CAMBRIA

ENVIRONMENTAL PROTECTION

March 3, 2000

DOMAR TO PH 1: 01

eva chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Fourth Quarter 1999 Monitoring Report

Shell-branded Service Station 8930 Bancroft Avenue Oakland, California Incident #98995742 Cambria Project #242-1408-002

Dear Ms.chu:

On behalf of Equiva Services LLC, Cambria Environmental Technology, Inc. (Cambria) is submitting this ground water monitoring report in accordance with the reporting requirements of 23 CCR 2652d.

FOURTH QUARTER 1999 ACTIVITIES

Ground Water Monitoring: Blaine Tech Services, Inc. (Blaine) of San Jose, California gauged and sampled all site wells. Blaine calculated ground water elevations and compiled the analytical data. Cambria prepared a ground water elevation contour map (Figure 1). The Blaine report, presenting the laboratory report and supporting field documents, is included as Attachment A.

Alameda County Health Care Services Agency (ACHCSA) Letter Response: In response to ACHSCA's letter dated November 1, 1999, Cambria is performing a conduit study and well, survey in order to begin developing a site conceptual model for the site. This information will be included in the first quarter 2000 monitoring report.

Oakland, CA Sonoma, CA Portland, OR Seattle, WA

ANTICIPATED FIRST QUARTER 2000 ACTIVITIES

Cambria Environmental Technology, Inc. Ground Water Monitoring: Blaine will gauge and sample all site wells and tabulate the data. Cambria will prepare a monitoring report.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

CAMBRIA

CLOSING

We appreciate the opportunity to work with you on this project. Please call Troy Buggle at (510) 420-3333 if you have any questions or comments.

Sincerely,

Cambria Environmental Technology, Inc

Troy A. Buggle

Senior Staff Scientist

Ailsa Le May, R.G.

Senior Geologist

Figure:

1 - Ground Water Elevation Contour Map

Attachment: A - Blaine Groundwater Monitoring Report and Field Notes

ce:

Karen Petryna, Equiva Services LLC, P.O. Box 7869, Burbank, California 91501-7869 Leroy Griffin, City of Oakland Fire Department, 505 14th Street. Suite 702, Oakland,

CA 94612

g:\oak8930\qm\4q99qm.doc

8930 Bancroft Avenue Oakland, California Incident #98995742

Ground Water Elevation Contour Map

CAMBRIA

December 23, 1999

ATTACHMENT A

Blaine Ground Water Monitoring Report and Field Notes

1680 ROGERS AVENUE SAN JOSE, CALIFORNIA 95112-1105 (408) 573-7771 FAX (408) 573-0555 PHONE

January 27, 2000

Karen Petryna Equiva Services LLC P.O. Box 7869 Burbank, CA 91510-7869

> Fourth Quarter 1999 Groundwater Monitoring at Shell-branded Service Station 8930 Bancroft Avenue Oakland, CA

Monitoring performed on December 23, 1999

Groundwater Monitoring Report 991223-I-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Shell Martinez Manufacturing Complex.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a forty hour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight hour refresher courses.

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. concentrates on objective data collection and does not participate in the interpretation of analytical results, the definition of geological or hydrological conditions, the formulation of recommendations, or the marketing of remedial systems.

Please call if you have any questions.

Yours truly,

Deidre Kerwin Operations Manager

DK/jh

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheet

cc: Anni Kreml

Cambria Environmental Technology, Inc.

1144 65th Street, Suite C Oakland, CA 94608-2411

WELL CONCENTRATIONS Shell-branded Service Station 8930 Bancroft Avenue Oakland, CA Wic #204-5508-1305

