March 15, 2002 G-R #180225

APR 0 2 2002

TO:

Mr. David B. De Witt

Phillips 66 Company 2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. Paul Blank

ERI, Inc.

73 Digital Drive, Suite 100

Novato, California

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE:

Tosco 76 Service Station

#1156

4276 MacArthur Boulevard

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1 .	March 8, 2002	Groundwater Monitoring and Sampling Report First Quarter - Event of January 28, 2002

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by March 28, 2002, this report will be distributed to the following:

Ms. Eva Chu, Alameda County Health Care Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 cc: Mr. Bob Hale, Alameda County Public Works Agency, Water Resources Section, 951 Turner Court, Suite 300, Hayward, CA 94545

Enclosure

March 8, 2002 G-R Job #180225

Mr. David B. De Witt Phillips 66 Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: First Quarter Event of January 28, 2002

Groundwater Monitoring & Sampling Report Tosco 76 Service Station #1156

4276 MacArthur Boulevard
Oakland, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map Groundwater Monitoring Data and Analytical Results

Table 1: Table 2:

Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

1156.qml

DATE

January 28, 2002

REVISED DATE

REVIEWED BY

CONCENTRATION MAP

Tosco 76 Service Station #1156 4276 MacArthur Boulevard

Oakland, California

DATE

180225

PROJECT NUMBER

January 28, 2002

REVISED DATE

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	DTW	S.I.	GWE	Product Thickness	TPH-D	TPH-G	В	T	E	X	MTBE
TOC*(fi.)		(ft.)	(ft. bgs)	(msl)	(fi.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(ppb)
MW-1												
174.86	07/20/995	7.50	5.0-25.0	167.36		16,000 ²	120,000	11,000	27,000	3,300	18,000	ND ¹
	09/28/99	8.75		166.11	< 0.01	$2,410^{2}$	$6,020^6$	1,030	1,040	68.5	412	321/333 ³
	01/07/00	9.05		165.83**	0.02	7,870 ^{2.4}	72,700 ⁶	7,410	13,900	2,070	9,620	ND^1
	03/31/00	7.18		167.68,	0.00	$3,600^2$	92,000 ⁶	10,000	23,000	3,200	14,000	ND^1
	07/14/00	7.68		167.18	0.00	$8,580^{2}$	108,000 ⁶	8,250	18,700	3,750	17,800	ND¹
	10/03/00	7.99		166.87	0.00	$9,260^{2}$	96,000 ⁶	8,760	20,000	3,350	15,600	ND^1
	01/03/01	9.18		165.68	0.00	11,000 ^R	37,000 ⁶	5,800	13,000	1,700	8,100	2,200
	04/04/01	8.05		166.81	0.00	14,000 ⁸	86,900 ⁶	7,780	18,500	2,470	11,800	¹ ND/481 ³
	07/17/01	7.01		167.85	0.00	2,200 ⁸	79,000 ⁶	5,600	11,000	2,800	12,000	¹ ND/230 ³
177.54	10/03/01	7.89		169.65	0.00		99,000 ⁶	8,200	18,000	3,000	16,000	<2,500
	10/05/01	7.91		169.63	0.00	13,000 ²						
	01/28/02	5.98		171.56	0.00	4,40011	110,00012	8,900	19,000	2,600	12,000	3,000/440 ³
MW-2												
173.01	07/20/99	5.40	5.0-25.0	167.61			ND ^t	ND_1	ND ¹	ND^1	ND'	4,500/11,000 ³
	09/28/99	5.60		167.41	0.00		1,390 ⁶	124	ND	62.9	43.1	5,280/6,150
	01/07/00	5.92		167.09	0.00		1,450 ⁶	99.0	ND	23.8	16.0	33,100
	03/31/00	5.23		167.78	0.00		ND ¹	42	ND ¹	ND	ND ¹	17,000
	07/14/00	5.52		167.49	0.00		ND'	44.7	ND	ND	ND¹	66,500
	10/03/00	6.04		166.97	0.00		ND^1	56.7	ND ¹	ND ¹	ИD	57,500
	01/03/01	6.42		166.59	0.00		ND ^L	ND	NDI	ND ^t	ND ¹	49,000
	04/04/01	6.14		166.87	0.00		ND^{t}	ND ¹	ND ¹	ND ¹	ND¹	38,700/37,80
	07/17/01	5.30		167.71	0.00		ND ^t	ND^1	ND ¹	ND ¹	ND ¹	65,000/56,00
173.50	10/03/01	7.38		166.12	0.00		<250	2.7	<2.5	<2.5	<2.5	14,000/18,00
•	01/28/02	5.68		167.82	0.00		<250	2.5	4.4	2.8	7.4	11,000/10,00

Table 1
Groundwater Monitoring Data and Analytical Results

					Product							
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-D	TPH-G	В	T	E	x	MTBE
TOC*(ft.)		(ft.)	(ft, bgs)	(msl)	(fL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-3												
178.44	07/20/99	8.50	5.0-25.0	169.94		**	1,000	76	52	79	76	330
	09/28/99	8.31		170.13	0.00		1,860 ⁶	174	95.4	71.8	135	443/288 ³
	01/07/00	8.56		169.88	0.00		28,400 ⁶	2,450	3,090	1,560	3,910	1,940
	03/31/00	8.42		170.02	0.00		26,000 ⁶	1,300	2,900	2,600	3,500	2,800
	07/14/00	8.61		169.83	0.00		24,500 ⁶	1,850	2,630	2,750	3,900	548
	10/03/00	9.14		169.30	0.00		22,000 ⁶	1,910	2,020	2,400	2,680	965
	01/03/01	9.06		169.38	0.00		14,000 ⁶	1,600	1,100	2,300	1,400	3,300
	04/04/01	8.98		169.46	0.00		19,600 ⁶	1,150	1,470	2,100	1,820	1,050/450 ³
	07/17/01	7.46		170.98	0.00		26,000 ⁶	1,500	2,100	2,100	3,400	¹ ND/350 ³
178.13	10/03/01	9.81		168.32	0.00		22,000 ⁶	830	1,900	1,700	3,000	<1,000
	01/28/02	7.39		170.74	0.00		30,00012	880	2,600	1,800	4,300	3,200/210 ³
MW-4		•										
179.10	07/20/99	7.40	5.0-25.0	171.70			69	2.7	0.77	ND	7.1	100
	09/28/99	7.19		171.91	0.00		4,050 ⁶	1,250	72.0	51.3	133	416/459 ³
	01/07/00	8.98		170.12	0.00		7,010 ⁶	2,260	167	271	276	764
	03/31/00	7.26		171.84	0.00		5,500 ⁶	1,800	230	330	400	1,000
	07/14/00	7.67		171.43	0.00		7,940 ⁶	2,810	332	450	247	1,530
	10/03/00	8.12		170.98	0.00		11,400 ⁶	3,110	437	519	816	1,040
	01/03/017	9.10		170.00	0.00		8,600 ⁶	2,500	340	480	960	850
	04/04/01	8.63		170.47	0.00		9,950 ⁶	2,380	126	416	725	1,140/819 ³
	07/17/01	6.49		172.61	0.00		10,000 ⁶	2,300	110	410	800	1,200/900 ³
178.96	10/03/01	7.01		171.95	0.00		7,800 ⁶	2,100	85	380	390	580/820 ³
	01/28/02	6.21		172.75	0.00		12,000 ¹²	2,100	130	350	670	1,100/500 ³

