February 22, 2001 G-R #180225

TO:

Mr. David B. De Witt

Tosco Marketing Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC: Mr. Glen Matteucci

ERI, Inc.

73 Digital Drive, Suite 100

4276 MacArthur Boulevard

Novato, California

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE: Tosco 76 Service Station #1156

Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	February 20, 2001	Groundwater Monitoring and Sampling Report First Quarter - Event of January 3, 2001

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by *March 6, 2001*, this report will be distributed to the following:

cc: Ms. Eva Chu, Alameda County Health Care Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502 Mr. Bob Hale, Alameda County Public Works Agency, Water Resources Section, 951 Turner Court, Suite 300, Hayward, CA 94545

Enclosure

trans/1156-DBD

February 20, 2001 G-R Job #180225

Mr. David B. De Witt Tosco Marketing Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: First Quarter Event of January 3, 2001

Groundwater Monitoring & Sampling Report Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any of the wells. Static water level data and groundwater elevations are summarized in Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by G-R Standard Operating Procedure - Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1 and 2. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Deanna L. Harding Project Coordinator

Handy

Stephen J. Carter

Senior Geologist, R.G. No. 5577

Figure 1:

Potentiometric Map

Figure 2:

Concentration Map

Table 1:

Groundwater Monitoring Data and Analytical Results

Table 2:

Groundwater Analytical Results

Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

1156.qml

No. 5577

OF CALL

.E.	NAME:	P:\E	MRO\	T0SC0\	1156\Q	11-1156	.DWG	Layout	Tab:	Pot1

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

REVISED DATE

PROJECT NUMBER REVIEWED BY 180225

January 3, 2001

NAME: P:\ENMRO\TOSCO\1156\Q01-1156.DWG | Layout Tab: Con1

Table 1
Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

WELL ID/ TOC*	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE (msl)	Product Thickness (ft.)	TPH-D (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
Derry 4				- 11-								
MW-1	07/20/99 ⁵	7.50	50050	167.36		16,000 ²	120,000	11,000	27,000	3,300	18,000	ND^1
174.86		7.50	5.0-25.0	166.11	<0.01	2,410 ²	6,020 ⁶	1,030	1,040	68.5	412	321/333 ³
	09/28/99	8.75		165.83**	0.02	7,870 ^{2,4}	72,700 ⁶	7,410	13,900	2,070	9,620	ND ¹
	01/07/00	9.05			0.02	3,600 ²	92,000 ⁶	10,000	23,000	3,200	14,000	ND ¹
	03/31/00	7.18		. 167.68		8,580 ²	108,000 ⁶	8,250	18,700	3,750	17,800	ND ¹
	07/14/00	7.68		167.18	0.00 0.00	9,260 ²	96,000 ⁶	8,760	20,000	3,350	15,600	ND ¹
	10/03/00	7.99		166.87	0.00 0.00	9,200 11,000 ⁸	37,000	5,800	13,000	3,330 1,700	8,100	2,200
	01/03/01	9.18		165.68	0.00	11,000	51,000	3,000	13,000	1,700	0,100	2,200
MW-2												
173.01	07/20/99	5.40	5.0-25.0	167.61			ND	ND¹	ND^1	ND^1	ND1	4,500/11,000 ^{3,4}
	09/28/99	5.60		167.41	0.00		1,390 ⁶	124	ND	62.9	43.1	5,280/6,150 ³
	01/07/00	5.92		167.09	0.00		1,450 ⁶	99.0	ND	23.8	16.0	33,100
	03/31/00	5.23		167.78	0.00		ND^1	42	ND ¹	ND^{1}	ND^1	17,000
	07/14/00	5.52		167.49	0.00		ND^1	44.7	ND^1	ND^{1}	ND^1	66,500
	10/03/00	6.04		166.97	0.00		ND¹	56.7	ND ¹	ND ¹	ND^1	57,500
	01/03/01	6.42		166.59	0.00	**	ND	ND ¹	ND ¹	ND¹	ND ¹	49,000
MW-3												
178.44	07/20/99	8.50	5.0-25.0	169.94			1,000	76	52	7 9	76	330
2.0111	09/28/99	8.31		170.13	0.00		1,860 ⁶	174	95.4	71.8	135	443/288 ³
	01/07/00	8.56		169.88	0.00		28,400 ⁶	2,450	3,090	1,560	3,910	1,940
	03/31/00	8.42		170.02	0.00		$26,000^6$	1,300	2,900	2,600	3,500	2,800
	07/14/00	8.61		169.83	0.00		24,500 ⁶	1,850	2,630	2,750	3,900	548
	10/03/00	9.14		169.30	0.00		$22,000^6$	1,910	2,020	2,400	2,680	965
	01/03/01	9.06		169.38	0.00	••	14,000 ⁶	1,600	1,100	2,300	1,400	3,300

Table 1
Groundwater Monitoring Data and Analytical Results
Tosco 76 Service Station #1156

'osco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

WELL ID/	DATE	DTW (8)	S.L. (ft. bgs)	GWE	Product Thickness (ft.)	TPH-D (ppb)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
100		(ft.)	yr. ogs)	(mss)	(354)	(PPV)	(γρυ)	1272/	(PPG)	(PPO)	12/2/	(PPC)
MW-4												
179.10	07/20/99	7.40	5.0-25.0	171.70			69	2.7	0.77	ND	7.1	100
	09/28/99	7.19		171.91	0.00		4,050 ⁶	1,250	72.0	51.3	133	416/459 ³
	01/07/00	8.98		170.12	0.00		7,010 ⁶	2,260	167	271	276	764
	03/31/00	7.26		171.84	0.00		5,500 ⁶	1,800	230	330	400	1,000
	07/14/00	7.67		171.43	0.00		7,940 ⁶	2,810	332	450	247	1,530
•	10/03/00	8.12		170.98	0.00		11, 4 00 ⁶	3,110	437	519	816	1,040
	01/03/01 ⁷	9.10		170.00	0.00		8,600 ⁶	2,500	340	480	960	850
Trip Blank												
rb-lb	07/20/99											
	09/28/99						ND	ND	ND	ND	ND	ND
	01/07/00			••			ND	ND	ND	ND	ND	ND
	03/31/00						ND	ND	ND	ND	ND	ND
	07/14/00						ND	ND	ND	ND	ND	ND
	10/03/00						ND	ND	ND	ND	ND	ND
	01/03/01					••	ND	ND	ND	ND	ND	ND

Table 1

Groundwater Monitoring Data and Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

DTW = Depth to Water

T = Toluene

ND = Not Detected

(ft.) = Feet

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

X = Xylenes

(ft. bgs) = Feet Below Ground Surface

A - Aylenes

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

(msl) = Mean sea level

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations are based on City of Oakland Benchmark No. 3967, (Elevation = 174.40 feet, msl).
- ** GWE has been corrected due to the presence of free product; correction factor: [(TOC DTW) + (Product Thickness x 0.77)].
- Detection limit raised. Refer to analytical reports.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- 3 MTBE by EPA Method 8260.
- Laboratory analyzed sample past EPA recommended holding time.
- 5 Total Recoverable Petroleum Oil was ND.
- 6 Laboratory report indicates gasoline C6-C12.
- This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- ⁸ Laboratory report indicates unidentified hydrocarbons <C16.

Table 2 Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

WELL ID	DATE	TBA	MTBE	DIPE	ETBE	TAME	HVOCs	SVOCs
		(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ррб)	(ppb)
MW-1	07/20/99		11,000 ³			**	ND ¹	ND^2
	09/28/99	ND^6	333	${ m ND}^6$	ND^6	ND^6	ND^4	ND ⁵
	01/07/00						$ND^{7.8}$	ND ⁹
	03/31/00						11	ND^{10}
	07/14/00						ND^{12}	ND^{13}
	10/03/00						ND ¹⁵	ND^{14}
	01/03/01						ND ¹⁵	ND ¹⁶
MW-2	09/28/99	ND ⁶	6,150	ND^6	ND^6	ND ⁶		
MW-3	09/28/99	ND ⁶	288	ND^6	ND^6	8.80		
MW-4	09/28/99	ND^6	459	ND^6	ND ⁶	ND ⁶		

Table 2

Groundwater Analytical Results

Tosco 76 Service Station #1156 4276 MacArthur Boulevard Oakland, California

EXPLANATIONS:

Groundwater laboratory analytical results prior to September 28, 1999, were compiled from reports prepared by Environmental Resolutions, Inc.