								MTBE	MTBE		Depth to	GW
Well ID	Date	TPPH	TEPH	В	т	E	х	8020	8260	TOC	Water	Elevation
	2415	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
		,				- La Francisco						
MW-1	12/17/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	53.19	11.87	41.32
MW-1	03/09/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	53.19	8.21	44.98
MW-1	06/16/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	53.19	15.04	38.15
MW-1	09/30/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	53.19	16.02	37.17
MW-1	12/23/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	53.19	14.78	38.41
MW-2	12/17/1998	9,900	NA	<5.0	37	22	47	48	<20	52.66	11.65	41.01
MW-2	03/09/1999	2,760	NA	12.3	7.50	85.4	444	<50.0	NA	52.66	8.07	44.59
MW-2	06/16/1999	2,570	NA	36.3	11.6	6.19	10.8	<50.0	NA	52.66	14.63	38.03
MW-2	09/30/1999	1,960	NA	19.1	3.20	4.55	26.9	<25.0	NA	52.66	15.63	37.03
MW-2	12/23/1999	145	NA	1,30	<0.500	<0.500	0.899	<2.50	NA	52.66	14.42	38.24
MW-3	12/17/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	10	11	51.30	11.85	39.45
MW-3	03/09/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	51.30	6.53	44.77
MW-3	06/16/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	51.30	12.71	38.59
MW-3	09/30/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	5.14	NA	51.30	14.07	37.23
MW-3	12/23/1999	<500	NA	<5.00	<5.00	<5.00	<5.00	<25.0	NA	51.30	12.82	38.48
MW-4	12/17/1998	700	NA	4.3	0.88	<0.50	<0.50	21,000	26,000	50.73	10.80	39.93
MW-4	03/09/1999	83.9	NA	<0.500	<0.500	<0.500	<0.500	17,900	23,700	50.73	6.91	43.82
MW-4	06/16/1999	<50.0	NΑ	<0.500	<0.500	<0.500	<0.500	10,600	19,200	50.73	12.84	37.89
MW-4	09/30/1999	51.2	NA	<0.500	<0.500	<0.500	<0.500	12,200	12,300	50.73	13.74	36.99
MW-4	12/23/1999	<100	NA	<1.00	<1.00	<1:00	<1.00	7,990	8,400	50.73	12.40	38.33
MW-5	12/17/1998	750	NA	<0.50	17	1.8	3.5	33	32	51.43	11.51	39.92
MW-5	03/09/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	51.43	7.15	44.28
MW-5	06/16/1999	646	NA	9.26	1.05	<1.00	<1.00	<10.0	NA	51.43	13.47	37.96

WELL CONCENTRATIONS

Shell-branded Service Station 8930 Bancroft Avenue

Oakland, CA

Wic #204-5508-1305

Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	TOC (MSL)	Depth to Water (ft.)	GW Elevation (MSL)
MW-5	09/30/1999	484	NA	1.93	0.511	<0.500	<0.500	159	NA	51.43	14.41	37.02
MW-5	12/23/1999	944	NA	4.59	17.7	3.79	16.7	214	NA	51,43	14,07	37.36
MW-6	12/17/1998	940	NA	27	0.32	2.4	2.3	3.0	3.2	51.88	11.37	40.51
MW-6	03/09/1999	336	NA	7.78	1.60	2.40	6.36	<10.0	NA	51.88	8.10	43.78
MW-6	06/16/1999	308	NA	2.45	<0.500	<0.500	<0.500	7.39	NA	51.88	14.49	37.39
MW-6	09/30/1999	80.2	NA	<0.500	<0.500	<0.500	<0.500	24.8	NA	51.88	15.30	36.58
MW-6	12/23/1999	149	NA	0.518	<0.500	<0.500	<0.500	6.43	NA:	51.88	13.19	38.69

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

BTEX = benzene, toluene, ethylbenzene, xylenes by EPA Method 8020

MTBE = methyl-tertiary-butyl ether by EPA Method 8020

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = parts per billion

msl = Mean sea level

ft = Feet

<n = Below detection limit

NA = Not applicable

January 10, 2000

Leah Davis Blaine Tech Services (Shell) 1680 Rogers Avenue San Jose, CA 95112

RE: Equiva 8930 Bancroft Ave., Oakland/M912888

Dear Leah Davis

Enclosed are the results of analyses for sample(s) received by the laboratory on December 23, 1999. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kayvan Kimyai

Project Manager D.M.

CA ELAP Certificate Number 1210

Blaine Tech Services (Shell) 1680 Rogers Avenue San Jose, CA 95112 Project: Equiva

Project Number: 8930 Bancroft Ave.

Project Manager: Leah Davis

Sampled: 12/23/99

Received: 12/23/99 Reported: 1/10/00

ANALYTICAL REPORT FOR M912888

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW-I	M912888-01	Water	12/23/99
MW-2	M912888-02	Water .	12/23/99
MW-3	M912888-03	Water	12/23/99
MW-4	M912888-04	Water	12/23/99
MW-5	M912888-05	Water	12/23/99
MW-6	M912888-06	Water	12/23/99

Blaine Tech Services (Shell)

1680 Rogers Avenue

Project Number: Equiva

Project Number: 8930 Bancroft Ave.