Table 1 Groundwater Monitoring Data and Analytical Results

						Oakianu, Can	Torma					
WELL ID/ TOC*(fi.)	DATE	DTW (ft.)	S.1. (ft. bgs)	GWE	Product Thickness (ft.)	TPH-D	TPH-G	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTRE (ppb)
								The second second	(PP-)	WPV)	(рро)	(рри)
MW-5												
169.18	10/03/01 10	2.81		166.37	0.00		<50	<0.50	< 0.50	<0.50	< 0.50	1,800/2,100 ³
	01/28/02	1.88		167.30	0.00		<50	<0.50	<0.50	<0.50	<0.50	650/550 ³
											3000	
MW-6			,									
169.04	10/03/01 10	2.87		166.17	0.00		<50	<0.50	<0.50	-O 50	-0.50	200/2703
	01/28/02	1.82		167.22	0.00		< 50	<0.50	<0.50 <0.50	<0.50 < 0.50	<0.50 < 0.50	200/270 ³
					0.00		250	\0.50	<0.30	<0.50	<0.50	<2.5
MW-7												
171.64	10/03/01 10	7.62		164.02	0.00		10,000 ⁹	210	<50	<50	800	35,000/40,000 ³
	01/28/02	7.21		164.43	0.00		<1,000	<10	<10	<10	<10	42,000/38,000 ³
Trip Blank												
TB-LB	07/20/99											
	09/28/99	+=					ND	ND	ND	ND	ND	ND
	01/07/00						ND	ND	ND	ND	ND	ND
	03/31/00						ND	ND	ND	ND	ND	ND
	07/14/00						ND	ND	ND	ND	ND	ND
	10/03/00						ND	ND	ND	ND	ND	ND
	01/03/01						ND	ND	ND	ND	ND	ND
•	04/04/01						ND	ND	ND	ND	ND	ND
	07/17/01						ND	ND	ND	ND	ND	ND
	10/03/01						<50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0
	10/05/01			••			<50	<0.50	<0.50	<0.50	< 0.50	<5.0
	01/28/02						<50	<0.50	< 0.50	< 0.50	<0.50	<2.5

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TOC = Top of Casing

TPH-D = Total Petroleum Hydrocarbons as Diesel

(ppb) = Parts per billion

DTW = Depth to Water

TPH-G = Total Petroleum Hydrocarbons as Gasoline

ND = Not Detected

(ft.) = Feet

B = Benzene

1.0 1.00 D GGOLDE

S.I. = Screen Interval

T = Toluene

-- = Not Measured/Not Analyzed

(ft. bgs) = Feet Below Ground Surface

E = Ethylbenzene

GWE = Groundwater Elevation

X = Xylenes

(msl) = Mean sea level

MTBE = Methyl tertiary butyl ether

- * TOC elevations were resurveyed in September 2001, by Morrow Surveying. TOC elevations are based on City of Oakland Benchmark No. 3967, (Elevation = 174.40 feet, msl).
- ** GWE has been corrected due to the presence of free product; correction factor: [(TOC DTW) + (Product Thickness x 0.77)].
- Detection limit raised. Refer to analytical reports.
- ² Laboratory report indicates unidentified hydrocarbons C9-C24.
- MTBE by EPA Method 8260.
- Laboratory analyzed sample past EPA recommended holding time.
- 5 Total Recoverable Petroleum Oil was ND.
- 6 Laboratory report indicates gasoline C6-C12.
- 7 This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- 8 Laboratory report indicates unidentified hydrocarbons <C16.</p>
- ⁹ Laboratory report indicates weathered gasoline C6-C12.
- Well development performed.
- Laboratory report indicates unidentified hydrocarbons C10-C28.
- Laboratory report indicates gasoline C6-C10.

Table 2
Groundwater Analytical Results

WELL ID	DATE	ETHANOL	MAN		ounund, o		000000000000000000000000000000000000000	odaldka a soprago sa sa sa likir Narrann	000000000000000000000000000000000000000	osa visco managa a de	A. 18 M. 18
	DALL	ETHANOL (ppb)	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	HVOCs	SVOCs
		<u> </u>	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррь)
MW-1	07/20/99		·	11,000 ³						ND	ND^2
	09/28/99		ND^6	333	ND^6	ND^6	ND ⁶			ND ⁴	ND ⁵
	01/07/00									ND ^{7,8}	ND ⁹
	03/31/00									- 11	ND ¹⁰
	07/14/00									ND ¹²	ND ¹³
	10/03/00			**						ND ¹⁵	ND ¹⁴
	01/03/01				-		. 			ND ¹⁵	ND ¹⁶
	04/04/01	ND ⁶	ND^6	481	ND^6	ND ⁶	ND ⁶	ND^6	ND^6	ND ¹⁷	ND ¹⁸
	07/17/01	ND^6	ND^6	230	ND ⁶	ND ⁶	ND^6	ND ⁶	ND ⁶	ND ²⁰	ND ¹⁹
	01/28/02			440					••		
MW-2	09/28/99		ND ⁶	6,150	ND ⁶	ND ⁶	ND^6				
	04/04/01	ND^6	ND^6	37,800	ND ⁶	ND^6	ND^6	ND^{6}	ND^6		
	07/17/01	ND ⁶	ND^6	56,000	ND^6	ND^6	ND^6	${ m ND}^6$	ND^6		
	10/03/01			18,000							
	01/28/02			10,000							
MW-3	09/28/99		ND ⁶	288	ND ⁶	ND ⁶	8.80				
	04/04/01	ND ⁶	ND^6	450	ND ⁶	ND ⁶	ND ⁶	ND^6	ND^6		
	07/17/01	ND ⁶	ND^6	350	ND ⁶	ND ⁶	ND ⁶	ND^6	ND^6		
	01/28/02			210							••
			4		6	6	6				
MW-4	09/28/99		ND ⁶	459	ND ⁶	ND ⁶	ND ⁶		 		
	04/04/01	ND ⁶	ND ⁶	819	ND ⁶	ND ⁶	ND ⁶	ND ⁶	ND ⁶		
	07/17/01	ND ⁶	ND ⁶	900	ND ⁶	ND ⁶	ND ⁶	ND ⁶	ND ⁶		
	10/03/01			820							
	01/28/02			500							*-

Table 2 Groundwater Analytical Results

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	HVOCs	SVOCs
		<u>(ppb)</u>	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)
MW-5	10/03/01	# Pr		2,100				4.			
	01/28/02			550							
MW-6	10/03/01	·		270							
MW-7	10/03/01			40,000			-				
	01/28/02			38,000							

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TBA = Tertiary butyl alcohol

