URS

October 29, 2004

Mr. Robert W. Schultz Hazardous Material Specialist Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SUBJECT: Additional Investigation Workplan

Former BP Service Station #11133 2220 98th Avenue, Oakland, California ACHCS Fuel Leak Case No. RO0000403

Dear Mr. Schultz:

On behalf of the Atlantic Richfield Company (RM- a BP affiliated Company), URS Corporation (URS) has prepared this Additional Investigation Workplan containing a Site Conceptual Model for the above referenced Site (the Site). This report was prepared in response to a letter from the Alameda County Health Care Services (ACHCS) to BP dated August 30, 2004 (Attachment A). This Workplan includes a discussion of the Site background, Site hydrogeology, Sensitive Receptor and Well Survey, Preferential Pathway Survey, Site Characterization, and Corrective Action Plan recommendations for further investigation and remediation.

SITE FEATURES AND BACKGROUND

The Site is a fenced lot containing an inactive former service station located at the northern corner of 98th Avenue and Bancroft Avenue in Oakland, California (Figure 1). The land use in the immediate vicinity of the Site is mixed commercial and residential. BP acquired the facility from Mobil Oil Corporation in 1989. In January 1994, BP transferred the property to TOSCO Marketing Company (TOSCO, now ConocoPhilips) and has not operated the facility since that time. TOSCO ceased gasoline retail operations at the Site in 1999.

The Site consists of a service station building, a restroom building, a canopy, former dispenser islands, and a remediation system and associated compound. The Site is covered with asphalt or concrete surfacing except for planters along the northern, eastern and parts of the western property boundaries and areas where the former underground storage tanks (USTs), product piping and dispensers were removed in 1998 (Figure 2).

In June 1987, Kaprealian Engineering, Inc. (Kaprealian) removed one 10,000-gallon, one 8,000-gallon and one 5,000-gallon single walled steel gasoline USTs from the southwestern part of the Site (Figure 2). Soil samples (samples A1, A2, B1, B2, and C1) were collected from the base of the tank cavity at depths of approximately 13.5 to 14 feet below ground surface (bgs). The analytical results of the respective soil samples detected Total Petroleum Hydrocarbons (TPH) at concentrations ranging between 12 and 420 parts per million (ppm)

Mr. Robert W. Schultz October 29, 2004 Page 2 of 16

and benzene concentrations ranged between 0.74 ppm and 23 ppm (Attachment B). Subsequently, two 10,000-gallon and one 12,000-gallon USTs were installed at the former UST complex location.

In May 1988, three groundwater monitoring wells (MW-1, MW-2, MW-3) were installed onsite (Figure 2). The analytical results of soil and groundwater samples collected from MW-1 through MW-3 are included in Attachments B and C. TPH and benzene, toluene, ethyl benzene and xylenes (BTEX) concentrations in soil samples from MW-2 and MW-3 were non-detect to relatively low. However, the soil samples collected between 15 and 20 feet bgs from MW-1 reported TPH concentrations between non-detect and 210 ppm, and benzene concentrations between non-detect and 7.1 ppm. TPH and BTEX concentrations in groundwater samples from MW-2 and MW-3 were at relatively low to non-detect levels, while the groundwater sample from MW-1 reported 76,000 parts per billion (ppb) TPH and 29,000 ppb benzene.

In January 1990, Alton Geosciences (Alton) oversaw the advancement of eight soil borings to various depths ranging between 16 to 35 feet bgs and the installation of eight temporary wells (TW-1 through TW-8) at the Site (Figure 2). Temporary wells TW-2 and TW-3 were installed offsite. The respective temporary wells were installed as part of a Supplemental Site Investigation to conduct a qualitative groundwater survey. Soil samples were not collected for laboratory analysis from the respective well borings. The analytical results of groundwater samples collected from TW-1 through TW-8 and monitoring wells MW-1 through MW-3 are presented in Attachment C. Approximately 0.2 foot of free product was encountered in MW-1 and product sheen was noted in TW-4. TPH ranged between non-detect (<50 ppb) to 720,000 ppb in the remaining wells. Temporary wells TW-1 through TW-8 were subsequently abandoned by grouting.

In May and June 1990, Alton oversaw the advancement of five soil borings and installation of four groundwater monitoring wells (AW-1 through AW-4) and one recovery well (RW-1). Wells AW-1 and RW-1 were installed onsite and the remaining wells were installed offsite (Figure 2). The analytical results of soil samples collected from AW-1 through AW-4 and RW-1 reported non-detectable to relatively low concentrations of Total Petroleum Hydrocarbon-gasoline (TPH-g) and BTEX with a maximum of 33 ppm TPH-g at 25 feet bgs in RW-1 (Attachment B). In July 1990, pump test and slug test activities were conducted at the Site, during which, approximately 100-gallons of product/water was pumped from recovery well RW-1 and appropriately disposed offsite to control migration of free product at the Site.

In February 1991, as part of a Phase III-Supplemental Site Investigation Study, Alton oversaw the advancement of four soil borings (SBA-5 through SBA-8) and the installation of four monitoring wells (AW-5 through AW-8). Wells AW-5 and AW-6 were installed onsite and wells AW-7 and AW-8 were installed offsite (Figure 2). The analytical results of soil samples collected from SBA-5 through SBA-8 (AW-5 through AW-8) reported non-detect

Mr. Robert W. Schultz October 29, 2004 Page 3 of 16

concentrations of TPH-g and relatively low concentrations of BTEX with a maximum of 0.091 ppm benzene at 10.5 to 11 feet bgs in SBA-6 (Attachment B). Groundwater analytical results indicated moderate to high concentrations of TPH-g in AW-5, AW-6, and AW-8 with a maximum of 1,100 μ g/L in AW-6, and low to moderate concentrations of BTEX in AW-5 through AW-8 with a maximum of 80 μ g/L benzene in AW-6 (Attachment C). A groundwater monitoring program was subsequently initiated.

In March 1992, RESNA oversaw the advancement of three soil borings B-9 through B-11 in which three vapor extraction wells VW-1 through VW-3 were installed, respectively. The analytical results of soil samples collected from B-1 through B-11 reported non-detectable to relatively low concentrations of TPH-g and BTEX, except for 320 ppm of TPH-g in B-11 at 16.5 feet bgs (Attachment B). Groundwater samples were not collected from VW-1 through VW-3. In April 1992, a vapor extraction test (VET) was performed onsite using vapor extraction wells VW-1 through VW-3 to evaluate the feasibility of using vapor extraction as a remedial alternative at the Site. Based on the estimated effective radius of influence calculated from the VET, soil vapor extraction was identified as a feasible remedial alternative. A soil vapor extraction system (SVE) combined with a groundwater recovery and treatment system was identified as an effective remedial option for the Site. Also in April 1992, RESNA installed a GRS passive floating product removal system in RW-1 and initiated a program to manually remove the product collected by the system on a monthly basis.

In 1994, a SVE and treatment system was installed onsite and began operating in November 1994. The SVE system consisted of a Lamson Turbotron TBT-2600 cubic feet per minute (cfm) maximum capacity blower and ancillary equipment. The groundwater treatment system consisted of a Gas Space R 6p335A Aeration Tank and ancillary equipment. Both systems also had independent A-1, Retox 600 Regenerative Thermal Oxidizers of 600 cfm capacities. The SVE and treatment system was initially connected to eight vapor extraction wells (VEW-1 through VEW-8) and recovery well RW-1 (Figure 2). Vapor extraction wells VEW-4 through VEW-8 were installed in 1994 as part of the remediation system installed onsite. However, the drilling and installation activities associated with VEW-4 through VEW-8 are not on file and it is not known if soil or groundwater samples were collected from the respective borings. Vapor extraction well VEW-9 was installed and connected to the SVE and treatment system in April 1996 (Figure 2). The analytical results of soil samples collected from VEW-9 reported non-detect concentrations of TPH-g, BTEX and methyl tertiary butyl-ether (MTBE) (Attachment B).

Based on available records, the SVE and treatment system was operated until December 1998, with intermittent non-operational status. Based on available operational data for the SVE system, as of December 27, 1995, a total of approximately 13,495.8 pounds of hydrocarbons had been removed by the system from onsite soils. Based on available operational data for the groundwater treatment system, as of December 14, 1998, a total of approximately 344.4 pounds of hydrocarbons had been removed by the system from onsite

Mr. Robert W. Schultz October 29, 2004 Page 4 of 16

groundwater. A summary of the SVE and treatment system operational data and a schematic of the treatment system sampling locations are presented in Attachment D.

In 1994, EMCON collected supplemental soil boring samples at the Site. However, a report documenting the investigation results is not on file. A soil sample (TD-5-0.5) collected from 0.5 feet bgs at the southern most dispenser onsite reportedly had TPH-diesel (TPH-d) concentrations of 3,900 ppm and non-detect levels of TPH-g and BTEX (Figure 2, Attachment B).

In December 1996, Allisto drilled soil-boring AW-9 to further delineate the extent of petroleum hydrocarbons. Soil boring AW-9 was converted to monitoring well AW-9. The analytical results of soil samples collected from VEW-9 reported non-detect concentrations of TPH-g, BTEX and MTBE (Attachment B). Well AW-9 was subsequently included into the ongoing groundwater monitoring program.

In October 1998, Gettler-Ryan, Inc. (GR) oversaw the removal of two 10,000-gallon and one 12,000-gallon USTs and associated product piping. After the removal of the USTs and product piping, four tank-pit sidewall soil samples (SW-1 through SW-4) at approximately 12 feet bgs, two tank-pit groundwater samples (Water-1 and Water-2) and eight product piping soil samples (P1 through P8) were collected and analyzed (Figure 2 and Attachment B). The sidewall soil samples SW-1 through SW-4, which were collected at approximately 12 feet bgs reported non-detect levels of TPH-g and BTEX and less than 0.5 ppm of MTBE. The groundwater samples (Water-1 and Water-2) reported TPH-g concentrations ranging between 430 ppb and 3,700 ppb, benzene concentrations between 46 and 98 ppb, and MTBE concentrations between 1,200 and 4,100 ppb. The product piping soil samples (P1 through P8), which were collected at approximately 3.5 feet bgs reported a maximum of 1.2 ppm of TPH-g, a maximum of 0.067 ppm of benzene, and a maximum of 4.0 ppm of MTBE.

In May 2000, Newfields, Inc. (Newfields) performed a Risk-Based Corrective Action (RBCA) Evaluation for the Site using Oakland and ASTM RBCA processes. The residual gasoline and diesel constituent concentrations in onsite soils and groundwater were initially compared to concentrations presented in the Oakland RBCA Tier 1 and Tier 2 look-up tables, whose values are based on conservative, generic exposure and modeling parameters, resulting in conservative risk-based screening levels. Where site conditions exceeded Oakland RBCA Tier 1 and Tier 2 levels, those conditions were further assessed under the Oakland RBCA Tier 3 analysis. The Tier 3 analysis replaces some of the conservative generic assumptions of Tiers 1 and 2 with data that is representative of actual site conditions, thereby providing a more accurate representation of existing and potential future risks. Accordingly, the results of the Oakland RBCA Tier 3 evaluation indicated that the residual levels of petroleum hydrocarbons in onsite soils and groundwater were below City of Oakland and US EPA acceptable cancer risks and non-cancer risk levels. It was thereby concluded that onsite soil and groundwater conditions should not pose a risk to current and future onsite workers or off-site residents.

Mr. Robert W. Schultz October 29, 2004 Page 5 of 16

In December 2000, Newfields submitted a revised RBCA evaluation for the Site to ACHCS incorporating agency feedback and further detailing previously provided information. However, the conclusions remained the same as in the May 2000 RBCA for the Site.

In compliance with regulatory requests and feedback on the December 2000 Newfields RBCA evaluation, a supplemental investigation was conducted in October 2001 to assess inhalation potential exposure risks from residual subsurface hydrocarbon concentrations particularly to offsite residents. As part of the supplemental investigation, six soil borings (B-1 through B-6) were drilled in the eastern and southeastern property boundaries and soil, soilvapor and groundwater samples were collected from the respective borings and analyzed (Figure 2, Attachment B). Two soil samples each were collected from borings B-1, B-2, B-3, B-5, and B-6, and four soil samples, including a duplicate, was collected from B-4 at depths ranging between 4.5 to 19.5 feet bgs. The analytical results of the respective soil samples reported a maximum of 1.6 micrograms per kilogram (mg/kg) of TPH-g, non-detect concentrations of benzene and MTBE, and low to mostly non-detect concentrations of remaining gasoline constituents (Attachment B). Three soil-vapor samples were collected from each boring B-1 through B-6 at 5 foot depth intervals between 5 and 15 feet bgs. The analytical results of the respective soil-vapor samples reported TPH-g concentrations ranging between 1.3 to 11 parts per million by volume (ppmv), BTEX concentrations ranging between 0.0033 to 0.34 ppmy, 0.0033 to 0.23 ppmy, 0.0027 to 0.15 ppmy, and 0.0031 to 0.59 ppmy, respectively. MTBE concentrations in the soil-vapor samples ranged between 0.0033 to 0.062 ppmv (Attachment B). One groundwater sample was collected from each boring B-1 through B-6 and the analytical results reported TPH-g concentrations ranging between <50 to 110,000 micro grams per liter (µg/L), benzene concentrations ranging between <2.0 to 30,600 μg/L, and MTBE concentrations ranging between <200 to 1,500 μg/L (Attachment C).