Project Manager: Leah Davis

Sampled: 12/23/99 Received: 12/23/99 Reported: 1/10/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Morgan Hill

Batch	Date	Date	Surrogate	Reporting		<u> </u>	
Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
 	· · · · · · · · · · · · · · · · · · ·	· · ·					
			<u>88-01</u>				
0010012	1/2/00	1/2/00			•		
IF	н	O					
II.	**	H					
"	**	**					
tt	#	н					
**	ti .	H		2.50			
"	n	"	70.0-130		99.5	%	
		M9128	<u>88-02</u>			<u>Water</u>	
0010012	1/2/00	1/2/00		50.0	145		1
н	H	į.		0.500	1.30		
**	19	*1		0.500	ND	**	
11	11	ų		0.500	ND	н	
п	"	It		0.500	0.899	**	•
ır	**	H		2.50	ND	н	
н		"	70.0-130		70.7	%	
		M91 <u>28</u>	<u>88-03</u>			<u>Water</u>	
0010012	1/2/00	1/2/00		500	ND	ug/l	D
	11	**		5.00	ND		D
**	If	11		5.00	ND	**	D
n	: •	*1		5.00	ND	**	D
#1	17	*1		5.00	ND	· ·	D
41	**	11		25.0	ND	11	D
II .	"		70.0-130		97.8	%	
		M9128	88-04			Water	
0010012	1/2/00			100	ND	ug/l	D
н	n	**		1.00	ND	If	D
**	II.	**		1.00	ND	н	D
**		**		1.00	ND		D
н	**	4		1.00	ND	**	D
**	17	1/6/00		250	7990	**	2,D
"	"	1/2/00	70.0-130		94.7	%	
		M9128	88-05			Water	
0010109	1/5/00			250	944	ug/l	3,D
"	11	"		2.50	4.59	II.	D
•	n	7 1.		2.50	17.7	H	D
11	u .	d		2.50	3.79	**	D
	0010012 " " " " " " " " " " " " " " " " " " "	Number Prepared 0010012 1/2/00 """"" 0010012 1/2/00 """" 0010012 1/2/00 """" 0010012 1/2/00 """" """" 0010012 1/2/00 """" """" 0010012 1/2/00 """" """" 1/2/00 """" 1/2/00 """" 1/2/00 """" 1/2/00 "" 1/2/00 """ 1/2/00 """ 1/2/00 """ 1/2/00 """ 1/2/00 "" 1/2	Number Prepared Analyzed M9128:	Number Prepared Analyzed Limits	Number	Number	Number

Sequoia Analytical - Morgan Hill

*Refer to end of report for text of notes and definitions.

Blaine Tech Services (Shell)	Project:	Equiva	Sampled:	12/23/99
1680 Rogers Avenue	Project Number:	8930 Bancroft Ave.	Received:	12/23/99
San Jose, CA 95112	Project Manager:	Leah Davis	Reported:	1/10/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Morgan Hill

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
MW-5 (continued)			M9128	<u>88-05</u>			<u>Water</u>	
Methyl tert-butyl ether	0010109	1/5/00	1/5/00		12.5	. 214	ug/l	D
Surrogate: a,a,a-Trifluorotoluene	"	11	#	70.0-130		81.2	%	
MW-6			M9128	<u>88-06</u>			<u>Water</u>	
Purgeable Hydrocarbons	0010018	1/3/00	1/3/00		50.0	149	ug/l	1
Benzene	n	It.	*1		0.500	0.518	+	
Toluene	tr	ır	**		0.500	ND	71	
Ethylbenzene	tr	Ir	**		0.500	ND	**	
Xylenes (total)	IF	It	H		0.500	ND	Ħ	
Methyl tert-butyl ether	It	It .	n		2.50	6.43	#	
Surrogate: a,a,a-Trifluorotoluene	"	"	"	70.0-130		103	%	

Blaine Tech Services (Shell) 1680 Rogers Avenue San Jose, CA 95112 Project: Equiva

Project Number: 8930 Bancroft Ave.