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

MTBE = Methyl tertiary butyl ether

EDB = 1,2-Dibromoethane

ND = Not Detected

DIPE = Di-isopropyl ether

HVOCs = Halogenated Volatile Organic Compounds

-- = Not Analyzed

ETBE = Ethyl tertiary butyl ether

SVOCs = Semi-Volatile Organic Compounds

- All HVOCs were ND except for Chlorobenzene at 12 ppb; 1,2-Dichlorobenzene (1,2-DCB) at 3.9 ppb; 1,1-Dichloroethane (1,1-DCA) at 2.0 ppb; 1,2-Dichloroethane (1,2-DCA) at 20 ppb; cis-1,2-Dichloroethene (cis-1,2-DCE) at 3.6 ppb and 1,2-Dichloropropane (1,2-DCP) at 0.92 ppb.
- All SVOCs were ND except for Benzyl alcohol at 37 ppb; 2,4-Dimethylphenol at 140 ppb; 2-Methylnaphthalene at 240 ppb; 4-Methylphenol at 27 ppb and Naphthalene at 600 ppb.
- Laboratory analyzed sample past EPA recommended holding time.
- All HVOCs were ND except for Benzene at 6,130 ppb; Ethylbenzene at 1,590 ppb; Naphthalene at 534 ppb; Toluene at 11,900 ppb; 1,2,4-Trimethylbenzene at 1,240 ppb; 1,3,5-Trimethylbenzene at 318 ppb and Total Xylenes at 7,360 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2,4-Dimethylphenol at 13.6 ppb; 2-Methylphenol at 87.4 ppb; 2-Methylphenol at 26.4; 4-Methylphenol at 35.6 and Naphthalene at 292 ppb.
- Detection limit raised. Refer to analytical reports.
- All HVOCs were ND (with a raised detection limit) except for Benzene at 8,380 ppb; Ethylbenzene at 2,380 ppb; Naphthalene at 1,050 ppb; n-Propylbenzene at 371 ppb; Toluene at 17,600 ppb; 1,2,4-Trimethylbenzene at 2,210 ppb; 1,3,5-Trimethylbenzene at 597 ppb and Total Xylenes at 10,800 ppb.
- B EPA Method 8260 for HVOCs.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 315 ppb and Naphthalene at 615 ppb.
- All SVOCs were ND except for Bis(2-ethylhexyl)phthalate at 10 ppb; 1,2-DCB at 6.2 ppb; 2-Methylnaphthalene at 73 ppb; 2-Methylphenol at 31 ppb; 4-Methylphenol at 18 ppb and Naphthalene at 140 ppb. Laboratory report indicates all SVOCs were analyzed outside the EPA recommended holding time.
- Laboratory did not analyze for HVOCs.
- ¹² All HVOCs were ND (with a raised detection limit) except for Tetrachloroethene at 334 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 300 ppb and Naphthalene at 690 ppb.
- All SVOCs were ND (with a raised detection limit) except for Benzoic acid at 362 ppb; Bis(2-ethylhexyl)phthalate at 51.6 ppb; 2-Methylnaphthalene at 98.1 ppb; 4-Methylphenol at 28.9 ppb and Naphthalene at 361 ppb.
- All HVOCs were ND (with a raised detection limit).
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 180 ppb and Naphthalene at 400 ppb.
- All HVOCs were ND except for cis-1,2-DCA at 3.4 ppb; 1,2-DCA at 5.7 ppb; Chlorobenzene at 5.6 ppb and 1,2-DCB at 4.6 ppb.
- All SVOCs were ND except for Benzoic acid at 28 ppb; Bis(2-ethylhexyl)phthalate at 55 ppb; 2-Methylnaphthalene at 78 ppb and Naphthalene at 490 ppb.

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS: (cont)

- All SVOCs were ND except for Bis(2-ethylhexyl)phthalate at 400 ppb; 1,2-DCB at 18 ppb; 2,4-Dimethylphenol at 16 ppb; 2-Methylphenol at 25 ppb; Naphthalene at 740 ppb and N-Nitrosodimethylamine at 7.7 ppb.
- Volatile Organic Compounds (VOCs) by EPA Method 8021B were ND with a raised detection limit.

ANALYTICAL METHODS:

EPA Method 8260 for Oxygenate Compounds EPA Method 8010 for HVOCs EPA Method 8270 for SVOCs

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Phillips 66 Company, the purge water and decontamination water generated during sampling activities is transported to Phillips 66 - San Francisco Refinery, located in Rodeo, California.

Client/ Facility # <u>//5</u>	6		Job#:		
Address: 42	76 MacAithe	11 Blue	Date:	1-28-0	2
City: <u>0</u>	_	· · · · · · · · · · · · · · · · · · ·		ler: <u>To e</u>	
Well ID	mw-1	Well C	ondition:	0.K	
Well Diameter	2 in	Hydrod Thickn		Amount B	Maring Marine
Total Depth Depth to Water	25.15 m.	Volum Factor		17 3° = 0.3 6° = 1.50	8 4" = 0.66 12" = 5.80
Deput to Water	<u> 19.17</u> ×	VF <u>e.17</u> =	3.26 × 3 (case	volume) = Estimated F	Purge Volume: 10 (gal.)
Purge Equipment: (Disposable Bailer Bailer Stack Suction Grundfos Other:	_	Sampling Equipment	Bailer Pressure Bail Grab Sample Other:	ler .
•	9:44 10:06Am (10 te:	. ос V	ediment Descri	clear	Odor: 5 - 5 - (04)
75me 9:53 9:55	Volume pH (gal.) 3 \ 7 \ 1 \ 7 \ /8 \ 10 \ 7 \ 2 \ 2	1.9 7.0	05 70	D.O. (mg/L)	ORP Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABORA REFRIG.	TORY INFORM	LABORATORY	ANALYSES
M W - 1	3404	Y	HCL	Seq.	TPHG, BTEX, MTBE
	1 426	//	•	· · · · · · · · · · · · · · · · · · ·	TIVHU
COMMENTS:		<u> </u>			

ent/ cility # <u>//5</u>	6		Job#:	1802			
Idress: 42	76 MacArthu	1 B/vo.	Date:	1-28-	02		
ry: <u>0</u> 2			Sample	r: <u>Toe</u>			
Well 1D	_mw-2	Well Conditi	ion:	0. K			<u>.</u>
ell Diameter	2 _{in.}	Hydrocarboo Thickness:			t Bailed /water):	0	_(bel_)
tal Depth	25.45 +	Volume	2" = 0.17	3" = 6" = 1.50	0.38 12" =	4" = 0.66	
epth to Water	5.68 m	Factor (VF)	<u></u>				
·	19.77 x	vf 0.17 - 3.3	<u>(</u>	ume) = Estimat	ed Purge Vol	kuma: <u>10</u>	_igal_i
ourge	Disposable Bailer Bailer		Sampling Equipment:	Pisposabl	e Bailer		
itueut:	Stack	•		Baller Pressure			
	Suction Grundfos	-		-Grab Saπ			
tarting Time:	Other:		er Conditions		y/wet		
tarting Time: campling Time: turging Flow Rate old well de-wate	9°.364 ~ (°	water Sedim	er Conditions Color:	clear	Odo	r 163	[pp]
ampling Time: rurging Flow Rate and well de-wate	9°.364 ~ (°	water Sedim	er Conditions Color: ent Descripti Time:	clear on: V	olume:	ORP AI	
ampling Time: urging Flow Rate old well de-wate	9'66 9'364 ~ (0) te:	(Conductivity	Time: Temper	clear clear	Odo	ORP AI	kalinit
tampling Time: turging Flow Rate Did well de-wate	9:06 9:36 A ~ (6) 60:06 9:36 A ~ (6) 60:06 7:36 A ~ (6) 60:06 7:36 A ~ (6) 7:36 A ~	(Conductivity prohibos/cm.)	er Conditions Color: ent Descripti Time:	clear clear	Odo	ORP AI	kalinity
ampling Time: rurging Flow Rate old well de-wate	9:06 9:36 A w (0) te:	(Conductivity prohibos/cm.)	Time: Temper	clear clear	Odo	ORP AI	kalinity
tampling Time: turging Flow Rate Did well de-wate	9:06 9:36 A ~ (6) 60:06 9:36 A ~ (6) 60:06 7:36 A ~ (6) 60:06 7:36 A ~ (6) 7:36 A ~	(Conductivity prohibos/cm.)	Time: Temper	clear clear	Odo	ORP AI	kalinit
tampling Time: turging Flow Rate Did well de-wate	9:06 9:36 A ~ (6) 60:06 9:36 A ~ (6) 60:06 7:36 A ~ (6) 60:06 7:36 A ~ (6) 7:36 A ~	(Conductivity prohibos/cm.)	Temper	clear clear on: V acure D (m)	olume:	ORP AI	kalinity
sampling Time: rurging Flow Rate rurging Flow Flow Flow Flow Flow Flow Flow Flow	9'66 9'36 A ~ (3) te:	LABORATOF	Temper Tolor: Time: 7/ 7/ 7/ Temper Trime: Temper Trime: Tri	clear clear on: V acure D (m)	Odo	ORP AI (mV)	(ppm)
ampling Time: rurging Flow Rate Did well de-wate Time Q'15 Q'19	9:06 9:36 A \ (3) Volume pH (gal) 9:5 7.46 7.5 7.25	LABORATOF	Temper Tolor: Time: Tolor: Time: Tolor: Temper Tolor: Temper Tolor:	clear clear on: V acture D (m)	Odo	ORP AI	(ppm)
sampling Time: rurging Flow Rate rurging Flow Flow Flow Flow Flow Flow Flow Flow	9'66 9'36 A ~ (3) te:	LABORATOF	Temper Tolor: Time: 7/ 7/ 7/ Temper Trime: Temper Trime: Tri	clear clear on: V acure D (m)	Odo	ORP AI (mV)	
sampling Time: rurging Flow Rate rurging Flow Flow Flow Flow Flow Flow Flow Flow	9'66 9'36 A ~ (3) te:	LABORATOF	Temper Tolor: Time: 7/ 7/ 7/ Temper Trime: Temper Trime: Tri	clear clear on: V acure D (m)	Odo	ORP AI (mV)	(ppm)

