

GETTLER-RYAN INC.

TRANSMITTAL

UUL 1 0 2002

CC:

RE:

June 17, 2002 G-R #180225

TO:

Mr. David B. De Witt Phillips 66 Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

73 Digital Drive, Suite 100 Novato, California

ERI, Inc.

Mr. Paul Blank

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 .

#1156

4276 MacArthur Boulevard

Tosco 76 Service Station

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	June 3, 2002	Groundwater Monitoring and Sampling Report Second Quarter - Event of April 25, 2002

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *July 8, 2002*, this report will be distributed to the following:

Ms. Eva Chu, Alameda County Health Care Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 Mr. Bob Hale, Alameda County Public Works Agency, Water Resources Section, 951 Turner Court, Suite 300, Hayward, CA 94545

Enclosure

June 3, 2002 G-R Job #180225

Mr. David B. De Witt Phillips 66 Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: Second Quarter Event of April 25, 2002

Groundwater Monitoring & Sampling Report

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

No. 6882

Sincerely,

Deanna L. Harding

Project Coordinator

Doughs J(Lee

Senior Geologist, R.G. No. 6882

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

1156.gml

REVISED DATE

PROJECT NUMBER REVIEWED BY 180225

DATE April 25, 2002

FILE NAME: P:\Enviro\TOSCO\1156\Q02-1156.DWG | Layout Tab: Pol2

REVISED DATE

PROJECT NUMBER REVIEWED BY 180225

April 25, 2002

DATE

Table 1
Groundwater Monitoring Data and Analytical Results

					Product							
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-D	TPH-G	В	T	E	X	MTBE
TOC*(fk)		(ft.)	(ft. bgs)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(pph)	(ppb)
MW-1												
174.86	07/20/995	7.50	5.0-25.0	167.36		$16,000^2$	120,000	11,000	27,000	3,300	18,000	ND ¹
	09/28/99	8.75		166.11	<0.01	2,410 ²	6,020 ⁶	1,030	1,040	68.5	412	321/333 ³
	01/07/00	9.05		165.83**	0.02	7,870 ^{2,4}	$72,700^6$	7,410	13,900	2,070	9,620	ND1
	03/31/00	7.18		167.68	0.00	$3,600^2$	92,000 ⁶	10,000	23,000	3,200	14,000	ND [†]
	07/14/00	7.68		167.18	0.00	$8,580^{2}$	108,000 ⁶	8,250	18,700	3,750	17,800	ND¹
	10/03/00	7.99		166.87	0.00	$9,260^{2}$	96,000 ⁶	8,760	20,000	3,350	15,600	ND^{I}
	01/03/01	9.18		165.68	0.00	11,000*	37,000 ⁶	5,800	13,000	1,700	8,100	2,200
	04/04/01	8.05		166.81	0.00	14,0008	86,900 ⁶	7,780	18,500	2,470	11,800	¹ ND/481 ³
	07/17/01	7.01		167.85	0.00	2,2008	79,000 ⁶	5,600	11,000	2,800	12,000	¹ ND/230 ³
177.54	10/03/01	7.89		169.65	0.00		99,000 ⁶	8,200	18,000	3,000	16,000	<2,500
	10/05/01	7.91		169.63	0.00	$13,000^2$						
	01/28/02	5.98		171.56	0.00	4,400 ¹¹	110,00012	8,900	19,000	2,600	12,000	3,000/440 ³
	04/25/02	6.19		171.35	0.00	9,000 ¹³	93,000	8,100	18,000	3,000	15,000	810/670 ³
MW-2											,	
173.01	07/20/99	5.40	5.0-25.0	167.61			אם י	ND'	ND	ND	ND ¹	4,500/11,000 ³
	09/28/99	5.60		167.41	0.00		1,390 ⁶	124	ND	62.9	43.1	5,280/6,150 ³
	01/07/00	5.92		167.09	0.00		1,450 ⁶	99.0	NĎ¹	23.8	16.0	33,100
	03/31/00	5.23		167.78	0.00	••	ND ¹	42	ND	ND ¹	ND ¹	17,000
	07/14/00	5.52		167.49	0.00		ND!	44.7	ND	ND ^I	ND ¹	66,500
	10/03/00	6.04		166.97	0.00		ND ¹	56.7	ND	ND ¹	^י םא	57,500
	01/03/01	6.42		166.59	0.00	. 	ND	ND	ND'	ND^1	ND¹	49,000
	04/04/01	6.14		166.87	0.00		NDI	ND ¹	NDI	ND	ND ¹	38,700/37,800
	07/17/01	5.30		167.71	0.00		ND	ND	ND	ND ¹	ND ¹	65,000/56,000
173.50	10/03/01	7.38		166.12	0.00		<250	2.7	<2.5	<2.5	<2.5	14,000/18,000
175.50	01/28/02	5.68		167.82	0.00		<250	2.5	4.4	2.8	7.4	11,000/10,000
	04/25/02	5.82		167.68	0.00		<50	<0.50	< 0.50	< 0.50	<0.50	8,400/8,100 ³

As of 04/25/02

Table 1
Groundwater Monitoring Data and Analytical Results

						Oakland, Cal	Horma					
WELL ID/	DATE	DTW	S.I.	GWE	Product Thickness	TPH-D	TPH-G	В	т	E	X	MTBE
TOC*(fL)		(ft.)	(ft. bgs)	(msl)	(fL)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-3								-				
178.44	07/20/99	8.50	5.0-25.0	169.94			1,000	76	50			
	09/28/99	8.31		170.13	0.00		1,860 ⁶	174	52 05.4	7 9	76	330
	01/07/00	8.56		169.88	0.00	_	28,400 ⁶	2,450	95.4 3.000	71.8	135	443/288 ³
	03/31/00	8.42		170.02	0.00		26,000 ⁶	1,300	3,090	1,560	3,910	1,940
	07/14/00	8.61		169.83	0.00		24,500 ⁶	1,850	2,900	2,600	3,500	2,800
	10/03/00	9.14		169.30	0.00		23,000 ⁶	1,910	2,630	2,750	3,900	548
	01/03/01	9.06		169.38	0.00		14,000 ⁶	1,600	2,020	2,400	2,680	965
	04/04/01	8.98		169.46	0.00		19,600 ⁶	1,150	1,100	2,300	1,400	3,300
	07/17/01	7.46		170.98	0.00		26,000 ⁶		1,470	2,100	1,820	1,050/450 ³
178.13	10/03/01	9.81		168.32	0.00		22,000 ⁶	1,500	2,100	2,100	3,400	¹ ND/350 ³
	01/28/02	7.39		170.74	0.00		30,000 ¹²	830 880	1,900	1,700	3,000	<1,000
	04/25/02	7.86		170.27	0.00		18,000	500	2,600 2,000	1,800 1 ,300	4,300 3,800	3,200/210 ³ 500/260 ³
							,		2,000	1,000		200,240
MW-4							e.					
179.10	07/20/99	7.40	5.0-25.0	171.70	***		69	2.7	0.77	ND	7.1	100
	09/28/99	7.19		171.91	0.00		4,050 ⁶	1,250	72.0	51.3	133	416/459 ³
	01/07/00	8.98		170.12	0.00		7,010 ⁶	2,260	167	271	276	764
	03/31/00	7.26		171.84	0.00		5,500 ⁶	1,800	230	330	400	1,000
	07/14/00	7.67		171.43	0.00		7,940 ⁶	2,810	332	450	247	1,530
	10/03/00	8.12		170.98	0.00		11,400 ⁶	3,110	437	519	816	1,040
	01/03/017	9.10		170.00	0.00	••	8,600 ⁶	2,500	340	480	960	850
	04/04/01	8.63		170.47	0.00		9,950 ⁶	2,380	126	416	725	1,140/819 ³
	07/17/01	6.49		172.61	0.00		10,0006	2,300	110	410	800	1,200/900 ³
78.96	10/03/01	7.01		171.95	0.00		7,800 ⁶	2,100	85	380	390	580/820 ³
	01/28/02	6.21		172.75	0.00		12,00012	2,100	130	350	670	1,100/500 ³
	04/25/02	5.49		173.47	0.00		3,300	1,300	42	270	250	680/600 ³