In May 2002, Montgomery Watson Hazra (MWH) performed a revised RBCA evaluation for the Site using Oakland and ASTM Tier 1 through Tier 3 RBCA values. This revised RBCA evaluation primarily incorporated the October 2001 supplemental investigation soil, soilvapor and groundwater analytical results to adequately evaluate potential exposure risks to the residential properties adjacent to the Site. The risks to offsite residents were addressed by the soil vapor data collected adjacent to the offsite residential structures, as soil vapor data is considered more representative of potential offsite residential exposures than soil or groundwater data. Applicable exposure evaluation flowcharts, the Tier 1 through Tier 3 RBCA evaluation tables, and statistical analysis tables are presented in Attachment E. The results of the respective RBCA evaluation indicated that the theoretical upper-bound incremental lifetime cancer risks and non-cancer hazard indices associated with levels of TPH, BTEX, and MTBE in onsite soils and groundwater were below acceptable levels. Accordingly, it was concluded that no further action was necessary for the protection of human health at the Site. Further details of the respective RBCA evaluation can be found in the May 2002, Montgomery Watson Harza report titled "Risk-Based Corrective Action Evaluation for BP Oil Site No. 11133, Oakland, CA".

Mr. Robert W. Schultz October 29, 2004 Page 6 of 16

To date, a total of twenty three groundwater monitoring and extraction wells have been installed at the Site and in the Site vicinity (Figure 2). These include thirteen groundwater monitoring wells, seven of which are onsite (MW-1, MW-2, MW-3, AW-1, AW-5, AW-6, and RW-1), and six are offsite (AW-2, AW-3, AW-4, AW-7, AW-8, and AW-9). Well RW-1 is a dual extraction and monitoring well. There are eight onsite vapor extraction wells (VW-1 through VW-3 and VEW-4 through VEW-8) and one offsite extraction well (VEW-9). The well construction diagrams are included in Attachment H, except for those of wells VEW-4 through VEW-8, which are not on file. A quarterly groundwater monitoring program was initiated at the Site in April 1991 and is ongoing on a modified sampling schedule. Since the first quarter of 2001, the monitoring program at the Site began operating on a semi-annual basis. Monitoring of offsite wells AW-7, AW-8 and AW-9 was discontinued in 1998. Monitoring of onsite well MW-2 and offsite well AW-3 was discontinued in 2000. Currently, wells MW-1, MW-3, AW-1, AW-4, AW-5, AW-6, RW-1 are monitored semi-annually (1st and 3rd quarters), well AW-2 is monitored annually (1st quarter), and wells MW-2, AW-3, AW-7, AW-8, and AW-9 are not sampled. Free product gauging of well RW-1 is conducted semi-annually and a summary of the free product removal program from wells RW-1 and MW-1 are provided in Attachment D. As of June 15, 2000, a total of 0.70 gallons of free product was removed from MW-1 and free product has not been encountered in MW-1 since June 1998. A sheen was noted in MW-1 during the third quarter 2004 monitoring session. As of February 2002, a total of 161.29 gallons of free product was removed from RW-1 and free product has not been encountered in RW-1 since September 2001.

The analytical results of the groundwater monitoring program are included as Attachment C. The most recent quarterly (third quarter 2004) groundwater monitoring results, groundwater flow direction, and groundwater contours are graphically presented in Figure 6. The analytical results of the third quarter 2004 groundwater monitoring session are as follows: Gasoline Range Organics (GRO) were detected above the laboratory reporting limits in six of the seven wells sampled at concentrations ranging from 1,100 μ g/L (AW-5) to 47,000 μ g/L (RW-1). Benzene was detected above the laboratory reporting limits in three wells at concentrations ranging from 320 μ g/L (RW-1) to 2,600 μ g/L (AW-1). MTBE was detected above the laboratory reporting limits in all six wells sampled at concentrations ranging from 3.3 μ g/L (MW-3) to 4,600 μ g/L (AW-6). Tert-butyl alcohol (TBA) was detected above the laboratory reporting limits in one well at a concentration of 1,600 μ g/L (AW-5). Tert-amyl mether ether (TAME) above the laboratory reporting limits was detected in four wells at concentrations ranging from 9.6 μ g/L (AW-4) to 1,600 μ g/L (AW-6). No other fuel oxygenates were detected above their respective laboratory reporting limits.

Mr. Robert W. Schultz October 29, 2004 Page 7 of 16

SITE HYDROGEOLOGY

The Site elevation is approximately 40 feet above mean sea level, where regional topography slopes to the west (USGS Topographic Map, Oakland East Quadrangle -7.5 Minute Series). The topography of the surrounding area is characterized by valleys and gentle slopes. The underlying unit in this region consists of Undivided Quaternary deposits (QU). The QU units composition and physical properties vary, but consist predominantly of Temescal Formation, which probably includes covered or unrecognized San Antonio Formation and gravel, sand, and clay (Qg), as well as recent alluvium and colluvium and artificial fill. The Site is located in the 580-Square-mile Alameda Bay Plain Groundwater Basin. The water-bearing material is comprised of younger and older alluvium. The area is located within the Oakland Upland and Alluvial Plain, a groundwater subarea of the East Bay Plain. Groundwater in the water-bearing units of the Oakland Upland and Alluvial Plain meets recommended primary and secondary standards for drinking water.

According to the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report", Figure 19, June 1999, the groundwater in the Site area is designated as Zone A, which is identified as a moderate to significant drinking water resource (Attachment G). The shallow aquifer in Zone A is identified as a potential drinking water source and the deep aquifer is identified as existing or probable drinking water source (Attachment G). The most productive water wells in the Oakland Upland and Alluvial Plain are those completed within the older alluvium units. The older alluvium units in the area are reported to be approximately 500-600 feet thick. Lesser amounts of groundwater occur in the younger alluvium, fluvial deposits, interfluvial basin deposits, and Bay Mud estuarine deposits. These deposits are generally relatively thin (less than 120 feet thick) and yield only small amounts of groundwater to wells (Note: the aforementioned regional geological information sourced from RESNA 1993, Remedial Action Plan, or as indicated).

The Site is approximately 2 miles east of the San Leandro Bay, which is a small portion of the San Francisco Bay. The nearest surface water drainage is San Leandro Creek, approximately 1-4-miles to the south, which drains into San Leandro Bay. Another creek, Arroyo Viejo is located approximately 1 mile north of the Site. Both creeks originate in the East Bay Hills and drain directly into San Leandro Bay.

Mr. Robert W. Schultz October 29, 2004 Page 8 of 16

The regional surface and groundwater flow in the region is to the southwest, towards San Francisco Bay. The historic groundwater flow direction at the Site between July 1992 and July 2004 has ranged between northwest through South through northeast but has predominantly been easterly and secondarily southeasterly (Attachment C). The groundwater flow directions in the western and eastern sections of the Site have predominantly been easterly and westerly, respectively, converging to a generally northwest-southeast trending potentiometric depression or trough across the center of the Site. The groundwater flow direction along the axis of the trough is generally to the east and southeast, which represent the overall predominant groundwater flow direction at the Site. During the same time frame, the hydraulic gradient has ranged between 0.02 to 0.30 feet per foot (Attachment C). A rose diagram indicating the historical hydraulic gradient direction at the Site is shown on Figure 3 and Figures 6 through 9. Between April 1991 and July 2004, the depth to groundwater beneath the Site and in the immediate vicinity has ranged between 6.77 to 28.51 feet bgs, with notable seasonal fluctuations (Attachment C). During the last five years since January 2000, the depth to groundwater at the Site and the immediate vicinity ranged between 8.40 and 23.11 feet bgs (Attachment C).

The Site is typically underlain by clay, silty clay, and clayey silt to depths of approximately 18 to 20 feet. The cross sections (Figures 4 and 5) show a silty sand lens at approximately three to four feet bgs and several silty sand and silty gravel lenses from approximately 13 to 17 feet bgs. Sandy clays, sandy silts, and silty sands are encountered at depths of approximately 19 to 40 feet bgs beneath the Site. The silty to clayey sand lens tapers to the south and is not encountered in downgradient well AW-4, which consists of silty clays to 35 feet bgs. The lens of sandy clays, sandy silts, and silty sands is underlain by silty clays, which extend to the total explored depth of all borings (Figures 4 and 5; Attachment H). Hydro-geologic cross-sections prepared by URS depicting the subsurface lithology are presented as Figures 3 through 5. Historic hydro-geologic cross-sections prepared by a previous consultant are presented in Attachment H. Copies of boring logs and well construction details are included as Attachment H.

Based on a Rising Head or Slug Test conducted at the Site in July 1990, the transmissivity, hydraulic conductivity, and linear velocity of the aquifer material at the Site were calculated to be 9.0 feet²/day, 0.6 feet/day (2.1 x 10⁻⁴ centimeter/second), and 6.0 x 10⁻³ feet/day, respectively. These values were reported to be representative of low permeability soil encountered at the Site and are within accepted values for clayey to silty sand. The results of an aquifer pump test conducted at the Site in April 1991, on recovery well RW-1 with nine observation wells located between 35 and 135 feet from the pumping well reported storativity and transmissivity values of 0.3493 and 0.1491 feet²/minute, respectively. Assuming a 25 feet screened interval for recovery well RW-1, the calculated hydraulic conductivity value is 8.588 feet/day (3.029 x 10⁻³ centimeter/second). This hydraulic conductivity value corresponds to typical published values for silty sands (Fetter, 1988).

Mr. Robert W. Schultz October 29, 2004 Page 9 of 16

SENSITIVE RECEPTOR AND WELL SURVEY

A sensitive receptors study was conducted for the Site in February 1991, which identified an elementary school as the nearest sensitive receptor located approximately 1,000 feet west and upgradient of the Site. San Leandro Creek was identified as the nearest surface water body and no known municipal or private water supply wells were identified within a ½ mile radius of the Site. The respective sensitive receptor survey results are included as Attachment G.

In October 2004, URS conducted a one-mile radius well survey for the Site (Attachment G). A review of the State of California Department of Water Resources (DWR) files and Environmental Data Resources, Inc. (EDR) files identified that eleven domestic wells, seven irrigation wells and one industrial well were located within one-mile radius of the Site (Attachment G). Fifteen well logs provided by DWR based on a requested one-mile well survey radius did not provide addresses and therefore, those well locations could not be determined. Nine of the identified domestic wells and four irrigation wells are located approximately 0.75 mile in the predominant downgradient direction of the Site. However, no wells were identified within a 2,000 feet radius of the Site. Two former leaking UST sites with closed regulatory status were identified within 2,000 feet of the Site, but available records do not indicate the presence of monitoring wells in association with the two sites.

According to the SFRWQCB "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report", Figures 16 and 17, June 1999, there is one irrigation and one industrial shallow well (less than 100 feet bgs), and one deep irrigation well (greater than 100 feet bgs) located within 0.5 miles of the Site (Attachment G). None of the identified wells are directly downgradient (east to southeast) of the Site.

Based on the sensitive receptor and well survey results, no sensitive receptors including wells were identified within a distance of the Site where the hydrocarbon impacted soil and groundwater at the Site may likely pose a threat.

PREFERENTIAL PATHWAY SURVEY

An underground utility Site survey was conducted in October 2004 by URS to identify potential migration pathways and conduits to assess the probability of the plume encountering preferential pathways and conduits that may promote the migration of petroleum hydrocarbons. The locations of underground utilities identified at the Site and in the immediate vicinity are shown in Figure 3. Geologic cross-sections showing the locations and depths of the identified underground utilities at the Site and in the immediate vicinity are presented in Figures 4 and 5. The underground utilities identified are as follows: sanitary sewer lines, storm drains, East Bay Municipal Utility District (EBMUD) water lines, Pacific Gas and Electric (PG&E) lines, and onsite remediation system associated trench lines. Locations of telephone and television cable utility information in the site vicinity could not be obtained and were identified as less likely to be of concern due to their generally shallow depths of approximately less than 5 feet bgs. Underground utilities of potential concern identified were onsite remediation system associated

Mr. Robert W. Schultz October 29, 2004 Page 10 of 16

trenching extending to approximate depths of less than 4-5 feet bgs, and sanitary sewer lines running directly beneath the south to southwestern section and north to northwestern section of the Site at approximate depths of 4 to 4.5 feet bgs (Figures 3 through 5). All other identified underground utilities were offsite and the underground utilities downgradient (east to southeast) of the Site do not extend beyond a maximum depth of approximately 6.5 feet bgs.

Historically, the depth to groundwater beneath the Site and in the immediate vicinity has ranged between 6.77 to 28.51 feet bgs (between April 1991 and July 2004) and has ranged between 8.40 and 23.11 feet bgs (during the last five years since January 2000), fluctuating seasonally (Attachment C). Accordingly, since the maximum approximate depths of the identified onsite and offsite underground utilities are above the typical average and occasional historic highs of the depth to groundwater at the Site and the immediate site vicinity, the identified underground utilities are unlikely to act as significant preferential conduits for dissolved hydrocarbon migration. Additionally, since no wells were identified within 2,000 feet of the Site, the potential for offsite wells acting as preferential conduits for dissolved hydrocarbon plume migration is not of concern.

CONTAMINANT SOURCE CHARACTERIZATION

A review of the analytical results of historical soil samples collected from the Site indicates that the lateral and vertical extents of hydrocarbon impacts on onsite soils have been characterized and are limited to the source areas, such as the former UST complex, dispensers and product piping locations. The historical soil analytical data is presented in Attachment B and the soil sample locations are shown in Figure 2.

Please note that the soil samples collected during the second UST removal and closure in October 1998 are considered representative of the soil conditions at the former UST complex location. The highest residual TPH-g concentrations in onsite soils are as follows: 320 mg/kg at 11 feet bgs in boring B-11 (VW-3), and 210 mg/kg at 15 feet bgs in boring MW-1. The next highest onsite residual TPH-g concentrations range between <0.05 mg/kg and 33 mg/kg. TPH-g was detected at low concentrations in soil samples collected near the former dispenser islands and product lines in the western portion of the site. TPH-G was also detected in several nearsurface soil boring samples (within five feet bgs; B-1, B-2, and B-5) and one deep off-site soil boring location (AW-4, south of the site, 21 feet bgs) at low concentrations (0.084 to 1.6 mg/kg). The maximum concentration of TPH-d detected in onsite soils was 3,900 mg/kg collected at 0.5 feet bgs at surface soil sample location TD-5, which is located at the southern most dispenser island. No TPH-g or TPH-d was detected at the northern-most onsite soil boring sample (AW-6), eastern most onsite soil boring sample (AW-5), or in surface soil samples along the western extent of the former dispenser islands on the northwest portion of the site. Vertical TPH-g isoconcentration contours are plotted on the hydrogeologic cross-sections presented in Figures 4 and 5.

