for groundwater for the protection of potential ecological receptors were exceeded, as presented in the BASELINE's May 2014 technical memorandum.

The base Tier 2 screening values for groundwater used in BASELINE's May 2014 technical memorandum were for the protection of potential ecological receptors in an estuarine environment found in Table F-4a, Summary of Selected Aquatic Habitat Goals, in the document *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, issued by the San Francisco Bay Regional Water Quality Control Board ("RWQCB"), updated December 2013. The base screening values were then multiplied by dilution attenuation factors ("DAF") which were a function of the distance between the different Areas of Concern ("AOCs") across the OMC Site and the nearest possible aquatic receptor location.

The data presented in the May 2014 technical memorandum showed that there were instances where total petroleum hydrocarbons ("TPH") as diesel concentrations in groundwater exceeded the AOC-specific Tier 2 screening values in AOCs 1, 2, and 3, and certain metal concentrations exceeded AOC-specific screening values in AOCs 1, 2, 3, 5, 7, 8, 9, 14, and 17. This memorandum further evaluates these exceedances of the Tier 2 screening values. A figure from

-

<sup>&</sup>lt;sup>1</sup> No Further Action was requested in the report titled, *Final Report, Closure Documentation for the Former Oakland Maintenance Center (OMC), Oakland International Airport, 1100 Airport Drive, Oakland, California,* prepared by URS Corporation and dated 31 October, 2012.



14 November 2014 Page 2

the June 2004 investigation report prepared by ERM showing the location of the AOCs and sample locations is provided in Attachment A for reference.<sup>2</sup>

## TIER 2 SCREENING FOR TPH AS DIESEL IN GROUNDWATER

A discussion of TPH as diesel in groundwater samples collected from AOCs 1, 2, and 3 is presented below. The Tier 2 screening table for TPH from BASELINE's May 2014 technical memorandum is provided in Attachment B for reference.

## TPH as Diesel in Groundwater in AOC 1

AOC 1 was identified in the 2004 investigation by ERM as a small parts wash rack and cleaning room at the northwest side of the hangar building.<sup>3</sup> Five grab groundwater samples collected from AOC 1 were analyzed for TPH as gasoline and as diesel. None of the five grab groundwater samples collected from AOC 1 had TPH as gasoline concentrations that exceeded the DAF-adjusted Tier 2 screening value.

TPH as diesel was quantified with and without silica gel cleanup. The sample collected from boring ERM-B-2 in 2003 analyzed without silica gel cleanup was quantified to contain TPH as diesel at 5,500 micrograms per liter ("µg/l"), above the DAF-adjusted Tier 2 screening value for ecological receptors of 4,224 µg/l. The TPH as diesel concentration in this same sample analyzed after silica gel cleanup was less than the laboratory reporting limit of 560 μg/l. These results indicate that the majority of the TPH as diesel quantified without silica gel cleanup was polar and may not have been of petroleum origin. And as often is the case with grab groundwater samples, the sample may have entrained soil particles and the reported concentrations may not represent dissolved concentrations. The TPH as diesel concentrations in the other four grab groundwater samples were below the DAF-adjusted Tier 2 screening value, including those results that were quantified without silica gel cleanup.

Groundwater monitoring wells ERM-MW-01 through ERM-MW-05 are located near AOC 1. None of the samples collected from these wells were analyzed for TPH, indicating that TPH was not considered a chemical of concern in the vicinity of AOC 1. In addition, groundwater samples collected from AOCs 4, 5, 9, and 17, which are located between AOC 1 and possible ecological receptors in the storm water ditches northwest of the hangar building, did not contain TPH as diesel above the respective DAF-adjusted Tier 2 screening values for ecological receptors.

<sup>3</sup> Ibid.

<sup>&</sup>lt;sup>2</sup> Former United Airlines Oakland Maintenance Center, Site Investigation and Risk Assessment Report, Oakland International Airport, prepared by ERM and dated June 2004.



14 November 2014 Page 3

Considering the lines of evidence presented above, the one exceedance of the DAF-adjusted Tier 2 screening value for TPH as diesel quantified without silica gel cleanup in AOC 1 does not represent a risk to potential ecological receptors.

## TPH as Diesel in Groundwater in AOCs 2 and 3

AOC 2 was identified in the 2004 investigation by ERM as the aircraft wash rack.<sup>4</sup> A concrete paved area was used for aircraft storage and washing. Wash water was collected into a wastewater vault which was connected to the sanitary sewer; AOC 3 was defined as the wastewater vault into which the wash water drained.

In AOCs 2 and 3, four grab groundwater samples from borings ERM-B-4, ERM-B-5, ERM-B-6, and W-B-12 and one groundwater sample from well ERM-MW-09 exceeded the DAF-adjusted Tier 2 screening value for TPH as diesel.

There are five groundwater monitoring wells in the AOCs 2 and 3 area with TPH as diesel data, namely ERM-MW-06, ERM-MW-07, ERM-MW-08, ERM-MW-09, and ERM-MW-10. As grab groundwater samples from borings often entrain soil particles and the reported TPH concentrations may not represent dissolved concentrations, samples collected from wells are generally considered more representative. Some of the borings where these grab groundwater samples were collected are immediately adjacent to wells (e.g., boring ERM-B-4 is next to well ERM-MW-08, borings ERM-B-5 and ERM-B-6 are next to well ERM-MW-09, and boring W-B-12 is next to well ERM-MW-10). As there are groundwater samples collected from wells in the area, assessment of TPH as diesel impacts to groundwater is better accomplished by considering sample results from wells rather than grab groundwater samples.

Wells ERM-MW-06, ERM-MW-07, ERM-MW-08, ERM-MW-09, and ERM-MW-10 were sampled on three occasions, in May 2003, November 2003, and June 2006 and the samples were analyzed for TPH as diesel in a total of 14 samples. Only one of these groundwater samples was reported to contain TPH as diesel above the DAF-adjusted Tier 2 screening value. The sample collected from ERM-MW-09 from November 2003 was quantified without silica gel cleanup to contain TPH as diesel at 2,600  $\mu$ g/l, slightly above the DAF-adjusted Tier 2 screening value of 2,240  $\mu$ g/l; this sample was also quantified after silica gel cleanup and was reported to contain TPH as diesel at 760  $\mu$ g/l, below the screening value. Samples collected from ERM-MW-09 in May 2003 and June 2006 did not contain TPH as diesel concentrations without silica gel cleanup above the DAF-adjusted Tier 2 screening value.

٠

<sup>&</sup>lt;sup>4</sup> ERM op. cit., p.2.



14 November 2014 Page 4

Considering the available data for TPH as diesel in groundwater collected from AOCs 2 and 3, it does not appear that the instances when the DAF-adjusted Tier 2 screening value for TPH as diesel were exceeded represent a risk to ecological receptors.

## TIER 2 SCREENING FOR METALS IN GROUNDWATER

The concentrations of certain metals in groundwater samples collected from the OMC Site exceeded the Tier 2 screening values presented in BASELINE's May 2014 technical memorandum for the protection of potential aquatic receptors in the storm water drainage ditches along the edges of the site. The Tier 2 screening values used in the May 2014 memorandum were conservatively chosen to be those protective of an estuarine environment, which are the lower of the values protective of freshwater and saltwater environments. In actuality, the habitat in the storm water drainage ditches near the OMC Site appears to resemble a freshwater habitat.

To evaluate whether the storm water ditches more resembles a fresh- or salt-water habitat, BASELINE reviewed available electrical conductivity data for groundwater at the OMC Site. Table 1 summarizes the electrical conductivities recorded on groundwater sampling forms from the June 2006 monitoring event. The data indicate that there is a wide variability of electrical conductivities between the wells, even among wells that are near each other. For example, consider the electrical conductivities measured in seven wells located at the northwestern corner of the OMC Site, nearest the northwestern drainage ditches (ERM-MW-06, ERM-MW-08, ERM-MW-09, ERM-MW-10, ERM-MW-15, ERM-MW-16, and ERM-MW-17); the electrical conductivities in these wells ranged from 430 to 9,310 micro-Siemen/centimeter ("μS/cm"), with five of the values less than 2,500 μS/cm (Table 1).6 Across the OMC Site, about half of the all the electrical conductivities recorded from the wells at the end of purging were less than 3,000 μS/cm, and the overall average electrical conductivity among the wells was about 4,300 µS/cm. The pockets of more saline water detected in some of the wells may be indicative of isolated and random influence of Bay water intrusion. But perhaps more influential, the habitat is expected to be more similar to a freshwater environment because the ditches periodically receive large volumes of storm water during and following rain events.

Table 2 presents a revised Tier 2 screening of metal concentrations in groundwater using base Tier 2 screening values based on the protection of aquatic receptors in a freshwater

<sup>&</sup>lt;sup>5</sup> Electrical conductivity values were summarized from groundwater sampling forms provided in Appendix A of Groundwater Sampling and Analysis Report, Former United Airlines Hangar, Oakland International Airport, Port of Oakland, Oakland, California, prepared by SCA Environmental Inc. and dated August 2006.

<sup>&</sup>lt;sup>6</sup> For reference, the electrical conductivity of sea water is typically in the range of 55,000  $\mu$ S/cm, and the electrical conductivity of drinking water is typically in the range between 50 and 800  $\mu$ S/cm.

Values cited in this paragraph exclude suspect or possibly erroneous values recorded on the sampling forms.



14 November 2014 Page 5

habitat<sup>8</sup> (in contrast to the estuarine screening values presented in the May 2014 technical memorandum). The base screening values for a freshwater habitat is higher than the saltwater values for arsenic, beryllium, copper, nickel, silver, thallium, and zinc.

The primary metal of concern appears to be nickel in AOCs 1, 2, and 3 (Table 2). The other metals where at least one reported groundwater concentration exceeded the DAF-adjusted Tier 2 screening value were arsenic (in AOC 17), beryllium (in AOC 14), cadmium (in AOCs 2 and 3), cobalt (in AOC 1), copper (in AOCs 2 and 3), lead (in AOCs 2, 9, and 14), silver (in AOC 9), and zinc (in AOC 2). The available data set prevented a thorough evaluation of each metal. One problem was that many reporting limits were above the DAF-adjusted Tier 2 screening values (e.g., cadmium, cobalt, lead, and silver). Other metals with more appropriate laboratory reporting limits had large percentages of non-detect results which prevented the calculation of meaningful upper confidence limits ("UCLs") (e.g., copper, lead, and zinc). Also some elevated concentrations in grab groundwater samples were markedly higher than samples collected from nearby wells, which raise doubts about the grab groundwater results. 9

Nickel was the only available data set suitable for statistical evaluation. Therefore, we propose to use nickel as the indicator metal to represent all metals.

# Nickel in Groundwater in AOCs 1, 2 and 3

The 95 percent UCLs for nickel concentrations in groundwater were calculated for AOCs 1, 2, and 3 for comparison against the AOC-specific Tier 2 screening value for protection of a freshwater aquatic habitat. The statistical software ProUCL (version 5.0) was used to calculate UCLs using parametric and nonparametric methods for data sets with non-detect results and the estimated 95 percent UCLs are summarized below. The output form ProUCL is provided in Attachment C.

9

<sup>&</sup>lt;sup>8</sup> Values are from Table F-4a Summary of Selected Aquatic Habitat Goals in the document *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, issued by the San Francisco Bay RWQCB as updated December 2013.

<sup>&</sup>lt;sup>9</sup> Examples: (1) in AOC 2, copper and lead concentrations reported for grab groundwater samples collected from W-B-8 were markedly higher than samples collected from adjacent well ERM-MW-06; and (2) in AOC 3, cadmium and copper concentrations reported for grab groundwater samples collected from W-B-12 were markedly higher than samples collected from adjacent well ERM-MW-10.