Project Manager: Leah Davis

Sampled: 12/23/99

Received: 12/23/99 Reported: 1/10/00

MTBE by EPA Method 8260A Sequoia Analytical - Morgan Hill

Analyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
MW-4	0010224	1/6/00	<u>M9128</u> 1/8/00	<u>88-04</u>	250	8400	<u>Water</u> ug/l	D
Methyl tert-butyl ether Surrogate: 1,2-Dichloroethane-d4	"	1/0/00 W	"	70.0-130		76.2	%	

Blaine Tech Services (Shell)
Project: Equiva
Sampled: 12/23/99
1680 Rogers Avenue
Project Number: 8930 Bancroft Ave.
Received: 12/23/99
San Jose, CA 95112
Project Manager: Leah Davis
Reported: 1/10/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Poteb. 0010012	Data Bassa		^		Testura	stian Mathada FDA	E020D	(D/T)	
Batch: 0010012	Date Prepa		<u>u</u>		Extrac	tion Method: EPA	a vene	<u>[[[]]]</u>	
Blank	<u>0010012-B1</u> 1/2/00	<u>JKI</u>		MID	/1	50.0			
Purgeable Hydrocarbons	1/2/00			ND	ug/l "	0.500			
Benzene				ND	**				
Toluene				ND		0.500			
Ethylbenzene	,			ND	" #	0.500			
Xylenes (total)	,,			ND	"	0.500			
Methyl tert-butyl ether				ND		2.50			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.75	"	70.0-130	97.5		
LCS	0010012-B5	S1							
Benzene	1/2/00	10.0		7.45	ug/l	70.0-130	74.5		
Toluene	**	10.0		7.91	"	70.0-130	79.1		
Ethylbenzene	**	10.0		8.03	H	70.0-130	80.3		
Xylenes (total)	**	30.0		25.9	11	70.0-130	86.3		
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.77	и :	70.0-130	97.7		
Matrix Spike	0010012-M	S1 M	912888 <u>-01</u>						
Benzene	1/2/00	10.0	ND	7.80	ug/l	60.0-140	78.0		
Toluene	1, 2, 00	10.0	ND	8.52	II	60.0-140	85.2		
Ethylbenzene	ir .	10.0	ND	8.51	ш	60.0-140	85.1		
Xylenes (total)	It	30.0	ND	26.3	II	60.0-140	87.7		
Surrogate: a,a,a-Trifluorotoluene	"	10.0		10.2	71	70.0-130	102		
Matrix Spike Dup	0010012-M	SD1 M	912888-01						
Benzene	1/2/00	10.0	ND	7.83	ug/l	60.0-140	78.3	25.0	0.384
Toluene	11	10.0	ND	8.51	н	60.0-140	85.1	25.0	0.117
Ethylbenzene	41	10.0	ND	8.42	H	60.0-140	84.2	25.0	1.06
Xylenes (total)	**	30.0	ND	26.3	н	60.0-140	87.7	25.0	0
Surrogate: a,a,a-Trifluorotoluene	H	10.0		9.89	н	70.0-130	98.9	20.0	
Batch: 0010018	Date Prepa	rad: 1/3/0/	n		Evtrac	tion Method: EPA	5030R	ID/TI	
Blank	0010018-BI		2		Exuat	cion ricciou. E/F/	COSOD	<u> </u>	
Purgeable Hydrocarbons	1/3/00	<u> </u>		ND	ug/l	50.0			
Benzene	175700			ND	u ng/i	0.500			
Toluene	11			ND ND	**	0.500 0.500			
Ethylbenzene	"			ND ND	•	0.500 0.500			
Xylenes (total)	n			ND ND	**	0.500 0.500			
	**				"				
Methyl tert-butyl ether		10.0		ND		2.50	110		
Surrogate: a,a,a-Trifluorotoluene	••	10.0		11.0	"	70.0-130	110		

Sequoia Analytical - Morgan Hill

*Refer to end of report for text of notes and definitions.

Blaine Tech Services (Shell)

Project: Equiva

Sampled: 12/23/99

1680 Rogers Avenue San Jose, CA 95112

Project Number: 8930 Bancroft Ave. Project Manager: _Leah Davis

Received: 12/23/99 Reported: 1/10/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