Client/ Facility # <u>/15</u>	6		Job#:	180225	
	76 MacAithe	1 B/vo	Date:	1-28-02	
City: Oa	Fland		Sampl	er: <u>Toe</u>	
Well ID	MW-3	Well	Condition:	O.K	
Well Diameter	2 _{in}	-	ocarbon	Amount Ba	A Sandarana
Total Depth	25.04	Volu			
Depth to Water	7.39	4	x (VF)	6" = 1_50	
	17.65 x	vf <u>0.17</u>	<u>-3, ∞</u> x3 (case v	olume) = Estimated Pr	urge Volume:
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	_	Sampling Equipment:	Pisposable Baller Pressure Baile Grab Sample	- ≙ Γ
Sampling Time: Purging How Rate Did well de-water		.	Water Color: Sediment Descript If yes; Time:		Odor: V 1 5
Time V	olume pH (gal.)	Cond cont	octivity (⁽⁾ Tempe os/cm ()		ORP Alkalinity (mV) (ppm)
8:42	3 7.56	<u> 2:</u>	35 70.	9	
8.44	6 7.40			1	
<u> 8:46 </u>	9 7.37		·50 - 71	<u>.5.</u>	
				· ·	
			ATORY INFORMA		
SAMPLE ID	3YOA	REFRIG.	PRESERV. TYPE	Seq.	ANALYSES
MW-3	2104	1	HCL	J-0-7-	TPHG, BTEX, MTBE
	·				
COMMENTS: _	<u> </u>		 		
COMMUNICIATO: -					
		-		· .	<u> </u>

Client/ Facility # <u>/15</u>	6		· ·		Job#:	18022		
Address: 42	76 M	ac Arthu	1 B/ve	.] . .	Date:	1-28-0	'2	
City:	Fland	,	<u> </u>	_	Sampler	: Joe	·	
Well ID	Mu	1-4	Well	Condition:		o.k		
Well Diameter		2 in.		ocarbon	A	Amount	سليدكان	
Total Depth	25.	33 tr		kness:		3* = 0		L" = 0.66
Depth to Water	6.	21 5	Fac	tor (VF)	·	6° = 1.50	12" = 5.80	
	19.	<u>n </u>	vf <u>0.17</u>	<u>-3.25</u> x	3 (case volu	me) = Estimated	l Purge Volume: .	(O lost)
Purge Equipment:	Bailer Stack Suction Grundf		· .		apling ipment: Ot	Pisposable Bailer Pressure B Grab Samp her:	ailer ile	
	r?		Conv	Sediment If yes; T	Description	ture D.C	ORP	(0s/)
•	(gal.)	د.	•	hos/cm X	7.2	(mg/:	(mV)	(bbw)
$\frac{7:53}{7:66}$ -	75	7.52		81	71.6	 -		
7:53	10	7.54	4	83	70,	9		
	 							
					!		 	
SAMPLE ID	(#) - C0	NTAINER	LABOI REFRIG.	RATORY II PRESERV		NOF LABORATORY	, AN	ALYSES
MW-L		10 h	Υ	HCI	-	Seq.	TPHG, E	STEX, MTBE
						-		
-	-	•		1				
	1		L	<u>. </u>			· · · · · · · · · · · · · · · · · · ·	
COMMENTS: .	<u> </u>	<u>.</u>	· · · · · · · · · · · · · · · · · · ·					
		-						

Client/ facility # <u>//5</u>	6		Job#:	1802	25	
	76 MacAithe	or B/v	Date:	1-28-	02	
City:	Fland		Samp	ler: <u>Toe</u>	•	
Well ID	MW-5	Well	Condition:	0. K		
Vell Diameter	2 _{in}	•	rocarbon	•	nt Bailed	
Total Depth	25.40 t	1	kness:	<u>in.</u> (produc	O 38	10el) = 0.66
Depth to Water	1.83 4	4 **	ω (VF)	6" = 1.50		- 0.00
	23.62 x	VF 0.17	= 4.02 x 3 (case	volume) = Estimate	ed Purge Volume:	12 10011
Purge Equipment:	Disposable Bailer Bailer	•	Sampling Equipment	Disposable	e Bailer	*
	Stack Suction	÷		Bailer Pressure I	Bailer	
	Grundfos Other:			Grab Sam	ple	
Starting Time:	7:07		Weather Conditio			
Sampling Time: Purging Flow Rate	7:07 7:32Am (07 e:	<u>32</u>)	Weather Conditio Water Color: Sediment Descrip If yes; Time:	ns: <u>cloud</u>	y/wef Odor:_x	·
Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	32) prol — Con	Water Color:	ns: <u>cloud</u>	olume:	·
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07) e:	Conv	Water Color: Sediment Descrip If yes: Time: discrivity Colored	rion:	olume:	(oal.)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	(consumer of the consumer of	Water Color: Sediment Descrip If yes: Time: discrivity Temp hos/cm x	erature D.	olume:	(oal.)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	(consumer of the consumer of	Water Color: Sediment Descrip If yes; Time: descrivity Parenthes/cm x	erature D.	olume:	(oal.)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	(consumer of the consumer of	Water Color: Sediment Descrip If yes: Time: discrivity Temp hos/cm x	erature D.	olume:	(oal.)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e: 10 folume pH (gal.) 7:80 7:56	Consumation (100 - 100 -	Water Color: Sediment Descrip If yes; Time: descrivity Temp hos/cm x 11	erature D. (mg	olume: O. ORP (mV)	Alkalinity (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	Consum () () () () () () () () () (Water Color: Sediment Descrip If yes: Time: discrivity Temp hos/cm X	erature D.	y /wef Odor: olume: O. ORP (L) (mV)	(oal.)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	Company // // // // // // // // // // // // //	Water Color: Sediment Descrip If yes: Time: discrivity Temp hos/cm 1	erature D. (mg	y /wef Odor: olume: O. ORP (L) (mV)	Alkalinity (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	Company // // // // // // // // // // // // //	Water Color: Sediment Descrip If yes: Time: discrivity Temp hos/cm 1	erature D. (mg	y /wef Odor: olume: O. ORP (L) (mV)	Alkalinity (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:32Am (07 e:	Company // // // // // // // // // // // // //	Water Color: Sediment Descrip If yes: Time: discrivity Temp hos/cm 1	erature D. (mg	y /wef Odor: olume: O. ORP (L) (mV)	Alkalinity (ppm)