14 November 2014

Page 6

| AOC | Number of<br>Data Points | Number of<br>Detected | ProUCL Suggested 95 Percent UCL(s) (µg/l) | AOC-Specific Tier 2 Screening Value (µg/l) |
|-----|--------------------------|-----------------------|-------------------------------------------|--------------------------------------------|
| 1   | 28                       | 24                    | 155 to 200                                | 343                                        |
| 2   | 24                       | 21                    | 148 to 150                                | 182                                        |
| 3   | 6                        | 4                     | 91                                        | 120                                        |

The estimates of the 95 percent UCL for nickel concentrations in groundwater were below the AOC-specific Tier 2 freshwater screening values in all three AOCs, suggesting that nickel concentrations in groundwater do not represent an ecological risk.

Based on the detailed evaluation presented above, we conclude that the instances where TPH as diesel and metal concentrations in groundwater samples exceed the Tier 2 screening values for the protection of aquatic habitat do not represent a significant ecological risk at the OMC Site.

### **ENCLOSURES:**

Table 1: Electrical Conductivity in Groundwater, June 2006

Table 2: Post-2002 Data Set – Groundwater Results – Metals – Revised Tier 2

Attachment A: ERM 2004 Figure showing AOCs and Sample Locations

Attachment B: Revised Table E-4b from May 2014 Technical Memorandum Attachment C: ProUCL Output for Nickel in Groundwater for AOCs 1, 2, and 3

No 43995

\_\_\_\_\_

Lydia Huang

1 de Throng

TABLE 1: ELECTRICAL CONDUCTIVITY IN GROUNDWATER MONITORING WELLS
Oakland Maintenance Center Site, Oakland, California (microSiemen/centimeter)

|          | June 2006 Ground     | w  | ater Sampling Event |   |
|----------|----------------------|----|---------------------|---|
|          | Measured at Beginnir | ng | Measured at         |   |
| Well     | of Purging           | Ŭ  | End of Purging      |   |
| ERM-MW01 | 2,180                |    | 3,740               |   |
| ERM-MW02 | 4,240                |    | 2,300               |   |
| ERM-MW03 | 4,030                |    | 4,080               |   |
| ERM-MW04 | 41                   | а  | 5,380               |   |
| ERM-MW05 | 37                   | а  | 11,700              |   |
| ERM-MW06 | 1,240                |    | 430                 |   |
| ERM-MW07 | 15                   | а  | 13                  | а |
| ERM-MW08 | 22                   | а  | 2,440               |   |
| ERM-MW09 | 870                  |    | 1,430               |   |
| ERM-MW10 | 725                  |    | 875                 |   |
| ERM-MW11 | 5,140                |    | 5,080               |   |
| ERM-MW12 | 9,290                |    | 9,580               |   |
| ERM-MW13 | 6,150                |    | 12,200              |   |
| ERM-MW14 | 7,360                |    | 6,920               |   |
| ERM-MW15 | 1,010                |    | 990                 |   |
| ERM-MW16 | 22,400               |    | 9,310               |   |
| ERM-MW17 | 2,790                |    | 5,000               |   |
| UAL-MW1  | 4,290                |    | 4,410               |   |
| UAL-MW2  | 1,320                |    | 1,300               |   |
| UAL-MW3  | 49                   | а  | 4,800               |   |
| UAL-MW4  | 9,290                |    | 9,200               |   |
| UAL-MW5  | 36                   | а  | 7,513               |   |
| MW-1     | 720                  |    | 730                 |   |
| MW-2     | 1,530                |    | 1,570               |   |
| MW-3     | 735                  |    | 730                 |   |
| MW-4     | 730                  |    | 740                 |   |
| MW-5     | no data on           | sa | ampling form        |   |
| MW-6     | 1,600                |    | 1,620               |   |
| MW-7     | no data on           | Sa | ampling form        |   |
| MW-8     | 1,635                |    | 1,635               |   |

### Notes:

Electrical conductivity values were recorded on groundwater sampling forms in Appendix A of *Groundwater Sampling and Analysis Report, Former United Airlines Hangar, Oakland International Airport, Port of Oakland, Oakland, California,* prepared by SCA Environmental Inc. and dated August 2006.

For reference, the electrical conductivity of sea water is typically in the range of 55,000  $\mu$ S/cm, and the electrical conductivity of drinking water is typically in the range between 50 and 800  $\mu$ S/cm.

<sup>&</sup>lt;sup>a</sup> Value is suspect and possibly erroneous.

Table 2: Post-2002 Data Set – Groundwater Results – Metals – Revised Tier 2 Screening Oakland Maintenance Center Site, Oakland, California ( $\mu g/L$ )

|                   |            |                   | 'n       | 0       | ᄄ         | Ę       |        |        |      |          |        | ٤        |      |
|-------------------|------------|-------------------|----------|---------|-----------|---------|--------|--------|------|----------|--------|----------|------|
|                   |            |                   | Antimony | Arsenic | Beryllium | Cadmium | alt    | Copper | σ    | <u>e</u> | e      | Thallium | 0    |
| Sample Location   | AOC        | Date Sampled      | Ant      | Ars     | Ber       | Cad     | Cobalt | Sop    | Lead | Nickel   | Silver | Tha      | Zinc |
| Base Tier 2 ESLs  | - Ecologi  | ical Receptor (a) | 30       | 150     | 2.7       | 0.25    | 3.0    | 9.0    | 2.5  | 52       | 0.34   | 20       | 120  |
| Area of Concern 1 |            |                   |          |         |           |         |        |        |      |          |        |          |      |
|                   | l Tier-2 l | ESLs (DAF = 6.6)  | 198      | 990     | 18        | 1.7     | 20     | 59     | 17   | 343      | 2.2    | 132      | 792  |
| ERM-B-1           | 1          | 4/15/2003         | <50      | <50     | <5        | <5      | 20     | <5     | <50  | 190      | <5     | <50      | 6.5  |
| ERM-B-2           | 1          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 130      | <5     |          | <5   |
| ERM-B-2           | 1          | 4/15/2003         |          |         |           |         |        |        |      |          |        | <5       |      |
| ERM-MW-01         | 1          | 5/9/2003          |          |         |           |         |        |        |      | 90       |        |          |      |
| ERM-MW-01         | 1          | 11/6/2003         |          |         |           |         |        |        |      | 190      |        |          |      |
| ERM-MW-01         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 71       |        |          |      |
| ERM-MW-02         | 1          | 5/9/2003          |          |         |           |         |        |        |      | 36       |        |          |      |
| ERM-MW-02         | 1          | 11/6/2003         |          |         |           |         |        |        |      | 15       |        |          |      |
| ERM-MW-02         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 24       |        |          |      |
| ERM-MW-03         | 1          | 5/9/2003          |          |         |           |         |        |        |      | <30      |        |          |      |
| ERM-MW-03         | 1          | 11/6/2003         |          |         |           |         |        |        |      | 49       |        |          |      |
| ERM-MW-03         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 39       |        |          |      |
| ERM-MW-04         | 1          | 5/9/2003          |          |         |           |         |        |        |      | 62       |        |          |      |
| ERM-MW-04         | 1          | 11/7/2003         |          |         |           |         |        |        |      | 200      |        |          |      |
| ERM-MW-04         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 51       |        |          |      |
| ERM-MW-05         | 1          | 5/9/2003          |          |         |           |         |        |        |      | <30      |        |          |      |
| ERM-MW-05         | 1          | 11/7/2003         |          |         |           |         |        |        |      | 45       |        |          |      |
| ERM-MW-05         | 1          | 6/27/2006         |          |         |           |         |        |        |      | <20      |        |          |      |
| ERM-MW-11         | 1          | 12/30/2003        |          |         |           |         |        |        |      | 14       |        |          |      |
| ERM-MW-11         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 97       |        |          |      |
| ERM-MW-12         | 1          | 12/29/2003        |          |         |           |         |        |        |      | 10       |        |          |      |
| ERM-MW-12         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 22       |        |          |      |
| ERM-MW-13         | 1          | 12/29/2003        |          |         |           |         |        |        |      | 160      |        |          |      |
| ERM-MW-13         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 370      |        |          |      |
| ERM-MW-14         | 1          | 12/29/2003        |          |         |           |         |        |        |      | 590      |        |          |      |
| ERM-MW-14         | 1          | 6/27/2006         |          |         |           |         |        |        |      | 68       |        |          |      |
| W-B-4             | 1          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | <20      | <5     |          | <20  |
| W-B-5             | 1          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 64       | <5     | <50      | <20  |
| W-B-6             | 1          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 31       | <5     | <50      | <20  |
| Area of Concern 2 |            |                   |          |         |           |         |        |        |      |          |        |          |      |
|                   | l Tier 2 l | ESLs (DAF = 3.5)  | 105      | 525     | 9.5       | 0.88    | 11     | 32     | 8.8  | 182      | 1.2    | 70       | 420  |
| ERM-B-3           | 2          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 120      | <5     | <50      | <5   |
| ERM-B-4           | 2          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 160      | <5     | <50      | <5   |
| ERM-B-5           | 2          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 230      | <5     |          | 6.6  |
| ERM-B-6           | 2          | 4/15/2003         | <50      | <50     | <5        | <5      | <20    | <5     | <50  | 260      | <5     |          | <5   |
| ERM-B-7           | 2          | 4/15/2003         | <50      | <50     | <5        | 5.6     | <20    | 5.4    | <50  | 92       | <5     | <50      | 14   |
| ERM-MW-06         | 2          | 5/9/2003          |          |         |           | <5      |        |        | <50  | <30      |        |          |      |
| ERM-MW-06         | 2          | 12/30/2003        |          |         |           |         |        | 17     |      |          |        |          |      |
| ERM-MW-06 (b)     | 2          | 11/6/2003         |          |         |           | <5      |        |        | 21   | 10       |        |          |      |
| ERM-MW-06         | 2          | 6/27/2006         |          |         |           | <5      |        | <10    | <3   | <20      |        |          |      |
| ERM-MW-07         | 2          | 5/9/2003          |          |         |           | <5      |        |        | <50  | 84       |        |          |      |
| ERM-MW-07 (b)     | 2          | 11/6/2003         |          |         |           | <5      |        |        | 33   | 70       |        |          |      |
| ERM-MW-07         | 2          | 6/26/2006         |          |         |           | <5      |        |        | <3   | 23       |        |          |      |
| ERM-MW-08         | 2          | 5/9/2003          |          |         |           | <5      |        |        | <50  | 110      |        |          |      |
| ERM-MW-08 (b)     | 2          | 11/6/2003         |          |         |           | <5      |        |        | 33   | 240      |        |          |      |
| ERM-MW-08         | 2          | 6/26/2006         |          |         |           | <5      |        |        | <3   | 250      |        |          |      |

Table 2: Post-2002 Data Set – Groundwater Results – Metals – Revised Tier 2 Screening Oakland Maintenance Center Site, Oakland, California ( $\mu g/L$ )

|                      |            |                   | Antimony | <u>:</u>      | Beryllium  | Cadmium |          | <u>.</u>      |                | _          |        | E        |      |
|----------------------|------------|-------------------|----------|---------------|------------|---------|----------|---------------|----------------|------------|--------|----------|------|
|                      |            |                   | tim      | Arsenic       | ery.       | adm     | Cobalt   | Copper        | Lead           | Nickel     | Silver | Thallium | Zinc |
| Sample Location      | AOC        | Date Sampled      |          |               |            |         |          |               |                |            |        |          |      |
| Base Tier 2 ESLs     |            |                   | 30       | 150           | 2.7        | 0.25    | 3.0      | 9.0           | 2.5            | 52         | 0.34   | 20       | 120  |
| ERM-MW-09            | 2          | 5/9/2003          |          |               |            | <5      |          |               | <50            | 230        |        |          |      |
| ERM-MW-09 (b)        | 2          | 11/6/2003         |          |               |            | <5      |          |               | 20             | 370        |        |          |      |
| ERM-MW-09            | 2          | 6/26/2006         |          |               |            | <5      |          |               | <3             | 140        |        |          |      |
| ERM-MW-15            | 2          | 12/30/2003        |          |               |            |         |          |               |                | 6          |        |          |      |
| ERM-MW-15            | 2          | 6/26/2006         |          |               |            |         |          |               |                | 110        |        |          |      |
| ERM-MW-16            | 2          | 12/30/2003        |          |               |            |         |          |               |                | 13         |        |          |      |
| ERM-MW-16            | 2          | 6/26/2006         |          |               |            |         |          |               |                | 48         |        |          |      |
| W-B-7                | 2          | 4/17/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | <50      | <20  |
| W-B-8                | 2          | 4/14/2003         | <50      | <50           | <5         | <5      | <20      | 48            | 1900           | 52         | <5     |          | 790  |
| W-B-8 (c)            | 2          | 4/14/2003         | <60      | <500          | <4         | <5      | <50      | 94            | 960            | 100        | <10    | <50      | 140  |
| Area of Concern 3    |            | -01 (045 00)      |          | 0.45          |            | 0.50    |          |               |                | 400        |        | 40       | 070  |
|                      |            | ESLs (DAF = 2.3)  | 69       | 345           | 6.2        | 0.58    | 6.9      | 21            | 5.8            | 120        | 0.78   | 46       | 276  |
| ERM-MW-10            | 3          | 5/9/2003          |          |               |            | <5      |          |               | <50            | 82         |        |          |      |
| ERM-MW-10            | 3          | 12/30/2003        |          |               |            |         |          | <5            | <br>45         | 400        |        |          |      |
| ERM-MW-10 (b)        | 3          | 11/6/2003         |          |               |            | <5      |          |               | <15            | 120        |        |          |      |
| ERM-MW-10            | 3          | 6/26/2006         |          |               |            | <5      |          | <10           | <3             | 26         |        |          |      |
| W-B-10               | 3          | 4/15/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | <50      | <20  |
| W-B-11               | 3          | 4/15/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | <50      | <20  |
| W-B-12               | 3          | 4/15/2003         | <50      | <50           | <5         | 38      | <20      | 220           | <50            | 63         | <5     | <50      | 36   |
| Area of Concern 5    |            | > FOL - (DAF - 0) | 400      | 000           | 40         | 4 -     | 40       | - 4           | 45             | 040        |        | 400      | 700  |
|                      |            | 2 ESLs (DAF = 6)  | 180      | 900           | 16         | 1.5     | 18       | 54            | 15             | 312        | 2.0    | 120      | 720  |
| ERM-B-10             | 5          | 4/17/2003         | 74       | <50           | 8.6        | <5      | <20      | <5            | <50            | <20        | <5     | <50      | <20  |
| ERM-B-11             | 5          | 4/17/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     |          | <20  |
| W-B-1                | 5          | 4/14/2003         | <60      | <b>&lt;</b> 5 | <4         | <5      | <50      | <50           | <50            | <50        | <10    | <50      | <50  |
| W-B-2                | 5          | 4/14/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | <50      | <20  |
| W-B-2 (c)            | 5          | 4/14/2003         | <60      | <b>&lt;</b> 5 | <4         | <5      | <50      | <50           | <50            | <50        | <10    | <50      | <50  |
| W-B-3                | 5          | 4/15/2003         | 55       | <50           | 6.1        | <5      | <20      | <5<br>5       | <50            | <20        | <5     | <50      | 6.3  |
| W-B-3 (c)            | 5          | 4/15/2003         | <60      | <5            | <4         | <5      | <50      | <50           | <50            | 60         | <10    | <50      | <50  |
| Area of Concern 7    | l Tier 2 F | ESLs (DAF = 4.2)  | 126      | 630           | 11         | 1.1     | 13       | 38            | 11             | 218        | 1.4    | 84       | 504  |
| ERM-MW-17            | 7          | 12/30/2003        |          | <5            |            |         |          |               |                |            |        |          |      |
| ERM-MW-17            | 7          | 6/26/2006         |          | 8             |            |         |          |               |                |            |        |          |      |
| ERM-MW-17D           | 7          | 12/30/2003        |          | <b>&lt;</b> 5 |            |         |          |               |                |            |        |          |      |
| W-B-16               | 7          | 4/17/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | 54         | <5     | <50      | <20  |
| W-B-16 (c)           | 7          | 4/17/2003         | <60      | <b>5.5</b>    | <4         | <5      | <50      | <50           | <50            | 54         | <10    | <50      | <50  |
| W-B-10 (c)<br>W-B-17 | 7          | 4/17/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | <50      | <20  |
| W-B-17 (c)           | 7          | 4/17/2003         | <6       | <b>12</b>     | <4         | <5      | <50      | <50           | <50            | <50        | <10    | <5       | <50  |
| Area of Concern 8    |            | 4/17/2003         |          | 12            | <u> </u>   |         | <u> </u> | <u> </u>      | <b>&lt;</b> 30 | <b>\30</b> | <10    |          |      |
|                      | l Tier 2 F | ESLs (DAF = 2.7)  | 81       | 405           | 7.3        | 0.68    | 8.1      | 24            | 6.8            | 140        | 0.92   | 54       | 324  |
| ERM-B-12             | 8          | 4/17/2003         | <50      | <50           | <5         | <5      | <20      | <b>&lt;</b> 5 | <50            | 63         | <5     | <50      | <20  |
| Area of Concern 9    |            | 7/11/2000         | -50      | 100           | , <u>,</u> |         | 720      | , <u>,</u>    | 100            |            |        | -00      | 120  |
|                      | l Tier 2 E | ESLs (DAF = 5.5)  | 165      | 825           | 15         | 1.4     | 17       | 50            | 14             | 286        | 1.9    | 110      | 660  |
| ERM-B-13             | 9          | 4/16/2003         | <50      | <50           | 5.9        | <5      | <20      | <5            | 57             | <20        | 5.8    | <50      | 17   |
| ERM-B-14             | 9          | 4/17/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | 65       | <20  |
| P-2/UAL-MW-5         | 9          | 4/22/2003         | <60      | <500          | <4         | <5      | <50      | <50           | <50            | <50        | <10    | <50      | <50  |
| P-2/UAL-MW-5         | 9          | 11/6/2003         |          |               |            |         |          |               |                | <5         |        |          |      |
| P-2/UAL-MW-5         | 9          | 6/27/2006         |          |               |            |         |          |               |                | <20        |        |          |      |
| W-B-22               | 9          | 4/18/2003         | <50      | <50           | <5         | <5      | <20      | <5            | <50            | <20        | <5     | <50      | 9.9  |
|                      | -          | =                 |          |               |            |         |          |               |                |            |        |          |      |

Table 2: Post-2002 Data Set – Groundwater Results – Metals – Revised Tier 2 Screening Oakland Maintenance Center Site, Oakland, California ( $\mu$ g/L)

|                    |           |                  | Antimony | Arsenic | Beryllium       | Cadmium          | Cobalt | Copper | Lead     | Nickel | Silver | Thallium | ıc   |
|--------------------|-----------|------------------|----------|---------|-----------------|------------------|--------|--------|----------|--------|--------|----------|------|
| Sample Location    | AOC       | Date Sampled     | An       | Āŗ      | Be              | Ca               | ပိ     | ပိ     | Ľ        | ž      | ŝ      | Ĕ        | Zinc |
| Base Tier 2 ESLs   | - Ecologi | cal Receptor (a) | 30       | 150     | 2.7             | 0.25             | 3.0    | 9.0    | 2.5      | 52     | 0.34   | 20       | 120  |
| Area of Concern 14 |           |                  |          |         |                 |                  |        |        |          |        |        |          |      |
| DAF-Adjust         | ed Tier 2 | 2 ESLs (DAF = 1) | 30       | 150     | 2.7             | 0.25             | 3.0    | 9.0    | 2.5      | 52     | 0.34   | 20       | 120  |
| ERM-B-23           | 14        | 4/17/2003        | <50      | <50     | <5              | <5               | <20    | <5     | <50      | <20    | <5     | <50      | <20  |
| W-B-32             | 14        | 4/16/2003        | <50      | <50     | 5.8             | <5               | <20    | 5.6    | 50       | <20    | <5     |          | 21   |
| W-B-38             | 14        | 4/15/2003        | <50      | <50     | <5              | <5               | <20    | <5     | <50      | <20    | <5     | <50      | <20  |
| Area of Concern 17 |           |                  |          |         |                 |                  |        |        |          |        |        |          |      |
|                    |           | SLs (DAF = 5.5)  | 165      | 825     | 15              | 1.4              | 17     | 50     | 14       | 286    | 1.9    | 110      | 660  |
| UAL-MW-1           | 17        | 4/15/2003        | <60      | 8       | <4              | <5               | <50    | <50    | <50      | <50    | <10    | <50      | <50  |
| UAL-MW-1           | 17        | 6/27/2006        | <60      | 42      | <2              |                  |        |        |          |        |        |          |      |
| UAL-MW-2           | 17        | 4/15/2003        | <60      | <5      | <4              | <5               | <50    | <50    | <50      | <50    | <10    | <50      | <50  |
| UAL-MW-2           | 17        | 6/27/2006        | <60      | <5      | <2              |                  |        |        |          |        |        |          |      |
| UAL-MW-3           | 17        | 4/15/2003        | <60      | <5      | <4              | <5               | <50    | <50    | <50      | 100    | <10    | <50      | <50  |
| UAL-MW-3           | 17        | 6/27/2006        | <60      | 12      | <2              |                  |        |        |          |        |        |          |      |
| P-1/UAL-MW-4       | 17        | 4/22/2003        | <60      | 847     | <4              | <5               | <50    | <50    | <50      | <50    | <10    | <50      | <50  |
| Area of Concern 18 | od Tior 3 | 2 ESLs (DAF = 7) | 210      | 1050    | 19              | 1.8              | 21     | 63     | 18       | 364    | 2.4    | 140      | 840  |
| W-B-18             | 18        | 4/18/2003        | <60      | <50     | <u>19</u><br><4 | <u>1.6</u><br><5 | <50    | <50    | <50      | <50    | <10    | <50      | <50  |
| W-B-18<br>W-B-19   | 18        | 4/18/2003        | <60      | <50     | <0.4            | <0.5             | <5     | <5     | <50      | <5     | <1     | <50      | <5   |
| W-B-19<br>W-B-20   | 18        | 4/18/2003        | <60      | <50     | <0.4            | <0.5             | <5     | <5     | <50      | <5     | <1     | <50      | <5   |
| W-B-20<br>W-B-20D  | 18        | 4/18/2003        | <600     | <500    | <0.4            | < 0.5            | <5     | <5     | <5<br><5 | <5     | <1     | <500     | <5   |
| W-B-20D<br>W-B-9   | 18        | 4/18/2003        | <60      | <50     | <0.4            |                  | <5     | <5     | <50      | <5     | <1     | <50      | <5   |
| Area of Concern 19 | 10        | 7/10/2000        | 100      | 100     | чо. т           | ٦٥.٥             |        |        | 100      |        |        | 100      | 10   |
|                    | ed Tier 2 | 2 ESLs (DAF = 1) | 30       | 150     | 2.7             | 0.25             | 3.0    | 9.0    | 2.5      | 52     | 0.34   | 20       | 120  |
| W-B-25             | 19        | 4/16/2003        | <50      | <50     | <5              | <5               | <20    | <5     | <50      | <20    | <5     | <50      | 8.1  |
| W-B-29             | 19        | 4/16/2003        | <50      | <50     | <5              | <5               | <20    | <5     | <50      | <20    | <5     | <50      | 5    |

Yellow highlighting indicates an exceedance of the AOC-specific Tier screening value.