· · · · · · · · · · · · · · · · · · ·	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	<u>%</u>	Limit	% Notes*
LCS	0010018-BS	<u>31</u>							
Purgeable Hydrocarbons	1/3/00	250		257	ug/l	70.0-130	103		
Surrogate: a,a,a-Trifluorotoluene	"	10.0		10.5	11	70.0-130	105		
Batch: 0010109	Date Prepa	red: <u>1/5/00</u>	j		<u>Extrac</u>	ction Method: EPA	4 5030B	[P/T]	
Blank	<u>0010109-Bl</u>	<u>LK1</u>				-			
Purgeable Hydrocarbons	1/5/00			ND	ug/l	50.0			
Benzene	H			ND	**	0.500			
Toluene	Ħ			ND	н	0.500			
Ethylbenzene	Ħ			ND	Ħ	0.500			
Xylenes (total)	•			ND	11	0.500			
Methyl tert-butyl ether	н			ND		2.50			
Surrogate: a,a,a-Trifluorotoluene	H	10.0		10.4	10	70.0-130	104		
LCS	0010109-BS	<u>31</u>							
Purgeable Hydrocarbons	1/5/00	250		224	ug/l	70.0-130	89.6		
Surrogate: a,a,a-Trifluorotoluene	11	10.0		7.55	n .	70.0-130	75.5		
LCS Dup	<u>0010109-B</u>	<u>SD1</u>							4.6.0
Purgeable Hydrocarbons	1/5/00	250		264	ug/l	70.0-130		25.0	16.8
Surrogate: a,a,a-Trifluorotoluene	"	10.0		8.21	" .	. 70.0-130	82.1		

Blaine Tech Services (Shell)
Project: Equiva
Sampled: 12/23/99
1680 Rogers Avenue
Project Number: 8930 Bancroft Ave.
Received: 12/23/99
San Jose, CA 95112
Project Manager: Leah Davis
Reported: 1/10/00

MTBE by EPA Method 8260A/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0010224	Date Prepa	red: 1/6/00	<u>)</u>		Extrac	tion Method: EPA	A 5030B	[P/T]		
Blank	0010224-BI	<u>LK1</u>								
Methyl tert-butyl ether	1/6/00			ND	ug/l	0.500				
Surrogate: 1,2-Dichloroethane-d4	"	10.0		7.29	"	70.0-130	72.9			
<u>Blank</u>	0010224-B)	<u> </u>								
Methyl tert-butyl ether	1/7/00			ND	ug/l	0.500				
Surrogate: 1,2-Dichloroethane-d4	"	10.0		8.52	rı	70.0-130	85.2			
<u>Blank</u>	0010224-BI	<u>LK3</u>								
Methyl tert-butyl ether	1/8/00			ND	ug/l	0.500				
Surrogate: 1,2-Dichloroethane-d4	"	10.0		7.80	77	70.0-130	78.0			· ·
LCS	0010224-BS	<u>51</u>								
Methyl tert-butyl ether	1/6/00	10.0		8.36	ug/l	70.0-130	83.6			
Surrogate: 1,2-Dichloroethane-d4	n	10.0		7.77	"	70.0-130	77.7			
LCS	0010224-BS	<u>52</u>								
Methyl tert-butyl ether	1/7/00	10.0		8.68	ug/l	70.0-130	86.8			
Surrogate: 1,2-Dichloroethane-d4	rr .	10.0		7.65	"	70.0-130	76.5			
LCS	0010224-BS	<u>83</u>								
Methyl tert-butyl ether	1/8/00	10.0		8.00	ug/l	70.0-130	80.0			
Surrogate: 1,2-Dichloroethane-d4	"	10.0		7.68	"	70.0-130	76.8			
Matrix Spike	0010224-M	<u>S1 M9</u>	12773-03							
Methyl tert-butyl ether	1/6/00	1000	1410	1910	ug/l	70.0-130	50.0			4,D
Surrogate: 1,2-Dichloroethane-d4	"	10.0	· 	7.60	"	70.0-130	76.0			 -
Matrix Spike Dup	0010224-M	<u>SD1 M9</u>	12773-03							
Methyl tert-butyl ether	1/6/00	1000	1410	1890	ug/l	70.0-130	48.0	25.0	4.08	4,D
Surrogate: 1,2-Dichloroethane-d4	"	10.0		7.78	"	70.0-130	77.8			

Blaine Tech Services (Shell) 1680 Rogers Avenue San Jose, CA 95112 Project: Equiva

Project Number: 8930 Bancroft Ave.
Project Manager: Leah Davis

Sampled: 12/23/99 Received: 12/23/99

Reported: 1/10/00

Notes and Definitions

	#	Note
,	D	Data reported from a dilution.
	1	Chromatogram Pattern: Gasoline C6-C12
	2	Sample was analyzed at a second dilution per clients request.
	3	Chromatogram Pattern: Weathered Gasoline C6-C12 + Unidentified Hydrocarbons C6-C12□□
	4	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
	DET	Analyte DETECTED
	ND	Analyte NOT DETECTED at or above the reporting limit
	NR	Not Reported
	dry	Sample results reported on a dry weight basis
	Recov.	Recovery
	RPD	Relative Percent Difference