TBA = Tertiary butyl alcohol

TAME = Tertiary amyl methyl ether

(ppb) = Parts per billion

MTBE = Methyl tertiary butyl ether

EDB = 1,2-Dibromoethane

ND = Not Detected

DIPE = Di-isopropyl ether

HVOCs = Halogenated Volatile Organic Compounds

-- = Not Analyzed

ETBE = Ethyl tertiary butyl ether

SVOCs = Semi-Volatile Organic Compounds

- All HVOCs were ND except for Chlorobenzene at 12 ppb; 1,2-Dichlorobenzene (1,2-DCB) at 3.9 ppb; 1,1-Dichloroethane (1,1-DCA) at 2.0 ppb; 1,2-Dichloroethane (1,2-DCA) at 20 ppb; cis-1,2-Dichloroethene (cis-1,2-DCE) at 3.6 ppb; and 1,2-Dichloropropane (1,2-DCP) at 0.92 ppb.
- All SVOCs were ND except for Benzyl alcohol at 37 ppb; 2,4-Dimethylphenol at 140 ppb; 2-Methylnaphthalene at 240 ppb; 4-Methylphenol at 27 ppb; and Naphthalene at 600 ppb.
- 3 Laboratory analyzed sample past EPA recommended holding time.
- All HVOCs were ND except for Benzene at 6,130 ppb; Ethylbenzene at 1,590 ppb; Naphthalene at 534 ppb; Toluene at 11,900 ppb; 1,2.4-Trimethylbenzene at 1,240 ppb; 1,3,5-Trimethylbenzene at 318 ppb; and Total Xylenes at 7,360 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2,4-Dimethylphenol at 13.6 ppb; 2-Methylphenol at 87.4 ppb; 2-Methylphenol at 26.4; 4-Methylphenol at 35.6; and Naphthalene at 292 ppb.
- Detection limit raised. Refer to analytical reports.
- All HVOCs were ND (with a raised detection limit) except for Benzene at 8,380 ppb; Ethylbenzene at 2,380 ppb; Naphthalene at 1,050 ppb; n-Propylbenzene at 371 ppb; Toluene at 17,600 ppb; 1,2,4-Trimethylbenzene at 2,210 ppb; 1,3,5-Trimethylbenzene at 597 ppb; and Total Xylenes at 10,800 ppb.
- 8 EPA Method 8260 for HVOCs.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 315 ppb and Naphthalene at 615 ppb.
- All SVOCs were ND except for Bis(2-ethylhexyl)phthalate at 10 ppb; 1,2-DCB at 6.2 ppb; 2-Methylnaphthalene at 73 ppb; 2-Methylphenol at 31 ppb; 4-Methylphenol at 18 ppb; and Naphthalene at 140 ppb. Laboratory report indicates all SVOCs were analyzed outside the EPA recommended holding time.
- 11 Laboratory did not analyze for HVOCs.
- All HVOCs were ND (with a raised detection limit) except for Tetrachloroethene at 334 ppb.
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 300 ppb and Naphthalene at 690 ppb.
- All SVOCs were ND (with a raised detection limit) except for Benzoic acid at 362 ppb, Bis(2-ethylhexyl)phthalate at 51.6 ppb, 2-Methylnaphthalene at 98.1 ppb, 4-Methylphenol at 28.9 ppb, and Naphthalene at 361 ppb.
- ¹⁵ All HVOCs were ND (with a raised detection limit).
- All SVOCs were ND (with a raised detection limit) except for 2-Methylnaphthalene at 180 ppb and Naphthalene at 400 ppb.

ANALYTICAL METHODS:

EPA Method 8260 for Oxygenate Compounds

EPA Method 8010 for HVOCs

EPA Method 8270 for SVOCs

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

Client/ acility # <u> 15</u>	6		Job#	•	180225		
	16 Mac Actl	10/	Date	: 1	- 3-01		<u> </u>
	cland, CA			pler:	Toe		
Well ID		Well (Condition: _		9.K·		
Vell Diameter	2 <u>in</u>	•	ocarbon mess:	in	Amount Ba	and the same of th	
otal Depth	25.17 +	Valu	erx 2" = 1	0.17	3" = 0.36	8 4	" = 0.66
epth to Water	9.18 =	Facto	or (VF)	6° =	1_50	12 = 5.50	
	15.99 x	vf <u>0.17</u>	= 2.72 x 3 (cas	volume)	= Estimated Pr	urge Volume:	8. 5 (cal.)
Purge	Disposable Bailer		Sampling Equipmen		isposable Ba	ailer	,
iquipment:	Bailer · Stack	•	Edorbusen	· ·	ailer		•
	Succion	·.		F	ressure Baile	er	
	Grundfos			-0	irab Sample		
				A-4			
Sampling Time:	Other:	A.m 1	Weather Conditi	ons: _	<u> </u>	Odor	1cs
Sampling Time: Purging Flow Rate Did well de-water Time V	7:0:	Condi	Weather Conditi Water Color: Sediment Descrit If yes; Time: Incrivity V Temporary Temporary V Temporary	ons: _ cle_	clear	Odor	lcal
Sampling Time: Purging Flow Rate Did well de-water Time V	7:09 7:42 7:42 7:42 7:42 7:42 7:42 7:42 7:42	Condi	Weather Conditi Water Color: Sediment Descrit If yes; Time: Incrivity	ons: _	Clear Mone Volum	Odor	Alkalinit
Sampling Time: Purging Flow Rate Did well de-water Time V	7:09 7:42 7:42 7:42 7:42 7:42 7:42 7:42 7:42	Condi	Weather Condition Water Color: Sediment Describing If yes; Time: Macrivity Proposition of the color of the colo	ons:cleaning ons:cleaning ons:cleaning ons:cleaning on the color of the color of the color on th	C (ea C No N C D.O. (mg/L)	Odor	Alkalinit (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time V	7:09 7:42 2: m 7:42 3: m 6: pH (gal.) 3: 6:92 8:5: 6:94	Condiguina O	Weather Conditi Water Color: Sediment Descrit If yes; Time: Incrivity President Presiden	ons:cleaning ons:cleaning ons:cleaning ons:cleaning on the color of the color of the color on th	C (ea (No Ne D.O. (mg/L) BORATORY	Odor:	Alkalinit (ppm)
Sampling Time: Purging Flow Rate Did well de-water Time V 7:20 7:21 7:24 SAMPLE ID	7:09 7:42 2: gr 7 3	Condiguina O	Weather Conditi Water Color: Sediment Descritify Time: Macrivity Tem Mos/cm f 70 70 70 70 70 70 70 70 70 70 70 70 70	ons:cleaning ons:cleaning ons:cleaning ons:cleaning on the color of the color of the color on th	C (ea C No N C D.O. (mg/L)	Odor	Alkalinic (ppm) LYSES EX, MT86 by 8010
Sampling Time: Purging Flow Rate Did well de-water Time V 7 20 7 24 T24 SAMPLE ID	7:09 7:42 7:47 7:47 7:47 6olume pH (g=1) 5 6.47 8.5 6.74 (#)- CONTAINER 3 YOA	Condinate of the condin	Weather Condition Water Color:	ons:cleaning ons:cleaning ons:cleaning ons:cleaning on the color of the color of the color on th	C (ea (No Ne D.O. (mg/L) BORATORY	Odor: ORP (mV) ANA TPMG.BT HVOC*S	Alkalinic (ppm) LYSES EX, MT86 by 8010

Client/ Facility # <u>115</u>	6		Job#:	18022	<u> </u>
Address: 42	76 Mac Act	hu/	Date:	1-3-0	
City: Oa	Fland, CA	<u>. </u>	Samp	iler: <u>Toe</u>	
Well ID		Wei	l Condition:	0.K.	
Well Diameter	2 _{in.}		rocarbon	Amount E	234
Total Depth	25.48 +	-	kness:		
Depth to Water	6.42		cer (VF)	6" = 1.50	12" = 5.50
	19.06 x	vf <u>0.17</u>	_3,24 x 3 (case	volume) = Estimated f	runge Volume:
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	- -	Sampling Equipment:	Disposable Bailer Pressure Bail Grab Sample Other:	er
Starting Time: Sampling Time: Purging Flow Rat Did well de-wate	9'16 9'3 e:	5 <u>A</u> .u	Sediment Descrip	ż	Odor 17 es
	folume pH (gal.)	par	ductivity V Temp	(mg/L)	ORP Alkalinity (mV) (ppm)
9:20 9:21 	3.5 7 6.99 10 7.16			0.9 1.2	
SAMPLE ID	(#) - CONTAINER	LABO REFRIG.	PRESERV, TYPE	ATION LABORATORY	ANALYSES
MW-2	BYON	Y	HCL	Sequoia	TPHG, BTEX, MTBG
	-		1		
·					
COMMENTS: .					