Client/ Facility # <u>//5</u>	6		Job	#: <u> </u>	80225		·
Address: 42	76 MacArthe	1 B/v.		-	-28-02		
City:	Fland		San	npler:	Joe	·	
Well 1D	mw-6	Well	Condition: _	(9.K		· ·
Well Diameter	2 in.	· · ·	rocarbon kness:	7 in	Amount Bai	15.0	
Total Depth	25.3d #			0.17	3" = 0.38		= 0.66
Depth to Water	1.82 4	Fac	sor (VF)	6" = 1		12" = 5.80	
Purge	23.52 x Disposable Bailer	vf <u>0.17</u>	= 4.0 ×3 (cas	3		· 	4
Equipment:	Bailer Stack		Equipme	Ba	sposable Bai iller		×
	Section Grundfos	•			essure Baile: rab Sample	r	
	Other:			Other: _		•	
	te: <u> </u>	9 <u>3</u>)	Weather Condit Water Color: Sediment Desc If yes; Time:	c (e	<u> </u>	Odor:^	ري رويا) (ويا)
Time	volume pH	Con	ductivity (7) Te		D.O.	ORP	Alkalinity
10:36	(gal.) 4 7.38	•	itros/cm.K* : <u>A!</u>	4- 10-4	(mg/L)	(mV)	(bòm)
10:31	8 7.30		22 -	70.8			·
10:40	12 736		-31 -	71.0		· ·	
			RATORY INFOR		BORATORY	AMA	LYSES
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYP		eq.	-, ,	TEX, MTBE
MW-6	7,0%						
	•	1			•		•
		1	<u> </u>	<u>-</u> 1	· · · · · · · · · · · · · · · · · · ·	1	<u> </u>
COMMENTS:		•	<u></u>			•	
	<u> </u>		· · ·				

Client/ Facility #	6		Job#:	180225	
	76 MacAith	ur Blv.	Date:	1-28-02	
City: Oc				ler: <u>Toe</u>	·
Well ID	mw-7	Well	Condition:	0.K	
Well Diameter		-	rocarbon kness:	Amount Ba	A Statement
Total Depth	25.50 #		lume 2° = 0.1		
Depth to Water	7.21	Fac	zor (VF)	6" = 1.50	12" = 5.80
	18.29 x	VF 0.17	= 3/// X3 (case v	volume) = Estimated Pu	rge Volume: 9:5 (gel.)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment:	Pisposable Bailer Pressure Baile Grab Sample Other:	,
Starting Time: Sampling Time: Purging Flow Rate Did well de-water	11:12 A m (11) te:	 -	Weather Condition Water Color: Sediment Descrip If yes: Time:	clear	Odor 75
Time	Volume pH (gal.)	Con	ductivity (ORP Alkalinity (mV) (ppm)
11:18 11:10 11:10	3 6.85 6 6.92 9 6.96		$\frac{97}{-05}$ $\frac{71}{-05}$		
-	· · · · · · · · · · · · · · · · · · ·		RATORY INFORMA		
SAMPLE ID	3YOA	REFRIG.	PRESERV. TYPE	Seq.	ANALYSES
MW-7	3184	. *	HCL	J-7-	TPHG, BTEY, MTBE
	·				
		<u> </u>	<u> </u>		
COMMENTS: _	2" cap of g	adloc	<u>k</u>	· · · · · · · · · · · · · · · · · · ·	
		•			

TOSO Touce Merberting, 2000 Core Conyon, Ban Plannen, Casto	Company offi, Sin. 400 mris Bidda	Cone	Facili uitant Pr uitant Na ddrees_	ty Addres ojeot Nu imo <u>Ge</u> 67 ontaat (N	mber	MacArth 180225. Fixan Inc ERRA COUR Banna L. 25)551÷75	ur, 0 85 . (G- T,SUI Hardi	aklar -R In TE J, ng Numbe	C.)	IN CA	·	_ L 28 s	aborotor aborator iomples iolication	y Name y Relea Collecte	(Phone Sec	92 quo1s ber	. Day 5-277 Ana るのを	-238 lyti c	4 :a1		DO NOT BILL
Sample Number	Lab Sample Number		Metrix S = Soll A = A	Type G = Grob C = Compos D = Discrete	Jin.	Sample Preservation	load (Yes or No)	TPH Gas - BTEX WANTER	TPH Diseas (8015)	Of and Great (5520)	Purpeable Holocarbord (8010)	Purgeoble Arometics (8020)	Purpeoble Organice (8240)	Extractoble Organics (8270)	Metale Cd,Cr,Pb,Zn,Ni (ICAP or Ak)						Run MTBE by 8260 on all 8020 MTBE hits.
TB-LB	01.	VOA	W	C		HCL	Y	1					·						-	 	
Mw-I	av.	JANA.	1	1	1006		,	1	7				1		1				, ,	 	
MW-2/	03	V34		,	0930	,	.,	1					· .						† · · ·	 	
mw-3,	69	,	, ,	,	0855	r	j.	1										·	1	1	,
mw-4 1	05	,	,	,	0810	1	J	1													
MW-5	24	,	,	1	0732	1	,	1										1.			
MW-6	07	1	j	/	1843		1	V								·	 		۱.	1	
MW-7 /	og/	,	,	1	1/22	,	,	V	<u> </u>								•	1	1	 	
						;			٠.											1	
																				,	
				6.														:		-	·
<u> </u>																					
			•			,				·	•										
							•					•					·				
Jack V	(Signoture)	•	1 -	nizotion R Inc	1	28-02		oly of an	<u>~`</u>	Q,	Ke		rganizat		1/2	28 02	1500	:	Turn Ar	24	ne (Circle Choloe) Hre.
ages (B)	(Signatura)		Orga	nizoUon	٩	ate/Time	Rec	elved By	-	_			rgonizati PEQ			/Time	100	. •			Hre. Days
	(Algorithms)	H	Orea	nization EQ	1	120/02 1910/Time 128 17/1					/ (Signal	سماميب	<i>y</i>		Dole	8/02	630 174) 		10	Daye

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

11 February, 2002

Deanna Harding Gettler Ryan/Geostrategies - Tosco/Unocal 6747 Sierra Ct, Suite J Dublin, CA 94568 DENELYED

GETTLEK-KTAN INC.

RE: Tosco (76) SS #1156,Oakland,Ca

Sequoia Report: MLA0510

Enclosed are the results of analyses for samples received by the laboratory on 01/28/02 15:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James Hartley Project Manager

CA ELAP Certificate #1210

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported: 02/11/02 11:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	MLA0510-01	Water	01/28/02 00:00	01/28/02 15:00
MW-1	MLA0510-02	Water	01/28/02 10:06	01/28/02 15:00
MW-2	MLA0510-03	Water	01/28/02 09:30	01/28/02 15:00
MW-3	MLA0510-04	Water	01/28/02 08:55	01/28/02 15:00
MW-4	MLA0510-05	Water	01/28/02 08:10	01/28/02 15:00
MW-5	MLA0510-06	Water	01/28/02 07:32	01/28/02 15:00
MW-6	MLA0510-07	Water	01/28/02 10:43	01/28/02 15:00
MW-7	MLA0510-08	Water	01/28/02 11:22	01/28/02 15:00