Table 1
Groundwater Monitoring Data and Analytical Results

						Oakiana, Can						
					Product							
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-D	TPH-G	В	Т	E	X	MTBE
TOC*(ft.)		(ft.)	(ft. bgs)	(msl)	(JL)	(ppb)	(ppb)	(ppb)	(ррв)	(ppb)	(ppb)	(ppb)
MW-5												
169.18	10/03/0110	2.81		166.37	0.00		<50	<0.50	<0.50	<0.50	<0.50	1,800/2,100 ³
	01/28/02	1.88		167.30	0.00		<50	<0.50	<0.50	<0.50	<0.50	650/550 ³
	04/25/02	1.99		167.19	0.00	-	< 50	<0.50	<0.50	<0.50	<0.50	2,200/2,400 ³
MW-6												
169.04	10/03/01 10	2.87		166.17	0.00	••	<50	<0.50	<0.50	<0.50	<0.50	200/270 ³
	01/28/02	1.82		167.22	0.00		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	04/25/02	2.01		167.03	0.00		<50	<0.50	<0.50	<0.50	<0.50	<2.5
MW-7												
171.64	10/03/0110	7.62		164.02	0.00		10,000 ⁹	210	<50	<50	800	35,000/40,000 ¹
	01/28/02	7.21		164.43	0.00		<1,000	<10	<10	<10	<10	42,000/38,000
	04/25/02	7.25		164.39	0.00		<5,000	660	<50	<50	<50	42,000/45,000 ³
Trip Blank												
TB-LB	07/20/99								D			
	09/28/99				·		ND	ND	ND	ND	ND	NĎ
	01/07/00						NĎ	ND	NĎ	ND	ND	ND
	03/31/00						ND	ND	ND	ND	ND	ND
	07/14/00			••			NĎ	ND	ND	NĎ	ND	NĎ
	10/03/00						ND	NĎ	ND	ND	ND	ND
	01/03/01						ND	ND	ND	ND	ND	ND
	04/04/01			· •			ND	ND	ND	NĎ	ND	ND
	07/17/01						ND	ND	ND	ND	ND	ND
	10/03/01						<50	<0.50	< 0.50	<0.50	< 0.50	<5.0

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC+(ft.)	DATE	DTW	S.I.	GWE	Product Thickness	TPH-D	TPH-G	В	T		x	MTBE
TOC (/II)		(ft.)	(ft. bgs)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(ppb)
TB-LB	10/05/01			 ,		*-	<50	<0.50	<0.50	<0.50	<0.50	<5.0
(cont)	01/28/02						<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	04/25/02						<50	<0.50	<0.50	<0.50	<0.50	<2.5

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TOC = Top of Casing

TPH-D = Total Petroleum Hydrocarbons as Diesel

(ppb) = Parts per billion

(ft.) = Feet

TPH-G = Total Petroleum Hydrocarbons as Gasoline

ND = Not Detected

DTW = Depth to Water

B = Benzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

T = Toluene

(ft. bgs) = Feet Below Ground Surface

E = Ethylbenzene

GWE = Groundwater Elevation

X = Xylenes

(msl) = Mean sea level

MTBE = Methyl tertiary butyl ether

- * TOC elevations were resurveyed in September 2001, by Morrow Surveying. TOC elevations are based on City of Oakland Benchmark No. 3967, (Elevation = 174.40 feet, msl).
- ** GWE has been corrected due to the presence of free product; correction factor: [(TOC DTW) + (Product Thickness x 0.77)].
- Detection limit raised. Refer to analytical reports.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- MTBE by EPA Method 8260.
- Laboratory analyzed sample past EPA recommended holding time.
- 5 Total Recoverable Petroleum Oil was ND.
- 6 Laboratory report indicates gasoline C6-C12.
- This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- 8 Laboratory report indicates unidentified hydrocarbons <C16.</p>
- 9 Laboratory report indicates weathered gasoline C6-C12.
- Well development performed.
- 11 Laboratory report indicates unidentified hydrocarbons C10-C28.
- Laboratory report indicates gasoline C6-C10.
- Laboratory report indicates hydrocarbon pattern is present in the requested fuel quantitation range but it does not resemble the pattern of the requested fuel.

Table 2
Groundwater Analytical Results

000 000		•			Oakiana, C	anionia					
WELL ID	DATE	ETHANOL	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	HVOCs	SVOCs
		(ppb)	(ppb)	(pph)	(pph)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)
MW-1	07/20/00			,							
141 44 - I	07/20/99		6	11,000 ³						ND¹	ND^2
	09/28/99		ND ⁶	333	ND^6	ND^6	ND^6			ND4	ND ⁵
	01/07/00									$ND^{7.8}$	ND ⁹
	03/31/00	m to						•=		11	ND ¹⁰
	07/14/00									ND^{12}	ND ¹³
	10/03/00									ND ¹⁵	ND ¹⁴
	01/03/01									ND ¹⁵	ND ¹⁶
	04/04/01	ND ⁶	ND ⁶	481	ND^6	ND^6	ND^6	ND ⁶	ND^6	ND ¹⁷	ND ₁₈
	07/17/01	ND ⁶	ND ⁶	230	ND^6	ND ⁶	ND^6	ND ⁶	ND^6	ND ²⁰	ND ¹⁹
	01/28/02		₩.	440							
	04/25/02	-		670	 .		~				
MW-2	09/28/99		ND^6	6,150	NĎ ⁶	ND ⁶	ND^6				
	04/04/01	ND^6	ND^6	37,800	ND^6	ND ⁶	ND ⁶	ND ⁶	ND ⁶		
	07/17/01	ND ⁶	ND^6	56,000	ND^6	ND ⁶	ND ⁶	ND ⁶	ND ⁶		
	10/03/01			18,000							
	01/28/02			10,000				<u></u>			
	04/25/02		-	8,100							_
		÷									
1W-3	09/28/99		ND ⁶	288	ND^6	ND ⁶	8.80				,
	04/04/01	ND^6	ND ⁶	450	ND ⁶	ND^6	ND ⁶	ND^6	ND^6		
	07/17/01	ND^6	ND^6	350	ND^6	ND^6	ND ⁶	ND^6	ND^6		
	01/28/02			210							
	04/25/02			260							

Table 2
Groundwater Analytical Results

WELLID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	HVOCs	SVOCs
		(ppb)	(ррв)	(ррв)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррв)
MW-4	09/28/99		ND ⁶	459	ND ⁶	ND^6	ND ⁶			••	
	04/04/01	ND^6	ND^6	819	ND^6	ND^6	ND^6	ND^6	ND^6		
	07/17/01	ND^6	ND^6	900	ND^6	ND ⁶	ND^6	ND^6	ND ⁶		
	10/03/01			820							
	01/28/02			500							
	04/25/02		-	600		-			-		
MW-5	10/03/01		••	2,100					 -		
	01/28/02			550							
	04/25/02		-	2,400			-				
MW-6	10/03/01			270							
1477 5	10/03/01			40,000		**			- -		
MW-7	10/03/01			38,000							
	01/28/02			45,000		_				•	
	04/25/02			42,000							

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TBA = Tertiary butyl alcohol

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

MTBE = Methyl tertiary butyl ether

EDB = 1,2-Dibromoethane

ND = Not Detected

DIPE = Di-isopropyl ether

HVOCs = Halogenated Volatile Organic Compounds

-- = Not Analyzed

ETBE = Ethyl tertiary butyl ether

SVOCs = Semi-Volatile Organic Compounds

- All HVOCs were ND except for Chlorobenzene at 12 ppb; 1,2-Dichlorobenzene (1,2-DCB) at 3.9 ppb; 1,1-Dichloroethane (1,1-DCA) at 2.0 ppb; 1,2-Dichloroethane (1,2-DCA) at 20 ppb; cis-1,2-Dichloroethene (cis-1,2-DCE) at 3.6 ppb and 1,2-Dichloropropane (1,2-DCP) at 0.92 ppb.
- All SVOCs were ND except for Benzyl alcohol at 37 ppb; 2,4-Dimethylphenol at 140 ppb; 2-Methylnaphthalene at 240 ppb; 4-Methylphenol at 27 ppb and Naphthalene at 600 ppb.
- Laboratory analyzed sample past EPA recommended holding time.
- All HVOCs were ND except for Benzene at 6,130 ppb; Ethylbenzene at 1,590 ppb; Naphthalene at 534 ppb; Toluene at 11,900 ppb; 1,2,4-Trimethylbenzene at 1,240 ppb; 1,3,5-Trimethylbenzene at 318 ppb and Total Xylenes at 7,360 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2,4-Dimethylphenol at 13.6 ppb; 2-Methylphenol at 87.4 ppb; 2-Methylphenol at 26.4; 4-Methylphenol at 35.6 and Naphthalene at 292 ppb.
- Detection limit raised. Refer to analytical reports.
- All HVOCs were ND (with a raised detection limit) except for Benzene at 8,380 ppb; Ethylbenzene at 2,380 ppb; Naphthalene at 1,050 ppb; n-Propylbenzene at 371 ppb; Toluene at 17,600 ppb; 1,2,4-Trimethylbenzene at 2,210 ppb; 1,3,5-Trimethylbenzene at 597 ppb and Total Xylenes at 10,800 ppb.
- 8 EPA Method 8260 for HVOCs.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 315 ppb and Naphthalene at 615 ppb.
- All SVOCs were ND except for Bis(2-ethylhexyl)phthalate at 10 ppb; 1,2-DCB at 6.2 ppb; 2-Methylnaphthalene at 73 ppb; 2-Methylphenol at 31 ppb; 4-Methylphenol at 18 ppb and Naphthalene at 140 ppb. Laboratory report indicates all SVOCs were analyzed outside the EPA recommended holding time.
- 11 Laboratory did not analyze for HVOCs.
- All HVOCs were ND (with a raised detection limit) except for Tetrachloroethene at 334 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 300 ppb and Naphthalene at 690 ppb.
- All SVOCs were ND (with a raised detection limit) except for Benzoic acid at 362 ppb; Bis(2-ethylhexyl)phthalate at 51.6 ppb; 2-Methylnaphthalene at 98.1 ppb; 4-Methylphenol at 28.9 ppb and Naphthalene at 361 ppb.
- ¹⁵ All HVOCs were ND (with a raised detection limit).
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 180 ppb and Naphthalene at 400 ppb.
- All HVOCs were ND except for cis-1,2-DCA at 3.4 ppb; 1,2-DCA at 5.7 ppb; Chlorobenzene at 5.6 ppb and 1,2-DCB at 4.6 ppb.
- All SVOCs were ND except for Benzoic acid at 28 ppb; Bis(2-ethylhexyl)phthalate at 55 ppb; 2-Methylnaphthalene at 78 ppb and Naphthalene at 490 ppb.

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS: (cont)

- All SVOCs were ND except for Bis(2-ethylhexyl)phthalate at 400 ppb; 1,2-DCB at 18 ppb; 2,4-Dimethylphenol at 16 ppb; 2-Methylphenol at 25 ppb; Naphthalene at 740 ppb and N-Nitrosodimethylamine at 7.7 ppb.
- Volatile Organic Compounds (VOCs) by EPA Method 8021B were ND with a raised detection limit.

ANALYTICAL METHODS:

EPA Method 8260 for Oxygenate Compounds EPA Method 8010 for HVOCs EPA Method 8270 for SVOCs

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Phillips 66 Company, the purge water and decontamination water generated during sampling activities is transported to Phillips 66 - San Francisco Refinery, located in Rodeo, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility#	1000	0 # 11	56	Job#	y:	1803	35	
Address: H	376 r	nac Art	huz	Date	: <u> </u>	4/25	102	<u> </u>
City:	<u>Duklo</u>	~D, C	A	Sam	pler:	A. 5m	+ \	
Well ID	M	w-1	Well Co	ndition: _	God	<u>. d</u>		
Well Diameter		J in.	Hydroca			Amount B		
Total Depth	_25	T. // ft.	Thicknes		(feet) 0.17	(product/wat 3" = 0.38		(Gallons)
Depth to Water	6	.19 _{ft.}	Factor (.50	12" = 5.80	1" = 0.66
Purge Equipment:	Dispos Bailer Suctio Grund	sable Bailer	vf <u>0.17</u> = <u>3</u>	Sampling Equipmen	t: Dis Bai Pre Gra	sposable Ba	eller	/·6 (gel.)
Starting Time: Sampling Time: Purging Flow R Did well de-wa	ete: <u>//</u> ete: <u>//</u>	A .	Wat om. Sedi If ye	s; Time: _	ption:	Shran ·	on Sunfo	saline e of wate
Time	Volume (gal.)	рH	Conductivi µmhos/cn		eratu re F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
1424	3	7.15	1021	[9.				• • • • • • • • • • • • • • • • • • • •
1437	8	7.27	1085		9.2		·	· ·
<u> 14 4</u> 고	12	6.95	1075		9.4		·	
SAMPLE ID	(#) - CON	TAINER R	LABORATOF	Y INFORMA	•	RATORY	·ANA	LYSES
MW-1	_	A VIAL		ICL	SEQUOI	Α	TPH(G)/btex/	
	1-11	fanl	У	ONE	11	·	7146	<u> </u>
COMMENTS: _								

WELL MONITORING/SAMPLING FIELD DATA SHEET.

Client/ Facility#	1000	0 # 1	156		Joba	#: <u>_</u>	1803	35	
Address: _	4376	Muc Ar	thur	· · · · · · · · ·	Date	e: <u> </u>	4/25/	02	
City:	Oukle	md, c	<u> </u>	·	Sam	pler:	A. 5	n.th	
Well ID	m	w-2	V	ell Conditio	n: _	Goo	ط		
Well Diamete	er <u></u>	<u>ئ in.</u>		ydrocarbon nickness:		···lfeetì	Amount B		
Total Depth		4.13 tt.	[·	Volume Factor (VF)	2* = (3" = 0.38		(Gallons) = 0.66
Depth to Wat		5.82 ft.	Ŀ	· · · · · · · · · · · · · · · · · · ·	·				
Purge Equipment:	Dispo Bailer Stack Suction	sable Bailer		Sa	mpling uipmen	t: Di Be Pr Gi	sposable Bailer essure Bailer rab Sample	er	7.> <u>(gal.)</u>
Starting Time Sampling Time Purging Flow Did well de-w	e: <u>1.</u> Rate: <u>1.</u>				lor:	<u>الحد</u> د ption: _	None	Odor: he	ne.
Time	Volume (gal.)	pH		ductivity thos/cm		crature	D.O.		(0al.) Alkalinity (ppm)
1242	3 w.L.	7.83 Down to		19 1, Lowe	-	0.5°	e mal!		-
1246	≈6 ≈ 10	7.35 6.90	-	11 811 94	19	7.7		ce Pursi	-1
SAMPLE ID	(#) - CON		LABOR	ATORY INI			RATORY	ANALY	vere.
nw-2		A VIAL	Y	HCL		SEQUOI		TPH(G)/btex/m	
							·		
COMMENTS:			1		1				

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility#	T035	0 # 1	156		Job#	/: <u> </u>	1803,	35	
Address:	13761	nac Ar	thur		Date	: <u></u>	4/25	102	
City:	Oakle	wd, c	A		Sam	pler:	A. 5	<u>Smith</u>	
Well ID	M	₩- 3	, v	Vell Conditio	ก: _	Goo	1		
Well Diameter	r) in.		ydrocarbon			Amount Ba		
Total Depth		5.05 ti	Г	hickness: Volume			(product/wat 3" = 0.38		(Gallons) • = 0.66
Depth to Wat	er <u>7</u>	.86 n	l .	Factor (VF)		6° = 1.		12" = 5.80	= 0.00
	_17.	. 19 x	VF <u>0.0</u>	<u> </u>	X 3 (case	: volume) =	Estimated Pu	rge Volume: _	6.7 (gal.)
Purge Equipment:	Bailer Stack Suction Grund	on			mpling uipmen	Bai Pre Gra	posable Ba ler ssure Baile ab Sample her:	er	
Secretary Times	. 13	15		Weather	Conditio	one.	Sunny		
Starting Time: Sampling Time		3 <i>5</i>							S Gasoli
Purging Flow	Rate:	1/4	nom.	_					
Did well de-w	ater?	<u> </u>		If yes;	ime: _	·	Volun	ne:	lgal.)
Time	Volume (gal.)	pН		nductivity mhos/cm		erature F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
1320	3	7.17		08	10	7.3			
1324	6	<u>6.62</u>		379		<u>8.9.</u>	 	·	
1330	9	6.66		336		19.1		·	·
						•			
SAMPLE ID	(#) - CON	ITAINER I	LABOI	RATORY IN		TION LABOI	YATORY	·ANAL	YSES -
MW-3	3 x v	DA VIAL	Υ	HCL		SEQUOI	A	TPH(G)/btex/	
	 		· · · · · ·	<u> </u>					
	+				 -	<u> </u>	<u> </u>		
		{		<u> </u>			 		
COMMENTS:			 			<u> </u>		<u> </u>	
					,				

9/97-fieldat.tm

WELL MONITORING/SAMPLING FIELD DATA SHEET.

Client/ Facility#	1000	0 # 1	156		Job#	':	1803	35	<i>.</i>
Address:	13761	Muc Ar	thur		Date		4/2	5/02	
City:	Oakle	<u>سی ر</u>	<u> </u>		Sam	pler:	A	Smith	
Well ID	<u>M</u>	w-4	v	Vell Condition	on: _	Goo	d		
Well Diameter		<u>ب</u> اب		lydrocarbon			Amount B	-	
Total Depth	2	5 3 (ft.	Г	hickness: Volume	2* ≃ O	(feet) .17	{product/wa		(Gallons) * = 0.66
Depth to Wate	er <u>5</u> .	49 11.		Factor (VF)		6" = 1		12" = 5.80	= 0.66
	19	82 x	VF 0.1	7 = 3.4	X 3 (rase	volume! =	Estimated D	urge Volume: _	· ·
Purge Equipment:		sable Bailer n fos -		Sa	mpling puipment	: Dis Bai Pre Gra	posable B	ailer) er	(gal.)
Starting Time: Sampling Time Purging Flow I Did well de-wa	e: <u>14</u> Rate: <u>≃</u>		apm.	Water Co	olor: <u> </u>	tion:		Oter Ca Odor: <u>Ve</u> ne:	s+
Time	Volume (gal.)	рН		nductivity mhos/cm	Tempe •}	crature :	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
1357	3.0	7.21		179	1	9.3			
1400	7.5	6.95		91		<u>'. 7</u>			
1405	1 5 12	6.75	_ 90	67		.9			·
									en al-
SAMPLE ID	(#) - CON	TAINER F	LABOF	RATORY IN		TION . LABOR	ATORY	ANAI	YSES -
MW-4	3 x vo	A VIAL	Υ	HCL		SEQUOI	Α	TPH(G)/btex/r	
	<u> </u>								
	 	- -					· .	···	
COMMENTS: _			unter	In w	ा वे	own to	12,	4 g: Lourer	Pum 12