Client/ Facility # 115	6		Job#:	18022		_
Address: 42	76 Mac Act	AU/	Date:	<u>اه - 3 - ا</u>		_
Сіту:0 &]	Floud, CA	•	Samp	ler: <u>50e</u>		-
Weil ID	Mw-3	Well	Condition:	0.K.	•	-
Well Diameter	<u> 2</u>	-	rocarbon	Amount B		•
Total Depth	25.03 +	-	kness:	17 3° = 0.36		٦,
Depth to Water	9,06 +	Fac	zor (VF)	6" = 1.50	12" = 5.50	_
	15.97 ×	vf <u>017</u>	=2:71 x 3 (case)	volume) = Estimated Pr	urga Volume: 8,5 (czl	7
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos	· .	Sampling Equipments	Bailer Pressure Baile Grab Sample	• • • • • • • • • • • • • • • • • • •	
· 	Other:			Other:	<u> </u>	
Starting Time: Sampling Time:	8:35 9:10	A.m	Water Color:	clear clear tion: Mexe		<u>-</u>
Did well de water		<u>-</u>		Volum	ne:loz	477
	olume pH (g-l.)	m	ductivity V Temp hos/em Y -{	erature D.O.	ORP Alkalinit (mV) (ppm)	-
8:45	26 6.88 55 6.90		. 8 5 72 2.75 71	·/		
8:49	8.5. 6.96	<u> </u>	<u> </u>	7		
					<u> </u>	
			RATORY INFORMA	ATION LABORATORY	ANALYSES	
SAMPLE ID	(#) - CONTAINER 3 YOA	REFRIG.	HCL.	Sequoia	TPHG, BTEX, MTBG	
700						
<u> </u>						\dashv
<u> </u>	<u> </u>	1	.1	1		
COMMENTS: _		<u> </u>				
 :						

Client/ Facility # <u>115</u>	.6	Joba	#: <u>18</u>	0225		·	
Address: 42	76 Wac Act	hur	Date	: <u>1</u> _	3-01		
City: 0a	Eland, C/	 	Sam	pler:	Toe		
Well ID	_ mw-4	Wei	Il Condition: _	0	K-		
Well Diameter	2 <u>in</u>	=	drocarbon	2	mount Ba	سيفتعد	
Total Depth	25.32 +		okness:	<u>in</u> (3" = 0.38		= 0.66
Depth to Water	9.10 +		cor (VF))		
	_16.72 ×	vf <u>0.17</u>	2,76 ×3 (cas	s volume) = E	stimeted Fu	rge Volume: 💆	B. S (cel)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	· .	Sampling Equipmen	Baile Pres	sure Baile Sample	ſ	4
Starting Time: Sampling Time: Purging Flow Rate Did well de-water	-	Au	Weather Condition Water Color: Sediment Describing If yes; Time:	clear prion: <u>No</u>	<u> </u>	Odor:	1 e S (cal.)
	olume pH (gal) 2.5 7.30 5.7.30	<u>3</u>	discrivity 1 Tem thos/cm 4 67 3.70 7	pessione F	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
SAMPLE ID	(#) - CONTAINER	LABO REFRIG.	RATORY INFORM PRESERV. TYPE	ATION LABOR	ATORY	ANAU	YSES
MW-4	3 YOA	Y	HCL	Sequ	10ia	TPHG, BTE	X, MT86
	······································						
					·····		
COMMENTS: _							

Unum	 UUSIUU	Y-1/800	1
			_

Tooco Merketing Company 2000 Crow Curyan FL, Sta, 408 Son Raman, Coltornia 843&3

Relinguished By (Signature)

Focility Number TOSCO (76) SS#1156	
Facility Address 4276 MACARTHUR, OAKLAND CA	_
oneultant Project Number 180225.85	
oneuMant Home Gettler-Ryan Inc. (G-R Inc.)	

Address 6747 Sierra Court, Suite J. Dublin, CA 94568

Project Contact (Name) Deanna L. Harding

Organization SEQ

Organization

Dole/Time

10hana 925-551-7555 1500 Humber 925-551-7888

Contact (Nome) MR. DAVID DEW	ITT
(Phone) (925) 277-2384	
Loborolory Name Sequoia Analytical	
Laboratory Release Number	
Samples Collected by (Nome) TOE A JEM	IAN
Collection Date 1-3-01	
Signature	

Date/Time

Date/Time

48 Hre. 5 Days 10 Days

As Contracted

	· · · · · · · · · · · · · · · · · · ·	1		(P	hone) <u>42</u>	<u>5-551-75</u>	2.) (Fax	Number)425	-551-	7888	<u> </u>	lgnatur#		<u>کی</u> ()	\rightleftharpoons	<u>~~</u>				1
	į		8]	,				,		-	Analyes	o To B	e Perfo	rmed I			т—		DO NOT BILL
Sample Number	Lab Sample Number	Number of Containers	Matrix S = Soll A = Air W = Water C = Charcool	Type G = Grab C = Composite D = Discrete	Time	· Sample Preservation	(cea or No)	TPH Gat BTEX WANTEE (8016) [8020]	TPH Diesed (8015)	Oil and Grease (5520)	Purpeable Halocarbors (8010)	Purgedble Aromotics (8020)	Purgeable Organice (8240)	Extractable Organics (8270)	Metals CACYPEZNAT (ICAP or AA)	HAOC; 84 8010	0218hg 5,0015				TB-LB ANALYSI
TB-LB	014	I NJA	W	G_	-	HCL	Υ	V											<u> </u>	<u> </u>	
4w-1	03A-G	5 VO4	/	1	7:42	,	1	\checkmark	>		<u> </u>		<u>.</u>		ļ. 	<u> </u>	V		<u> </u>	<u> </u>	
uw-2	03A-C	BYOL	,	/	9:35	,	/	\ \							<u> </u>			ļ	<u> </u>	<u> </u>	
μων3	OLA-C.	3401	. /	/	9:00	,	,	V						<u> </u>	<u> </u>				ļ		
MW- 4	05A-C	340K	1	,	8:25	,	1	✓						<u> </u>					<u> </u>	ļ	
								ļ							<u>.</u>				ļ	ļ	
						•		<u> </u>							<u> </u>	<u> </u>	<u> </u>			 	
·																	<u> </u>	<u> </u>	<u> </u>	 	
								 		 			ļ	<u> </u>	 	<u> </u>	<u> </u>				
	1							ļ		 			ļ		<u> </u>		 	<u> </u>	-	 	
										ļ				ļ			ļ	ļ		 	
					 					<u> </u>				<u> </u>	<u> </u>				-	-	
							 -			<u> </u>	<u> </u>									 	
linquiehed By	(Signoture)	<u> </u>		enization R Inc		ote/Ilme 3 - c l	Rec	elved By	(36)	tur•)	<u> </u>	0	rgonizali	lon ?	1 /3	/Jime			Turn Ar		ne (Circie Cholae) Hre.
Inquished By	(Signature)		Orgo	inlzation	D	ote/Time	Rec	elved By	(Signa	lurø)		0	ganizati	on	Date	/Ilme	SOZ				Hre.

Reviewed For Laboratory By (Signature)

PARIN

6 February, 2001

Deanna L. Harding Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Tosco Sequoia Report W101108

Enclosed are the results of analyses for samples received by the laboratory on 03-Jan-01 13:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding Reported: 06-Feb-01 07:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	W101108-01	Water	03-Jan-01 00:00	03-Jan-01 13:00
MW-1	W101108-02	Water	03-Jan-01 07:42	03-Jan-01 13:00
MW-2	W101108-03	Water	03-Jan-01 09:35	03-Jan-01 13:00
MW-3	W101108-04	Water	03-Jan-01 09:00	03-Jan-01 13:00
MW-4	W101108-05	Water	03-Jan-01 08:25	03-Jan-01 13:00

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charlie Westwater, Project Manager

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding Reported: 06-Feb-01 07:29

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (W101108-01) Water	Sampled: 03-Jan-01 00:00	Receive	d: 03-Ja	n-01 13:00			· · · ·	'	
Purgeable Hydrocarbons	ND	50	ug/l	1	1A24016	13-Jan-01	13-Jan-01	EPA 8015M/8020	
Benzene	ND	0.50	и	n	11	Ħ	и .	H	
Toluene	ND	0.50	11	n	11	Ħ	n	n	
Ethylbenzene	ND	0.50	"	Ħ	11	n	"	н	
Xylenes (total)	ND	0.50	Ħ	n	н	n	n	n	
Methyl tert-butyl ether	ND	2.5	**	**	Ħ	n	n	ŧŧ	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	99.3 %	70-	-130	п	π	ff	и	
MW-1 (W101108-02) Water	Sampled: 03-Jan-01 07:42	Receive	d: 03-Jai	n-01 13:00					P-01
Purgeable Hydrocarbons	37000	5000	ug/l	100	1A24016	13-Jan-01	13-Jan-01	EPA 8015M/8020	
Benzene	5800	50	**	"	11	"	•	11	
Toluene	13000	50	n	n	11	Ħ	m	11	
Ethylbenzene	1700	50	Ħ	R	11	II	H	11	
Xylenes (total)	8100	50	h	n	ŧı	Ħ	11	11	
Methyl tert-butyl ether	2200	250	Ħ	Ħ	"	n	11	41	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	104 %	70-	-130	".	"	п	"	
MW-2 (W101108-03) Water	Sampled: 03-Jan-01 09:35	Receive	d: 03-Jai	n-01 13:00					
Purgeable Hydrocarbons	ND	10000	ug/l	200	1A24016	13-Jan-01	13-Jan-01	EPA 8015M/8020	···
Benzene	ND	100	"	"		**	"		
Toluene	ND	100	11	n	11	ч	u	10	
Ethylbenzene	ND	100	"	"	u	"		lt .	
Xylenes (total)	ND	100	P	*	Ħ	11	u	n	
Methyl tert-butyl ether	49000	500	*	n	•	**	**	n	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	105 %	70-	-130	"	"	"	rr	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 06-Feb-01 07:29

Dublin CA, 94568

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

	R	eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (W101108-04) Water	Sampled: 03-Jan-01 09:00	Receive	1: 03-Jan	-01 13:00					P-01
Purgeable Hydrocarbons	14000	5000	ug/l	100	1A24016	13-Jan-01	13-Jan-01	EPA 8015M/8020	
Benzene	1600	50	**		H	11	n	**	
Toluene	1100	50	11	"	"	11	H	**	
Ethylbenzene	2300	50	11	u	и	Ħ	Ħ	**	
Xylenes (total)	1400	50	Ħ	41	#	"	n	**	
Methyl tert-butyl ether	3300	250	**	11	Ħ	H		**	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	104 %	70-	130	"	и	"	n	
MW-4 (W101108-05) Water	Sampled: 03-Jan-01 08:25	Receive	d: 03-Jan	-01 13:00					A-03,P-01
Purgeable Hydrocarbons	8600	2500	ug/l	50	1A30001	30-Jan-01	30-Jan-01	EPA 8015M/8020	
Benzene	2500	25	Ħ	tt	*	II		***	
Toluene	340	25	11	H	-	H	11	11	
Ethylbenzene	480	25	"	н	*	11		"	
Xylenes (total)	960	25	Ħ	Ħ		**		#	
Methyl tert-butyl ether	850	130	"	n	•		n	Ħ	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	110 %	70-	130	"	"	"	n	

Page 3 of 18

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding Reported: 06-Feb-01 07:29

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W101108-02) Water	Sampled: 03-Jan-01 07:42	2 Received	d: 03-Jan-	01 13:00			 	· · · · · ·	
Diesel Range Hydrocarbons	11000	250	ug/l	5	1A09021	09-Jan-01	13-Jan-01	EPA 8015M	D-11
Surrogate: n-Pentacosane		55.0 %	50-1.	50	"	17	#	*	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W101108-02) Water	Sampled: 03-Jan-01 07:42	Receive	d: 03-Jan-	-01 13:00					R-05
Chloromethane	ND	100	ug/l	50	1A11015	09-Jan-01	09-Jan-01	EPA 8010B	
Vinyl chloride	ND	50	n	**	n	R	•	II†	
Bromomethane	ND ·	100		**	n	н	**	11	
Chloroethane	ND	50		н	hr	н	**	19	
Trichlorofluoromethane	ND	50	II.	П	"	Ħ	-	"	
Freon 113	ND	50	**	**	H	n	**	17	
1,1-Dichloroethene	ND	50	Ħ	n	n	n	м	n	
Methylene chioride	ND	500	*	n	**	Ħ		11	
trans-1,2-Dichloroethene	ND	50	•	n	tr	Ħ	47	"	
1,1-Dichloroethane	ND	50	Ħ		n	и	.,	"	
cis-1,2-Dichloroethene	ND	50	Ħ	n	n	Ħ	11	11	
Chloroform	ND	50	*	#	11	11	**	**	
1,1,1-Trichloroethane	ND	50	**	#	n	#	H	11	
Carbon tetrachloride	ND	50		n	11	n	li		
1,2-Dichloroethane	ND	100	•	**	Ħ	11	11	•	
Trichloroethene	ND	100	-	**	"	11		₩	
1,2-Dichloropropane	ND	50		**	11	11	Ħ		
Bromodichloromethane	ND	50	-		"	11	**		
cis-1,3-Dichloropropene	ND	50	#	*	11	11	**		
rans-1,3-Dichloropropene	ND	50	11	н	н	**	11	IF	
1,1,2-Trichloroethane	ND	25	11	**	11	н	11	н	
Tetrachloroethene	ND	50	п		11	11	11		
Dibromochloromethane	ND	25	u	н .	n	11	11	u u	
1,2-Dibromoethane	ND	50	"	#	н	11	**	H	
Chlorobenzene	ND	50	"		11	"	11	*	
Bromoform ,	ND	25	11	**	Ħ	Ħ	Ħ	"	
1,2,3-Trichloropropane	ND	25	**	**	n	11	**	ŧŧ	
1,1,2,2-Tetrachloroethane	ND	50	**	н	11	11	11	11	
1,3-Dichlorobenzene	ND	25	**		n	**	11		
1,4-Dichlorobenzene	ND	100	**	••	**	4	и	ч	
,2-Dichlorobenzene	ND	100	11		11	**	**	11	
Surrogate: Dibromodifluoromet	thane	94.0 %	50-1	150	,,	"	"	n	
Surrogate: 4-Bromofluorobenze	me	110 %	50-1		"	"	"	"	

€\$

Page 5 of 18

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W101108-02) Water	Sampled: 03-Jan-01 07:42	2 Receive	d: 03-Jai	n-01 13:00					
Acenaphthene	ND	50	ug/l	10	1A09014	09-Jan-01	17-Jan-01	EPA 8270B	
Acenaphthylene	ND	50	"	Ð	n	II.	K	**	
Aniline	ND	50	"	n	,	"	"	17	
Anthracene	ND	50	11		**	H	**	tr.	
Benzoic acid	ND	100	u	"	ø	11	**	II .	
Benzo (a) anthracene	ND	50	"	H	"	н	**	H .	
Benzo (b) fluoranthene	ND	50	91	u	"	ıı	**	n	
Benzo (k) fluoranthene	ND	50	Ħ	н	u	H	ŧŧ	n	
Benzo (ghi) perylene	ND	50	11	н	"	u u	11	#	
Benzo[a]pyrene	ND	50	11			**	61	Ħ	
Benzyl alcohol	ND	50	н	H	0	II .	11	tı	
Bis(2-chloroethoxy)methane	ND	50	44	u	u u	II .	11	#1	
Bis(2-chloroethyl)ether	ND	50	11	H	**		11	11	
Bis(2-chloroisopropyl)ether	ND	50	51	u	u	u	"	u	
Bis(2-ethylhexyl)phthalate	ND	100	41	n	"	"	11		
4-Bromophenyl phenyl ether	ND	50	11	н		**	11	11	
Butyl benzyl phthalate	ND	500	91	"		"	•	**	
4-Chloroaniline	ND	250	11	n	n	H.	**	tr .	
2-Chloronaphthalene	ND	50	11	"	"	n	11	-	
4-Chloro-3-methylphenol	ND	50	*1	н	**	H.	97	HT .	
2-Chlorophenol	ND	50	11	n	n	n		W	
4-Chlorophenyl phenyl ether	ND	50	"	"	**	Ħ	•	"	
Chrysene	ND	50	41	"	Ħ	Ħ		It	
Dibenz (a,h) anthracene	ND	100	. "		H	П	lt.	п	
Dibenzofuran	ND	50	"		"	•		11	
Di-n-butyl phthalate	ND	100	91	Ħ	Ħ	11		11	
1,2-Dichlorobenzene	ND	50	Ħ	n	h	**	H	"	
1,3-Dichlorobenzene	ND	50	"	Ħ	Ħ	**	"	11	
1,4-Dichlorobenzene	ND	100	#	"	н	11	11	11	
3,3'-Dichlorobenzidine	ND	100	11	Ħ	11	и	11	,	
2,4-Dichlorophenol	ND	50	•	**	11	11	11	n	
Diethyl phthalate	ND	50	**	#1	11	11		H	
2,4-Dimethylphenol	ND	50	**	11	91	11	u	n	
Dimethyl phthalate	ND	50	**	**		π	w	n	
4,6-Dinitro-2-methylphenol	ND	100	п	п	**		11	**	
2,4-Dinitrophenol	ND	100	Ħ	11	n	*	ti	п	
2,4-Dinitrotoluene	ND	100		11	11		•	11	
2,6-Dinitrotoluene	ND	100	п	**	*	11*	•	"	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Semivolatile Organic Compounds by EPA Method 8270B

Sequoia Analytical - Walnut Creek

			<i>,</i>			• • •			
Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W101108-02) Water	Sampled: 03-Jan-01 07:42	Receive	d: 03-Jan-	01 13:00					
Di-n-octyl phthalate	ND	100	ug/l	10	1A09014	09-Jan-01	17-Jan-01	EPA 8270B	60
Fluoranthene	ND	50	H	n	11		*	Ħ	
Fluorene	ND	50	H	11	11	**	•		
Hexachlorobenzene	ND	100	*	H	н	•	₩	**	
Hexachlorobutadiene	ND	100	H	₩	**	n	*	tt.	
Hexachlorocyclopentadiene	ND	100	*	**	"	n			
Hexachloroethane	ND	50		41	77	#	11	**	
Indeno (1,2,3-cd) pyrene	ND	100	Ħ	Ħ	11	71	#	10	
Isophorone	ND	50	н	"	n	**	**	m	
2-Methylnaphthalene	180	50	*	**	11	•	₩	H	
2-Methylphenol	ND	50	n	Ħ	65			"	
4-Methylphenol	ND	50	**	"	"	₩	•	11	
Naphthalene	400	50		**	#	**	-		
2-Nitroaniline	ND	100	77	u	11	n		*	
3-Nitroaniline	ND	100	**	"	91		*	n	
4-Nitroaniline	ND	200	"	11	**		**	**	
Nitrobenzene	ND	50	**	#	11	-	n	W	
2-Nitrophenol	ND	50	11	Ħ	#	**	,,	n	
4-Nitrophenol	ND	100	**	H	**	77		п	
N-Nitrosodimethylamine	ND	50	11	H	W	11	-	n	
N-Nitrosodiphenylamine	ND	50	Ħ	Ħ	n	11	₩		
N-Nitrosodi-n-propylamine	ND	50	π	"	"	"	₩ .	"	
Pentachlorophenol	ND	100	n		n	**	r	n	
Phenanthrene	ND	50	11		н	n	**	II	
Phenol	ND	50	"			n	**	n	
Pyrene	ND	50		*	10	ıı	**		
1,2,4-Trichlorobenzene	ND	50	"	Ħ	11	11	**	"	
2,4,5-Trichlorophenol	ND	100		**	H	.,	-		
2,4,6-Trichlorophenol	ND	100		77		11	"		
Surrogate: 2-Fluorophenol		26.7 %	21-	110	"	- "	,,	,,	
Surrogate: Phenol-d6		23.0 %	10-		"	"	"	"	
Surrogate: Nitrobenzene-d5		59.3 %	35-		"	n	,,	#	
Surrogate: 2-Fluorobiphenyl	•	65.2 %	43-		,,	,,	,,	,,	
Surrogate: 2,4,6-Tribromopher	ool	57.0 %	10-		,,	,,	"	#	
Surrogate: p-Terphenyl-d14		67.9 %	33-		"	"	#	#	
our oguie. p-zerpnenyi-u14		U/.y 70	33-	141	••		**		