Sequoia Analytical - Morgan Hill

D. 14.4

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding

Reported: 02/11/02 11:39

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (MLA0510-01) Water Sa	ampled: 01/28/02 00:00	Received	: 01/28/0	2 15:00					
Gasoline Range Organics (C6-C10)	ND	50	ug/l	ì	2A31002	01/31/02	01/31/02	8015Bm/8021B	
Benzene	ND	0.50	11	n	વા	11	fi	**	
Toluene	ND	0.50	**	Ħ	ħ	11	II	**	
Ethylbenzene	ND	0.50	"	н	II	Ħ	п	11	
Xylenes (total)	ND	0.50	**	II	n	H	u	11	
Methyl tert-butyl ether	ND	2.5	**	. "	u	π	N	11	
Surrogate: a,a,a-Trifluorotoluene		105 %	70	-130	n	п	u	"	·····
MW-1 (MLA0510-02) Water Sa	mpled: 01/28/02 10:06	Received:	01/28/0	2 15:00					
Gasoline Range Organics (C6-C10) 110000	10000	ug/l	200	2A30003	01/30/02	01/30/02	8015Bm/8021B	P-01
Benzene	8900	100	II .	11	tt	**	11	h	
Toluene	19000	100	li	II	11	**	11	H	
Ethylbenzene	2600	100	II .	II	#	n n	н	n n	
Xylenes (total)	12000	100	11	11	**	71	Ħ	. "	
Methyl tert-butyl ether	3000	500	ti .	***	tt	**	π	H	
Surrogate: a,a,a-Trifluorotoluene		110 %	70	-130	"	"	п	"	
MW-2 (MLA0510-03) Water San	mpled: 01/28/02 09:30	Received:	01/28/0	2 15:00					
Gasoline Range Organics (C6-C10)	ND	250	ug/l	5	2B05003	02/05/02	02/05/02	8015Bm/8021B	R-05
Benzene	2.5	2.5	#1	**	11	н	"	**	
Toluene	4.4	2.5	#	**	H	u u	**	"	
Ethylbenzene	2.8	2.5	"	11	n	11	••	**	
Xylenes (total)	7.4	2.5	**	**	Ħ	u	•	π	
Methyl tert-butyl ether	11000	250		100	n	п	11	. *	A-02,M-03
Surrogate: a,a,a-Trifluorotoluene		85.4 %	70	-130		"	"	и	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported: 02/11/02 11:39

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B Sequoia Analytical - Morgan Hill

			-						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (MLA0510-04) Water Samp	led: 01/28/02 08:55	Received:	01/28/02	2 15:00					
Gasoline Range Organics (C6-C10)	30000	5000	u g /1	100	2A30003	01/30/02	01/30/02	8015Bm/8021B	P-01
Benzene	880	50	"	**	"	H	"		
Toluene	2600	50		*	•	"	77	н	
Ethylbenzene	1800	50	**	"	*1	**	**	π	
Xylenes (total)	4300	50	**	"	11	11	81	34	
Methyl tert-butyl ether	3200	250	**	tı	11	Ħ	11	11	
Surrogate: a,a,a-Trifluorotoluene		116 %	70-	130	"	"	**	,,	
MW-4 (MLA0510-05) Water Samp	led: 01/28/02 08:10	Received:	01/28/02	2 15:00		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Gasoline Range Organics (C6-C10)	12000	5000	ug/l	100	2A30003	01/30/02	01/30/02	8015Bm/8021B	P-01
Benzene	2100	50	11		•	II .	77	11	
Toluene	130	50	P	11	"	**	**	**	
Ethylbenzene	350	50	н	11	Ħ	H	11	**	
Xylenes (total)	670	50	п	11	н	"	11	11	
Methyl tert-butyl ether	1100	250	U	II	11	**	н	П	
Surrogate: a,a,a-Trifluorotoluene		105 %	70-	-130	"	"	n	#	
MW-5 (MLA0510-06) Water Samp	led: 01/28/02 07:32	Received:	01/28/0	2 15:00					·
Gasoline Range Organics (C6-C10)	ND	50	ug/l	1	2A30001	01/30/02	01/30/02	8015Bm/8021B	
Benzene	ND	0.50	Pt	tr	ш	п	Ħ	n	
Toluene	ND	0.50	H	11	u	R	ч	**	
Ethylbenzene	ND	0.50	"	**	**	*	II	11	
Xylenes (total)	ND	0.50	n	**		"	"	ц	
Methyl tert-butyl ether	650	25	11	10	17	*	11	#	A-01,M-0.
Surrogate: a,a,a-Trifluorotoluene		100 %	70-	-130	"	"	rr	"	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported: 02/11/02 11:39

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-6 (MLA0510-07) Water Sample	d: 01/28/02 10:43	Received:	01/28/02	2 15:00					
Gasoline Range Organics (C6-C10)	ND	50	ug/l	1	2A30001	01/30/02	01/30/02	8015Bm/8021B	
Benzene	ND	0.50	rr	**	87	11	17	91	
Toluene	ND	0.50	**	**	11	tt	11	H	
Ethylbenzene	ND	0.50	H	**	11	**	"		
Xylenes (total)	ND	0.50	**	*1	U	**	11	**	
Methyl tert-butyl ether	ND	2.5	*	*1	п	11	н	11	
Surrogate: a,a,a-Trifluorotoluene		89.9 %	70-	130	"	"	"	"	
MW-7 (MLA0510-08) Water Sample	d: 01/28/02 11:22	Received:	01/28/02	2 15:00					
Gasoline Range Organics (C6-C10)	ND	1000	ug/I	20	2B05003	02/05/02	02/05/02	8015Bm/8021B	R-05
Benzene	ND	10	**	"1	"	"	*1	**	R-05
Toluene	ND	10	**	**	n	11	**	**	R-05
Ethylbenzene	ND	10	91	a a	11	"	и	"	R-05
Xylenes (total)	ND	10		**	**	11	**	11	R-05
Methyl tert-butyl ether	42000	1000	11	400	11	11	11	ii .	A-02,M-03
Surrogate: a,a,a-Trifluorotoluene		87.1 %	70-	130	. "	,,	"	11	

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported:

02/11/02 11:39

Diesel Hydrocarbons (C10-C28) by 8015B modified

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MLA0510-02) Water Sampled	l: 01/28/02 10:06	Received:	01/28/0	2 15:00					HT-08
Diesel Range Organics (C10-C28)	4400	210	ug/l	4	2B07022	02/07/02	02/09/02	8015Bm	D-15
Surrogate: n-Octacosane		151 %	50-	-150	ır	rr	н	n	S-06

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding

Reported:

02/11/02 11:39

MTBE Confirmation by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MLA0510-02) Water	Sampled: 01/28/02 10:06	Received:	01/28/02	2 15:00		<u> </u>			
Methyl tert-butyl ether	440	50	ug/l	100	2B04014	02/01/02	02/01/02	EPA 8260B	
Surrogate: 1,2-Dichloroethane-	d4	102 %	60-	-140	"	"	"	'n	
MW-2 (MLA0510-03) Water	Sampled: 01/28/02 09:30	Received:	01/28/0	2 15:00		 .			
Methyl tert-butyl ether	10000	500	ug/l	1000	2B04014	02/01/02	02/01/02	EPA 8260B	
Surrogate: 1,2-Dichloroethane-	d4	104 %	60-	-140	"	п	rr	n .	
MW-3 (MLA0510-04) Water		Received:	01/28/0	2 15:00					
Methyl tert-butyl ether	210	50	ug/l	100	2B04014	02/01/02	02/01/02	EPA 8260B	
Surrogate: 1,2-Dichloroethane-	d4	104 %	60	-140	tr	"	rr	"	
MW-4 (MLA0510-05) Water	Sampled: 01/28/02 08:10	Received	01/28/0	2 15:00			_		
Methyl tert-butyl ether	500	50	ug/l	100	2B04014	02/01/02	02/01/02	EPA 8260B	
Surrogate: 1,2-Dichloroethane-	·d4	103 %	60	-140	u	Ħ	rr	"	•
MW-5 (MLA0510-06) Water		Received	01/28/0	2 15:00				· <u>·</u>	
Methyl tert-butyl ether	550	50	ug/l	100	2B04014	02/01/02	02/01/02	EPA 8260B	
Surrogate: 1,2-Dichloroethane-	d4	104 %	60	-140	22	n	"	rr	
MW-7 (MLA0510-08) Water		Received	01/28/0	2 15:00					
Methyl tert-butyl ether	38000	1000	ug/l	2000	2B04014	02/01/02	02/01/02	EPA 8260B	
Surrogate: 1,2-Dichloroethane-	-d4	105 %	60	-140	"	"	n	n	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported: 02/11/02 11:39

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B - Quality Control Sequoia Analytical - Morgan Hill

l		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2A30001 - EPA 5030B [P/T]										
Blank (2A30001-BLK1)				Prepared	& Analyz	ed: 01/30/	02			
Gasoline Range Organics (C6-C10)	ND	50	ug/l		· · · · ·					
Benzene	ND	0.50	н							
Toluene	ND	0.50	н							
Ethylbenzene	ND	0.50	u							
Xylenes (total)	ND	0.50	n							
Methyl tert-butyl ether	ND	2.5	Ц							
Surrogate: a,a,a-Trifluorotoluene	9.31		"	10.0		93.I	70-130			
LCS (2A30001-BS1)				Prepared	& Analyz	ed: 01/30/	02			
Benzene	10.8	0.50	ug/l	10.0		108	70-130			
Toluene	10.9	0.50	п	10.0		109	70-130			
Ethylbenzene	10.5	0.50	п	10.0		105	70-130			
Xylenes (total)	31.3	0.50	11	30.0		104	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.0	, <u>u</u>	" .	10.0	•	100	70-130			
LCS (2A30001-BS2)				Prepared	& Analyz	ed: 01/30/	02			
Gasoline Range Organics (C6-C10).	303	50	ug/l	250		121	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.2		"	10.0		102	70-130			
Matrix Spike (2A30001-MS1)	Sou	rce: MLA05	501-02	Prepared	& Analyz	ed: 01/30/	02			
Gasoline Range Organics (C6-C10)	672	50	ug/l	550	ND	122	60-140			
Benzene	9.58	0.50	**	6.60	ND	145	60-140			QM-07
Toluene	47.7	0.50	•	39.7	ND	120	60-140			
Ethylbenzene	10.0	0.50	**	9.20	ND	109	60-140			
Xylenes (total)	45.4	0.50	**	46.1	ND	98.5	60-140			
Surrogate: a,a,a-Trifluorotoluene	13.8		11	10.0	•	138	70-130			S-04
Matrix Spike Dup (2A30001-MSD1)	Sou	rce: MLA05	501-02	Prepared	& Analyz	ed: 0 1/30/	02			
Gasoline Range Organics (C6-C10)	643	50	ug/l	550	ND	117	60-140	4.41	25	
Benzene	9.56	0.50	11	6.60	ND	145	60-140	0.209	25	QM-07
Toluene	46.7	0.50	11	39.7	ND	118	60-140	2.12	25	•
Ethylbenzene	9.58	0.50	n	9.20	ND	104	60-140	4.29	25	
Xylenes (total)	45.3	0.50	*1	46.1	ND	98.3	60-140	0.221	25	
Surrogate: a,a,a-Trifluorotoluene	14.0		"	10.0		140	70-130			S-0-

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported: 02/11/02 11:39

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2A30003 - EPA 5030B [P/T]					-					
Blank (2A30003-BLK1)				Prepared	& Analyz	ed: 01/30/0	02			
Gasoline Range Organics (C6-C10)	. ND	50	ug/l							
Benzene	ND	0.50	II							
Toluene	ND	0.50	н							
Ethylbenzene	ND	0.50	п							
Xylenes (total)	ND	0.50	н							
Methyl tert-butyl ether	ND	2.5	н							
Surrogate: a,a,a-Trifluorotoluene	9.32		n	10.0		93.2	70-130			
LCS (2A30003-BS1)				Prepared	& Analyz	ed: 01/30/	02			
Benzene	10.3	0.50	ug/l	10.0		103	70-130			
Toluene	9.88	0.50	Ħ	10.0		98.8	70-130			
Ethylbenzene	9.15	0.50	**	10.0		91.5	70-130			
Xylenes (total)	27.8	0.50	**	30.0		92.7	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.46		п	10.0		94.6	70-130			
LCS (2A30003-BS2)				Prepared	& Analyz	ed: 01/30/	02			
Gasoline Range Organics (C6-C10)	308	50	ug/l	250		123	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.0		Ħ	10.0	•	100	70-130			
Matrix Spike (2A30003-MS1)	So	urce: MLA0	524-01	Prepared	& Analyz	ed: 01/30/	02			
Gasoline Range Organics (C6-C10)	532	50	ug/l	550	NĐ	96.7	60-140			
Benzene	9.07	0.50	**	6.60	ND	136	60-140			
Toluene	37.1	0.50	11	39.7	NĐ	93.1	60-140			
Ethylbenzene	8.34	0.50	11	9.20	ND	90.7	60-140			
Xylenes (total)	41.0	0.50	11	46.1	ND	88.9	60-140			
Surrogate: a,a,a-Trifluorotoluene	11.5		"	10.0		115	70-130			<u></u>
Matrix Spike Dup (2A30003-MSD1)	So	urce: MLA0	524-01	Prepared	& Analyz	ed: 01/30/	02			
Gasoline Range Organics (C6-C10)	563	50	ug/l	550	ND	102	60-140	5.66	25	
Benzene	9.16	0.50	**	6.60	ND	137	60-140	0.987	25	
Toluene	35.7	0.50	#	39.7	ND	89.6	60-140	3.85	25	
Ethylbenzene	8.25	0.50	77	9.20	ND	89.7	60-140	1.08	25	
Xylenes (total)	40.9	0.50	n	46.1	ND	88.7	60-140	0.244	25	
Surrogate: a,a,a-Trifluorotoluene	11.4		#	10.0		114	70-130			

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Reported:
Project Manager: Deanna Harding 02/11/02 11:39

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2A31002 - EPA 5030B [P/T]										
Blank (2A31002-BLK1)				Prepared .	& Analyz	ed: 01/31/0	02			
Gasoline Range Organics (C6-C10)	ND	50	ug/l							
Benzene	ND	0.50	11							
Toluene	ND	0.50	U							
Ethylbenzene	ND	0.50	n							
Xylenes (total)	ND	0.50	п							
Methyl tert-butyl ether	ND	2.5	n							
Surrogate: a,a,a-Trifluorotoluene	9.90		"	10.0	·	99.0	70-130			
LCS (2A31002-BS1)				Prepared	& Analyz	ed: 01/31/	02			
Benzene	10.5	0.50	ug/l	10.0		105	70-130			
Toluene	10.5	0.50	"	10.0		105	70-130			
Ethylbenzene	10.8	0.50		10.0		108	70-130			
Xylenes (total)	32.5	0.50	77	30.0		108	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.2		fr	10.0		102	70-130			
LCS (2A31002-BS2)				Prepared	& Analyz	ed: 01/31/	02			
Gasoline Range Organics (C6-C10)	239	50	ug/l	250		95.6	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.2		"	10.0		102	70-130			
LCS (2A31002-BS3)				Prepared	& Analyz	ed: 01/31/	02			
Gasoline Range Organics (C6-C10)	538	50	ug/l	550		97.8	70-130			
Benzene	12.4	0.50	п	6.60		188	70-130			1-08
Toluene	44.5	0.50	п	39.7		112	70-130			
Ethylbenzene	10.7	0.50	н	9.20		116	70-130			
Xylenes (total)	51.4	0.50	H	46.1		111	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.9		#	10.0		109	70-130			
LCS Dup (2A31002-BSD3)				Prepared	& Analyz	ed: 01/31/	02			
Gasoline Range Organics (C6-C10)	514	50	ug/l	550		93.5	70-130	4.56	25	
Benzene	11.3	0.50	п	6.60		171	70-130	9.28	25	1-0
Toluene	42.5	0.50	п	39.7		107	70-130	4.60	25	
Ethylbenzene	10.2	0.50	н	9.20		111	70-130	4.78	25	
Xylenes (total)	49.4	0.50	"	46.1		107	70-130	3.97	25	
Surrogate: a,a,a-Trifluorotoluene	9.78		u	10.0		97.8	70-130			

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J Dublin CA, 94568

Project: Tosco (76) SS #1156,Oakland,Ca

Spike

Source

%REC

Project Number: 4276 MacArthur Project Manager: Deanna Harding

Reported: 02/11/02 11:39

RPD

Total Purgeable Hydrocarbons (C6-C10) by EPA 8015B modified, BTEXM by EPA 8021B - Quality Control Sequoia Analytical - Morgan Hill

Reporting

		Reporting		Spike	Source		70REC		KPU	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2B05003 - EPA 5030B [P/T]				<u> </u>						
Blank (2B05003-BLK1)				Prepared	& Analyz	ed: 02/05/	02			
Gasoline Range Organics (C6-C10)	ND	50	սջ/1							
Benzene	ND	0.50	n							
Toluene	ND	0.50	н							
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50	Ħ							
Methyl tert-butyl ether	ND	2.5	n							
Surrogate: a,a,a-Trifluorotoluene	9.54		er	10.0		95.4	70-130			
LCS (2B05003-BS1)				Prepared	& Analyz	ed: 02/05/	02			
Benzene	10.0	0.50	ug/l	10.0		100	70-130			
Toluene	9.72	0.50	u	10.0		97.2	70-130			
Ethylbenzene	9.26	0.50	H	10.0		92.6	70-130		i.	
Xylenes (total)	28.2	0.50	H	30.0		94.0	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.37	•	n	10.0		93.7	70-130			
LCS (2B05003-BS2)				Prepared	& Analyz	ed: 02/05/	/02			
Gasoline Range Organics (C6-C10)	291	50	ս <u>ք</u> /l	250		116	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.67		rr	10.0		96.7	70-130			
Matrix Spike (2B05003-MS1)	So	urce: MLB0	039-08	Prepared	& Analyz	zed: 02/05/	/02			
Gasoline Range Organics (C6-C10)	603	50	ug/l	550	ND	110	60-140			
Benzene	9.48	0.50	11	6.60	ND	141	60-140			QM-0
Toluene	39.4	0.50	н	39.7	ND	98.8	60-140			
Ethylbenzene	8.75	0.50	п	9.20	ND	95.1	60-140			
Xylenes (total)	43.3	0.50	п	46.1	ND	93.6	60-140			
Surrogate: a,a,a-Trifluorotoluene	10.3		н	10.0		103	70-130			
Matrix Spike Dup (2B05003-MSD1)	So	urce: MLB0	039-08	Prepared	& Analyz	zed: 02/05.	/02			
Gasoline Range Organics (C6-C10)	574	50	ug/l	550	ND	104	60-140	4.93	25	
Benzene	9.27	0.50	н	6.60	ND	137	60-140	2,24	25	
Toluene	38.0	0.50	II	39.7	ND	95.3	60-140	3.62	25	
Ethylbenzene	8.38	0.50	п	9.20	ND	91.1	60-140	4.32	25	
Xylenes (total)	41.5	0.50	II	46.1	ND	89.7	60-140	4.25	25	
Surrogate: a,a,a-Trifluorotoluene	11.3	,	#	10.0		113	70-130			

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding

Reported: 02/11/02 11:39

Diesel Hydrocarbons (C10-C28) by 8015B modified - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2B07022 - EPA 3510B										
Blank (2B07022-BLK1)		Prepared: 02/07/02 Analyzed: 02/08/02								
Diesel Range Organics (C10-C28)	NĐ	50	ug/l					_		
Surrogate: n-Octacosane	37.1		"	50.0		74.2	50-150		-	
LCS (2B07022-BS1)	Prepared: 02/07/02 Analyzed: 02/08/02									
Diesel Range Organics (C10-C28)	430	50	ug/l	500		86.0	60-140			
Surrogate: n-Octacosane	38.1		"	50.0		76.2	50-150			
LCS Dup (2B07022-BSD1)	Prepared: 02/07/02 Analyzed: 02/08/02									
Diesel Range Organics (C10-C28)	392	50	ug/l	500		78.4	60-140	9.25	50	
Surrogate: n-Octacosane	36.1		п	50.0		72.2	50-150			·

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding Reported:

02/11/02 11:39

MTBE Confirmation by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2B04014 - EPA 5030B P/T										
Blank (2B04014-BLK1)	Prepared & Analyzed: 02/01/02									
Methyl tert-butyl ether	ND	0.50	ug/l							
Surrogate: 1,2-Dichloroethane-d4	10.1		n .	10.0		101	60-140			
LCS (2B04014-BS1)		Prepared & Analyzed: 02/01/02								
Methyl tert-butyl ether	10.2	0.50	ug/l	10.0		102	70-130	<u></u>		
Surrogate: 1,2-Dichloroethane-d4	9.96		"	10.0		99.6	60-140			
Matrix Spike (2B04014-MS1)	Source: MLA0547-03			Prepared & Analyzed: 02/01/02						
Methyl tert-butyl ether	10000	100	ug/l	2000	7300	135	70-130			QM-07
Surrogate: 1,2-Dichloroethane-d4	10.3		rr	10.0		103	60-140			
Matrix Spike Dup (2B04014-MSD1)	Source: MLA0547-03		Prepared & Analyzed: 02/01/02							
Methyl tert-butyl ether	10300	100	ug/l	2000	7300	150	70-130	2.96	25	QM-07
Surrogate: 1,2-Dichloroethane-d4	10.3		n	10.0		103	60-140			

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal 6747 Sierra Ct, Suite J

Dublin CA, 94568

Project: Tosco (76) SS #1156,Oakland,Ca

Project Number: 4276 MacArthur Project Manager: Deanna Harding

Reported: 02/11/02 11:39

Notes and Definitions

A-01	MTBE was analyzed on 1/31/02.
A-02	MTBE was analyzed on 1/31/02.
D-15	Chromatogram Pattern: Unidentified Hydrocarbons C10-C28
HT-08	EPA 8015B recommends a 7 day holding time. However, according to the 14 day holding time referenced in the California LUFT manual, the results are valid and useful for their intended purpose.
I-08	The LCS recovery for this analyte was above the control limit by 171%. This should be considered in evaluating the results for this batch for their intended purpose.
I-08a	The LCS recovery for this analyte was above the control limit by 188%. This should be considered in evaluating the results for this batch for their intended purpose.
M-03	This result is from a second dilution of the sample. An initial result was reported from a previous dilution of the sample necessary to report other analytes in a different range.
P-01	Chromatogram Pattern: Gasoline C6-C10
QM-07	The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
R-05	The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.
S-04	The surrogate recovery for this sample is outside control limits due to interference from the sample matrix.
S-06	The recovery of this surrogate is outside control limits due to sample dilution which was required by high analyte concentration in the sample and/or matrix interference.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis

Relative Percent Difference

RPD