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/ Facility#	Toss	0 # U	156	Job#:	1803	35	<u> </u>
Address: _	4376	Muc Ar	huz	Date:	4/25	102	
City:	Oakle	nd, c	A	_ Sampler:	Á. 5	mith	
Well ID	m	w-5	Well Condi	ition: <u>Go</u> e	هـــــــــــــــــــــــــــــــــــــ		
Well Diamete	er <u> </u>	J in.	Hydrocarbo		Amount B		
Total Depth	_2	5.39 ft.	Thickness:				(Gallons)
Depth to Wa	- 1	79 <u>#</u> .	Volume Factor (VF)	2° = 0.17 6° = 1		12" = 5.80	= 0.66
Purge Equipment:	Dispo Bailer Stack Suction Grund	sable Bailer		Ba Pro Gr	sposable Bailer essure Baile ab Sample	oiler) er	/ / . • (gal.)
Starting Time Sampling Time Purging Flow Did well de-w	ne: <u> 116</u> Rate: <u> 1.5</u>	95	Water	er Conditions: Color: <u>Light</u> ent Description: Time:	Brown Light	Odor: N 5, (+ (N	of much
Time	Volume (gal.)	pН	Conductivity µmhos/cm	Temperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
1048	4.5	6.92	948	19.8			•
1050	7.5	6.82	947	17.6			
1055	15	6.84	948	17.7			·
						 -	***
SAMPLE ID	(#) - CON			INFORMATION IV. TYPE LABO	RATORY	ANAL	YSES.
MW-5	3 x vc	A VIAL	Y НС1			TPH(G)/btex/r	
			<u> </u>				
COMMENTS:							
					_		

9/97-tieldet.trm

WELL MONITORING/SAMPLING FIELD DATA SHEET

Jobs	t: <u>1809.</u>	38
Date	: 4/2:	5/02
Sam	pler: <u>Andr</u>	er Smith
Well Condition: _	Good	
Hydrocarbon .	Amount B	
Factor (VF)	6* = 1.50	12" = 5.80
Sampling		_
	Bailer Pressure Baile Grab Sample Other:	
Weather Conditi	ons: <u>Overca</u>	ast.
Water Color: L.	ight Brown	Odor: none
	· · · · · · · · · · · · · · · · · · ·	
_ If yes; Time: _	Volum	ne: <u>(qal.)</u>
		ORP Alkalinity (mV) (ppm)
782 /7		
	<u>.</u>	ANALYSES
		TPH(G)/btex/mtbe
	22400 2.1	
	- ,	·
	Well Condition: Hydrocarbon Thickness: Volume Factor (VF) Weather Conditi Water Color: Sediment Descri If yes; Time: Conductivity	Sampler: Well Condition: Hydrocarbon Thickness: Volume Factor (VF) Sampling Equipment: Water Color: Water Color: Water Color: Light Brown Sediment Description: Sediment Description: Yolum Conductivity If yes; Time: Volum Conductivity If yes; Time: Volum Conductivity If yes; Time: Negrature If yes; Time: Ne

WELL MONITORING/SAMPLING FIELD DATA SHEET.

Client/ Facility#	Tose	11#0	<u>156</u>		Job#:	1803	35	
Address:	1376 1	nuc Art	huz		Date:	4/25	-/02	
City:	<u>Daklo</u>	al, ch	\	······································	Sampler:	4. 5 <u>n</u>	aith	
Well ID	M	<u>₩-7-</u>	W	ell Conditio	on: <u>Good</u>			
Well Diameter	<u>-</u> .	J in.	_	drocarbon	(feet)	Amount B		(Gallons)
Total Depth	_25	.51 ft.		olume	2" = 0.17	3" = 0.38		• = 0.66
Depth to Wate	<u>7.</u>	25 ft.	F	actor (VF)	6" = 1.	.50	12* = 5.80	
	<u> 18.</u> 2	<u>26</u> x v	F <u>0.1</u>	7 = <u>3.L</u>	X 3 (case volume) =	Estimated Pu	rge Volume: _	9.3 (gal.)
Purge Equipment:	Dispos Bailer Stack Suctio Grund	n			Bai Pre	posable Ba ler essure Baile		
			_			ab Sample her:		
Starting Time: Sampling Time Purging Flow F Did well de-wa	late: <u>1.5</u>	3 <i>5</i>	 m.	Water Co	Conditions: blor: <u>C(car (</u> Description: <u>A</u> Time:	vonc	Odor: <u>पु</u> र	s Petro
Time	Volume (gal.)	Нq		ductivity lhos/cm	Temperature •F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
1124	3	7.24	_/:	234	19.1			,
1127	7.5	6.78	_/2	08	18.2	-		·
1130	12	<u>6,78</u>	_/3	/3	<u> 18.8</u>			
SAMPLE ID	(#) - CON		ABOR		FORMATION TYPE LABOR	ATORY	ANAL	YSES -
MW-7	3 x vo	A VIAL	Υ	HCL	SEQUOI	A	TPH(G)/btex/	
	<u> </u>			.*		. •		
COMMENTS: _		W			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			·	·	· · · · · · · · · · · · · · · · · · ·			

9/97-fieldet.fm

<u></u>		GLO	BAL II	TO	600102	279	-									<u>U</u>	all	1-0	7-1	JUST	ogy-kecora
02 NO:078	i i		Faulty Stant Pro	, Addre Jost He	<u>4276</u>	0(76) SS# MacArthu 180225.8	r, Oa 5	klan				- - - -			~~~\	925	i-27 <i>1</i>	e DeV -2384 Lytic		WZ	04465
28 TOSC	n in in	A	ddress, _	67 nteet (47 SII	Ryan Inc RRA COURT Ranna L. 1 25)551+759	,sult lardin	E J.	DUBL			- B s	iboratory iemples (ialientien ignotere	Callectic	· Harris i by (He	nije)''''		rene		ا مار	
05/10/02 11 Semple Munther	Lab Semple Mamber	Manber of Containers	Metrics A = Ar S = Sea A = Ar V = Veter C = Charoed	Nos 6 = Greb C = Composits) 	Sample Preservedon	load (Yes or No)	totosi secular	1974 Dissel (2015)	Off and Green (3620)	Paradia Helensters (p010)	Purposale Arometica (6020)	Pargeoste Organica (12.44)	8.	CLOTAZAM CLOTAZAM (Tare or M)						DO NOT BILL TB-LB ANALYSIS Run MTBE by 8260 on all 8020 MTBE hits.
B-LB	OIA	1	W	6	930	HCL	Y	X					 				ļ	بزا	ļ <u>.</u>	<u> </u>	
N WM-1			w	G	- 	ne peo/Hen	1	X	X				 					-		<u> </u>	•
8 Mw-2		3	w		1255		 	Ŝ		-		 	╁──	-	}		 	 		╂	
8 4w-3	2-	3	w		1335	1	┝╼┾╌	×					-	-			 	 	1	1	•
5 4w-5	25	3	W	╁┼	1414	1 .	┝╌┼	×		-		<u> </u>	+-	 	 			<u> </u>	 	1-	•
(m. /	06	3	 		1100		╀╌┼	X ×	}—	┼─	 		+	1	 		1	-	1	1	
(My - 6	07	3	 	1	1025	+.	士	×		\vdash	-	-	1								
<u>MW-7</u>	OR W	3		- *	7177		-	 	,	1	1										
	╁───	 —	 	-			 		 	1	1									Ŀ	
	 	-	 	-			 									•		:			
			 	1	1-		-														
ਤੁ	1	1	1 · ·	1										_	<u> </u>						
YTICAL	1		1	丅								Ľ,			<u>Ļ</u>	<u> </u>	<u> </u>	╁—	<u></u>	<u> </u>	
W Smithed by	(Signoluse))	1		-R I		Data/Pera 4/25/02 160		polyed 1	y (Sign	ohev)			Cerporites	ition	Del	a/Time			Turn /	2	hno (Cirulo Chalso) 4 Hrs.
A Inchese B	(Signature)			Destro		Date/Time		pohred (y (Sign	eturo)			()reastes	t i on		o/Time				6	5 Hrv. Daye L.Daye
Studneyed B	y (Signature)		Ort	ر الاموارسر	PF)	Dato/Rimo				notury	ey (Sign	etero)			21/2	•/Tim•	1605 2	1	(

10 May, 2002

Deanna L. Harding Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

MAY 102002

Carrier Commission (1960).

RE: Tosco

Sequoia Report: W204465

Enclosed are the results of analyses for samples received by the laboratory on 25-Apr-02 16:05. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Chan

Charlie Westwater Project Manager

CA ELAP Certificate #1271

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	W204465-02	Water	25-Арт-02 14:45	25-Apr-02 16:05
MW-2	W204465-03	Water	25-Apr-02 12:55	25-Apr-02 16:05
MW-3	W204465-04	Water	25-Apr-02 13:35	25-Apr-02 16:05
MW-4	W204465-05	Water	25-Арт-02 14:10	25-Apr-02 16:05
MW-5	W204465-06	Water	25-Apr-02 11:00	25-Apr-02 16:05
MW-6	W204465-07	Water	25-Apr-02 10:25	25-Арт-02 16:05
MW-7	W204465-08	Water	25-Apr-02 11:35	25-Apr-02 16:05

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (W204465-01) Water San	npled: 25-Apr-02 09:30	Receive	d: 25-Ap	r-02 16:05					
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/l	1	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Benzene	ND	0.50	11	н	*	*	"	11	
Toluene	ND	0.50	. 18	н	•	u	"	Ħ	
Ethylbenzene	ND	0.50	*	И	n	tt	17	п	
Xylenes (total)	ND	0.50	•	п	**	"	**	n	
Methyl tert-butyl ether (MTBE)	ND	2.5	n	II	11	11	TI TI		
Surrogate: a,a,a-Trifluorotoluene		115 %	70-	130	"	"	"	и	<u> </u>
MW-1 (W204465-02) Water Sam	pled: 25-Apr-02 14:45	Received	l: 25-Api	-02 16:05					
Purgeable Hydrocarbons (C6-C12)	93000	10000	ug/l	200	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Benzene	8100	100	Ħ	н	п	11	Ħ	11	
Toluene	18000	100		11	n	ŧτ		н .	
Ethylbenzene	3000	100	н	11	"	**	4	н	
Xylenes (total)	15000	100	н	H	H	**		n	
Methyl tert-butyl ether (MTBE)	810	500	п	*	"	11	u	н	Q-281
Surrogate: a,a,a-Trifluorotoluene		109 %	70-	130	n	,,	н	"	
MW-2 (W204465-03) Water Sam	pled: 25-Apr-02 12:55	Received	l: 25-Api	-02 16:05	_				_
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/l	1	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Benzene	ND	0.50	n	*	11	**	"	11	
Toluene	ND	0.50	n	н	11	Ħ	.#1	и	
Ethylbenzene	ND	0.50	n	н	Ħ	Ħ	π ′	H	
Xylenes (total)	ND	0.50	11	**	11	"	**	••	
Surrogate: a,a,a-Trifluorotoluene		100 %	70-	130	#	"	#	fr	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

		Reporting				·			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (W204465-03RE1) Water	Sampled: 25-Apr-02 1	2:55 Rec	eived: 25	-Apr-02 10	5: 05				
Methyl tert-butyl ether (MTBE)	8400	1200	ug/l	500	2E02003	07-May-02	08-May-02	EPA 8015M/8021	Q-28
Surrogate: a,a,a-Trifluorotoluene		109 %	70-	130	n	"	"	"	
MW-3 (W204465-04) Water Sam	pled: 25-Apr-02 13:35	Received	l: 25-Apr	r-02 16:05				_	
Purgeable Hydrocarbons (C6-C12)	18000	5000	ug/l	100	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Benzene	500	50	11	"	*1	••	**	n	
Toluene	2000	50	Ħ	tr	**	n	H	₩	
Ethylbenzene	1300	50	**	H	**	n	u	**	
Xylenes (total)	3800	50	**	Ħ	11	31	H	"	
Methyl tert-butyl ether (MTBE)	500	250		n .	"	Ħ			Q-28b
Surrogate: a,a,a-Trifluorotoluene		101 %	70-	130	"	"	m	"	
MW-4 (W204465-05) Water Sam	pled: 25-Apr-02 14:10	Received	l: <u>25-A</u> pi	-02 16:05					
Purgeable Hydrocarbons (C6-C12)	3300	500	ug/l	10	2E02003	09-May-02	09-May-02	EPA 8015M/8021	
Benzene	1300	5.0	Ħ	Ħ	#	11	. 11	"	
Toluene	42	5.0	**	tı	**	"	"	*	
Ethylbenzene	270	5.0	"	11	H	11	11	u u	
Xylenes (total)	250	5.0	**	*1	*1	11	11		
Methyl tert-butyl ether (MTBE)	680	25	п		"	11	11		Q-28a
Surrogate: a,a,a-Trifluorotoluene		116%	70-	130	77	"	h	tr	
MW-5 (W204465-06) Water Sam	oled: 25-Apr-02 11:00	Received	: <u>25-Apr</u>	-02 16:05					
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/l	1	2E02003	06-May-02	06-May-02	EPA 8015M/802]	
Benzene	ND	0.50	*	•	"	н	u	11	
Toluene	ND	0.50	ŧI	Ħ	**	н	**	,,,	4
Ethylbenzene	ND	0.50	**	n	77	н	H		
Xylenes (total)	ND ND	0.50		H	н	ıı	**	"	
Surrogate: a,a,a-Trifluorotoluene	-	109 %	70-	130	"	"	"	"	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-5 (W204465-06RE1) Water	Sampled: 25-Apr-02 1	1:00 Rec	eived: 25	-Apr-02 16	5:05				
Methyl tert-butyl ether (MTBE)	2200	250	ug/l	100	2E02003	08-May-02	08-May-02	EPA 8015M/8021	Q-28
Surrogate: a,a,a-Trifluorotoluene		103 %	70-	130	"	"	"	"	
MW-6 (W204465-07) Water San	ipled: 25-Apr-02 10:25	Received	: 25-Apr	-02 16:05			<u>. </u>		
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/l	1	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Benzene	ND	0.50	11	1)	**	"	H "	11	
Toluene	ND	0.50	11	n	11	11	tr	11	
Ethylbenzene	ND	0.50	11	Ħ	H	11	ŧŧ	11	
Xylenes (total)	ND	0.50	**	u	"	. 10	,,	н	
Methyl tert-butyl ether (MTBE)	ND	2.5	**	**	**	h	**	н	
Surrogate: a,a,a-Trifluorotoluene		99.3 %	70-	130	*	"	п	n	
MW-7 (W204465-08) Water San	pled: 25-Apr-02 11:35	Received	: 25-Apr	-02 16:05					
Purgeable Hydrocarbons (C6-C12)	ND	5000	ug/l	100	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Benzene	660	50	**	**		"	11	11	QR-04
Toluene	ND	50	rr		"	n	71	67	`
Ethylbenzene	ND	50	н	**	**	**		77	
Xylenes (total)	ND	50	н		**		**	77	
Surrogate: a,a,a-Trifluorotoluene		79.3 %	70-	130	m	и	"	"	
MW-7 (W204465-08RE1) Water	Sampled: 25-Apr-02 11	:35 Rece	ived: 25	-Apr-02 16	i:05		· .		
Methyl tert-butyl ether (MTBE)	42000	1200	ug/l	500	2E02003	06-May-02	06-May-02	EPA 8015M/8021	
Surrogate: a,a,a-Trifluorotoluene		97.0 %	70-	130	. "	. "	. "	,	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Diesel Hydrocarbons (C10-C23) by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W204465-02) Water	Sampled: 25-Apr-02 14:45	Received:	25-Apr	r-02 16:05					
Diesel Range Hydrocarbons (C10-C28)	9000	250	ug/l	5	2E08011	08-May-02	09-May-02	EPA 8015M	HC-12
Surrogate: n-Octacosane		71.7 %	50-	150	н	n	n	н	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

MTBE Confirmation by EPA Method 8260B Sequoia Analytical - Walnut Creek

	20940		,	***************************************	CICCR				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1 (W204465-02) Water Sampled	: 25-Apr-02 14:45	Received	l: 25-Apr-	02 16:05					
Methyl tert-butyl ether (MTBE)	670	20	ug/l	10	2E09009	09-May-02	09-May-02	EPA 8260B	
Surrogate: Dibromofluoromethane		97.2 %	50-1	50	,,	"	u u	m	
Surrogate: 1,2-Dichloroethane-d4		104 %	50-1	50	"	"	**	*	•
MW-2 (W204465-03) Water Sampled	: 25-Apr-02 12:55	Received	: 25-Apr-	02 16:05					
Methyl tert-butyl ether (MTBE)	8100	200	ug/l	100	2E09009	09-May-02	09-May-02	EPA 8260B	
Surrogate: Dibromofluoromethane		96.8 %	50-1	50	#	n	Ħ	"	
Surrogate: 1,2-Dichloroethane-d4		99.6 %	50-1	50	"	и	**	n .	
MW-3 (W204465-04) Water Sampled	25-Apr-02 13:35	Received	: 25-Apr-	02 16:05					
Methyl tert-butyl ether (MTBE)	260	10	ug/l	5	2E09009	09-May-02	09-May-02	EPA 8260B	
Surrogate: Dibromofluoromethane		94.8 %	50-1	50	#	ır	"	н	
Surrogate: 1,2-Dichloroethane-d4		100 %	50-1	50	u	rr r	"	n	
MW-4 (W204465-05) Water Sampled:	25-Apr-02 14:10	Received	: 25-Apr-	02 16:05					_
Methyl tert-butyl ether (MTBE)	600	10	ug/l	5	2E09009	09-May-02	09-May-02	EPA 8260B	
Surrogate: Dibromofluoromethane		98.2 %	50-1	50	n	"	п	"	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	50-1	50	"	*	"	"	
MW-5 (W204465-06) Water Sampled:	25-Apr-02 11:00	Received	: 25-Apr-	02 16:05			-		
Methyl tert-butyl ether (MTBE)	2400	40	ug/l	20	2E09009	09-May-02	09-May-02	EPA 8260B	
Surrogate: Dibromofluoromethane		97.6%	50-1	50	**	n	Ir	"	-
Surrogate: 1,2-Dichloroethane-d4		97.0 %	50-1	50	п	μ		H	
MW-7 (W204465-08) Water Sampled:	25-Apr-02 11:35	Received	: 25-Apr-	02 16:05					
Methyl tert-butyl ether (MTBE)	45000	400	ug/I	200	2E09009	09-May-02	09-May-02	EPA 8260B	
Surrogate: Dibromofluoromethane		96.4 %	50-1	50	*	ır	"	п	
Surrogate: 1,2-Dichloroethane-d4		97.6 %	50-1	50	**	Ħ	n	Ħ	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2E02003 - EPA 5030B P/T								-		
Blank (2E02003-BLK1)				Prepared of	& Analyze	ed: 06-Ma	y-02			•••
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/I	_			-			
Benzene	ND	0.50	n							
Toluene	ND	0.50	**							
Ethylbenzene	ND	0.50	н '							
Xylenes (total)	ND	0.50	"							-
Methyl tert-butyl ether (MTBE)	ND	2.5								
Surrogate: a,a,a-Trifluorotoluene	31.7		n	30.0		106	70-130		_	-
Blank (2E02003-BLK2)	<u> </u>			Prepared o	& Analyze	ed: 07-Ma	y-02			
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/I					- <u>-</u>		<u> </u>
Benzene	ND	0.50	*							
Toluene	· ND	0.50	Ħ					•		
Ethylbenzene	ND	0.50	n							
Xylenes (total)	ND	0.50	н		-					
Methyl tert-butyl ether (MTBE)	ND	2.5	н							
Surrogate: a,a,a-Trifluorotoluene	31.6		"	30.0		105	70-130			
Blank (2E02003-BLK3)				Prepared a	& Analyze	ed: 08-Ma	y-02			
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/l				-	· · · · · · · · · · · · · · · · · · ·		
Benzene	ND	0.50	"							
Toluene	ND	0.50	***							
Ethylbenzene	ND	0.50	11							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether (MTBE)	ND	2.5	**							
Surrogate: a,a,a-Trifluorotoluene	32.0		н	30.0		107	70-130			
Blank (2E02003-BLK4)				Prepared	& Analyz	ed: 09-Ma	y-02			
Purgeable Hydrocarbons (C6-C12)	ND	50	ug/l							
Benzene	ND	0.50	#							
Toluene	ND	0.50	11							
Ethylbenzene	ND	0.50	**							
Kylenes (total)	ND	0.50	**							
Methyl tert-butyl ether (MTBE)	ND	2.5	#							
Surrogate: a,a,a-Trifluorotoluene	32.9		п	30.0		110	70-130	·		•

