Se OCT 31 PA 3. O3

OCTOBER, 1996 "QUARTERLY" GROUND WATER SAMPLING REPORT FOR STID 553 - GRIMIT AUTO AND REPAIR 1970 SEMINARY AVENUE OAKLAND, CALIFORNIA

October 21, 1996

Prepared by

HOEXTER CONSULTING, INC. 734 Torreya Court Palo Alto, California 94303

415-494-2505 (ph. & fax)

HOEXTER CONSULTING, INC.

734 Torreya Court Palo Alto, California 94303

(415) 494-2505 (phone & fax)

TRANSMITTAL

TO Alample Courty Houlth - Haz 1131 Harber Boy Parkway & Alamada CA 94502-6577	Mat. DATE 10/28/96 250 VIA US Mail FAX NO.
ATTENTION Dale Klettke	
PROJECT 1970 Seminory, Ocklad CA /STID	JOBNO. <u>E-10-18-19</u> 26 553
DESCRIPTION 10/2/196 4	
Number of pages, including cover page, if	FAX
ACTION As requested For your use Please return when finished Please review and comment Other	
COPY TO Doylo Grimit BY [David F. Hoexter
If enclos	ures are not as noted, kindly notify us at once

Geology / Engineering Geology / Environmental Studies

HOEXTER CONSULTING, INC. DAVID F. HOEXTER, RG/CEG/REA

734 Torreya Court
Palo Alto, California 94303

(415) 494-2505 (ph. & fax)

October 21, 1996

E-10-1B-192B HCQuartEnvtRpts:Seminary1970/8(10/96)

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

RE:

OCTOBER, 1996 "QUARTERLY"
GROUND WATER SAMPLING REPORT
STID 553 - GRIMIT AUTO AND REPAIR
1970 SEMINARY AVENUE
OAKLAND, CALIFORNIA

Dear Mr. Grimit:

Enclosed is our October, 1996 ground water sampling report for the property located at 1970 Seminary Avenue, corner of Harmon, in Oakland, California This sampling round is the twelfth performed by Hoexter Consulting and others at the site, dating from August, 1990. The results of an initial sampling round by Kaldveer Associates, Inc, following well installation, and the previous Hoexter Consulting quarterly and sub-surface investigation sampling, are included in the analytical results summary table.

The results of this investigation indicate that the water samples from the six on-site wells continue to range from relatively low to elevated levels of total petroleum hydrocarbons as gasoline (TPH-G); purgeable aromatic compounds (BTEX) and MTBE; oil (total recoverable petroleum hydrocarbons, TRPH); and halogenated volatile compounds (HVOC). The analyses indicate that all analyzed compounds remain at levels of the same order-of-magnitude as the previous March, 1996 results. In addition, at the request of the Alameda County Health Care Services Agency Local Oversight Program (LOP) representative, baseline analyses were conducted for dissolved oxygen, ferrous iron, nitrate and sulfate, in anticipation of planned remediation. These latter tests were not initially budgeted.

Ground water levels declined appreciably from the previous March, 1996 sampling event. The wells dewatered during the course of purging, and it was necessary to return the following day to obtain viable samples once the water levels had recovered.

Evaluation of remedial alternatives has been accomplished since the March, 1996 sampling event. We recommended in our July 28, 1996 report that you proceed with remediation of the site. The Alameda County LOP representative, in his September 24, 1996 review letter, concurred with this recommendation. We are therefore currently preparing a proposal and cost estimate to prepare a remedial action plan, including feasibility testing of soil vapor extraction (SVE).

We recommend that copies of the enclosed report be submitted to the Alameda County Health Care Services Agency. The next round of sampling is scheduled to be conducted during January, 1997.

We appreciate the opportunity to provide services to you on this project and trust this report meets your needs at this time. If you have any questions, or require additional information, please do not hesitate to call.

Very truly yours,

HOEXTER CONSULTING, INC.

のしろがチェ

David F. Hoexter, RG/CEG/REA Principal Geologist

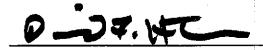
Copies: Addressee (2)

Alameda County Health Care Services Agency (1)

Attention: Mr. Dale Klettke, Hazardous Materials Specialist

OCTOBER, 1996 "QUARTERLY" GROUND WATER SAMPLING REPORT

For


STID 553 - Grimit Auto and Repair 1970 Seminary Avenue Oakland, California

To

Mr. Doyle Grimit 14366 Lark Street San Leandro, California 94578

October 21, 1996

David F. Hoexter, RG/CEG/REA Principal Geologist

TABLE OF CONTENTS

P	age N
Letter of Transmittal	
TITLE PAGE	:
FABLE OF CONTENTS	
I. INTRODUCTION	1
II. FIELD INVESTIGATION	1
III. ANALYTICAL RESULTS	• 2
A. Laboratory Procedures B. Analytical Results	3
IV. RECOMMENDATIONS	3
V. LIMITATIONS	, 3
 ΓABLE 1 - Ground Water Elevation Data ΓABLE 2 - Summary of Ground Water Analytical Data A- Petroleum hydrocarbons B- MTBE C- Halogenated volatile organic compounds D- Additional parameters 	
FIGURE 1 - Location Map FIGURE 2A - Ground Water Data Map: "Deeper Wells" FIGURE 2B - Ground Water Data Map: "Shallower Wells"	·
APPENDIX A - Groundwater Sampling Field Log Chain of Custody Analytical Test Results	

OCTOBER, 1996 QUARTERLY GROUND WATER SAMPLING REPORT FOR STID 553 - GRIMIT AUTO AND REPAIR 1970 SEMINARY OAKLAND, CALIFORNIA

I. INTRODUCTION

This report presents the results of the October, 1996 ground water sampling at 1970 Seminary, Oakland, California. The project location is shown on the Location Map, Figure 1. The scope of services provided during this investigation consisted of collecting and analyzing ground water samples from six on-site monitoring wells. Ground water samples were analyzed for petroleum hydrocarbons, solvents, and additional parameters. Well locations are shown on the Ground Water Data Maps, Figures 2A and 2B.

II. FIELD INVESTIGATION

The ground water monitoring wells were sampled by representatives of Hoexter Consulting, Inc. Due to past, very slow equilibration of ground water levels, the well caps were loosened on October 4, 1996, three days prior to the planned purging and sampling. The wells were then secured with the caps sufficiently loose to allow venting, and left over the following weekend to equilibrate. Following water level measurements, the wells were purged on October 7, and sampled October 8, 1996.

As noted, the well caps were loosened October 4, 1996, to allow the water level in the wells to equilibrate. Following an initial ground water level measurement (Table 1) on October 7, 1996 at the time of purging, each well was checked for free-product with the bailer, and then three to four well-casing volumes of water were purged from the well. A dedicated polyethylene bailer was employed for each well. Ground water parameters, including temperature, pH and specific conductivity, were measured prior to and following each purge volume removal.

Following purging of three to four well volumes, it was noted that the wells were either effectively dewatered, or drawn down to less than 80 per cent of the static water level. Thus, the well caps were left loosely in place overnight to allow the wells to vent and the water levels to rise, and the sampling was conducted the following day, October 8, 1996.

The samples were collected using the polyethylene bailer, placed in appropriate sample containers supplied by the analytical laboratory, labeled, and placed in refrigerated storage for transport to the laboratory under chain-of-custody control. All sampling equipment was thoroughly cleaned with "Alconox" detergent and rinsed with distilled water prior to sampling the well. Monitoring well sampling logs and the chain of custody are attached to this report as a part of Appendix A. The laboratory is California Department of Health Services approved for the requested analyses.

Prior to purging, ground water levels were measured in each well using the top of 2-inch PVC casing (north side) as reference point. Water levels were measured at least twice in each well; the final set of measurements are thought to be essentially representative of stabilized ground water levels in the wells. The depths to ground water dropped notably

from the prior (March, 1996) sampling event: the two "shallow" wells declined 2.60 and 4.30 feet; the four "deeper" wells each declined from 7.23 to 8.17 feet.

Well-top elevations, depth to water, and calculated water-surface elevations are presented in Table 1. These data have been used to generate the Ground Water Data Maps, Figures 2A and 2B. Figure 2A, representing the "deeper" wells, presents our interpretation of ground water elevation contours and flow.

The ground water flow direction and gradient are essentially consistent with the previous, March, 1996 data. The data for the two "shallow" wells appear to indicate an apparent flow towards Seminary Avenue. The two wells are relatively close together, and there is not a third well to provide a triangular configuration for water flow calculation. The data for the four "deeper" wells indicate flow away from Seminary towards the south. The apparent flow gradient varies from approximately 0.08 foot per foot on the east to approximately 0.13 foot per foot on the west. This gradient is marginally steeper than the gradient calculated from the March, 1996 data.

The data appear to indicate a downward gradient from a relatively shallow (perched?) zone represented by the two "shallow" wells, to the deeper zone represented by the four "deeper" wells. Based on the slow equilibration and recovery time following purging, we infer a relatively slow ground water flow rate.

III. ANALYTICAL RESULTS

A. Laboratory Procedures

The ground water samples were analyzed by McCampbell Analytical, Inc. of Pacheco, California, with several parameters sub-contracted to GeoAnalytical Laboratories, Inc. of Modesto, California. Both laboratories are certified by the State of California Environmental Protection Agency for the conducted analyses. The samples were analyzed as follows:

- Total petroleum hydrocarbons as gasoline (TPH-G) using EPA Method 5030/8015.
- Purgeable aromatic compounds (BTEX) and MTBE using EPA Method 8020.
- Oil and grease (total recoverable petroleum, TRPH) using SM 5520B/F, gravimetric with cleanup.
- Halogenated volatile organics (HVOC) using EPA Method 8010.
- Dissolved oxygen using EPA Method 360.1.
- Ferrous iron using SM-3500-Fe.
- Nitrate and sulfate using SM-300.

Note that some of the TRPH analyses from *previous* sampling rounds were analyzed by the infrared method of analysis. It is our understanding that the two analytical methods produce essentially the same results.

The dissolved oxygen, ferrous iron, nitrate and sulfate were analyzed at the request of the Alameda County Health Care Services Agency Local Oversight Program (LOP)

representative, to establish a baseline in anticipation of planned remediation. This was the initial sampling round for these parameters.

B. Analytical Results

Free product was not observed in the initial sounding of the wells, although as previously observed, a sheen (floating film) of oil was observed in well MW-1 as well as MW-4. The purge water from well MW-1 contained globules of "oil", which were observed in earlier sampling rounds.

The results of the chemical analyses are presented on Table 2 and are attached to this report as a part of Appendix A. Analytical results of all previous testing are also included. The current analytical results indicate that TRPH, TPH-G, and BTEX compounds, as well as HVOC, are present at elevated levels which are generally on the same order of magnitude as the most recent, previous analyses (March, 1996).

TPH-G was present in MW-1 at 55,000 ug/l (equivalent to parts per billion, ppb). This represents an increase on the order of 20 per cent over the previous three sampling events, dating to April, 1995. The BTEX compounds in MW-1 were present at essentially the same levels as most recently detected (March, 1996). TRPH appears to have declined; this may be a result of declining ground water levels within the ground water-contaminant "smear zone". HVOC levels appear to have declined, although this is likely an artifact of an increase in laboratory detection limits.

TPH-G and BTEX declined in four of the other five wells. Detected levels in these wells are generally one to two orders of magnitude less than in MW-1. TRPH was not detected in wells MW-2 through 6. The suite of detected HVOC compounds is essentially the same as the only previous sampling round (March, 1996). Several previously detected compounds appear not to be present; this is probably due to increased detection limits.

Dissolved oxygen ranged from a low of 1.5 ppm in MW-1 to a maximum of 3.8 ppm. Ferrous iron was not detected. Nitrate was detected in one well, MW-2. Sulfate ranged from non-detect to a maximum of 25 ppm. As described, this was the initial sampling round for these four parameters.

IV. RECOMMENDATIONS

We recommend proceeding with the approved remedial action plan and soil vapor extraction (SVE) feasibility testing.

V. LIMITATIONS

This report has been prepared according to generally accepted geologic and environmental practices. No other warranty, either expressed or implied as to the methods, results, conclusions or professional advice provided is made. The analysis, conclusions and recommendations contained in this report are based on site conditions as they existed at the time of our investigation; review of previous reports relevant to the site conditions; and laboratory results from an outside analytical laboratory.

Changes in the information or data gained from any of these sources could result in changes in our conclusions or recommendations. If such changes do occur, we should be advised so that we can review our report in light of those changes.

TABLE 1
GROUND WATER ELEVATION DATA

(All Measurements in Feet)

Well Number and Date of Measurement	ate of Elevation to V		Relative Ground Water Elevation (2)
MW-1			
8/6/90	37.0	21.5	15.5
1/28/92		21.0	16.0
4/27/92		20.95	16.05
8/10/92		22.20	14.8
2/11/94		15.93 (3)	21.07 (3)
2/28/94		13.85 (4)	23.15 (4)
9/9/94		20.19	16.81
12/28/94		14.91	22.09
4/13/95		14.18	22.82
11/1/95		20.90	16.10
3/8/96		11.82	25.18
3 /25 -26/96	36.97	13.54	23.43
10 /7 /96		21.41	15.59
MW-2			
2/11/94	36.40	14.16 (3)	22.24 (3)
2/28/94		16.01 (4)	20.39 (4)
9/9/94		18.96	17.44
12/28/94		21.42	14.98
4/13/95		19.69	16.71
11/1/95		21.91	14.49
3/8/96		14.56 (6)	21.84 (6)
3/25-26/96		10.84	25.55
10/7/96		18.41	17.98
MW-3	•		
2/11/94	36.94	6.97 (3)	29.97 (3)
2/28/94		7.74 (4)	29.20 (4)
9/9/94		9.68	27.26 :
12/28/94		8.15	28.79
4/13/95	36.94	8.05	28.89
11/1/95		7.82	29.12
3/8/96		5.69	31.25
3/25-26/96		6.91	30.03
10/7/96		9.51	27.43

Hoexter Consulting, Inc. 734 Torreya Court, Palo Alto, California 94303 (415) 494-2505

Table 1 continued

MW-4			
3/25-26/96	36.46	14.14	22.32
10/7/96		22.31	14.15
MW-5			
3/25-26/96	36.77	15.63	21.14
10/7/96		22.86	13.91
MW-6			
3/25-26/96	36.42	8.52	27.90
10/7/96		12.82	23.60

Notes

(1) N/A = Not applicable.

(2) Elevations from a survey conducted by Andreas Deak, California Licensed Land Surveyor, March 21, 1996, City of Oakland datum.

(3) Well under pressure when locking cap removed; water level may not have been stabilized.

(4) Depth to water was measured over a 120 minute period; indicated depths appear to be stabilized readings.

(5) Surveyed elevations of wells MW 1 and MW-2 varied to 0.02 foot on March 21, 1996 survey as compared to February 11, 1994 survey; previously calculated measurements of elevation have **not** been modified to reflect the new survey data.

(6) Well not stabilized (water level rising).

TABLE 2A GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS - PETROLEUM HYDROCARBONS (8)

(Results reported in parts per billion, ug/l) (1)

Well and Date	TPH Gasoline (8)	Benzene	Toluene	Ethyl- benzene	Xylenes	Oil Grea HVO	ase
MW-1	("deep")						- (-)
8/6/90 (2)	54,000	3,500	3,200	1,900	9,400	7,600	
1/28/92 4/27/92 (3)	2,000,000		17,000	28,000	120,000	75,000	
	500,000	3,400	6,400	10,000	45,000	440,00	, ,
4/27/92 (4) 8/10/92	175,000 170,000	4,200 4,200	4,400	3,200	14,600	N/A	
	,800,000	4,200 ND	4,200 5,100	3,300 5,200		120,000 (
	,000,000	56,000	61,000		23,900 37,000	16,000 (880,000 (
12/28/94	55,000	3,700	5,300	1,400	5,800	83,000 (
4/13/95	45,000	2,800	3,400	1,200	5,100	50,000 (
11/1/95	44,000	2,600	3,400	1,400	5,900	52,000 (
3/25/96	45,000	3.000	4.100	1,600	6,800	46,000	
20000	55.000	3.300	4.500	1.700	1.400 × ×	+10,000 (
SE SECTION IN	7.7	The state of the s	A Maderatoria No. 170		公司		
MW-2	("deep")				•		
2/11/94	130	22	1.1	5.2	7.3	ND	(6)
9/9/94	1,000	89	ND	ND	6.9	ND	(6)
12/28/94	330	100	3.8	5.4	4.7	5100	(6)
4/13/95	1300	280	6.9	33	23	ND	5)
11/1/95	100	9.9	ND	ND	ND	ND:	(5)
3/25/96	4500	470	57	220	280	ND	(5) (7)
10/8/96	NAME !	STATE OF THE PARTY	0.54	LU		ND:	(5) (7)
MW-3 ("s	hallow")					· · · · · · · · · · · · · · · · · · ·	
2/11/94	ND	ND	ND	ND	ND	ND	(6)
9/9/94	710	10	ND	ND	3.5	ND	(6)
12/28/94	2,300	7.8	ND	130	73	ND .	(6)
4/13/95	1,700	2.9	ND	61	24	ND :	(5)
11/1/95	1,100	4.4	ND	27	22	ND	(5)
3/25/96	2,300	4.0	0.96	120	65	, ND	(5) (7)
10/8/96	(04E	ND	一次6.5 节、	第3 4 40万	E 10.77	ND	(5) (7)
MW-4	("deep")					:	
3/26/96	9,900	4,000	40	71	100	ND :	(5) (7)
10/8/96	7,800	3.900 × 1	335	31:05°	* 40 T	ND ND	(5) (7)
, ,		MC LOUIS AND		C 2017 6 (1/2)	- TANK (A)		(-) (-)

Table 2A continued

Well and Date	d TPH Gasoline (8)	Benzene	Toluene	Ethyl- benzene	Xylenes	Oil & Grea HVOC	se
MW-5	("deep")					•	,
3/26/96 10/8/96	1,200	43		\$3 W		A CONTRACT	(5) (7) (5) (7)
MW-6	("shallow")					:	
3/26/96 10/8/96	9,900	1,000	150	470	720	ND ND	(5) (7) (5) (7)
EB-4						:	
3/8/96	15,000	780	840	1,300	590	7,500	(5) (7)
MCL	NA	1	150	700	1750	N	A

Notes

ND - non-detect; N/A - not applicable
 Kaldveer Associates report, September, 1990
 Sequoia Analytical Laboratory
 Applied Remediation Laboratory

(5) Gravimetric Method(6) Infrared Method

(7) HVOC detected: see Table 2C

(8) MTBE see Table 2B

TABLE 2B

GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS - MTBE

(Results reported in parts per billion, ug/l)

Well and Date	MTBE
MW-1 ("deep") 10/8/96	490
MW-2 ("deep") 10/8/96	41
MW-3 ("shallow") 10/8/96	ND
MW-4 ("deep") 10/8/96	140
MW-5 ("deep") 10/8/96	190
MW-6 ("shallow") 10/8/96	57

TABLE 2C
GROUND WATER

SUMMARY OF ANALYTICAL TEST RESULTS - HALOGENATED VOLATILE ORGANIC COMPOUNDS

(Results reported in parts per billion, ug/l) (1) (2)

Well and Date	CA 1	,2 DCB 1,2	DCA cis	1,2 DCE	trns 1,2 DCE	1,2 DCP	PCE	TCE	VCL
MW-1 ("deep'	')								
3/25/96	ND<5	7.2	5.3	82	ND<5	ND<5	ND<5	7.8	25
10/8/96	ND<20	ND<20	ND<20	45	ND<20	ND<20	ND<20	ND<20	26
MW-2 ("deep'	') ')								
3/25/96	ND<0.5	ND<0.5	8.7	11	ND<0.5	1.0	ND<0.5	3.2	0.92
10/8/96	ND<0.5	ND<0.5	15	9.6	ND<0.5	1.1	ND<0.5	6.6	ND<0.5
MW-3 ("shall	ow")				•	•			
3/25/96	ND<0.5	ND<0.5	0.56	1.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
10/8/96	ND<0.5	ND<0.5	1.1	0.87	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4 ("deep'	'}								
3/26/96	ND<8	22	ND<8	300	9.2	ND<8	38	150	44
10/8/96	ND<15	22	4.9	320	ND<15	ND<15	52	130	60
MW-5 ("deep'	η.								
3/26/96	1.4	ND<0.5	2.1	6.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	10
10/8/96	ND<2.5	ND<2.5	4.9	4.4	ND<2.5	ND<2.5	ND<2.5	ND<2.5	9.4
MW-6 ("shall	ow")								
3/26/96	ND<0.5	ND<0.5	3.9	15	ND<0.5	1.9	0.77	2	ND<0.5
10/8/96	ND<0.5	ND<0.5	2.3	9.9	ND<0.5	ND<0.5	ND<0.5	0.57	ND<0.5
	- ·	·- ·- ·- ·							

Continued following page

Table 2C continued

EB-4 3/8/96 (grab)	ND	ND	ND	42	ND	ND	130	340	ND
MCL	NA	600	0.5	6	10	5	7	· 5	0.5

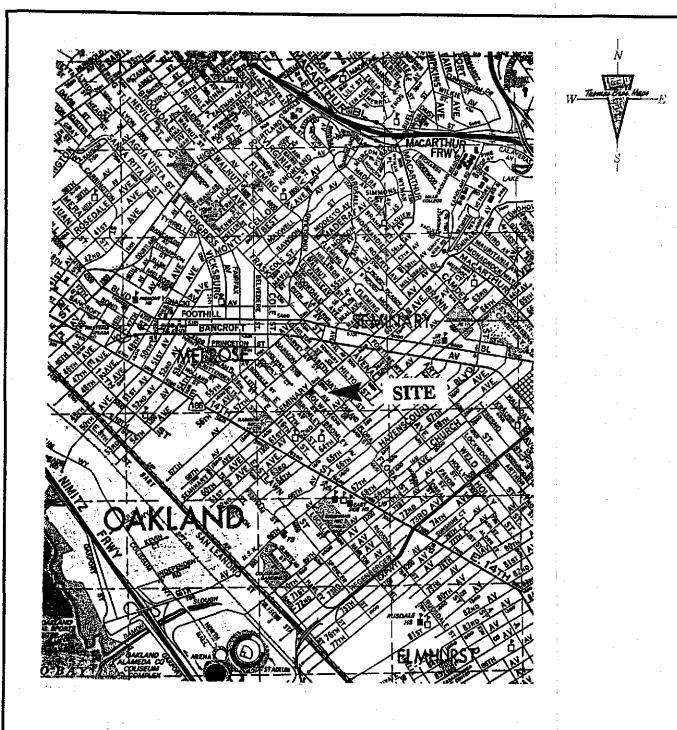
Notes

- (1) ND = non-detect

- (2) NA = not applicable
 (3) Composite
 (4) Abbreviations as follows:

CA	Chloroethane	1,2 DCP	1,2 Dichloropropane
1,2 DCB	1,2 Dichlorobenzene	PCE	Tetrachloroethene (perchloroethene)
1,2 DCA	1,2 Dichloroethane	TCE	trichloroethene
cis 1,2 DCE	cis 1,2 Dichloroethene	VCL	vinyl chloride
trans 1.2 DCE	trans 1.2 Dichloroethene	•	

TABLE 2D GROUND WATER


SUMMARY OF ANALYTICAL TEST RESULTS - ADDITIONAL PARAMETERS

(Results reported in parts per million, mg/l) (1)

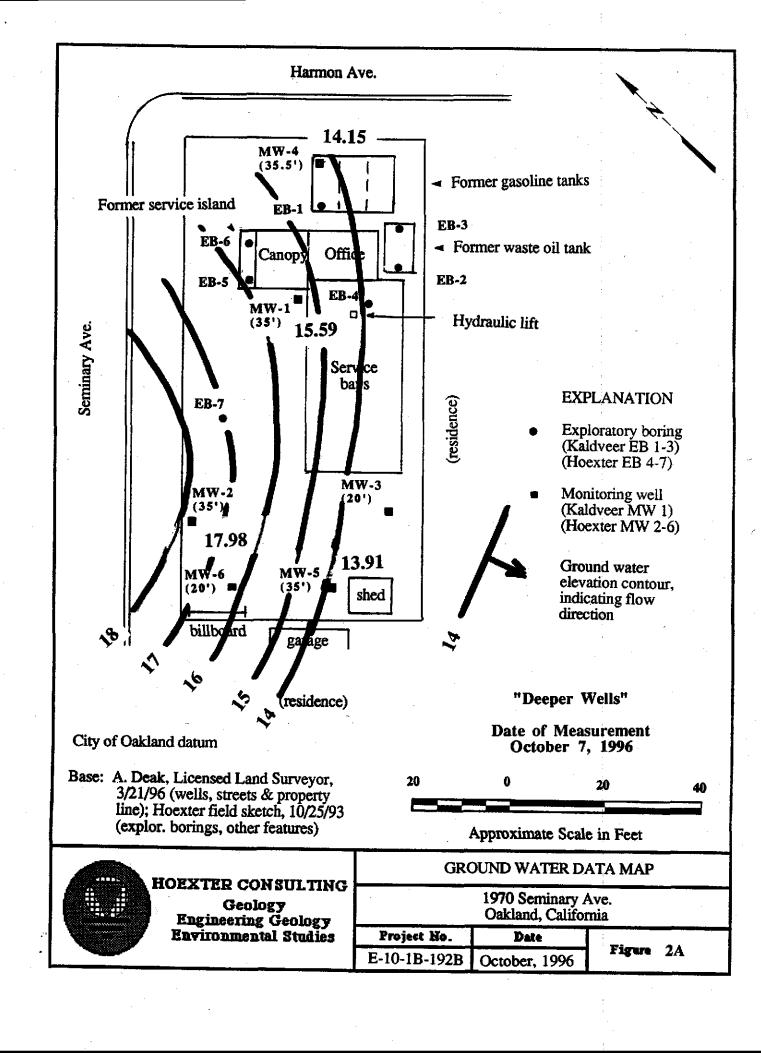
Well and Date	Dissolved Oxygen	Ferrous Iron	Nitrate	Sulfate	
MW-1 ("deep") 10/8/96	1.5	ND	ND	ND	
MW-2 ("deep") 10/8/96	3.7	ND	3	25	
MW-3 ("shallow") 10/8/96	3.8	ND	ND	j 5	
MW-4 ("deep") 10/8/96	3.0	ND	ND	ND	
MW-5 ("deep") 10/8/96	2.8	ND	ND	8	
MW-6 ("shallow") 10/8/96	2.7	ND	ND	6	

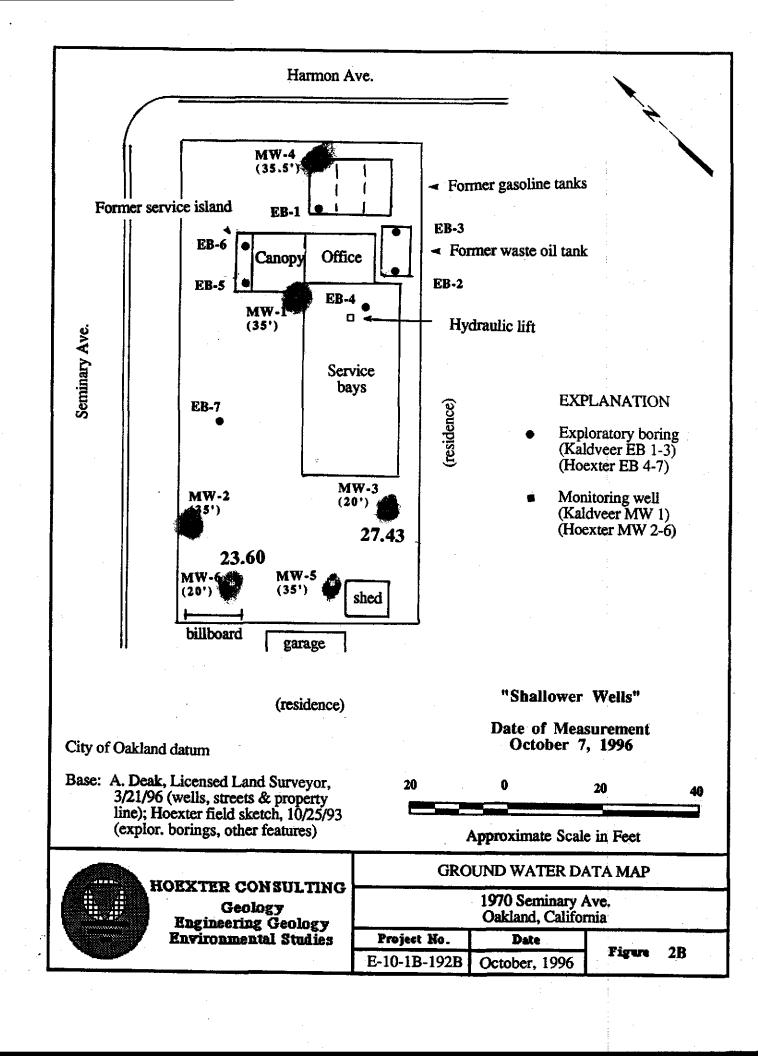
Notes

(1) ND - non-detect; N/A - not applicable

ALAMEDA COUNTY

1991 Thomas Guide.


HOEXTER CONSULTING


Geology Engineering Geology Environmental Studies

¥	OC	AT	TA	NT R	A A	D
- 1	лл.		15 5	i Ni	VI 44	

1970 Seminary Ave. Oakland, California

Project No.	Date	T-1	4
E-10-1B-192B	October, 1996	Figure	Ţ

APPENDIX A

WATER SAMPLE LOG CHAIN OF CUSTODY ANALYTICAL TEST RESULTS

Project Sample Casing	Manage ar: Diamete	Gr. DF OCH J er: 2 inch]toext		inch	Date:Sample L Start Tim 6 inch Calculated	69968 10/7/96 Location/I.D. ne: Other: d Purged Volume	me: 8.8
	Sample 1	Depui (leet):				13.59	wtr ->	2.25cl
				Field Measure	<u>ments</u>	•		
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatu Degrees f		Color visual)	Other
1228		<u>D</u>	5.14	910	70.8	<u>ر</u>	lect	st. odor
1259	25	2.5	<u>4.73</u>	914	70.5		1. cludy	swell Slocten
1310	5	2.5	4.80	905	70.7		<u> </u>	shoen streng
1321	7.5	2.5	4.77	901	70.5	_		
1335	10	2.>	4.72	899	70.6		\checkmark	
				Purge Method	<u>d</u>			
	_ Subm	adder Pump ersible Pum matic Displa	р	— Bailer — Cenetrifugal I Pump		Well Wiz Dipper	ard	Dedicated Other
				Sample Metho	<u>od</u>			
	Surfa	adder Pump ce Sampler		Bailer Dipper		Well Wiza Fultz Pum		Dedicated Other
Well In Remark		Night:	theen s	if oil on	initial	bail.	oil slow	/
purge	ليدا	in after	- in	, , , ,		()	la wetered	following
Fawor Signatu	of of re:	fourth	volume LC	. Soupled 1	0/8/46	15:15		
_			<u>т С</u>	<u>~</u>		Conversion Fa	ıctors	
Volumes Pe Vell Casing	Volume Per l	•	asing Diamet	ers	To Conver	t Into	0	Mulitply
I.D. finches 1.5 2.0 3.0 4.0 6.0) G O. O. O.	Cubic al/ft Ft/ft 0918 0.0123 1632 0.0218 3672 0.0491 6528 0.0873 4690 0.1963	1.140 2.027 4.560 8.107	L/Pt 0.3475 0.6178 1.3900 2.4710 5.5600	Ft. of Wate Lbs/Sq. in: Cubic feet Gallons Feet Inches	ch Ft. Gal Lite Me	s/sq.in. 0.4335 of Water Illons ers ters	2.3070 7.4800 3.7850 0.30048 2.5400

E-10-13-192B

Project	Name/	No: 1970	Seminor	1, Oak(c-1	L	ab I.D.: 69969	ì
Client:	D.	Grim.	F	/ 		ate:	
Project	Manage	r: D.F.	Hoext	م ا		ample Location/I.I	
Sample	r: ĎĘ	HJP	C 10 1-			tart Time:	
	Diamete	er: 2 incl	n <u>xo</u> 3	inch 4 i		inch Other	
			··			menOme	
	Sambre 1	Well (feet): Water (feet): Depth (feet):	156)	(つける) Field Measure	A /	alculated Purged Voctual Purged Volum	ie <u>12</u>
		Volume	pН	E.C.	Temperature	Color	Other
Time	Cum	(gal.)	(units)	(umhos/cm)		(visual)	
1100	<u> 0</u>	<u> </u>	4.95	795	69.3	elen	
1112	3	3	4.84	764	68.6	Sto cloude	\
1124	6	3	4.95	790	68=1	chiel	
1138	9	3	4.82	8 18	68.2	1	
1150	12	3					
1150	10		4.99	818	68.4		
				Purge Method	1		
	Subn	ladder Pump nersible Pum matic Displa	np	_ Cenetrifugal I	W Pump Di	Vell Wizard	Dedicated Other
				Sample Metho	<u>•d</u>		
	2" BI	ladder Pump	_حر	Dailon	***		.
		ice Sampler		_ Danier _ Dipper		ell Wizard	Dedicated
		out out plot	·	_ Dipper	FU	ıltz Pump	Other
Well In	tegrity:	ok				- f	On strain
Remark		No shoe.	ror od	lor or Droc	duct on	initial Dai	1-14001
Necr	la d	o watered	filler	ing comme	4 / /	the volume.	er Care
	0			J VIIII			:55
Signatu	re:	<u>) —)].</u>	Hen		Sampled	10/0/76 /4	, 3 3
Volumes Pe	er Unit I eno	th Selected Well C	lagina Diameter		Co	nversion Factors	
1	Volume Per	Unit Length	and Disneters		To Convert	Into	Mulitaly √
Well Casing I.D. (inches	•	Cubic Sal/ft Ft/ft	_L/ML/F				A TOMOGRAPHY
1.5		0918 0.0123		<u>-1.</u> -475	Ft. of Water Lbs/Sq. inch	Lbs/sq.in. 0.4335 Ft. of Water	2 2070
2.0		.1632 0.0218		178	Cubic feet	ri. or water Gallons	2.3070 7.4800
3.0		3672 0.0491		900	Gallons	Liters	3.7850
4.0 6.0		.6528 0.0873 .46 9 0 0.1963		710 600	Feet	Meters	0.30048
	-		10.470 J.3	OVO.	Inches	Continuetose	2 5400

Groundwater Sampling Field Log

E-10-18-192B

Client: Project	<u>D.</u> Manage	Grimit II: DF H	toe kfe	nory Ockle	J	Lab I.D.: G Date: 10/ Sample Locati	
Sample		OFH I	1F				· · · · · · · · · · · · · · · · · · ·
Casing 1	Diamete	er: 2 inch	, <u>~</u>	3 inch4	inch	6 inch	Other:
1	Depth of Depth to Sample I	Well (feet): Water (feet): Depth (feet):	20 9.51	* (10 7 96) 16-76(10 8(9 Field Measure		Actual Purged 10.49 get	ged Volume: 5./ Volume 6
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatur Degrees F		
1005	_ 6	O	5.03	572	67,6	class	
10/0	2_	2	4.86		67.4		lands
10/6	4	2	4.95				
1022	6	2	4.98		66.3		
				. <u> </u>			
				Purge Method	<u></u>		
	_ Subn	adder Pump nersible Pum matic Displa	p	Cenetrifugal I	Pump	Well Wizard Dipper	Dedicated Other Pry ethyl
				Sample Metho	<u>od</u>		
Wall In-	Surfa	adder Pump ce Sampler	<u> </u>	Bailer Dipper		Well Wizard Fultz Pump	Dedicated Other
Well Int Remarks		No od	of sh	en or pro	d. init	ial bail	V. H. 5
	70	well	to wate	red following	9 third		uma Duria.
Signatur	re: D	F ()	47		S	ampled 10	18/96 14:10
Volumes Per	r Unit Leng	th Selected Well C	ssing Diamen		•	Conversion Factors	
V Well Casing	olume Per	Unit Length Cubic	eremitil		To Conver	t Into	Mulitply
<u>I.D. (inches)</u> 1.5 2.0 3.0 4.0	0. 0. 0. 0.	al/ft Ft/ft 0918 0.0123 1632 0.0218 3672 0.0491 6528 0.0873	1.140 2.027 4.560	<u>L/Ft</u> 0.3475 0.6178 1.3900 2.4710	Ft. of Wate Lbs/Sq. inc Cubic feet Gallons Feet		
6.0	1.	4690 0.1963		5,5600	Inches	Centimotes	0.30048

E-10-18-192 B

Project Name/ No: 1970 Jamerry Oak (-	Lab I.D.: 6997/
Client: D- Gfinit	Date: 10/7/9 6
Project Manager: D. F. Hoeker	Sample Location/I.D.: Hw-4
Sampler: 1) FH 15/F	Start Time:
Casing Diameter: 2'inch 3 inch 4 in	nch6 inchOther:
Depth of Well (feet): 35	Calculated Purged Volume: 6.2/
Depth to Water (feet): 22.31 (10/7/94)	Actual Purged Volume 7-5
Sample Depth (feet): 22.96 (10/8/5	6) 12.69' utr => 2.0750
Field Measurer	,
Volume pH E.C.	T
	Temperature Color Other
Time Cum (gal.) (units) (umhos/cm)	Degrees F (visual)
1019 0 0 4671 960	68.2
	6834 cloudy- Drew ishow
1139 5 25 4.75 973	68.2 charge wtrin
1155 7.5 2.5 4.81 982	69.1 bucket
Purge Method	
01171-11-7	
2" Bladder Pump Bailer	Well Wizard Dedicated
Submersible Pump — Cenetrifugal P	tump Dipper Other
Pneumatic Displacement Pump	poty shy!
Sample Metho	d
2" Bladder Pump Bailer	Well WizardDedicated
Surface Sampler Dipper	Fultz Pump Other
W. 11 T	_ askyothyl
Well Integrity: OK Remarks: No odor Shoon or or	
	rod: initial bails Sheen on
7 11"	and purge volume. Welt decentered
Signature: Del Volume to	2 moral = Sayplad 10/8/96
Digitation. Day 4 C	15:35
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Factors
Volume Per Unit Length	To Convert Into Mulitply
LD. (inches) Gal/ft Fu/ft L/M L/Ft	Ft. of Water Lbs/sq.in. 0.4335
1.5 0.0918 0.0123 1.140 0.3475	Lbs/Sq. inch Ft. of Water 2.3070
3.0 0.3672 0.0491 4.560 1.3900	Cubic feet Gallons 7.4800
4.0 0.6528 0.0873 8.107 2.4710	Feet Meters 0.30048
6.0 1.4690 0.1963 18.240 5.5600	Inches Centimater 2 \$400

E-10-18-192B

Project	Name/	No: 1970	Semi	very Oakle	_1	Lab I.D.: 60	5677_	
Chent:	<u> </u>	Grimi	ī	•		Date: Joj		
Project	Manage	r: DF.	Hoex	ter			tion/I.D.: Mw-5	
Sample	r:	1FH 1 JF	•			Start Time:		_
Casing	Diamete	er: 2 incl	<u>صر.</u> 1	3 inch4	inch	6 inch	Other:	-
	Depth of Depth to Sample 1	Well (feet): Water (feet): Depth (feet):	35	*(1017196) 23.76(10/8/9	· ()	Actual Purged	ged Volume: 7.92 Volume8	_
				Field Measure	ments			
Time	Cum	Volume (gal.)	pH (units)	E.C. (umhos/cm)	Temperatur Degrees F			
1015	0	. 0	4.8.	3 702	67.1	- al	<u> </u>	
1023	2		4.85		66.3	let	brun. stock	
1031	4	2	4.83	 _	66.2	- 27/1 /	<u> </u>	١.
1039	6	2	4.84		66.1			
1046	8	2	4.91		66.6	-/-		
				Purge Metho		· 		
	_ Subn	ladder Pump nersible Pum matic Displa	p ——	Bailer Cenetrifugal l Pump	Pump	Well Wizard Dipper	Dedicate Other Polyethyl	d
				Sample Metho	<u>od</u>			
<u>-</u> -		adder Pump ace Sampler		Bailer Dipper		Well Wizard Fultz Pump	Dedicated Other	d
Well In	teority	Gust					polystry!	
Remark		No 5/00	n 00	dect or of	ler en	initial De	Ca 41.50	_
fille		Durgine	5 2	ded 10/8/9			150 9 2011	-
) 1							_
Signatu	re: <i>(</i>)	<u> </u>	2_1X					
V-1 D	77 1. 9				•	Conversion Factors		
,	Volume Per	th Selected Well C Unit Length	asing Diame	ters	То Соли	• **	No. 11.	
Well Casing I.D. (inches	3	Cubic			To Conver	t Into	Mulitply	
1.5		.0918 0.0123	L/M 1.140	<u>L/Ft</u> 0.3475	Ft. of Wate			
2.0 3.0	0	.1632 0.0218	2.027	0.6178	Lbs/Sq. inc Cubic feet	ch FL of Wai Gallons	ter 2.3070 7.4800	
4.0		.3672 0.0491 .6528 0.0873	4.560 8.107	1.3900	Gallons	Liters	3.7850	
5.0		.4690 0.1963		2.4710 5.5600	Feet	Meters	0.30048	

E-10-18-192B

Project Name/ No: 1970 Jem Nory Cakland	Lab I.D.: 69973
Client: D- Grant Project Manager: D.F. Herber	Date: 10/7/9C
Project Manager: D.F. He Kler Sampler: DFH JFF	Sample Location/I.D.: <u>Mw-6</u>
Casing Diameter: 2 inch 3 inch 4 inch	Start Time:
2 men 3 men 4 men	6 inch Other:
Depth of Well (feet): 20 Depth to Water (feet): 12.82 (10/7/56) Sample Depth (feet): 13.86 (10/8/56)	1-10 CH -> 1-1/201
Field Measuremen	<u>its</u>
	mperature Color Other cyres F (visual)
1040 0 0 4.77 896 (59.5
7	
	70.2 Cloudy-brew
1056 4 2 4.80 938	8.8
1340 6 2 4.90 998 6	9.5
Purge Method	
V	
2" Bladder Pump Bailer Submersible Pump Cenetrifugal Pump Pneumatic Displacement Pump	Well Wizard Dedicated p Dipper Other puly athyl
Sample Method	
2" Rladder Dump Deiter	
Baller Baller	Well Wizard Dedicated
Surface Sampler Dipper	Fultz Pump Other
Well Integrity:O >	- Judgeray
Remarks: No odor show or prod. on	intial sail SCH25 (3)
oder while perging well near	by devetered fellowing third
Signature: D 7 7 Walled 10/8/9	6 15315
organitate. D > 4 04 C	
Volumes Per Unit Length Selected Well Casing Diameters	Conversion Factors
Volume Per Unit Length Well Casing Cubic	To Convert Into Mulitply
I.D. (inches) Gal/ft Ft/ft L/M L/Ft	Ft. of Water Lbs/sq.in. 0.4335
2.0 0.1632 0.0218 2.027 0.6178	Lbs/Sq. inch Ft. of Water 2.3070 Cubic feet Gallons 7.4800
3.0 0.3672 0.0491 4.560 1.3900	Gallons Liters 3.7850
4.0 0.6528 0.0873 8.107 2.4710 6.0 1.4690 0.1963 18.240 5.5600	Feet Meters 0.30048

			····					C!	IAIN-OF-CUS	TODY REC	ORD					J		
	Project Nui		1926	1	ect Name	پردک	nine /	A	Δ	of			Z					PSIdZ
	Sampler's h	lame (pr	inted)			Forse		<i>?</i> (<i>v</i>	Number / Type Containers	Andrew		1/5/) Z ()			Remarks	
	Boring Number	Date	Time	Soil	Water		Location or De	epth	Sample 5 Sample 5 Sumber		ŽŽ X) i	\$}0 ×1)/\) -{		Paga	& IACL	
<i>)</i>	Mw-1	19/8/86	15.33						/ / /	10A 1lone	/ /-	X		X ,		6996	<u> </u>	
*	MW-2		14:55	-					1 4	plestic VUA	X		X	X	X	Produce	Hel	
						:				ander on ber		X		XX	<i>c</i>	69969]	
٠	MW-3		14:10						1	plestic VOA andi-	X	~	X		X	Prosice	JHL	
									1	angit				X		69970		
	LIEAD	by: (Sie	gnature)	10/8	Date/Tir PRESERVA APPROPR CONTAINE	VOAS VOAS VOAS VOAS	Received by: Received by: 08G METALS (Signature)	dela (Sign OTHE Fe	acure) Filtered to wory by: In vpor	i Accioni	1	: _ - - At Ph	tentione l	o.c.	رون التي التي التي	U Anal. Au 5. # CA 9453 Hamilton 70-778-16	53	
	Turnaround Time: Remarks:	lea No	rel	ilte por	r ave	9 pr	Contact:	Wa Te FT	5 orgb Guido	o (n Linos.	ot ot	_ der	Pho	ine 5	1/5-L	9)	Engineer 734 To	Consulting ring Geology rreya Court o, CA 94303

																	ا حاصور	ARC 1	
								C:	HAIN-OF-CU	STODY RE	CORD			_					
	Project Nu		rB	Proj	lect Name	5-w	ivery :	Cal	e (=] (A)	of		33,5		10/2/			3/x		89242
	Sampler's	Name (p	rinted)	_1		<u> </u>				is se	ي ا	§ /	//\X	\mathcal{X}	\Z/	\$X'\	Y5/		
	7)FH	[]		1				T-ar	-pamber/Type Containers	Analy	(S))]	3/ X			Remarks
÷	Boring Number	Date	Time	Soil	Water	Sample	Location or	Depth	Sample J Number	T'	1/2	\ \ \ \	\	/_/		7 🕎			
+	16-4	198/7	1535						4.	- VUA	X		X		_		He	<u> </u>	1281-20
		 	 				······································		/,	an bot	ļ	17		$\overline{\mathbf{x}}$		_	17	99-	
		╂┈╁╌	 -	<u> </u>			 -		7	anlar	-	 			X	_ _			
			V						_/	plostic						X			
+	MW-5		14:35						4	VUA	X	ļ	X	4	_		<u> 172</u>	Z jyr	~>100d
			11-	<u> </u>	 				 	awley	 	X.	 	<u> </u>			1,		
		 	┼╌┼╌	1		 				anlar	 	-		, 	$ \overline{} $		16	997	2
		╂╌╂┈	1		++-	 			'	islostic		 	1	-	4	$\sqrt{}$,
Ł	MW-6	╁╌╁╌	15:15		1	 -			4	VUA			V				HCL	pres	1000
			1						/	physi	1	X		\Box				/	
			11_						/	ams	-	-	-	X	$\overline{}$	\dashv	1/0	997	3
			1		 				 	They tic		\vdash	 		\rightarrow		10	111.	
	7. 1	1 (5)	<u> </u>	<u> </u>	Date (T)		Received b	v: (Sign	L //_	MACAIR	١	<u> </u>	l		1	X.L.			
	Relinquished Relinquished	7.11		=;	Pate/Ti		Received b	Rudel	lus	>	Sh To	nip o:		<u> </u>	اخا	رسعت	pll	And	
	Relinquished	by: (Si	gnature)	Date/Ti	me	Received for (Signature		atory by:		_		ttentio						
	Requested Turnaround Time: Remarks:					(5.2	Contact:	1) ICE/T*	~			Pho PRESE		V TIVE	0AS 08	RG METALS	OTHER	Hoexter Consulting Engineering Geology 734 Torreya Court Palo Alto, CA 94303
<u></u>										CONDITION SPACE ABS	·——		APPRC	PRIA	NTE-		Fe F	iltered	and pres. on actival.
									i ichu (71 NUL NUJ	F141	<u> </u>	CONTA	MINEL		_	In	LAD UPL	on eccival.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

10/18/96

Dear David:

Enclosed are:

- 1). the results of 6 samples from your # E-10-1B-192B; 1970 Seminary Ave., Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

Hoexter Consulting	Client Project ID: #E-10-1B-192B; 197	Date Sampled: 10/08/96
Engineering Geology	Seminary Ave., Oakland	Date Received: 10/08/96
734 Torreya Court	Client Contact: David Hoexter	Date Extracted: 10/08-10/09/96
Palo Alto, CA 94303	Client P.O:	Date Analyzed: 10/08-10/09/96

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030) Ethylben-% Rec. Lab ID Client ID $Matrix | TPH(g)^{\dagger}$ **MTBE** Benzene Toluene **Xylenes** zene Surrogate 69968 MW-1 W 55,000,a,h 490 3300 4500 1700 7100 103 69969 MW-2 W 710,c.a 41 1.9 0.54 1.0 1.0 104 69970 MW-3 W 160.a ND ND 0.50 1.2 0.77106 69971 MW-4 W 7800,a,h 140 3900 33 31 40 94 69972 MW-5 W 6700,a 190 260 92 410 370 106 69973 MW-6 W 1300,c,a 57 120 110# 2.3 1.4 4.0 Reporting Limit unless W 50 ug/L 5.0 0.5 0.5 0.5 0.5 otherwise stated; ND means not detected S above the reporting limit 1.0 mg/kg0.05 0.005 0.005 0.005 0.005

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP extracts in mg/L

[#]cluttered chromatogram; sample peak coelutes with surrogate peak

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

Hoexter Consu	•	Client Project Seminary Ave.	ID: #E-10-1B-192B; 1970	Date Sampled: 10/08/96			
Engineering Go	eology	Schillary Ave.	, Oakiailu	Date Received: 10/08/96			
734 Torreya Co	ourt	Client Contact	: David Hoexter	Date Extracted: 10/16/96			
Palo Alto, CA	94303	Client P.O:		Date Analyzed: 10/16/96			
EPA methods 413.	Peti 1, 9070 or 9071; Stands	roleum Oil & G ard Methods 5520 I	rease (with Silica Gel Clean- D/E&F or 503 D&E for solids and 5:	up) * 520 B&F or 503 A&E for liquids			
Lab ID	Client ID	Matrix	Oil & Grease*				
69968	MW-1	W	11,h				
69969	MW-2	W	ND				
69970	MW-3	w	ND				
69971	MW-4	W ND,h					
69972	MW-5	w	ND				
69973	MW-6	w	ND				
Reporting Limit unless other-		w	5 mg/L				
tected above the	D means not de- ne reporting limit	s	50 mg/kg				

^{*} water samples are reported in mg/L and soil and sludge samples in mg/kg

_Edward Hamilton, Lab Director

h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5vol. % sediment.

Hoexter Consulting			1970 Date Sampled	Date Sampled: 10/08/96						
Engineering Geology	Seminary Ave., O	akland	Date Receive	Date Received: 10/08/96						
734 Torreya Court	Client Contact: D	avid Hoexter	Date Extracte	Date Extracted: 10/09-10/12/96						
Palo Alto, CA 94303	Client P.O:		Date Analyze	d: 10/09-10/12/96						
Volatile Halocarbons EPA method 601 or 8010										
Lab ID	69968	69969	69970	69971						
Client ID	MW-1	MW-2	MW-3	MW-4						
Matrix	W	W	W	W						
Compound		Concent	4	VV						
Bromodichloromethane	ND< 20	ND CONCENT	ND	ND< 15						
Bromoform ^(b)	ND< 20	ND	ND	ND< 15						
Bromomethane	ND< 20	ND	ND	ND< 15						
Carbon Tetrachloride ^(c)	ND< 20	ND	ND	ND< 15						
Chlorobenzene	ND< 20	ND	ND ND	ND< 15						
Chloroethane	ND< 20	ND	ND ND	ND< 15						
2-Chloroethyl Viny l Ether (d)	ND < 20	ND	ND ND							
Chloroform	ND< 20	ND	ND	ND< 15 ND< 15						
Chloromethane	ND< 20	ND	ND ND	ND< 15						
Dibromochloromethane	ND< 20	ND	ND ND	ND< 15						
1,2-Dichlorobenzene	ND< 20	ND	ND	22						
1,3-Dichlorobenzene	ND< 20	ND	ND	ND< 15						
1,4-Dichlorobenzene	ND< 20	ND	ND	ND< 15						
Dichlorodifluoromethane	ND< 20	ND	ND	ND< 15						
1,1-Dichloroethane	ND< 20	ND	ND	ND< 15						
1,2-Dichloroethane	ND< 20	15	1.1	4.9						
1,1-Dichloroethene	ND< 20	ND	ND	ND< 15						
cis 1,2-Dichloroethene	45	9.6	0.87	320						
trans 1,2-Dichloroethene	ND< 20	ND	ND	ND< 15						
1,2-Dichloropropane	ND< 20	1.1	ND	ND< 15						
cis 1,3-Dichloropropene	ND< 20	ND	ND	ND< 15						
trans 1,3-Dichloropropene	ND< 20	ND	ND	ND< 15						
Methylene Chloride ^(f)	ND< 20	ND	ND	ND< 15						
1,1,2,2-Tetrachloroethane	ND< 20	ND	ND	ND< 15						
Tetrachloroethene	ND< 20	ND	ND	52						
1,1,1-Trichloroethane	ND< 20	ND	ND	ND< 15						
1,1,2-Trichloroethane	ND< 20	ND	ND	ND< 15						
Trichloroethene	ND< 20	6.6	ND	130						
Trichlorofluoromethane	ND< 20	ND	ND	ND< 15						
Vinyl Chloride ^(g)	26	ND	ND ND	60						
% Recovery Surrogate	107	101	102	108						
Comments	h, j		102	h						
* water and vapor samples are reported		somples in Ne/ka and all T	CI P oster ste in me/I	ir						

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L. Reporting limit unless otherwise stated: water/TCLP extracts, ND < 0.5ug/L; soil and sludge, ND < 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (f) dichloromethane; (h) a lighter than water immiscible sheen

is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.; (j) sample diluted due to high organic content

DHS Certification No. 1644

______Edward Hamilton, Lab Director DHS Certification No. 1644

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

Hoexter Consulting			970 Date Sampled: 10/08/96									
Engineering Geology	Seminary Ave., O	akland	Date Received: 10/08/96									
734 Torreya Court	Client Contact: D	avid Hoexter	Date Extracted: 10/09-10/12/96									
Palo Alto, CA 94303	Client P.O:		Date Analyzed: 10/09-10/12/96									
	Volatil	e Halocarbons										
EPA method 601 or 8010 Lab ID	(0072	60072										
	69972	69973										
Client ID	MW-5	MW-6										
Matrix	w	W										
Compound Bromodichloromethane	ND 4 0.5	Concentra	ation									
Bromoform ^(b)	ND< 2.5	ND ND										
Bromomethane	ND< 2.5	ND ND										
Carbon Tetrachloride ^(c)	ND< 2.5	ND ND										
Chlorobenzene	ND< 2.5	ND ND										
	ND< 2.5	ND										
Chloroethane	ND< 2.5	ND										
2-Chloroethyl Viny l Ether ^(d)	ND< 2.5	ND ND										
Chloroform	ND< 2.5	ND ND										
Chloromethane	ND< 2.5	ND ND										
Dibromochloromethane	ND< 2.5	ND										
1,2-Dichlorobenzene	ND< 2.5	ND ND										
1,3-Dichlorobenzene	ND< 2.5	ND										
1,4-Dichlorobenzene	ND< 2.5	ND										
Dichlorodifluoromethane	ND< 2.5	ND										
1,1-Dichloroethane	ND< 2.5	ND										
1,2-Dichloroethane	4.9	2.3										
1,1-Dichloroethene	ND< 2.5	ND										
cis 1,2-Dichloroethene	4.4	9.9										
trans 1,2-Dichloroethene	ND< 2.5	ND										
1,2-Dichloropropane	ND< 2.5	ND										
cis 1,3-Dichloropropene	ND< 2.5	ND										
trans 1,3-Dichloropropene	ND< 2.5	NDND										
Methylene Chloride ^(f)	ND< 2.5	ND										
1,1,2,2-Tetrachloroethane	ND< 2.5	ND										
Tetrachloroethene	ND < 2.5	ND										
1,1,1-Trichloroethane	ND< 2.5	ND										
1,1,2-Trichloroethane	ND< 2.5	ND										
Trichloroethene	ND< 2.5	0.57										
Trichlorofluoromethane	ND< 2.5	ND										
Vinyl Chloride ^(g)	9.4	ND										
% Recovery Surrogate	108	102										
Comments	j											
* water and vapor samples are reported	in uz/L, soil and sludge s	samples in ug/kg and all TC	I P extracts in us/I									

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil and sludge, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment (j) sample diluted due to high organic content

Hoexter Const	•		ect ID: #E-10-1B-192B; 1970	Date Sampled: 10/08/96						
Engineering G	eology	Seminary A	ve., Oakland	Date Received: 10/08/96						
734 Torreya C	ourt	Client Conta	act: David Hoexter	Date Extracted: 10/08/96						
Palo Alto, CA	94303	Client P.O:		Date Analyzed: 10/08/96						
-			Dissolv	ed Oxygen						
	Analytical methods		EPA	A 360.I						
Lab ID	Client ID	Matrix	Γ	00*						
69968	MW-1	w		1.5						
69969	MW-2	w		3.7						
69970	MW-3	w		3.8						
69971	MW-4	w	:	3.0						
69972	MW-5	w		2.8						
69973	MW-6	w		2.7						
Reporting Limit u	inless otherwisestated;	w	1.0 mg/l	L at 25°C						
port	etected above the re- ing limit	S	// A							

flashpoint values are reported in °C

o solid samples are extracted in accordance with CA Title 22, Chapter 11, Appendix II

QC REPORT FOR HYDROCARBON ANALYSES

Date: 10/08/96

Matrix: Water

3	Concent	ration	(ug/L)		% Reco		
Analyte	Sample (#69801)	•		Amount Spiked 	MS	MSD	RPD
TPH (gas)	0.0	108.8	103.4	100.0	108.8	103.4	5.0
Benzene Toluene	0.0	11.0	10.2	10.0	110.0	102.0	7.5
	0.0	12.0	10.3	10.0	120.0	103.0	15.2
Ethyl Benzene	0.0	11.3	10.3	10.0	113.0	103.0	9.3
Xylenes	0.0	36.0	30.8	30.0	120.0	102.7	15.6
TPH (diesel)	0	153	167	150	102	111	8.5
TRPH (oil & grease)	 N/A 	N/A	N/A	N/A	N/A	N/A	N/A

[%] Rec. = (MS - Sample) / amount spiked x 100

RPD = $(MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR HYDROCARBON ANALYSES

Date: 10/16/96

Matrix: Water

Analyte	Concent	ration	(ug/L)		% Reco		
	(#69800)	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene Toluene Ethyl Benzene Xylenes	0.0 0.0 0.0 0.0	95.6 9.2 9.3 9.0 27.0	93.8 9.1 9.2 8.9 25.9	100.0 10.0 10.0 10.0 30.0	95.6 92.0 93.0 90.0	93.8 91.0 92.0 89.0 86.3	1.9 1.1 1.1 1.1
TPH (diesel)	0	159	169	150	106	113	6.4
TRPH (oil & grease)	0	25700	25900	23700	108	109	0.8
	i			<u> </u>			

% Rec. = (MS - Sample) / amount spiked \times 100

RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100

QC REPORT FOR EPA 8010/8020/EDB

Date: 10/09/96

Matrix: Water

		entrati	on (ug/L)	% Recovery						
Analyte 	Sample (#69893) 	MS	MSD	Amount Spiked	MS	MSD	RPD			
 1,1-DCE Trichloroethene EDB Chlorobenzene	0.0	10.6 10.0 9.8 11.2	10.6 10.1 10.0 11.5	10.0 10.0 10.0 10.0	106 100 98 112	106 101 100 115	0.0 1.0 2.0 2.6			
Benzene Toluene Chlorobz (PID)	0.0	11.0 10.6 10.8	11.1 10.8 11.2	10.0	110 106 108	111 108 112	0.9 1.9 3.6			

[%] Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / $(MS + MSD) \times 2 \times 100$

QC REPORT FOR EPA 8010/8020/EDB

Date: 10/12/96

Matrix: Water

	Conce	entrati	% Reco				
Analyte	Sample (#69895) 	MS	MSD	Amount Spiked	MS	MSD	RPD
1,1-DCE Trichloroethene EDB	 0.0 0.0	9.2 9.3 9.2	9.3 9.4 9.1	10.0 10.0 10.0	92 93 92	93 94 91	1.1
Chlorobenzene	0.0	10.7	10.6	10.0	107	106	0.9
Benzene Toluene Chlorobz (PID)	0.0	10.4 10.1 10.5	10.5 10.1 10.5	10.0	104 101 105	105 101 105	1.0 0.0 0.0

% Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / $(MS + MSD) \times 2 \times 100$

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 FAX (209) 572-0916

CERTIFICATE OF ANALYSIS

Ferrous Iron /w

Report # H284-01 McCampbell Analytical 110 2nd Avenue #D7 Pacheco CA 94553

 Date of Report:
 10/15/96

 Date Received:
 10/10/96

 Date Started:
 10/10/96

 Date Completed:
 10/14/96

Project Name: HC-SA

Project# 7366

Sample ID	Lab ID	Detection Limit	Method	Analyte	Results	Units mg/L
MW-1	H34003	0.1	SM-3500-Fe	Ferrous Iron	ND	
		1.0	300	Nitrate	ND	
		1	300	Sulfate	ND	
MW-2	H34004	0.1	SM-3500-Fe	Ferrous Iron	ND	
IVI VV - Z	1134004	1.0	300-re	Nitrate	3	
		1	300	Sulfate	25	
MINI 2	H34005	0.1	SM-3500-Fe	Ferrous Iron	ND	
MW-3	F134003	1.0	300 300	Nitrate	ND	
		1	300	Sulfate	5	
NATAT A	H34006	0.1	SM-3500-Fe	Ferrous Iron	ND	
MW-4	1134000	1.0	300 Te	Nitrate	ND	
		1.0	300	Sulfate	ND	
MW- 5	H34007	0.1	SM-3500-Fe	Ferrous Iron	ND	
MIVV-3	110400/	1.0	300	Nitrate	ND	
		1	300	Sulfate	8	
NASAL Z	H34008	0.1	SM-3500-Fe	Ferrous Iron	ND	
MW-6	F134008	1.0	300-re	Nitrate	ND	
		1.0	300	Sulfate	6	
		1	300	Junate	v	

Ramiro Salgado Safelo Chemist

Donna Allsup Laboratory Director

Certification # 1157

H284-01

McCAMPBELL ANALYTICAL									CHAIN OF CUSTODY REC						C	CORD																			
	110 2	2nd A	AVEN	UE,	, #	D	7								π	URN	1 AR	OU	ND	TIM	E:	L			L	J		[X			j
	PAC	HECO	, CA	9)45£	53											A)	VAL	YSI	S R	EQL	RUSI			4 11	OUR			HOU		- 5	DAY		ROUTH	ΙE
(510) 798-1620 FAX (510) 798-1622 REPORT TO: Ed Hamilton BILL TO: PROJECT NUMBER: 7366 PROJECT LOCATION: PROJECT LOCATION: PROJECT LOCATION:																	110)																		
SAMPLE ID	SAMPLING 22 MATRIX METHOD							10	20		80 - PCBs Only	40/8260	٥	CAM - 17 Metals	y Pollutant Me	(7240/7421/239.2/6010)	421/239.2/60		•	با ر مار	- ((СОММ	ENTS								
MW-I		DATE 10/2	TIME	# CONTAINERS	JA PE		SOIL	AIR	SLUDGE	OTHER	¥		_	OTHER	EPA 601/8010	EPA 602/80	EPA 608/8080	274 508/80	EPA 524/8240/8260	EPA 625/8270	CAM - 17 N	- Frion	LUFT Metals	(0.77) OCT	RC!		A 2.1. 1.	7							
MW-2		1 13	1565 1455	┨	glacs place	Ŋ				-	_		X	_	_	_		\perp			1	\prod]_			X	F	1	13	40	13	6	196	8	7
MW-3		1-1-	1416	 	- "	7			-	\dashv	-		X	_	-		-	\perp	_ .	_ .	_ -	4	\perp	_		X	X	H	31		54	6	99	69	7
MW-4			1535	1	11	X		-	-	-	-		X	_ -			_ -	-	- -	- -	-	- -	\downarrow	- -	_	X	区	1	13	łα	S	6	99	10	
MW-5			1435	1	4 ·	X	\dashv		\dashv	\dashv	\dashv		X		\dashv	\dashv	_ -	+		+	_ _	- -	- -	\bot	_	X	Ž	H	32	ļα	0	6	99.	11	
MW-6		V	1515		14			\neg		┱	+	寸;	X	- -		-	-	- -		+		- -	-	-	-	X	X	4	34	100	7		99.		_
		-						7	7	1	_	7	4	- -		-			+		+	╬	-{-	-		X	12	H	34	for	<u>8</u>	6	99	<u> 13</u>	_
									7	_		- -	1	_	+					╁	- -		-	-	┼-		ļ								
		<u> </u>	ļ							_ [_		- -	_ -		-		+	- -	\dagger	- -		╁╌	-	┢		ļ	ļ	-	 - 					-
		ļ	<u> </u>											_ -		7	1	†	_	†	-	1	†	╁	十	 -	-	-	-						-
		<u> </u>	<u> </u>			_	\perp		\perp	_ _									\top	1	1	†	-	T	 -	1-	-		-				···	····	-
		ļ——	 - i				4	_ .		_	_		\perp	_ _	_ _	_[.		I					 		一						[1
		 				-	-		-	- -	\perp		_ _	_[_	- -	_ _	_ _	\perp	_	\perp															1
		<u> </u>				\dashv		+		4		4	1		- -	- -	_ _	1	1	1	\perp	1_	1_								-1	••-			1
ELINQUISHED BY:	deline	DATE 10/9/96	TIME	RECEIM	ED BY:				l					+	REM			L_		<u> </u>	<u></u>	<u> </u>	<u>l_</u>	<u>L_</u>		<u> </u>					I Oh	ille	1/As	5	
ELINOUISHED BY:	er Night	10/1	9:00	RECEIVE	ED BY:	ABOR	AO(3	S			_		\	N i	#TC	CH	+ +	la	LŊ		1/	1E	1.	•							. '	-	
																																			,