Bolding indicates detected concentrations.

All units are in micrograms per liter ( $\mu$ g/L).

Only analytes that have at least one detection and have exceeded the Tier-1 screening level are shown.

DAF = dilution attenuation factor

ESL = environmental screening level

- -- = not analyzed
- < = analyte was not detected at or above the laboratory method detection limit
- (a) Base Tier 2 ESLs from Table F-4a, Summary of Selected Aquatic Habitat Goals, Freshwater Habitat, in the document *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Updated December 2013 by the San Francisco Bay RWQCB.
- (b) The 11/6/2003 data for samples collected from wells ERM-MW-06, ERM-MW-07, ERM-MW-08, ERM-MW-09, and ERM-MW-10 were discovered to be missing from previous tabulations.
- (c) Analyzed by second laboratory.

# Attachment A

**ERM 2004 Figure showing AOCs and Sample Locations** 



# **Attachment B**

**Revised Table E-4b from May 2014 Technical Memorandum** 

# Revised Table E-4b Post-2002 Data Set - Groundwater Results - TPH - Tier-2

|                     |            |                                |           |      | sg)        |     |           |    |        |   |            |   | _      |    |
|---------------------|------------|--------------------------------|-----------|------|------------|-----|-----------|----|--------|---|------------|---|--------|----|
|                     |            |                                | ġ         |      | TPH-d (sg) |     | ģ         |    | ٠      |   | <u>:</u> = |   | TPH-mo |    |
|                     | 400 5      |                                | TPH-d     |      | 놢          |     | TPH-g     |    | TPH-ho |   | TPH-jŕ     |   | 높      |    |
| Sample Location     |            | Nate Sampled<br>ker Tier-2 (a) | NS        |      | NS         |     | NS        |    | NS     |   | NS         |   | NS     | _  |
|                     |            | ker Tier-2 (a)                 | NS        |      | NS         |     | NS        |    | NS     |   | NS         |   | NS     |    |
| Ecological Receptor |            |                                | 640       |      | 640        |     | 500       |    | 640    |   | 640        |   | 640    |    |
| Area of Concern 1   |            |                                |           |      |            |     |           |    |        |   |            |   |        |    |
| Ecological Receptor | Tier-2 (a) | (DAF = 6.6)                    | 4224      |      | 4224       |     | 3300      |    | 4224   |   | 4224       |   | 4224   |    |
| ERM-B-1             | 1          | 4/15/2003                      | 2300      | J    | 340        | J   | 110       | Y  | NA     |   | NA         |   | NA     |    |
| ERM-B-2             | 1          | 4/15/2003                      | 5500      | JY   | <560       | UJ  | 71        | Υ  | NA     |   | NA         |   | NA     |    |
| W-B-4               | 1          | 4/15/2003                      | 140       | JΥ   | 97         | JΥ  | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-5               | 1          | 4/15/2003                      | < 500     | UJ Y | NA         |     | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-6               | 1          | 4/15/2003                      | 520       | JΥ   | 260        | JΥ  | <50       |    | NA     |   | NA         |   | NA     |    |
| Area of Concern 2   |            |                                |           |      |            |     |           |    |        |   |            |   |        |    |
| Ecological Receptor | Tier-2 (a) | (DAF = 3.5)                    | 2240      |      | 2240       |     | 1750      |    | 2240   |   | 2240       |   | 2240   |    |
| ERM-B-3             | 2          | 4/15/2003                      | 930       | Y    | 200        | Υ . | <50       |    | NA     |   | NA         |   | NA     |    |
| ERM-B-4             | 2          | 4/15/2003                      | 4500      | J    | 840        | J   | <50       |    | NA     |   | NA         |   | NA     |    |
| ERM-B-5             | 2          | 4/15/2003                      | 12000     | J    | 4700       | J   | <500      |    | NA     |   | NA         |   | NA     |    |
| ERM-B-6             | 2          | 4/15/2003                      | 7700      | J    | 990        | J   | 1700      |    | NA     |   | NA         |   | NA     |    |
| ERM-B-7             | 2          | 4/15/2003                      | 1900      | J    | 150        | J   | <50       | J  | NA     |   | NA         |   | NA     |    |
| ERM-MW-06           | 2          | 5/9/2003                       | <50       |      | NA         |     | <50       |    | <100   |   | <100       |   | <100   |    |
| ERM-MW-06           | 2          | 11/6/2003                      | 390       |      | 110        |     | NA        |    | <250   |   | <50        |   | <250   |    |
| ERM-MW-06           | 2          | 6/27/2006                      | NA        |      | NA         |     | <50       | UJ | NA     |   | NA         |   | NA     |    |
| ERM-MW-06 (b)       | 2          | 5/9/2003                       | NA        | V    | NA         |     | <50       |    | NA     |   | NA         |   | NA     | ٧. |
| ERM-MW-07           | 2          | 5/9/2003                       | 89        | Υ    | NA         |     | <50       |    | <100   |   | <100       |   | 110    | Υ  |
| ERM-MW-07           | 2          | 11/6/2003                      | <50       |      | NA         |     | NA        |    | <250   |   | <50        |   | <250   |    |
| ERM-MW-07           | 2          | 6/26/2006                      | <50       |      | NA         |     | <50       |    | <300   |   | <50        |   | <300   |    |
| ERM-MW-07 (b)       | 2          | 5/9/2003                       | NA        | V    | NA         |     | <50       |    | NA     |   | NA         |   | NA     | Υ  |
| ERM-MW-08           | 2          | 5/9/2003                       | 170       | Υ    | NA         |     | <50       |    | <100   |   | <100       |   | 150    | ī  |
| ERM-MW-08           | 2          | 11/6/2003                      | 1100      | V    | 250        | J   | NA        | V  | 1900   | V | <50        | V | <250   |    |
| ERM-MW-08           | 2          | 6/26/2006                      | 450       | Υ    | NA         |     | 77        | Υ  | 330    | Υ | 400        | Υ | <300   |    |
| ERM-MW-08 (b)       | 2          | 5/9/2003                       | NA        | Υ    | NA         |     | <50       |    | NA     |   | NA         |   | NA     | Υ  |
| ERM-MW-09           | 2          | 5/9/2003                       | 540       | ' '  | NA         |     | 220       | J  | <100   |   | <100       |   | 270    | 1  |
| ERM-MW-09           | 2          | 11/6/2003                      | 2600      | Y    | 760        |     | NA        | V  | 1300   | ~ | <250       | Υ | <250   |    |
| ERM-MW-09           | 2          | 6/26/2006                      | 920       | ı    | NA         |     | 460       | Y  | 580    | Υ | 820        | ' | <300   |    |
| ERM-MW-09 (b)       | 2          | 5/9/2003                       | NA        | J    | NA         | J   | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-7               | 2          | 4/17/2003                      | 83        | J    | 79         | J   | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-8               | 2          | 4/14/2003                      | 91        | 0    | 100        | 3   | <50       |    | NA     |   | 210        |   | 1100   |    |
| W-B-8 (b)           | 2          | 4/14/2003                      | NA        |      | 210        |     | NA        |    | NA     |   | NA         |   | NA     |    |
| Area of Concern 3   | Ti- 0 ( )  | (DAE 2.2)                      | 4.470     |      | 4.4=0      |     | 4450      |    | 4.4=0  |   | 4 470      |   | 4 470  |    |
| Ecological Receptor |            |                                | 1472      | Y    | 1472       |     | 1150      |    | 1472   |   | 1472       |   | 1472   | Y  |
| ERM-MW-10           | 3          | 5/9/2003                       | 75<br>440 |      | NA<br>480  |     | <50       |    | <100   |   | <100       |   | 110    |    |
| ERM-MW-10           | 3          | 11/6/2003                      | 140       |      | 180        |     | NA<br>.EO |    | 620    |   | <50        |   | <250   |    |
| ERM-MW-10           | 3          | 6/26/2006                      | <50       |      | NA         |     | <50       |    | <300   |   | <50        |   | <300   |    |
| ERM-MW-10 (b)       | 3          | 5/9/2003                       | NA<br>160 | JΥ   | NA<br>O3   | JΥ  | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-10              | 3          | 4/15/2003                      | 160       | J    | 93         | J   | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-11              | 3          | 4/15/2003                      | 140       | J    | 120        | J   | <50       |    | NA     |   | NA         |   | NA     |    |
| W-B-12              | 3          | 4/15/2003                      | 4100      | Ī    | 5100       | -   | <50       |    | NA     |   | NA         |   | NA     |    |

12315-20.2198.fnl.xlsx - 5/9/14 Page 1 of 4

# Revised Table E-4b Post-2002 Data Set - Groundwater Results - TPH - Tier-2

| Sample Location   AOC Date Samplex   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Airport Worker Tier-2 (a) NS NS NS NS NS NS NS NS Construction Worker Tier-2 (a) NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Airport Worker Tier-2 (a) NS NS NS NS NS NS NS NS Construction Worker Tier-2 (a) NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Airport Worker Tier-2 (a) NS NS NS NS NS NS NS NS S NS Construction Worker Tier-2 (a) NS S NS S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Ecological Receptor Tier-2 (a) (DAF = 1)       640       640       500       640       640       640         Area of Concern 4       Ecological Receptor Tier-2 (a) (DAF = 6.2)       3968       3968       3100       3968       3968       3968         ERM-B-8       4       4/16/2003       52       Y       72       Y       <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| Area of Concern 4         Ecological Receptor Tier-2 (a) (DAF = 6.2)         3968         3968         3100         3968         3968         3968           ERM-B-8         4         4/16/2003         52         Y         72         Y         <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Ecological Receptor Tier-2 (a)       (DAF = 6.2)       3968       3968       3100       3968       3968       3968         ERM-B-8       4       4/16/2003       52       Y       72       Y       <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| ERM-B-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| ERM-B-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Area of Concern 5       Ecological Receptor Tier-2 (a) (DAF = 6)       3840       3840       3000       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840       3840 </td <td></td> |   |
| Ecological Receptor Tier-2 (a)       (DAF = 6)       3840       3840       3000       3840       3840       3840         ERM-B-10       5       4/17/2003       96       Y       <73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| ERM-B-10 5 4/17/2003 <b>96</b> Y <73.1 U <b>59</b> Y NA NA NA NA ERM-B-11 5 4/17/2003 <b>110</b> J <73.1 U <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| ERM-B-11 5 4/17/2003 96 <73.1 59 NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| ERIVI-D-11 5 4/17/2003 110 3.1 <50 NA NA NA</td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ■\\\/_R_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| VV-B-2 5 4/14/2003 <b>200 66 90</b> NA <50 <250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| W-6-2 (b) 5 4/14/2005 <50 NA <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| VV-B-3 3 4/13/2003 120 <76.9 63 INA <50 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| W-B-3 (b) 5 4/15/2003 <b>98</b> NA <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Area of Concern 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Ecological Receptor Tier-2 (a) (DAF = 2.4) 1536 1536 1200 1536 1536 1536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| ERM-B-27 6 4/17/2003 <b>550 180</b> NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| Area of Concern 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Ecological Receptor Tier-2 (a) (DAF = 4.2) 2688 2688 2100 2688 2688 2688 W-B-16 7 4/17/2003 <b>69</b> Y <73.1 U <50 NA <50 <250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| VY-B-10 / 4/17/2003 <b>69</b> 3.1 <30 NA <30 <230</td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| W-B-17 7 4/17/2003 <b>660</b> <sup>J</sup> <b>220</b> <sup>Y</sup> <50 NA <50 <250<br>W-B-17 (b) 7 4/17/2003 <50 NA <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| W-B-17 (b) 7 4/17/2003 <50 NA <50 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Ecological Receptor Tier-2 (a) (DAF = 2.7) 1728 1728 1350 1728 1728 1728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| ERM-B-12 8 4/17/2003 <50 NA <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Area of Concern 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Ecological Receptor Tier-2 (a) (DAF = 5.5) 3520 3520 2750 3520 3520 3520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| ERM-B-13 9 4/16/2003 <b>86</b> Y <b>77</b> Y <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ERM-B-14 9 4/17/2003 110 J 170 Y <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| P-2/UAL-MW-05 9 6/27/2006 NA NA <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| P-2/UAL-MW-5 9 4/18/2003 <50 Y NA <50 NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| P-2/UAL-MW-5 9 4/22/2003 <50 <sup>Q</sup> NA <50 <sup>Q</sup> NA <50 <sup>Q</sup> <250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q |
| W-B-22 9 4/18/2003 <50 <sup>UJ</sup> NA S0 <sup>UJ</sup> NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Area of Concern 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Ecological Receptor Tier-2 (a) (DAF = 4.8) 3072 3072 2400 3072 3072 3072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| ERM-B-16 11 4/16/2003 <b>59</b> Y <b>82</b> Y NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ERM-B-17 11 4/16/2003 <b>51</b> Y <b>80</b> Y NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ERM-B-18 11 4/16/2003 <b>96</b> <sup>J</sup> <b>100</b> <sup>J</sup> NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| ERM-B-19 11 4/16/2003 <b>80</b> <sup>J</sup> <b>100</b> <sup>J</sup> NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Area of Concern 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Ecological Receptor Tier-2 (a) (DAF = 6.4) 4096 4096 3200 4096 4096 4096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| ERM-B-20 12 4/17/2003 <b>61</b> Y <b>83</b> J NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ERM-B-21 12 4/17/2003 <b>130</b> <sup>J</sup> <b>130</b> <sup>Y</sup> NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |

12315-20.2198.fnl.xlsx - 5/9/14 Page 2 of 4

# Revised Table E-4b Post-2002 Data Set - Groundwater Results - TPH - Tier-2

|                     |               |            | 70    |   | TPH-d (sg) |   | <b>5</b> 1 |    | þ      | <u> </u> |   | o<br>E |   |
|---------------------|---------------|------------|-------|---|------------|---|------------|----|--------|----------|---|--------|---|
| Sample Location     | AOC Da        | te Samplec | TPH-d |   | 뇶          |   | TPH-g      |    | TPH-ho | TPH-jf   |   | TPH-mo |   |
|                     | rport Worke   |            | NS    |   | NS         |   | NS         |    | NS     | NS       |   | NS     |   |
|                     | ction Worke   |            | NS    |   | NS         |   | NS         |    | NS     | NS       |   | NS     |   |
| Ecological Receptor | or Tier-2 (a) | (DAF = 1)  | 640   |   | 640        |   | 500        |    | 640    | 640      |   | 640    |   |
| Area of Concern 14  |               |            |       |   |            |   |            |    |        |          |   |        |   |
| Ecological Receptor | or Tier-2 (a) | (DAF = 1)  | 640   |   | 640        |   | 500        |    | 640    | 640      |   | 640    |   |
| ERM-B-23            | 14            | 4/17/2003  | <50   |   | NA         |   | <50        |    | NA     | NA       |   | NA     |   |
| W-B-32              | 14            | 4/16/2003  | 250   | Υ | 160        | Υ | <50        |    | NA     | NA       |   | NA     |   |
| W-B-38              | 14            | 4/15/2003  | 230   | J | 120        | J | <50        |    | NA     | NA       |   | NA     |   |
| Area of Concern 15  |               |            |       |   |            |   |            |    |        |          |   |        |   |
| Ecological Receptor | or Tier-2 (a) |            | 640   |   | 640        |   | 500        |    | 640    | 640      |   | 640    |   |
| ERM-B-24            | 15            | 4/15/2003  | 620   | J | 160        |   | NA         |    | NA     | NA       |   | NA     |   |
| ERM-B-25            | 15            | 4/15/2003  | 370   | J | 140        | J | NA         |    | NA     | NA       |   | NA     |   |
| ERM-B-26            | 15            | 4/16/2003  | 360   |   | 140        |   | NA         |    | NA     | NA       |   | NA     |   |
| Area of Concern 16  |               |            |       |   |            |   |            |    |        |          |   |        |   |
| Ecological Receptor | or Tier-2 (a) | (DAF = 1)  | 640   |   | 640        |   | 500        |    | 640    | 640      |   | 640    |   |
| W-B-14              | 16            | 4/15/2003  | 67    | J | 69         | J | NA         |    | NA     | NA       |   | NA     |   |
| Area of Concern 17  |               |            |       |   |            |   |            |    |        |          |   |        |   |
| Ecological Receptor | Tier-2 (a) (  |            | 3520  |   | 3520       |   | 2750       |    | 3520   | 3520     |   | 3520   |   |
| P-1/UAL-MW-04       | 17            | 6/27/2006  | NA    |   | NA         |   | <50        | UJ | NA     | NA       |   | NA     |   |
| P-1/UAL-MW-4        | 17            | 4/18/2003  | 82    | Y | 100        | J | <50        | •  | NA     | NA       | ^ | NA     | _ |
| P-1/UAL-MW-4        | 17            | 4/22/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| UAL-MW-01           | 17            | 6/27/2006  | NA    |   | NA         |   | <50        | UJ | NA     | NA       |   | NA     |   |
| UAL-MW-02           | 17            | 6/27/2006  | NA    |   | NA         |   | <50        | UJ | NA     | NA       |   | NA     |   |
| UAL-MW-03           | 17            | 6/27/2006  | NA    |   | NA         |   | <50        | UJ | NA     | NA       |   | NA     |   |
| UAL-MW-1            | 17            | 4/15/2003  | <50   |   | NA         |   | <50        |    | NA     | <50      |   | <250   |   |
| UAL-MW-1            | 17            | 4/18/2003  | <50   |   | NA         |   | <50        |    | NA     | NA       |   | NA     |   |
| UAL-MW-1            | 17            | 11/6/2003  | <50   |   | NA         |   | <50        |    | <250   | <50      |   | <250   |   |
| UAL-MW-2            | 17            | 4/15/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| UAL-MW-2            | 17            | 4/18/2003  | 280   | J | 120        | J | <50        |    | NA     | NA       |   | NA     |   |
| UAL-MW-2            | 17            | 11/6/2003  | <50   |   | NA         |   | <50        |    | <250   | <50      |   | <250   |   |
| UAL-MW-3            | 17            | 4/15/2003  | <50   |   | NA         |   | <50        |    | NA     | <50      |   | <250   |   |
| UAL-MW-3            | 17            | 4/18/2003  | 86    | Y | 78         | J | <50        |    | NA     | NA       |   | NA     |   |
| Area of Concern 18  |               |            |       |   |            |   |            |    |        |          |   |        |   |
| Ecological Receptor |               |            | 4480  |   | 4480       |   | 3500       |    | 4480   | 4480     |   | 4480   |   |
| W-B-18              | 18            | 4/18/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| W-B-19              | 18            | 4/18/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| W-B-20              | 18            | 4/18/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| W-B-20D             | 18            | 4/18/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| W-B-9               | 18            | 4/18/2003  | <50   | Q | NA         |   | <50        | Q  | NA     | <50      | Q | <250   | Q |
| Area of Concern 19  |               |            |       |   |            |   |            |    |        |          |   |        |   |
| Ecological Receptor | or Tier-2 (a) |            | 640   |   | 640        |   | 500        |    | 640    | 640      |   | 640    |   |
| W-B-25              | 19            | 4/16/2003  | <50   |   | NA         |   | <50        |    | NA     | NA       |   | NA     |   |
| W-B-29              | 19            | 4/16/2003  | <50   |   | NA         |   | <50        |    | NA     | NA       |   | NA     |   |

12315-20.2198.fnl.xlsx - 5/9/14 Page 3 of 4

### **Revised Table E-4b**

### Post-2002 Data Set - Groundwater Results - TPH - Tier-2

#### **Notes**

Yellow highlighting indicates an exceedance of the selected ESL.

Bolding indicates detected concentrations.

All units are in micrograms per liter (ug/L).

Only analytes that have at least one detection and have exceeded the Tier-1 screening level are shown.

< = analyte was not detected at or above the laboratory method detection limit

DAF = dilution attenuation factor

ESL = environmental screening level

NA = not analyzed

NS = no ESL standard

sg = silica gel clean up

TPH-d = total petroleum hydrocarbon as diesel range organics

TPH-g = total petroleum hydrocarbon as gasoline range organics

TPH-ho = total petroleum hydrocarbon as hydraulic oil

TPH-if = total petroleum hydrocarbon as jet fuel

TPH-mo = total petroleum hydrocarbon as motor oil range organics

#### Qualifiers

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Q = Data not validated and there is a high uncertainty associated with the quality adequacy of the data.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Y = Sample exhibits chromatographic pattern which does not resemble standard.

#### **Footnotes**

(a) Tier-2 airport and construction worker screening level value is based on commercial values in Table E-1 Environmental Screening Levels (ESLs) Groundwater Screening Levels (RWQCB, December 2013). Tier-2 Ecological receptor screening level value is based on estuarine values in Table F-4a Summary of Selected Aquatic Habitat Goals (RWQCB, December 2013) multiplied by a DAF specific to the approximate location of the AOC as listed in Table 1.

(b) Analyte analyzed by a second method.

#### References

RWQCB (San Francisco Bay Regional Water Quality Control Board), 2013. Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater November 2007, Updated December 2013. California EPA, http://www.waterboards.ca.gov/sanfranciscobay/esl.htm.

# **Attachment C**

ProUCL Output for Nickel in Groundwater for AOCs 1, 2, and 3

|                                  | UCL Statistics for          | r Data Set   | s with Non-Detects                                    |            |
|----------------------------------|-----------------------------|--------------|-------------------------------------------------------|------------|
| User Selected Options            |                             |              |                                                       |            |
| Date/Time of Computation         | 11/12/2014 10:46:07 AM      |              |                                                       |            |
| From File                        | Nickel in GW_c.xls (AOC     | . 1\         |                                                       |            |
| Full Precision                   | OFF                         | 1)           |                                                       |            |
|                                  | 95%                         |              |                                                       |            |
| Confidence Coefficient           |                             |              |                                                       |            |
| Number of Bootstrap Operations   | 2000                        |              |                                                       |            |
| Nickel in Groundwater from AOC 1 |                             |              |                                                       |            |
|                                  | G                           | eneral Sta   | itistics                                              |            |
| Total                            | Number of Observations      | 28           | Number of Distinct Observations                       | 25         |
|                                  | Number of Detects           | 24           | Number of Non-Detects                                 | 4          |
| N                                | umber of Distinct Detects   | 23           | Number of Distinct Non-Detects                        | 2          |
|                                  | Minimum Detect              | 10           | Minimum Non-Detect                                    | 20         |
|                                  | Maximum Detect              | 590          | Maximum Non-Detect                                    | 30         |
|                                  | Variance Detects            | 17462        | Percent Non-Detects                                   | 14.29%     |
|                                  | Mean Detects                | 109.1        | SD Detects                                            | 132.1      |
|                                  | Median Detects              | 63           | CV Detects                                            | 1.211      |
|                                  | Skewness Detects            | 2.565        | Kurtosis Detects                                      | 7.453      |
|                                  | Mean of Logged Detects      | 4.171        | SD of Logged Detects                                  | 1.035      |
|                                  |                             |              | 5                                                     |            |
|                                  |                             |              | Detects Only                                          |            |
|                                  | hapiro Wilk Test Statistic  | 0.69         | Shapiro Wilk GOF Test                                 |            |
| 5% SI                            | napiro Wilk Critical Value  | 0.916        | Detected Data Not Normal at 5% Significance Lo        | evel       |
|                                  | Lilliefors Test Statistic   | 0.245        | Lilliefors GOF Test                                   |            |
| 5                                | % Lilliefors Critical Value | 0.181        | Detected Data Not Normal at 5% Significance Lo        | evel       |
|                                  | Detected Data Not           | Normal at    | 5% Significance Level                                 |            |
| Kanlan-Meier                     | (KM) Statistics using Norr  | nal Critical | Values and other Nonparametric UCLs                   |            |
|                                  | Mean                        | 95.56        | Standard Error of Mean                                | 23.99      |
|                                  | SD                          | 124.3        | 95% KM (BCA) UCL                                      | 140.6      |
|                                  | 95% KM (t) UCL              | 136.4        | 95% KM (Percentile Bootstrap) UCL                     | 136.6      |
|                                  | 95% KM (z) UCL              | 135          | 95% KM Bootstrap t UCL                                | 170.5      |
| C                                | 00% KM Chebyshev UCL        | 167.5        | 95% KM Chebyshev UCL                                  | 200.1      |
|                                  | .5% KM Chebyshev UCL        | 245.4        | 99% KM Chebyshev UCL                                  | 334.3      |
|                                  |                             |              | ,                                                     |            |
|                                  |                             |              | ted Observations Only                                 |            |
|                                  | A-D Test Statistic          | 0.537        | Anderson-Darling GOF Test                             |            |
|                                  | 5% A-D Critical Value       | 0.77         | Detected data appear Gamma Distributed at 5% Signific | cance Leve |
|                                  | K-S Test Statistic          | 0.16         | Kolmogrov-Smirnoff GOF                                |            |
|                                  | 5% K-S Critical Value       | 0.183        | Detected data appear Gamma Distributed at 5% Signific | cance Leve |
| D                                | etected data appear Gam     | ma Distribu  | uted at 5% Significance Level                         |            |
|                                  | Camma Static                | stice on De  | stected Data Only                                     |            |
|                                  | k hat (MLE)                 | 1.096        | k star (bias corrected MLE)                           | 0.987      |
|                                  | Theta hat (MLE)             | 99.54        | Theta star (bias corrected MLE)                       | 110.6      |
|                                  | nu hat (MLE)                | 52.6         | nu star (bias corrected)                              | 47.36      |
| M                                | LE Mean (bias corrected)    | 109.1        | MLE Sd (bias corrected)                               | 109.8      |
| IVII                             | LE INICATI (DIAS COTTECTED) | 103.1        | IVILE 30 (DIAS COTTECTED)                             | 103.0      |

| Gamma Ka                                                                                                                                                                                                                                                                                                                                                                                                                     | plan-Meier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (KM) Statistics                                                                                                                                                                                                                                               |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| k hat (KM)                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nu hat (KM)                                                                                                                                                                                                                                                   | 33.11               |
| Approximate Chi Square Value (33.11, α)                                                                                                                                                                                                                                                                                                                                                                                      | 20.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjusted Chi Square Value (33.11, β)                                                                                                                                                                                                                          | 20.36               |
| 95% Gamma Approximate KM-UCL (use when n>=50)                                                                                                                                                                                                                                                                                                                                                                                | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% Gamma Adjusted KM-UCL (use when n<50)                                                                                                                                                                                                                     | 155.4               |
| Gamma ROS Statis                                                                                                                                                                                                                                                                                                                                                                                                             | etice usina l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mputed Non-Detects                                                                                                                                                                                                                                            |                     |
| GROS may not be used when data set ha                                                                                                                                                                                                                                                                                                                                                                                        | s > 50% NI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ds with many tied observations at multiple DLs                                                                                                                                                                                                                |                     |
| GROS may not be used when                                                                                                                                                                                                                                                                                                                                                                                                    | n kstar of de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | etected data is small such as < 0.1                                                                                                                                                                                                                           |                     |
| For such situations, GROS metho                                                                                                                                                                                                                                                                                                                                                                                              | d tends to v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yield inflated values of UCLs and BTVs                                                                                                                                                                                                                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e computed using gamma distribution on KM estimates                                                                                                                                                                                                           |                     |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                          | 93.5                |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                      | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median                                                                                                                                                                                                                                                        | 50                  |
| SD                                                                                                                                                                                                                                                                                                                                                                                                                           | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CV                                                                                                                                                                                                                                                            | 1.36                |
| k hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k star (bias corrected MLE)                                                                                                                                                                                                                                   | 0.38                |
| Theta hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                              | 230.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Theta star (bias corrected MLE)                                                                                                                                                                                                                               | 242.5               |
| nu hat (MLE)                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nu star (bias corrected)                                                                                                                                                                                                                                      | 21.59               |
| MLE Mean (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                    | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLE Sd (bias corrected)                                                                                                                                                                                                                                       | 150.6               |
| WEE Weatt (bias corrected)                                                                                                                                                                                                                                                                                                                                                                                                   | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Adjusted Level of Significance (β)                                                                                                                                                                                                                            | 0.040               |
| Approximate Chi Square Value (21.59, α)                                                                                                                                                                                                                                                                                                                                                                                      | 12.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjusted Level of Significance (β)  Adjusted Chi Square Value (21.59, β)                                                                                                                                                                                      | 11.59               |
| 95% Gamma Approximate UCL (use when n>=50)                                                                                                                                                                                                                                                                                                                                                                                   | 167.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Gamma Adjusted UCL (use when n<50)                                                                                                                                                                                                                        | 174.2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | , t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ted Observations Only                                                                                                                                                                                                                                         |                     |
| Shapiro Wilk Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                  | 0.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shapiro Wilk GOF Test                                                                                                                                                                                                                                         |                     |
| 5% Shapiro Wilk Critical Value                                                                                                                                                                                                                                                                                                                                                                                               | 0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detected Data appear Lognormal at 5% Significance                                                                                                                                                                                                             | e Level             |
| Lilliefors Test Statistic                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lilliefors GOF Test                                                                                                                                                                                                                                           |                     |
| 5% Lilliefors Critical Value                                                                                                                                                                                                                                                                                                                                                                                                 | 0.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detected Data appear Lognormal at 5% Significance                                                                                                                                                                                                             | e Level             |
| Detected Data appear                                                                                                                                                                                                                                                                                                                                                                                                         | Lognormai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | at 5% Significance Level                                                                                                                                                                                                                                      |                     |
| Lognormal ROS Stat                                                                                                                                                                                                                                                                                                                                                                                                           | rietice   leina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Imputed Non-Detects                                                                                                                                                                                                                                           |                     |
| Mean in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                       | 95.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean in Log Scale                                                                                                                                                                                                                                             | 3.943               |
| SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                         | 126.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD in Log Scale                                                                                                                                                                                                                                               | 1.11                |
| 95% t UCL (assumes normality of ROS data)                                                                                                                                                                                                                                                                                                                                                                                    | 136.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                  | 136                 |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                        | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% Bootstrap t UCL                                                                                                                                                                                                                                           | 168.7               |
| 95% H-UCL (Log ROS)                                                                                                                                                                                                                                                                                                                                                                                                          | 168.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 % B00.0114p 1 002                                                                                                                                                                                                                                          | 100.7               |
| ( 3 - 7                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                     |
| UCLs using Lognormal Distribution and KM Es                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                               |                     |
| KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                             | 3.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                           | 160.2               |
| KM Mean (logged)<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                           | 3.951<br>1.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                               |                     |
| KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                             | 3.951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                           | 160.2<br>2.56       |
| KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                           | 3.951<br>1.086<br>0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                          |                     |
| KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                           | 3.951<br>1.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)<br>stics                                                                                                                                                                                                 |                     |
| KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                           | 3.951<br>1.086<br>0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95% H-UCL (KM -Log)<br>95% Critical H Value (KM-Log)                                                                                                                                                                                                          | 2.56                |
| KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal Mean in Original Scale                                                                                                                                                                                                                                                                                                                       | 3.951<br>1.086<br>0.211<br>DL/2 Statis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale                                                                                                                                                             | 3.93                |
| KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal                                                                                                                                                                                                                                                                                                                                              | 3.951<br>1.086<br>0.211<br>DL/2 Statis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) stics DL/2 Log-Transformed                                                                                                                                                                                  |                     |
| KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal Mean in Original Scale SD in Original Scale                                                                                                                                                                                                                                                                                                  | 3.951<br>1.086<br>0.211<br><b>DL/2 Statis</b><br>95.29<br>126.7<br>136.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL                                                                                                                              | 3.93<br>1.12        |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,                                                                                                                                                                                                                   | 3.951<br>1.086<br>0.211<br><b>DL/2 Statis</b><br>95.29<br>126.7<br>136.1<br><b>provided fo</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL  r comparisons and historical reasons                                                                                        | 3.93<br>1.12        |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D                                                                                                                                                                                                  | 3.951<br>1.086<br>0.211<br>DL/2 Statis<br>95.29<br>126.7<br>136.1<br>provided fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics                                                                    | 3.93<br>1.12        |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D                                                                                                                                                                                                  | 3.951<br>1.086<br>0.211<br>DL/2 Statis<br>95.29<br>126.7<br>136.1<br>provided fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL  r comparisons and historical reasons                                                                                        | 3.93<br>1.12        |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D Detected Data appear Gam  Sug                                                                                                                                                                   | 3.951 1.086 0.211  DL/2 Statis 95.29 126.7 136.1 provided for istribution F ma Distribu gested UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics ted at 5% Significance Level L to Use                              | 3.93<br>1.12<br>170 |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D Detected Data appear Gam  Sug 95% KM (Chebyshev) UCL                                                                                                                                            | 3.951<br>1.086<br>0.211<br>DL/2 Statis<br>95.29<br>126.7<br>136.1<br>provided fo<br>distribution F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics tted at 5% Significance Level                                      | 3.93<br>1.12        |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D Detected Data appear Gam  Sug                                                                                                                                                                   | 3.951 1.086 0.211  DL/2 Statis 95.29 126.7 136.1 provided for istribution F ma Distribu gested UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics ted at 5% Significance Level L to Use                              | 3.93<br>1.12<br>170 |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D Detected Data appear Gam  Sug 95% KM (Chebyshev) UCL 95% Adjusted Gamma KM-UCL                                                                                                                  | 3.951<br>1.086<br>0.211<br>DL/2 Statis<br>95.29<br>126.7<br>136.1<br>provided fo<br>istribution F<br>ma Distribu<br>gested UCL<br>200.1<br>155.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics ted at 5% Significance Level L to Use  95% GROS Adjusted Gamma UCL | 3.93<br>1.12<br>170 |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D Detected Data appear Gam  Sug 95% KM (Chebyshev) UCL 95% Adjusted Gamma KM-UCL  Note: Suggestions regarding the selection of a 95% UC                                                           | 3.951 1.086 0.211  DL/2 Statis  95.29 126.7 136.1 provided fo  istribution F ma Distribu  gested UCL 200.1 155.4  L are provice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics ted at 5% Significance Level L to Use  95% GROS Adjusted Gamma UCL | 3.93<br>1.12<br>170 |
| KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logged)  DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended method,  Nonparametric D Detected Data appear Gam  Sug 95% KM (Chebyshev) UCL 95% Adjusted Gamma KM-UCL  Note: Suggestions regarding the selection of a 95% UC Recommendations are based under the selection of a 95% UC | 3.951 1.086 0.211  DL/2 Statis  95.29 126.7 136.1 provided for istribution F ma Distribution F ma Dist | 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)  stics  DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL r comparisons and historical reasons  Free UCL Statistics ted at 5% Significance Level L to Use  95% GROS Adjusted Gamma UCL | 3.93<br>1.12<br>170 |

|                                | UCL Statistics               | for Data Set   | s with Non-Detects                                       |              |
|--------------------------------|------------------------------|----------------|----------------------------------------------------------|--------------|
|                                | T                            |                |                                                          |              |
| User Selected Options          |                              |                |                                                          |              |
| Date/Time of Computation       | 11/12/2014 10:48:18 AM       | 0)             |                                                          |              |
| From File                      | Nickel in GW_d.xls (AOC      | 2)             |                                                          |              |
| Full Precision                 | OFF                          |                |                                                          |              |
| Confidence Coefficient         | 95%                          |                |                                                          |              |
| Number of Bootstrap Operations | 2000                         |                |                                                          |              |
| Nickel in Groundwater in AOC 2 |                              |                |                                                          |              |
|                                |                              | General Sta    |                                                          |              |
| Tota                           | al Number of Observations    | 24             | Number of Distinct Observations                          | 21           |
|                                | Number of Detects            | 21             | Number of Non-Detects                                    | 3            |
| 1                              | Number of Distinct Detects   | 19             | Number of Distinct Non-Detects                           | 2            |
|                                | Minimum Detect               | 6              | Minimum Non-Detect                                       | 20           |
|                                | Maximum Detect               | 370            | Maximum Non-Detect                                       | 30           |
|                                | Variance Detects             | 9934           | Percent Non-Detects                                      | 12.5%        |
|                                | Mean Detects                 | 129.4          | SD Detects                                               | 99.67        |
|                                | Median Detects               | 110            | CV Detects                                               | 0.77         |
|                                | Skewness Detects             | 0.756          | Kurtosis Detects                                         | -0.0496      |
|                                | Mean of Logged Detects       | 4.428          | SD of Logged Detects                                     | 1.14         |
|                                | Normal (                     | SOF Test on    | Detects Only                                             |              |
|                                | Shapiro Wilk Test Statistic  | 0.923          | Shapiro Wilk GOF Test                                    |              |
|                                | Shapiro Wilk Critical Value  | 0.908          | Detected Data appear Normal at 5% Significance           | l evel       |
| 070                            | Lilliefors Test Statistic    | 0.157          | Lilliefors GOF Test                                      | LCVCI        |
|                                | 5% Lilliefors Critical Value | 0.193          | Detected Data appear Normal at 5% Significance           | Level        |
|                                |                              |                | t 5% Significance Level                                  | 2010.        |
|                                |                              |                |                                                          |              |
| Kaplan-Mei                     | ier (KM) Statistics using No | rmal Critical  | Values and other Nonparametric UCLs                      |              |
|                                | Mean                         | 114.6          | Standard Error of Mean                                   | 20.74        |
|                                | SD                           | 99.14          | 95% KM (BCA) UCL                                         | 152.3        |
|                                | 95% KM (t) UCL               | 150.1          | 95% KM (Percentile Bootstrap) UCL                        | 148.4        |
|                                | 95% KM (z) UCL               | 148.7          | 95% KM Bootstrap t UCL                                   | 156.1        |
|                                | 90% KM Chebyshev UCL         | 176.8          | 95% KM Chebyshev UCL                                     | 205          |
| 9                              | 7.5% KM Chebyshev UCL        | 244.1          | 99% KM Chebyshev UCL                                     | 320.9        |
|                                | Commo COE Too                | to on Dotool   | ed Observations Only                                     |              |
|                                | A-D Test Statistic           | 0.376          | Anderson-Darling GOF Test                                |              |
|                                | 5% A-D Critical Value        | 0.763          | Detected data appear Gamma Distributed at 5% Significant | oonoo Lovol  |
|                                | K-S Test Statistic           | 0.763          | Kolmogrov-Smirnoff GOF                                   | cance Level  |
|                                | 5% K-S Critical Value        | 0.128          | Detected data appear Gamma Distributed at 5% Signifi     | cance Level  |
|                                |                              |                | ted at 5% Significance Level                             | Carice Level |
|                                | Soloolog data appear dat     | iiila Distribt | nou at 0 /3 digrimoundo E0101                            |              |
|                                | Gamma Sta                    | tistics on De  | tected Data Only                                         |              |
|                                | k hat (MLE)                  | 1.289          | k star (bias corrected MLE)                              | 1.137        |
|                                | Theta hat (MLE)              | 100.4          | Theta star (bias corrected MLE)                          | 113.8        |
|                                | nu hat (MLE)                 | 54.16          | nu star (bias corrected)                                 | 47.75        |
| N                              | MLE Mean (bias corrected)    | 129.4          | MLE Sd (bias corrected)                                  | 121.4        |

| k hat (KM)                                    |                        | (KM) Statistics  nu hat (KM)                                                        | 64.08        |
|-----------------------------------------------|------------------------|-------------------------------------------------------------------------------------|--------------|
| Approximate Chi Square Value (64.08, α)       |                        | Adjusted Chi Square Value (64.08, β)                                                | 45.62        |
| 95% Gamma Approximate KM-UCL (use when n>=50) |                        | 95% Gamma Adjusted KM-UCL (use when n<50)                                           | 160.9        |
|                                               | 1                      |                                                                                     |              |
|                                               |                        | Imputed Non-Detects                                                                 |              |
|                                               |                        | Ds with many tied observations at multiple DLs                                      |              |
|                                               |                        | etected data is small such as < 0.1                                                 |              |
|                                               |                        | yield inflated values of UCLs and BTVs                                              |              |
|                                               |                        | e computed using gamma distribution on KM estimates                                 |              |
| Minimum                                       |                        | Mean                                                                                | 115.2        |
| Maximum                                       |                        | Median                                                                              | 96           |
| SD                                            |                        | CV                                                                                  | 0.87         |
| k hat (MLE)                                   |                        | k star (bias corrected MLE)                                                         | 0.95         |
| Theta hat (MLE)                               |                        | Theta star (bias corrected MLE)                                                     | 120.4        |
| nu hat (MLE)                                  |                        | nu star (bias corrected)                                                            | 45.92        |
| MLE Mean (bias corrected)                     | 115.2                  | MLE Sd (bias corrected)                                                             | 117.8        |
|                                               |                        | Adjusted Level of Significance (β)                                                  | 0.039        |
| Approximate Chi Square Value (45.92, α)       |                        | Adjusted Chi Square Value (45.92, β)                                                | 30.53        |
| 95% Gamma Approximate UCL (use when n>=50)    | 168.7                  | 95% Gamma Adjusted UCL (use when n<50)                                              | 173.3        |
|                                               |                        | to d Observed Program Only                                                          |              |
| Lognormal GOF I                               | est on Detec           | ted Observations Only                                                               |              |
| Shapiro Wilk Test Statistic                   |                        | Shapiro Wilk GOF Test                                                               | Laccal       |
| 5% Shapiro Wilk Critical Value                | 0.908                  | Detected Data Not Lognormal at 5% Significance                                      | Level        |
| Lilliefors Test Statistic                     |                        | Lilliefors GOF Test                                                                 |              |
| 5% Lilliefors Critical Value                  |                        | Detected Data appear Lognormal at 5% Significance<br>ormal at 5% Significance Level | e Level      |
| Mean in Original Scale  SD in Original Scale  | 115.2                  | Imputed Non-Detects  Mean in Log Scale  SD in Log Scale                             | 4.21<br>1.21 |
| 95% t UCL (assumes normality of ROS data)     | 150.4                  | 95% Percentile Bootstrap UCL                                                        | 149          |
| 95% BCA Bootstrap UCL                         | 152                    | 95% Bootstrap t UCL                                                                 | 155.6        |
| 95% H-UCL (Log ROS)                           | 288.8                  | 3370 2330000 1 3 3 2                                                                |              |
|                                               |                        |                                                                                     |              |
|                                               |                        | en Detected data are Lognormally Distributed                                        |              |
| KM Mean (logged)                              |                        | 95% H-UCL (KM -Log)                                                                 | 310          |
| KM SD (logged)                                |                        | 95% Critical H Value (KM-Log)                                                       | 2.92         |
| KM Standard Error of Mean (logged)            | 0.268                  |                                                                                     |              |
|                                               | DL/2 Statis            | stics                                                                               |              |
| DL/2 Normal                                   |                        | DL/2 Log-Transformed                                                                |              |
| Mean in Original Scale                        | 114.7                  | Mean in Log Scale                                                                   | 4.179        |
| SD in Original Scale                          |                        | SD in Log Scale                                                                     | 1.26         |
| 95% t UCL (Assumes normality)                 | 150.1                  | 95% H-Stat UCL                                                                      | 310.2        |
|                                               |                        | or comparisons and historical reasons                                               |              |
|                                               | <b>B</b> 1 - 0 - 2 - 2 | 5 1101 0 v v v                                                                      |              |
|                                               |                        | Free UCL Statistics<br>ted at 5% Significance Level                                 |              |
| Detected Data appear No                       | טוואוטע ואווייני       | ted at 3 /6 Significance Level                                                      |              |
| Si                                            | uggested UCI           | L to Use                                                                            |              |
| 95% KM (t) UCL                                |                        | 95% KM (Percentile Bootstrap) UCL                                                   | 148.4        |
|                                               |                        |                                                                                     |              |
|                                               |                        | ded to help the user to select the most appropriate 95% l                           | JCL.         |
| December detiens are been                     | d unon data s          | ize, data distribution, and skewness.                                               |              |
|                                               |                        | ation studies summarized in Singh, Maichle, and Lee (200                            |              |

|                                | LICI Ctetie                | tion for Date  | Cata with New Datasta                                           |          |
|--------------------------------|----------------------------|----------------|-----------------------------------------------------------------|----------|
|                                | UCL Statis                 | ucs for Data   | Sets with Non-Detects                                           |          |
| User Selected Options          |                            |                |                                                                 |          |
| Date/Time of Computation       | 11/12/2014 11:31:21 A      | М              |                                                                 |          |
| From File                      | Nickel in GW_g.xls (AOC 3) |                |                                                                 |          |
| Full Precision                 | OFF                        |                |                                                                 |          |
| Confidence Coefficient         | 95%                        |                |                                                                 |          |
| Number of Bootstrap Operations | 2000                       |                |                                                                 |          |
|                                | 1                          |                |                                                                 |          |
| Nickel in Groundwater in AOC 3 |                            |                |                                                                 |          |
|                                |                            | Genera         | l Statistics                                                    |          |
| Total Number of Observations   |                            | 6              | Number of Distinct Observations                                 | 5        |
| Number of Detects              |                            | 4              | Number of Non-Detects                                           | 2        |
| Number of Distinct Detects     |                            | 4              | Number of Distinct Non-Detects                                  | 1        |
| Minimum Detect                 |                            | 26             | Minimum Non-Detect                                              | 20       |
| Maximum Detect                 |                            | 120            | Maximum Non-Detect                                              | 20       |
| Variance Detects               |                            | 1533           | Percent Non-Detects                                             | 33.33%   |
| Mean Detects                   |                            | 72.75          | SD Detects                                                      | 39.15    |
|                                | Median Detects             | 72.5           | CV Detects                                                      | 0.538    |
|                                | Skewness Detects           | 0.0353         | Kurtosis Detects                                                | 0.37     |
| N                              | lean of Logged Detects     | 4.149          | SD of Logged Detects                                            | 0.65     |
|                                |                            |                |                                                                 |          |
| Note: Sample                   | size is small (e.g., <10)  | , if data are  | collected using ISM approach, you should use                    |          |
|                                |                            |                | M (ITRC, 2012) to compute statistics of interest.               |          |
|                                |                            |                | shev UCL to estimate EPC (ITRC, 2012).                          |          |
|                                |                            |                | parametric and All UCL Options of ProUCL 5.0                    |          |
|                                |                            |                | •                                                               |          |
|                                | Norn                       | nal GOF Tes    | st on Detects Only                                              |          |
| Shapiro Wilk Test Statistic    |                            | 0.999          | Shapiro Wilk GOF Test                                           |          |
| 5% Sha                         | piro Wilk Critical Value   | 0.748          | Detected Data appear Normal at 5% Significance Level            |          |
| Lilliefors Test Statistic      |                            | 0.157          | Lilliefors GOF Test                                             |          |
| 5%                             | Lilliefors Critical Value  | 0.443          | Detected Data appear Normal at 5% Significance Lev              | /el      |
|                                | Detected Data a            | appear Norm    | nal at 5% Significance Level                                    |          |
|                                |                            |                |                                                                 |          |
| Kaplan-Me                      | -                          |                | tical Values and other Nonparametric UCLs                       |          |
| Mean                           |                            | 55.17          | Standard Error of Mean                                          | 17.54    |
| SD                             |                            | 37.21          | 95% KM (BCA) UCL                                                | N/A      |
| 95% KM (t) UCL                 |                            | 90.52          | 95% KM (Percentile Bootstrap) UCL                               | N/A      |
| 95% KM (z) UCL                 |                            | 84.02          | 95% KM Bootstrap t UCL                                          | N/A      |
|                                | % KM Chebyshev UCL         | 107.8          | 95% KM Chebyshev UCL                                            | 131.6    |
| 97.5                           | % KM Chebyshev UCL         | 164.7          | 99% KM Chebyshev UCL                                            | 229.7    |
|                                | 0                          | T4 D           | As at all Observations Only                                     |          |
|                                |                            |                | etected Observations Only                                       |          |
|                                | A-D Test Statistic         | 0.24           | Anderson-Darling GOF Test                                       |          |
|                                | 5% A-D Critical Value      | 0.659<br>0.211 | Detected data appear Gamma Distributed at 5% Significance Level |          |
|                                | K-S Test Statistic         |                | Kolmogrov-Smirnoff GOF                                          |          |
|                                | 5% K-S Critical Value      | 0.396          | Detected data appear Gamma Distributed at 5% Significant        | ce Level |
|                                | Detected data appear       | Gamma Dis      | stributed at 5% Significance Level                              |          |
|                                | Gamma                      | Statistics of  | n Detected Data Only                                            |          |
|                                | k hat (MLE)                | 3.777          | k star (bias corrected MLE)                                     | 1.111    |
|                                | Theta hat (MLE)            | 19.26          | Theta star (bias corrected MLE)                                 | 65.48    |
| nu hat (MLE)                   |                            | 30.22          | nu star (bias corrected)                                        | 8.888    |
| MLE Mean (bias corrected)      |                            | 72.75          | MLE Sd (bias corrected)                                         | 69.02    |
| IVILE                          | . www.aii (bias Collected) | 12.13          | MLL Su (bias correcteu)                                         | 00.02    |

| Gamı                                                                                                                                                                                                                   | na Kaplan-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feier (KM) Statistics                                                                                                                                                                                                                                                                                                       |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| k hat (KM)                                                                                                                                                                                                             | 2.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nu hat (KM)                                                                                                                                                                                                                                                                                                                 | 26.37                   |
| Approximate Chi Square Value (26.37, α)                                                                                                                                                                                | 15.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjusted Chi Square Value (26.37, β)                                                                                                                                                                                                                                                                                        | 12.79                   |
| 95% Gamma Approximate KM-UCL (use when n>=50)                                                                                                                                                                          | 92.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Gamma Adjusted KM-UCL (use when n<50)                                                                                                                                                                                                                                                                                   | 113.8                   |
| Commo POS                                                                                                                                                                                                              | Statiatica u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sing Imputed Non-Detects                                                                                                                                                                                                                                                                                                    |                         |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1% NDs with many tied observations at multiple DLs                                                                                                                                                                                                                                                                          |                         |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of detected data is small such as < 0.1                                                                                                                                                                                                                                                                                     |                         |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is to yield inflated values of UCLs and BTVs                                                                                                                                                                                                                                                                                |                         |
| For gamma distributed detected data, BTVs                                                                                                                                                                              | and UCLs m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nay be computed using gamma distribution on KM estimates                                                                                                                                                                                                                                                                    |                         |
| Minimum                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                        | 48.5                    |
| Maximum                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median                                                                                                                                                                                                                                                                                                                      | 44.5                    |
| SD                                                                                                                                                                                                                     | 48.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CV                                                                                                                                                                                                                                                                                                                          | 0.995                   |
| k hat (MLE)                                                                                                                                                                                                            | 0.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k star (bias corrected MLE)                                                                                                                                                                                                                                                                                                 | 0.244                   |
| Theta hat (MLE)                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Theta star (bias corrected MLE)                                                                                                                                                                                                                                                                                             | 198.9                   |
| nu hat (MLE)                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nu star (bias corrected)                                                                                                                                                                                                                                                                                                    | 2.926                   |
| MLE Mean (bias corrected)                                                                                                                                                                                              | 48.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLE Sd (bias corrected)                                                                                                                                                                                                                                                                                                     | 98.23                   |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adjusted Level of Significance (β)                                                                                                                                                                                                                                                                                          | 0.012                   |
| Approximate Chi Square Value (2.93, α)                                                                                                                                                                                 | 0.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Adjusted Chi Square Value (2.93, β)                                                                                                                                                                                                                                                                                         | 0.15                    |
| 95% Gamma Approximate UCL (use when n>=50)                                                                                                                                                                             | 404.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Gamma Adjusted UCL (use when n<50)                                                                                                                                                                                                                                                                                      | N/A                     |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                         |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detected Observations Only                                                                                                                                                                                                                                                                                                  |                         |
| Shapiro Wilk Test Statistic                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shapiro Wilk GOF Test                                                                                                                                                                                                                                                                                                       | 1                       |
| 5% Shapiro Wilk Critical Value                                                                                                                                                                                         | 0.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detected Data appear Lognormal at 5% Significance L                                                                                                                                                                                                                                                                         | .evel                   |
| Lilliefors Test Statistic                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lilliefors GOF Test                                                                                                                                                                                                                                                                                                         |                         |
| 5% Lilliefors Critical Value                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detected Data appear Lognormal at 5% Significance L                                                                                                                                                                                                                                                                         | .evel                   |
| Detected Data ap                                                                                                                                                                                                       | pear Lognor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rmal at 5% Significance Level                                                                                                                                                                                                                                                                                               |                         |
| Lognormal BO                                                                                                                                                                                                           | C Statistics I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Using Imputed Non-Detects                                                                                                                                                                                                                                                                                                   |                         |
| Mean in Original Scale                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean in Log Scale                                                                                                                                                                                                                                                                                                           | 3.563                   |
| SD in Original Scale                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD in Log Scale                                                                                                                                                                                                                                                                                                             | 1.053                   |
| 95% t UCL (assumes normality of ROS data)                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                | 79.22                   |
| 95% BCA Bootstrap UCL                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Bootstrap t UCL                                                                                                                                                                                                                                                                                                         | 92.37                   |
| 95% BCA Bootstrap OCL<br>95% H-UCL (Log ROS)                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% BOOTSHAP TOCK                                                                                                                                                                                                                                                                                                           | 92.37                   |
| (_cogco                                                                                                                                                                                                                | 10710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I I                                                                                                                                                                                                                                                                                                                         |                         |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s when Detected data are Lognormally Distributed                                                                                                                                                                                                                                                                            |                         |
| KM Mean (logged)                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                         | 154.3                   |
| KM SD (logged)                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                               | 3.20                    |
| KM Standard Error of Mean (logged)                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                         |
| KM Standard Error of Mean (logged)                                                                                                                                                                                     | 0.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |                         |
| NW Standard Error or Mean (10gged)                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Statistics                                                                                                                                                                                                                                                                                                                  |                         |
| DL/2 Normal                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                         |
|                                                                                                                                                                                                                        | DL/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Statistics  DL/2 Log-Transformed  Mean in Log Scale                                                                                                                                                                                                                                                                         | 3.53                    |
| DL/2 Normal  Mean in Original Scale                                                                                                                                                                                    | <b>DL/2</b> \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DL/2 Log-Transformed  Mean in Log Scale                                                                                                                                                                                                                                                                                     |                         |
| DL/2 Normal                                                                                                                                                                                                            | DL/2 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DL/2 Log-Transformed                                                                                                                                                                                                                                                                                                        |                         |
| DL/2 Normal  Mean in Original Scale  SD in Original Scale  95% t UCL (Assumes normality)                                                                                                                               | 51.83<br>44.38<br>88.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DL/2 Log-Transformed  Mean in Log Scale  SD in Log Scale                                                                                                                                                                                                                                                                    | 1.078                   |
| DL/2 Normal  Mean in Original Scale  SD in Original Scale  95% t UCL (Assumes normality)  DL/2 is not a recommended me                                                                                                 | 51.83<br>44.38<br>88.34<br>ethod, provid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL/2 Log-Transformed  Mean in Log Scale  SD in Log Scale  95% H-Stat UCL  ed for comparisons and historical reasons                                                                                                                                                                                                         | 1.078                   |
| DL/2 Normal  Mean in Original Scale  SD in Original Scale  95% t UCL (Assumes normality)  DL/2 is not a recommended me                                                                                                 | 51.83<br>44.38<br>88.34<br>ethod, provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL                                                                                                                                                                                                                                                      | 3.533<br>1.078<br>511.5 |
| DL/2 Normal  Mean in Original Scale  SD in Original Scale  95% t UCL (Assumes normality)  DL/2 is not a recommended me                                                                                                 | 51.83<br>44.38<br>88.34<br>ethod, provider Distribur Normal Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  tion Free UCL Statistics stributed at 5% Significance Level                                                                                                                                               | 1.078                   |
| DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me  Nonparam Detected Data appea                                                                      | 51.83<br>44.38<br>88.34<br>ethod, provid<br>etric Distribu<br>r Normal Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  tion Free UCL Statistics stributed at 5% Significance Level                                                                                                                                               | 1.076<br>511.5          |
| DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me  Nonparam Detected Data appea                                                                      | 51.83 44.38 88.34 ethod, provider Normal Disserted 90.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  tion Free UCL Statistics stributed at 5% Significance Level  UCL to Use  95% KM (Percentile Bootstrap) UCL                                                                                                | 1.07                    |
| DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me  Nonparam Detected Data appea                                                                      | 51.83 44.38 88.34 ethod, provider Normal Disserted 90.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  tion Free UCL Statistics stributed at 5% Significance Level                                                                                                                                               | 1.078<br>511.5          |
| DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me  Nonparam Detected Data appea                                                                      | 51.83 44.38 88.34 ethod, provider Normal Disconnection Suggested 90.52 more Recommend of the state of the sta | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  Ition Free UCL Statistics stributed at 5% Significance Level  UCL to Use 95% KM (Percentile Bootstrap) UCL Immended UCL(s) not available!                                                                 | 1.076<br>511.5          |
| DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me  Nonparam Detected Data appear  95% KM (t) UCL Warning: One or | 51.83 44.38 88.34 ethod, provider in Normal Dissection Suggested 90.52 more Recome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  Ition Free UCL Statistics stributed at 5% Significance Level  UCL to Use 95% KM (Percentile Bootstrap) UCL Immended UCL(s) not available!  provided to help the user to select the most appropriate 95% U | 1.076<br>511.5          |
| DL/2 Normal  Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended me  Nonparam Detected Data appea  95% KM (t) UCL Warning: One or  | 51.83 44.38 88.34 ethod, provider Normal Dissection Suggested 90.52 more Recome Williams Union Recome Recom | DL/2 Log-Transformed  Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons  Ition Free UCL Statistics stributed at 5% Significance Level  UCL to Use 95% KM (Percentile Bootstrap) UCL Immended UCL(s) not available!                                                                 | 1.076<br>511.5<br>N/A   |