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2E02003 - EPA 5030B P/T								." 1		
LCS (2E02003-BS1)				Prepared	& Analyze	d: 06-Ma	y-02		 	
Benzene	19.8	0.50	ug/l	20.0		99.0	70-130		. ,	
Toluene	17.7	0.50	**	20.0		88.5	70-130			
Ethylbenzene	18.9	0.50	**	20.0		94.5	70-130			
Xylenes (total)	54.3	0.50	47	60.0		90.5	70-130			
Surrogate: a,a,a-Trifluorotoluene	31.0	· · · · · · · · · · · · · · · · · · ·	"	30.0		103	70-130			
LCS (2E02003-BS2)				Prepared	& Analyze	d: 07-Ma	y-02			
Benzene	20.7	0.50	ug/l	20.0		104	70-130			
Toluene	18.5	0.50	н	20.0		92.5	70-130			
Ethylbenzene	19.1	0.50	Ħ	20.0		95.5	70-130			
Xylenes (total)	57.9	0.50	19	60.0		96.5	70-130			
Surrogate: a,a,a-Trifluorotoluene	32.8		**	30.0		109	70-130			
LCS (2E02003-BS3)				Prepared	& Analyze	d: 08-Ma	y-02			
Benzene	19.6	0.50	ug/l	20.0	-	98.0	70-130			
l'Oluene	17.7	0.50	**	20.0		88.5	70-130			
Bthylbenzene	17.3	0.50	**	20.0		86.5	70-130			
Xylenes (total)	56.0	0.50	•	60.0		93.3	70-130			
Surrogate: a,a,a-Trifluorotoluene	31.6		n	30.0	· · · · · · · · · · · · · · · · · · ·	105	70-130			
LCS (2E02003-BS4)				Prepared	& Analyze	d: 09-Ma	y-02			
Benzene	19.7	0.50	սջ/1	20.0	- · ·	98.5	70-130			
Toluene	17.5	0.50	n	20.0		87.5	70-130			
Ethylbenzene	18.4	0.50	н	20.0		92.0	70-130			
Xylenes (total)	52.9	0.50	11	60.0		88.2	70-130			
Surrogate: a,a,a-Trifluorotoluene	30.9		H	30.0		103	70-130			
LCS Dup (2E02003-BSD1)				Prepared	& Analyze	ed: 06-Ma	y-02			
Benzene	18.8	0.50	ug/l	20.0		94.0	70-130	5.18	20	
l'oluene	17.7	0.50	H	20.0		88.5	70-130	0.00	20	
Ethylbenzene	17.6	0.50	н	20.0		88.0	70-130	7.12	20	
Kylenes (total)	55.7	0.50	11	60.0		92.8	70-130	2.55	20	
Surrogate: a,a,a-Trifluorotoluene	29.9		"	30.0		99.7	70-130	-7 		

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2E02003 - EPA 5030B P/T										
Matrix Spike (2E02003-MS1)	Sou	rce: W2044	81-05	Prepared	& Analyze	ed: 06-Ma	y-02			
Веплепе	23.1	0.50	ug/l	20.0	ND	116	70-130			
Toluene	20.3	0.50	**	20.0	ND	102	70-130			
Ethylbenzene	20.9	0.50	"	20.0	ND	104	70-130			
Xylenes (total)	62.1	0.50	*1	60.0	ND	104	70-130			
Surrogate: a,a,a-Trifluorotoluene	37.4	-	"	30.0		125	70-130			
Matrix Spike Dup (2E02003-MSD1)	Sou	rce: W2044	81-05	Prepared	& Analyz	ed: 06-Ma	y-02			
Benzene	20.2	0.50	ug/l	20.0	ND	101	70-130	13.4	20	
Foluene	18.6	0.50	11	20.0	ND	93.0	70-130	8.74	20	
Ethylbenzene	19.4	0.50	п	20.0	ND	97.0	70-130	7.44	20	
Xylenes (total)	57.6	0.50	II	60.0	ND	96.0	70-130	7.52	20	
Surrogate: a,a,a-Trifluorotoluene	30.4		"	30.0		101	70-130			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Diesel Hydrocarbons (C10-C23) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2E08011 - EPA 3510B										
Blank (2E08011-BLK1)	Prepared: 08-May-02 Analyzed: 09-May-02									
Diesel Range Hydrocarbons (C10-C28)	ND	50	ug/l	•						
Surrogate: n-Octacosane	101		"	100		101	50-150			
LCS (2E08011-BS1)	Prepared: 08-May-02 Analyzed: 09-May-02									
Diesel Range Hydrocarbons (C10-C28)	316	50	ug/l	500		63.2	60-140			·
Surrogate: n-Octacosane	90.3		.,	100	·	90.3	50-150			
LCS Dup (2E08011-BSD1)	Prepared: 08-May-02 Analyzed: 09-May-02									
Diesel Range Hydrocarbons (C10-C28)	332	50	ug/l	500		66.4	60-140	4.94	50	
Surrogate: n-Octacosane	91.3		11	100		91.3	50-150			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported:

10-May-02 11:23

MTBE Confirmation by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2E09009 - EPA 5030B (P/T)										
Biank (2E09009-BLK1)	Prepared & Analyzed: 09-May-02									
Methyl tert-butyl ether (MTBE)	ND	2.0	ug/l		*	•		· <u>-</u>		, -
Surrogate: Dibromofluoromethane	48.7		"	50.0		97.4	50-150	·····		
Surrogate: 1,2-Dichloroethane-d4	48.7		"	50.0		97.4	50-150			
LCS (2E09009-BS1)				Prepared a	& Analyze	d: 09-Ma	v-02			
Methyl tert-butyl ether (MTBE)	51.0	2.0	ug/l	50.0		102	70-130			
Surrogate: Dibromofluoromethane	49.7		**	50.0		99.4	50-150	-		
Surrogate: 1,2-Dichloroethane-d4	50.2		"	50.0		100	50-150			
LCS Dup (2E09009-BSD1)	Prepared & Analyzed: 09-May-02									
Methyl tert-butyl ether (MTBE)	51,9	2.0	ug/l	50.0		104	70-130	1.75	25	
Surrogate: Dibromofluoromethane	49.4		#	50.0		98.8	50-150			
Surrogate: 1,2-Dichloroethane-d4	49,2		"	50.0		98.4	50-150			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

dry

RPD

Sample results reported on a dry weight basis

Relative Percent Difference

Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 10-May-02 11:23

Notes and Definitions

HC-12	Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
Q-28	The opening calibration verification standard was outside acceptance criteria by 1.5%. Although the Laboratory Control Sample verified the accuracy of the batch, this should be considered in evaluating the data for its intended purpose.
Q-28a	The opening calibration verification standard was outside acceptance criteria by 3%. Although the Laboratory Control Sample verified the accuracy of the batch, this should be considered in evaluating the data for its intended purpose.
Q-28b	The opening calibration verification standard was outside acceptance criteria by 9.5%. Although the Laboratory Control Sample verified the accuracy of the batch, this should be considered in evaluating the data for its intended purpose.
QR-04	Primary and confirmation results varied by greater than 40% RPD. The results may still be useful for their intended purpose.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported