

RECEIVED

2:44 pm, Feb 16, 2011

Alameda County

Environmental Health

College for Certain, LLC

Groundwater Monitoring Report for the Period October 1 through December 31, 2010

Former Pacific Electric Motors Site 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411)

February 15, 2011

Ron Goloubow, P.G. Senior Associate Geologist Groundwater Monitoring Report for the Period October 1 through December 31, 2010

Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California

Prepared for:

College for Certain, LLC 1001 22nd Avenue Suite 100 Oakland, California 94606

Prepared by: ARCADIS U.S., Inc. 1900 Powell Street 12th Floor Emeryville California 94608 Tel 510.652.4500 Fax 510.652.4906

Our Ref.:

EM009155.0010.00002

Date

February 15, 2011

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

College for Certain, LLC 1001 22nd Avenue, Suite 100 Oakland, California 94606

February 15, 2011

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Groundwater Monitoring Report for the Period October 1 through December 31, 2010,

Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak

Case Number RO0000411)

Dear Mr. Khatri:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who managed the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions or comments, please call Michael Rueda at 626-113-6489, Ron Goloubow of ARCADIS at 510-596-9550, or me at 510-434-5000.

Sincerely,

Michael Barr

College for Certain, LLC

ARCADIS Table of Contents

Се	rtificatio	on	iii
1.	Introdu	uction	1
	1.1	Purpose of the Report	1
	1.2	Background	2
		1.2.1 UST Removal and Remediation Activities	2
	1.3	Previous Investigations	3
	1.4	Revised Corrective Action Plan	5
		1.4.1 Soil Excavation and Removal	5
		1.4.2 Air Injection and Soil-Vapor Extraction	6
	1.5	Initial Phase SVE/AS System	6
	1.6	Second Phase SVE/AS System	6
2.	Ground	dwater Monitoring	7
	2.1	Groundwater Monitoring Scope of Work	7
	2.2	Groundwater Monitoring Wells	7
	2.3	Groundwater Elevations	8
	2.4	Groundwater Sampling	9
	2.5	Analytical Results of Groundwater Samples and Discussion	10
		2.5.1 Analytical Results for TPHg, BTEX, TBA, and MTBE	10
		2.5.1.1 Shallow Zone	11
		2.5.1.2 Intermediate Zone	11
		2.5.1.3 Deep Zone	12
	2.6	Site-Specific Screening Levels for Benzene in Groundwater	13
		2.6.1 Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway	13
		2.6.2 Comparison of December 2010 Groundwater Sampling Results to Site-Specific Screening Level for Benzene	14
3.	Conclu	usions	14
4.	Recom	nmendations	15

ARCADIS Table of Contents

5.	Schedule Limitations							
6.	Schedu	le	16					
7.	Limitati	ons	16					
8.	Referer	nces	17					
Tal	oles							
	1	Groundwater Elevations						
	2	Analytical Results for Volatile Organic Compounds						
	3	Field Parameters						
	4							
Fig	ures							
	1	Site Vicinity Map						
	2	Site Plan						
	3	Groundwater Elevation Contour Map, Intermediate Zone, December 2010						
	4	Groundwater Elevation Contour Map, Deep Zone, December 2010						
	5	Analytical Results for TPHg and VOCs in Shallow-Zone Groundwater Samples						
	6	Analytical Results for TPHg and VOCs in Intermediate-Zone Groundwater Samples						
	7	Analytical Results for TPHg and VOCs in Deep-Zone Groundwater Samples						
Аp	pendices	S						
	Α	Laboratory Analytical Reports						

В

Field Logs

ARCADIS Certification


Certification

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by an ARCADIS U.S., Inc., California Professional Geologist .*

Ron Goloubow, P.G.

Principal Geologist

California Professional Geologist (8655)

Expires Nov. 30, 2011

A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

1. Introduction

ARCADIS has prepared this periodic groundwater monitoring report on behalf of College for Certain, LLC (CFC). This report provides a summary of activities conducted during the monitoring period from October 1 through December 31, 2010 ("the reporting quarter") at the former Pacific Electric Motors (PEM) site located at 1009 66th Avenue, Oakland, California ("the Site"; Alameda County Environmental Health [ACEH] Fuel Leak Case Number RO0000411; Figures 1 and 2). During the reporting quarter, the following activities were conducted at the Site:

- Groundwater monitoring
- Abandonment of five groundwater monitoring wells
- Redevelopment of the Site for construction of the CFC School

1.1 Purpose of the Report

The purpose of the periodic groundwater monitoring report is to provide data that will be used to assess the groundwater quality over time and the effectiveness of the groundwater remediation that was previously conducted at the Site.

During this monitoring period, ARCADIS conducted quarterly groundwater sampling with slight modifications relative to the site-specific "Groundwater Monitoring Plan for the former Pacific Electric Motors Site located at 1009 66th Avenue, Oakland, California, Fuel Leak Case Number RO0000411," dated March 4, 2009 ("Groundwater Sampling Plan"; LFR 2009a). As presented in the "Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California," dated July 17, 2009 ("the Revised CAP"; LFR 2009c), chemicals of concern (COCs) at the Site in groundwater include total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds), methyl tertiary-butyl ether (MTBE), and tertiary-butyl alcohol (TBA).

The purpose of the groundwater monitoring being conducted at the Site is to assess the effectiveness of the remedial activities conducted at the Site. Remedial activities conducted at the Site included completion of the excavation activities as presented in the Revised CAP (LFR 2009c), and the operation of the soil-vapor extraction/air sparging (SVE/AS) system.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

1.2 Background

The Site is located on the northwestern side of 66th Avenue between East 14th Street and San Leandro Street (Figures 1 and 2). The area around the Site is developed with a mixture of commercial, industrial, government, and multi-family residential buildings. The Site is currently owned by CFC. Additional historical land use information for the Site was presented in the Revised CAP (LFR 2009c).

The first industrial development of the property was in about 1948 when the two buildings were constructed by PEM. PEM occupied the Site from 1948 to 2001. Activities conducted at the Site by PEM included manufacturing specialty magnets, power supplies, and components, and repairing motors, generators, transformers, and magnets. A 2,000-gallon gasoline underground storage tank (UST) was reportedly installed at the Site by PEM in 1975. In addition, the gasoline shed in the fueling area may have stored vehicle lubricants and oil for vehicle maintenance.

The on-site buildings were occupied by Bay Area Powder Coatings in 2001. Bay Area Powder Coatings declared bankruptcy and ceased operations at the Site; however, some equipment belonging to this company was still present on the Site in 2005. No details are available as to the specific processes of Bay Area Powder Coatings.

Landeros Iron Works ("Landeros"), which subleased the property from Bay Area Powder Coatings, conducted its operations in and around the warehouse until December 2008. Landeros' operation was primarily welding and metal structure fabrication. Landeros moved off site in June 2009.

The structures that were on the property were demolished between November 2009 and February 2010. The Site is currently relatively flat, unpaved, and vacant, and site redevelopment activities are commencing.

1.2.1 UST Removal and Remediation Activities

PEM removed the 2,000-gallon gasoline UST and associated pump island, piping, storage shed, and appurtenances in 1995. The UST was reportedly in good condition with no holes evident; however, free-phase gasoline product was observed on the water surface in the tank excavation (W.A. Craig, Inc. 1997). Approximately 1,500 cubic yards of soil were removed in two excavation iterations completed during 1995

Groundwater Monitoring Report

Former Pacific Electric Motors Site

and stockpiled on the northern portion of the Site. Approximately 116,000 gallons of petroleum hydrocarbon-affected groundwater were pumped from the excavation. Site investigation work during this time also included the drilling of GeoProbe borings (between excavation iterations) in an attempt to define the lateral and vertical extent of gasoline constituents. A dewatering sump used during soil excavation was later converted to an 8-inch-diameter well (thought to be WAC-1) during backfilling operations. Backfill reportedly consisted of clean imported fill material. Reports indicate that the stockpiled excavated soils were disposed of in 1997 (W.A. Craig, Inc. 1995a, 1995b, 1995c, 1997).

A 30-foot-wide by 70-foot-long by 9-foot-deep excavation for the remediation of petroleum hydrocarbon-affected soils was completed in April 2002 to the south of the original UST remedial excavation (Decon 2002a, 2002b; Figure 2). Approximately 65,000 gallons of petroleum hydrocarbon-affected groundwater were removed from the excavation. Additional over-excavation was performed southeast of the 30-foot by 70-foot excavation. During backfill operations, an 8-inch-diameter extraction well was installed (EW-1). The excavation was backfilled with an unspecified depth of drain rock. Approximately 250 pounds of oxygen-releasing compound (ORC) slurry were mixed into the gravel fill. Clean, excavated native soil and imported Class II base rock comprised the balance of the backfill. Approximately 219 tons of petroleum hydrocarbon-affected soil were disposed of at an off-site facility (Decon 2002a, 2002b).

In addition, in June 2002, a total of 25 soil borings were advanced to a depth of 13 feet below ground surface (bgs) in the area of the former gasoline UST. Each of these borings was backfilled with 8 pounds of ORC followed by neat cement. ORC socks were also installed in wells MW-1 and WAC-1 (Decon 2002a, 2002b).

1.3 Previous Investigations

Several phases of investigations have been completed at the Site. According to descriptions of soil samples collected during the drilling of soil borings for groundwater monitoring wells installed at the Site, three groundwater-bearing zones designated as the "shallow zone," "intermediate zone," and "deep zone" have been identified at the Site (LFR 2008a).

The sediments from the ground surface to approximately 8 feet bgs consist of an interval of fine-grained sediment (silt and clay) with relatively thin intervals of coarser grained sediments (sand, less than 1 foot thick). These coarser grained sediments

Groundwater Monitoring Report

Former Pacific Electric Motors Site

represent the interval of "shallow zone." This is the interval in which the soil-vapor system was operated.

Discontinuous intervals of relatively thin, more permeable fine- to coarse-grained sand and gravels have generally been encountered between approximately 12 and 17 feet bgs. This interval of sediments contains the first groundwater at the Site, and represents the interval of "intermediate-zone" groundwater at the Site. Some of the highest concentrations of TPHg and related compounds have been detected in groundwater samples collected from this interval of saturated sediments.

An interval of poorly graded, coarser grained sediments comprised of fine sand and gravel was consistently encountered from approximately 21 to 34 feet bgs. This interval of coarser grained sediments contains groundwater and represents the "deep zone."

The investigations conducted at the Site have also included the following:

- Collection of approximately 280 soil samples throughout the Site. The majority of these samples were collected from 0.5 or 5 feet bgs and analyzed for petroleum hydrocarbons, semivolatile organic compounds, polychlorinated biphenyls (PCBs), and/or metals.
- Installation and monitoring of four groundwater monitoring wells (MW-1 through MW-4) and three shallow/intermediate/deep monitoring well clusters (nested wells NW-1 through NW-3), and collection of grab groundwater samples from 20 soil borings. Monitoring of wells MW-1 through MW-4 has been performed intermittently since 1997.
- Completion of two investigations to assess soil-gas quality at the Site in March and August 2008. The results of these investigations were presented in the Revised CAP (LFR 2009c).
- Completion of an SVE/AS pilot test at the Site in accordance with LFR's "Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test," dated September 23, 2008 (LFR 2008a).
- Installation of seven SVE wells (SVE-2 through SVE-8), seven intermediate-zone AS wells (AS-2I through AS-8I), seven deep-zone AS wells (AS-2D through AS-8D), three SVE monitoring wells (SVMW-3 through SVMW-5), three intermediate-zone AS monitoring wells (ASMW-3I through ASMW-5I), and three

Groundwater Monitoring Report

Former Pacific Electric Motors Site

deep-zone AS monitoring wells (ASMW-3D through ASMW-5D), from December 29, 2008 to January 9, 2009.

• Initial start-up of the SVE/AS extended pilot test system occurred on August 17, 2009. The system operated until October 27, 2009, at which time operations were ceased to allow for implementation of the Revised CAP, which required remedial soil excavation. The SVE/AS system operated a total of 52 days, from August 17, 2009 to October 27, 2009, and removed approximately 480 pounds of mass quantified as TPHg. For additional information and system design and start-up of the SVE/AS system, please refer to the quarterly "Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report for the Period July 1 through September 30, 2009" prepared for this project (LFR 2009e).

1.4 Revised Corrective Action Plan

LFR prepared the Revised CAP for the implementation of site remedies (LFR 2009c). The Revised CAP summarized the results of previous investigations, presented the site conceptual model, quantified the baseline risk of COCs, developed site-specific risk-based cleanup goals, evaluated potential remedies, and presented an implementation plan for the selected remedies.

The Revised CAP recommended excavation and off-site disposal of affected shallow soils with SVE/AS to remediate affected soil, groundwater, and soil vapors (LFR 2009c). The Revised CAP also recommended conducting an extended SVE/AS pilot test including ozone injection, if appropriate.

1.4.1 Soil Excavation and Removal

As of June 30, 2010, a total of approximately 8,662 tons of affected soil has been removed from the Site and transported to either Waste Management's Kettleman Hills Class I Landfill located in Kettleman City, California, or Republic Waste's Vasco Road Class II Landfill located in Livermore, California. The implementation of the CAP was reported to ACEH in the report titled "Soil Removal Action Completion Report, College for Certain, LLC, Former Pacific Electric Motors, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411)," dated September 15, 2010 (ARCADIS 2010d). The removal of PCB-affected soil was reported to ACEH and the U.S. Environmental Protection Agency (U.S. EPA) in a letter report titled "Implementation of the Toxic Substances Control Act Self-Implementing Cleanup Notification at the

Groundwater Monitoring Report

Former Pacific Electric Motors Site

Former Pacific Electric Motors Facility, 1009 66th Avenue, Oakland, California," dated August 13, 2010 (ARCADIS 2010c).

1.4.2 Air Injection and Soil-Vapor Extraction

This section provides a summary of the operation and demobilization of the two phases of SVE/AS extended pilot test system that operated at the Site. The overall objective of the extended pilot test was to evaluate the effectiveness of SVE/AS in reducing concentrations of TPHg, BTEX, TBA, and MTBE in groundwater, soil, and soil gas.

ARCADIS operated an SVE/AS pilot test system in two phases. The first phase of SVE/AS operation was from August 13 to October 27, 2009, before soil excavation and site demolition activities began. The second phase of SVE/AS operation, from June 16 to September 13, 2010, was after completion of excavation and site demolition activities. SVE/AS operation was off for 232 days between phases of operation. Groundwater sampling to evaluate SVE/AS system performance was conducted during both phases of SVE/AS system operation. In addition, groundwater samples were collected before restarting the SVE/AS system for the second phase of operation to evaluate potential rebound of contaminants in groundwater during the period of SVE/AS system shutdown.

1.5 Initial Phase SVE/AS System

The initial phase SVE/AS extended pilot test system operated from August 17, 2009 to October 27, 2009. The initial phase SVE/AS system was shut down on October 27, 2009 to be demobilized from the Site during building demolition and soil excavation activities in accordance with the Revised CAP (LFR 2009c). Details regarding the operation of the system before demobilization were provided in the "Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report" submitted on November 13, 2009 (LFR 2009e). Operation of the SVE/AS extended pilot test system was restarted on June 16, 2010.

1.6 Second Phase SVE/AS System

The second phase SVE/AS system extended pilot test system operated from June 16 to September 13, 2010. Shortly after September 13, 2010, the SVE/AS system was demobilized to allow for the redevelopment of the Site.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

Based on photoionization detector (PID) monitoring of the total SVE system influent vapor stream concentrations, the SVE/AS system extracted approximately 159 pounds of fuel vapors during the second phase of SVE/AS system operations from June 16 to September 13, 2010. When added to the yield from the operation of the initial system from August 17 to October 27, 2009, approximately 639 pounds of fuel vapors were recovered from the Site in approximately 141 days of operation.

2. Groundwater Monitoring

Groundwater monitoring was performed at the Site with slight modifications relative to the Groundwater Monitoring Plan and the Revised CAP (LFR 2009c). During this reporting period, groundwater samples were collected on December 14 and 15, 2010, approximately three months after the SVE/AS system was shut down. The following sections describe the groundwater monitoring activities for this reporting quarter.

2.1 Groundwater Monitoring Scope of Work

The following groundwater monitoring activities were performed during the reporting quarter:

- Measured depth to groundwater in 11 monitoring wells during the December sampling event.
- Collected groundwater samples from 11 wells on December 14 and 15, 2010.
- Submitted groundwater samples for laboratory analyses.

2.2 Groundwater Monitoring Wells

The groundwater monitoring well network at the Site included 21 groundwater monitoring wells prior to abandonment of 15 monitoring wells and 16 soil-vapor and air sparging wells on September 13, October 15, and November 15, 2010 (Figure 2). As discussed during the August 18, 2010 meeting between representatives of CFC, ARCADIS, and ACEH, the proposed multi-purpose building was shifted approximately 15 feet to the north-northwest to allow wells AS-1I and AS-3I to remain in place as future groundwater monitoring wells (Figure 2).

 One groundwater monitoring well (MW-4) is screened from approximately 5 to 20 feet bgs.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- One shallow-zone groundwater monitoring well (NW-2S; part of the triple-nested groundwater monitoring well) is screened from approximately 3 to 5 feet bgs.
- Two intermediate-zone groundwater monitoring wells (ASMW-4I and ASMW-5I) are screened from approximately 10 to 17 feet bgs.
- One intermediate-zone groundwater monitoring well (NW-2I; part of the triplenested groundwater monitoring well) is screened from approximately 15 to 18 feet bgs.
- One deep-zone groundwater monitoring well (ASMW-5D) is screened from approximately 19 to 27 feet bgs.
- One deep-zone groundwater monitoring well (NW-2D; part of the triple-nested groundwater monitoring well) is completed with a screen at approximately 25 to 30 feet bgs.
- Four intermediate-zone AS wells (AS-1I, AS-3I, AS-4I, and AS-6I) with 3-foot screens with bottoms set at depths ranging from approximately 13.5 to 19 feet bgs.

2.3 Groundwater Elevations

Groundwater elevations were gauged on December 14, 2010. The depth to groundwater was measured in 11 monitoring wells using an electronic water-level indicator. The water-level indicator was lowered into each well until a tone signaled that the indicator had contacted water. The depth to groundwater was measured to the surveyed elevation mark on the top of the casing of the monitoring well. The groundwater elevation in each well was calculated by subtracting the depth to water from the surveyed top-of-casing elevation.

During the redevelopment activities, the top of the casing for AS-6I was damaged, altering the top-of-casing elevation. Therefore, this well was not used on the water-level elevation contour maps.

The groundwater elevation results are summarized in Table 1. Groundwater elevation data and contours for the intermediate and deep groundwater zones for the December event are presented on Figures 3 and 4, respectively.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

December groundwater elevations in the intermediate zone ranged from 9.49 to 11.85 feet above mean sea level (msl). Intermediate-zone groundwater elevations contours for the December event are shown on Figure 3. The groundwater gradient in the intermediate zone, as calculated from AS4I to ASMW-4I, was 0.002 foot per foot (ft/ft) during the reporting quarter.

December groundwater elevations in the deep zone ranged from 9.47 to 10.83 feet above msl. Deep-zone groundwater elevations contours for the December event are shown on Figure 4. The groundwater elevation contours display a depression around NW-2D, which is likely due to the heterogeneity in subsurface porosity. The groundwater gradient in the deep zone, as calculated from ASMW5I to MW-4, was 0.002 ft/ft during the reporting quarter.

The December groundwater contours and elevations depicted on Figures 3 and 4 are generally consistent with trends observed prior to the operation of the AS/SVE system. The second quarter 2009 monitoring report as well as the current reporting quarter show a groundwater gradient in the intermediate zone flowing in an east to west direction.

2.4 Groundwater Sampling

Ongoing monitoring and analysis of groundwater samples for TPHg, BTEX, TBA, and MTBE were conducted to assess the quality of groundwater affected by these COCs and the effectiveness of the SVE/AS system. One groundwater sampling event was conducted during the reporting quarter. Groundwater samples were collected from 11 groundwater monitoring and AS wells during the December 14 and 15, 2010 event.

The samples were collected using low-flow groundwater sampling techniques (Puls and Barcelona 1996). The intake of the low-flow pump was placed in the middle of the screened interval and purged continuously until groundwater parameters (pH, conductivity, temperature, oxidation-reduction potential, and dissolved oxygen) stabilized, or until the well had been purged for approximately 30 minutes or of two gallons. Wells that purged dry were allowed to recharge to approximately 80% of original depth to groundwater before samples were collected.

Groundwater samples were collected directly from the hose of the pump and conveyed into laboratory-supplied sample containers. The containers were labeled with the well identification number, the time and date of collection, the analysis requested, and the initials of the sampler. The samples were stored in an ice-chilled cooler and maintained

Groundwater Monitoring Report

Former Pacific Electric Motors Site

under strict chain-of-custody protocols as they were submitted to the laboratory for analysis.

The groundwater samples were submitted to TestAmerica Laboratories, a state-certified laboratory located in Pleasanton, California, for the following analyses:

- TPHg by U.S. EPA Method 8260B
- BTEX, TBA, and MTBE by U.S. EPA Method 8260B

Results for TPHg, BTEX, and MTBE analyses are summarized in Table 2, and Table 3 summarizes the groundwater monitoring parameters measured during the collection of the groundwater samples. Figures 5, 6, and 7 present the analytical results of TPHg, BTEX, and MTBE in the shallow, intermediate, and deep groundwater zones, respectively. Copies of the laboratory data sheets and chain-of-custody documents are presented in Appendix A. Copies of the monitoring well purge and sampling forms are presented in Appendix B.

2.5 Analytical Results of Groundwater Samples and Discussion

Groundwater samples were collected in December 2010 to provide data to evaluate the effectiveness of the SVE/AS system and to monitor for potential contaminant rebound. The results of the December sampling event were compared to results of baseline groundwater samples previously collected in March, May, and August 2009, before the SVE/AS system was operated. The following sections summarize the analytical results of the groundwater samples collected during the current monitoring event, and compare current results to baseline results.

2.5.1 Analytical Results for TPHg, BTEX, TBA, and MTBE

The wells selected include wells being sampled in accordance with the Groundwater Monitoring Plan, as well as wells recently installed to monitor the SVE/AS system. The wells selected include wells screened in the shallow, intermediate, and deep groundwater zones (Table 2).

The analytical results of the baseline groundwater samples and samples collected before and after demobilization of the SVE/AS system are summarized in Table 2. The analytical results of groundwater samples collected for TPHg, BTEX, and fuel oxygenates during this monitoring period are summarized in the following sections.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

2.5.1.1 Shallow Zone

Groundwater samples were collected from one shallow-zone well during the current reporting quarter. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted on Figure 5. Prior to operation of the SVE/AS system, elevated concentrations of TPHg, BTEX, MTBE, and/or TBA had been detected in NW-2S. The analytical results of the groundwater samples collected in December 2010 from NW-2S indicate TPHg and benzene concentrations were significantly reduced by approximately 97.2% and 99.9%, respectively.

2.5.1.2 Intermediate Zone

Groundwater samples were collected from seven intermediate-zone wells. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2, and analytical results for intermediate-zone wells are posted on Figure 6. Prior to operation of the SVE/AS system, elevated concentrations of TPHg, BTEX, MTBE, and/or TBA had been detected in groundwater samples previously collected from intermediate-zone wells at the Site. The baseline concentrations of fuel-related compounds detected in the samples collected from wells NW-2I, ASMW-2I, and ASMW 5I, located hydraulically downgradient from the former UST, have been some of the highest concentrations of fuel-related compounds detected in groundwater samples collected at the Site. The analytical results of the groundwater samples collected in December 2010 from NW-2I and ASMW 5I after 232 days of total SVE/AS system operation and 91 days after demobilization indicate that TPHg concentrations were significantly reduced by approximately 98.1% and 99.8%, respectively (Table 2 and Figure 6).

The data indicate that BTEX concentrations are significantly reduced in each of the samples collected from the intermediate-zone wells relative to concentrations detected prior to the operation of the SVE/AS system (Table 2 and Figure 6).

The following table summarizes the decreases in the percentages of benzene and TPHg that were detected in the samples collected in December 2010 relative to concentrations of benzene and TPHg that were detected prior to start-up of the SVE/AS system:

Groundwater Monitoring Report

Former Pacific Electric Motors Site

	ge Decrease in Benzen rmediate-Zone Groundv		
	concentrations in mic	rograms per liter	
Well ID	Data	Benzene	TPHg
ASMW-4I	11-Mar-09	38	9,200
	15-Dec-10	2.2	1,000
	Percent Decrease:	94%	89%
ASMW-5I	11-Mar-09	11,000	72,000
	14-Dec-10	0.62	110
	Percent Decrease:	>99%	>99%
NW-2I	13-Mar-09	18,000	49,000
	14-Dec-10	14.0	920
	Percent Decrease:	99%	98%
AS-6I	26-May-09	11,000	42,000
	14-Dec-10	3.6	700
	Percent Decrease:	>99%	98%

Concentrations of MTBE and TBA detected in samples collected from intermediatezone wells after the start-up of the SVE/AS system have also decreased relative to the concentrations of these compounds detected in the samples collected prior to the operation of the SVE/AS system (Table 2 and Figure 6).

2.5.1.3 Deep Zone

Groundwater samples were collected from three deep-zone wells. The analytical results for TPHg, BTEX, TBA, and MTBE are summarized in Table 2 and posted for deep-zone wells on Figure 7. Similar to the results of the samples collected from intermediate-zone wells, the analytical results indicated that the concentrations of fuel and fuel-related compounds decreased relative to the concentrations detected before the SVE/AS system began operation.

Concentrations of TPHg, BTEX compounds, and TBA in samples collected from three deep-zone wells during the December 2010 sampling event were below their respective laboratory method detection levels. MTBE was detected in one of three deep-zone wells at a concentration of 0.50 microgram per liter (µg/l).

Groundwater Monitoring Report

Former Pacific Electric Motors Site

2.6 Site-Specific Screening Levels for Benzene in Groundwater

A site-specific screening level for benzene in groundwater has been calculated with respect to the potential volatilization of benzene from groundwater to indoor air. Site conditions including shallow groundwater (less than 5 feet bgs) and disturbed vadose soils as a result of excavation and backfilling are not conducive to collecting representative soil-gas samples. Therefore, ARCADIS developed a site-specific screening level that is protective of benzene volatilizing to indoor air from groundwater to further evaluate the success of the SVE/AS system in reducing fuel and fuel constituents in groundwater. The following sections describe how the site-specific screening level was calculated and compares current groundwater concentrations to the screening level.

2.6.1 Calculation of Groundwater Benzene Concentration Protective of the Indoor Air Pathway

ARCADIS used the California Department of Toxic Substances Control (DTSC) version of the Johnson & Ettinger model (DTSC 2009) to estimate a benzene concentration in groundwater that would not pose a vapor intrusion concern under a commercial exposure scenario. The model first estimates an indoor air concentration based on a target health risk of 1 x 10⁻⁶. Then it subsequently back-calculates a groundwater concentration associated with this vapor intrusion potential. The model itself generates a groundwater concentration that is not associated with a vapor intrusion health risk above the DTSC target level.

Default commercial exposure input parameters were used to calculate the benzene in groundwater concentration. These include a 25-year exposure duration, 250 days per years and eight hours per day. Building-specific defaults such as slab thickness and ventilation exchange rates were incorporated into the modeling effort.

Based on the evaluation, a benzene concentration of $66 \,\mu\text{g/l}$ in groundwater would not be associated with a vapor intrusion health concern under the commercial exposure scenario. The exposure assumptions used under a commercial scenario are conservative for a school setting (especially a gymnasium), where exposures are expected to be significantly lower. Details concerning the vapor transport modeling are provided in Appendix C of the groundwater monitoring report for the period July 1 through September 30, 2010 (ARCADIS 2010e).

Groundwater Monitoring Report

Former Pacific Electric Motors Site

2.6.2 Comparison of December 2010 Groundwater Sampling Results to Site-Specific Screening Level for Benzene

Concentrations of benzene in the groundwater samples from 11 wells during the December 2010 sampling event ranged from below the laboratory detection limit (<0.50 μ g/l in 10 wells) to 14.0 μ g/l (in well NW-2I). The analytical results of the groundwater samples collected during the December sampling event indicate that current concentrations of benzene in groundwater are well below the 66 μ g/l screening level concentration protective of the benzene volatilization from groundwater to indoor air exposure pathway (Table 2).

3. Conclusions

Based on the baseline analytical results of the groundwater samples collected at the Site, the highest concentrations of COCs were initially detected in samples collected from wells constructed in the intermediate zone located closest to the former UST (Figures 5 through 7).

Analytical results of groundwater samples collected on December 14 and 15, 2010, 90 days after system shutdown, indicate a slight increase of concentrations of TPHq and benzene. Concentrations of TPHg increased in four of the 11 groundwater samples collected, while concentrations of benzene increased in six of the 11 samples. However, the current concentrations of benzene detected in the samples collected at the SIte are significantly below the screening level of 66 µg/l with the highest concentration at 14 µg/l detected in the sample collected from well NW-2I. This concentration indicates an increase of approximately 1% when compared to baseline concentrations. The highest increase in TPHg detected at the Site was in the sample collected from well ASMW-4I (1,000 µg/l), which indicates a 6% increase when compared to the baseline concentration for samples collected from this well. All other increases in TPHg or benzene in samples collected during the current reporting guarter were less than 3% (see Table 2 and Figures 5, 6, and 7). Comparison of analytical results of groundwater samples collected 90 days after SVE/AS system shutdown to the calculated 66 µg/l groundwater concentration of benzene protective of volatilization to indoor air exposure pathway shows that current groundwater conditions do not pose a risk of volatilization to indoor air. These trends will be assessed during future groundwater monitoring events.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

4. Recommendations

ARCADIS recommends the collection of additional groundwater samples scheduled to take place quarterly for one year after the shutdown of the SVE\AS system (until September 2011). These data will be used to further evaluate the effectiveness of the SVE/AS system pilot testing in the long-term reduction of fuel and fuel-related constituents in groundwater and soil gas.

The current development plan for the Site includes the construction of a multi-purpose gymnasium building near the area where the SVE/AS system operated. This building will be equipped with vapor mitigation measures that are compliant with the DTSC "Vapor Intrusion Mitigation Advisory" (DTSC 2009). In accordance with the Revised CAP and the DTSC document, it is anticipated that the vapor mitigation measures for the multi-purpose building will include a sub-slab depressurization system and a vapor barrier. These vapor mitigation measures are being designed and will be presented to ACEH under separate cover.

5. Confirmation Sampling Plan

Based on the success of the SVE/AS system operation in reducing fuel and fuel constituent concentrations in groundwater, ARCADIS proposes the following confirmation sampling plan to evaluate if there is any long-term rebound in groundwater concentrations from the SVE/AS system operations. The confirmation sampling plan addresses the different possible results and presents mitigation measures, if necessary.

The confirmation sampling plan includes collection of groundwater samples on a quarterly basis for one year:

- If concentrations of benzene in the confirmation groundwater samples remain below the site-specific screening level of 66 μg/l for that year, then ARCADIS will request a letter from ACEH indicating that no further action (NFA) is required at this Site with respect to groundwater monitoring or remediation.
- If the groundwater sample results indicate concentrations appear to be increasing, but are below volatile screening levels, then further periodic groundwater monitoring and reporting will be conducted until concentrations of TPHg and/or BTEX compounds stabilize.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

 If the groundwater sample results indicate concentrations of benzene are increasing above the volatilization screening level, then a vapor sampling plan will be prepared and implemented for the gymnasium building.

If vapor sampling becomes necessary, one of the three following outcomes will likely occur:

- If the concentrations of benzene in the sub-slab vapor samples remain below Environmental Screening Levels (ESLs) as provided in Table E-2 for Evaluation of Potential Indoor Air Concerns published by the Regional Water Quality Control Board (RWQCB 2008), then groundwater and vapor sampling will continue until a change is observed.
- If the concentrations of benzene in the sub-slab vapor samples are slightly above acceptable limits, then the sub-slab depressurization vapor mitigation system will become "active" (i.e., a blower will be attached to the depressurization system) and sub-slab vapor monitoring will continue.
- If the concentrations of benzene in sub-slab vapor samples are considerably above ESLs, then the sub-slab depressurization vapor mitigation system will become active, and, in addition, an oxygen compound will be injected into the intermediate- and shallow-zone groundwater until concentrations of benzene in groundwater samples collected at the Site decrease over time.

6. Schedule

Collection of groundwater confirmation samples will occur quarterly from the fourth quarter of 2010 through the third quarter of 2011. The next periodic groundwater monitoring event is scheduled for March 2011.

7. Limitations

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, expressed or implied, is

Groundwater Monitoring Report

Former Pacific Electric Motors Site

intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS' investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the Site may vary from those at the locations where data were collected. ARCADIS' ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

8. References

ARCADIS. 2010a. Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction for the Period October 1 through December 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). February 12.

ARCADIS. 2010b. Groundwater Monitoring Report for the Period from January 1 through March 30, 2010, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). July 19.

ARCADIS. 2010c. Implementation of the Toxic Substances Control Act Self-Implementing Cleanup Notification at the Former Pacific Electric Motors Facility, 1009 66th Avenue, Oakland, California. August 13.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- ARCADIS. 2010d. Soil Removal Action Completion Report, College for Certain, LLC, Former Pacific Electric Motors, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 15.
- ARCADIS. 2010e. Groundwater Monitoring Soil-Vapor Extraction/Air Sparging System Operation Report for the Period July 1 through September 30, 2010, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). November 15.
- Decon Environmental Services, Inc. (Decon). 2002a. Remediation Project Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. July 9.
- Decon. 2002b. Remediation Project Report Addendum for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94612. October 2.
- Department of Toxic Substances Control (DTSC). 2009. Vapor Intrusion Mitigation Advisory. April. Section 6.3.4 revised May 8.
- LFR Inc. (LFR). 2008a. Work Plan to Conduct an Air Injection and Soil-Vapor Extraction Pilot Test at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). September 23.
- LFR. 2008b. Air Sparging and Soil-Vapor Extraction Pilot Test Completion Report at the Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). November 21.
- LFR Inc. an ARCADIS Company (LFR). 2009a. Groundwater Monitoring Plan for the former Pacific Electric Motors Site located at 1009 66th Avenue, Oakland, California, Fuel Leak Case Number RO0000411. March 4.
- LFR. 2009b. Groundwater Monitoring Report for the Period from January 1 through March 31, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). May 15.
- LFR. 2009c. Revised Corrective Action Plan, Proposed Aspire School Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case No. RO0000411). July 17.

Groundwater Monitoring Report

Former Pacific Electric Motors Site

- LFR. 2009d. Groundwater Monitoring Report for the Period from April 1 through June 30, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). August 14.
- LFR. 2009e. Groundwater Monitoring Report and Soil-Vapor Extraction/Air Sparging System Construction and Initial Operation Report for the Period July 1 through September 30, 2009, Former Pacific Electric Motors Site, 1009 66th Avenue, Oakland, California (Fuel Leak Case Number RO0000411). November 13.
- Puls, Robert W., and Michael J. Barcelona. 1996. Ground Water Issue Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504.
- Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (Interim Final November 2007); Environmental Screening Levels ("ESLs"). Technical Document. May.
- W.A. Craig, Inc. 1995a. Final Closure Plan for Underground Storage Tank Removal for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94621. March 14.
- W.A. Craig, Inc. 1995b. Correspondence to ACDEH via facsimile. Attached soil and water sample results, and next phase of work due to contamination in the soil and pit water. March 31.
- W.A. Craig, Inc. 1995c. Subsurface Environmental Investigation for Pacific Motor Co., 1009 66th Avenue, Oakland, CA 94621. May 16.
- W.A. Craig, Inc. 1997. Excavation and Sampling Report for Pacific Electric Motor Co., 1009 66th Avenue, Oakland, CA 94621. May 12.

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
	Shallow-	-Zone Groundwater Mon	itoring Wells	
NW-2S	11-Mar-09	13.77	3.77	10.00
	26-May-09		3.63	10.14
	21-Sep-09		3.98	9.79
	27-Jul-10		5.09	8.68
	14-Sep-10		3.92	9.85
	14-Dec-10		3.23	10.54
	Intermedia	te-Zone Groundwater Mo	onitoring Wells ¹	
NW-2I ¹	11-Mar-09	13.80	5.86	7.94
	26-May-09		4.08	9.72
	10-Aug-09		5.96	7.84
	21-Sep-09		5.21	8.59
	21-Oct-09		8.54	5.26
	24-May-10		4.18	9.62
	27-Jul-10		2.77	11.03
	14-Sep-10		6.25	7.55
	14-Sep-10 14-Dec-10		4.31	9.49
ASMW-4I	11-Mar-09	13.09	2.06	11.03
TOWN TH	26-May-09	10.00	3.22	9.87
	10-Aug-09		3.96	9.13
	21-Sep-09		4.44	8.65
	21-Oct-09		3.58	9.51
	24-May-10		NM	NM
	24-May-10 27-Jul-10		4.32	
				8.77
	14-Sep-10 15-Dec-10		4.68 2.71	8.41 10.38
ASMW-5I	11-Mar-09	13.16	2.14	11.02
ASIVIVV-SI	26-May-09	13.10	3.26	9.90
	=			
	10-Aug-09		3.95	9.21
	21-Sep-09		4.43	8.73
	21-Oct-09		6.86	6.30
	24-May-10	40.00	4.54	8.62
	27-Jul-10	13.83	5.03	8.80
	14-Sep-10		5.93	7.90
	14-Dec-10		2.95	10.88
AS-1I	26-May-09	NS	3.87	
	24-May-10		4.91	
	27-Jul-10	14.02	5.61	8.41
	14-Dec-10		3.20	10.82
AS-3I	26-May-09	14.10	4.07	10.03
	24-May-10		4.10	10.00
	27-Jul-10	13.91	7.35	6.56
	14-Sep-10		6.12	7.79
	14-Dec-10		3.22	10.69
AS-4I	26-May-09	13.52	3.68	9.84
	24-May-10		2.05	11.47

Table 1 Groundwater Elevations

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample	Date	Top-of-Casing	Depth to	Groundwater
Location	Collected	Elevation (1)	Groundwater (2)	Elevation (1)
•		14.04	6.92	7.12
	27-Jul-10	14.04	6.92 7.12	7.12 6.92
	14-Sep-10			
	14-Dec-10		3.23	10.81
AS-6I	26-May-09	13.10	3.14	9.96
	21-Sep-09	(*)	3.96	9.14
	24-May-10	(**)	NM	NM
	27-Jul-10	14.01	4.82	9.19
	14-Sep-10		5.59	8.42
	14-Dec-10		2.16	11.85
	Deep-Z	one Groundwater Monit	toring Wells	
MW-4	11-Mar-09	13.78	2.63	11.15
	26-May-09		3.91	9.87
	10-Aug-09		4.71	9.07
	21-Sep-09		5.18	8.60
	21-Oct-09		6.28	7.50
	27-Jul-10	13.94	4.89	9.05
	14-Sep-10		5.14	8.80
	14-Dec-10		3.11	10.83
NW-2D	11-Mar-09	13.79	2.68	11.11
	26-May-09		3.97	9.82
	10-Aug-09		4.73	9.06
	21-Sep-09		5.13	8.66
	21-Oct-09		4.13	9.66
	24-May-10		4.05	9.74
	27-Jul-10		4.75	9.04
	14-Sep-10		6.11	7.68
	14-Dec-10		4.32	9.47
ASMW-5D	11-Mar-09	13.01	1.88	11.13
	26-May-09		3.16	9.85
	10-Aug-09		3.93	9.08
	21-Sep-09		4.30	8.71
	21-Oct-09		3.56	9.45
	24-May-10		3.24	9.77
	27-Jul-10	13.63	4.50	9.13
	14-Sep-10		4.81	8.82
	14-Dec-10		2.95	10.68

Notes:

NM = water level not measured

NS = not surveyed

- $\begin{tabular}{ll} (*) Top of casing obscured by sparge/extraction fitting; top-of-casing value estimated. \\ \end{tabular}$
- (**) Top of the casing was destroyed during excavation activities; top-of-casing elevation is inaccurate.
- (1) Top-of-casing elevation surveyed by Tronoff & Associates licensed land surveyor number 6415; top-of-casing and groundwater elevations are in North American Vertical Datum 1988 (feet)
- (2) feet below the top of well casing

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
				Shallow-Z	one Ground	lwater Monite	oring Wells				
NW-1S	27-Dec-05		<50	NA	0.55	<0.50	<0.50	<0.50	NA	NA	<0.50
	13-Mar-09		<50	<10	0.55	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	23-Sep-09		<50	<10	< 0.50	< 0.50	0.69	< 0.50	0.59	< 0.50	0.59
NW-2S	27-Dec-05		7,100	NA	1,600	570	570	62	NA	NA	1,530
	13-Mar-09		1,800	1,900	130	520	<4.2	120	20	<4.2	20
	23-Sep-09		15,000	5,100	11,000	610	800	41	1,500	2,300	3,800
	28-Jul-10		1,000	100	34	34	30	24	NA	NA	170
	14-Sep-10		69	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	2.1
	17-Dec-10		<50	21	4.7	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
NW-3S	26-May-09		<50	<10	2.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		<50	<10	4.1	< 0.50	0.58	< 0.50	< 0.50	< 0.50	< 0.50
	15-Sep-10		<50	<4	2.4	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
			I	ntermediate	e-Zone Grou	ndwater Mor	nitoring Wel	ls			
ASMW-2I	13-Mar-09		49,000	3,200	1,100	18,000	17,000	1,600	5,100	3,100	8,200
	23-Sep-09		<1,000	13,000	290	<10	13	<10	39	31	70
	22-Oct-09		<50	370	290	< 0.50	4.6	< 0.50	9	11	20
	25-May-10		2,000	330	98	280	50	170	NA	NA	350
	14-Sep-10		<50	<4	0.51	<0.50	< 0.50	< 0.50	NA	NA	<1.0
	27-Jul-10		<50	<4.0	20	< 0.50	0.80	< 0.50	NA	NA	4.5
ASMW-3I	11-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	22-Sep-09		<50	<10	3.4	< 0.50	1.4	< 0.50	< 0.50	< 0.50	< 0.50
	22-Oct-09		<50	<10	6.9	< 0.50	1.4	< 0.50	< 0.50	< 0.50	<0.50
ASMW-4I	11-Mar-09		9,200	<130	<6.3	38	<6.3	570	1,800	230	2,030
	23-Sep-09		1,900	<130	<6.3	8.1	<6.3	130	120	26	146
	22-Oct-09		1,900	<10	< 0.50	4.0	1	75	110	23	133
	26-May-10		1,800	<4	< 0.50	4.6	< 0.50	86	NA	NA	90
	27-Jul-10		940	<4.0	< 0.50	2.9	< 0.50	68	NA	NA	35
	14-Sep-10		460	<4	< 0.50	1.3	< 0.50	14	NA	NA	5
	17-Dec-10		1,000	<4	< 0.50	2.2	< 0.50	43	NA	NA	110
ASMW-5I	11-Mar-09		72,000	<1,400	76	11,000	3,600	3,800	13,000	5,400	18,400
	10-Aug-09		59,000	<1400	91	9,100	1,800	2,400	8,300	3,900	12,200
	22-Sep-09		15,000	210	78	1,100	250	280	2,000	1,200	3,200

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
	22-Oct-09		22,000	330	110	560	330	240	3,000	1,600	4,600
	24-May-10		48,000	310	120	2,300	150	2,000	NA	NA	12,000
duplicate	24-May-10		46,000	290	120	2,200	170	2,000	NA	NA	12,000
	27-Jul-10		110	28	1.6	< 0.50	< 0.50	0.80	NA	NA	20
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		110	680	65	0.62	< 0.50	1.6	NA	NA	<1.0
NW-1I	14-Sep-10		<50	250	1.9	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
NW-2I	27-Dec-05		120,000	NA	120,000	22,000	24,000	2,100	NA	NA	12,800
	13-Mar-09		49,000	NA	1,100	18,000	17,000	1,600	NA	NA	8,200
	23-Sep-09		12,000	5,500	3,000	980	820	220	1,200	660	1,860
	22-Oct-09		4,200	3,300	330	110	110	5.8	400	250	650
	25-May-10		8,600	17,000	770	360	35	400	NA	NA	8,600
	28-Jul-10		130	300	71	0.67	< 0.50	< 0.50	NA	NA	8.2
	14-Sep-10		<50	6	< 0.50	< 0.50	< 0.50	0.6	NA	NA	4.8
	17-Dec-10		920	580	15	14	< 0.50	89	NA	NA	11
NW-3I	27-Dec-05		<50	NA	<2.0	< 0.50	< 0.50	<0.50	NA	NA	<0.50
	15-Feb-06		<50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	15-Feb-06		<50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	16-Feb-06		<50	NA	<2.0	< 0.50	< 0.50	< 0.50	NA	NA	< 0.50
	21-Sep-09		<50	<10	1.3	< 0.50	0.54	< 0.50	< 0.50	<0.50	< 0.50
	25-May-10		<50	<4	1.2	<0.50	< 0.50	< 0.50	NA	NA	1.7
	15-Sep-10		<50	<4	0.85	<0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-1I	17-Dec-10		<50	<4	8.8	< 0.50	< 0.50	<0.50	NA	NA	<1.0
AS-2I	22-Sep-09		<8,300	2,900	11,000	460	120	<83	130	<83	130
	25-May-10		6,800	5,600	8,000	76	<25	220	NA	NA	<50
	28-Jul-10		<5,000	8,700	1,200	<50	<50	<50	NA	NA	<100
	15-Sep-10		<1000	<80	380	<10	<10	<10	NA	NA	<20
AS-3I	14-Sep-10		<500	6.5	530	< 0.50	< 0.50	< 0.50	NA	NA	14
	17-Dec-10		<50	52	200	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-4I	25-May-10		310	1,500	110	2.7	<0.50	<0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		<50	260	36	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0
Duplicate	17-Dec-10		<50	250	37	< 0.50	< 0.50	< 0.50	NA	NA	<1.0

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes	
AS-5I	25-May-10		<50	130	10	<0.50	<0.50	<0.50	NA	NA	<1.0	
AS-6I	26-May-09		42,000	<1,000	170	11,000	780	2,400	7,300	2,900	10,200	
	23-Sep-09		26,000	330	1,600	1,000	400	230	4,000	1,300	5,300	
	25-May-10		840	210	25	23	< 0.50	14	NA	NA	1.5	
	28-Jul-10		58	450	45	< 0.50	1.9	2.7	NA	NA	8.1	
	14-Sep-10		<50	57	8.6	< 0.50	< 0.50	1.1	NA	NA	<1.0	
duplicate	14-Sep-10		<50	63	10	< 0.50	< 0.50	1.2	NA	NA	<1.0	
	17-Dec-10		700	2,000	80	3.6	1.5	21.0	NA	NA	15.0	
AS-7I	26-May-09		<50	35	2.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	23-Sep-09		<50	<10	0.8	< 0.50	0.95	< 0.50	< 0.50	< 0.50	< 0.50	
	26-May-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0	
	15-Sep-10		790	<4	1.1	< 0.50	< 0.50	< 0.50	NA	NA	<1.0	
AS-8I	23-Sep-09		<50	<10	1.0	< 0.50	1.6	<0.50	<0.50	<0.50	< 0.50	
				Deep-Zo	ne Groundv	vater Monito	ring Wells					
ASMW-2D	11-Mar-09		1,300	1,900	1,300	13	<13	<13	<13	<13	<13	
	23-Sep-09		<360	<71	460	<3.6	<3.6	<3.6	5.7	4.7	10.4	
	22-Oct-09		<50	<10	1.9	< 0.50	1.4	< 0.50	1.9	2.1	4	
	25-May-10		<50	<4	8.3	<0.50	< 0.50	< 0.50	NA	NA	<1.0	
ASMW-3D	11-Mar-09		<50	34	91	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	22-Sep-09	(4)	<50	28	280	< 0.50	1.1	< 0.50	0.68	0.87	1.55	
	22-Oct-09		<50	<10	310	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
ASMW-4D	11-Mar-09		<50	<10	1.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	21-Sep-09	(1)	<50	<10	5.4	< 0.50	1.5	< 0.50	< 0.50	< 0.50	< 0.50	
	22-Oct-09	()	<50	<10	6.1	< 0.50	0.5	< 0.50	< 0.50	< 0.50	< 0.50	
ASMW-5D	11-Mar-09	(2)	87	1,700	< 0.50	84	< 0.50	5.2	5.9	1.5	7.4	
	21-Sep-09	, ,	<50	<10	72	< 0.50	2.8	< 0.50	< 0.50	< 0.50	< 0.50	
	22-Oct-09		<50	<10	76	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
duplicate	22-Oct-09		<50	<10	5.1	< 0.50	8.0	< 0.50	< 0.50	< 0.50	< 0.50	
-	24-May-10		<250	3,900	14	<2.5	<2.5	<2.5	NA	NA	6.3	
	27-Jul-10		<50	<4.0	2.6	< 0.50	< 0.50	< 0.50	NA	NA	<1.0	
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0	
	17-Dec-10		<50	<4.0	0.52	< 0.50	< 0.50	< 0.50	NA	NA	<1.0	
AS-2D	22-Sep-09		<50	<10	13	< 0.50	0.8	< 0.50	< 0.50	< 0.50	< 0.50	

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility

1009 66th Avenue, Oakland, California (concentrations in micrograms per liter [µg/L])

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
duplicate	15-Sep-10 15-Sep-10		<50 <50	<4 <4	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA NA	NA NA	<1.0 <1.0
AS-3D	14-Sep-10		<50	<4	0.71	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
AS-4D	14-Sep-10		<50	<4	0.92	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
NW-1D	27-Dec-05 13-Mar-09		<50 <50	NA <10	37 1.4	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	NA <0.50	NA <0.50	<0.50 <0.50
NW-2D	27-Dec-05 13-Mar-09 22-Sep-09	(3)	1,400 <250 <50	NA 17,000 <10	1,600 310 9.8	300 120 0.5	13 <2.5 2.5	<2.5 <2.5 <0.50	NA <2.5 2.0	NA <2.5 2.1	178 <2.5 4.1
duplicate	22-Sep-09 22-Oct-09	(0)	<50 <50	<10 <10	12 <0.50	<0.50 <0.50	1.4 0.8	<0.50 <0.50	1.9 <0.50	1.3 <0.50	3.2 <0.50
	28-Jul-10 14-Sep-10 17-Dec-10		<50 <50 <50	<4.0 <4 <4.0	<0.50 0.52 <0.50	<0.50 <0.50 <0.50	<0.50 <0.50 <0.50	<0.50 <0.50 <0.50	NA NA NA	NA NA NA	<1.0 <1.0 <1.0
NW-3D	27-Dec-05 15-Feb-06 15-Feb-06 16-Feb-06 21-Sep-09		<50 <50 <50 <50 <50	NA NA NA NA <10	<2.0 <2.0 2.1 <2.0 1.0	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 0.67	<0.5 <0.5 <0.5 <0.5 <0.50	NA NA NA NA <0.50	NA NA NA NA <0.50	<0.5 <0.5 <0.5 <0.5 <0.50
	15-Sep-10		<50	<4	1.2	< 0.50	<0.50	<0.50	NA	NA	<1.0
MW-1	19-Jun-97 29-Sep-97 16-Dec-97 10-Mar-98		18,000 29,000 <0.050 190	NA NA NA NA	4,900 3,500 0.7 1.7	3,300 4,800 1.3 2	200.0 <25 <0.5 <0.5	1,100 2,000 0.6 5.7	NA NA NA NA	NA NA NA NA	<250 <250 <5.0 <5.0
	19-Jan-99 15-Apr-99		100 <0.050	NA NA	68.0 0.87	40 0.92	<0.5 0.9	18.0 0.7	NA NA	NA NA	8.3 <5.0
	30-Jul-99 15-Nov-99 24-Mar-00		1,400 3,600 <0.050	NA NA NA	120 620 <0.5	60 120 <0.5	<0.5 <0.5 <0.5	63 150 <0.5	NA NA NA	NA NA NA	13.0 <5.0 <5.0
	18-May-00 26-Jul-00		1,300 6,400	NA NA	130.0 680	10 100	1.2 7.4	38.0 260	NA NA	NA NA	8.6 <5.0
	30-Oct-00 24-Jul-01 28-Nov-01		600 1,200 1,800	NA NA NA	950 39 160	130 13 27	14 <0.5 0.93	330 70 72	NA NA NA	NA NA NA	<100 13 <5.0

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility

Sample	Date			-		Jograms per		Ethyl-	m,p-		Total
Location	Collected	Notes	TPHg	TBA	MTBE	Benzene	Toluene	benzene	Xylenes	o-Xylenes	Xylenes
	18-Feb-02		2,400	NA	200	18	<2.5	89	NA	NA	<25
	11-Dec-02		8,400	NA	640	83	9.2	320	NA	NA	< 0.5
	26-Feb-03		8,300	NA	720	12	<10	240	NA	NA	<10
	16-May-03		5,600	NA	490	22	<5.0	240	NA	NA	<5.0
	8-Mar-05		230	NA	<0.5	< 0.5	< 0.5	<0.5	NA	NA	<5.0
	13-Mar-09		<50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		<50	<10	< 0.50	< 0.50	0.67	< 0.50	< 0.50	< 0.50	< 0.50
duplicate	26-May-09		<50	<10	< 0.50	< 0.50	0.62	< 0.50	< 0.50	< 0.50	< 0.50
	14-Sep-10		<50	<4	3.4	< 0.50	< 0.50	<0.50	NA	NA	<1.0
MW-2	19-Jun-97		<50	NA	<5.0	<0.5	< 0.5	<0.5	NA	NA	<0.5
	29-Sep-97			NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	16-Dec-97			NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	10-Mar-98		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	19-Jan-99		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	15-Apr-99		<50	NA	<5.0	0.75	0.64	<0.5	NA	NA	0.74
	30-Jul-99		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	15-Nov-99		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	24-Mar-00		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	18-May-00		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	26-Jul-00		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	30-Oct-00		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	24-Jul-01		<50	NA	7.6	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	28-Nov-01		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	18-Feb-02		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	11-Dec-02		<50	NA	5.8	< 0.5	< 0.5	< 0.5	NA	NA	<1.0
	26-Feb-03		<50	NA	10	< 0.5	<0.5	<0.5	NA	NA	<1.0
	16-May-03		<50	NA	16	< 0.5	<0.5	<0.5	NA	NA	<1.0
	9-Mar-05		<50	NA	15	<0.5	<0.5	<0.5	NA	NA	<0.5
	15-Feb-06		<50	NA	19	<0.5	<0.5	<0.5	NA	NA	<0.5
	15-Feb-06		<50	NA	6.8	<0.5	< 0.5	<0.5	NA	NA	<0.5
	16-Feb-06		<50	NA	5.6	<0.5	<0.5	<0.5	NA	NA	<0.5
	13-Mar-09		<50	<10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	26-May-09		<50	<10	3.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	21-Sep-09		<50	<10	3.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

Table 2
Analytical Results for Volatile Organic Compounds
Former Pacific Electric Motors Facility

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
MW-3	19-Jun-97		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	29-Sep-97		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	16-Dec-97		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	10-Mar-98		<50	NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	19-Jan-99		<50	NA	8.7	0.78	<0.5	< 0.5	NA	NA	< 0.5
	15-Apr-99		<50	NA	23	5.4	3.9	1.7	NA	NA	5.6
	30-Jul-99		<50	NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	15-Nov-99		<50	NA	<5.0	< 0.5	<0.5	< 0.5	NA	NA	< 0.5
	24-Mar-00		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	18-May-00		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	26-Jul-00		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	30-Oct-00		<50	NA	<5.0	< 0.5	< 0.5	<0.5	NA	NA	<0.5
	24-Jul-01		<50	NA	<5.0	<0.5	<0.5	<0.5	NA	NA	<0.5
	28-Nov-01		<50	NA	<5.0	< 0.5	<0.5	<0.5	NA	NA	<0.5
	18-Feb-02		<50	NA	<5.0	< 0.5	< 0.5	< 0.5	NA	NA	< 0.5
	11-Dec-02		<50	NA	0.78	< 0.5	< 0.5	<0.5	NA	NA	<1.0
	26-Feb-03		<50	NA	< 0.5	< 0.5	< 0.5	<0.5	NA	NA	<1.0
	16-May-03		<50	NA	2.6	<0.5	<0.5	<0.5	NA	NA	<1.0
	8-Mar-05		<50	NA	<2	< 0.5	< 0.5	<0.5	NA	NA	< 0.5
	13-Mar-09		<50	<10	< 0.50	< 0.50	< 0.50	< 0.50	0.97	< 0.50	0.97
	22-Sep-09		<50	<10	0.89	<0.50	1.1	<0.5	<0.5	<0.50	<0.50
MW-4	15-Sep-98		170,000	NA	26,000	26,000	32,000	2,900	NA	NA	18,000
	19-Jan-99		2,600	NA	13,000	1,700	3.8	25	NA	NA	29
	15-Apr-99		210,000	NA	52,000	28,000	15,000	3,700	NA	NA	19,000
	30-Jul-99		91,000	NA	68,000	16,000	7,500	2,300	NA	NA	8,500
	15-Nov-99		63,000	NA	57,000	8,500	2,400	1,400	NA	NA	4,000
	24-Mar-00		95,000	NA	44,000	16,000	13,000	2,500	NA	NA	12,000
	18-May-00		91,000	NA	64,000	15,000	10,000	2,200	NA	NA	9,600
	26-Jul-00		130,000	NA	80,000	11,000	6,400	1,700	NA	NA	6,500
	30-Oct-00		59,000	NA	68,000	6,700	2,200	750	NA	NA	3,100
	24-Jul-01		180,000	NA	44,000	25,000	23,000	3,500	NA	NA	20,000
	28-Nov-01		67,000	NA	57,000	8,100	3,300	1,400	NA	NA	5,600
	18-Feb-02		98,000	NA	47,000	20,000	12,000	2,300	NA	NA	15,000
	11-Dec-02		200,000	NA	17,000	340	<5.00	590	NA	NA	1,000
	26-Feb-03		63,000	NA	30,000	8,100	4,400	1,900	NA	NA	8,200

Table 2
Analytical Results for Volatile Organic Compounds

Sample Location	Date Collected	Notes	TPHg	ТВА	MTBE	Benzene	Toluene	Ethyl- benzene	m,p- Xylenes	o-Xylenes	Total Xylenes
	16-May-03		530,000	NA	42,000	24,000	20,000	12,000	NA	NA	63,000
	9-Mar-05		152,237	NA	5,841	22,053	17,310	3,981	NA	NA	13,969
	9-Mar-05		162,863	NA	6,026	21,536	16,547	3,900	NA	NA	13,786
	13-Mar-09		55,000	<1,400	950	19,000	7,200	2,300	8,500	3,500	12,000
	23-Sep-09		250	730	49	51	3.7	8.6	37	16	53
	22-Oct-09		<50	<10	3.7	<.50	1.3	< 0.50	< 0.50	< 0.50	< 0.50
	24-May-10		250	180	21	11	< 0.50	3.6	NA	NA	7.1
	28-Jul-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
duplicate	28-Jul-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	14-Sep-10		<50	<4	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0
	17-Dec-10		<50	<4.0	< 0.50	< 0.50	< 0.50	< 0.50	NA	NA	<1.0

Notes:

NA = not analyzed

TPHg = total petroleum hydrocarbons as gasoline

TBA = tertiary-butyl alcohol

MTBE = methyl tertiary-butyl ether

1,2-DCA = 1,2-dichloroethane

Samples collected in March 2009 were analyzed by Curtis & Tompkins, Ltd.

[&]quot;<" = not detected above the laboratory reporting limit given

^{(1) 1,2-}DCA results = $0.79 \mu g/L$

^{(2) 1,2-}DCA results = $0.88 \mu g/L$

^{(3) 1,2-}DCA results = $0.58 \mu g/L$

^{(4) 1,2-}DCA results = $0.77 \mu g/L$

Table 3
Field Parameters

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
		Shallow-Zon	e Groundwater Moni	toring Wells		
NW-2S	23-Sep-09	25.55	1,696	6.67	-30.1	0.20
	28-Jul-10	20.88	1,206	7.57	110.8	1.78
	14-Sep-10	22.95	959	7.53	66.7	4.62
	14-Dec-10	15.51	716	7.20	-53.0	0.95
		Intermediate-Z	one Groundwater Mo	nitoring Wells		
ASMW-4I	11-Aug-09	21.11	939	6.79	-95.2	0.19
	23-Sep-98	21.82	969	6.76	-127.1	0.19
	22-Oct-09	21.74	910	6.74	-59.3	0.14
	26-May-10	16.89	1,556	6.85	-358.0	0.20
	27-Jul-10	19.30	1,022	6.84	-47.6	0.11
	14-Sep-10	19.46	889	6.88	-118.5	0.63
	15-Dec-10	15.10	931	6.86	-132.0	0.24
ASMW-5I	10-Aug-09	24.39	1,296	6.59	-74.7	0.38
	21-Sep-09	23.46	1,183	6.71	-3.1	0.11
	22-Oct-09	23.33	951	6.85	-6.6	0.46
	24-May-10	17.96	1,941	6.75	-369.1	0.05
	27-Jul-10	20.37	790	7.24	-13.1	4.95
	14-Sep-10	20.42	899	6.97	163.4	6.33
	15-Dec-10	18.03	864	6.54	-77.0	0.64
AS-1I	15-Dec-10	18.92	2,720	7.03	-11.0	0.61
AS-3I	14-Sep-10	23.00	12,692	6.97	174.0	5.20
	15-Dec-10	18.54	12,370	6.64	40.0	0.26
AS-4I	25-May-10	17.63	1,518	7.18	-266.8	0.32
	14-Sep-10	21.09	947	7.59	110.6	8.17
	14-Jan-10	18.69	1,024	7.37	49.0	6.11
AS-6I	23-Sep-09	23.21	872	7.09	16.7	0.16
	25-May-10	17.06	834	7.53	-469.0	0.15

Table 3-Field Parameters-Feb11-EM009155.xlsx 2/10/2011

Table 3
Field Parameters

Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

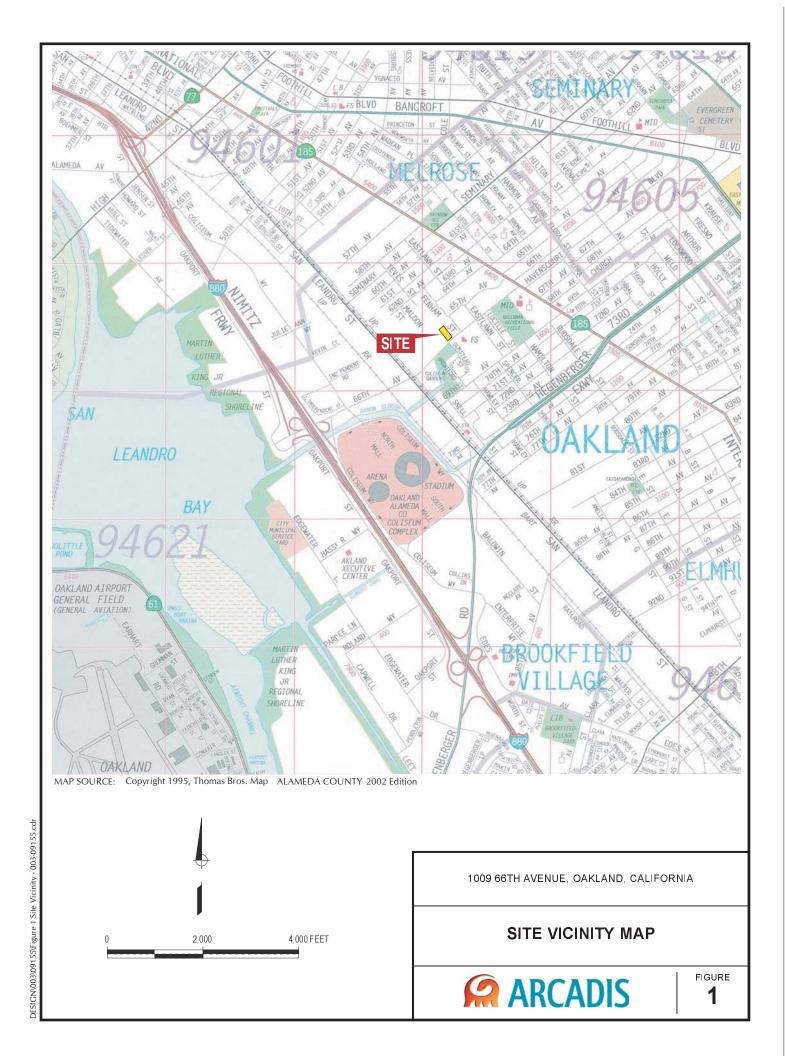
Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
	28-Jul-10	20.29	908	7.93	83.5	5.36
	14-Sep-10	20.26	690	8.17	62.5	8.10
	14-Dec-10	19.01	1,184	6.99	-58.0	0.22
NW-2I	11-Aug-09	23.63	2,800	6.43	-73.0	0.38
	23-Sep-09	23.92	1,511	7.44	-34.7	0.38
	22-Oct-09	23.54	1,336	7.65	193.9	3.45
	25-May-10	17.89	2,773	6.88	-179.0	0.15
	28-Jul-10	21.81	1,380	6.77	78.3	0.39
	14-Sep-10	21.06	920	7.94	78.0	4.34
	14-Dec-10	18.97	1,530	7.13	-120.0	0.23
		Deep-Zone	Groundwater Monito	oring Wells		
ASMW-5D	11-Aug-09	20.18	1,876	6.58	47.8	0.11
	21-Sep-09	21.74	1,751	6.70	133.4	2.85
	22-Oct-09	20.87	1,766	6.82	2,330.0	4.44
	24-May-10	17.75	2,664	6.88	84.6	0.42
	27-Jul-10	20.22	1,860	7.05	41.3	9.81
	14-Sep-10	19.25	1,563	6.93	170.0	8.64
	14-Dec-10	18.48	1,900	6.92	214.0	6.96
NW-2D	10-Aug-09	22.06	1,179	6.37	93.2	0.22
	22-Sep-09	22.19	759	6.63	174.1	4.55
	22-Oct-09	21.48	199	6.70	175.0	6.40
	28-Jul-10	19.67	769	6.69	127.6	4.48
	14-Sep-10	19.90	624	6.56	94.2	5.08
	14-Dec-10	19.09	683	6.64	40.0	0.77
MW-4	10-Aug-09	23.99	1,309	6.50	-82.4	0.28
	23-Sep-09	21.94	1,394	6.79	-36.7	0.41
	22-Oct-09	22.12	1,289	7.19	229.1	4.35
	24-May-10	19.50	1,995	7.03	-536.4	0.03
	28-Jul-10	20.17	1,176	7.05	100.2	3.02

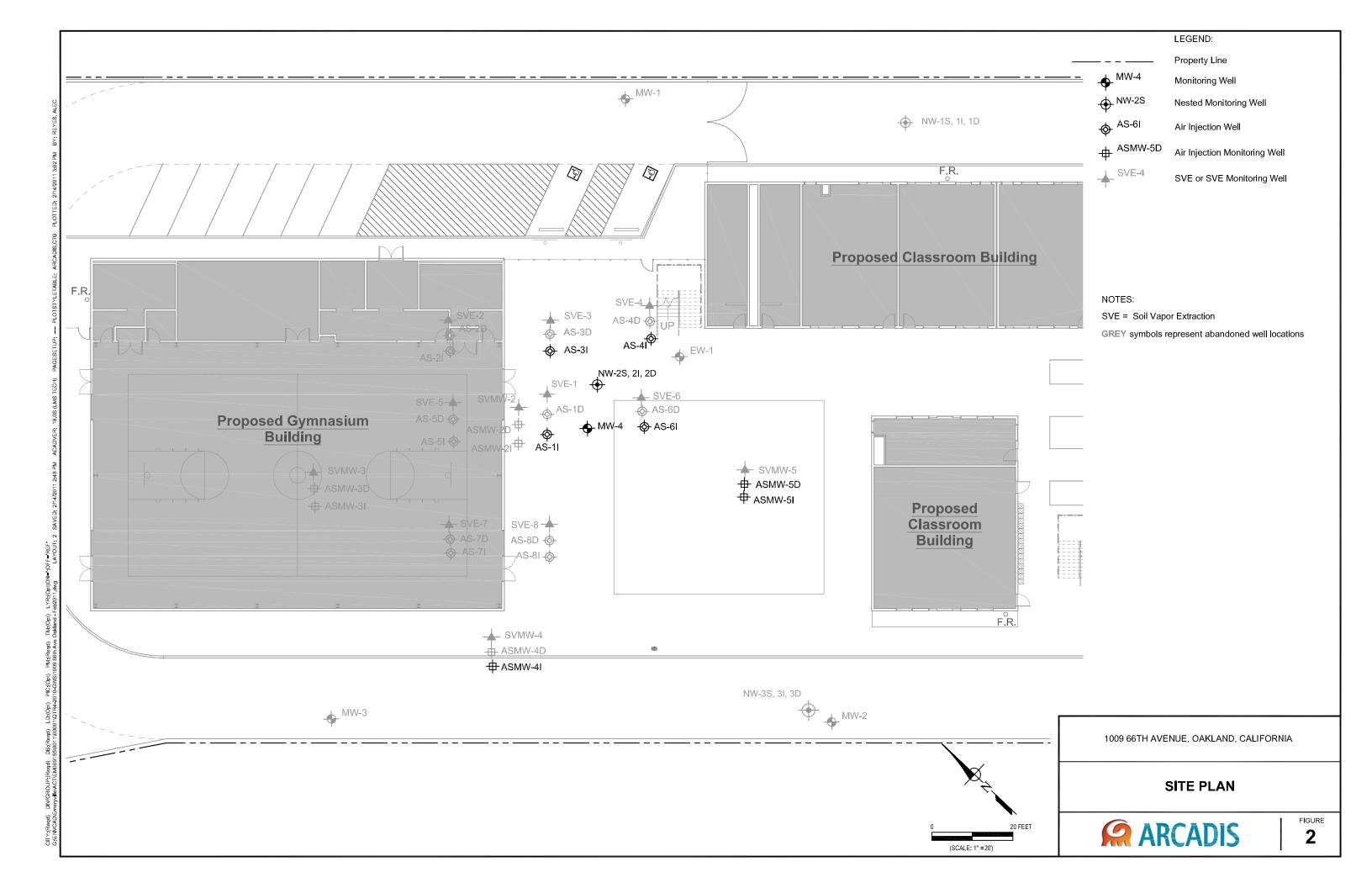
Table 3-Field Parameters-Feb11-EM009155.xlsx 2/10/2011

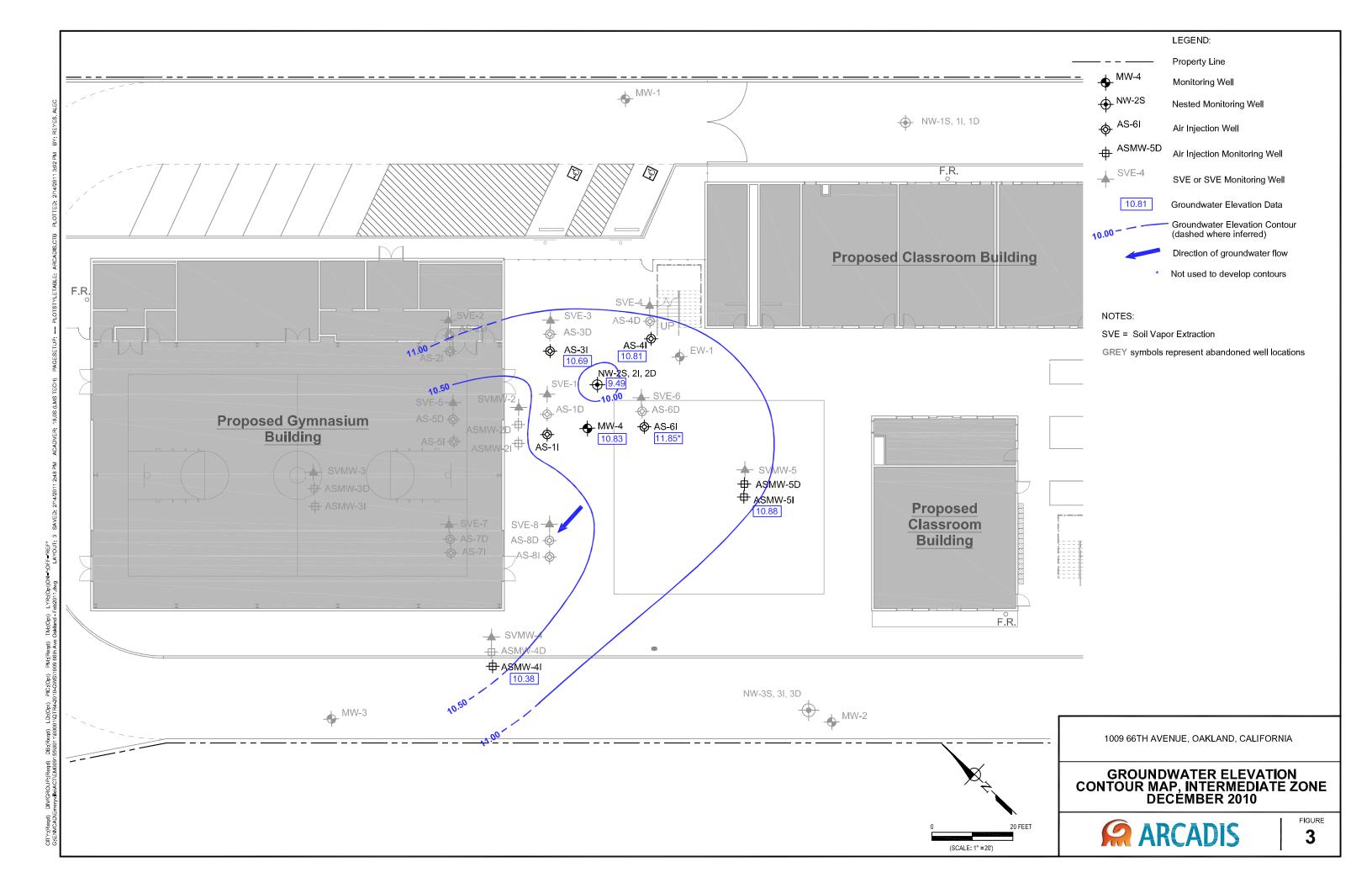
Table 3
Field Parameters

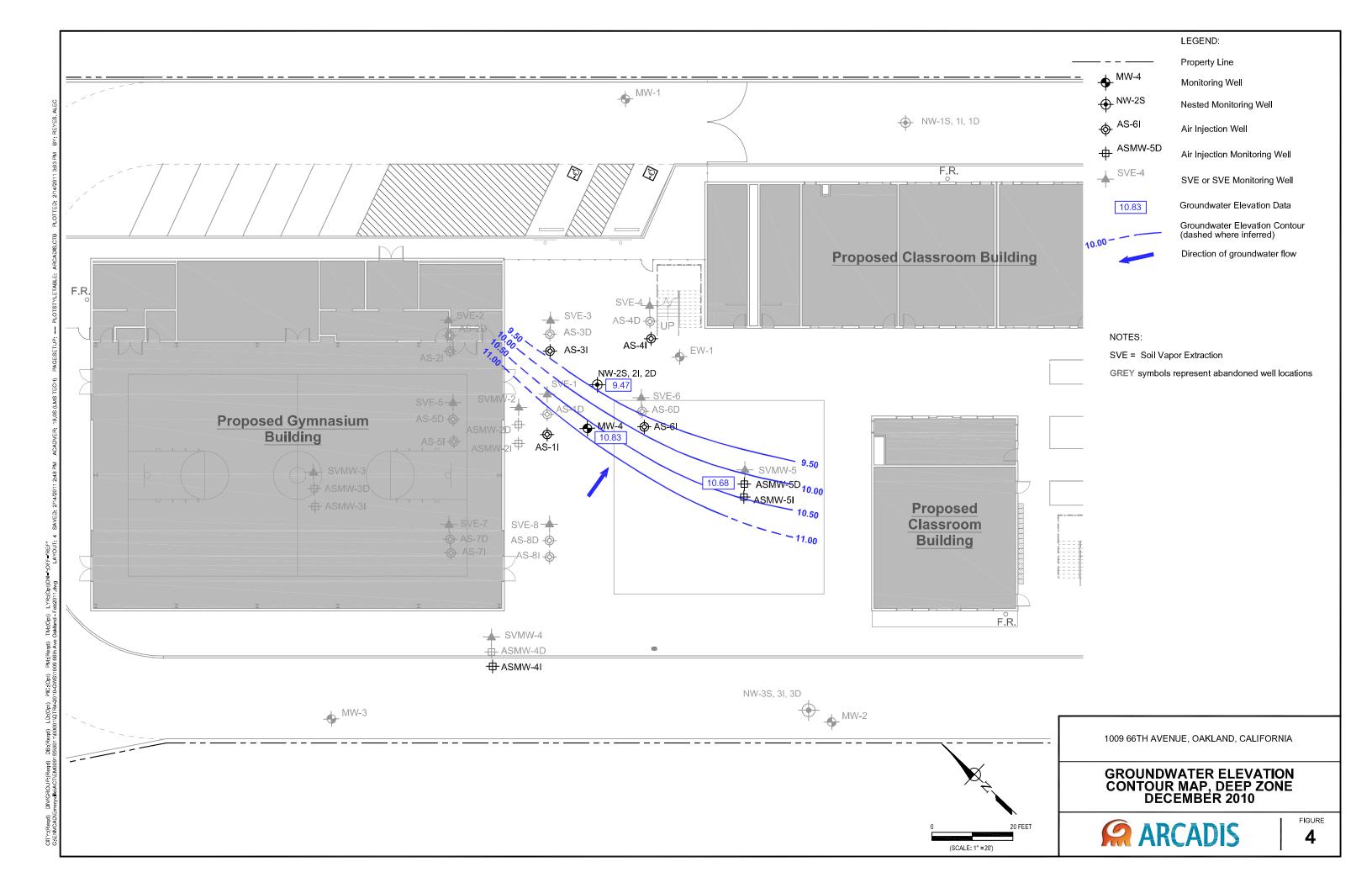
Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California

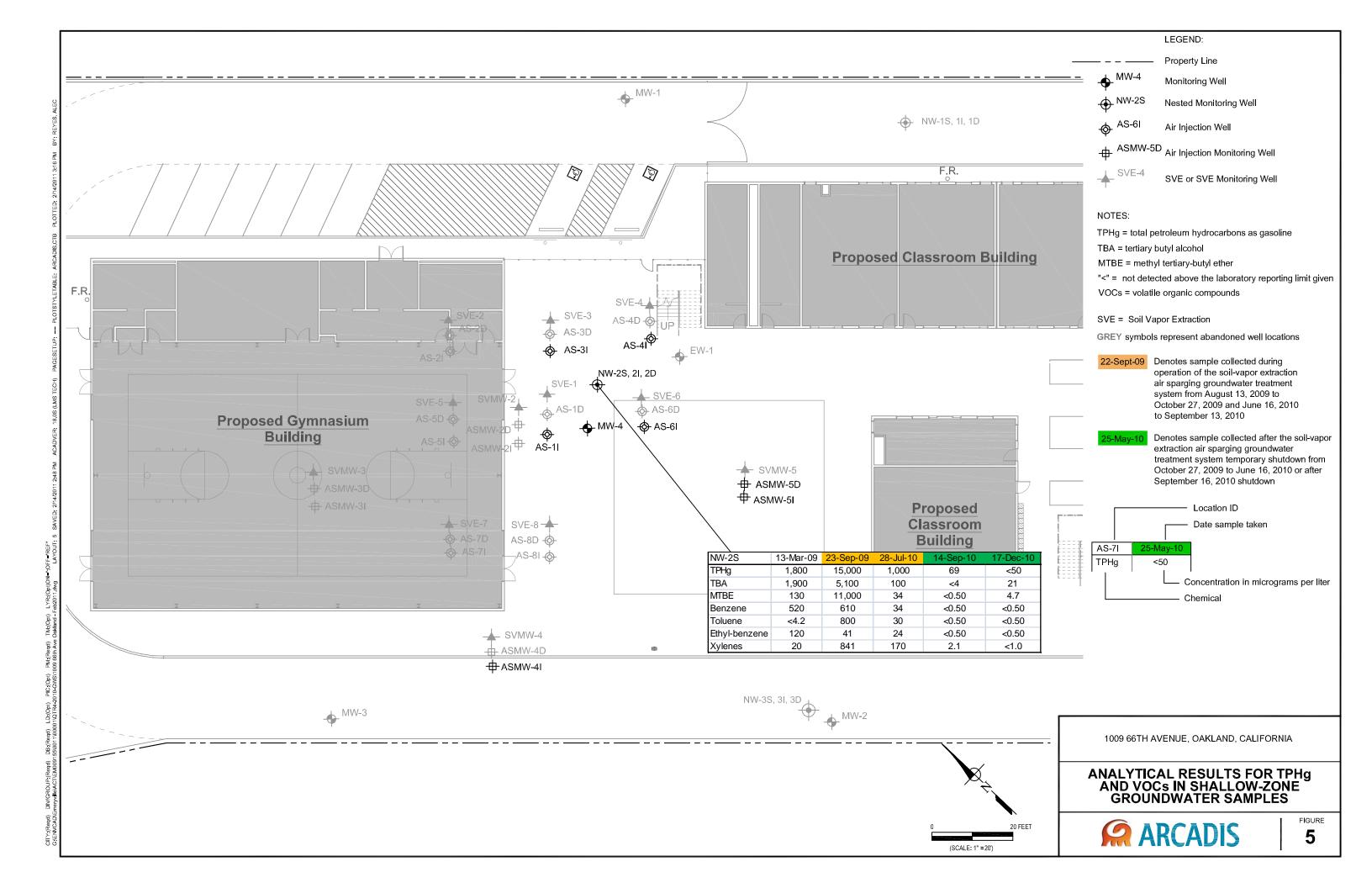
Sample Location	Date Collected	Temperature (degrees Celsius)	Conductivity (mmhos/cm)	pH (units)	ORP (mV)	Dissolved Oxygen (mg/L)
	14-Sep-10	20.30	1,249	7.02	80.3	5.35
	14-Dec-10	19.50	1,467	6.99	-42.0	0.67

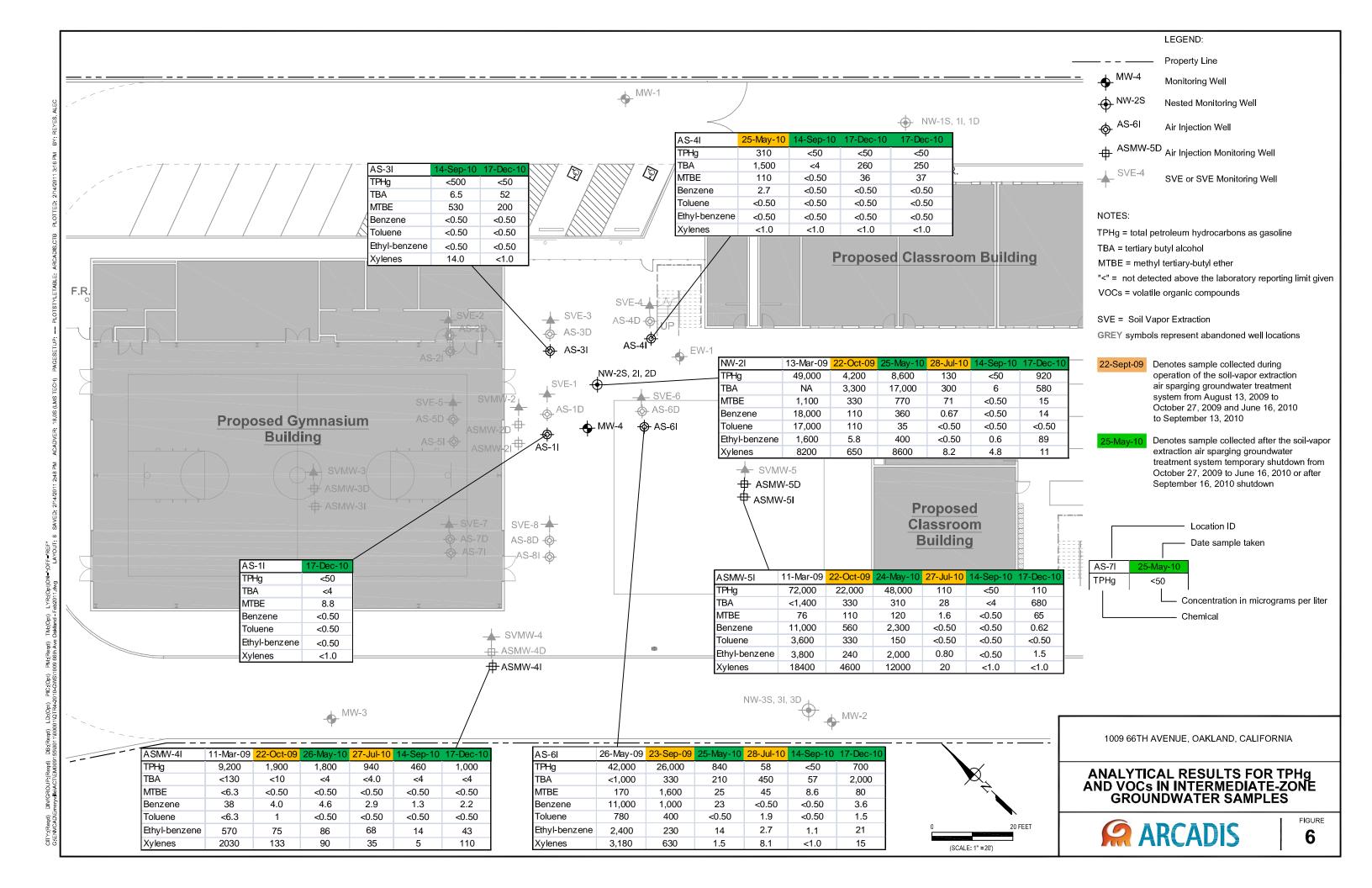

Notes:

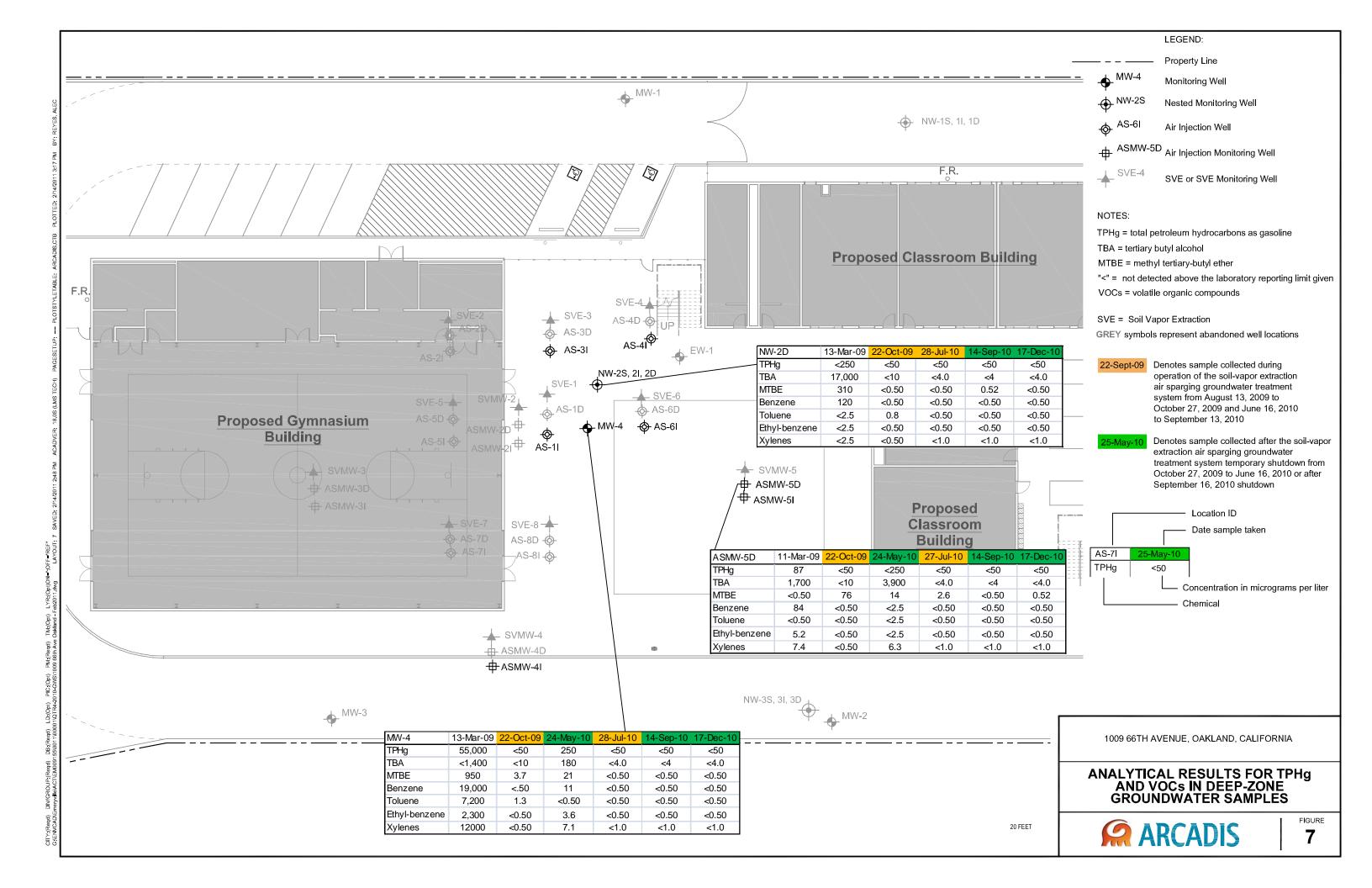

ORP = oxidation-reduction potential mmhos/cm = milliohms per centimeter mg/L = milligrams per liter mV = millivolts


Table 4 Abandoned Wells during the Reporting Periods from July 1 through December 31, 2010


Former Pacific Electric Motors Facility 1009 66th Avenue, Oakland, California


Groundwater Monitoring Well Name					
Shallow Zone					
NW-1S					
NW-3S					
SVE-1					
SVE-2					
SVE-3					
SVE-4					
SVE-5 SVE-6					
SVE-7					
SVE-8					
SVMW-2					
SVMW-3					
SVMW-4					
SVMW-5					
Intermediate Zone					
AS-2I AS-5I					
AS-51 AS-71					
AS-8I					
ASMW-2I					
ASMW-3I					
NW-1I					
NW-3I					
Deep Zone					
AS-1D					
AS-2D					
AS-3D					
AS-4D AS-5D					
AS-6D					
AS-7D					
AS-8D					
ASMW-2D					
ASMW-3D					
ASMW-4D					
MW-1 MW-2					
MW-3					
NW-1D					
NW-3D					





ARCADIS

Appendix A

Laboratory Analytical Reports

ANALYTICAL REPORT

Job Number: 720-32317-1

Job Description: Aspire Oakland

For:

ARCADIS U.S., Inc 1900 Powell St 12th Floor Emeryville, CA 94608-1827

Attention: Mr. Ron Goloubow

Approved for release Dimple Sharma Project Manager I 12/22/2010 9:08 AM

Designee for
Afsaneh Salimpour
Project Manager I
afsaneh.salimpour@testamericainc.com
12/22/2010

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-32317-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Sample ID Client Sample ID Analyte	Result / Qualifier	Reporting Limit	Units	Method
720-32317-1 AS-4I				
Methyl tert-butyl ether TBA	36 260	0.50 4.0	ug/L ug/L	8260B/CA_LUFTMS 8260B/CA_LUFTMS
720-32317-2 AS-6I				
Methyl tert-butyl ether	80	0.50	ug/L	8260B/CA_LUFTMS
Benzene	3.6	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene	21	0.50	ug/L	8260B/CA_LUFTMS
Toluene	1.5	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total	15	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organics (GRO)-C5-C12	700	50	ug/L	8260B/CA_LUFTMS
TBA	2000	4.0	ug/L	8260B/CA_LUFTMS
720-32317-3 NW-2S				
Methyl tert-butyl ether	4.7	0.50	ug/L	8260B/CA_LUFTMS
TBA	21	4.0	ug/L ug/L	8260B/CA_LUFTMS
720-32317-4 NW-2I				
Methyl tert-butyl ether	15	0.50	ug/L	8260B/CA_LUFTMS
Benzene	14	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene	89	1.0	ug/L	8260B/CA_LUFTMS
Xylenes, Total	11	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organics (GRO)-C5-C12	920	100	ug/L	8260B/CA_LUFTMS
ТВА	580	4.0	ug/L	8260B/CA_LUFTMS
720-32317-7 ASMW-5D				
Methyl tert-butyl ether	0.52	0.50	ug/L	8260B/CA_LUFTMS
720-32317-8 ASMW-5I				
Methyl tert-butyl ether	65	0.50	ug/L	8260B/CA LUFTMS
Benzene	0.62	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene	1.5	0.50	ug/L ug/L	8260B/CA_LUFTMS
Gasoline Range Organics (GRO)-C5-C12	110	50	ug/L	8260B/CA_LUFTMS
TBA	680	4.0	ug/L ug/L	8260B/CA_LUFTMS
			4 9, ∟	02005, 0, 1_E01 1M0
720-32317-9 AS-1I				
Methyl tert-butyl ether	8.8	0.50	ug/L	8260B/CA_LUFTMS

EXECUTIVE SUMMARY - Detections

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-32317-10 AS-3I				
Methyl tert-butyl ether TBA	200 52	5.0 40	ug/L ug/L	8260B/CA_LUFTMS 8260B/CA_LUFTMS
720-32317-11 ASMW-4I				
Benzene	2.2	0.50	ug/L	8260B/CA_LUFTMS
Ethylbenzene	43	0.50	ug/L	8260B/CA_LUFTMS
Xylenes, Total	110	1.0	ug/L	8260B/CA_LUFTMS
Gasoline Range Organics (GRO)-C5-C12	1000	50	ug/L	8260B/CA_LUFTMS
720-32317-12 AS-4I-D				
Methyl tert-butyl ether TBA	37 250	0.50 4.0	ug/L ug/L	8260B/CA_LUFTMS 8260B/CA_LUFTMS
. =			- 5. –	

METHOD SUMMARY

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Description	Lab Location	Method Preparation Method
Matrix Water		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Purge and Trap	TAL SF	SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-32317-1	AS-4I	Water	12/14/2010 1045	12/15/2010 1300
720-32317-2	AS-6I	Water	12/14/2010 1125	12/15/2010 1300
720-32317-3	NW-2S	Water	12/14/2010 1200	12/15/2010 1300
720-32317-4	NW-2I	Water	12/14/2010 1230	12/15/2010 1300
720-32317-5	NW-2D	Water	12/14/2010 1300	12/15/2010 1300
720-32317-6	MW-4	Water	12/14/2010 1340	12/15/2010 1300
720-32317-7	ASMW-5D	Water	12/14/2010 1540	12/15/2010 1300
720-32317-8	ASMW-5I	Water	12/15/2010 0915	12/15/2010 1300
720-32317-9	AS-1I	Water	12/15/2010 0940	12/15/2010 1300
720-32317-10	AS-3I	Water	12/15/2010 1010	12/15/2010 1300
720-32317-11	ASMW-4I	Water	12/15/2010 1100	12/15/2010 1300
720-32317-12	AS-4I-D	Water	12/14/2010 1100	12/15/2010 1300
720-32317-13TB	TB121410	Water	12/14/2010 0000	12/15/2010 1300

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: AS-4I

Lab Sample ID: 720-32317-1 Date Sampled: 12/14/2010 1045

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83493 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121610035.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 0101
 Final Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 0101
 Final Weight/Volume:

 Date Prepared:
 12/17/2010 0101

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 36 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA 260 4.0 Surrogate %Rec Qualifier Acceptance Limits

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 4-Bromofluorobenzene
 92
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 102
 67 - 130

 Toluene-d8 (Surr)
 98
 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: AS-6I

Lab Sample ID: 720-32317-2 Date Sampled: 12/14/2010 1125

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710009.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1317
 Final Weight/Volume:
 10
 mL

Date Analyzed: 12/17/2010 1317
Date Prepared: 12/17/2010 1317

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 80 0.50 Benzene 3.6 0.50 Ethylbenzene 21 0.50 Toluene 1.5 0.50 Xylenes, Total 15 1.0 Gasoline Range Organics (GRO)-C5-C12 700 50 TBA 2000 4.0

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene10367 - 1301,2-Dichloroethane-d4 (Surr)10967 - 130Toluene-d8 (Surr)9970 - 130

70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: NW-2S

Toluene-d8 (Surr)

Lab Sample ID: 720-32317-3 Date Sampled: 12/14/2010 1200

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

Preparation: 5030B Lab File ID: 121710012.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1449 Final Weight/Volume: 10 mL Date Prepared: 12/17/2010 1449

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 4.7 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50

100

Surrogate %Rec Qualifier Acceptance Limits
4-Bromofluorobenzene 97 67 - 130
1,2-Dichloroethane-d4 (Surr) 100 67 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: NW-2S

Lab Sample ID: 720-32317-3 Date Sampled: 12/14/2010 1200

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83639 Instrument ID: HP5

Preparation:5030BLab File ID:122010011.DDilution:1.0Initial Weight/Volume:10mL

Date Analyzed: 12/20/2010 1503 Final Weight/Volume: 10 mL Date Prepared: 12/20/2010 1503

 Analyte
 Result (ug/L)
 Qualifier
 RL

 TBA
 21
 4.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 4-Bromofluorobenzene
 94
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 102
 67 - 130

 Toluene-d8 (Surr)
 98
 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: NW-2I

Lab Sample ID: 720-32317-4 Date Sampled: 12/14/2010 1230

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

Preparation: 5030B Lab File ID: 121710022.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1955 Final Weight/Volume: 10 mL Date Prepared: 12/17/2010 1955

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 15 0.50 Benzene 14 0.50 ND 0.50 Toluene Xylenes, Total 1.0 11 TBA 580 4.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 4-Bromofluorobenzene
 101
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 104
 67 - 130

 Toluene-d8 (Surr)
 99
 70 - 130

100

70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: NW-2I

Gasoline Range Organics (GRO)-C5-C12

Toluene-d8 (Surr)

Lab Sample ID: 720-32317-4 Date Sampled: 12/14/2010 1230

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83606 Instrument ID: HP9

 Preparation:
 5030B
 Lab File ID:
 12181017.D

 Dilution:
 2.0
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 12/18/2010 1753
 Final Weight/Volume:
 10 mL

 Date Analyzed:
 12/18/2010
 1753
 Final Weight/Volume:
 10

 Date Prepared:
 12/18/2010
 1753

AnalyteResult (ug/L)QualifierRLEthylbenzene891.0

920

103

Surrogate %Rec Qualifier Acceptance Limits

4-Bromofluorobenzene 102 67 - 130

1,2-Dichloroethane-d4 (Surr) 101 67 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: NW-2D

Lab Sample ID: 720-32317-5 Date Sampled: 12/14/2010 1300

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA L	LUFTMS	8260B /	CA	LUFT	MS
------------	--------	---------	----	------	----

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710014.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1550
 Final Weight/Volume:
 10
 mL

Date Analyzed: 12/17/2010 1550
Date Prepared: 12/17/2010 1550

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 99 67 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: MW-4

Lab Sample ID: 720-32317-6 Date Sampled: 12/14/2010 1340

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710015.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10 mL

Date Analyzed: 12/17/2010 1621 Final Weight/Volume: 10 mL Date Prepared: 12/17/2010 1621

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene9567 - 1301,2-Dichloroethane-d4 (Surr)10267 - 130Toluene-d8 (Surr)9870 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: ASMW-5D

Lab Sample ID: 720-32317-7 Date Sampled: 12/14/2010 1540

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710016.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1651
 Final Weight/Volume:
 10
 mL

Date Prepared: 12/17/2010 1651

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 0.52 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0 %Rec Qualifier Acceptance Limits

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene9567 - 1301,2-Dichloroethane-d4 (Surr)10467 - 130Toluene-d8 (Surr)9870 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: ASMW-5I

Lab Sample ID: 720-32317-8 Date Sampled: 12/15/2010 0915

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

Preparation: 5030B Lab File ID: 121710017.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1722 Final Weight/Volume: 10 mL Date Prepared: 12/17/2010 1722

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 65 0.50 Benzene 0.62 0.50 Ethylbenzene 0.50 1.5 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 110 50 TBA 680 4.0 Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 97 67 - 130 1,2-Dichloroethane-d4 (Surr) 104 67 - 130 70 - 130 Toluene-d8 (Surr) 98

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: AS-1I

Lab Sample ID: 720-32317-9 Date Sampled: 12/15/2010 0940

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710018.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1753
 Final Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1753
 Final Weight/Volume:

 Date Prepared:
 12/17/2010 1753

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 8.8 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene9467 - 1301,2-Dichloroethane-d4 (Surr)10767 - 130Toluene-d8 (Surr)9870 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: AS-3I

Lab Sample ID: 720-32317-10 Date Sampled: 12/15/2010 1010

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710019.D

 Dilution:
 10
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1823
 Final Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1823
 Final Weight/Volume:

 Date Prepared:
 12/17/2010 1823

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 200 5.0 Benzene ND 5.0 Ethylbenzene ND 5.0 5.0 Toluene ND Xylenes, Total ND 10 Gasoline Range Organics (GRO)-C5-C12 ND 500 TBA 52 40

Surrogate%RecQualifierAcceptance Limits4-Bromofluorobenzene9467 - 1301,2-Dichloroethane-d4 (Surr)10467 - 130Toluene-d8 (Surr)9970 - 130

70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: ASMW-4I

Lab Sample ID: 720-32317-11 Date Sampled: 12/15/2010 1100

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

99

 Preparation:
 5030B
 Lab File ID:
 121710020.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1854
 Final Weight/Volume:
 10
 mL

Date Prepared: 12/17/2010 1854

Toluene-d8 (Surr)

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene 2.2 0.50 Ethylbenzene 43 0.50 ND Toluene 0.50 Xylenes, Total 110 1.0 Gasoline Range Organics (GRO)-C5-C12 1000 50 TBA ND 4.0 Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 101 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 104

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: AS-4I-D

Lab Sample ID: 720-32317-12 Date Sampled: 12/14/2010 1100

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

 Preparation:
 5030B
 Lab File ID:
 121710021.D

 Dilution:
 1.0
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1925
 Final Weight/Volume:
 10
 mL

 Date Analyzed:
 12/17/2010 1925
 Final Weight/Volume:

 Date Prepared:
 12/17/2010 1925

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 37 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA 250 4.0 Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 94 67 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Client Sample ID: TB121410

Lab Sample ID: 720-32317-13TB Date Sampled: 12/14/2010 0000

Client Matrix: Water Date Received: 12/15/2010 1300

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-83549 Instrument ID: HP5

Preparation: 5030B Lab File ID: 121710013.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1520 Final Weight/Volume: 10 mL

Date Prepared: 12/17/2010 1520

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 TBA ND 4.0

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 4-Bromofluorobenzene
 97
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 101
 67 - 130

 Toluene-d8 (Surr)
 100
 70 - 130

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Section	Qualifier	Description	
GC/MS VOA			
	4	MS, MSD: The analyte present in the original sample is 4	
		times greater than the matrix spike concentration; therefore,	
		control limits are not applicable.	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
•	Cheff Sample ID	Dasis	Chefft Matrix	Metriou	Fiep Batcii
GC/MS VOA					
Analysis Batch:720-83493		_		00000/04 11157	
LCS 720-83493/5	Lab Control Sample	T -	Water	8260B/CA_LUFT	
LCS 720-83493/7	Lab Control Sample	T -	Water	8260B/CA_LUFT	
LCSD 720-83493/6	Lab Control Sample Duplicate	T 	Water	8260B/CA_LUFT	
LCSD 720-83493/8	Lab Control Sample Duplicate	T -	Water	8260B/CA_LUFT	
MB 720-83493/4	Method Blank	T _	Water	8260B/CA_LUFT	
720-32288-A-27 MS	Matrix Spike	T _	Water	8260B/CA_LUFT	
720-32288-A-27 MSD	Matrix Spike Duplicate	T -	Water	8260B/CA_LUFT	
720-32317-1	AS-4I	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-83549					
LCS 720-83549/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-83549/9	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-83549/10	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-83549/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-83549/6	Method Blank	Т	Water	8260B/CA_LUFT	
720-32317-2	AS-6I	Т	Water	8260B/CA_LUFT	
720-32317-2MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-32317-2MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	
720-32317-3	NW-2S	Т	Water	8260B/CA_LUFT	
720-32317-4	NW-2I	Т	Water	8260B/CA_LUFT	
720-32317-5	NW-2D	Т	Water	8260B/CA_LUFT	
720-32317-6	MW-4	Т	Water	8260B/CA_LUFT	
720-32317-7	ASMW-5D	Т	Water	8260B/CA_LUFT	
720-32317-8	ASMW-5I	Т	Water	8260B/CA LUFT	
720-32317-9	AS-1I	Т	Water	8260B/CA LUFT	
720-32317-10	AS-3I	Т	Water	8260B/CA_LUFT	
720-32317-11	ASMW-4I	Т	Water	8260B/CA_LUFT	
720-32317-12	AS-4I-D	Т	Water	8260B/CA LUFT	
720-32317-13TB	TB121410	Т	Water	8260B/CA_LUFT	
Analysis Batch:720-83606					
LCS 720-83606/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-83606/7	Lab Control Sample	T.	Water	8260B/CA LUFT	
LCSD 720-83606/6	Lab Control Sample Duplicate	T.	Water	8260B/CA_LUFT	
LCSD 720-83606/8	Lab Control Sample Duplicate	T T	Water	8260B/CA LUFT	
MB 720-83606/4	Method Blank	T.	Water	8260B/CA LUFT	
720-32317-4	NW-2I	T T	Water	8260B/CA_LUFT	
720-32317-B-12 MSMS	Matrix Spike	T.	Water	8260B/CA LUFT	
720-32317-B-12 MSDMSD	Matrix Spike Duplicate	Ť	Water	8260B/CA_LUFT	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-8363	9				
LCS 720-83639/5	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCS 720-83639/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
LCSD 720-83639/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
LCSD 720-83639/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-83639/4	Method Blank	Т	Water	8260B/CA_LUFT	
720-32317-3	NW-2S	Т	Water	8260B/CA_LUFT	
720-32333-A-2 MS	Matrix Spike	Т	Water	8260B/CA_LUFT	
720-32333-A-2 MSD	Matrix Spike Duplicate	Т	Water	8260B/CA_LUFT	

Report Basis

T = Total

Quality Control Results

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Method Blank - Batch: 720-83493

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-83493/4

Analysis Batch: 720-83493

Instrument ID: HP5

Client Matrix: Water Dilution: 1.0

Prep Batch: N/A Units: ug/L

Lab File ID: 121610017.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Date Analyzed: 12/16/2010 1550 Date Prepared: 12/16/2010 1550

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	98	67 - 130	
1,2-Dichloroethane-d4 (Surr)	100	67 - 130	
Toluene-d8 (Surr)	101	70 - 130	

Quality Control Results

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83493 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83493/5 Analysis Batch: 720-83493 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121610018.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/16/2010 1620 Final Weight/Volume: 10 mL Date Prepared: 12/16/2010 1620

LCSD Lab Sample ID: LCSD 720-83493/6 Analysis Batch: 720-83493 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121610019.D

 Dilution:
 1.0
 Units: ug/L
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 12/16/2010 1651
 Final Weight/Volume:
 10 mL

 Date Prepared:
 12/16/2010 1651

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 104 62 - 130 17 20 123 Benzene 103 103 82 - 127 1 20 Ethylbenzene 107 105 86 - 135 3 20 Toluene 103 102 83 - 129 2 20 m-Xylene & p-Xylene 105 106 70 - 142 1 20 o-Xylene 110 108 2 20 89 - 136 TBA 100 20 103 82 - 116 3 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 100 100 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 96 95 Toluene-d8 (Surr) 103 104 70 - 130

70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83493 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83493/7 Analysis Batch: 720-83493 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121610020.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/16/2010 1722 Final Weight/Volume: 10 mL Date Prepared: 12/16/2010 1722

LCSD Lab Sample ID: LCSD 720-83493/8 Analysis Batch: 720-83493 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 121610021.D

 Dilution:
 1.0
 Units:
 ug/L
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/16/2010
 1752
 Final Weight/Volume:
 10
 mL

 Date Prepared:
 12/16/2010
 1752
 10
 mL

104

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C5-C12 99 62 - 117 20 94 5 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 125 105 67 - 130 1,2-Dichloroethane-d4 (Surr) 103 104 67 - 130

103

Toluene-d8 (Surr)

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-83493 Preparation: 5030B

MS Lab Sample ID: Analysis Batch: 720-83493 HP5 720-32288-A-27 MS Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: 121610025.D Dilution: 1.0 Initial Weight/Volume: 10 mL

12/16/2010 1954 Date Analyzed: Final Weight/Volume: 10 mL

Date Prepared: 12/16/2010 1954

MSD Lab Sample ID: 720-32288-A-27 MSD Analysis Batch: 720-83493 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121610026.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/16/2010 2025 Final Weight/Volume: 10 mL 12/16/2010 2025 Date Prepared:

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	101	103	60 - 138	2	20		
Benzene	102	101	60 - 140	1	20		
Ethylbenzene	107	105	60 - 140	2	20		
Toluene	104	102	60 - 140	2	20		
m-Xylene & p-Xylene	104	103	60 - 140	2	20		
o-Xylene	108	106	60 - 140	2	20		
TBA	103	97	60 - 140	6	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limit	S
4-Bromofluorobenzene		99	98		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		98	98		6	67 - 130	
Toluene-d8 (Surr)		101	101		7	70 - 130	

Job Number: 720-32317-1 Client: ARCADIS U.S., Inc

Method Blank - Batch: 720-83549

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-83549/6

Date Analyzed: 12/17/2010 1032

1.0

12/17/2010 1032

Client Matrix:

Date Prepared:

Dilution:

Analysis Batch: 720-83549 Prep Batch: N/A Water

Units: ug/L

Instrument ID: HP5

Lab File ID: 121710004.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	107	67 - 130	
1,2-Dichloroethane-d4 (Surr)	100	67 - 130	
Toluene-d8 (Surr)	101	70 - 130	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83549 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83549/7 Analysis Batch: 720-83549 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121710005.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1103 Final Weight/Volume: 10 mL Date Prepared: 12/17/2010 1103

LCSD Lab Sample ID: LCSD 720-83549/8 Analysis Batch: 720-83549 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 121710006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL
Date Analyzed: 12/17/2010 1134 Final Weight/Volume: 10 mL
Date Prepared: 12/17/2010 1134

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 105 62 - 130 20 103 1 Benzene 106 106 82 - 127 0 20 Ethylbenzene 110 110 86 - 135 0 20 Toluene 108 109 83 - 129 20 1 m-Xylene & p-Xylene 108 108 70 - 142 0 20 o-Xylene 20 114 113 89 - 136 1 TBA 97 20 101 82 - 116 4 LCS % Rec Surrogate LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 110 110 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 98 98 Toluene-d8 (Surr) 104 104 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83549 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83549/9 Analysis Batch: 720-83549 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121710007.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1205 Final Weight/Volume: 10 mL Date Prepared: 12/17/2010 1205

LCSD Lab Sample ID: LCSD 720-83549/10 Analysis Batch: 720-83549 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 121710008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1236 Final Weight/Volume: 10 mL

Date Prepared: 12/17/2010 1236

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C5-C12 100 102 62 - 117 20 2 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 101 98 67 - 130 1,2-Dichloroethane-d4 (Surr) 104 103 67 - 130 Toluene-d8 (Surr) 101 103 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-83549 Preparation: 5030B

MS Lab Sample ID: Analysis Batch: 720-83549 720-32317-2 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121710010.D

Dilution: 1.0 Initial Weight/Volume: 10 mL 12/17/2010 1347 10 mL

Final Weight/Volume: Date Analyzed: Date Prepared: 12/17/2010 1347

MSD Lab Sample ID: 720-32317-2 Analysis Batch: 720-83549 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 121710011.D Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/17/2010 1418 Final Weight/Volume: 10 mL 12/17/2010 1418 Date Prepared:

	<u>%</u>	<u> Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	107	113	60 - 138	1	20		
Benzene	102	104	60 - 140	1	20		
Ethylbenzene	101	105	60 - 140	2	20		
Toluene	102	106	60 - 140	3	20		
m-Xylene & p-Xylene	103	105	60 - 140	2	20		
o-Xylene	107	110	60 - 140	2	20		
ТВА	106	99	60 - 140	1	20	4	4
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limit	s
4-Bromofluorobenzene		101	101		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		102	99		(67 - 130	
Toluene-d8 (Surr)		103	102		-	70 - 130	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Method Blank - Batch: 720-83606

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-83606/4

720-83606/4 Analysis Batch: 720-83606 ter Prep Batch: N/A

Client Matrix: Water Prep Batch: No Dilution: 1.0 Units: ug/L

Date Analyzed: 12/18/2010 1054 Date Prepared: 12/18/2010 1054 Instrument ID: HP9

Lab File ID: 12181005.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	99	67 - 130	
1,2-Dichloroethane-d4 (Surr)	115	67 - 130	
Toluene-d8 (Surr)	108	70 - 130	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Preparation: 5030B Lab Control Sample Duplicate Recovery Report - Batch: 720-83606

LCS Lab Sample ID: LCS 720-83606/5 Analysis Batch: 720-83606 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 12181006.D Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

12/18/2010 1140 Final Weight/Volume: 10 mL Date Analyzed: Date Prepared: 12/18/2010 1140

LCSD Lab Sample ID: LCSD 720-83606/6 Analysis Batch: 720-83606 HP9 Instrument ID: Client Matrix: Prep Batch: N/A Lab File ID: 12181007.D Water

Dilution: Units: ug/L Initial Weight/Volume: 1.0 10 mL 12/18/2010 1213 Date Analyzed: Final Weight/Volume: 10 mL

Date Prepared: 12/18/2010 1213

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Methyl tert-butyl ether	116	109	62 - 130	6	20		
Benzene	105	104	82 - 127	1	20		
Ethylbenzene	109	109	86 - 135	0	20		
Toluene	107	107	83 - 129	0	20		
m-Xylene & p-Xylene	116	116	70 - 142	0	20		
o-Xylene	117	116	89 - 136	1	20		
ТВА	104	105	82 - 116	0	20		
Surrogate	L	_CS % Rec	LCSD %	Rec	Accepta	ance Limits	
4-Bromofluorobenzene	1	103	104		67	- 130	
1,2-Dichloroethane-d4 (Surr)	1	100	97		67	- 130	
Toluene-d8 (Surr)	1	102	102		70	- 130	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83606 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83606/7 Analysis Batch: 720-83606 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 12181008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/18/2010 1245 Final Weight/Volume: 10 mL Date Prepared: 12/18/2010 1245

LCSD Lab Sample ID: LCSD 720-83606/8 Analysis Batch: 720-83606 Instrument ID: HP9
Client Matrix: Water Prep Batch: N/A Lab File ID: 12181009.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/18/2010 1318

Final Weight/Volume: 10 ml

Date Analyzed: 12/18/2010 1318 Final Weight/Volume: 10 mL Date Prepared: 12/18/2010 1318

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C5-C12 88 62 - 117 20 96 9 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 101 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 102 103 67 - 130 Toluene-d8 (Surr) 105 103 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-83606 Preparation: 5030B

MS Lab Sample ID: 720-32317-B-12 MS Analysis Batch: 720-83606 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 12181015.D Dilution: 1.0 Initial Weight/Volume: 10

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/18/2010 1647 Final Weight/Volume: 10 mL

Date Analyzed: 12/18/2010 1647 Final Weight/Volume: 10 mL Date Prepared: 12/18/2010 1647

MSD Lab Sample ID: 720-32317-B-12 MSD Analysis Batch: 720-83606 Instrument ID: HP9

Client Matrix: Water Prep Batch: N/A Lab File ID: 12181016.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/18/2010 1720 Final Weight/Volume: 10 mL

Date Prepared: 12/18/2010 1720

% Rec. RPD Analyte MS MSD Limit **RPD Limit** MS Qual MSD Qual Methyl tert-butyl ether 127 130 60 - 138 1 20 Benzene 99 99 60 - 140 0 20 Ethylbenzene 102 102 60 - 140 0 20 Toluene 99 101 60 - 140 1 20 m-Xylene & p-Xylene 109 109 60 - 140 0 20 o-Xylene 111 111 60 - 140 0 20 60 - 140 TBA 104 1 20 105 Surrogate MS % Rec MSD % Rec Acceptance Limits 4-Bromofluorobenzene 105 104 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 100 100 Toluene-d8 (Surr) 103 102 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Method Blank - Batch: 720-83639

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Instrument ID: HP5

Lab Sample ID: MB 720-83639/4

20-83639/4 Analysis Batch: 720-83639

Client Matrix: Water Prep Batch: N/A
Dilution: 1.0 Units: ug/L

Date Analyzed: 12/20/2010 1147 Date Prepared: 12/20/2010 1147 Lab File ID: 122010005.D
Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
TBA	ND		4.0
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	95	67 - 130	
1,2-Dichloroethane-d4 (Surr)	105	67 - 130	
Toluene-d8 (Surr)	98	70 - 130	

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83639 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83639/5 Analysis Batch: 720-83639 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 122010006.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/20/2010 1218 Final Weight/Volume: 10 mL Date Prepared: 12/20/2010 1218

LCSD Lab Sample ID: LCSD 720-83639/6 Analysis Batch: 720-83639 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 122010007.D

 Dilution:
 1.0
 Units: ug/L
 Initial Weight/Volume:
 10 mL

 Date Analyzed:
 12/20/2010 1248
 Final Weight/Volume:
 10 mL

 Date Prepared:
 12/20/2010 1248
 Time Initial Weight/Volume:
 10 mL

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Methyl tert-butyl ether 102 62 - 130 20 100 2 Benzene 99 102 82 - 127 3 20 Ethylbenzene 103 105 86 - 135 1 20 Toluene 99 100 83 - 129 0 20 m-Xylene & p-Xylene 102 103 70 - 142 1 20 o-Xylene 106 20 110 89 - 136 4 TBA 96 20 110 82 - 116 13 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 98 98 67 - 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 105 104 Toluene-d8 (Surr) 102 100 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Lab Control Sample/ Method: 8260B/CA_LUFTMS

Lab Control Sample Duplicate Recovery Report - Batch: 720-83639 Preparation: 5030B

LCS Lab Sample ID: LCS 720-83639/7 Analysis Batch: 720-83639 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 122010008.D

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 12/20/2010 1319 Final Weight/Volume: 10 mL Date Prepared: 12/20/2010 1319

LCSD Lab Sample ID: LCSD 720-83639/8 Analysis Batch: 720-83639 Instrument ID: HP5
Client Matrix: Water Prep Batch: N/A Lab File ID: 122010009.D

 Dilution:
 1.0
 Units:
 ug/L
 Initial Weight/Volume:
 10
 mL

 Date Analyzed:
 12/20/2010
 1349
 Final Weight/Volume:
 10
 mL

 Date Prepared:
 12/20/2010
 1349
 10
 mL

% Rec. Analyte LCS LCSD Limit **RPD** RPD Limit LCS Qual LCSD Qual Gasoline Range Organics (GRO)-C5-C12 100 98 62 - 117 20 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 101 103 67 - 130 1,2-Dichloroethane-d4 (Surr) 104 104 67 - 130 Toluene-d8 (Surr) 101 101 70 - 130

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Matrix Spike/ Method: 8260B/CA_LUFTMS

Matrix Spike Duplicate Recovery Report - Batch: 720-83639 Preparation: 5030B

MS Lab Sample ID: 720-32333-A-2 MS Analysis Batch: 720-83639 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 122010018.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/20/2010 1839 Final Weight/Volume: 10 mL

Date Prepared: 12/20/2010 1839

MSD Lab Sample ID: 720-32333-A-2 MSD Analysis Batch: 720-83639 Instrument ID: HP5

Client Matrix: Water Prep Batch: N/A Lab File ID: 122010019.D

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 12/20/2010 1909 Final Weight/Volume: 10 mL

Date Prepared: 12/20/2010 1909

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Methyl tert-butyl ether	96	111	60 - 138	15	20		
Benzene	103	103	60 - 140	0	20		
Ethylbenzene	106	104	60 - 140	2	20		
Toluene	106	106	60 - 140	1	20		
m-Xylene & p-Xylene	104	99	60 - 140	5	20		
o-Xylene	107	105	60 - 140	2	20		
TBA	95	95	60 - 140	0	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Limits	3
4-Bromofluorobenzene		106	103		(67 - 130	
1,2-Dichloroethane-d4 (Surr)		97	101		6	67 - 130	
Toluene-d8 (Surr)		101	105		7	70 - 130	

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA San Flancisco Chain of Custody 1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002

Reference #:	128656

Date 12/14/10 Page 1 of 2

Report To		y gas			Ñ.			ş.	An	alysis	Requ		ļi ir	godini Prima					ŽVE KŲ	
Attn: Ron Goloubow		<u>ब</u>	lou		(S)			608 608			≨	020				<u>_</u>			on the same of the	
Company: Areads - US	KAMTBE	lica G	E E	909	000		enm		8310		1 P.C.	9/8:00		Q,	<u>.</u>	స్టేర్డ్	3			
Address: 1900 Purell St 11th Floor) Š	I SI	短品	by 82	MS (2	☐ Petroleum ☐ Total	EPA 8081 EPA 8082	0	←	H	EPA 2		nium for F	Alkalinity TDS	D SO, D NO.	0925)			Ters
Phone: 510. 596.955 dEmail: Ron. Golowbow@an	- BA	or oil	MA A	3021	S GC.	2/MS		PA 8	270	1747		ls by	9	Shron		OS C	8			ntai
Bill To: Sampled By: Davell Smolko	8 82	8015 Mote		PA 8	ganic 30B	es G(ase)		о П	tals	ead	Meta	T (ST	lent (Cond.		4			င့်
	PA -	TEPH EPA 8015M* ☐ Silica Gel ☐ Diesel ☐ Motor Oil ☐ Other	EPA 8260B: CI Gas, Kar BTEX Karson Strand S	(HVOCs) EPA 8021 by 8260B	Volatile Organics GC/MS (VOCs) ☐ EPA 8260B ☐ 624	A 82	Oil and Grease 🏻 Pet (EPA 1664) 🗘 Tot	Pesticides PCBs	PNAs by □ 8270 □	CAM17 Metals (EPA 6010/7470/7471)	Metals: ☐ Lead ☐ LUFT ☐ RCRA ☐ Other:	Low Level Metals by EPA 200.8/6020 (ICP-MS):	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold time for H ₂ O)	. S. S.] : S	184			Number of Containers
Attn: Phone: 5-/0.301.9849 Sample ID Date Time Mat Preserv	TPH EPA D&Gas w/	EPH 1 Die	PA8	(HVC	/olati	Jemi E EF	Jil an EPA	estic CBs	NAS	SAM	Metal	ICP-ICP	lan	T to	Spec. (Anions:	1			En
	-		·														ス		1	
AS-47 17/14 1045 W HCI	×		X				***************************************			***************************************				1						
AS-67 1125 1								:												
NW-25 1200	+											-	-	 						
	++								ļ				<u> </u>	<u> </u>						
NW-2D (300)												 			ļ		 - 		-	
mw-4 1340			-										-	-						
ASMW-50 V 1540			-	ļ						 		<u> </u>	-				1			
ASMW-57 12/15 0915 AS-17 12/15 0940			\vdash							-	<u> </u>	<u> </u>	<u> </u>	+		-				
	4	<u> </u>	\downarrow		 	ļ				<u> </u>	.	<u> </u>			<u> </u>	-	1			
AS-3I 12/15 10/0 V	· ·	1) Reli	y natishe	ed by:					24 Re	elinquish ature Manuel Manuel Pany	edźby:/	<u></u>	<u></u>		3)	 Relinau	ished by	:		
Project Info. Sample Receipt				11	ار برایم	lai.	17:	ر د د		11/	Ha	Ma	no 1	200			•			
Project Name: # of Containers:		Signati	ure	4 5			Time		Signa	ature	, -		Tim	e	Sig	nature			Tim	e
Project#: Head Space: Em009135,0010 Head Space:		Da	re	u S	mo	leci	1/51	<u>51</u> 10	1	UN	Corfi	ne c	1/2	1500)					
Project Name: Hspine Project#: Emoco9155,0010 Po#: # of Containers: # Second Notes of the project of the	00	Printed	Name	,			Date		Print	ed Name	-1		, Da	te	Pri	nted Na	ame		Da	ite
Credit Card#: Conforms to record:			CN	189		<u> </u>			Com	Jeg	2/1/	nev	(Co		-	mpany				***************************************
Ordan Gardy.									i											
T 5 3 2 1 Other: Stendard		1) Rec	eived	//~	- /-		~~	_	2) Re	J-87	oy: . [Л	0.1	0.	10	3)	Receive	эа ру:			
	Tank	Signat	<u> (/ </u>	la	N		226 Time	<u>/</u>	Sign	ature)~V\		Tim		Sic	gnature	·,		Tim	ne
Fund EDF	Idiik	Signal	fa .	lac.	ton	~,·	_	5.10	O.g.	_	Llb	21		· -/5-	.1	,,,,,,,,,,				
Special Instructions / Comments: Global ID		Printed			110	<u> </u>	Date	<u> </u>	Print	ed Nami			Da		*******	inted Na	ame		Da	ate
Please sample only TBA & MTB		TA	158							5	1-m	ũ	2							
See Terms and Conditions on reverse		Comp	any						Com	pany	1				Co	mpany				
*TestAmerica SF reports 8015M from C ₂ -C ₂₄ (industry norm). Default for 8015B is C	10-C ₂₈										····									Rev09/09

THE LEADER IN ENVIRONMENTAL TESTING

TESTAMERICA San Francisco Chain of Custody

1220 Quarry Lane ● Pleasanton CA 94566-4756 Phone: (925) 484-1919 ● Fax: (925) 600-3002

Date 12/14/10 Page Z of Z

Report To					ZDE.		lo,			ati y			An	alysis	Requ	est		BATTONES.						
Attn: Ron Golov						9	anol		(S)	i i		608 608			ا≨ا	950				L I				
Company: Area Lis	- US					15M* [] Silica Gel tor Oil [] Other	<u> </u>	260B	Soc		eum		3310		J RC	300.8/6		(02	Ę	NO.	Q			
Address: 1900 Pou	weir S	7. //	146	-100/	7		전 중	by 8%	MAS (24	, <u>i</u> O	etrol Total	8081 3082		₽] <u>E</u>	EPA 2	***************************************	mium for h	kali TDS	□ Akalinity □ TDS □ SO, □ NO; □ NO; □ PO,				ners
Phone: 5/0, 596, 9550 Em	ail: Roz	6010) er bise	v parce	鲁色	ਹੌਂ *	47 Q	202.1	0.00	2/MS		PA	270	1747		s by	<u>S</u>	hror		SN	9			ntain
Bill To:	Sample	arre	11 <	Snolke	44	TEPH EPA 8015M* □ Diesel □ Motor Oil	EPA 8260B: 尾 Gas 改图EX 以约enates 口 DCA, EDB口 Ethanol	(HVOCs) EPA 8021 by 8260B	Volatile Organics GC/MS (VOCs) □ EPA 8260B □ 624	atiles G(8270 E	Oil and Grease 🏻 Petroleum (EPA 1664) 🖾 Total	s □ EPA 8081 □ EPA 8082	PNAs by □ 8270 □ 8310	CAM17 Metals (EPA 6010/7470/7471)	Metals: ☐ Lead ☐ LUFT ☐ RCRA ☐ Other	Low Level Metals by EPA 200.8/6020 (ICP-MS):	W.E.T (STLC) TCLP	Hexavalent Chromium pH (24h hold time for H ₂ O)	☐ Spec. Cond. ☐ TSS	Anions: CICICISO, CINO, CIF				Number of Containers
Attn:	Phone:	510.	30%	今 <i>多4今</i> Preserv	H EP/ Sas w	PH EF	A 8260 5 Oxyge	VOC.	atile (EPA	mivola EPA 1	and G	Pesticides PCBs	As by	M17 1	tals: E	v Lev	¥5	Hexa PH (2	Spec. TSS	ions	T8A		***************************************	mpe
Sample ID	And in contrast of the Party of the Party				T D	甲百	£ ⊞	E	> □	<u>∾</u> □	9 9	9.5	a Z	5₺	žò	25	00		00	Æ	,			ž
ASMW-4I					×		1														×			
AS-4I-0	12/14	1100	w	HCI																				
T.B 121410	13/1-		 w	HCI	4		$\overline{\Psi}$	<u></u>								<u> </u>	ļ		<u></u>					
			<u> </u>						ļ			ļ	ļ				<u> </u>	-			<u> </u>			
			ļ		ļ				ļ	ļ		<u> </u>	<u> </u>	<u> </u>		ļ	ļ	 	ļ		-			
			ļ	ļ				-	ļ .			ļ		ļ			ļ				<u> </u>			
			<u> </u>				<u> </u>					<u> </u>		ļ	ļ	<u> </u>		ļ	ļ					
					ļ		ļ	ļ	ļ			<u> </u>		<u> </u>			<u> </u>	<u> </u>	ļ					
			ļ				<u> </u>		ļ				ļ											
	Jagonia Satura d					4.5-8		l l :		<u> </u>			2) 06	linavah			<u> </u>		1 20.	7-11	رجا لمحاج			
Project Info.		mple F		pt		1) Reil	nguisn	ea by: // /	9		/2-	- A	4)	linguished Name	ed by:	h		200	J 3) 1	Kelingui	shed by:			
Project Name:	# of	Contain 3°	ers: ⊗			Signat	ure		ne	we.	ری ر Time	<u>.</u>	Signa	ture	/(//1-	11 W	Time	<u> </u>	Sia	nature			Tim	ne
Project#: EM09155,0010	Hea	d Space	-1	Z-3°6		\bigcap	rel	1 5	ادسا	de a	17	دجاءه	Ž	30 1	low	Siha	10	150	2					
PO#:	Ten	10:	-/4			Printed	Name	9		<u> </u>	Date		Printe	d Name	2	700	Da	te	Prir	nted Na	me		Da	ite
						/	rco	di	-2	us					MSF									
Credit Card#:	Con	forms to	record	l: , .		Comp	any						Com	oany			and the same		Cor	mpany				· · · · · · · · · · · · · · · · · · ·
T 5 3 2	1 04					1) Rec	eived	by:/	Λ				2) Re	ceived b	iv:	****	***************************************		3) F	Receive	d by:			
A Day Day Day D	ay Oth	er: 5				<u> </u>	X M	16	2-41	ork	122	<u> </u>		lture	Na	ليم	0,	<u>クの</u>	기					
Report: Routine 🖸 Level	3 □ Le	vel 4	EDD	☐ State T	ank	Signal	ure	,	,		Time		Signa	ature \	1	i Berinelia	Tim			nature			Tim	. e
Special Instructions / Commer	nts: 🗆	J Globai IE)	··········	Ì				inc		Date	0),0	Drint	d Name	<u> </u>	۷,_	12 Da	15-1		nted Na	<u></u>	······································	Da	***
Please Sample	Onle	, ,	BA	S -		rinte	d Namo	_			Date		rinit	tal	Λ	Vis	Da	ie	P (II	iren ijsi	.116		υa	,t o
MTBE und	ډ٥ √د	(() < ~	- L	· ·		Comp		1			······································		Com	<u> </u>	t 1 /	VUL			Cor	mpany			·	
See Terms and Conditions on reverse *TestAmerica SF reports 8015M from C		-			-C ₂₈		•										per tra						F	Rev09/09
L																								

Login Sample Receipt Check List

Client: ARCADIS U.S., Inc Job Number: 720-32317-1

Login Number: 32317 List Source: TestAmerica San Francisco

Creator: Mullen, Joan List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ARCADIS

Appendix **B**

Field Logs

Page	of	
l age	0,	

Project	Aspi	ire									
Project Number		09155.0010		Site Location	Oakla	nd		Well II	A5-4	/I	
Date		ec-10	***************************************	Sampled By		II Smolko			· · · · · · · · · · · · · · · · · · ·		
Sampling Time		1045		Recorded By		II Smolko				-	
Weather	*******			Coded Replica							
				•							
Instrument Ide	entification										
Water Quality	Meter(s)		***************************************			_ Serial	#				
Casing Materia	al			Purge	Method		GeoPump				
Casing Diame		2"		Screen Interval (ft bmp) Top				eoPump Bottom			
Sounded Dept	h (ft bmp)				ft bmp)						
Depth to Wate	r (ft bmp)			— Purge	Time	Start			Finish		
				Field Parameter	r Measurement						
,	Depth to Minutes Volume				Γ	Conductivity	Ī	T		1 .	
Time	Water	Elasped	Purged	Temp (°C)	pH (s.u.)	(umhos or	ORP (mV)	DO (mg/L)	Turbidity (NTU)		
	(ft bmp)					(mS/cm)				Start Purg	
1020	3,23	1 -								DAME I MADE	
1030	7,50	10	0.3	18.53	7.12	,970	50	6.32	₹ 8.	9	
1033	7.57	/ /3	0.5	18.63	7.30	,972	51	6.19	9.0		
1036	7.80	16	0.8	1857	7.33	1975	51	6.17	9.9		
1040	8.51	19	1.0	18.69	7.37	1,024	49	6.11	15.3		
1045									Sample	el	
1015									Dorg		
	1										
18 1											
						-					
Collected Sam	ple Condition	n	Color		Odor_			Appearance			
Parameter			Container			No.			Preservative	<u></u>	
~~~									-		
				·		_					
110		_				***		_		<del></del>	
PID Reading											
Comments											
	·										
								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
٠.		·····									



Project Aspire								_			
Project Numb			55.0010		Site Location	Oakla	ind		Well ID	AS-63	Z
Date		1-Dec-	10		Sampled By		II Smolko				
Sampling Tim	ie	//	25		Recorded By		II Smolko				
Weather	Ra	ain, C			Coded Replic						
Instrument Ide		ı									
Water Quality	Meter(s)	-					_ Serial #	<del></del>			
Casing Materi	ial	_			Purge	Method		GeoPump			
Casing Diame	ter	_	2"		Scree	n Interval (ft br	np) Top			Bottom	
Sounded Dep	th (ft bmp)	_	2.16	0	Pump	Intake Depth (	ft bmp)				
Depth to Wate	er (ft bmp)	_			_ Purge	Time	Start			Finish	
				Field Paramete	r Measuremen	ts During Purging					
Time	Depth Water (ft bm)	r	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) ¹⁾	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
1102	2.16								Start	Purge	
1112	2,30		10	0.4	18.95	7.00	1,179	~5)	0.25	8.0	
1115	7.37	1	13	0.6	19.00	7.00	1,180	-55	0.24	11-0	
1118	7.38		16	0,8	19.01	6.99	1,184	-58	0.25	15.0	
1175									Samp	led	
					,						
			\$								
							<u> </u>				
	ļ	_	•							V	
									-		
						411-411-411-411-411-411-411-411-411-411					
Collected San	nple Condit	tion		Color		Odor_			Appearance		_
Parameter				Container			No.			Preservative	_
						_			_		
						-					
PID Reading											
Comments											



Project Aspire										
Project Numb		1009155.0010		Site Location	Oakla	nd		Well I	D NW-	ZS
Date	14-	Dec-10		Sampled By	Darre	II Smolko				
Sampling Tim	e	1200		Recorded By	Darre	II Smolko				
Weather	Ra	in, Cool		Coded Replica	ate No.					
Instrument Ide	entification		•							
Water Quality				Without A Witness		_ Serial #	<u> </u>			
Casing Materi	al			Purge	Method		GeoPump			
Casing Diame	ter	2"		Screer	n interval (ft bn	пр) Тор				
Sounded Dep	th (ft bmp)	1.80	<u> </u>	Pump	intake Depth (1	ft bmp)				
Depth to Wate	er (ft bmp)	1.8	٥	Purge	Time	Start	Finish			
				Field Parameter	Measurement	ats During Purging				
Time	Depth to Water (ft bmp	Flasher		Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
1132	1.80	>					5	faut Pe	rge	
1142	1.80	0 10	0.4	15.97	696	0.942	-58	0.34	19.1	
1145	1,88	/ /3	0.6	15.72	7.07	0.791	-55	0.66	15.5	
1148	1,88	16	0.7	15.65	7.12	0.768	-54	0.80	12.5	
1151	1.88	19	1.0	15.63	7.15	0.759	-55	0.85	/3.7	
1154	1,88	22	1.1	15.58	7,17	0.739	-54	0.93	10.7	
1157	1.88	25	1,3	15.51	7.20	0.716	<u>~53</u>	0.95	9.2	
									1	
1200								Ja.	upled	
••••										
				:						
Collected San	nple Conditi	on	Color		Odor_			Appearance_		
Parameter		Container				No.	•		Preservative	
				-			<del>-</del>			
PID Reading					-		·			
_										
Comments	· ·									· · · · · · · · · · · · · · · · · · ·



Project	Aspi								~	
Project Numb	er <u>EM0</u>	09155.0010		Site Location	Oakla	nd		Well II	NW.	ZI
Date	<u>14-D</u>	ec-10		Sampled By	Darrel	l Smolko			V	
Sampling Tim	е	1230		Recorded By	Darrel	l Smolko				
Weather	Rain	, Cool		Coded Replica	te No.					
Instrument Ide	entification									
Water Quality	Meter(s)					_ Serial :	#			
Casing Materi	al			Purge l	<b>Method</b>		GeoPump			
Casing Diame	ter	2"		Screen	Interval (ft bm	ір) Тор		<u></u>	Bottom	
Sounded Dep	th (ft bmp)			_ Pump I	ntake Depth (f	t bmp)				***************************************
Depth to Wate	er (ft bmp)	<u> </u>	)	Purge	Гime	Start	i		Finish	
	<b>,</b>			Field Parameter	Measurement		ng			
Time	Depth to Water (ft bmp)	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
1202	4.31							Start P.	arge	
1212	6.55	10	0.5	18137	7.29	1.337	773	0.82	47.2	
1215	6.70	/3	6.7	18.48	7.24	1.381	-104	0.66	35.3	
1718	6.72	16	0.9	18.75	7,12	1,540	-115	0.32	459	
1221	6.74	19	1.1	18.85	7.10	1,560	-117	0-25	110	
1224	6.84	22	1.3	1897	7.13	1,530	-120	0.23	148	*
/230								Sample	ed	1
										1
		·								-
			1							-
										1
Collected San	nple Condition		Color		Odor	1		Appearance	1	
Parameter			Container		5.051_	No.	<del></del>		Preservative	
		_								
PID Reading		_						<del></del>		
	* 7.	16 So.	- 	appear	c L	he	Jo PL	no *	Somple	0 ~
Comments		in sa	11504	appear	, , , ,	<i>7</i> (	4 11 77	7	somple	7



Project	Aspire				·					NW-2D	
Project Number	er <u>E</u>	M0091	155.0010		Site Location	Oakla	nd		Well ID	, , , , , , , , , , , , , , , , , , , ,	
Date	1	4-Dec-			Sampled By	Darre	ll Smolko				
Sampling Time	e		1300		Recorded By	Darre	II Smolko		· · · · · · · · · · · · · · · · · · ·		
Weather	<u>R</u>	ain, C	ool		Coded Replica	ate No.					
Instrument Ide	entification	ו									
Water Quality	Meter(s)						_ Serial #				
Casing Materia	al				Purge	Method		GeoPump	)		
Casing Diame	ter	,	2"		Scree	en Interval (ft bmp) Top			Bottom		
Sounded Dept	h (ft bmp)		4.31		_ Pump	Intake Depth (f	ft bmp)				
Depth to Wate	r (ft bmp)				Purge	Time	Start		Finish		
				_	Field Paramete	r Measurement	ts During Purgin	g			
Time	Depth Wate (ft bm	er	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
1228	4.3	)							Start.	Puge	
1238	4.3	/	10	0.5	19.21	6.72	0.685	-/1	1,51		
1241	4.3,	<u>'</u>	13	0.7	19.11	6.66	0.682	5	0.86	15.6	
1244	4.3	ì	16	0.9	19,10	6.60	0.681	16	0.76	15.5	
1247	.4.3	1	19	1.0	19.06	6.64	0.681	23	0.70	16.4	
1750	43	)	22	ハ乙	19.07	6.63	0.681	31	0.70	15.5	
1253	4.3	,,	25	1.4	19.09	6.63	0.682	35	0.71	15.2	
1256	43	/	28	1,6	19.09	6.64	0.683	40	0.77	13.4	
1300			3.00.00						Jan	plech	
				-							
			.,								
****											
Collected Sam	ple Cond	ition		Color		Odor_			Appearance_	*******	
Parameter				Container			No.			Preservative	
· · · · · · · · · · · · · · · · · · ·						- -			<del>-</del>		
PID Reading											
Comments				•	-						
										•	



Project	Asp	ire									
Project Number	er <u>EM</u> 0	009155.0010		Site Location	Oakla	ind		Well ID	NW-4		
Date	14-[	Dec-10		Sampled By	Darre	II Smolko					
Sampling Time	e <u>.</u>			Recorded By	Darre	II Smolko					
Weather	Rain	n, Cool		Coded Replica	ate No.						
Instrument Ide	entification										
Water Quality	Meter(s)					_ Serial #	<i></i>				
Casing Materi	al			Purge	Method		GeoPump				
Casing Diame	ter	2"	******	Scree	n Interval (ft br	np) Top		*****	Bottom		
Sounded Dept	th (ft bmp)								-		
Depth to Wate	er (ft bmp)			Purge	Time	Start	***	Finish			
			-T	Field Paramete	r Measuremen	ts During Purgin	g		<del></del>		
Time	Depth to Water (ft bmp)	Minutes Flashed	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)		
1302	3.40							Start	Puge		
1312	5.01	10	0.4	19.37	6.95	1.476	-4	1.14	19.8		
1315	5.19	13	0.6	19.36	6.98	1.475	- 14	1.10	17.7		
1318	5,40		0.8	19.37	6.99	1.478	724	0.99	16.1		
1322	5,63	19	1.0	19.34	6.99	1,477	-37	0.92	15.5		
1325	5,70	22	1,2	19.43	6.99	1.475	-43	0.82	16.2		
1328	5,74	' Z5	1.4	19.40	6.99	1.481	-47	0.72	15.0		
/33/	5,76	58	1.6	19.47	6.99	1.473	-44	0.71	14.2		
1334	5.83	31	1.8	19.50	6.99	1.467	-42	0.67	13.9		
1340											
Collected San	anla Canditio		Color		Odor			Appearance			
Parameter	ipie Conditio	,,,	Container		Oubi,	No.		Appearance_	Preservative		
					_			_			
					_				-		
PID Reading	ID Reading										
Comments			_								
Comments											
						···					



Project	Aspire						***************************************			
Project Number		155.0010		Site Location	Oakla	nd		Well ID	ASMW-5D	
Date	14-Dec	-10		Sampled By	Darrel	I Smolko				
Sampling Time	/3	5 40		Recorded By	Darrel	l Smolko				
Weather	Rain, C	Gool		Coded Replica	ite No					
Instrument Ide	ntification									
Water Quality	Meter(s)					_ Serial #	#			
Casing Materia	al	-		Purge Method GeoPu				1		
Casing Diame	asing Diameter 2"			Screen Interval (ft bmp) Top					Bottom	
	unded Depth (ft bmp)		<i>-</i>	Pump Intake Depth (f			-	<u>-</u>	Finish	
Depth to Wate	to Water (ft bmp) Z.90		<u> </u>	Purge					Finish	
	Depth to		T	Field Parameter		Conductivity	T			
Time	Water (ft bmp)	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	(umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
1450	7.90						5-	tact Per	ge	
1500	3.05	10	0.4	18.67	7.22	1.54	52	8.82	5.2	
1503	3.07	13	0.6	18.67	7.27	1,66	52	9.14	3. Le	
1506	3.07	16	0.7	18.64	7.24	1.72	60	8.95	3.8	
1509	3,07	19	0.9	18.63	7.12	1,79	107	8.46	3.7	
1512	3.07	22	1.1	18.66	7.10	1.81	111	8.40	4.1	
1515	3.07	25	1.3	1863	705	1.84	137	7.97	3.7	
1518	3,07	28	1.5	18.63	701	1.86	150	7.71	4.3	
1521	3.07	31	1,7	18.54	6.98	1.87	164	7.61	4.5	
1524	3.07	34	1.9	1857	6.96	1.88	175	7.79	4.4	
1527	3,07	37	7.1	18.53	694	1.89	189	7.24	5.5	
1.530	3.07	40	2.3	18.51	6A3	1.90	196	7.06	5.1	
<i>15</i> 33	3.07	43	2,6	18.50	692	1.90	208	6.99	5.4	
1536	3.07	47	29	18,48	6.92	1.90	214	6.96	5,3	
Collected San	ple Condition		Color		Odor_			Appearance_		
Parameter			Container			No.			Preservative	
	*	-			-			<del>-</del>		
PID Reading		-			-			_		
-			_							
Comments										
					-					



Project Project Numb	er EMOO	9155.0010		Site Location	Oald	nd	14/_11 11	Well ID ASMW- \$		
Project Numb Date	-	E-10 15-	<u> </u>	Site Location	Oakla		<del></del>	well I	J / (Sivilor &	
Date Sampling Tim		5915	10 -10	Sampled By Recorded By		II Smolko II Smolko			×	
Sampang rim Weather	Rain,			Coded Replic		и этоко				
Instrument Ide	entification									
Water Quality	Meter(s)					Serial :	#			
Casing Materi	al		edekooleedama Pérdeldi selamasaa	Purge	Method		GeoPump			
Casing Diame	ter .	<u>2"</u>		Scree	n Interval (ft br	np) Top	-		Bottom	
Sounded Dept		2.9			Intake Depth (	• •				
Depth to Wate	r (ft bmp)	2.1	<u> </u>	Purge	Time	Start			Finish	
	D	T	1	Field Paramete	r Measuremen	ts During Purgin	ng T			
Time	Depth to Water (ft bmp)	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
0816	2.95									
58 <b>2</b> 6	4.85	10	0.3	17.15	6.40	0.829	-36	2.69	12.2	
0829	4,90	13	0.4	17-34	6.40	0.829	-43	2.35	12.1	
0835	5.16	16	0.5	17.44	6.42	0.830	-51	2.04	11.1	
0838	5,75	21	0.7	17.55	6.45	0.834	-60	1,56	9.8	
0842	5,41	25	0.7	17.65	6.46	0.837	-65	1.35	9.9	
0847	6.78	30	0.8	17.67	6.48	0.841	-67	1017	9.5	
0852	6.45	35	0.9	17.70	6.49	0.844	-69	0.98	8.2	
0857	6.91	40	1.1	17.98	6.51	0.854	-74	0.78	7.1	
0900	6.93	43	/.3	17.98	6.52	0.857	-75	0.71	7.8	
0903	6.98	46	1,5	18.0.2	6.53	0.861	-76	0.68	7.1	
0906	7.06	49	1.9	18.03	6.54	0.864	~77	0.64	7.1	
0915								San	pled	
Collected Sam	ple Condition		Color		Odor_			Appearance_		
Parameter			Container			No.			Preservative	
		-			-				***	
		-			-			_		
PID Reading										
			_							
Comments										
	,	- <del></del>					-			



Project	Aspi	Aspire							4	
Project Number	er EMO	09155.0010		Site Location	Oaklaı	nd		Well ID	/45	-/I
Date	1 <del>4-D</del>	ec-10 IS^-	Dec-10	Sampled By	Darrel	l Smolko				
Sampling Time	e(	0940		Recorded By	Darrel	l Smolko				
Weather	Rain	, Cool		Coded Replica	ate No.			•		
Instrument Ide						0 : 14	t			
Water Quality	Meter(s)	-				_ Serial #	<del></del>	· · · · · · · · · · · · · · · · · · ·		
Casing Materia	al			Purge	Method		GeoPump	<u> </u>		
Casing Diame	ter	2"		_ Scree	n Interval (ft bm	ір) Тор	p) Top Bottom_			
Sounded Dept	h (ft bmp)			Pump	Intake Depth (f	t bmp)				
Depth to Wate	r (ft bmp)			_ Purge	Time	Start			Finish	
				Field Paramete	r Measurement	s During Purgin	g			
Time	Depth to Water (ft bmp)	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	
0916	7.89						5-	Part Pu	rge	
0976	5.92	10	0.4	18.72	696	7.7(	-26	0.61	13.6	
0929	6.26	/3	0.5	18.80	7.00	2.71	-21	0.60	13.9	
0932	6,58	16	0.6	18.81	7.02	2.72	-14	0.61	13.8	
0935	6.76	19	0.7	18.92	7.03	2.72	-11	0,61	13.8	
0940								5	angle	el
									-	
V-1										
				+						
Collected Sam	ple Condition	1	Color		Odor_			Appearance		
Parameter			Container			No.			Preservative	
								_		
		_			-			_		9
PID Reading		<del></del>	-		-			_		
			_							
Comments		•							****	·



Project	Aspi	re										
Project Numb	er EM0	09155.0010		Site Location	Oa	ıkland		Well I	D AS-	$3\mathcal{I}$		
Date	<del>14-D</del>	ec-10  5-	Dec -10	Sampled By	Da	rrell Smolko						
Sampling Tim		1010		Recorded By	Da	rrell Smolko						
Weather	Rain	, Cool		Coded Replica	ate No.							
Instrument Ide	entification											
Water Quality	Meter(s)					Serial #	<u> </u>					
Casing Materi	al				Method		GeoPump					
Casing Diame	ter	2"		_ Screer	ı Interval (f	t bmp) Top			Bottom	ttom		
Sounded Dep	th (ft bmp)			Pump	Intake Dep	th (ft bmp)				<del></del>		
Depth to Wate	er (ft bmp)	3.7	8	_ Purge	Time	Start		Alter - Alternation	Finish			
			Т	Field Parameter	Measuren	ents During Purgin	g					
Time	Depth to Water (ft bmp)	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)			
0942	3,28											
0952	8.01	10	0.5	18.38			38	0.27	14.4	Turned Down		
0955	8.45	13	0,8	18.37	6.63	12.34	39	0.27	14.2	Dump		
0959	9.13	17	1.0	18.54	6.64	12.37	40	0.26	12.9			
								- 1				
1010								SA	mpbel	•		
	-											
										•		
		,										
Collected Sam	ple Condition	1	Color		Od	or		Appearance_		<del></del>		
Parameter			Container			No.			Preservative			
		<del>-</del> 										
PID Reading		_	<del>~</del>					_				
_			<del></del>									
Comments												
										·		
									·			



Project <u>Aspire</u>							-					
Project Number	er <u>EM00</u>	9155.0010	<del></del>	Site Location	Oakla	nd		Well ID ASMW - 4I				
Date	<del>14-D</del> e	<del>c-1</del> 0 /5-4	Dec-10	Sampled By	Darre	li Smolko	-					
Sampling Time	e	1100		Recorded By	Darre	l Smolko	•					
Weather	Rain,	Cool		Coded Replica	ite No.							
Instrument Ide	entification											
Water Quality	Meter(s)					_ Serial #	#					
Casing Material				Purge Method Ge			GeoPump	****		····		
Casing Diameter		2"		Screen	пр) Тор							
Sounded Depth (ft bmp)				Pump	Intake Depth (f							
Depth to Water (ft bmp)		· Z.	71	Purge Time Start				Finish				
				Field Parameter Measurement						1		
Time	Depth to Water (ft bmp)	Minutes Elasped	Volume Purged	Temp (°C)	pH (s.u.)	Conductivity (umhos or mS/cm) 1)	ORP (mV)	DO (mg/L)	Turbidity (NTU)			
1024	7.7.1			0			53	Ant. Pi	vge			
1034	3.40	10	0.5	15.27	693	0.986	-140	0.30	57.8			
1037	3.74	13	0.6	15.26	6.92	0.974	-140	0.26	18.8			
1040	4.10	16	0.7	15.13	6,92	0.962	-140	0.26	144			
1043	4,10	19	0.9	14.97	6.94	0.950	-123	0.73	82.4			
1046	4.10	2.5	1,2	1497	690	0.939	-132	0.31	75.1			
1050	4,10	25	1.4	15.07	6.88	0931	-132	0.26	86.3			
1053	4110	58	1.6	15.09	6.87	0.927	-132	0.24	88.3	·		
1056	4,10	31	1.8	15.10	6.86	0.931	~132	0.24	97.1			
		The second of th		<b>C</b>								
1100		<b>4</b>							Sumple	d		
						•				:		
1												
	* + si								Addition to the second			
Collected San	nole Condition	1	Color		Odor		No.	Appearance	400	•		
Parameter	ipie Gondino	•	Container		<u> </u>	No.	The second	· .	Preservative	<del></del>		
		<del></del>			- -		****	<del>-</del> -				
PID Reading			_		· ·			••••				
Comments				*	`							
Jonniells										-45		
•					1,							

## **ARCADIS**

# Water-Level Log

Project Name and No.

Aspire EM009155.0010

Site Location Oakland

Prepared By

Darrell Smolko

Date 14-Dec-10

,				
Well (s)	Depth to Water (ft)	Time	Remarks	
AS- 4I	3.23	1000		
AS-GI	2.16	1001		
ASMW-5D	2.93	1002		_
ASMW-5D ASMW-SZ	7.95	1003		_
NW-25	1.80	1004		
NW-ZI	4.31	1005		
NW-2D	4.37	1006		
MW-4	3.11	1007		_
NW-2D NW-4 AS-1I	3.70	1008		-
AS-3I ASMW-4I	3.77	1009		
ASMW-4I	2,71	1027	12/15/10	
2			, ·	_
				-



Document Control Number:TGM		
TGM + project number plus date as follows: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	dd/mm/year	

<b>学校を発展を表現を紹介という。</b>	MEENING/FORMS: ** SESSION SESSION	
This form documents the tailgate meeting conducted in accordance with the Project HASP. Personnel who perform work operations onsite during the day are required to attend this meeting and to acknowledge their attendance, at least daily.		
Project Name: Aspire	Project Location: Oak Lond	
Date: 17/14/10 Time: Conducted by: Smolke	Signature/Title:	
Client Contact:	Subcontractor companies:	
TRACKing the Tailgate Meeting		
Think through the Tasks (list the tasks for the day):		
1 6W Cevels 3 2 6W Samply 4	56	
Other Hazardous Activities:- Check the box if there are any other ARCAD other party activities that may bose hazards to ARCADIS		
If yes, describe them here:		
How will they be controlled?		
Prework Authorization - check activities to be conducted that require permit- issuance or completion of a checklist or similar before work begins	Doc# Doc#	
Not applicable Doc # Working at Height	Confined Space	
Energy Isolation (LOTO) Excavation/Trenching	Hot Work	
Mechanical Lifting Ops Overhead & Buried Utilities	Other permit	
si siDiscussifollowing questions (torsomereview previous days post activities): "Gheck i	Topics from Corp H&S to cover?	
Incidents from day before to review?  Lessons learned from the day	before? Any Stop Work Interventions yesterday?	
Any corrective actions from yesterday? Will any work deviate from pla	an? If deviations, notify PM & client	
JLAs or procedures are available? Field teams to "dirty" JLAs, as	needed? All equipment checked & OK?	
Staff has appropriate PPE? Staff knows Emergency Plan	(EAP)? Staff knows gathering points?	
Comments:		
<b>Recognize (the</b> mazgrus (sheok all thidse materized soussed) (Examples are pro- <b>State</b> list revel) All ovince an overall assessment of hazards to be encountered to		
Gravity (i.e., ladder, scaffold, trips) (L M H) Motion (i.e., traffic moving water)	M H) Mechanical (i.e., augers, motors) (L M H)	
Electrical (i.e., utilities, lightning) (L M H) Pressure (i.e., gas cylinders, wells)	(L M H) Environment (i.e., heat, cold, ice) (M H)	
Chemical (i.e., fuel, acid, paint)  M H)  Biological (i.e., ticks, poison ivy)	(L)M H) Radiation (i.e., alpha, sun, laser) (L M/H)	
Sound (i.e., machinery, generators) (L M H) Personal (i.e. alone, night, not fit)	M H) Driving (i.e. car, ATV, boat, dozer) M H)	
Ocontinue AFRACKAPITOCOS KomuPage 2		