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Prepared & Analyzed: 13-Jan-01	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Purgeable Hydrocarbons ND 50 ug/l ND 0.50 " Kylenes (total) ND 0.50 " Methyl tert-butyl ether ND 2.5 " Surrogate: a, a, a-Trifluorotoluene 19.1 0.50 " Subybbenzene 19.1 0.50 " 20.0 101 70-130 Benzene 19.1 0.50 " 20.0 106 70-130 Surrogate: a, a, a-Trifluorotoluene 20.2 0.50 " 20.0 106 70-130 Surrogate: a, a, a-Trifluorotoluene 20.2 0.50 " 20.0 106 70-130 Surrogate: a, a, a-Trifluorotoluene 20.3 " 30.0 101 70-130 Surrogate: a, a, a-Trifluorotoluene 30.3 " 30.0 101 70-130 Matrix Spike (1A24016-MS1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Benzene 15.6 0.50 ug/l 20.0 ND 78.0 70-130 Coluene 16.5 0.50 " 20.0 ND 82.5 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 17.8 0.50 " 20.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 16.5 0.50 " 20.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 ND 89.0 70-130 Surrogate: a, a, a-Trifluorotoluene 17.1 0.50 " 20.0 ND 85.5 70-130 3.57 20 Subybenzene 18.3 0.50 " 20.0 ND 85.5 70-130 3.57 20 Subybenzene 18.3 0.50 " 20.0 ND 91.5 70-130 3.77 20 Subybenzene 19.1 0.50 " 20.0 ND 91.5 70-130 3.77 20 Subybenzene 10.1 0.50 " 20.0 ND 91.5 70-130 3.77 20 Subybenzene 10.2 0.5 " 20.0 ND 91.5 70-130 3.13 20	Batch 1A24016 - EPA 5030B [P/T]		 . <u> </u>								
Purgeable Hydrocarbons ND 50 ug/1	Blank (1A24016-BLK1)	· · · · · · · · · · · · · · · · · · ·			Prepared	& Analyz	ed: 13-Jan	-01			
Toluene ND 0.50 "	Purgeable Hydrocarbons	ND	50	ug/l		· · · ·					 .
Toluene ND 0.50 " ND 0.50	Benzene	ND	0.50								
ND 0.50	Toluene	ND	0.50	**							
Methyl tert-butyl ether ND 2.5 " Surrogate: a, a, a-Trifluorotoluene 30.1 " 30.0 100 70-130 LCS (1A24016-BS1) Prepared & Analyzed: 13-Jan-01 Benzene 19.1 0.50 ug/l 20.0 95.5 70-130 Toluene 20.2 0.50 " 20.0 101 70-130 Ethylbenzene 21.3 0.50 " 20.0 106 70-130 Kylenes (total) 64.8 0.50 " 60.0 108 70-130 Surrogate: a, a a-Trifluorotoluene 30.3 " 30.0 101 70-130 Matrix Spike (1A24016-MS1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Benzene 15.6 0.50 ug/l 20.0 ND 82.5 70-130 Sthylbenzene 17.8 0.50 " 20.0 ND 89.0 70-130 Kylenes (total) 53.5 0.50 " 60.0 ND 89.2 70-130 Surrogate: a, a a-Trifluorotoluene 29.3 " 30.0 97.7 70-130 Matrix Spike Dup (1A24016-MSD1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Surrogate: a, a a-Trifluorotoluene 29.3 " 30.0 97.7 70-130 Matrix Spike Dup (1A24016-MSD1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Surrogate: a, a a-Trifluorotoluene 16.5 0.50 ug/l 20.0 ND 89.5 70-130 3.57 20 Surrogate: a, a a-Trifluorotoluene 17.1 0.50 " 20.0 ND 85.5 70-130 3.57 20 Surrogate: a, a a-Trifluorotoluene 18.3 0.50 " 20.0 ND 85.5 70-130 3.57 20 Surrogate: a, a a-Trifluorotoluene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Surrogate: a, a a-Trifluorotoluene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Surrogate: a, a a-Trifluorotoluene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Surrogate: a, a a-Trifluorotoluene 18.3 0.50 " 20.0 ND 91.5 70-130 3.13 20	Ethylbenzene	ND	0.50	"							
Methyl tert-butyl ether ND 2.5 " Surrogate: a, a, a-Trifluorotoluene 30.1 " 30.0 100 70-130 LCS (1A24016-BS1)	Xylenes (total)	ND	- 0.50	"							
Prepared & Analyzed: 13-Jan-01	Methyl tert-butyl ether			u							•
Senzene 19.1 0.50 ug/l 20.0 95.5 70-130 20.0 70-130 20.0	Surrogate: a,a,a-Trifluorotoluene	30.1		#	30.0		100	70-130			
19.1 0.50 ug/l 20.0 95.5 70-130 70	LCS (1A24016-BS1)				Prepared	& Analyz	ed: 13-Jan	-01			
Toluene 20.2 0.50 " 20.0 101 70-130 Ethylbenzene 21.3 0.50 " 20.0 106 70-130 Yellows (totat) 64.8 0.50 " 60.0 108 70-130 Yellows (totat) 80.3 " 30.0 101 70-130 Yellows (1.3-Jan-01 Senzene 15.6 0.50 ug/l 20.0 ND 82.5 70-130 Yellows (totat) 17.8 0.50 " 20.0 ND 89.0 70-130 Yellows (totat) 80.50 " 30.0 ND 89.0 70-130 Yellows (totat) 80.50 " 20.0 ND 89.0 70-130 Yellows (totat) 80.50 " 30.0 ND 89.0 70-130 Yellows (totat) 80.50 ND 80.0 ND 80.0 ND 80.0 Yellows (totat) 80.50 ND 80.0 ND 80.0 ND 80.0 ND 80.0 Yellows (totat) 80.50 ND 80.0 N	Benzene	19.1	0.50	ug/l							
Ethylbenzene 21.3 0.50 " 20.0 106 70-130 Kylenes (total) 64.8 0.50 " 60.0 108 70-130 Surrogate: a, a, a-Trifluorotoluene 30.3 " 30.0 101 70-130 Matrix Spike (1A24016-MS1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Benzene 15.6 0.50 ug/l 20.0 ND 78.0 70-130 Sthylbenzene 17.8 0.50 " 20.0 ND 82.5 70-130 Sthylbenzene 17.8 0.50 " 20.0 ND 89.0 70-130 Kylenes (total) 53.5 0.50 " 60.0 ND 89.2 70-130 Surrogate: a, a, a-Trifluorotoluene 29.3 " 30.0 97.7 70-130 Matrix Spike Dup (1A24016-MSD1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 3.57 20 Sthylbenzene 17.1 0.50 " 20.0 ND 85.5 70-130 3.57 20 Sthylbenzene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Sthylbenzene (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20 Street 17.1 0.50 " 20.0 ND 91.5 70-130 2.77 20 Sthylbenzene (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 1.50 " 20.0 ND 91.5 70-130 3.13 20 Street 17.10 17.1	Toluene	20.2	0.50	_	20.0			70-130			
Surrogate: a.a.a-Triffuorotoluene 30.3 " 30.0 101 70-130	Ethylbenzene	21.3	0.50	*							
Matrix Spike (1A24016-MS1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Benzene 15.6 0.50 ug/1 20.0 ND 78.0 70-130 Benzene 16.5 0.50 " 20.0 ND 82.5 70-130 Benzene 17.8 0.50 " 20.0 ND 89.0 70-130 Surrogate: a,a,a-Trifluorotoluene 29.3 " 30.0 97.7 70-130 Matrix Spike Dup (1A24016-MSD1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Benzene 16.5 0.50 ug/1 20.0 ND 82.5 70-130 Matrix Spike Dup (1A24016-MSD1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Benzene 16.5 0.50 ug/1 20.0 ND 82.5 70-130 5.61 20 Benzene 17.1 0.50 " 20.0 ND 85.5 70-130 3.57 20 Benzene Stylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Xylenes (total)	64.8		10							
Senzene 15.6 0.50 ug/1 20.0 ND 78.0 70-130	Surrogate: a,a,a-Trifluorotoluene	30.3		"	30.0		101	70-130	· · · · · · · · · · · · · · · · · · ·	 .	
Senzene 15.6 0.50 ug/l 20.0 ND 78.0 70-130	Matrix Spike (1A24016-MS1)	So	ource: W1011	28-03	Prepared	& Analyze	ed: 13-Jan	-01			
Toluene 16.5 0.50 " 20.0 ND 82.5 70-130 Sthylbenzene 17.8 0.50 " 20.0 ND 89.0 70-130 Stylenes (total) 53.5 0.50 " 60.0 ND 89.2 70-130 Surrogate: a,a,a-Trifluorotoluene 29.3 " 30.0 97.7 70-130 Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 5.61 20 Sthylbenzene 18.3 0.50 " 20.0 ND 85.5 70-130 3.57 20 Sthylbenzene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Stylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20 Stylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Benzene	15.6	0.50	ug/l					•		
Sthylbenzene	Toluene	16.5	0.50		20.0						
Solution	Ethylbenzene	17.8	0,50	n							
Matrix Spike Dup (1A24016-MSD1) Source: W101128-03 Prepared & Analyzed: 13-Jan-01 Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 5.61 20 Shylbenzene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Sylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Xylenes (total)	53.5	0.50								
Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 5.61 20	Surrogate: a,a,a-Trifluorotoluene	29.3	 -	"	30.0		97.7	70-130			
Senzene 16.5 0.50 ug/l 20.0 ND 82.5 70-130 5.61 20 Soluene 17.1 0.50 " 20.0 ND 85.5 70-130 3.57 20 Sthylbenzene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Kylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Matrix Spike Dup (1A24016-MSD1)	So	urce: W1011	28-03	Prepared .	& Analyza	ed: 13-Jan	-01			
Columne 17.1 0.50 " 20.0 ND 85.5 70-130 3.57 20 Sthylbenzene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Kylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Benzene								5.61	20	····
Othylbenzene 18.3 0.50 " 20.0 ND 91.5 70-130 2.77 20 Kylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Toluane	17.1		_						-	
(ylenes (total) 55.2 0.50 " 60.0 ND 92.0 70-130 3.13 20	Ethylbenzene			11							
The state of the s	Kylenes (total)			**							
	Surrogate: a,a,a-Triftuorotoluene	30.9		"	30.0					· · ·	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A30001 - EPA 5030B [P/T]									-	
Blank (1A30001-BLK1)				Prepared	& Analyz	ed: 30-Jan	-01			•
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	"							
Toluene	ND	0.50								
Ethylbenzene	ND	0.50	**							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	•							
Surrogate: a, a, a-Trifluorotoluene	31.2		"-	30.0		104	70-130	·• ·· ·		
LCS (1A30001-BS1)				Prepared	& Analyz	ed: 30-Jan	-01			
Benzene	18.2	0.50	ug/l	20.0		91.0	70-130			
Toluene	18.9	0.50	"	20.0		94.5	70-130			
Ethylbenzene	20.1	0.50	"	20.0		101	70-130			
Xylenes (total)	59.3	0.50	"	60.0		98.8	70-130			
Surrogate: a,a,a-Trifluorotoluene	29.6		п	30.0		98.7	70-130			
Matrix Spike (1A30001-MS1)	Sc	ource: W1014	84-04	Prepared	& Analyz	ed: 30-Jan	-01			
Benzene	19.2	0.50	ug/l	20.0	ND	96.0	70-130			
Toluene	20.4	0.50	"	20.0	ND	102	70-130			
Ethylbenzene	21.2	0.50	n	20.0	ND	106	70-130			
Xylenes (total)	63.5	0.50	**	60.0	ND	106	70-130			
Surrogate: a,a,a-Trifluorotoluene	32.4		*	30.0		108	70-130			
Matrix Spike Dup (1A30001-MSD1)	Sc	ource: W1014	184-04	Prepared	& Analyz	ed: 30-Jan	-01			
Benzene	19.1	0.50	ug/l	20.0	ND	95.5	70-130	0.522	20	· · · · · · ·
Tohiene	20.1	0.50	71	20.0	ND	101	70-130	1.48	20	
Ethylbenzene	21.1	0.50	**	20.0	ND	106	70-130	0.473	20	
Xylenes (total)	63.5	0.50	Ħ	60.0	ND	106	70-130	0	20	
Surrogate: a, a, a-Trifluorotoluene	32.8		n	30.0		109	70-130			<u> </u>

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding Reported:

06-Feb-01 07:29

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A09021 - EPA 3510B		-								
Blank (1A09021-BLK1)				Prepared:	09-Jan-01	Analyze	d: 10-Jan-()1		
Diesel Range Hydrocarbons	ND	50	ug/l			·				
Surrogate: n-Pentacosane	28.0		it	33.3		84.1	50-150	_		
LCS (1A09021-BS1)				Prepared:	09-Jan-01	Analyze	d: 10-Jan-0	01		
Diesel Range Hydrocarbons	377	50	ug/l	500		75.4	60-140		. <u>. </u>	
Surrogate: n-Pentacosane	24.7		- <i>n</i>	33.3		74.2	50-150			
LCS Dup (1A09021-BSD1)				Prepared:	09-Jan-01	Analyze	d: 10-Jan-0)1		
Diesel Range Hydrocarbons	468	50	ug/l	500		93.6	60-140	21.5	50	
Surrogate: n-Pentacosane	28.3		"	33.3		85.0	50-150			

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156
Project Manager: Deanna L. Harding

Reported: 06-Feb-01 07:29

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A11015 - EPA 5030B [P/T]			*			· · · · · · · · · · · · · · · · · · ·	·		······································	
Blank (1A11015-BLK1)	· · · · · · · · · · · · · · · · · · ·			Prepared	& Analyza	ed: 09-Jan	-01	***		
Chloromethane	ND	2.0	ug/l							
Vinyl chloride	ND	1.0	"							
Bromomethane	ND	2.0								
Chloroethane	ND	1.0	n							
Trichlorofluoromethans	ND	1.0	"							
Freon 113	ND	1.0	Ħ							
1,1-Dichloroethene	ND	1.0	11							
Methylene chloride	ND	10	**							
rans-1,2-Dichloroethene	ND	1.0	#1							
l,l-Dichloroethane	ND	1.0	11							
sis-1,2-Dichloroethene	ND	1.0	Ħ							
Chloroform	ND	1.0	**							
,1,1-Trichloroethane	ND	1.0	•							
Carbon tetrachloride	ND	1.0								
,2-Dichloroethane	ND	2.0	*							
richloroethene	ND	2.0	**							
,2-Dichloropropane	ND	1.0	v							
Bromodichloromethane	ND	1.0	#							
is-1,3-Dichloropropene	ND	1.0	11							
ans-1,3-Dichloropropene	ND	1.0	n							
,1,2-Trichloroethane	ND	0.50	**							
etrachloroethene	ND	1.0	**							
Dibromochloromethane	ND	0.50	u							
,2-Dibromoethane	ND	1.0								
Chlorobenzene	ND	1.0	•							
romoform	ND	0.50	#							
,2,3-Trichloropropane	ND	0.50	**							
,1,2,2-Tetrachloroethane	ND	1.0	**							
3-Dichlorobenzene	ND	0.50	,,							
,4-Dichlorobenzene	ND	2.0	tr.							
2-Dichlorobenzene	ND	2.0	н							
urrogate: Dibromodifluoromethane	8.90	<u> </u>	н	10.0		89.0	50-150			
urrogate: 4-Bromofluorobenzene	9.40		#	10.0		94.0	50-150	•		

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding Reported: 06-Feb-01 07:29

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A11015 - EPA 5030B [P/T]								<u>-</u>		<u> </u>
Blank (1A11015-BLK2)	Prepared & Analyzed: 10-Jan-01									
Chloromethane	ND	2.0	ug/l		-					
Vinyl chloride	ND	1.0	11							
Bromomethane	ND	2.0	н							
Chloroethane	ND	1.0	Ħ							
Trichlorofluoromethane	ND	1.0	**							
Freon 113	ND	1.0	**							
1,1-Dichloroethene	ND	1.0	11	•						
Methylene chloride	ND	10	"	•						
trans-1,2-Dichloroethene	ND	1.0	Ħ							
1,1-Dichloroethane	ND	1.0	-							
cis-1,2-Dichloroethene	ND	1.0	**							
Chloroform	ND	1.0								
1,1,1-Trichloroethane	ND	1.0	**							
Carbon tetrachloride	ND	1.0	#							
1,2-Dichloroethane	ND	2.0	"							
Trichlorcethene	ND	2.0	#							
1,2-Dichloropropane	ND	1.0	н							
Bromodichloromethane	ND	1.0	"							
cis-1,3-Dichloropropene	ND	1.0	11							
trans-1,3-Dichloropropene	ND	1.0								
1,1,2-Trichloroethane	ND	0.50	,,							
Tetrachloroethene	ND	1.0	**							
Dibromochloromethane	ND	0.50	**							
1,2-Dibromoethane	ND	1.0	Ħ							
Chlorobenzene	ND	1.0	*1							
Bromoform	ND	0.50	11						*	
1,2,3-Trichioropropane	ND	0.50	11							
1,1,2,2-Tetrachloroethane	ND	1.0	**							
1,3-Dichlorobenzene	ND	0.50	н							
1,4-Dichlorobenzene	ND	2.0	11							
1,2-Dichlorobenzene	ND	2.0	. u							
Surrogate: Dibromodifluoromethane	8.40	· · · · · · · · · · · · · · · · · · ·		10.0		84.0	50-150			
Surrogate: 4-Bromofluorobenzene	8.70		tt	10.0		87.0	50-150			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A11015 - EPA 5030B [P/T]										
LCS (1A11015-BS1)		<u>.</u> .		Prepared	& Analyz	ed: 09-Jan	ı-01			
1,1-Dichloroethene	25.0	1.0	ug/l	28.0		89,3	65-135			_
Trichloroethene	22.0	2.0	41	20.0		110	70-130			
Chlorobenzene	21.0	1.0	11	20.0		105	70-130			
Surrogate: Dibromodifluoromethane	8.70		rr ·	10.0		87.0	50-150			•
Surrogate: 4-Bromofluorobenzene	12.0		"	10.0		120	50-150			
LCS (1A11015-BS2)				Prepared	& Analyz	ed: 10-Jan	ı - 01			
1,1-Dichloroethene	23.0	1.0	ug/l	28.0		82.1	65-135			
Trichloroethene	21.0	2.0	*	20.0		105	70-130			
Chlorobenzene	20.0	1.0	*	20.0		100	70-130			
Surrogate: Dibromodifluoromethane	8.30	=	"	10.0		83.0	50-150			
Surrogate: 4-Bromofluorobenzene	10.0		*	10.0		100	50-150			
Matrix Spike (1A11015-MS1)	So	urce: W1010	11-01	Prepared	& Analyz	ed: 11-Jan	-01			
1,1-Dichloroethene	28.0	1.0	ug/l	28.0	ND	100	60-140			
Trichloroethene	24.0	2.0		20.0	ND	120	60-140			
Chlorobenzene	23.0	1.0	*	20.0	ND	115	60-140			
Surrogate: Dibromodifluoromethane	10.0		"	10.0		100	50-150			•
Surrogate: 1-Chloro-2-fluorobenzene	11.0		#	10.0		110	50-150			
Surrogate: 4-Bromofluorobenzene	11.0		u	10.0		110	50-150			
Matrix Spike Dup (1A11015-MSD1)	So	urce: W1010	11-01	Prepared	& Analyz	ed: 11-Jan	ı - 01			
1,1-Dichloroethene	28.0	1.0	ug/l	28.0	ND	100	60-140	0	25	_
Trichloroethene	26.0	2.0	Ħ	20.0	ND	130	60-140	8.00	25	
Chlorobenzene	24.0	1.0	и	20.0	ND	120	60-140	4.26	25	
Surrogate: Dibromodifluoromethane	9.30		п	10.0	***	93.0	50-150			
Surrogate: 4-Bromofluorobenzene	12.0		rr	10,0		120	50-150			

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 06-Feb-01 07:29

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A09014 - EPA 3510B			,							
Blank (1A09014-BLK1)	Prepared: 09-Jan-01 Analyzed: 10-Jan-01									
Acenaphthene	ND	5.0	ug/l					•		
Acenaphthylene	ND	5.0	11							
Aniline	ND	5.0	11							
Anthracene	ND	5.0	19							
Benzoic acid	ND	10	H							
Benzo (a) anthracene	ND	5.0	**							
Benzo (b) fluoranthene	ND	5.0	11						-	
Benzo (k) fluoranthene	ND	5.0	*1							
Benzo (ghi) perylene	ND	5.0	11							
Benzo[a]pyrene	ND	5.0	tτ							
Benzyl alcohol	ND	5.0	11							
Bis(2-chloroethoxy)methane	ND	5.0	11							
Bis(2-chloroethyl)ether	ND	5.0	11							
Bis(2-chloroisopropyl)ether	ND	5.0	91							
Bis(2-ethylhexyl)phthalate	ND	10	п							
l-Bromophenyl phenyl other	ND	5.0	**							
Butyl benzyl phthalate	ND	50	. 11							
l-Chloroaniline	ND	25	**							
-Chloronaphthalene	ND	5.0	44							
-Chloro-3-methylphenol	ND	5.0								
-Chlorophenol	ND	5.0	"							
-Chlorophenyl phenyl ether	ND	5.0								
Chrysene	ND	5.0	**							
Dibenz (a,h) anthracene	ND	10	**							
Dibenzofuran	ND	5.0								
Di-n-butyl phthalate	ND	10	44							
,2-Dichlorobenzene	ND	5.0	•							
,3-Dichlorobenzene	ND	5.0	**							
,4-Dichlorobenzene	ND	10	**							
,3'-Dichlorobenzidine	ND	10								
,4-Dichlorophenol	ND	5.0								
Piethyl phthalate	ND	5.0						÷		
,4-Dimethylphenol	ND	5.0								
imethyl phthalate	ND	5.0								

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156

Project Manager: Deanna L. Harding

Reported: 06-Feb-01 07:29

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A09014 - EPA 3510B	·									
Blank (1A09014-BLK1)	Prepared: 09-Jan-01 Analyzed: 10-Jan-01									
4,6-Dinitro-2-methylphenol	ND	10	ug/l							
2,4-Dinitrophenol	ND	10	n							-
2,4-Dinitrotoluene	ND	10	"							
2,6-Dinitrotoluene	ND	10	Ħ							
Di-n-octyl phthalate	ND	10	Ħ							
Fluoranthene	ND	5.0	н							
luorene	ND	5.0	н							
Hexachlorobenzene	ND	10	Ħ							
Hexachlorobutadiene	ND	10	н							
Hexachlorocyclopentadiene	ND	10	"							
Hexachioroethane	ND	5.0	Ħ							
ndeno (1,2,3-cd) pyrene	ND	10	P							
sophorone	ND	5.0	n							
-Methylnaphthalene	ND	5.0								
-Methylphenol	ND	5.0	*							
l-Methylphenol	ND	5.0	**							
Naphthalene	ND	5.0	-							
-Nitroaniline	ND	10	**							
-Nitroaniline	ND	10								
-Nitroaniline	ND	20	-							
Vitrobenzene	ND	5.0	*							
-Nitrophenol	ND	5.0	11							
l-Nitrophenol	ND	10	n							
N-Nitrosodimethylamine	ND	10	Ħ							
V-Nitrosodiphenylamine	ND	5.0	н							
V-Nitrosodi-n-propylamine	ND	5.0	Ħ							
'entachlorophenol	ND	10	н							
henanthrene	ND	5.0	н							
henol	ND	5.0	H							
утепе	ND	5.0	H							
,2,4-Trichlorobenzene	ND	5.0	Ħ							
,4,5-Trichlorophenol	ND	10								
,4,6-Trichlorophenol	ND	10	n							
urrogate: 2-Fluorophenol	50.6			150		33.7	21-110			

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding

Reported: 06-Feb-01 07:29

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A09014 - EPA 3510B										
Blank (1A09014-BLK1)	Prepared: 09-Jan-01 Analyzed: 10-Jan-01									· · · · · ·
Surrogate: Phenol-d6	31.0		ug/l	150		20.7	10-110			
Surrogate: Nitrobenzene-d5	70.3		"	100		70.3	35-114			
Surrogate: 2-Fluorobiphenyl	62.7		"	100		62.7	43-116			
Surrogate: 2,4,6-Tribromophenol	89.8		"	150		59.9	10-123			
Surrogate: p-Terphenyl-dl4	69.6		n	100		69.6	33-141			
LCS (1A09014-BS1)				Prepared:	09-Jan-01	Analyze	d: 10-Jan-0)1		
Aconaphthene	84.2	5.0	ug/l	100		84.2	46-118			
4-Chloro-3-methylphenol	133	5.0	ч	150		88.7	23-97			
2-Chlorophenol	115	5.0	H	150		76.7	27-123			
1,4-Dichlorobenzene	62.8	10	n	100		62.8	36-97			
2,4-Dinitrotoluene	88.6	10	n	100		88.6	24-96			
4-Nitrophenol	63.4	10	tl	150		42.3	10-80			
N-Nitrosodi-n-propylamine	99.4	5.0	tr	100		99,4	41-116			
Pentachlorophenol	23.6	10	Př	150		15.7	9-103			
Phenol	49.4	5.0	n	150		32.9	12-110			
Pyrene	82.4	5.0		100		82.4	26-127			
1,2,4-Trichlorobenzene	73.1	5.0		100		73.1	39-98			
Surrogate: 2-Fluorophenol	54.6		77	150		36.4	21-110			
Surrogate: Phenol-d6	35.5		n*	150		23.7	10-110			
Surrogate: Nitrobenzene-d5	74.3		*	100		74.3	35-114			
Surrogate: 2-Fluorobiphenyl	64.0		*	100		64.0	43-116			
Surrogate: 2,4,6-Tribromophenol	92.0		"	150		61.3	10-123			
Surrogate: p-Terphenyl-dl 4	63.8		"	100		63.8	33-141			
LCS Dup (1A09014-BSD1)				Prepared:	09-Jan-01	Analyze	d: 10-Jan-0	1		
Acenaphthene	94.2	5.0	ug/l	100	-	94.2	46-118	11.2	30	
1-Chloro-3-methylphenol	151	5.0	*	150		101	23-97	12.7	30	Q-1
2-Chlorophenol	128	5.0		150		85.3	27-123	10.7	30	
,4-Dichlorobenzene	70.3	10	II	100		70.3	36-97	11.3	30	
2,4-Dinitrotoluene	98.5	10		100		98.5	24-96	10.6	30	Q-(
l-Nitrophenol	64.4	10	Ħ	150		42.9	10-80	1.56	30	~
N-Nitrosodi-n-propylamine	109	5.0	Ħ	100		109	41-116	9.21	30	
Pentachlorophenol	24.0	10	m	150		16.0	9-103	1.68	30	
Phenol	52.5	5.0	Ħ	150		35.0	12-110	6.08	30	
yrene	94.4	5.0	H	100		94.4	26-127	13.6	30	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1A09014 - EPA 3510B										·
LCS Dun (1409014-RSD1)				D	00 Y 01	A 1	1 10 1	1.5		

LCS Dup (1A09014-BSD1)	Prepared: 09-Jan-01 Analyzed: 10-Jan-01										
1,2,4-Trichlorobenzene	83.5	5.0	ng/l	100	83.5	39-98	13.3	30			
Surrogate: 2-Fluorophenol	55.2		"	150	36.8	21-110					
Surrogate: Phenol-d6	35.5		,,	150	23.7	10-110					
Surrogate: Nitrobenzene-d5	77.9		#	100	77.9	35-114					
Surrogate: 2-Fluorobiphenyl	69.4		*	100	69.4	43-116					
Surrogate: 2,4,6-Tribromophenol	92.9		#	150	61.9	10-123					
Surrogate: p-Terphenyl-di 4	71.9		"	100	71.9	33-141					

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.gom

MAR 0 9 2001

_

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Tosco

Project Number: Tosco # 1156 Project Manager: Deanna L. Harding **Reported:** 06-Feb-01 07:29

The

Notes and Definitions

A-03	This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
CC-3	Continuing Calibration indicates that the quantitative result for this analyte includes a greater than 15% degree of uncertainty. value as reported is within method acceptance.
D-1 1	Chromatogram Pattern: Unidentified Hydrocarbons < C16
P-01	Chromatogram Pattern: Gasoline C6-C12
Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
R-05	The reporting limit(s) for this sample have been raised due to high levels of non-target compounds.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
đry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference