RECEIVED

3:34 pm, Jul 06, 2010

Alameda County
Environmental Health

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

June 30, 2010 Project No. 2090-1970-01

Ms. Barbara Jakub, P.G. Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (via Geotracker & Alameda County FTP site)

Re: Addendum to Work Plan, Grimit Auto Repair and Service, 1970 Seminary Boulevard, Oakland, California (Fuel Leak Case No. RO0000413)

Dear Ms. Jakub:

On behalf of Ms. Peggy Garcia, Stratus Environmental, Inc. (Stratus) has prepared this Addendum to Work Plan for the Grimit Auto Repair and Service underground storage tank (UST) fuel leak case (the Site), located at 1970 Seminary Boulevard, Oakland, California (see Figures 1 and 2). In a letter dated December 5, 2008, Alameda County Environmental Health Services (ACEHS) requested that a work plan be submitted that proposes a scope of work to further investigate the lateral and vertical extent of previously documented petroleum hydrocarbon and solvent contaminant distribution within the subsurface, and evaluates concentrations of these contaminants in shallow soil vapor. The December 5, 2008 letter also requested that information regarding underground utility corridors in the site vicinity be submitted, and that historical project information be summarized in the form of a Site Conceptual Model (SCM). On May 20, 2009, a consultant who previously represented Ms. Garcia (Hoexter Consulting, Inc.) submitted a work plan/report to meet this request; the SCM portion of the document summarized historical project information and identified data gaps that have not been adequately investigated, and the work plan portion of the report proposed a scope of work to meet some of the identified data gaps. Based on a recent discussion with ACEHS personnel, the May 20, 2009 work plan/report had not yet been formally reviewed by their agency; however, it was stated that this review process would likely occur within the next few months.

Prior to ACEHS's formal review of the May 20, 2009 document, Stratus is proposing to make some changes to the previous scope of work proposed by Hoexter Consulting, Inc. In general, the previous scope of work proposed:

• Advancing 9 direct push soil borings for the purpose of conducting soil conductivity probe (SCP) and membrane interface probe (MIP) measurements (see Figure 3 for locations).

STRATUS

- Collect soil samples from 9 additional direct push soil borings, using a piston sampler or dual tube coring system, with these borings advanced immediately adjacent to the SCP/MIP borings.
- Collect hydropunch groundwater samples from 9 additional soil borings advanced in close proximity to the SCP/MIP and soil sampling borings.
- Collect shallow soil vapor samples from 7 locations (see Figure 3).
- Destroy existing monitoring well MW-8, which is located within pea gravel backfill of a former UST and has shown anomalous groundwater level measurements relative to other monitoring wells at the site and could provide analytical results unrepresentive of those in nearby undisturbed soil.
- Install a 2-inch diameter replacement groundwater monitoring well (MW-8R) in close proximity to existing well MW-8, but outside of the pea gravel backfill material.
- Submit the soil, groundwater, and soil vapor samples for chemical analyses.
- Develop and sample replacement well MW-8R.
- Complete site surveying requirements for Geotracker compliance.
- Conduct physical property testing for bulk density, effective permeability or saturated hydraulic conductivity, grain size analyses to determine percentages of clay, silt, and sand, organic carbon content, porosity, and water content on two soil samples retained during the investigation.

Stratus is proposing to make the following changes to the scope of work presented in the May 20, 2009 work plan:

- Eliminate advancement of the SCP/MIP borings, and instead complete continuous soil coring using the direct push method.
- Leave existing well MW-8 in-place for future groundwater monitoring instead of destroying the well and installing a replacement well nearby.
- Install 3 extraction wells during the current phase of subsurface investigative work for future use in interim remedial action.

RATIONALE

Although collection of any site assessment data is potentially useful, it is our opinion that advancement of the SCP/MIP borings offers limited additional benefit to the project. Stratus believes that continuously coring the soil borings, with a geologist logging all of the recovered soil, is preferable to conducting logging using the SCP, because the soil types

can be directly correlated to the Unified Soil Classification System (USCS), which is not possible using the SCP. If samples were only collected using a piston sampler, or at specific intervals using the direct push sampling system, as discussed in the May 20, 2009 work plan, soil types could only be logged by the USCS across the sampled interval (typically 1 to 2 feet of recovered soil per sample) and not throughout the entire length of the borehole. In addition, moisture content of the soils, which can be used to select groundwater sampling locations, can be best observed by direct observation than by soil conductivity measurements.

Although the MIP is useful for identifying the depths and presence/absence of contaminants in the subsurface, it is our opinion that use of the MIP offers little benefit to this specific project given the property use in the area and the locations of the proposed borings. A review of Figure 3 illustrates that a majority of the proposed soil borings are situated in the sidewalks of City of Oakland roadways. If the MIP detects the presence of a contaminant in the subsurface in 'real time' during advancement of these borings, Stratus will not be able to 'step out' the boring laterally, in order to attempt to achieve full delineation of the contaminants at another location, because of private property access issues. Movement of the boring(s) would have to be delayed until private property access agreement(s) could be secured and drilling permit(s) obtained, and thus the collection of the 'real time' VOC measurements appear to offer little benefit beyond typical screening for soil contaminants that could/will be conducted using a photo-ionization detector (PID). In addition, the collection of groundwater samples within the saturated zone will be primarily governed by the types of soil encountered in the boreholes, and not by results obtained by MIP.

In summary, in order to evaluate the vertical and lateral extent of petroleum hydrocarbon impact to the subsurface, Stratus is proposing to advance 9 continuously cored direct push borings, and 9 adjacent groundwater sampling borings (18 total boreholes). Pending approval by ACEHS, these work tasks would replace the scope of work from the May 2009 work plan, which proposed to advance 9 SCP/MIP borings, collect soil samples from specific intervals at 9 adjacent soil sampling borings using a piston sampler or other soil sampling device, and collect groundwater samples from an additional 9 sampling borings (27 total boreholes). We believe that the revised scope of work presented by Stratus provides an improved procedure for collecting the data needed to conduct vertical and lateral contaminant assessment work, while advancing a lesser number of borings to complete this task.

The May 2009 work plan recommends destroying well MW-8, but does not appear to specify a location for the replacement well. Given the layout of the site (see Figure 2), it does not appear feasible to situate a replacement well southwest, west, or northwest, due to the presence of the facility building and only a narrow walkway behind this building that would be too small to accommodate drilling equipment. Although sufficient space is

available northeast of well MW-8, this area was formerly occupied by three USTs, and thus is also likely to contain gravel fill material or pea gravel in the shallow subsurface. The replacement well could potentially be installed on adjacent property to the east and southeast of the site, but given the absence of petroleum hydrocarbons and only traces of solvents in groundwater at the well MW-8 location (see Appendix A tables and Figures 4 and 5), which therefore appear to sufficiently delineate groundwater impact in this area, Stratus is not recommending placing a monitoring well on the neighboring property at this time.

Stratus is recommending that sampling of well MW-8 to assess groundwater quality in this portion of the site continue, given the lack of better alternatives for placement of the well and our recommendation not to pursue installation of the well on the neighboring property. Since there are 8 other groundwater monitoring wells onsite, it will not be problematic to assess shallow groundwater flow direction using data from these 8 wells only, and omitting the potentially anomalous MW-8 groundwater elevation data.

Although the vertical and lateral extent of petroleum hydrocarbon and solvent impact to the subsurface has not been fully assessed, sufficient data has been collected, in our opinion, to justify initiating property cleanup efforts. Groundwater monitoring at the site has been ongoing for nearly 20 years (since August 1990). During this time, free phase liquid hydrocarbons (free product) have consistently been measured (well MW-1, at thicknesses ranging from a sheen to 0.42 feet). In general, free product thicknesses have been increasing at well MW-1 during the 20-year monitoring period. Petroleum hydrocarbons and/or solvents have been detected in all 9 of the site's monitoring wells, and given the locations of the wells, these contaminants appear to be distributed across nearly the entire property. For reference, historical groundwater monitoring and analytical data is provided in Appendix A. The approximate distribution of select petroleum hydrocarbons and solvents in groundwater onsite, using data collected from the January 2010 well sampling event, are illustrated on Figures 4 and 5, respectively.

In 1997, Terra Vac Corporation performed a remediation pilot test that evaluated the feasibility of using dual phase extraction (DPE) technology to mitigate site contaminants. During the test, 2-inch diameter monitoring well MW-1 was utilized for simultaneous extraction of groundwater and soil vapors from the subsurface, and two temporary observation points (OB-1 and OB-2) were used for measurement of induced vacuum in the area surrounding well MW-1. Terra Vac's report documenting the equipment used to perform the pilot study, the test procedures, and findings of the work, is provided in Appendix B. Terra Vac concluded, based on the findings of their pilot testing work, that DPE was a viable remedial alternative for the site.

Given the significant and well documented petroleum hydrocarbon and solvent contamination beneath the property, our understanding regarding the distribution of these contaminants in the subsurface, the geologic and hydrogeologic conditions at the site, and the apparent effectiveness of DPE technology at the site during the 1997 pilot study, Stratus believes that implementation of onsite DPE remediation is an appropriate course of action. Stratus is thus proposing to install a network of extraction wells on the subject property, with the intention of implementing a DPE remediation project in the near future. Installation of the extraction wells at the same time as completion of the other subsurface investigation work should be more efficient and cost effective than completing these tasks during separate phases of work, assuming that ACEHS personnel concurs that implementation of DPE at the site is appropriate.

The locations and spacing of the proposed extraction wells were selected with the intention of providing coverage across the areas of the subsurface with the highest levels of petroleum hydrocarbons and solvents, using the least number of extraction wells. Based on the findings of the 1997 pilot study, Terra Vac concluded that a radius of influence of at least 14 feet was achieved during testing, and that minimal induced vacuum was noted about 25 feet away from the well used for extraction. For the purpose of selecting the extraction well locations, Stratus is assuming that a 25-foot radius of influence would be achieved using a full-scale DPE remediation system. Stratus is proposing to use 4-inch diameter wells for extraction, which we believe would provide somewhat improved performance over the 2-inch diameter well used for extraction during the 1997 pilot study. The locations of the proposed extraction wells are included on Figure 6.

SUPPLEMENTAL SCOPE OF WORK

In general, a majority of the scope of work for the upcoming subsurface investigation will follow procedures outlined in the May 20, 2009 work plan, pending approval of this document by ACEHS. The scope of work presented below only covers procedures for work tasks that were presented by Stratus in this work plan addendum, and were not covered in the May 20, 2009 document. These tasks involve:

- Advancement of exploratory soil borings using continuously cored direct push borings, instead of by SCP/MIP and adjacent direct push sampling borings, and
- Installation and development of three 4-inch diameter extraction wells (EX-1 through EX-3).

Supplemental Task 1: Vertical and Lateral Assessment Soil Borings (Soil Sampling Boring Procedure Only)

A Stratus geologist, under the direct supervision of a California Registered Professional Geologist, will oversee a C-57 licensed drilling contractor advance 9 soil sampling exploratory borings using a direct push drilling rig to a depth of approximately 50 feet below ground surface (bgs). The initial 5 feet of each boring will be cleared using hand

tools to reduce the possibility of damaging underground utilities. The 9 soil borings will be continuously cored using a double-walled sampling system equipped with disposable acetate liners. During advancement of the borings, soil samples will be retained in approximately 4-foot intervals. The bottom end of the acrylic lined soil sample section will be lined with Teflon™ sheets, capped, and sealed. Each sample will be labeled, placed in a resealable plastic bag, and stored in an ice-chilled cooler. The samples will remain chilled until relinquished to a state-certified analytical laboratory. Chain-of-custody procedures will be followed from the time the samples are collected until the time the samples are relinquished to the laboratory. Stratus anticipates that approximately 3 to 5 soil samples from each soil boring will be submitted for chemical analysis. The exact number of samples submitted will be determined at the time of the investigation. PID screening of the samples (described below) will be used to assist in the determination of which samples will be submitted for chemical analysis.

The entire soil core will be classified onsite using the Unified Soil Classification System and recorded, along with other pertinent geologic information, on a boring log. Select sections of the soil core will also be placed and sealed in plastic bags to allow the accumulation of volatile organic compound (VOC) vapors within the airspace in the bags. A PID will be used to measure VOC concentrations from each sample in parts per million (ppm), and will be recorded on the boring log.

Supplemental Task 2: Extraction Well Installation and Development

A Stratus geologist, under the direct supervision of a California Registered Professional Geologist, will oversee a C-57 licensed drilling contractor complete the soil boring and well construction activities necessary to install three 4-inch diameter extraction wells at the site. Each well boring will be advanced using a truck mounted or limited access drilling rig equipped with 10-inch diameter hollow stem augers. The initial 5 feet of each boring will be cleared using hand tools to reduce the possibility of damaging underground utilities.

Soil samples will be collected at 5-foot intervals during the advancement of the well borings using a California-type, split-spoon sampler equipped with three cleaned brass or stainless steel sleeves. The ends of the bottom-most, intact brass/stainless steel sleeve from each sample interval will be lined with Teflon™ sheets, capped, and sealed. Each sample will be labeled, placed in a resealable plastic bag, and stored in an ice-chilled cooler. The samples will remain chilled until relinquished to a state-certified analytical laboratory. Chain-of-custody procedures will be followed from the time the samples are collected until the time the samples are relinquished to the laboratory. A minimum of two soil samples will be submitted for chemical analyses from each boring. Additional samples may be selected for chemical analyses based on field conditions.

June 30, 2010

Soil in the remaining sleeves will be classified onsite using the Unified Soil Classification System and recorded, along with other pertinent geologic information, on a boring log. Soil from each sampled interval will also be placed and sealed in plastic bags to allow the accumulation of VOC vapors within the airspace in the bags. A PID will be used to measure VOC concentrations from each sample and will be recorded on the boring logs. PID results will also be used to evaluate which soil samples should be sent to the laboratory for chemical analyses.

Extraction wells EX-1 through EX-3 will be constructed through the 10-inch diameter hollow stem augers used to advance the borings. The wells will be constructed using 4-inch diameter PVC casing and 20 feet of 0.020-inch machine slotted PVC well casing installed from approximately 10 to 30 feet bgs. A sand filter pack (#3 or similar) will be placed in the annular space around the well casing from the bottom of the well screen to approximately two feet above the top of the well screen. Following initial placement of the filter pack, the well will be surged to settle the filter pack within the borehole and additional sand will be added, if necessary. Approximately three feet of bentonite will be placed on top of the filter pack and hydrated with clean water to provide a sanitary seal for the well. Neat cement will be used to backfill the remaining annular space around the well casing. A watertight locking cap will be placed over the top of the well casing, and a traffic rated vault box will be installed around the top of the well. The actual well construction may be modified in the field based on conditions encountered at the time of the investigation.

A minimum of 48 hours following the installation of wells EX-1 through EX-3, Stratus will return to the site to develop these wells. Development will be conducted by surging and bailing, followed by groundwater pumping. Development will continue until approximately ten casing volumes are removed and water appears free of suspended sediment, or until the wells go dry.

CLOSING

Stratus would again like to emphasize that this document is intended to be used in conjunction with the May 20, 2009 report previously submitted on behalf of the Grimit Auto Facility. Amendments to the scope of work presented in the May 2009 document are presented, a rationale for making these changes are discussed, and details associated with the portion of the scope of work that differs from the May 2009 report are provided.

SCHEDULE

Following an ACEHS review of this report and the May 2009 document, and obtaining approval for a scope of work by ACEHS personnel, Stratus will forward property access agreements, as necessary, in order to allow for collection of soil vapor samples on private property located adjacent to the site. Stratus will also forward an encroachment permit

application to the City of Oakland for review. It is expected that a few months may be required in order to obtain these items from the City of Oakland and nearby property owners. Once the access agreement(s) and City permit have been obtained, Stratus will retain a C-57 licensed drilling contractor, apply for Alameda County Public Works Agency drilling permits, and schedule the work for prompt implementation.

Once all of the field activities have been completed, a report will be prepared to document all work and present findings of the investigation. The report will be submitted within approximately 4 weeks of receiving all laboratory analytical results.

Please contact Scott Bittinger at (530) 676-2062, or via electronic mail at <u>sbittinger@stratusinc.net</u>, if you have any questions regarding this document or the project in general.

Sincerely,

STRATUS ENVIRONMEN

Scott G. Birtinger, P.

Project Manager

Attachments: Figure 1 Site Location Map

OF CAL

Scott G. Bittinge

No. 7477

Figure 2 Site Plan

Figure 3 Proposed Sample Locations Map (From May 20, 2009

Work Plan)

Figure 4 Petroleum Hydrocarbon Groundwater Analytical Summary

Gowri Sl/Kowtha, P.E.

Principal Engineer

First Quarter 2010

Figure 5 Halogenated Volatile Organic Compound Groundwater

Analytical Summary, First Quarter 2010

Figure 6 Site Plan with Proposed Extraction Well Locations

Appendix A Historical Groundwater Analytical Data

Appendix B 1997 Dual Phase Extraction Pilot Test Report Prepared by

Terra Vac Corporation

cc: Ms. Peggy Garcia, Trustee, Grimit Family Trust

Ms. Angel LaMarca

GENERAL NOTES:
BASE MAP FROM U.S.G.S.
OAKLAND EAST, CA.
7.5 MINUTE TOPOGRAPHIC
PHOTOREVISED 1980

GRIMIT AUTO 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

SITE LOCATION MAP

FIGURE

1

PROJECT NO. 2090-1970-01

APPENDIX A HISTORICAL GROUNDWATER ANALYTICAL DATA

TABLE 1A

GROUND WATER ELEVATION DATA

(All Measurements in Feet)

Well Number and Date of Measurement	Reference Elevation (2)	Depth To Water (measured)	Thickness of Free-Phase Petroleum Hydrocarbon (10)	Depth to Water (adjusted for Free-Phase Petroleum Hydrocarbon)	Ground Water Elevation (measured) (2)	Ground Water Elevation (adjusted for Free-phase Petroleum Hydrocarbons)
MW-1 ("deep")						
8/6/90	37.00	21.5	Sheen	21.5	15.5	15.5
1/28/92		21.0	Sheen	21.0	16.0	16.0
4/27/92		20.95	Sheen	20.95	16.05	16.05
8/10/92		22.20	Not recorded	22,20	14.80	14,80
2/11/94		15.93 (3)	Sheen	15.93 (3)	21.07 (3)	21.07 (3)
2/28/94		13.85 (4)	N/A	13.85 (4)	23.15 (4)	23.15 (4)
9/9/94		20.19	Sheen	20.19	16.81	16.81
12/28/94		14.91	Sheen	14.91	22.09	22.09
4/13/95		14.18	Sheen	14.18	22.82	22.82
11/1/95		20.90	Sheen	20.90	16.10	16.10
3/8/96		11.82	N/A	11.82	25.18	25.18
3/25-26/96	36.97	13.54	Sheen	13.54	23.43	23.43
10/7/96		21.78 (11)	Sheen	21.78	15.19	15.19
1/15/97		13.34 (11)	Sheen	13.34	23.63	23.63
6/23/97	36.99	19.91	Sheen	19.91	17.08	17.08
10/6/97		21.55	Sheen	21.55	15.44	15.44
12/12/98		16.24	Sheen	16.24	20.75	20.75
4/24/99		14.21	Sheen	14.21	22.78	22.78
12/18/99		19.28	0.01	19.28	17.71	17.72
7/22/00		21.93	Sheen	21.93	15.93	15.93
1/29/01		19.49	0.01	19.48	17.50	17.51
7/28/01		19.84	Sheen	19.84	17.15	17.15
2/3/02		16.03	0.01	16.02	20.96	20.97
7/23/02		20.45	0.01	20.44	16.54	16.55
1/20/03		15.08	0.02	15.06	21.91	21.93
7/30/03		19.06	0.02	19.04	17.93	17.95
1/27/04		16.45	Sheen	16.45	20.54	20.54
7/22/04	40.02	20.22	0.08	20.14	19.80 (7)	19.88
1/20/05		13.92	Sheen	13.92	26.10	26.10
7/20/05		16.76	Sheen	16.76	23.26	23.26
1/26/06		14.40	0.01	14.39	25.62	25.63
7/27/06		17.66	Sheen	17.66	22.36	22.36
1/24/07		17.43	0.02	17.41	22.59	22.61
7/18/07		19.31	0.17	19.14	20.71	20.88
2/15/08		14.80	0.02	14.78	25.22	25.24
7/25/08		20.21	0.42	19.79	19.82	20.24
1/23/09		19.71 (9)	0.08	19.64	20.31 (9)	20.39
7/20/09		19.58	0.125	19.45	20.44	20.57
1/25/10		13.69 (9)	0.125	13.56	26.33 (9)	26.45

Well Number and Date of Measurement	Reference Elevation (2)	Depth To Water	Relative Ground Water Elevation (2)
MW-2 ("deep")			
2/11/94	36.40	14.16 (3)	22.24 (3)
2/28/94		16.01 (4)	20.39 (4)
9/9/94		18.96	17,44
12/28/94		21,42	14.98
4/13/95		19.69	16.71
11/1/95		21.91	14.49
3/8/96		14.56 (6)	21.84 (6)
3/25-26/96	36.39	10.84	25.55
10/7/96		18.41	17.98
1/15/97		10.07	26.32
6/23/97	36.40	13.73	22.67
10/6/97		17.03	19.37
12/12/98		11.39	25,01
4/24/99		10.45	25.95
12/18/99		13.22	23.18
7/22/00		13.73	22.67
1/29/01		12.25	24.15
7/28/01		16.73 (6)	19.67 (6)
2/3/02		11.40	25.00
7/23/02		13.42	22.98
1/20/03		10.49	25.91
7/30/03		13.47	22.93
1/27/04		11.72	24.68
7/22/04	39,42	13.86	25.56 (7)
1/20/05		10.24	29.18
7/20/05		12.34	27.08
1/26/06		10.60	28.82
7/27/06		13.02	26.40
1/24/07		15.76	23.66
7/18/07		13.91	25.51
2/15/08		10.94	28.48
7/25/08		14.29	25.13
1/23/09		20.17 (9)	19.25 (9)
7/20/09		15.16	24.26
1/25/10		15.66 (9)	23.76 (9)
MW-3 ("shallow")		·	
2/11/94	36.94	6.97 (3)	29.97 (3)
2/28/94		7.74 (4)	29.20 (4)
9/9/94		9.68	27.26
12/28/94		8.15	28.79
4/13/95		8.05	28.89
11/1/95		7.82	29.12
3/8/96		5.69	31.25
3/25-26/96	36.94	6.91	30.03
10/7/96		9.51	27.43
1/15/97		6.23	30.71

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 3

Well Number and Date of Measurement	Reference Elevation (2)	Depth To Water	Relative Ground Water Elevation
			(2)
MW-3 ("shallow") cont'			
6/23/97	36.94	9.65	27.29
10/6/97		10.53	26.41
12/12/98		7.12	29.82
4/24/99		7.17	29.77
12/18/99		8.51	28.43
7/22/00		9.41	27.53
1/29/01		7.23	29.71
7/28/01		8.63	28.31
2/3/02		7.99	28.95
7/23/02		10.17	26.77
1/20/03		6.76	30.18
7/30/03		10.13	26.81
1/27/04		7.65	29.29
7/22/04	39.95	11.29	28.66 (7)
1/20/05		6,24	33.71
7/20/05		9.03	30.92
1/26/06		6.49	33.46
7/27/06		8.80	31.15
1/24/07		8.75	31.20
7/18/07		11.29	28.66
2/15/08		6.79	33.16
7/25/08		12.40	27.55
1/23/09		9.72 (9)	30.23 (9)
7/20/09		10.81	29.14
1/25/10		7.67 (9)	32.28 (9)
MW-4 ("deep")			
3/25-26/96	36,46	14.14	22.32
10/7/96		22.31	14.15
1/15/97		13.78	22.68
6/23/97	36.47	20.90	15.57
10/6/97		22.77	13.60
12/12/98		17.16	19.31
4/24/99		14.55	21.92
12/18/99		20.46	16.01
7/22/00		20.67	15.80
1/29/01		18.06	18.41
7/28/01		20.80	15.67
2/3/02		15.53	20.94
7/23/02		20.26	16.21
1/20/03		15.26	21.21
7/30/03	,	20.23	16.24
1/27/04		17.15	19.32
7/22/04	39.49	21.28	18.21 (7)
1/20/05		14.20	25.29
7/20/05		17.64	21.85
1/26/06		14.42	25.07

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 4

Well Number and Date of Measurement	Reference Elevation (2)	Depth To Water	Relative Ground Water Elevation (2)
MW-4 ("deep") cont'			
7/27/06		18.51	20.98
1/24/07		18.43	21.06
7/18/07		20.59	18.90
2/15/08		15.11	24.38
7/25/08		21.12	18.37
1/23/09		19.99 (9)	19.50 (9)
7/20/09		20.58	18.91
1/25/10		15.07 (9)	24.42 (9)
MW-5 ("deep")			
10/7/96		22.86	13,91
1/15/97		17.33	19.44
6/23/97	36.77	21.91	14.86
10/6/97		24.26	12.51
12/12/98		20.66	16.11
4/24/99		17.19	19.58
12/18/99		22.71	14.06
7/22/00		21.42	15.35
1/29/01		20.79	15.98
7/28/01		21.07	15.70
2/3/02		17.67	19.10
7/23/02		20.16	16.61
1/20/03		17.21	19.56
7/30/03		20.32	16.45
1/27/04		18.34	18.43
7/22/04	39.79	20.90	18.89 (7)
1/20/05		15.89	23.90
7/20/05		17.97	21.82
1/26/06		15.49	24.30
7/27/06		18.50	21.29
1/24/07		18.76	21.03
7/18/07		20.12	19.67
2/15/08		16.35 (9)	23.44 (9)
7/25/08		20.57	19.22
1/23/09		19.42 (9)	20.37 (9)
7/20/09 1/25/10		20.35	19.44
1/23/10		16.33 (9)	23.46 (9)
MW-6 ("shallow")			
3/25-26/96	36.42	8.52	27.90
10/7/96		12.82	23.60
1/15/97		7.72	28.70
6/23/97	36.42	11.42	25.00
10/6/97		12.67	23.75
12/12/98		9.15	27.27
4/24/99		8.56	27.86

Well Number and Date of Measurement	Reference Elevation (2)	` Depth To Water	Relative Ground Water Elevation
MW-6 ("shallow") cont'			(2)
12/18/99		10.53	25.89
7/22/00		11.50	24.92
1/29/01		9.34	27.08
7/28/01		N/A	N/A
2/3/02		9.32	27.10
7/23/02		11.33	25,09
1/20/03		8.49	27.93
7/30/03		11.35	25.07
1/27/04		9.20	27,22
7/22/04	39.44	11.13	28.31 (7)
1/20/05		7.65	31.79
7/20/05		10.02	29,42
1/26/06		8.13	31.31
7/27/06		10.59	28.85
1/24/07		10.09	29.35
7/18/07		11.06	28.38
2/15/08		8.17	31.27
7/25/08		11.30	28.14
1/23/09		9.82 (9)	29.62 (9)
7/20/09		11.02	28.42
1/25/10		6.58 (9)	32.86 (9)
MW-7 ("deep")			
6/23/97	36.83	19.93	16.90
10/6/97		21.43	15.40
12/12/98		16.56	20.27
4/24/99		14.48	22.35
12/18/99		19.40	17.43
7/22/00		19.85	16.98
1/29/01		17.59	19.24
7/28/01		20.05	16.78
2/3/02		15.89	20.94
7/23/02		19.57	17.26
1/20/03		15.36	21.47
7/30/03		19.21	17.62
1/27/04		16.84	19.99
7/22/04	39.84	20.17	19.67 (7)
1/20/05		14.44	25,40
7/20/05		17.26	22.58
1/26/06		14.55	25.29
7/27/06		18.13	21.71
1/24/07		^e 18.03	21.81
7/18/07		19.76	20.08
2/15/08		15.44	24.40
7/25/08		20.50	19.34
1/23/09		19.08 (9)	20.76 (9)
7/20/09		20.20	19.64

Well Number and Date of Measurement	Reference Elevation (2)	` Depth To Water	Relative Ground Water Elevation
MW-7 ("deep") cont'			(2)
1/25/10		15.30 (9)	24.54 (9)
MW-8 ("shallow")			
6/23/97	36.55	5.74	30.81
10/6/97		5.69	30.86
12/12/98		4.01	32.54
4/24/99		4.40	32.15
12/18/99		4.91	31.64
7/22/00		5.47	31.08
1/29/01		3.01	33.54
7/23/02		5.11	31.44
1/20/03		3.57	32.98
7/30/03		5.23	31.32
1/27/04		4.26	32.29
7/22/04	39.49	5.42	34.07 (7)
1/20/05		3.39	36.10
7/20/05		5.14	34.35
1/26/06		3.70	35.75
7/27/06		5.63	33.86
1/24/07		4.87	34,62
7/18/07		5.41	34.08
2/15/08		3.77	35.72
7/25/08		5.67	33.82
1/23/09		3.55 (9)	35.94 (9)
7/20/09		5.71	33.78
1/25/10		1.15 (9) (10)	38.34 (9) (10)
MW-9 ("shallow")			
6/23/97	36.70	17.04	19.66
10/6/97		19.17	20.53
4/24/99		12.33	24.37
12/18/99		16.14	20.56
7/22/00		15.78	20.92
1/29/01		14.65	22.05
7/28/01		15.33	21.37
2/3/02		12.59	24.11
7/23/02		15.27	21.43
1/20/03		12.27	24.43
7/30/03		14.85	21.85
1/27/04		11.72	24.98
7/22/04	39.71	15.17	24.54 (7)
1/20/05		10.16	29.52
7/20/05		12.12	27.59
1/26/06		10.12	29.59
7/27/06		12.52	27.19
1/24/07		12.63	27.08 (8)
7/18/07		13.77	25.94 (8)

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 7

Well Number and Date of Measurement	Reference Elevation (2)	` Depth To Water	Relative Ground Water Elevation (2)
MW-9 ("shallow") cont'			
2/15/08		10.78	28.93
7/25/08		13.93	25.78
1/23/09		13.08 (9)	26.63 (9)
7/20/09		13,63	26.08
1/25/10		11.35 (9)	28.36 (9)

Notes on following page

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 8

Notes

(1) N/A = not applicable.

(2) Elevations from a survey conducted by Andreas Deak, California Licensed Land Surveyor, March 21, 1996 and June 23, 1997, City of Oakland datum; and by Virgil D. Chavez Land Surveying, California Licensed Land Surveyor, July 22, 2004, NGVD 29 datum.

(3) Well under pressure when locking cap removed; water level may not have been stabilized.

- (4) Depth to water was measured over a 120 minute period; indicated depths appear to be stabilized readings.
- (5) Surveyed elevations of wells MW 1 and MW-2 varied to 0.02 foot on March 21, 1996 survey as compared to February 11, 1994 survey; previously calculated measurements of elevation have not been modified to reflect the new survey data. Similar slight survey differences on June 20, 1997 have not been corrected.

(6) Well not stabilized (water level rising).

(7) (Initial elevation to NGVD datum).

(8) Corrected elevation.

(9) Well possibly not equilibrated.

(10) Well situated and screened within excavation backfill, water level elevated due to recent precipitation.

TABLE 1B SUMMARY OF GROUND WATER GRADIENT INFORMATION

Date	Shallov	v Wells	Deep Wells		
	Direction	Inclination	Direction	Inclination	
8/6/90	N/A	N/A	N/A	N/A	
1/28/92	N/A	N/A	N/A	N/A	
4/27/92	N/A	N/A	N/A	N/A	
8/10/92	N/A	N/A	N/A	N/A	
2/11/94	N/A	N/A	N/A	N/A	
2/28/94	N/A	N/A	N/A	N/A	
9/9/94	N/A	N/A	N/A	N/A	
12/28/94	N/A	N/A	N/A	N/A	
4/13/95	N/A	N/A	N/A	N/A	
11/1/95	N/A	N/A	N/A	N/A	
3/8/96	N/A	N/A	N/A	N/A	
3/25-26/96 (2)	N/A	N/A	N/A	0.01	
10/7/96 (2)	N/A	N/A	N/A	0.02	
1/15/97 (2)	N/A	N/A	S 33 E	0.13	
6/23/97 (3)	N 44 W	0.24	S 68 E	0.07	
10/6/97 (3)	N 47 W	0.29	S 55 E	0.11	
12/12/98 (3)	N 33 W	0.32	S 47 E	0.05	
4/24/99 (3)	N 59 W	0.17	S 44 E	0.07	
12/18/99 (3)	N 55 W	0.26	S 44 E	0.07	
7/22/00 (3)	N 56 W	0.24	S 65 E	0.19	
1/29/01 (3)	N 47 W	0.30	S 65 E	0.20	
7/28/01 (3)	N 51 W	0.24	S 65 E	0.05	
2/3/02 (3)	N 50 W	0.23	S 65 E	0.05	
7/23/02 (3) 1/20/03 (3)	N 51 W	0.24	S 85 E	0.11	
7/30/03 (3)	N 50 W	0.22	S 50 E	0.19	
1/27/04 (3)	N 62 W	0.23	S 66 E	0.10	
7/22/04 (3)	N 60 W	0.19	S 77 E	0.10	
1/20/05 (3)	N 60 W	0.22	S 67 E	0.08	
7/20/05 (3)	N 45 W N 70 W	0.17	S 30 E	0.04	
1/26/06 (3)	N 52 W	0.14	S 68 E	80.0	
7/27/06 (3)	N 68 W	0.14	S 55 E	0.04	
1/24/07 (3)	N 57 W	0.15 0.19	S 72 E	0.09	
7/18/07 (3)	N 52 W	0.19	S 65 E	0.08	
2/15/08 (3)	N 63 W		S 57 E	0.11	
7/25/08 (3)	N 65 W	0.14 0.17	S 55 E	0.06	
1/23/09 (3)	N 62 W (4)	0.17	S 76 E	0.11	
7/20/09 (3)	N 61 W	0.21 (4)	N/A (5)	N/A (5)	
1/25/10 (3)			S 769E	0.08	
1123/10 (3)	N/A (6)	N/A (6)	N/A (6)	N/A (6)	

Notes

- (1) N/A = not applicable.
- (2) Six wells.
- (3) Nine wells.
- (4) Wells probably not equilibrated, but derived gradient information consistent with previous sampling events.
- (5) Wells probably not equilibrated, and derived gradient information not consistent with previous sampling events.
- (6) Wells not equilibrated, and gradients not calculated

TABLE 2

SUMMARY OF ANALYTICAL TEST RESULTS - GROUND WATER
Petroleum Hydrocarbons
(Results reported in parts per billion, ppb/ug/l) (1)

Well and Date	TPH Gasoline	MTBE	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease
MW-1 ("deep")							HVOC (7)
8/6/90 (2) 1/28/92 4/27/92 (3) 4/27/92 (4) 8/10/92 2/11/94 9/9/94	54,000 2,000,000 500,000 175,000 170,000 1,800,000 23,000,000	NA NA NA NA NA	3,500 7,400 3,400 4,200 4,200 ND 56,000	3,200 17,000 6,400 4,400 4,200 5,100	1,900 28,000 10,000 3,200 3,300 5,200 9,100	9,400 120,000 45,000 14,600 15,900 23,900 137,000	7,600 7,500 (5) 440,000 (6) N/A 120,000 (6) 16,000 (6) 880,000 (6)
12/28/94 4/13/95 11/1/95 3/25/96 10/8/96 1/16/97 6/23/97 10/7/97	55,000 45,000 44,000 45,000 55,000 48,000 40,000 45,000	NA NA NA 490 310 ND<100 ND<680	3,700 2,800 2,600 3,000 3,300 2,600 2,300 2,500	5,300 3,400 3,400 4,100 4,500 3,200 3,500 3,600	1,400 1,200 1,400 1,600 1,700 1,300 1,500 1,700	5,800 5,100 5,900 6,800 7,100 5,300 6,300 6,800	83,000 (6) 50,000 (5) 52,000 (5) 46,000 (5) (7) 11,000 (5) (7) 190,000 (5) (7) 150,000 (5) (7)
12/12/98 4/24/99 4/24/99 (8) 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02	39,000 33,000 41,000 43,000 37,000 36,000 99,000 42,000	ND<1,500 ND<200 1,100 ND<200 ND<200 ND<200 ND<250 ND<500	3,000 2,300 2,500 2,600 2,200 2,100 1,500 1,200	100 3,300 3,700 3,800 2,600 2,300 2,300 1,300	1,400 1,100 1,500 1,400 1,300 1,200 1,700 1,100	5,800 4,100 5,700 5,800 5,200 4,500 6,600 3,900	67,000 (5) (7) 140,000 (5) (7) N/A 110,000 (5) (7) 320,000 (5) (7) 76,000 (5) (7) 86,000 (5) (7) 42,000 (5) (7)
7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05A (11) 7/20/05B (11)	53,000 33,000 24,000 21,000 31,000 25,000 22,000 24,000	ND<1,000 ND<2,000 ND<500 ND<250 ND<1,000 ND<270 ND<150 ND<1,000	1,700 2,100 1,300 1,600 1,500 1,300 1,100 830	2,800 2,500 1,500 1,500 1,700 1,400 1,600 960	1,500 1,300 760 1,100 1,200 1,000 830 670	5,100 4,400 2,700 3,200 4,100 2,800 2,600	170,000 (5) (7) 65,000 (5) (7) 55,000 (5) 220,000 (5) 780,000 (5) (7) 72,000 (5) (7) 500,000 (5) (7)
7/25/08 (11) 1/26/06 7/27/06 (A) (12) 7/27/06 (C) (12) 1/25/07 7/19/07 2/15/08 7/25/08 (1A) (13) 7/25/08(1D) (13)	28,000 25,000 15,000 32,000 32,000 28,000 28,000 28,000	ND<500 ND<250 ND<250 ND<400 ND<700 ND<1,200 ND<900 ND<700 ND<1,000	1,600 810 880 990 600 930 540	1,500 1,000 1,000 1,200 960 740 780 580 1,000	1,200 1,100 950 1100 950 940 750 1,200	2,200 3,500 3,200 2,800 3,500 2,500 2,500 2,000 3,700	N/A 64,000 (5) (7) N/A 2,500,000 (5) (7) 170,000 (5) 1,100,000 (5) 3,500,000 (5) (7) (see table 6) N/A
1/23/09 7/21/09 1/25/10 MW-2 ("deep")	52,000 19,000 23,000	ND<350 ND<500 ND<600	420 530 780	350 500 540	1,400 890 850	3,600 2,300 2,200	1,000,000 (5) (7) 46,000 (5) 140,000 (5) (7)
2/11/94 9/9/94 12/28/94 4/13/95 11/1/95 3/25/96 10/8/96 1/16/97 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00	130 1,000 330 1,300 100 4,500 710 330 280 320 290 360 210 180	NA NA NA NA NA 11 12 10 ND<35 ND<11 21 ND<200 ND<5	22 89 100 280 9.9 470 1.9 41 12 4.5 21 36 13	1.1 ND 3.8 6.9 ND 57 0.54 2.4 0.69 ND 0.76 1.3 ND	5.2 ND 5.4 33 ND 220 1.0 1.3 ND ND 10 9.2 2.9 4.5	7.3 6.9 4.7 23 ND 280 1.0 9.9 13 ND 19 19 7.7 6.0	ND (6) ND (6) 5100 (6) ND (5) ND (5) ND (5) (7) ND (5) (7) ND (5) (7) NA (7) NA (7) NA (7) ND (5) (7)

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 11

Well and Date	TPH Gasoline	MTBE	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease HVOC (7)
MW-2 ("deep")	continued						11400 (7)
1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 1/23/09 1/25/10	130 ND<50 140 780 1,900 710 180 ND<50 96 430 120 89 ND<50 100 460 ND<50 ND<50 ND<50 ND<50	ND<5 ND<5 ND<5 ND<15 ND<50 ND<20 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	16 2.7 5.5 52 120 43 10 0.90 1.3 17 5.3 3.1 ND<0.5 1.1 25 0.66 ND<0.5 ND<0.5	ND ND ND 10 1.8 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	1.9 0.64 9.0 44 120 24 3.2 ND<0.5 1.5 2.3 0.64 1.9 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	3.8 0.69 12 6.2 94 5.9 10 ND<0.5 1.0 1.2 3.3 3.1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<5000 (5) (7)
MW-3 ("shallow" 2/11/94 9/9/94 12/28/94 4/13/95 11/1/95	ND 710 2,300 1,700 1,100	NA NA NA NA NA	ND 10 7.8 2.9 4.4	ND ND ND ND	ND ND 130 61 27	ND 3.5 73 24 22	ND (6) ND (6) ND (6) ND (5) ND (5)
3/25/96 10/8/96 1/16/97 6/23/97 10/7/97	2,300 160 1,800 ND ND	NA ND 7.1 ND ND	4.0 ND 2.8 ND ND	0.96 0.5 0.68 ND ND	120 1.2 48 ND ND	65 0.77 66 ND ND	ND (5) (7) ND (5) (7) ND<5000 (5) (7) NA (7) NA (7)
12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01	1,900 2,100 330 230 450 ND<50	ND ND ND ND<5	1.8 1.5 0.51 0.89 1.1	0.78 0.85 ND 2.4 1.6	78 79 ND ND 11	42 43 ND ND 3.6	ND (5) (7) ND<5000 (5) (7) ND<5000 (5) (7) ND<5000 (5) (7) ND<5000 (5)
2/3/02 7/23/02 1/20/03 7/30/03 1/27/04	98 ND<50 700 ND<50 85	ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	ND<0.5 ND<0.5 ND<0.5 1.6 ND<0.5 ND<0.5	ND ND - 0.5 0.56 ND - 0.5 ND - 0.5	ND ND ND<0.5 41 ND<0.5 ND<0.5	ND ND ND<0.5 21 ND<0.5 0.87	ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5)
7/22/04 1/20/05 7/20/05 1/26/06 7/27/06	ND<50 440 130 790 ND<50	ND<5 ND<5 ND<5 ND<5 ND<5	ND<0.5 0.81 ND<0.5 1.0 ND<0.5	ND<0.5 0.67 1.2 1.0 ND<0.5	ND<0.5 7.1 ND<0.5 12 ND<0.5	ND<0.5 2.6 ND<0.5 3.4 ND<0.5	ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5)
1/25/07 7/19/07 2/15/08 7/25/08 1/23/09 7/21/09	ND<50 ND<50 74 ND<50 ND<50 ND<50	ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5) ND<5000 (5)
1/25/10 MW-4 ("deep")	150	ND<5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5000 (5) (7)
3/26/96 10/8/96 1/16/97 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00	9,900 7,800 4,800 6,200 4,400 3,500 3,100 2,600 2,700	NA 140 84 160 85 110 ND<10 33 60	4,000 3,900 1,900 2,800 1,800 1,500 1,700 1,000 940	40 33 21 20 14 13 22 12	71 31 2.5 20 18 39 67 32 31	100 40 27 23 14 14 21 10	ND (5) (7) ND (5) (7) 5,200 (5) (7) ND (5) (7) ND (5) (7) ND (5) (7) ND (5) (7) 7,500 (5) (7) ND<5000 (5) (7) 7,000 (5) (7)

Well and Date	TPH Gasoline	МТВЕ	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease HVOC (7)
MW-4 ("deep"	') continued						HVOC (7)
1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 1/23/09 7/21/09	2,500 1,100 2,100 1,200 1,900 1,700 1,100 910 1,900 1,300 1,900 980 910 960 1,500 1,000 1,000 940 1,000	ND<5 27 ND<25 ND<17 ND<80 ND<150 ND<100 ND<100 ND<200 ND<25 ND<75 ND<20 ND<120 ND<120 ND<120 ND<1100 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150	980 250 890 490 740 440 350 210 550 310 500 340 230 150 310 54 200 230 240	11 6.3 23 11 11 8.9 10 7.9 36 11 16 13 5 3.9 12 3.1 5 8.8 6.9	35 19 41 22 32 18 17 19 63 36 40 18 15 9.9 18 5.5 9.3 6.5	5 4.8 20 8.8 12 6.1 5.0 6.5 43 12 12 8.8 4 3.4 11 2.0 2.3 8.0 8.9	ND<5000 (5) (7) 90,000 (5) (7) 7,400 (5) (7) ND<5000 (5) (7) ND<5000 (5) (7) ND<5000 (5) (7) S1,000 (5) (7) ND<5000 (5) (7) 85,000 (5) (7) 7,100 (5) (7) ND<5000 (5) (7) 7,800 (5) (7) 7,800 (5) (7) 7,800 (5) (7) ND<5,000 (5) (7) 12,000 (5) (7) 12,000 (5) (7) 12,000 (5) (7)
MW-5 ("deep" 3/26/96 10/8/96 11/16/97 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 12/18/99 12/18/90 1/29/01 7/28/01 2/3/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 7/25/08 1/23/09 7/21/09 1/25/10	1,200 6,700 3,000 12,000 10,000 11,000 9,300 7,000 14,000 8,200 9,100 11,000 6,400 7,300 8,700 7,600 10,000 8,500 7,900 8,000 5,300 1,300 10,000 9,900 5,600 6,600 5,600 2,800	NA 190 90 150 ND<480 ND<660 ND<100 ND<100 ND<100 ND<100 ND<70 ND<110 ND<170 ND<250 ND<250 ND<250 ND<250 ND<250 ND<250 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<150 ND<15	43 260 150 410 310 400 390 250 290 180 190 250 160 190 170 220 200 130 110 170 110 17 99 120 120 68 81 32	8.2 92 68 170 62 120 290 52 140 42 67 160 67 80 35 50 38 63 47 53 35 6.1 15 26 20 18 21	83 410 190 920 530 740 820 500 770 420 540 730 540 480 470 460 510 430 350 410 380 34 250 290 210 220 210 100	95 370 180 800 500 480 770 300 630 250 430 540 390 310 300 290 400 280 250 270 250 46 200 200 190 110 160 64	ND (5) (7) ND (5) (7) ND (5) (7) NA (7) NA (7) NA (7) ND (5) (7) ND<50000 (5) (7) ND<50000 (5) (7) 11,000 (5) (7) ND<50000 (5) (7) ND<50000 (5) ND<5,0000 (5) (7)
10/8/96 10/8/96 10/8/96 10/8/96 1/15/97 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03	9,900 1,300 6,500 3,100 960 2,500 2,900 2,300 2,200 NA 2,500 1,100 3,800	NA 57 220 100 ND<74 ND<160 ND<10 ND<10 ND<10 ND<10 NA ND<50 ND<50 ND<20 ND<80	1,000 120 570 410 78 230 430 170 290 220 NA 290 160 370	150 2.3 65 16 3.4 10 33 6.6 9.6 11 NA 18 6.5 33	470 1.4 170 110 1.8 92 160 56 80 150 NA 88 54	720 4.0 630 140 5.8 110 200 63 43 230 NA 330 35	ND (5) (7) ND (5) (7) ND (5) (7) NA (7) NA (7) NA (7) ND (5) (7) ND<5000 (5) (7)

Well and Date	TPH Gasoline	МТВЕ	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease
MW-6 ("shallow")	continued						HVOC (7)
7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 7/25/08 1/23/09 1/21/09 1/25/10 MW-7 ("deep")	2,000 2,600 1,200 3,100 730 1,900 670 650 4,200 2,100 370 330 290 740	ND<70 ND<400 ND<45 ND<25 ND<10 ND<60 ND<9 ND<15 ND<50 ND<60 ND<10 ND<20 ND<10 ND<30	250 420 110 280 66 180 120 99 360 200 27 69 40 80	4.8 20 3.2 21 4.4 12 5 2.7 18 10 3.1 3.6 1.9 4.9	50 170 36 180 25 120 17 20 47 100 2.2 11 9.3	24 180 17 250 26 140 15 16 55 97 2.7 8.1 7.8	ND<5000 (5) (7) ND<5,000 (5) (7)
6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 7/25/08 1/25/09 1/25/10	8,700 7,500 5,500 5,500 7,400 4,000 4,200 6,300 3,400 4,500 5,300 3,600 3,200 8,400 3,300 3,800 2,500 2,700 2,900 3,700 2,500 3,400 3,900	ND<20 ND<310 ND<190 ND<10 ND<10 ND<10 ND<10 ND<10 ND<80 ND<10 ND<70 ND<25 ND<50 ND<170 ND<400 ND<90 ND<170 ND<25 ND<400 ND<25 ND<500 ND<170 ND<25 ND<500 ND<170 ND<25 ND<500 ND<170 ND<25 ND<300 ND<240 ND<100 ND<120 ND<120 ND<120 ND<120 ND<180 ND<200	950 1,100 640 640 570 620 410 540 560 440 380 460 350 440 320 550 450 530 320 280 230 400 230 230 260	260 86 43 180 27 180 21 120 110 6.3 32 34 15 10 31 230 31 85 6.9 10.0 15 25 5.4 75 15	520 280 290 290 91 240 22 110 190 87 30 43 13 10 29 300 45 38 3.3 5.9 12 26 2.9 33 5.2	380 150 55 210 31 180 21 110 140 61 36 52 18 25 34 410 37 94 10 18 18 87 5.6	ND (5) (7) ND<5000 (5) (7) ND<5,000 (5) (7)
MW-8 ("shallow") 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08	010 120 ND S0	5.9 ND ND ND ND ND ND ND ND ND S ND S ND S	25 6.9 ND ND ND ND 0.87 ND 0.87 ND 0.87 ND<0.5 2.0 ND<0.5 1.2 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 N	1.4 ND ND ND ND ND ND ND ND ND-0.5	4.3 ND ND ND ND ND ND ND ND-0.5	2.4 ND	ND (5) (7) ND (5) (7) ND (5) (7) ND (5) (7) ND<5000 (5) (7)

Well and Date	TPH Gasoline	MTBE	Benzene	Toluene	Ethyl- Benzene	Xylenes	Oil & Grease
MW-8 ("shallow") continued						HVOC (7)
1/23/09 7/21/09 1/25/10	ND<50 ND<50 ND<50	ND<5 ND<5 ND<5	ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5	ND<5000 (5) (7) ND<5000 (5) (7) ND<5000 (5) (7)
MW-9 ("shallow")						
6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05a 1/20/05b (10) 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 7/25/08 1/23/09 1/25/10	32,000 33,000 3,400 3,100 7,500 4,900 3,800 5,700 7,800 2,300 5,000 570 820 460 330 150 260 260 410 440 300 490 520 250 910 550	250 ND<690 ND<78 22 100 ND<10 ND<10 ND<10 ND<50 ND<50 ND<50 ND<50 ND<50 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	340 880 160 130 220 93 160 43 98 29 76 7.2 14 5.3 6.2 1.5 1.7 1.0 1.1 1.4 1.4 2.8 1.0 ND<0.5 2.5 2.2	280 350 14 18 44 15 35 27 51 14 25 1.2 2.6 1.2 1.5 0.55 2.0 2.9 1.4 1.5 2.4 5.2 4.1 3.7 4.8 6.5	1,500 1900 220 220 440 240 260 210 450 120 350 14 35 4.0 8.9 2.6 ND<0.5 ND<0.5 0.52 2.9 0.51 7.1 0.63 ND<0.5 2.6	4,300 4,700 210 190 650 250 310 420 640 96 340 4.8 35 7.2 12 3.7 1.2 0.64 ND<0.5 7.5 ND<0.5 22 ND<0.5 2.4	ND (5) (7) ND<5000 (5) (7) 71,000 (5) (7) 5,000 ND<5000 (5) (7) ND<5000 (5) (7) ND<5000 (5) (7)
EB-4 ("grab" gw s				010	**	55	110 13000 (3) (1)
3/8/96	15,000	NA	780	840	1,300	590	7,500 (5) (7)
MCL	NA	13/5 (9)	1	150	700	1,750	NA

Notes

- (1) ND non-detect; N/A not applicable
- (2) Kaldveer Associates report, September, 1990
- (2) Randveit Associates report, Septe
 (3) Sequoia Analytical Laboratory
 (4) Applied Remediation Laboratory
 (5) Gravimetric Method
 (6) Infrared Method
 (7) HVOC detected: see Table 3

- (8) Free-phase product observed in bailer (additional sample)
 (9) Primary and secondary MCL, respectively.
 (10) Supplemental sample following initial bailer volume removal.
- (11) Sample discharged from bottom of bailer (A); and top of bailer (B) (12) Sample discharged from top of bailer (A); and bottom of bailer (C)
- (13) Sample collected from top of water column below floating phase product (1A) and from well depth of 32' (1D)

TABLE 3

SUMMARY OF ANALYTICAL TEST RESULTS - GROUND WATER
Fuel Additive Compounds (Oxygenated Volatile Organics) (3)

(Results reported in parts per billion (ppb), ug/l) (1)

Sample	DHPE	ETBE	MFBE	TAME	TBA	EDB	1,2-DCA	Ethanol	Methanol
MW-1 ("de	ep")								
7/25/08 1/23/09 7/21/09 1/25/10	N/A ND<5.0 ND<10.0 ND<5.0	N/A ND<5.0 ND<10.0 ND<5.0	N/A ND<5.0 ND<10.0 ND<5.0	N/A ND<5.0 ND<10.0 ND<5.0	N/A 61 80 ND<20	N/A ND<5.0 ND<10.0 ND<5.0	N/A ND<5.0 ND<10.0 ND<5.0	N/A ND<500 ND<1,000 ND<500	N/A ND<5,000 ND<10,000 ND<5,000
MW-2 ("de	cp")								
7/25/08 1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<2.0 2.4 ND<2.0 ND<2.0	ND<0.5 ND<0.5 ND<0.5 ND<0.5	1.3 7.8 9.7 3.8	ND<50 ND<50 ND<50 ND<50	ND<500 ND<500 ND<500 ND<500
MW-3 ("sh	allow")								
7/25/08 1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<2.0 ND<2.0 ND<2.0 2.4	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<50 ND<50 ND<50	ND<500 ND<500 ND<500 ND<500
MW-4 ("de	ep")								
7/25/08 1/23/09 7/21/09 1/25/10	ND<2.5 ND<5.0 ND<2.5 ND<5.0	ND<2.5 ND<5.0 ND<2.5 ND<5.0	12 ND<5.0 6.9 ND<5.0	ND<2.5 ND<5.0 ND<2.5 ND<5.0	34 ND<20 19 ND<20	ND<2.5 ND<0.5 ND<2.5 ND<0.5	ND<2.5 ND<5.0 ND<2.5 ND<5.0	ND<250 ND<500 ND<250 ND<500	ND<2,500 ND<5,000 ND<2,500 ND<5,000
MW-5 ("de	ep")								
7/25/08 1/23/09 7/21/09 1/25/10	ND<5.0 ND<1.0 ND<2.5 ND<0.5	ND<5.0 ND<1.0 ND<2.5 ND<0.5	ND<5.0 ND<1.0 ND<2.5 ND<0.5	ND<5.0 ND<1.0 ND<2.5 ND<0.5	ND<20 16 ND<10 ND<2.0	ND<0.5 ND<1.0 ND<2.5 ND<0.5	ND<5.0 2.6 ND<2.5 ND<0.5	ND<500 ND<100 ND<250 ND<50	ND<5,000 ND<1,000 ND<2,500 ND<500
MW-6 ("sh	allow")								
7/25/08 1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	9.1 8.6 8.2 7.4	ND<0.5 ND<0.5 ND<0.5 ND<0.5	0.75 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<50 ND<50 ND<50	ND<500 ND<500 ND<500 ND<500
MW-7 ("dee	ep")						, Å		
7/25/08 1/23/09 7/21/09 1/25/10	ND<5.0 ND<5.0 ND<2.5 ND<5.0	ND<5.0 ND<5.0 ND<2.5 ND<5.0	ND<5.0 ND<5.0 ND<2.5 ND<5.0	ND<5.0 ND<5.0 ND<2.5 ND<5.0	ND<20 ND<20 ND<10 ND<20	ND<5.0 ND<5.0 ND<2.5 ND<5.0	ND<5.0 ND<5.0 ND<2.5 ND<5.0	ND<500 ND<500 ND<250 ND<500	ND<5,000 ND<5,000 ND<2,500 ND<5,000
MW-8 ("sha	allow")								
7/25/08 1/23/09 7/21/09	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<2.0 ND<2.0 ND<2.0 ND<2.0	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<50 ND<50 ND<50	ND<500 ND<500 ND<500 ND<500
MW-9 ("sha	allow")								
7/25/08 1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<2.0 ND<2.0 ND<2.0 ND<2.0	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<50 ND<50 ND<50	ND<500 ND<500 ND<500 ND<500

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 16

Notes

1 - . ND - non-detect.

2 -N/A - not applicable.

Explanations of abbreviations:

Abbreviation

Explanation

MTBE Ethanol Methanol TBA DIPE ETBE TAME EDB

1,2-DCA

Methyl tertiary-Butyl Ether Ethanol Methanol tertiary-Butanol Di-isopropyl ether
Ethyl tertiary-Butyl Ether
tertiary-Amyl Methyl Ether
Ethylene Dibromide (1,2-Dibromoethane)
1,2-Dichloroethane

TABLE 4

SUMMARY OF ANALYTICAL TEST RESULTS – GROUND WATER Halogenated Volatile Organic Compounds (HVOC) (Results reported in parts per billion, ppb/ug/l) (1) (2)

Well and Date	CA	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-1 ("deep"	')								
3/25/96 10/8/96 11/6/97 6/23/97 10/7/97 12/12/98 4/24/99 (8) 12/18/99 (9) 7/22/00 (10) 1/29/01 (11) 7/28/01 (12) 2/3/02 (13) 7/23/02 (14) 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 (19) 7/20/05A (21) 7/20/05A (21) 7/20/05B (21) 1/26/06 7/27/06C (24) 1/25/07 7/119/07 2/15/08 7/25/08(1C) (2: 1/23/09 7/21/09 1/25/10		7.2 ND<20 NA 10 7.4 7.4 9.9 8.0 16.0 23.0 9.0 10.0 2.5 11 ND<50.0 ND<50.0 ND<55.0 ND<55.0 ND<10 ND<10 ND<10 ND<10 ND<10 ND<50 ND<50,000N	5.3 ND<20 NA 4.1 2.2 ND<2.5 3.5 1.2 ND<2.5 ND<10 0.97 1.4 ND<10.0 ND<50.0 ND<50.0 ND<5.0 ND<5.0 ND<5.0 ND<10.0 ND<10.0 ND<10.0 ND<10.0 ND<50.0 ND<5.0 ND 5.0	23 15 36 ND<20.0 ND<50.0 ND<50.0 27 14 12 ND<25 12 ND<10 ND<10 ND<500	ND<5 ND<20 NA 3.7 3.8 ND<2.5 2.8 2.8 ND<10.0 6.4 5.5 ND<10.0 ND<10.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<10.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<10.0 ND<5.0 ND<10.0 ND<5.0 ND<10.0 ND<5.0 ND<10.0 ND<5.0 ND<10.0 ND<5.0 ND<10 ND<10 ND<10 ND<10 ND<500 ND 500 N	ND<5 ND<20 NA ND<2 ND<2 ND<2 ND<2 ND<2 ND<2 ND<3 1.2 ND<10.0 0.95 0.59 ND<10.0 ND<10.0 ND<50.0 ND<50.0 ND<5.0 ND<10.0 ND<50 ND<10.0 ND<50 ND<10 ND<10 ND<10 ND<50 ND<10 ND<10 ND<50 ND<10 ND<50 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<10 ND<50 ND 50		7.8 ND<20 NA 23 9.5 ND<2.5 ND<1.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<10.0 ND<50.0 ND<50.0 ND<50.0 ND<10.0 ND<50.0 ND 50.0 ND 50.0	25 26 NA 54 68 7.3 22 7.2 8.2 ND<10.0 15 7.4 ND<10.0 11 ND<20.0 ND<50.0 ND<50.0 32 15 21 ND<25 20 42 ND<10 ND<50.0 ND<50.0 ND<50.0 ND<50.0 ND<55.0 ND<55.0 ND<50.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0 ND<55.0
MW-2 ("deep")								
3/25/96 10/8/96 11/6/97 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 5/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	8.7 15 NA 9.7 18 16 13 15 17 12 9.7 7.1 1.7 1.6 1.7 14 6.6 8.7 2.0 10 13 5.5 5.3 ND<0.5	11 9.6 NA 8.0 11 9.4 7.8 9.0 10 9.1 7.8 6.7 2.1 2.0 1.4 8.9 6.5 7.8 2.1 7.7 10 9.1 1.5	ND<0.5	1.0 1.1 NA 0.86 1.2 1.1 0.92 1.5 1.2 0.9 0.95 0.72 ND<0.5 ND<0.5 ND<0.5 ND<0.5 0.69 ND<0.5 0.69 ND<0.5 0.69 ND<0.5	ND<0.5 ND<1 ND<0.5 ND<0.5 ND<5.0 ND<5.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 9.4 8.0 12.0 1.2 13.0 13.0 16.0 7.5 2.1	0.92 ND<0.5 NA ND<0.5

Well and Date	CA	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-2 ("deep"	") continued								
1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5	7.8 9.7 3.8	9.4 8.3 4.8	ND<0.5 ND<0.5 ND<0.5	0.88 0.89 ND<0.5	ND<0.5 ND<0.5 ND<0.5	16 15 9.0	ND<0.5 ND<0.5 ND<0.5
MW-3 ("shallo	ow")								
3/25/96 10/8/96 1/16/97 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 1/20/03 7/30/03 1/27/04 1/20/05 1/26/06 7/27/06 (25) 1/25/07 7/19/07 2/15/08 1/23/09 7/21/09 1/25/10 (33)	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	0.56 1.1 NA 0.54 ND<0.5 0.51 ND<0.5 0.72 0.52 ND<0.5	1.2 0.87 NA 0.76 ND<0.5 0.65 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5	ND<0.5 ND<0.5 NA ND<0.5 ND<1.5 ND<0.5 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5
MW-4 ("deep"	')								
3/26/96 10/8/96 1/16/97 6/23/97 (5) 10/7/97 12/12/98 (7) 4/24/99 1/21/00 1/29/01 7/28/01 2/3/02 (13) 7/23/02 1/20/03 7/30/03 1/27/04 (17) 7/22/04 (18) 1/20/05 (29) 1/26/06 (23) 7/27/06 (25) 1/25/07 7/19/07 (27) 2/15/08 (28) 7/25/08 (30) 1/23/09 (31) 7/21/09 (32)	ND<8 ND<15 NA 3.6 ND<8.0 ND<8.5 ND<8.5 ND<8.5 ND<10.0 ND<5.0 ND<7.5 ND<7.0 ND<10.0 ND<10.0 ND<10.0 ND<5.0	22 22 NA 21 20 18 20 27 38 35 29 22 30 28 32 41 23 28 32 31 24 25 28 31 18 27 22 25	ND<8 4.9 NA 5.3 ND<8.0 ND<3.5 ND<8.5 ND<10.0 ND<10.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<10.0 ND<10.0 ND<5.0 ND 5.0 ND	300 320 NA 340 380 150 390 620 380 310 240 200 230 370 120 320 230 320 180 170 180 200 110 150 84 210	9.2 ND<15 NA 10 9.9 12 13 ND<10.0 15 18 16 17 16 13 25 13 23 18 22 24 15 27 25 17 23 14 28	ND<8 ND<15 NA ND<3 ND<8.0 ND<8 ND<8.0 ND<8 ND<10.0 ND<10.0 ND<5.0	38 52 NA 11 ND<12 ND<4.5 33 ND<10.0 ND<5.0	150 130 NA 110 56 12 240 39 19 19 8.4 20 ND<0.5 69 13 32 9.6 81 ND<5.0 39 19 ND<5.0 19 ND<10	44 60 NA 83 56 57 43 ND<10.0 97 97 150 120 230 84 290 310 280 130 170 330 390 380 460 130 87 190 150 240

Well and Date	CA	1,2 DCB	1,2 DCA	eis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-5 ("deep"))								
3/26/96 10/8/96 1/16/97 6/23/97 (5) 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 (13) 7/23/02 1/20/03 7/30/03 1/27/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 2/15/08 7/25/08 1/23/09 7/21/09 1/25/10 MW-6 ("shallon	1.4 ND<2.5 NA 2.0 1.9 1.4 ND<1 1.6 1.8 ND<1.0 1.4 1.8 ND<2.5 ND<1.0 ND<1.0 ND<1.0 ND<5.0 1.1 ND<5.0 1.1 ND<5.0 ND<2.5 ND<0.5	ND<0.5 ND<2.5 NA 2.1 1.4 2.0 1.9 1.7 2.4 2.2 1.3 2.0 ND<2.5 1.4 1.2 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	2.1 4.9 NA 2.0 2.8 1.1 1.9 1.8 1.4 2.6 1.7 2.1 ND<2.5 1.4 1.1 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.5 ND<2.5 ND<2.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<	6.2 4.4 NA 7.2 3.4 3.7 4.8 1.9 2.6 2.2 1.4 3.9 ND<2.5 1.6 1.0 ND<5.0 ND<5.0 ND<5.0 ND<1.0 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<2.5 ND<3.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.5 N	ND<0.5 ND<2.5 NA 0.71 ND<0.5 ND<1 ND<1.0 ND<1.0 ND<1.0 0.95 ND<2.5 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0	ND<0.5 ND<2.5 NA ND<0.5 ND<1.5 ND<1 ND<1.0 ND<1.0 ND<1.0 ND<2.5 ND<2.5 ND<1.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0	ND<0.5 ND<2.5 NA ND<0.5 ND<0.5 ND<1.5 ND<1.1 ND<1.0 ND<1.0 ND<1.0 ND<2.5 ND<1.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0	ND<0.5 ND<2.5 NA ND<0.5 ND<0.5 ND<1 ND<1 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.5 ND<2.5 ND<1.0 ND<5.0 ND<5.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<5.0 ND<5.0 ND<5.0 ND<5.0	10 9.4 NA 13 10 5.8 6.3 2.9 5.0 2.2 2.6 4.6 ND<2.5 1.3 2.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5
3/26/96 10/8/96 11/6/97 6/23/97 10/7/97 12/12/98 (7) 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 (17) 7/22/04 1/20/05 720/05 1/26/06 7/27/06 1/25/07 7/11/07 2/15/08 7/25/08 1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<2.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<2.5 ND<2.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	3.9 2.3 NA 1.6 3.4 1.5 2.3 2.2 1.2 1.1 N/A 1.5 ND<1.0 1.8 1.3 ND<2.5 1.3 0.99 0.79 0.81 0.82 ND<0.5 0.73 ND<0.5 ND<0.5 ND<0.5 ND<0.5	15 9.9 NA 10 7.9 8.4 17 8.3 9.3 11 N/A 13 9.3 14 7.6 8.4 3.3 8.7 4.5 6.2 4.4 2.2 4.9 0.81 0.53 0.66 0.94	ND<0.5 ND<0.5 NA ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	1.9 ND<0.5 NA ND<0.5 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5	0.77 ND<0.5 NA ND<0.5 ND<0.5 ND<1 ND<1 ND<1.0 ND<5.0 ND<1.0 ND<5.0 ND<1.0 ND<0.5 ND<1.0 ND<0.5	2 0.57 NA 0.63 0.82 ND<0.5 0.73 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0 ND<1.0 ND<1.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 NA 0.50 ND<0.5 0.59 0.62 0.97 0.77 N/A ND<0.5 ND<1.0 2.7 3.2 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5
MW-7 ("deep")									
6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 (9)	0.93 ND<2 ND<2 ND<2 ND<3	1.6 ND<2 2.2 2.4 5.7	ND<0.5 ND<2 ND<2 ND<2 ND<3	2.4 8.5 97 31 120	1.2 2.4 ND<2 ND<2 ND<3	ND<0.5 ND<2 ND<2 ND<2 ND<3	9.8 38 ND<3.5 9.3 ND<3	17 110 ND<2 82 12	1.5 ND<2 ND<2 ND<2 ND<3

Well and Date	CA	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-7 ("deep")) continued								
7/22/00 (10) 1/29/01 (11) 7/28/01 (12) 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 (27) 2/15/08 (28) 7/25/08 1/23/09 7/21/09 1/25/10	ND<5 ND<5 ND<5 ND<5.0 ND<10.0 ND<2.5 ND<2.5 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5	18 18 11 ND<5.0 12.0 ND<2.5 ND<2.5 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<5.0	ND<5 ND<5 ND<5 ND<5 ND<5 ND<10.0 ND<10.0 ND<2.5 ND<2.5 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<5.0	170 170 170 94 180 50 130 130 120 110 250 110 350 29 210 220 99 190 82 98	ND<5 ND<5 ND<5 ND<5.0 ND<10.0 ND<2.5 ND<2.5 ND<5.0 ND<5.0 ND<5.0 ND<5.5 ND<5.0 ND<5.5 ND<5.0	ND<5 ND<5 ND<5.0 ND<10.0 ND<2.5 ND<2.5 ND<2.5 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.5	ND<5 ND<5 ND<5.0 ND<10.0 11 ND<2.5 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	8 8 6.9 30 ND<10.0 ND<2.5 ND<2.5 20 ND<5.0 20 ND<5.0 19 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<5 ND<5 6.1 ND<5.0 ND<10.0 ND<2.5 9.5 24 ND<5.0 28 29 37 55 5.9 31 20 ND<5.0 26 ND<2.5
MW-8 ("shallo" 6/23/97 10/7/97 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05 7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 2/15/08 7/25/08 1/23/09 1/25/10 MW-9 (shallow	ND<1 ND<0.5	5.4 1.1 ND<0.5	ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	64 16 3.4 1.9 5.3 1.7 10 2.6 6.6 8.4 7.3 25 4 20 6.5 1.7 7.3 10 11 0.52 7.5 0.58 4.9 2.3 1.6	ND<1 ND<0.5	ND<1 ND<0.5	97 30 4.8 3.4 5.9 2.4 ND<5.0 ND<1.5 3.3 3.5 6 15 3.1 8.3 5.2 1.4 6.6 6.8 6.3 0.94 5.6 ND<0.5 2.7	100 27 4.7 3.4 6.4 1.6 8.8 2.1 4.6 5.2 6.7 20 3.1 13 5.1 1.2 6.2 7.3 6.9 0.73 5.4 0.50 3.3 2.3 1.2	ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5
6/23/97 (5) 10/7/97 (6) 12/12/98 4/24/99 12/18/99 7/22/00 1/29/01 7/28/01 2/3/02 7/23/02 1/20/03 7/30/03 1/27/04 7/22/04 1/20/05a (19) 1/20/05b (20)	ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<2.5 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	2.1 1.6 0.7 0.81 1.1 1.4 1.2 0.87 1.2 3.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<1 2.1 0.53 0.52 0.67 ND<1 0.71 ND<0.5 ND<0.5 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5	7.4 21 1.9 3.1 3.7 1.6 ND<0.5 0.92 2.4 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1 8.2 ND<0.5 ND<0.5 ND<2.5 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5	ND<1 0.7 ND<0.5 ND<0.5 ND<0.5 ND<1 ND<0.5 ND<0.5 ND<2.5 ND<2.5 ND<1 ND<0.5 ND<5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	3.5 ND<2 ND<1 ND<0.5 ND<0.5 ND<1 ND<5.0 ND<5.0 ND<0.5 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	1.4 0.53 ND<0.5 ND<0.5 ND<1 ND<1 ND<0.5 2.5 ND<0.5 ND<2.5 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5	ND<1 2.7 ND<0.5 ND<0.5 ND<1 0.53 ND<1 0.55 ND<0.5 ND<2.5 ND<2.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5

Well and Date	CA	1,2 DCB	1,2 DCA	cis 1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-9 ("shallo	w") continued								
7/20/05 1/26/06 7/27/06 1/25/07 7/19/07 (27) 2/15/08 7/25/08 1/23/09 7/21/09 1/25/10	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	0.59 ND<0.5 ND<0.5 ND<0.5 0.68 ND<0.5 0.52 0.69 0.68 0.68	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5
EB-4 (grab)									•
3/8/96	ND	ND	ND	42	ND	ND	130	340	ND
MCL	NA	600	0.5	6	10	5	7	5	0.5

1,2 DCP.

PCE TCE

VCL

1,2 Dichloropropane

trichloroethene

vinyl chloride

Tetrachloroethene (perchloroethene)

Notes to Table 4

(1) ND = non-detect; reporting limit 0.5 ug/l (ppb) unless otherwise stated

Chloroethane

- (2) N/A = not applicable
- (3) Composite
- (4) Abbreviations as follows:

CA	Chiolochiane
1,2 DCB	1,2 Dichlorobenzene
1,2 DCA	1,2 Dichloroethane
cis 1,2 DCE	cis 1,2 Dichloroethene
trans 1,2 DCE	trans 1,2 Dichloroethene

(5) 6/23/97 additional detections:

MW-4: 4.8 ppb 1,4-Dichlorobenzene MW-5: 0.53 ppb 1,4-Dichlorobenzene

MW-9: 2.1 ppb chloroform (tetrachloromethane)

(6) 10/7/97 additional detections:

MW-9: 0.65 chloroform (tetrachloromethane)

(7) 12/12/98 additional detections:

MW-4: 6.2 ppb 1,3-Dichlorobenzene

MW-4: 4.8 ppb 1,4-Dichlorobenzene

MW-6: 8.9 ppb 1,1,1-Trichloroethane

(8) 4/24/99 additional detections:

MW-1: 1.6 ppb Chloroform

MW-1: 2.5 ppb 1,4-Dichlorobenzene

(9) 12/18/99 additional detections:

MW-1: 1.3 ppb Dibromochloromethane

MW-1: 1.2 ppb 1,3-Dichlorobenzene

MW-1: 2.2 ppb 1,4-Dichlorobenzene

MW-1: 9.9 ppb 1,4-Dichlorobenzene

(10) 7/22/00 additional detections:

MW-1: 5.0 ppb 1,4 Dichlorobenzene

MW-7: 6.1 ppb 1,4 Dichlorobenzene

(11) 1/29/01 additional detections:

MW-1: 23.0 ppb 1,3 Dichlorobenzene

MW-4: 6.3 ppb 1,3 Dichlorobenzene

MW-4: 9.0 ppb 1,4 Dichlorobenzene

(12) 7/28/01 additional detections:

MW-1: 0.60 ppb 2-Chloroethyl Vinyl Ether

MW-1: 1.2 ppb 1,3 Dichlorobenzene

MW-1: 3.0 ppb 1,4 Dichlorobenzene

MW-4: 26 ppb 1,4 Dichlorobenzene

MW-7: 5.9 ppb 1,4 Dichlorobenzene

Notes continued on following page

Notes to Table 4 continued

```
(13) 2/3/02 additional detections:
     MW-1: 0.73 ppb 2-Chloroethyl Vinyl Ether
     MW-1: 1.8 ppb 1,3 Dichlorobenzene
     MW-1: 3.8 ppb 1,4 Dichlorobenzene
     MW-4: 9.8 ppb 1,4 Dichlorobenzene
     MW-5: 0.59 ppb 1,4 Dichlorobenzene
(14) 7/23/02 additional detections:
     MW-1: 112 ppb 1,3 Dichlorobenzene
(15) 1/20/03 additional detections: (none)
(16) 7/30/03 additional detections: (none)
(17) 1/27/04 additional detections:
     MW-4: 11 ppb 1,3-Dichlorobenzene
     MW-4: 9.7 ppb 1,4-Dichlorobenzene
     MW-4: 12 ppb 1,1,2-Trichloroethane
     MW-6: 13 ppb 1,1,2-Trichloroethane
(18) 7/22/04 additional detections:
     MW-4: 6.9 ppb 1,3-Dichlorobenzene
     MW-4: 6.2 ppb 1,4-Dichlorobenzene
(19) 1/20/05 additional detections:
    MW-1: 60 ppb Chloromethane
    MW-4: 5.5 ppb 1,3-Dichlorobenzene
    MW-4: 7.4 ppb 1,4-Dichlorobenzene
    MW-9: 0.92 ppb Bromodichloromethane
(20) Supplemental sample following initial bailer volume removal
(21) Sample discharged from bottom of bailer (A); and top of bailer (B)
(22) 7/20/05 additional detections:
    MW-4: 9.3 ppb 1,3-Dichlorobenzene
    MW-4: 9.1 ppb 1,4-Dichlorobenzene
(23) 1/26/06 additional detections:
    MW-4: 8.2 ppb 1,3-Dichlorobenzene
    MW-4: 8.5 ppb 1,4-Dichlorobenzene
(24) Sample discharged from top of bailer (A); and bottom of bailer (C)
(25) 7/27/06 additional detections:
    MW-3: 5.0 ppb 1,1,2 Trichloroethane
    MW-4: 6.6 ppb 1,3-Dichlorobenzene
    MW-4: 6.4 ppb 1,4-Dichlorobenzene
(26) 1/25/07 additional detections:
    MW-5: 1.1 ppb Chloroform
(27) 7/19/07 additional detections
    MW-4: 11 ppb 1,3-Dichlorobenzene
    MW-4: 8.4 ppb 1,4-Dichlorobenzene
    MW-7: 41 ppb 1,1,2-Trichloroethane
    MW-9: 1.6 ppb bromodichloromethane
(28) 2/15/08 additional detections
    MW-4: 10 ppb 1,3-Dichlorobenzene
    MW-4: 8.9 ppb 1,4-Dichlorobenzene
    MW-7: 6.2 ppb chloromethane
(29) Sample collected from top of water column below floating phase product (1C) and from well depth of 32' (1E)
(30) 7/25/08 additional detections
    MW-4: 7.0 ppb 1,3-Dichlorobenzene
    MW-4: 5.6 ppb 1,4-Dichlorobenzene
(31) 1/23/09 additional detections
    MW-4: 11 ppb 1,3-Dichlorobenzene
    MW-4: 7.3 ppb 1,4-Dichlorobenzene
(32) 7/21/09 additional detections
    MW-4: 8.4 ppb 1,3-Dichlorobenzene
    MW-4: 9.2 ppb 1,4-Dichlorobenzene
(33) MW-3: 2.4 ppb t-Butyl Alcohol (TBA)
    MW-4: 9.6 ppb 1,3-Dichlorobenzene
    MW-4: 7.8 ppb 1,4-Dichlorobenzene
```

TABLE 5

SUMMARY OF ANALYTICAL TEST RESULTS - GROUND WATER Polynuclear Aromatic Hydrocarbons (PNA/PAH) (Results reported in parts per billion, ppb/ug/l) (1) (2) (3)

Well and Date	Phenanthrene	
MW-1 ("deep")		
6/23/97 10/7/97 7/25/08	12 ND<100 N/A	2200 810 N/A
MW-2 ("deep")		
7/25/08 (4)	N/A	ND<0.5
MW-3 ("shallow")		
7/25/08 (4)	N/A	ND<0.5
MW-4 ("deep")		
7/25/08 (4)	N/A	4.7
MW-5 ("deep")		
7/25/08 (4)	N/A	16
MW-6 ("shallow")		
7/25/08 (4)	N/A	ND<0.5
MW-7 ("deep")		
7/25/08 (4)	N/A	10
MW-8 ("shallow")		
7/25/08 (4)	N/A	ND<0.5
MW-9 ("shallow")		
7/25/08 (4)	N/A	ND<0.5
MCL	N/A	N/A

Notes

- (1) ND = non-detect

- (1) N/A = not applicable
 (2) N/A = not applicable
 (3) Detected compounds only
 (4) Analyte included in 8260B target list.

TABLE 6

SUMMARY OF ANALYTICAL TEST RESULTS – GROUND WATER Additional Chemical Parameters

(Results reported in parts per million, mg/l) (1)

Well and Date	Dissolved Oxygen	Ferrous Iron	Nitrate	Sulfate
MW-I ("deep")				
10/8/96 1/16/97 1/23/09	1.5 (3) 1.4 (3) N/A	ND 3.6 N/A	ND ND N/A	ND ND N/A
MW-2 ("deep")				
10/8/96 1/16/97 1/23/09	3.7 (3) 5.4 (3) N/A	ND 0.28 N/A	3 3 N/A	25 25 N/A
MW-3 ("shallow")				
10/8/96 1/16/97 1/23/09	3.8 (3) 5.2 (3) 0.01 (4)	ND ND N/A	ND ND N/A	5 5 N/A
MW-4 ("deep")				
10/8/96 1/16/97 1/23/09	3.0 (3) 4.7 (3) N/A	ND 0.75 N/A	ND ND N/A	ND 5 N/A
MW-5 ("deep")				
10/8/96 1/16/97 1/23/09	2.8 (3) 3.4 (3) N/A	ND 0.38 N/A	ND ND N/A	8 9 N/A
MW-6 ("shallow")				
10/8/96 1/16/97 1/23/09	2.7 (3) 2.7 (3) 0.54 (4)	ND 0.28 N/A	ND ND N/A	6 8 N/A
MW-7 ("deep")				
10/8/96 1/16/97 1/23/09		not in existence at time not in existence at time N/A		N/A
MW-8 ("shallow")				
10/8/96 1/16/97 1/23/09 (5.0') 1/23/09 (11.5')		not in existence at time not in existence at time N/A N/A		N/A N/A
MW-9 ("shallow")				
10/8/96 1/16/97 1/23/09		not in existence at time not in existence at time N/A		N/A

Notes on following page

1970 Seminary Ave, Oakland, CA: E-10-1F-565F; February 3, 2010; Tables Page 25

Notes

- ND = non-detect
 N/A = not applicable
 Sample transmitted to analytical laboratory, measured in lab by EPA Method 360.1
 Field measurement (see report text)

TABLE 7

SUMMARY OF ANALYTICAL TEST RESULTS – GROUND WATER Fuel Fingerprint With Silica Gel Clean Up

Well and Date Fuel Fingerprint

MW-1 ("deep")

2/3/02

Significant hydrocarbon pattern between C6 and C12 that resembles gasoline. Also shows a hydrocarbon pattern between C18 and C30 that resembles oil. (See note 2).

7/25/08

Analyzed sample MW-1B (floating phase fuel product). Significant hydrocarbon pattern within the gasoline range (C6-C12) and the stoddard solvent range (C9-C12). To a lesser degree an oil range (C18-C30) pattern is also observed. (See note 3).

range (C18-C30) pattern is also observed. (See note 3).

Analytical results (note: carbon ranges overlap and thus total detection greater than 100 per cent):

TPH-G (C6-C12): 920,000 mg/L. TPH-D (C10-C23): 230,000mg/L TPH-MO (C18-C36): 160,000 mg/L.

MW-2 ("deep")

2/3/02

ND < 50 ug/L

MW-3 ("shallow")

2/3/02

ND < 50 ug/L

MW-4 ("deep")

2/3/02

Significant hydrocarbon pattern between C9 and C12 that resembles stoddard solvent. Also shows a hydrocarbon pattern between C18 and C30 that resembles oil. (See note 2).

MW-5 ("deep")

2/3/02

Significant hydrocarbon pattern between C6 and C12 that resembles fresh gasoline. (See note 2).

MW-6 ("shallow")

2/3/02

Significant hydrocarbon pattern between C6 and C12 that resembles fresh gasoline. (See note 2).

MW-7 ("deep")

2/3/02

Significant hydrocarbon pattern between C6 and C12 that resembles fresh gasoline. (See note 2).

MW-8 ("shallow")

2/3/02

ND < 50 ug/L

MW-9 ("shallow")

2/3/02

Significant hydrocarbon pattern between C6 and C12 that resembles fresh gasoline. (See note 2),

Notes

(1) ND = non-detect

(2) See laboratory report in February 26, 2002 ground water sampling report for chromatograms.

(3) See laboratory report in July 2008 ground water sampling report for chromatograms.

APPENDIX B

1997 DUAL PHASE EXTRACTION PILOT TEST REPORT PREPARED BY TERRA VAC CORPORATION

DUAL VAPOR EXTRACTION PILOT STUDY GRIMIT AUTO AND REPAIR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

Prepared For:

Doyle Grimit 14366 Lark Street San Leandro, California 94578

Prepared By:

Terra Vac Corporation 1651 Alvarado Street San Leandro, California 94577

> Robert Tarr Staff Engineer

Mark P. Frye Project Engineer

February 5,1997

DUAL VAPOR EXTRACTION PILOT STUDY GRIMIT AUTO AND REPAIR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

1.0 Introduction

At the request of Doyle Grimit, Terra Vac performed a dual vapor extraction pilot study at the Grimit Auto and Repair site. The purpose of the study was to collect data on the performance of dual vapor extraction technology when applied at the site. Terra Vac understands that this report will be used to evaluate remedial options for addressing hydrocarbon impacted soil and groundwater beneath the site.

2.0 Site Description

The project site is located at 1970 Seminary Avenue in Oakland, California. The neighborhood generally consists of residential houses with nearby one, two, or three-story apartment buildings. The property is bordered by Seminary Avenue on the northwest and Harmon Avenue on the northeast. The site comprises an automobile service building with an office, an attached canopy, and a small detached storage building.

The site is paved throughout with the exception of an approximate 900 square foot area where the former underground storage tanks (UST) were located. The UST area was over-excavated and clean soil was used as backfill.

3.0 Pilot Study Summary

The pilot study was conducted to determine; (a) the radius of influence of an applied vacuum to an existing well on-site, and (b) the resultant groundwater flow rate from that well. To complete this, Terra Vac mobilized a system which comprised of:

- 10HP blower;
- Generator:
- Carbon canister;
- Well head adapting equipment;
- Knock out pot; and
- other miscellaneous equipment.

An existing on-site well was used as the extraction well for this pilot study. The extraction well was adapted with fittings for the 10HP blower to induce a vacuum of approximately 12" Hg. The fittings included a slurp tube that extended down the well that was used to extract

groundwater. The groundwater removed from the extraction well is separated from the knock out pot. Monitoring well MW-1 was selected because the screened interval allowed soil vapors to be drawn from the surrounding subsurface area.

The radius of influence was monitored from two 1-inch black iron pipes driven into the subsurface. The driven pipes are hereinafter, referred to as observation points. Vacuum gauges connected to the observation points were used to measure the amount of vacuum produced in the soil at different distances from the extraction well.

Monitoring well MW-1 has a two-inch casing and is screened across the interval extending approximately 15 to 35 feet below grade. Prior to the start of the study, groundwater was encountered at a depth of approximately 14 feet below grade. The observation points, OB-1 and OB-2, were driven approximately six feet into the subsurface. The locations of MW-1, OB-1, and OB-2 are shown on Figure 1.

Terra Vac mobilized test equipment to the site on January 28, 1997. A 34 foot-long slurp tube was set in MW-1 and the dual vapor extraction system was operated for slightly over three hours. Throughout the duration of the study, Terra Vac monitored the vacuum applied to the slurp tube, induced air flow rates out of the extraction well, the amount of vacuum applied to the well casing and formation, and the resultant vacuum at the observation points. The rate at which groundwater was extracted from MW-1 was also noted. Two samples of the extracted soil vapors were collected and analyzed by Terra Vac for total petroleum hydrocarbons and benzene, toluene, ethylbenzene, and xylenes. Tabulated field data is presented in Table 1.

4.0 Pilot Study Results

An evaluation of the monitoring data indicates the following:

- The induced air flow rate from the extraction well was approximately 11 standard cubic feet per minute with an applied vacuum of 12 inches of mercury column.
- A significant amount of bleed air was required to maintain air flow and groundwater removal within the extraction well casing. Extraction flow rates are expected to increase significantly with continuous application of vacuum to the low permeable materials as a result of dewatering. Wells screened exclusively for dual vacuum extraction will also enhance flow rates.
- The vacuum effectively applied to the well casing and formation was approximately 4 inches of mercury column.
- A vacuum of approximately 0.2 inches of water column was observed in OB-1 at the end
 of three hours of test operation. OB-1 was located at a distance of approximately 14 feet
 from MW-1. At the same time, a vacuum of approximately 0.1 inches of water column

was observed in OB-2 which was located at a distance of approximately 25 feet from MW-1. The amount of vacuum observed in OB-1 is significant and is indicative of some degree of connectivity between MW-1 and OB-1. There appeared to be some connectively between MW-1 and OB-2, however the amount of induced vacuum was not as significant.

• A total of 130 gallons of groundwater were extracted during three hours of testing corresponding to an overall groundwater extraction rate of approximately 0.7 gallons per minute.

5.0 Conclusion

The radius of influence of operating the dual vapor extraction system extended to at least 14 feet, with a trace influence at approximately 25 feet from MW-1. The initial TPH-g concentrations decreased from 39.7 mg/L to to 12.6 mg/L during this study. Based on these facts, Terra Vac believes Dual Vapor Extraction, the process of extracting vapor and groundwater simultaneously, is a viable alternative to effectively and rapidly remove the subsurface contaminants at the Grimit Auto and Repair site.

Table 1 Grimit Auto and Repair Pilot Test Field Data 28 January 1997

٧
e 1
v
٧
٧
V
<i>i</i>
<i>'</i>
1
i
e 2
1
1
1
<i>‡</i>
 v v v v v v v v v v v v v v v v v v