SAN JOSE, CALIFORNIA 951	AVENUE 112-1105		CON	DUCT	ANAL	YSIS T	O DE	TECT		7.40			
TECH SERVICES INC. CHAIN OF CUSTODY 9912 7 1 CLIENT Equiva - Karen Petryna SITE 8930 Bancroft Ave. Oakland, CA MATRIX CONTAINE OST SAMPLE I.D. MATRIX CONTAINE OST "" TOTAL	112-1105 573-7771 573-0555	× TPH - gas, BTEX	MTBE by 8020	MTBE by 8260	TPH - diesel	Oxygenates by 8260	1,2-DCA & EDB by 8010	TECT		Send report	TONS e to Equivent # 989 to Blaine Ann Pember	□RW0	7/2888
	_	1	<u> </u>										DI DAMI LE W
mw.3 1010 1 100 mw.3	_ _	X	*		(0)	f_{ij}	m	b	95	est MIBE	h:1.64	GP4	8260 o.
- nw-4 922	 		<u> </u>	_					_				p
12.5 963		 +	<u> </u>	-				_					
nu 6 t 940 U			<u>/</u>		_								
							-						0
			_										
		+	_					-				, ,	
SAMPLING DATE TIME SAMPLING PERFORMED BY \$	atus VI	ter	1						<u> </u>	RESULTS NEEDED NO LATER THAN			
RELEASED BY	DATE DATE	1 T	IME	30	7	RECE	_	BY		Mille		DATE	TIME
RELEASED BY	DATE	1	IME		_ 7	· 			f of	Nanco (ł	DATE 2399	TIME
		1 11	IME		•	RECEI	VED 6	3Y				DATE	TIME
HIPPED VIA	DATE SENT	T	ME S	ENT	C	OOLEF	7 #			······································			_

WELL GAUGING DATA

Project #99	31223-11	Date	3-99	Client eguive	
Site 8930	Bancroft	og bland	cA.		

Well 1D	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscible Removed	S	Depth to well bottom (ft.)	Survey Point: TOB or TOC	
mw-1						j :	16.76	Tec	1
かり						14.42	19.15		6
~w3	3					路	19.73		7
m~4					9	13.40	19.71		3
20 W 5	3				18 A	14.07	19.70		5
nw.6	3					13.19	19.94		Ч
			2 to					7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
				a regality	77 S.			n	
				** *** *** ***	70.04				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	A			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	4. 7. 7.	8			· water gazzana				
					7				
				4.00 m	* (WE) (L. *				
		2			2				
									1.
			***	·			# 6 		
		1			## ##				

	99122			Job#				
Sampler:	P.F.			Date: 12-2	3-99			
Well I.D.	: Mr	-1	,	Well Diameter	: 2 3 4	6 8	3	
Total We	ll Depth:	16.76		Depth to Water: 14.78				
Depth to	Free Produ	ct:		Thickness of Free Product (feet):				
Reference	ed to:	PVC	Grade	D.O. Meter (if req'd): YSI HACH				
	Well Diamete 2" 3"		Multiplier 0.16 0.37 0.65	<i>5"</i> 6"	Multiplier 1.02 1.47 us ² * 0.163			
Purge Metho	od:	Bailer		Sampling Method:				
J		Middleburg			Extraction Port			
	Elec	tric Submers	sible	Other:				
		xtraction Pun	пр					
	Other:							
	ر م		x 3	Calculated Volume Calculated Volume				
	1 Case Volu	me (Gals.)	Specified Vo					
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Оь	servations	
843	58.8	6.7	4110	7200	. >5	Slow	vecharge	
844	59.2	6.7	400	7300	1.5			
845	59.4	6.8	380	7300	2.25			
L_								
Did well	dewater?	Yes	No	Gallons actuall	y evacuated:	2.25		
Did well o		Yes リフ	No	Gallons actuall Sampling Date:				
Sampling		47	No)	Sampling Date:				
Sampling	Time: 8	47	No MARE TPH-D	Sampling Date: Laboratory: Other:	. 12-23- Sequoia BC	99		
Sampling Sample I.	Time: B D.: Mu for: PH-C	47		Sampling Date: Laboratory:	. 12-23- Sequoia BC	99	mg/ _L	

Sampler: Date: () - 2 3 - 9 9	
Total Well Depth: 19.15 Depth to Free Product: Referenced to: PC Grade D.O. Meter (if req'd): YSI HACH Well Diameter Multiplier Well Diameter Multiplier 2° 0.16 5° 1.02 3° 0.37 6° 1.47 4° 0.65 Otter radius¹*0.163 Purge Method: Bailer Sampling Method: Extraction Port Electric Submersible Extraction Pump Other: 1 7	
Depth to Free Product: Referenced to: PC Grade D.O. Meter (if req'd): YSI HACH Well Diameter Multiplier Well Diameter Multiplier	
Referenced to: PC Grade D.O. Meter (if req'd): YSI HACH Well Diameter	
Well Diameter Well Diameter Multiplier Multiplier	
2" 0.16 5" 1.02 1.47 4" 0.65 Other radius² + 0.163	
3" 0.37 6" 1.47 4" 0.65 Other radius² * 0.163 Purge Method: Bailer Sampling Method: Bailer Extraction Port Electric Submersible Other: Extraction Pump Other: 1 7	
Purge Method: Bailer Sampling Method: Bailer Middleburg Extraction Port Electric Submersible Other: Extraction Pump Other: 1	
Middleburg Electric Submersible Extraction Pump Other: 1.7	
Middleburg Electric Submersible Extraction Pump Other: 1.7	
Electric Submersible Extraction Pump Other: 1	
Extraction Pump Other: 1.7	
1 Case Volume (Gals.) X 3 = 5.) Gals. Calculated Volume Calculated Volume	
I Case Volume (Gals.) Specified Volumes Calculated Volume	
I Case Volume (Gals.) Specified Volumes Calculated Volume	
Time Temp (°F) pH Cond. Turbidity Gals. Removed Observation	
	S
1000 66.6 6.8 410 7200 000 1.75	
1003 670 6.9 396 7200 3.5	
1006 67.4 6.9 380 7200 5.75	
Did well dewater? Yes Gallons actually evacuated: 5.25	
Sampling Time: 1010 Sampling Date: 12-23-99	
Sample I.D.: nw-2 Laboratory: Sequoia BC Other	
Analyzed for: 19H-G BYEX MPBE TPH-D Other:	
D.O. (if req'd): Pre-purge: mg/L Post-purge:	
O.R.P. (if req'd): Pre-purge: mV Post-purge:	^{mg} / _L

Project #:	99122	3-11		Job # 2001	5508-13	05		
Sampler:	P. s			Date: (> - 2	3-95			
Well I.D.:	nw	- 3		Well Diameter	r: 2 <i>③</i>) 4	6 8		
Total Wel	ll Depth:	19.73		Depth to Wate	r: 12-82			
Depth to l	Free Produ	ıct:		Thickness of Free Product (feet):				
Reference	ed to:	PVC	- Grade	D.O. Meter (if	req'd):	YSI HACH		
	Well Diame	ter		Well Diameter	Multiplier			
	2" 3"		0.16 0.37	5" 6"	1.02 1.47			
	4"		0.65	Other rad	ius ² * 0.163			
Purge Metho	od:	Bailer	2	Sampling Method:	Bailer			
		Middleburg			Extraction Port			
	Ele	ctric Submers	ible	Other:				
	E	xtraction Pun	ıp			•		
	Other:							
	7	5	, 3	= 7.5 Gals. Volumes Calculated Volume				
	1 Case Vol	ume (Gals.)	X Specified Vo					
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations		
857	64.0	68	570	clear	2.5	Slow recharge		
901	64.4	6.8	560	clear	5.0	ador		
905	64.5	6.9	560	clear	7.5	Cap 4 5		
						its leaking		
						water inside w		
Did well d	lewater?	Yes (No	Gallons actuall	y evacuated:	7. 5		
Sampling	Time: 9	07		Sampling Date: 12-23-99				
Sample I.I	D.: Mn	·-3		Laboratory:	Sequoia BC	Other		
Analyzed	for: veh-	G BYEX	трн-d	Other:				
D.O. (if re	q'd):		Pre-purge:	mg/L	Post-purge:	mg/ _L		
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV		

Project #:	99122	3.11		Job# 204-5508-1305					
Sampler:	p,F.			Date: 12-23-99					
Well I.D.	: MW. H			Well Diameter	: 2 39 4	6 8			
Total We	ll Depth:	19.71		Depth to Water: 12.40					
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):					
Reference	ed to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH			
<u> </u>	Well Diame	er			Multiplier				
	2" 3"		0.16 0.37	5" 6"	1.02 1.47				
	4"		0.65	Other radi	us ² * 0.163				
Purge Metho	od:	Bailer	note:	Sampling Method:	Bailer	.			
- L		Middleburg			Extraction Port				
	Ele	ctric Submers	ible	Other:					
	E	xtraction Pun	np		•				
	Other:								
	ົ	7	ス		(Cale				
	1 Case Vol	ume (Gals.)	X Specified Vo		O' / Gals. culated Volume				
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations			
913	65.0	7.0	440	7700	2.75				
916	65.5	7.0	440	7200	5.5				
470	65.8	7.0	440	7200	8.75				
Did well	dewater?	Yes	No	Gallons actual	y evacuated:	8.25			
Sampling Time: 922				Sampling Date: 12-23-99					
Sample I.D.: Mw-4				Laboratory:	Sequoja BC	Other			
Analyzed	for: трн-	G B(EX)	MYBE TPH-D	Other:		¥*			
D.O. (if r	eq'd):		Pre-purge:	mg/L	Post-purge:	mg/L			
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV			

Project #:	99100	13-11	•	Job# 209	- 5508-13	05			
Sampler:	8.6.			Date: 12-2	3-99				
Well I.D.	· Mw	- 5		Well Diameter: 2 (3) 4 6 8					
Total We	ll Depth:	19.72		Depth to Water: 14.07					
Depth to	Free Produ	ıct: Ø		Thickness of Free Product (feet):					
Reference	ed to:	PVC	Grade	D.O. Meter (if	freq'd):	YSI	HACH		
	Well Diamet	ter			Multiplier		·		
	2" 3"		0.16 0.37	5" 6"	1.02 1.47				
	4"		0.65	-	lius ² * 0.163				
Purge Metho	od:	Bailer		Sampling Method					
		Middleburg		Damping Monou	Extraction Port				
	Ele	ctric Submers	ible	Other	:				
		xtraction Pun		o inoi	<u> </u>	-			
	Other:		-1						
	-	1, 1	, 3	6	7				
			X	= 0	Gals.				
	I Case Voli	ume (Gals.)	Specified Vo	olumes Ca	lculated Volume				
Time	Temp (°F)	pН	Čond.	Turbidity	Gals. Removed	Ob	servations		
945	67.8	6.8	410	clear	7.25				
948	68.0	6.8	390	clear	4.5				
951	68:1	6-9	380	clear	6.5				
Did well o	lewater?	Yes (No	Gallons actual	ly evacuated:	6.5			
Sampling	Time: 94	53		Sampling Date: 12-23-99					
Sample I.	D.: 10 W	-5		Laboratory:	Sequoia BC	Other			
Analyzed	for: TPH-	g) RIEX	миве трн-d	Other:		-			
D.O. (if re	eq'd):		Pre-purge:	mg/ _L	Post-purge:		mg/L		
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:		mV		

Project #:		23 -I,		Job# 204	1-5508-1	305		
Sampler:	P.F.			Date: 12-8	3-99			
Well I.D.:	MW	6		Well Diameter	: 2 3 4	6 8		
Total Wel	l Depth:	19.94		Depth to Water: 13.19				
Depth to I	Free Produ	ıct:		Thickness of Free Product (feet):				
Reference	ed to:	PX/C	Grade	D.O. Meter (if	req'd):	YSI HACH		
	Well Diamet	er			<u>Multiplier</u>			
	2" 3"		0.16 0.37	5" 6"	1.02 1.47			
	4"		0.65	Other radi	ius ² * 0.163			
Purge Metho	od:	Bailer		Sampling Method:	Bailer			
		Middleburg			Extraction Port			
	Ele	ctric Submers	sible	Other:				
		xtraction Pun	np					
ı	Other:							
	2.	4	x 3	= 7	o. 7 Gals.			
	1 Case Vol	ume (Gals.)	Specified Vo		culated Volume			
Time	Temp (°F)	pН	Cond.	Turbidity	Gals. Removed	Observations		
928	64.7	6.4	430	7200	2.5	odor		
932	65.3	7.0	390	7200	5.0	sheen		
936	65.4	7-1	360	7200	7.25			
							•	
Did well d	lewater?	Yes (Ng	Gallons actuall	y evacuated: 7	1.25		
Sampling	Time: 9	40		Sampling Date: 12-23-95				
Sample I.I	D.: M2	V-6		Laboratory:	Sequora BC	Other		
Analyzed	for: TPH-	G BREX	MARE THH-D	Other:				
D.O. (if re	:q'd):	-	Pre-purge:	mg/ _L	Post-purge:		$^{mg}\!/_{L}$	
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:		mV	