The residual benzene concentrations in onsite soils range between <0.0005 mg/kg to a maximum of 7.1 mg/kg at depths ranging from grade to approximately 30 feet bgs. According to the

Mr. Robert W. Schultz October 29, 2004 Page 11 of 16

statistical analysis conducted in the May 2002 MWH RBCA report for the Site, benzene was detected in approximately 50 percent of the soil samples collected at the site, whereas toluene, ethyl benzene and xylenes were detected in approximately 30 to 38 percent of the soil samples. Most of the higher benzene concentrations were detected along the "center axis" of the Site in the vicinity of the former dispensers and product lines, in soil samples running the length of the site northwest to southeast (P1 through RW-1), with lower concentrations detected throughout the remainder of the Site. Most of the benzene detections at the site occurred below 7 to 10 feet bgs, with the highest detection at 15 feet bgs. Toluene, ethyl benzene, and xylene concentrations showed a similar trend. MTBE was not historically analyzed for and was only detected in a few locations along the former UST areas and product line samples (P2, P5, P7, SW-2, SW-3, SW-4) on the northwestern portion of the site.

A comparison of TPH-g, BTEX and MTBE concentrations encountered in onsite soils against conservative Environmental Screening Levels (ESLs) selected from Vol II of the ESL document (ESL 2003), Table E-1b, Potential Indoor-Air Impact Screening Levels - Residential Exposure Scenario for BTEX and MTBE, and Table K-1, Direct- Exposure Screening Levels - Residential Exposure Scenario for TPH-g, indicate the following:

- Residual TPH-g concentrations in onsite soils do not exceed the Table K-1, Direct-Exposure Screening Levels - Residential Exposure Scenario value of 500 mg/kg for TPH-g.
- Residual toluene, ethyl benzene and xylene concentrations in onsite soils do not exceed their respective Table E-1b, Potential Indoor-Air Impact Screening Levels Residential Exposure Scenario, which are as follows: 180 mg/kg for toluene, 4.7 mg/kg for ethyl benzene, and 45 mg/kg for xylenes.
- Residual benzene concentrations in onsite soils exceed the Table E-1b, Potential Indoor-Air Impact Screening Levels Residential Exposure Scenario of 0.18 mg/kg for benzene only in the following locations, respective depths and at the following concentrations: 7.1 mg/kg at 15 feet bgs and 1.24 mg/kg at 20 feet bgs at MW-1; 0.470 mg/kg at AW-1 at 20 feet bgs; 0.230 mg/kg at 20 feet bgs and 1.0 mg/kg at 25 feet bgs at RW-1.
- Residual MTBE concentrations in onsite soils either exceed or is equal to the Table E-1b, Potential Indoor-Air Impact Screening Levels Residential Exposure Scenario of 2.0 mg/kg for MTBE only in the following locations, respective depths and at the following concentrations: 4 mg/kg at 3.5 feet bgs at P2; and 2.0 mg/kg at 3.5 feet bgs at P7.

The analytical results of soil-vapor samples collected from boring B-1 through B-6 at 5 foot depth intervals between 5 and 15 feet bgs in October 2001 reported the following: TPH-g concentrations ranged between 1.3 to 11 parts per million by volume (ppmv); BTEX concentrations ranged between 0.0033 to 0.34 ppmv, 0.0033 to 0.23 ppmv, 0.0027 to 0.15 ppmv, and 0.0031 to 0.59 ppmv, respectively; and MTBE concentrations ranged between 0.0033 to 0.062 ppmv (Attachment B). A comparison of TPH-g/Gasoline Range Organics (GRO), BTEX and MTBE concentrations encountered in onsite soil vapor samples in October 2001 against

Mr. Robert W. Schultz October 29, 2004 Page 12 of 16

conservative Environmental Screening Levels (ESLs) selected from Vol II of the ESL document (ESL 2003), Table E-2, Shallow Soil Gas Screening Levels - Residential Exposure Scenario for TPH-g/GRO, BTEX and MTBE, indicate the following:

- TPH-g/GRO concentrations in onsite soil vapors exceeded the Table E-2, Shallow Soil Gas Screening Levels Residential Exposure Scenario value of 2.3 ppmv for TPH-g/GRO only in the following locations, respective depths and at the following concentrations: B-1 at 5 feet bgs (6.6 ppmv) and 10 feet bgs (9.9 pmv); B-2 at 5 feet bgs (2.4 ppmv), 10 feet bgs (11 ppmv), and 15 feet bgs (4.2 ppmv); B-3 at 5 feet bgs (7.0 ppmv); B-5 at 5 feet bgs (6.2 ppmv); and B-6 at 5 feet bgs (4.2 ppmv), 10 feet bgs (2.3 ppmv), and 15 feet bgs (2.4 ppmv).
- Toluene, ethyl benzene, xylene and MTBE concentrations in onsite soil vapors did not exceed their respective Table E-2, Shallow Soil Gas Screening Levels Residential Exposure Scenario values, which are as follows: 21.6 ppmv for toluene, 0.5 ppmv for ethyl benzene, 1.6 ppmv for total xylenes, and 2.6 ppmv for MTBE.
- Benzene concentrations in onsite soil vapors exceeded the Table E-2, Shallow Soil Gas Screening Levels Residential Exposure Scenario value of 0.026 ppmv only in the following locations, respective depths and at the following concentrations: B-3 at 5 feet bgs (0.026 ppmv); and B-6 at 5 feet bgs (0.030 ppmv), at 10 feet bgs (0.029 ppmv), and 15 feet bgs (0.34 ppmv).

CONTAMINANT PLUME DEFINITION

A review of groundwater monitoring data for the Site indicates that the extent of the dissolved hydrocarbon plume has been defined in some directions and has not been adequately defined in others, particularly in the downgradient direction (east, southeast). The extent of the dissolved hydrocarbon plume is defined in the south by well AW-7, in the west by wells MW-2 and AW-2, in the northeast by wells AW-3 and AW-8, and in the southeast by well AW-9 (Figure 2). However, the extent of the dissolved hydrocarbon plume is not adequately defined east (downgradient) of the contaminant source area in the area between wells AW-4 and AW-8, and possibly remains inadequately defined north of wells AW-5 and AW-6 (Figure 2). Also wells AW-7, AW-8 and AW-9 have not been sampled since 1998, and wells MW-2 and AW-3 have not been sampled since 2000. Therefore, historical data from these wells may not reflect current conditions. A comparison of the most recent third quarter 2004 groundwater analytical results to the most conservative ESLs for groundwater that is a potential drinking water source (100 μ g/L for TPH-g, 1.0 μ g/L for benzene, and 5 μ g/L for MTBE), and a review of the concentration trends of TPH-g, BTEX and MTBE over time for all wells with historic dissolved hydrocarbon detections (Attachment F) indicate the following:

• TPH-g/GRO, BTEX and MTBE concentrations in well MW-1, located in the immediate vicinity of the contaminant source area (former UST complex location) have overall indicated a decreasing trend. During the third quarter of 2004, TPH-g/GRO concentrations (18,000 μg/L) exceeded the TPH-g/GRO ESL for potential drinking water sources, and benzene and MTBE concentrations were non-detect (ND<50 μg/L).

Mr. Robert W. Schultz October 29, 2004 Page 13 of 16

However, the laboratory reporting limits for benzene and MTBE exceeded their respective ESLs for potential drinking water sources.

- TPH-g/GRO, BTEX and MTBE concentrations in upgradient wells MW-2 and AW-2 located west of the contaminant source area have historically indicated low to primarily non-detect levels.
- TPH-g/GRO, BTEX and MTBE concentrations in cross-gradient well AW-7 located south of the contaminant source area have historically indicated low to primarily nondetect levels.
- TPH-g/GRO, BTEX and MTBE concentrations in cross-gradient wells AW-3, AW-5 and AW-6 indicate varying trends, indicating an overall decreasing trend to consistently non-detect levels in AW-3. TPH-g/GRO, BTEX and MTBE concentrations indicate an overall decreasing trend in AW-5 after peaking in 1998, with BTEX concentrations consistently at non-detect levels. TPH-g/GRO and MTBE concentrations indicate an increasing trend in AW-6, while BTEX concentrations have remained consistently non-detect. During the third quarter of 2004, TPH-g/GRO and MTBE concentrations in AW-5 and AW-6 exceeded potential drinking water ESLs.
- TPH-g, BTEX and MTBE concentrations in wells MW-3, AW-1, AW-4, AW-8, AW-9, and RW-1 located in the general downgradient direction indicate an overall decreasing trend. TPH-g, BTEX and MTBE concentrations in wells AW-8 and AW-9 have consistently been non-detect. TPH-g and BTEX concentrations in MW-3 have consistently been non-detect since 2000, while MTBE concentrations indicate an overall decreasing trend and were below potential drinking water ESLs during the third of quarter 2004. TPH-g, BTEX and MTBE concentrations in AW-1, AW-4 and RW-1 exceeded their respective potential drinking water ESLs during the third quarter of 2004.

The TPH-g/GRO, benzene and MTBE iso-concentrations maps based on the analytical results of the third quarter 2004 and where necessary the first quarter 2004 and previous historical monitoring sessions indicate the following (Figures 7, 8 and 9):

- The core of the dissolved hydrocarbon plume with relatively elevated TPH-g/GRO, benzene and MTBE concentrations is primarily limited to the Site, and to the immediate offsite downgradient vicinity near well AW-4.
- A part of the dissolved hydrocarbon plume with relatively low TPH-g/GRO, benzene and MTBE concentrations has migrated offsite in the immediate site vicinity, primarily in the general downgradient direction (east, southeast)
- The migration of the dissolved hydrocarbon plume associated with the Site is not significant and accordingly, the potential threat of impact to downgradient receptors is unlikely to be of significant concern, except in the immediate downgradient offsite vicinity.

Mr. Robert W. Schultz October 29, 2004 Page 14 of 16

CORRECTIVE ACTION PLAN RECOMMENDATIONS

To assist in adequately defining the extent of the dissolved hydrocarbon plume, URS proposes initially conducting a comprehensive first quarter 2005 groundwater monitoring session involving all wells associated with the Site. Currently not all wells are being sampled, especially wells AW-3, AW-8 and AW-9, which are located in the general downgradient direction. The analytical results of the comprehensive first quarter 2005 groundwater monitoring session will assist in determining the appropriate locations to advance direct push borings for depth discrete soil and groundwater sampling to further define the extent of the plume, particularly in the general downgradient direction (east to southeast) and cross-gradient direction north of the Site. Based on the results of the depth discrete groundwater samples, the appropriate location(s) to install new groundwater monitoring wells will be determined.

Based on currently available analytical data, collection of depth discrete groundwater samples and/or installation of groundwater monitoring wells in the area between AW-4 and AW-8 on Springfield Road may possibly assist in adequately defining the downgradient direction of the plume (Figure 2). However, the first quarter 2005 analytical results of groundwater samples collected from AW-4, AW-8 and AW-9 will assist significantly in determining the appropriate locations for depth discrete groundwater sampling and will also assist in determining future monitoring well locations to adequately define the downgradient extent of the dissolved hydrocarbon plume (Figure 2). Also, if determined as necessary, depth discrete groundwater samples will also be collected north of wells AW-5 and AW-6 on 98th Avenue to assist in further defining the northern extent of the dissolved hydrocarbon plume (Figure 2).

Based on the assessment on the currently available analytical and hydrogeologic data, URS recommends the following corrective action plan:

- Analyze for bio-parameters during the 1st quarter comprehensive quarterly groundwater monitoring session and determine areas of the Site and the immediate vicinity where anaerobic and aerobic conditions exist. A Site-specific anaerobic and aerobic microbial parameter profiles will be determined. The profiles will evaluate the plate counts for total anaerobic and aerobic heterotrophic bacteria, contaminant degraders, macronutrients (i.e., ammonia phosphate and ortho-phosphate), Eh, pH, baseline dissolved oxygen (DO), alkalinity, biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC) and total inorganic compounds (TIC) such as nitrate, sulfate, manganese, ferrous iron, ferric iron.
- Based on the results of the bio-parameters profiling, evaluate the effectiveness of using enhanced in-situ bioremediation technologies utilizing Oxygen Releasing Compounds (ORC), iSOC™ or ozone/peroxide injections to enhance aerobic degradation of hydrocarbons or utilizing bio-stimulant compounds (sulfates, other nutrients, etc.) to enhance anaerobic degradation of hydrocarbons, depending on microbial conditions.
- Monitor ongoing enhanced natural attenuation of hydrocarbons at the Site.

Mr. Robert W. Schultz October 29, 2004 Page 15 of 16

LIMITATIONS

This report is based on data, Site conditions and other information that is generally applicable as of the date of the report, and the conclusions and recommendations herein are therefore applicable only to that time frame. Background information including but not limited to previous field measurements, analytical results, Site plans and other data have been furnished to URS by Group Environmental Management Company, their previous consultants, and/or third parties, which URS has used in preparing this report. URS has relied on this information as furnished, and is neither responsible for nor has confirmed the accuracy of this information.

Analytical data provided by the Group Environmental Management Company approved laboratory has been reviewed and verified by the laboratory. URS has not performed an independent review of the data and is neither responsible for nor has confirmed the accuracy of this data. Field measurements have been supplied by a groundwater sampling subcontractor. URS has not performed an independent review of the field sampling data and is neither responsible for nor has confirmed the accuracy of this data.

If you have any questions or concerns, please contact Leonard Niles at (510) 874-1720

Sincerely,

URS CORPORATION

Tijest Thapa

Srijesh Thapa

Environmental Scientist

Mr. Kyle Christie, BP, Environmental Resources Management,

Project Manager

(electronic file uploaded to ENFOS)

Ms. Liz Sewell, ConocoPhilips, 75 Broadway, Sacramento, California 95818

ATTACHMENTS

References

cc:

Figure 1 – Site Vicinity Map

Figure 2 – Site Map with Sample Locations

Figure 3 – Site Map with Cross-section Transects and Underground Utilities

Figure 4 – Hydrogeologic Cross-section A-A'

Figure 5 – Hydrogeologic Cross-section B-B'

Figure 6 – Groundwater Elevation Contour and Analytical Summary Map (Third Quarter 2004)

Figure 7 – GRO Isoconcentration Map (Third Quarter 2004)

Figure 8 – Benzene Isoconcentration Map (Third Quarter 2004)

Figure 9 - MTBE Isoconcentration Map (Third Quarter 2004)

Mr. Robert W. Schultz October 29, 2004 Page 16 of 16

- Attachment A ACHCS August 30, 2004 Letter
- Attachment B Historical Soil and Soil Vapor Analytical Data
- Attachment C Historical Groundwater Analytical and Gradient Data
- Attachment D Remediation System Operation Data and Product Removal Program Summary
- Attachment E RBCA Exposure Evaluation Flowcharts, Tiers 1, 2 and 3 Evaluations, and Statistical Analysis Results
- Attachment F Plots of Chemical Concentrations Vs. Time and Distance
- Attachment G Sensitive Receptor and Well Survey Results
- Attachment H Well Construction Details, Historic Hydrogeologic Cross-sections and Boring Logs

REFERENCES

Alisto Engineering Group. 1996. Installation of Vapor Extraction Well, BP Oil Company Service Station No. 11133, 2220 98th Avenue, Oakland, California. May.

Alton Geoscience. 1990a. Interim Report-Preliminary Results of Qualitative Water Survey, BP Service Station No. 11133, 2220 98th Avenue, Oakland, California. February.

Alton Geoscience. 1990b. Supplemental Site Investigation Report. BP Oil Service Station No. 11133, 2220 98th Avenue, Oakland, California. August.

Alton Geoscience. 1991. Phase III-Supplemental Site Investigation Study. BP Oil Service Station No. 11133, 2220 98th Avenue, Oakland, California. August.

Cambria Environmental Technology, Inc. (Cambria). 2002. Supplemental Investigation Report. BP Oil Site No. 11133, 2220 98th Avenue, Oakland, California.

Fetter, C. W. 1988. Applied Hydrogeology. Second Edition, pp. 79-80. Merril Publishing Company.

Gettler-Ryan, Inc. 1999. Underground Storage Tank and product Piping Removal Report for Former Tosco Branded Facility No. 11133, 2220 98th Avenue, Oakland, California. February.

Kaprealian Engineering, Inc. 1990. Soil Sampling Report, BP Service Station 3101-98th Avenue, Oakland, California. October.

RESNA. 1993. Remedial Action Plan, BP Oil Facility No. 11133, 2220 98th Avenue, Oakland, California. January.

MWH 2002. Risk-Based Corrective Action (RBCA) Evaluation For BP Oil Facility No. 11133, 2220 98th Avenue, Oakland, California. March.

Newfields, Inc. 2000. Risk-Based Corrective Action (RBCA) Evaluation For BP Oil Facility No. 11133, 2220 98th Avenue, Oakland, California. December.

URS Corporation. 2004. Second 2004 Semi-Annual Groundwater MonitoringReport. Former BP Service Station No. 11133, 2220 98th Avenue, Oakland, California. August.

Oct 28, 2004 - 4-06per

mesavand Oct 29, 2004 - 4:29pm V-1- med supplied DEMAStack Rise (111133) Beneated COM A DE

ATTACHMENT A

ACHCS August 30, 2004 letter

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

August 30, 2004

Kyle Christie Atlantic Richfield Company 6 Centerpointe Drive LPR6-161 La Palma, CA 90623-1066 **ENVIRONMENTAL HEALTH SERVICES**

ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Sulte 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Subject:

Fuel Leak Case No. RO0000403, BP No. 11133, Former Automobile Service

Station at 2220 98th Avenue, Oakland, California

Dear Mr. Christie:

Alameda County Environmental Health (ACEH) has reviewed your recent groundwater monitoring report and the case file for the above-referenced site. Previous correspondence from BP suggested that the site would be redeveloped as a carwash. More recently, ACEH has received requests concerning residential redevelopment of the site. We request that you submit a site conceptual model and workplan for additional characterization by the due date specified below.

TECHNICAL REQUESTS

Site Conceptual Model

ACEH requests a Site Conceptual Model (SCM) that illustrates the relationship between contaminants, retention/transport media, and receptors. The SCM shall incorporate all aspects of the contaminant release investigation, including site geology, hydrogeology, release and cleanup history, residual and dissolved contamination, attenuation mechanisms, pathways to nearby receptors, and likely magnitude of potential impacts to receptors. The SCM is developed using readily available (existing) data and is used to identify data gaps that are subsequently filled as the investigation proceeds. Investigations continue until the SCM does not significantly change upon collection of additional information, and the SCM is said to be "validated." By clarifying major site issues, the validated SCM forms the foundation for developing the most cost-effective corrective action plan, and will help progress the case towards closure.

Technical guidance for developing SCMs is presented in ASTM 1689-95(2003)e1 Standard Guide for Developing Conceptual Site Models for Contaminated Sties; American Petroleum Institute Publication No. 4699 Strategies for Characterizing Subsurface Releases of Gasoline Containing MTBE, dated February 2000; EPA 510-B-97-001 Expedited Site Assessment Tools for Underground Storage Tank Sites: A Guide for Regulators, dated March 1997; and State Water Resources Control Board's Guidelines for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates, Appendix C, dated March 27, 2000.

At a minimum, the SCM for this project is to include the following:

A. A concise narrative discussion of the regional geologic and hydrogeologic setting. Include a list of technical references you reviewed.

- B. A concise discussion of the on-site and off-site geology, hydrogeology, release source and history, secondary source areas, remediation status, risk assessment, plume migration, attenuation mechanisms, preferential pathways, and potential threat to downgradient receptors. The SCM shall include an analysis of the hydraulic flow system at and downgradient from the site, including potential vertical hydraulic gradients.
- C. Local and regional maps showing location of sources, extent of soil and groundwater contamination for appropriate depth intervals (i.e., an interpretive drawings and isoconcentration maps—not a plot of laboratory results), rose diagram of recent and historical groundwater gradients, and locations of receptors. "Receptors" include, but are not limited to, all supply wells and surface water bodies within 2,000 feet of the source area, and all potentially impacted schools, hospitals, daycare facilities, residences, and other areas of heightened concern for vapor impact.
- D. Geologic cross-sections (parallel and perpendicular to the contaminant plume axis) which include subsurface geologic features, depth to groundwater, man-made conduits, soil boring and sampling locations, monitoring well construction, and an interpretive drawing of the vertical extent of soil and groundwater contamination (i.e., an interpretive drawing—not a plot of laboratory results).
- E. Exposure evaluation flowchart (similar to Figure 2 in ASTM's Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites).
- F. Plots of chemical concentrations vs. time and vs. distance from the source. Plots should be shown for each monitoring well which has had detectable levels of contaminants.
- G. Summary tables of chemical concentrations in each historically sampled media (including soil, groundwater and soil vapor).
- H. Boring and well logs (including construction/screening), and a summary table indicating construction specifications for each monitoring and extraction well.
- Identification and listing of specific data gaps that require further investigation during subsequent phases of work.
- J. Proposed activities to investigate and fill data gaps identified above.

2. Conduit Study

The objectives of the conduit study are to 1) locate potential migration pathways and 2) evaluate the potential for contaminant migration via the identified pathways. We request that you perform a conduit study that details the potential migration pathways and potential conduits (utilities, storm drains, etc.) that may be present in the vicinity of the site. Provide a map showing the location and depth of all utility lines and trenches including sewers and storm drains within and near the plume area. The conduit study shall include a detailed survey of all wells (monitoring and production wells: active, inactive, standby, destroyed (sealed with concrete), abandoned (improperly destroyed); and dewatering, drainage, and cathodic protection wells) within a 2,000 ft radius of the site. The results of your conduit study shall contain all information required by 23 CCR, Section 2654(b). Submittal of maps showing the location of all wells identified in your study, and the use of tables to report the data collected as part of your survey are required. We recommend that you obtain well information from the State of California Department of Water Resources, at a minimum. Please include an analysis and interpretation of your findings, and report your results in the site conceptual model requested above.

3. Site Characterization

In October 2001, Cambria Environmental advanced soil borings B-1 through B-6 and detected up to 30,600 ug/L benzene and 1,500 ug/L MTBE in groundwater near the property boundary between the site and adjacent residences. At that time, local groundwater was thought to flow to the northwest or the north^{1,2}. Since mid-2003, reports prepared by URS Corporation have indicated that groundwater flows from the site toward the southwest^{3,4}. Based on the current understanding of flow direction, no subsurface investigation has been performed downgradient of borings B-1 through B-6. Offsite well AW-8 is located approximately 140 ft east-northeast (crossgradient or upgradient) of boring B-6. Offsite well AW-4 is located approximately 40 ft south (upgradient and crossgradient) of boring B-6. We request that you prepare a workplan for additional downgradient investigation.

Up to 1.38 ft of separate phase hydrocarbons (SPH) have been detected in onsite well RW-1. In addition, the groundwater concentrations detected in boring B-6 exceed 10% of the pure component solubility of benzene. Accordingly, your proposed scope of work should include tasks that will evaluate the potential presence of LNAPL beneath the downgradient residences.

The workplan must also propose tasks which investigate potential contaminant migration via preferential pathways identified in the conduit study requested above (Comment #2). Depending on the depth of subsurface utilities relative to historical groundwater depths, sampling within utility backfill and within conduits such as storm drains may be necessary. If necessary or prudent based on the findings of your conduit study, your workplan should propose tasks which will evaluate the potential for the storm drains beneath Springfield Street to influence dissolved contaminant migration from the site.

REPORT REQUEST

Please submit an Additional Investigation Workplan containing the SCM and conduit study requested above by September 30, 2004. CCR, Title 23, Chapter 16 requires your compliance with this request. If it appears as though significant delays are occurring or reports are not submitted as requested we will consider referring your case to the County District Attorney or other appropriate agency, for enforcement. Under California Health and Safety Code, Section 25299.76, you may be subject to civil penalties of up to \$10,000 per day for each day of violation.

¹ Blaine Tech Services, 3rd Quarter 2001 Monitoring at 11133, September 25, 2001.

² Cambria Environmental Technology, First Quarter 2002 Groundwater Monitoring Report, April 30, 2002. ³ URS Corporation, Second 2003 Semi-Annual Groundwater Monitoring Report, August 15, 2003.

URS Corporation, First 2004 Semi-Annual Groundwater Monitoring Report, March 4, 2004.

Please call me at (510) 567-6719 with any questions regarding this case.

Sincerely.

Robert W. Schultz, R.G.

Hazardous Materials Specialist

CC:

Scott Robinson, URS Corporation, 500 12th St., Ste. 200, Oakland, CA 94607-4014 Liz Sewell, ConocoPhillips, Risk Management & Remediation, 76 Broadway,

Sacramento, CA 95818

First Interstate Bank of California, c/o Property Tax Dept. DC-17, P.O. Box 52085,

Phoenix, AZ 85072 Donna Drogos, ACEH Robert W. Schultz, ACEH

ATTACHMENT B

Historical Soil and Soil Vapor Analytical Data

TABLE 1 RESULTS OF ANALYSES OF SOIL SAMPLES FROM TANK EXCAVATION BP Oil Company Service Station No. 11133

2220 - 98th Avenue Oakland, California

Sample Number	Sample Depth	ТРНд	Benzene	Toluene	Total Xylenes
June 17, 19	87				
A 1	13.5	420	15	42	30
A2	13.5	16	2.3	2.2	0.95
B1	13.5	400	23	41	22
B2	14.0	150	4.6	11	12
C 1	13.5	12	0.74	0.46	0.65

Results in parts per million (ppm)

< = less than detection limits

TPHg = Total petroleum hydrocarbons as gasoline

KEI-P87-064A-1 June 14, 1988 Page 5

TABLE - 1

Results of Soil Analyses - Parts Per Million

Sample <u>Number</u>	Depth (feet)	<u>TPH</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylene</u>	<u>Ethylbenzene</u>
MW-1	10	<0.05	<0.0005	<0.0005	<0.0005	<0.0005
MW-1	15	210	7.1	20	23	4.5
MW-1	20	2	1.24	0.07	0.021	0.0035
MW-2	10	<0.05	<0.0005	<0.0005	<0.0005	<0.0005
MW-2	15	<0.05	0.0007	0.0008	<0.0005	<0.0005
MW-2	20	<0.05	0.0008	<0.0005	<0.0005	<0.0005
MW-2	25	<0.05	<0.0005	<0.0005	<0.0005	<0.0005
MW-3	10	<0.05	0.00081	0.0018	<0.0005	0.0012
MW-3	15	<0.05	0.0007	0.0007	<0.0005	<0.0005
MW-3	20	<0.05	0.0016	0.0035	<0.0005	<0.0005
MW-3	25	<0.05	0.00076	0.0014	<0.0005	<0.0005

Results of Water Analyses - parts per billion

Sample <u>Number</u>		<u>TPH</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylene</u>	<u>Ethylbenzene</u>
MW-1	16.583	76,000	29,000	23,000	12,000	2600
MW-2	23.833	ND	0.55	0.66	0.58	ND
MW-3	23.667	ND	ND	ND	ND	ND

^{*} TPH = Total Petroleum Hydrocarbon ND = Not Detected

TABLE 2 RESULTS OF ANALYSES OF SOIL SAMPLES FROM BORINGS BP Oil Company Service Station No. 11133 2220 - 98th Avenue, Oakland, California

(page 1 of 2)

Boring Number	Sample Depth	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes
June 1990						· · · · · · · · · · · · · · · · · · ·
AW-1	5.0	ND	ND	ND	ND	ND
AW-1	10.0	ND	0.011	ND	ND	ND
AW-1	15.0	ND	0.007	ND	ND	ND
AW-1	20.0	1.2	0.470	ND	ND	ND
AW-1	25.0	ND	0.013	ND	ND	ND
AW-1	30.0	ND	ND	ND	ND	ND
AW-2	21.0	ND	ND	ND	ND	ND
AW-2	26. 0	ND	ND	ND	ND	ND
AW-3	21.0	ND	0.074	0.027	0.010	0.049
AW-3	26.0	ND	0.083	0.010	0.004	0.018
AW-4	11.0	ND	ND	ND	ND	ND -
AW-4	16.0	ND	0.170	0.010	0.024	0.045
AW-4	21.0	1.0	0.150	0.013	0.040	0.090
RW-1	5.0	ND	ND	ND	ND	ND
RW-1	10.0	ND	0.006	ND	ND	ND
RW-1	15.0	ND	0.031	ND	ND	ND
RW-1	20.0	ND	0.230	0.088	0.010	0.040
RW-1	25.0	33.0	1.000	0.710	ND	2.300
April 1991						
SBA-5	10.5-11.0	<1	0.016	< 0.003	< 0.003	< 0.003
(AW-5)	20.5-21.0	<1	0.020	< 0.003	0.007	0.008
•	25.5-26.0	<1	0.0077	< 0.003	0.003	0.011
SBA-6	10.5-11.0	<1	0.091	0.022	0.008	0.040
(AW-6)	20.5-21.0	<1	< 0.003	< 0.003	< 0.003	< 0.003
,	25.5-26.0	<1	0.005	0.010	< 0.003	0.0066

Results in parts per million (ppm)

< = less than detection limits

TPHg = Total petroleum hydrocarbons as gasoline

TABLE 2 RESULTS OF ANALYSES OF SOIL SAMPLES FROM BORINGS BP Oil Company Service Station No. 11133

2220 - 98th Avenue, Oakland, California (page 2 of 2)

Boring Number	Sample Depth	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes
April 1991						
SBA-7	10.5-11.0	<1	< 0.003	< 0.003	< 0.003	< 0.003
(AW-7)	20.5-21.0	<1	< 0.003	< 0.003	< 0.003	< 0.003
	25.5-26.0	<1	< 0.003	< 0.003	< 0.003	< 0.003
SBA-8	10.5-11.0	<1	< 0.003	< 0.003	< 0.003	< 0.003
(AW-8)	20.5-21.0	. <1	< 0.003	< 0.003	< 0.003	< 0.003
March 1992						
S-B9-16.0	9	<1	800.0	0.011	0.018	0.0064
S-B10-6.5	10	<1	< 0.005	< 0.005	< 0.005	< 0.005
S-B10-11.5 ,	10	<1	< 0.005	<0.005	< 0.005	< 0.005
S-B10-16.0	10	<1	< 0.005	< 0.005	< 0.005	< 0.005
S-B11-16.5	11	320	0.074	0.25	3.2	11

Results in parts per million (ppm)

< = less than detection limits

TPHg = Total petroleum hydrocarbons as gasoline

TABLE 1 - SUMMARY OF RESULTS OF SOIL SAMPLING BP OIL COMPANY SERVICE STATION NO. 11133 2220 98TH AVENUE, OAKLAND, CALIFORNIA

ALISTO PROJECT NO. 10-025

BORI ID	SAMPLE DEPTH (feet)	DATE OF SAMPLING	TPH-G (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	LAB
AW-9	16.5-17	12/03/96	ND<0.1	ND<0.001	ND<0.002	ND<0.002	ND<0.002	ND<0.1	SPL
AW-9	19-19.5	12/03/96	ND<0.1	ND<0.001	ND<0.002	ND<0.002	ND<0.002	ND<0.1	SPL

ABBREVIATIONS:

TPH-G

Total petroleum hydrocarbons as gasoline

В

Benzene

Т

Toluene

Ε

Ethylbenzene

Х

Total xylenes

MTBE

Methyl tert butyl ether

mg/kg

Milligrams per kilograms

SPL

Southern Petroleum Laboratories

F:\0\10-025\SOIL.WQ2

 Table 1 - Chemical Analytical Data

Former Tosco BP Branded Facility No. 11133 2220 98th Avenue Oakland, California

Sample ID	Date Collected	Sample Depth	ТРНд	Benzene	Toluene	Ethyl- Benzene	Xylenes	MTBE	Lead
		(feet)	(ррт)	(ppm)	(ppm)	(ppm)	(ррт)	(ррт)	(ppm)
GASOLINE UST	FPIT (SOIL)								
SW1	10/1/98	12	ND	ND	ND	ND	ND	ND	NR
SW2	10/1/98	12	ND	ND	ND	ND	ND	0.43	NR
SW3	10/1/98	12	ND	ND	ND	ND	ND	0.099	NR
SW4	10/1/98	12	ND	ND	ND	ND	ND	ND	NR
PRODUCT LIN	ES (SOIL)								
PI	10/1/98	3.5	ND	ND	ND	ND	0.029	ND	NR
P 2	10/1/98	3.5	ND	ND	ND	ND	ND	4.0	NR
P3	10/1/98	3.5	ND	ND	ND	ND	ND	ND	NR
P4	10/1/98	3.5	ND	ND	ND	ND	ND	ND	NR
P5	10/1/98	3.5	ND	0.0085	0.047	0.0071	0.057	0.74	NR
P6	10/1/98	3.5	ND	ND	ND	ND	ND	ND	NR
P 7	10/1/98	3.5	1.21	0.067	0.090	ND	0.042	2.0	NR
P8	10/1/98	3.5	ND	ND	ND	ND	ND	ND	NR
STOCKPILES									
Comp A	10/1/98	NA	ND	ND	ND	ND	ND	ND	5.0
Comp B	10/1/98	NA	ND	ND	ND	ND	0.026	ND	1.4
Comp C	10/1/98	NA	ND	ND	ND	ND	ND	ND	2.4
Comp D	10/1/98	NA	ND	ND	ND	ND	ND	ND	2.0
Comp E	10/1/98	NA	ND	ND	ND	ND	ND	ND	ND
Comp F	10/1/98	NA	ND	ND	ND	ND	0.0091	ND	1.2

140214.02

Table 1 - Chemical Analytical Data

Former Tosco BP Branded Facility No. 11133 2220 98th Avenue Oakland, California

Sample ID	Date Collected	Depth to Water	TPHg	Benzene	Toluene	Ethyl- Benzene	Xylenes	МТВЕ	Lead
		(feet)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)
SOLINE UST	PIT (WATER)	1							
SOLINE UST Water-1	PIT (WATER) 10/1/98	12.5	430	46	20	0.65	89	1,200	NR

EXPLANATION:

ANALYTICAL LABORATORY; Sequoia Analytical (ELAP # 1271)

ND = none detected NA = not applicable

ppm = parts per million

ppb = parts per billion

NR = analysis not requested

NOTES:

ANALYTICAL METHODS;

TPHg = Total petroleum hydrocarbons as gasoline according to EPA Method 8015 Modified.

BTEX = Benzene, toluene, ethylbenzene, and xylenes according to EPA Method 8020.

MTBE = Methyl tert-butyl ether according to EPA Method 8020.

¹ = Laboratory report indicates unidentified hydrocarbons C6-C12

Table Soil Analytical Data

BP Site No. 11133

2220 98th Avenue, Oakland, California

					•		Ethyl-			Total
Sample ID	Date Sampled	Sample Depth (feet bgs)	TPH-g (mg/kg)	TPH-d (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Lead (mg/kg)
VEW-9	May-96	16.5	<0.1	NA	<0.001	<0.002	<0.002	<0.002	<0.1	NA
VEW-9	May-96	Composite	<0.1	NA	<0.001	< 0.002	< 0.002	<0.002	<0.1	4.0
TD-5-0.5	Dec-94	0.5	ND	3,900	ND	ND	ND	ND	NA	NA

Source: MWH 2002, "Risk-based Corrective Action (RBCA) Evaluation for BP Oil Facility No. 11133. March.

Abbreviations and Notes:

mg/kg = Milligrams per kilogram

MTBE = Methyl tert-butyl ether

TPH-g = Total petroleum hydrocarbons as gasoline

TPH-d = Total petroleum hydrocarbons as diesel

<n = Below detection limit of n mg/kg

NA = Not analyzed

ND = Not detected

CAMBRIA

Table 1. Soil Analytical Data - BP Site No. 11133, 2220 98th Avenue, Oakland, California

			.,	· · · · · · · · · · · · · · · · · · ·	Ethyl-			Total
Sample ID	Date	TPHg	Benzene	Toluene	benzene	Vylones	мтве	
(Depth in feet)	Sampled	_				Xylenes		Lead
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Analytic	al Method:	8015m	8021	8021	8021	8021	8021	6010
75. a. a. a.								
B-1-4.5	10/22/01	0.49	< 0.005	<0.005	<0.005	< 0.005	< 0.005	_
B-1-13.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-2-5	10/22/01	1.6	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-2-13.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-3-4.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-3-13.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-4-4.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-4-13.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
DUP	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-4-19.5	10/22/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-5-5.5	10/23/01	0.084	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-5-19.5	10/23/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
B-6-5.5	10/23/01	< 0.250	< 0.005	< 0.005	< 0.005	0.013	< 0.005	-
B-6-19.5	10/23/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-
Composite	10/23/01	< 0.050	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<4.72
					-			

Abbreviations and Notes:

mg/kg = Milligrams per kilogram

MTBE = Methyl tert-butyl ether

TPHg = Total petroleum hydrocarbons as gasoline

<n = Below detection limit of n mg/kg

--- = Not analyzed

· CAMBRIA

Table 2. Soil-Vapor Analytical Data - BP Site No. 11133, 2220 98th Avenue, Oakland, California

					Ethyl-				Total	Carbon
Sample ID	Date	TPHg	Benzene	Toluene	benzene	Xylenes	MTBE	Oxygen	Methane	
(Depth in feet)	Sampled	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(%)	(%)	(%)
Analytica	l Method:	TO-3	TO-3	TO-3	TO-3	TO-3	TO-3	D-1946	D-1946	D-1946
										,
B-1-V1 (5')	10/22/01	6.6	0.0073	0.0062	< 0.0020	0.0049	0.0038	-	-	_
B-1-V2 (10')	10/22/01	9.9	< 0.0027	0.0033	< 0.0027	0.0031	< 0.0027	-	-	_
B-1-V3 (15')	10/22/01	1.8	0.0033	0.0096	< 0.0025	0.0067	0.0050	-	-	-
B-2-V1 (5')	10/22/01	2.4	0.0080	0.0070	<0.0026	0.0038	< 0.0026	22	<0.0026	0.28
B-2-V2 (10')	10/22/01	11	0.0062 a	0.0063	< 0.0026	< 0.0026	< 0.0026	21	<0.0026	0.33
B -2-V3 (15')	10/22/01	4.5	0.0072	0.0072	< 0.0025	0.0035	< 0.0025	20	< 0.0025	0.33
B-3-V1 (5')	10/22/01	7.0	0.026	0.019	<0.0025	0.0000	0.0045			
B-3-V2 (10')	10/22/01	2.2	0.020	0.0055	<0.0023	0.0098	0.0047	•	-	-
B-3-V3 (15')	10/22/01	1.6	0.0079	0.0033	0.0036	0.0039 0.0063	<0.0036	-	•	•
D -3-43 (13)	10/22/01	1.0	V.0004	0.0074	0.0027	0.0003	0.0040	-	•	-
B-4-V1 (5')	10/22/01	1.3	0.010 a	0.0082	< 0.0029	0.0043	< 0.0029	20	< 0.0029	0.066
B-4-V2 (10')	10/22/01	1.3	0.0042 a	0.0060	< 0.0026	0.0051	< 0.0026	20	< 0.0026	0.070
B-4-V3 (15')	10/22/01	2.1	0.013	0.011	0.0040 a	0.0090	0.0042	20	<0.0025	0.092
B-5-V1 (5')	10/23/01	6.2	0.023 a	0.020	<0.0040	0.012	0.0070	_		_
B-5-V2 (10')	10/23/01	2.0	0.0058	0.0094	< 0.0024	0.0084	0.0033	_	_	
B-5-V3 (15')	10/23/01	1.7	<0.0042 b	0.0055		<0.0042 b		-	~	-
B-6-V1 (5')	10/23/01	4.2	0.030 a	0.017	0.0078	0.11	0.0062	_	_	
B-6-V2 (10')	10/23/01	2.3	0.029	0.060	0.0070	0.025	0.0061	-	_	_
B-6-V3 (15')	10/23/01	2.4	0.34	0.23	0.0070	0.59	0.062	- -	_	_

Abbreviations and Notes:

ppmv = Parts per million by volume

MTBE = Methyl tert-butyl ether

TPHg = Total petroleum hydrocarbons as gasoline

n = Below detection limit of n ppmv or %

-= Not analyzed

a = Reported value may be biased due to apparent matrix interferences.

b = Elevated reporting limits due to high residual canister vacuum.

ATTACHMENT C

Historical Groundwater Analytical and Gradient Data

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рH	Comments
AW-1	4/5/1991 4/1/1992	-	38.11	25.44		12.67	4,100	1,500	69	100	83		 	SUP	-	
		<u> </u>	38.11	23.22		14.89		_			-	_	 		+	
.,3	4/2/1992 7/6/1992		38.11				11,000	1,800	210	210	490		 _	APP	 _	
	10/7/1992	-	38.11	24.89		13.22	6,500	4,000	40	290	530			ANA	1_	
	10/7/1992		38.11				2,900	1,200	25	37	210		 _	ANA	┰	QC-1, e
	1/14/1993	-	38.11	26.55		11.56	4,700	1,500	41	47	300			ANA	 -	QC-1, 8
	1/14/1993		38.11				4,100	1,700	28	130	230	_	-	PACE	├─-	001 -
	4/22/1993		38.11	23.73		14.38	2,800	830	31	140	240		_	PACE	_	QC-1, e, m
	7/15/1993		38.11				39,000	14,000	530	1,800	6,100	987	+=-	PACE	 -	
			38.11	22.50		15.61	6,200	2,200	28	210	540	838	-		 -	m
·	10/21/1993	-	38.11	24.32	-	13.79	2,400	820	13	55	120	832		PACE		c, m
	1/27/1994		38.11	23.72		14.39	3,500	1,400	26	130	220	650	 -	PACE	_	c, m
	4/21/1994	-	38.11	22.48		15.63	40,000	12,000	1,900	1,600	5,000			PACE		c, m
	9/9/1994		38.11			-	3,900	1,900	5.5	190	240	1,119	1.4	PACE		c, m
	9/9/1994		38.11	23.04		15.07	3,500	1,600	5	200	250	-	ļ <u>-</u>	PACE		QC-1, e
	12/21/1994		38.11	21.70		16.41	7,600	3,100	36	370			2.1	PACE		m
	1/30/1995		38,11	17.71	-	20.40	35,000	23,000	650	3,200	320	855	1.6	PACE	-	
	4/10/1995		38.11				56,000	17,000	2,000		4,100		1.7	ATI	ł	
	4/10/1995	-	38.11	20.04	-	18.07	60,000	18,000	2,000	3,900	10,000			ATI		QC-1, e
	6/29/1995		38.11		-		86,000	12,000	8,400	4,300	11,000		7.9	ATI		
	6/29/1995		38.11	20.60	_	17.51	72,000	10,000	7,300	4,800	18,000	-]	ATI		QC-1, e
	9/18/1995		38.11	21.87		16.24			7,300	4,200	15,000	**	6.2	ATI	_ 1	
	9/19/1995	-	38.11				65,000	12,000				-		_	_	:
	12/7/1995		38.11	22.06		16.05	25,000	8,700	3,100	4,400	14,000	1,000	8.5	ATI		· · · · · · · · · · · · · · · · · · ·
	3/28/1996		38.11	16.91		21.20	24,000	11,000	<50	2,500	1,300	1,100	2.9	ATI		
	6/20/1996		38.11	20.82	_	17.29	38,000		<100	3,200	3,390	<1000	6.6	SPL		
	10/11/1996		38.11	23.20		14.91	33,000	6,900	1,100	3,200	7,300	<100	6.4	SPL	_	· · · · · · · · · · · · · · · · · · ·
	1/2/1997	-	38.11	20.41		17.70	32,000	8,500	69	3,300	4,230	580	6.3	SPL	_	
	4/14/1997	-	38.11	21.61		16.50		8,000	<50	3,100	2,300	700	6.7	SPL		
	4/15/1997		38.11			10.50	24.000							OFL	-	
	7/2/1997		38.11	21.17		16.04	31,000	5,000	160	2,400	4,540	340				
	9/30/1997	-	38.11	21.48		16.94	26,000	5,800	<100	2,600	2,200	<1000		SPL	-	
	1/21/1998	-	38.11	20.02		16.63	29,000	9,200	17	1,400	130	560			- -	
	4/9/1998	_	38.11	13.37		18.09	50,000	6,900	450	3,200	4,450	720			-	
				.0.07	<u>-</u>	24.74		_	_		-,,,,,,,,	120	5.8	SPL	-	

Groundwater Elevation and Analytical Data Former BP Station No. 11133 2220 98th Ave., Oakland, CA

AW-1	4/10/1998 6/19/1998		TOC (feet)	(feet)	Thickness (feet)	GWE (feet)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	μ	Comments
	0/ /3/ 1980		38.11				46,000	5,800	1,900	3,000	7,400	1,000	4.3	SPL	+-	
	6/19/1998	-	38.11	40.40	-		43,000	6,800	260	3,100	3,490	- 620		SPL	+-	QC-1, e
	11/30/1998	I_	38.11 38.11	19.12	<u> </u>	18.99	42,000	6,600	200	3,000	3,350	660	4.9	SPL	+=	40-1, 6
	1/21/1999	-		21.13		16.98	23,000	6,700	<25	3,100	130	710/820		SPL	-	9
	4/30/1999		38.11	20.77		17.34	25,000	4,800	54	2,800	780	1,000		SPL	 _	A
	7/9/1999		38.11	20.80		17.31	21,000	5,300	67	2,800	750	1,500		SPL	 	
	11/3/1999		38.11	20.41	<u> </u>	17.70	11,000	3,000	<10	760	180	1,300	<u> </u>	SPL	-	
	1/12/2000	- -	38.11	20.82	<u> </u>	17.29	_		_	-		,000	+=	SFL		ļ
	4/13/2000		38.11	19.99		18.12	330,000	5,300	10	2,900	560	2,200	 	PACE	 - -	<u> </u>
	5/24/2000		38.11	20.14		17.97		-	_	_	-				<u> </u>	
 	6/1/2000		38.11	20.17		17.94		- .		-			 		<u> </u>	ļ <u> </u>
	6/8/2000		38.11	23.05		15.06	-		_						<u> </u>	
	6/15/2000		38.11	17.08		21.03		_							_	<u> </u>
	7/26/2000	-	38.11	16.93		21.18	-	-						_		
	10/24/2000		38.11	20.07		18.04	15,000	290	98	77	220	27.000	-		_	
	1/19/2001		38.11	20.10		18.01		-			220	37,000	 	PACE	-	
	7/24/2001		38.11	19.82		18.29	7,600	2,220	10.9	415	58.4	4 000				
	1/18/2002		38.11	19.86		18.25	9,600	2,140	6.34	281	43	1,630		PACE		
	8/1/2002		38.11	15.60	-	22.51	20,000	2,170	75.2	1,800		1,440	 	PACE	-	
	 		38.11	19.55		18.56	14,000	2,150	<12.5	197	2,080	1,250		PACE		
	1/16/2003		38.11	16.32	_	21.79	15,000	2,300	75	1,600	42.4	1,120		PACE		
	7/7/2003		38.11	19.80	SHEEN	18.31	9,700	1,600	<25	540	1,800	1,100		SEQ		р
	02/05/2004		38.11	18.75	_	19.36	12,000	2,000	<50	820	110	***		SEQ		q
	07/01/2004	P	38.11	19.72		18.39	9,900	2,600	<25		590	930		SEQM	6.7	odor
W-2	4/5/1991	- 1	36.83	22.36		4445				300	<25	1,100		SEQM	6.5	
	4/1/1992	_	36.83	20.81		14.47	<50	<0.3	<0.3	<0.3	<0.3			CLID.		
	4/2/1992	_	36.83	20.01		16.02		-						SUP	-	
	7/6/1992	_	36.83	23.57	_ =		130	25	2.3	0.7	2.1			-	_	
	10/7/1992	_	36.83	25.24		13.26	<50	<0.5	<0.5	<0.5	<0.5			APP		
	44444	_	36.83	20.82		11.59	<50	<0.5	<0.5	<0.5	<0.5			ANA		
	440044000	_ -	36.83			16.01	<50	<0.5	<0.5	<0.5	<0.5			ANA	-	
	7454000	- +	36.83	19.37		17.46	<50	<0.5	<0.5	<0.5	<0.5			ACE	n	
	40.00	_ -	36.83	21.29		15.54	<50	<0.5	<0.5	<0.5	<0.5			ACE	<u> </u>)
L			30.03	23.14		13.69	<50	1.3	1.1	0.9	2.1	<5.0 <5.0		ACE	— п	1

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date 1/27/1994	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Ave., Oak Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO		T	
7111-2	4/21/1994	-	36.83	22.34		14.49	<50	<0.5	<0.5	<0.5	<0.5	(MAL)	(mg/L		pH	Comments
	9/9/1994	 -	36.83	21.15		15.68	<50	<0.5	<0.5	<0.5	<0.5		-	PACE	_1.	m
	12/21/1994	 -	36.83	22.09		14.74	<50	<0.5	<0.5	<0.5	<0.5	<5.0	2	PACE		m
	1/30/1995		36.83	20.12		16.71	<50	<0.5	<0.5	<0.5	<0.5		4.1	PACE		m
	4/10/1995		36.83	16.65		20.18	<50	<0.50	<0.50	<0.50	<1.0	<5.0	2	PACE	<u> </u>	m
	6/29/1995		36.83	16.22	_	20.61	<50	<0.50	<0.50	<0.50	<1.0		2.5	ATI	<u> </u>	
	9/18/1995		36.83	17.55	-	19.28	<50	<0.50	<0.50	<0.50			4.4	ATI	_	
	9/19/1995		36.83	19.87	_	16.96	_			10.50	<1.0	<u> </u>	7.8	ATI		
	9/19/1995		36.83	-	_	-	<50	<0.50	<0.50	<0.50				_	_	
	12/7/1995		36.83		-	-	<50	<0.50	<0.50	<0.50	<1.0	<5.0		ATI		QC-1, e
	3/28/1996		36.83	21.31	-	15.52	<50	<0.50	<0.50	<0.50	<1.0	<5.0	4.5	ATI	_	
	6/20/1996		36.83	15.61	_	21.22	<50	<0.5	<1	<1	<1.0	<5.0	4.9	ATI		
	10/11/1996		36.83	16.30		20.53	<50	<0.5	<1	<1	<1	<10	4.1	SPL	-	
	1/2/1997	-	36.83	19.60		17.23	<50	<0.5	<1.0	<1.0	<1	<10	5.2	SPL		
	4/14/1997	-	36.83	15.97		20.86	<50	<0.5	<1.0		<1.0	<10	6	SPL	_	
	7/2/1997		36.83	17.19		19.64	<50	<0.5	<1.0	<1.0	<1.0	<10	6.1	SPL	-	
	9/30/1997		36.83	18.11		18.72	<50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL		
	1/21/1998		36.83	18.52		18.31	<50	<0.5	<1.0	<1.0	<1.0	<10	5.7	SPL	_	
		-	36.83	14.46	-	22.37	160	13	<1.0	<1.0	<1.0	860	5.4	SPL	_	
	4/9/1998	-	36.83	12.85		23.98				<1.0	<1.0	110	4.9	SPL	_	
	4/10/1998		36.83				<50	<0.5		**			1 - 1		-	
	6/19/1998		36.83	14.37		22.46	60	<0.5	<1.0	<1.0	<1.0	<10	3.9	SPL		
	11/30/1998		36.83	16.90		19.93			<1.0	<1.0	<1.0	<10	3.6	SPL		
	1/21/1999	-	36.83	16.87		19.96	<50					_			_	
	4/30/1999	_	36.83	17.01		19.82		<1.0	<1.0	<1.0	<1.0	<1.0		SPL	_	
	7/9/1999	<u>- </u>	36.83	17.83		19.00						_	 _ 		_	
			36.83	19.74		17.09			-			_			_	
			36.83	19.90		16.93					-	74	_ +		-+	
			36.83	19.75		17.08	<50	<0.5	<0.5	<0.5	<0.5	<0.5	- F	ACE		
		-	36.83	19.86		16.97		-						- I	-+	
_		-	36.83	18.77		18.06			<u> </u>		-				-	
		-	36.83			10.00						-			_	
			36.83												-	
	/18/2002	_	36.83	15.17		24.00		-		_					<u> </u>	
						21.66	<50	<0.5	<0.5	<0.5	<1.0	<0.5		ACE	<u> </u>	!

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyt- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рH	Comments
AW-2	8/1/2002*		36.83	17.17	-	19.66		-	_						-	- "
	1/16/2003	-	36.83	14.81		22.02	<50	<0.50	<0.50	<0.50	<0.50	<2.5		SEQ	ı	P
	7/7/2003	-	36.83	16.65		20.18	-								1	
	02/05/2004		36.83	15.37	_	21.46	<50	3.0	<0.50	<0.50	<0.50	5.1	_	SEQM	-	
	07/01/2004	_	36.83	17.55		19.28	<u> </u>		-	-		-		-	_	
AW-3	4/5/1991	_	39.13	23.90	**	15.23	5,200	980	450	95	310] _	SUP	_	
	4/1/1992	-	39.13	22.50	_	16.63	4,700	890	47	43	110		1 -	APP		
	7/6/1992		39.13	23.26	-	15.87	3,900	3,100	30	80	99	-	 _	ANA		
	10/7/1992	-	39.13	24.75	-	14.38	5,000	2,600	<0.5	<0.5	59			ANA	_	
	1/14/1993	_	39.13	23.59		15.54	350	250	<0.5	<0.5	<0.5		 	PACE		m
	4/22/1993	-	39.13	19.42		19.71	240	71	2.4	0.6	4	-	 	PACE		m
	7/15/1993		39.13	20.09	-	19.04	650	71	2.8	1.5	1.1	37.3		PACE		c, m
	10/21/1993		39.13				170	6.1	2	1.7	4.4	_		PACE		QC-1, e
	10/21/1993		39.13	21.88		17.25	160	4.8	1.7	1.6	3.6	8.95	 _ 	PACE		m
	1/27/1994	-	39.13		-		90	2.9	0.5	<0.5	<0.5	-	1 - 1	PACE		QC-1, e
	1/27/1994	-	39.13	22.33		16.80	92	2.1	<0.5	<0.5	<0.5	7.37	 	PACE		m
	4/21/1994		39.13	20.96	-	18.17	150	3.6	8.0	0.9	2.5	9.36	1.3	PACE		m
	9/9/1994		39.13	21.60	-	17.53	53	<0.5	<0.5	<0.5	<0.5		1.9	PACE		m
	12/21/1994		39.13		-		**			_					_	f
	1/30/1995		39.13		-			-	_		_				_	f
	4/10/1995	-	39.13		-		-		-		-	·	-			f
	6/29/1995		39.13	15.41		23.72	<50	<0.50	<0.50	<0.50	<1.0		8	AT!		
	9/18/1995	-	39.13	17.83	1	21.30	_		_		-	-	1 - 1		_	
	9/19/1995	-	39.13		-		61,000	11,000	2,900	4,100	13,000	790	7.4	ATI	_	
	12/7/1995		39.13	**			<50	<0.50	<0.50	<0.50	<1.0	<5.0	 - 	ATI	_	QC-1, e
	12/7/1995	-	39.13	19.27	-	19.86	<50	<0.50	<0.50	<0.50	<1.0	<5.0	3.4	ATI	_	
	3/28/1996		39.13			_	<50	<0.5	<1	<1	<1.	<10	_	SPL	_	QC-1, e
	3/28/1996		39.13	13.85	-	25.28	<50	<0.5	<1	<1	<1	<10	4.1	SPL		
	6/20/1996	-	39.13	_		_	<50	<0.5	<1	<1	<1	<10		SPL	_	QC-1, e
	6/20/1996		39.13	14.47		24.66	<50	<0.5	<1	<1	<1	<10	4.2	SPL	_	
·	10/11/1996		39.13		-		<50	<0.5	<1.0	<1.0	<1.0	<10	1 -	SPL	_	QC-1, e
	10/11/1996	-	39.13	17.97		21.16	<50	<0.5	<1.0	<1.0	<1.0	<10	4.7	SPL	_	
	1/2/1997		39.13	13.00	-	26.13	<50	<0.5	<1.0	<1.0	<1.0	<10	5.6	SPL	_	

Table 1
Groundwater Elevation and Analytical Data

Well	-	P/	Well Elevation/	DTW	Product Thickness	GWE	GRO/	Ave., Oak	1	Ethyl-	Total	T	<u> </u>			
No.	Date	NP	TOC (feet)	(feet)	(feet)	(feet)	TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рH	Comments
E-WA	4/14/1997	-	39.13	14.36		24.77	<50	<0.5	<1.0	<1.0	<1.0	<10	5	SPL	-	· · · · · · · · · · · · · · · · · · ·
	4/15/1997		39.13	_		_	<50	<0.5	<1.0	<1.0	<1.0	<10		SPL	-	QC-1, e
	7/2/1997	-	39.13	15.87		23,26	<50	<0.5	<1.0	<1.0	<1.0	<10	5.4	SPL		
	9/30/1997		39.13	17.50		21.63	<250	<2.5	<5.0	<5.0	<5.0	810	5.7	SPL	_	
	1/21/1998		39.13				150	<0.5	<1.0	<1.0	1.2	110	-	SPL		QC-1, e
	1/21/1998	-	39.13	11.98	_	27.15	140	<0.5	<1.0	<1.0	<1.0	99	4.6	SPL	_	
	4/9/1998	_	39.13	9.45		29.68	-	_	-		-	_	-			
	4/10/1998	_	39.13		_		<50	<0.5	<1.0	1.4	1.7	<10		SPL.		QC-1, e
	4/10/1998	-	39.13		-		<50	<0.5	<1.0	<1.0	1.6	<10	4.5	SPL	_	
	6/19/1998	_	39.13	12.13	_	27.00	<50	<0.5	<1.0	<1.0	<1.0	<10	4.4	SPL	_	<u> </u>
	11/30/1998		39.13	15.91		23.22	_		-	_			_	-		
	1/21/1999		39.13	15.93		23.20	<50	<1.0	<1.0	<1.0	<1.0	<1.0		SPL		
<u> </u>	4/30/1999		39.13	15.98		23.15	-	_	_			_				
	7/9/1999		39.13	14.58	_	24.55	-	-	-		_	-		_		
· <u>-</u> .	11/3/1999	-	39.13	17.43		21.70	-		_	_						
	1/12/2000		39.13	18.30	-	20.83	<50	<0.5	<0.5	<0.5	<0.5	<0.5	ļ	PACE		
	4/13/2000		39.13	18.89	_	20.24		-		-		_	_			
	7/26/2000	-	39.13	18.67		20.46	-			_						
	10/24/2000		39.13	18.98	_	20.15			_		-					
	1/19/2001		39.13	16.74	_	22.39	-	_		-		_	_		<u> </u>	
	7/24/2001	-	39.13	18.55		20.58	_	-				_			<u>-</u>	
	1/18/2002	**	39.13	14.49	_	24.64		_			**					
	8/1/2002*	-	39.13	14.27	***	24.86	_					_				······································
	1/16/2003		39.13	14.25	_	24.88	-					-	= +			
	7/7/2003		39.13	14.70	-	24.43										
	02/05/2004	-	39.13	14.61	_	24.52	-	_								
	07/01/2004		39.13	15.62		23.51	_	-	-	-				-		<u> </u>
AW-4	4/5/1991		39.08	25.12		12.00	440.000	40.000								
	4/1/1992	_	39.08	20,12		13.96	110,000	40,000	13,000	2,000	5,500			SUP		
	4/1/1992	-	39.08	23.56		45.50	210,000	55,000	23,000	2,900	7,000			APP	-	QC-1, e
	7/6/1992		39.08	25.87		15.52	230,000	57,000	31,000	2,900	7,600			APP	-	
	10/7/1992		39.08	27.53		13.21	38,000	16,000	5,400	2,000	6,100	414		ANA	1	
	1/14/1993	- <u>-</u> -	39.08	24.12		11.55	120,000	41,000	26,000	4,700	13,000		_	ANA	-	
l			38.00	24.12		14.96	62,000	18,000	14,000	2,700	7,700	1,400	- 1	PACE	_	c, m

Table 1
Groundwater Elevation and Analytical Data

Weil No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	Comments
AW-4	4/22/1993	-	39.08	21.47		17.61	18,000	1,100	2,100	320	3,500	_	—	PACE	_	m
	7/15/1993		39.08	23.30	-	15.78	21,000	820	2,300	590	3,800	1,978		PACE	_	c, m
	10/21/1993	-	39.08	25.08	_	14.00	11,000	570	83	630	2,300	4,600		PACE	_	c, m
	1/27/1994	-	39.08	24.61		14.47	12,000	420	460	600	2,200	6,400	-	PACE	_	c, m
	4/21/1994	-	39.08		-		14,000	71	160	29	1,200	13,000	 	PACE		QC-1, e
	4/21/1994		39.08	22.96		16.12	12,000	110	250	150	1,900	16,010	1.5	PACE		m
	9/9/1994		39.08	23.85		15.23	9,700	75	64	280	2,000		2.1	PACE	_	
	12/21/1994		39.08		_			-	-		_	_	_		_	f
	1/30/1995		39.08		-			_		_		_	-			f
	4/10/1995		39.08	18.07		21.01	3,700	69	8.7	44	130		8.5	ATI		<u> </u>
	6/29/1995	_	39.08	19.25	_	19.83	8,000	62	190	190	1,100	_	7.5	ATI		
	9/18/1995		39.08	20.73	-	18.35	-	_								
	9/19/1995		39.08		**		12,000	660	1,600	200	1,900	7,100	8.3	ATI		
	12/7/1995		39.08	22.49		16.59	41,000	8,400	7,200	710	6,300	5,200	3.6	ATI		
	3/28/1996		39.08	16.49	_	22.59		-	_	-		-			_	<i>E</i>
	6/20/1996	-	39.08	16.00	_	23.08	<50	<0.5	<1	<1	<1	12		SPL		ļ#
	10/11/1996		39.08	19.52	_	19.56	36,000	12,000	5,500	<25	3,800	880/1000	6.2	SPL		<u> </u>
	1/2/1997		39.08	-	-	_	<50	61	3.8	3.5	8.1	110	J.2	SPL		9 QC-1, e
	1/2/1997	-	39.08	15.80	-	23.28	<50	<0.5	<1.0	<1.0	<1.0	22	6.4	SPL	_	QC-1, 0
	4/14/1997		39.08	17.01	-	22.07			-					I	_	
	4/15/1997	-	39.08		_		<50	<0.5	<1.0	<1.0	<1.0	<10	5.4	SPL	_	
	7/2/1997		39.08	19.68		19.40	<50	21	<1.0	<1.0	<1.0	41	4.1	SPL		
	9/30/1997		39.08	22.71	-	16.37	-		-	_			-7.1	SFL		
	1/21/1998	-	39.08	15.89		23.19	13,000	2,900	<10	230	314	3,100	3.9	SPL		1
	4/9/1998	-	39.08	13.50		25.58	-					- 0,100	3.5	SFL	-	
	4/10/1998		39.08		_		890	<0.5	<1	<1	<1	730	4.9	SPL	-	
	6/19/1998		39.08	14.75	_	24.33	60	<0.5	<1.0	<1.0	<1.0	34	4.3	SPL		
	11/30/1998	-	39.08	19.25	_	19.83									-	
	1/21/1999		39.08	18.94		20.14	3,700	830	93	200	360	30			_	
	4/30/1999		39.08	19.10	_	19.98	_		 +						-	
	7/9/1999	-	39.08	18.93		20.15	76,000	12,000	6,600	2,000	8,700	- 220				
	11/3/1999		39.08	20.65		18.43	-,			2,000	0,700	320		SPL	-	
	1/12/2000		39.08	21,21		17.87	67,000	12,000	3,500	2,900	15,000		-			
T	4/13/2000	_	39.08	21.33		17.75	,,	- 12,000			15,000	280		PACE	- <u>j</u>	

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Ave., Oak Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	ρН	Comments
AW-4	5/24/2000	_	39.08	19.84	_	19.24				11-87	(h8,-)	(hg/r)		LAD	bu	Comments
	6/1/2000	_	39.08	19.04	_	20.04		-	-				 -		 -	ļ-
	6/8/2000	ı	39.08	18.32		20.76	† <u> </u>			_		 	-			ļ
	6/15/2000	1	39.08	16.70	_	22.38			 _ 				 -			
·· ·· ·	7/26/2000	1	39.08	21.50		17.58	910	<0.5	<0.5	<0.5	<0.5	2 500	 -			ļ
	10/24/2000	1	39.08	22.00	-	17.08	_	_			70.5	3,500	 -	PACE	<u> </u>	
	1/19/2001	-	39.08	18.97		20.11	6,600	2,460	24	497	534	267				ļ
	7/24/2001	-	39.08	18.55		20.53	5,100	1,080	143	409	827	267	 - _	PACE	_	
	1/18/2002	_	39.08	17.22	_	21.86	3,900	442	241	157		115	-	PACE		
	8/1/2002*	- 1	39.08		_		-	772	4-41	13/	681	85.3		PACE	_	
	1/16/2003	_	39.08	16.85		22.23	2,900	260	160	400						f
	7/7/2003	-	39.08	17.94		21,14	600	90		120	590	<120		SEQ	-	ρ
	02/05/2004		39.08	16.94	_	22.14	420	40	7.9	18	36			SEQ		q
	07/01/2004	P	39.08	18.24		20.84	6,000		3.1	15	27	40		SEQM	6.8	odor
AW-5	4554004	<u>-</u>				20.04	0,000	970	200	310	1,500	64		SEQM	6.7	
AVV-0	4/5/1991	-	38.51	25.48		13.03	420	31	7.5	20	68			SUP	_	
	4/1/1992		38.51	23.95		14.56		_		_			+	301		
	4/2/1992		38.51				4,000	270	63	190	290		 	APP	_	
	7/6/1992		38.51	26.48		12.03	1,400	160	<2.5	250	58					-
	10/7/1992	-	38.51	28.18		10.33	360	12	0.6	8.7	5	<u>-</u>	┼	ANA		
	1/14/1993	-	38.51	24.15	_	14.36	1,700	270	7.5	130	62	-		ANA		
	4/22/1993		38.51			-	3,500	780	29	240	210	_	—	PACE		m
	4/22/1993		38.51	22.43		16.08	2,700	780	30	220	180			PACE		QC-1, e, m
	7/15/1993	_	38.51		_	-	1,300	68	8.3	64	99			PACE		m
	7/15/1993	-	38.51	24.31	-	14.20	1,300	69	16	67	120	<50 <50	}	PACE	-	QC-1, e, m
	10/21/1993		38.51	26.05		12.46	510	9.6	1.5	17	45		 	PACE	T	m
	1/27/1994	-	38.51	26.42	-	12.09	420	3.3	<0.5	-''	0.9	75		PACE	\rightarrow	c, m
	4/21/1994	-	38.51	24.36	_	14.15	1,000	110	25	56	27	48.9		PACE		m
	9/9/1994	-	38.51	24.55		13.96	210	<0.5	<0.5	0.5		75		PACE		c, m
	12/21/1994		38,51	-	_		340	<0.5	15	3.3	0.9			PACE		n
	12/21/1994	-	38.51	22.30	_	16.21	410	<0.5	20		1.4	104		PACE	- (QC-1, e, m
	1/30/1995	-	38.51	18.88		19.63	210	0.6	11	4.3	1.4	114		PACE	r	n
	4/10/1995	-	38.51	18.44		20.07	500	1.4	0.59	8.8	2		1.5	ATI		
	6/29/1995	-	38.51	19.92		18.59	490	1.2		6.5	4.3	-		ATI	-	
	···	·					700	1.2	0.58	7.3	2.2		6.9	ATI	-	

Table 1

Groundwater Elevation and Analytical Data

Former BD Station No. 44422

			111 11		· · · · · · · · · · · · · · · · · · ·				dano, CA							
Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	pН	Comments
AW-5	9/18/1995		38.51	22.15	-	16.36	_						† –		 	
	9/19/1995		38.51		_		260	0.62	<0.50	3.1	1.1	110	8.2	ATI	 _	
	12/7/1995	-	38.51	23.75		14.76	60	<0.50	<0.50	<0.50	<1.0	210	4.3	ATI	 _	
	3/28/1996		38.51	17.76	_	20.75	<50	<0.5	<1	<1	<1	63	3	SPL	_	
	6/20/1996		38.51	18.46		20.05	<50	<0.5	<1	<1	<1	<10	3.6	SPL	-	
	10/11/1996	-	38.51	21.84	_	16.67	<50	<0.5	<1.0	<1.0	<1.0	<10	4.5	SPL	-	
- <u></u>	1/2/1997		38.51	18.01		20.50	<50	<0.5	<1.0	<1.0	<1.0	<10	4.6	SPL	 	
	4/14/1997	-	38.51	19.35	_	19.16	<50	<0.5	<1.0	<1.0	<1.0	<10	5.1	SPL	 _	
	7/2/1997		38.51	20.29	-	18.22	<50	<0.5	<1.0	<1.0	<1.0	<10	4	SPL	 _	<u> </u>
····	9/30/1997	-	38.51	23.15	_	15.36	<250	<2.5	<5.0	<5.0	<5.0	1,300	6.3	SPL	_	
	1/21/1998	_	38.51	17.33		21.18	6,100	<0.5	2.1	<1.0	<1.0	3,700	4.5	SPL	_	
	4/9/1998	-	38.51	15.25	-	23,26	-		_	-			_		_	
·	4/10/1998		38.51				3,500	<0.5	<1.0	<1.0	<1.0	3,000	5.4	SPL	_	
	6/19/1998	_	38.51	17.39	-	21.12	3,300	<0.5	<1.0	<1.0	<1.0	2,500	5.2	SPL	_	
	11/30/1998	-	38.51				••		_			-			_	 #
	1/21/1999		38.51	21.22		17.29	2,800	<1.0	<1.0	<1.0	<1.0	1,800		SPL		· · · · · · · · · · · · · · · · · · ·
	4/30/1999		38.51	21.50	_	17.01	_	-	_	_		-	_			······································
	7/9/1999		38.51	20.15		18.36	4,000	<1.0	<1.0	<1.0	<1.0	3400/3500		SPL		a
	11/3/1999		38.51	22.04	-	16.47		<u>-</u>	_	_				-		8
	1/12/2000		38.51	22.59	_	15.92	1,000	7.3	30	6.7	40	4,600		PACE		
	4/13/2000		38.51	23.11		15.40	-	-	_	_						
	7/26/2000	-	38.51	22.72	_	15.79	1,800	94	35	5.9	27	16,000		PACE		
	10/24/2000		38.51	20.15	-	18.36	_	_	_			-				
	1/19/2001		38.51	19.79	_	18.72	2,600	<0.5	<0.5	<0.5	<0.5	4,580	$\overline{}$	PACE		
	7/24/2001		38.51	20.17	_	18.34	5,400	18.4	17.2	<12.5	40.8	5,170		PACE		
	1/18/2002		38.51	17.34		21.17	3,800	343	0.738	<0.5	<1.0	3,750		PACE	_	
	8/1/2002*		38.51	19.49		19.02	5,300	<12.5	<12.5	<12.5	<25	3,470		PACE		
	1/16/2003		38.51	17.30		21.21	1,400	140	<10	<10	<10	1,600		SEQ		D
	7/7/2003		38.51	18.43	-	20.08	1,400	<10	<10	<10	<10			SEQ		9
	02/05/2004	-	38.51	17.24		21.27	1,800	<10	<10	<10	<10	810		_	6.7	
	07/01/2004	Р	38.51	19.43		19.08	1,100	<5.0	<5.0	<5.0	<5.0	550			6.6	
AW-6	4/5/1991		37.08	22.48	_	14.60	1,100	80	19	1.4	230			SUP	_	
	4/1/1992		37.08	22.50		14.58			_						_	

Table 1

Groundwater Elevation and Analytical Data

Well No.	Date 4/2/1992	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	Comments
AVV-0	7/6/1992	<u> </u>	37.08		-		<50	<0.5	<0.5	<0.5	<0.5			APP	P	Comments
	10/7/1992		37.08	22.74	-	14.34	<50	<0.5	<0.5	<0.5	<0.5			ANA	 -	
	1/14/1993		37.08	24.64		12.44	<50	<0.5	<0.5	<0.5	<0.5			ANA	 -	
	4/22/1993		37.08	22.36	_	14.72	<50	<0.5	<0.5	<0.5	<0.5	_		PACE	├-	
	7/15/1993		37.08	22.82	-	14.26	<50	<0.5	<0.5	<0.5	<0.5		+=-	PACE	 -	m
	10/21/1993		37.08	20.49		16.59	<50	<0.5	<0.5	<0.5	0.8	<5.0	 	PACE	<u> </u>	m
	1/27/1994		37.08	22.84		14.24	<50	0.5	0.6	<0.5	0.7	<5.0	 _	PACE	-	m
	4/21/1994		37.08	22.33		14.75	<50	<0.5	0.9	3.1	12	<5.0	 _	PACE	L <u>-</u>	m
	9/9/1994		37.08	20.66		16.42	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.7	PACE	-	m
	12/21/1994	-	37.08	21.57		15.51	<50	0.9	<0.5	<0.5	0.5	-	2.9	PACE		m
·· ·	1/30/1995		37.08	19.40		17.68	<50	1.8	8.0	0.8	3.2	5.19	1.1			m
	1/30/1995		37.08				<50	<0.50	<0.50	<0.50	<1.0	-	<u>'''</u>	PACE		m
	4/10/1995		37.08	16.74		20.34	<50	<0.50	<0.50	<0.50	<1.0		2.2	ATI ATI		QC-1, e
	6/29/1995	-	37.08	16.01	-	21.07	<50	<0.50	<0.50	<0.50	<1.0		8.6			
	9/18/1995		37.08	17.54		19.54	<50	<0.50	<0.50	<0.50	<1.0		6.3	ATI		
	9/19/1995		37.08	19.65		17.43		_	-				 	ATI		
	12/7/1995		37.08				<50	<0.50	<0.50	<0.50	<1.0	25	8.3			
	3/28/1996		37.08	20.35		16.73	<50	<0.50	<0.50	<0.50	<1.0	16	4.7	ATI		
	6/20/1996	-	37.08	14.99		22.09	<50	<0.5	<1	<1	<1	<10	4.7	ATI	-	
	10/11/1996		37.08	15.59		21.49	<50	<0.5	<1	<1	<1	<10	4.6	SPL	-	
	1/2/1997	-	37.08	19.09		17.99	<50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL SPL		
_	4/14/1997	-	37.08	15.11		21.97	<50	<0.5	<1.0	<1.0	<1.0	<10	5.5			·
	7/2/1997	<u>-</u> -	37.08	16.25		20.83	<50	<0.5	<1.0	<1.0	<1.0	<10	3.9	SPL		
	9/30/1997		37.08 37.08	17.99		19.09	<50	<0.5	<1.0	<1.0	<1.0	<10	5.2	SPL		
	1/21/1998	-		20.50		16.58	<50	<0.5	<1.0	<1.0	<1.0	<10		SPL		
	4/9/1998	-+	37.08 37.08	15.72		21.36	160	<0.5	<1.0	<1.0	<1.0	110		SPL	-	
	4/10/1998	=+	37.08	13,31		23.77			_	-			-	SPL	-+	
	6/19/1998		37.08	45.40			370	<0.5	<1.0	<1.0	<1.0	300		CD!	-	
	11/30/1998		37.08	15.18		21.90	830	2	<1.0	<1.0	<1.0	690		SPL	_ [<u> </u>
	1/21/1999	_ -	37.08	45.70			-							SPL	- [
	4/30/1999	-	37.08	15.78			2,300	<1.0	<1.0	<1.0	<1.0	1,900			<u> </u>	
	7/9/1999	- -	37.08	16.01		21.07					_	1,900		SPL		
	11/3/1999	- +-	37.08	17.63		19.45	101		_							
			37.08	18.42		18.66	_	-			-	-	-		-	

Table 1
Groundwater Elevation and Analytical Data

		T					-FEC JOUR	ı Ave., Oal	variu, CA							
Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	Campanta
AW-6	1/12/2000		37.08	19.92		17.16	<50	<0.5	<0.5	<0.5	<0.5	2,700		<u> </u>	<u>. </u>	Comments
ļ <u>.</u>	4/13/2000		37.08	19.87		17.21	_	-	-			2,700	 -	PACE	 -	 -
ļ	7/26/2000		37.08	19.99		17.09	_						 -	 -	 -	ļ <u></u>
	10/24/2000	_	37.08	18.12		18.96				-			+ -	<u> </u>	<u> </u>	
	1/19/2001		37.08	17.04	_	20.04	2,700	<0.5	<0.5	<0.5	<0.5	 			<u> </u>	
	7/24/2001	-	37.08	17.83		19.25	_	<u> </u>	-			4,850	-	PACE	=	
ļ. <u></u>	1/18/2002	-	37.08	15.54		21.54	5,500	614	<0.5	<0.5	<1.0	5 200	ļ -		-	
<u></u>	8/1/2002*	<u>-</u> :	37.08	16.98		20.10	-	***				5,390		PACE		<u> </u>
[1/16/2003		37.08	15.05		22.03	2,900	<20	<20	<20	63	0.500	 -		-	
	7/7/2003		37.08	16.58		20.50	_					2,500	 -	SEQ		p
	02/05/2004		37.08	15.84	_	21.24	7,000	<50	<50	<50	<50		↓ = _ i			
	07/01/2004	Р	37.08	17.91	-	19.17	9,600	<50	<50	<50	<50 <50	5,400		SEQM		<u> </u>
AW-7	4/5/1991		37.6	23.38		44.00					\30	4,600		SEQM	6.5	<u> </u>
	4/1/1992	_	37.6	21.92		14.22	<50	0.4	0.7	<0.3	<0.3		T -	SUP	_	1
	4/2/1992		37.6	41.32		15.68	-									
	7/6/1992		37.6	24.50		10.10	<50	<0.5	3.2	1	5.4	-		APP		
	10/7/1992		37.6	26.18		13.10	<50	<0.5	<0.5	<0.5	<0.5	-	 	ANA	_	
	1/14/1993		37.6	22.03		11.42	<50	<0.5	<0.5	<0.5	<0.5			ANA		
	4/22/1993		37.6	21.18		15.57	<50	<0.5	<0.5	<0.5	<0.5		 _ 	PACE		m
	7/15/1993		37.6	22.09		16.42	<50	<0.5	<0.5	<0.5	<0.5	_	! 	PACE		m
	10/21/1993		37.6	24.05		15.51	<50	<0.5	<0.5	<0.5	<0.5	<5.0		PACE		m
	1/27/1994		37.6	23.40		13.55	51	5	4.2	3.5	8.2	<5.0		PACE		m
	4/21/1994		37.6	22.24		14.20	<50	<0.5	<0.5	<0.5	<0.5	<5.0		PACE	_	m
	9/9/1994	_	37.6	22.94		15.36	<50	<0.5	<0.5	<0.5	<0.5	<5.0		PACE		m
	12/21/1994		37.6	20.86		14.66	<50	<0.5	<0.5	<0.5	0.5	-		PACE		m
	1/30/1995	-1	37.6	17.51		16.74	<50	<0.5	<0.5	<0.5	<0.5	<5.0		PACE		m
	4/10/1995	_	37.6	16.69		20.09	<50	<0.50	<0.50	<0.50	<1.0	-	2.7	ATI	_	···
	6/29/1995		37.6	18.33		20.91	<50	<0.50	<0.50	<0.50	<1.0		4.8	ATI	_	
	9/18/1995	- 1	37.6	20.68		19.27	<50	<0.50	<0.50	<0.50	<1.0	-	7.6	ATI	_	
	9/19/1995	_	37.6	2V.00	-	16.92			-	-					_	
	12/7/1995		37.6	22.15			<50	<0.50	<0.50	<0.50	<1.0	<5.0		ATI	_	
	3/28/1996	- +	37.6	16.38		15.45	<50	<0.50	<0.50	<0.50	<1.0	<5.0		ATI	- +	
~	6/20/1996		37.6		-	21.22	<50	<0.5	<1	<1	<1	<10		SPL	-	
			37.0	17.02		20.58	<50	<0.5	<1	<1	<1	<10		SPL	=	

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date 10/14/16000	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рH	
741-7	10/11/1996 1/2/1997		37.6	20.47		17.13	<50	<0.5	<1.0	<1.0	<1.0	<10			Pr	Comments
	4/14/1997		37.6	16.70	-	20.90	<50	<0.5	<1.0	<1.0	<1.0	<10	6.3	SPL	 	
	7/2/1997		37.6	17.96		19.64	<50	<0.5	<1.0	<1.0	<1.0	<10	6.2 5	SPL	↓ =	
	9/30/1997		37.6	19.11	_	18.49	<50	<0.5	<1.0	<1.0	<1.0	<10		SPL	-	
	1/21/1998	-	37.6	22.97		14.63	<250	<2.5	<5.0	<5.0	<5.0	1,100	5.4	SPL	-	
	4/9/1998		37.6	16.50	_	21.10	<50	<0.5	<1.0	<1.0	<1.0	<10	6.5	SPL	-	
	6/19/1998		37.6	13.56		24.04	<50	<0.5	<1.0	<1.0	<1.0		4.9	SPL	 -	
			37.6	15.41		22.19	<50	<0.5	<1.0	<1.0	<1.0	<10	4.9	SPL	<u> </u>	
	11/30/1998		37.6	18.90		18.70	-		-			<10	4.4	SPL	-	
	1/21/1999	-	37.6	18.39	_	19.21	-									
- · · - · -	4/30/1999	-	37.6	18.54	_	19.06						-	 -		_	
	7/9/1999		37.6	17.98	_	19.62							-		_	
	11/3/1999	-	37.6	20.22	_	17.38						**	-		_	1
	1/12/2000		37.6	19.46		18.14						-			-	
·	4/13/2000		37.6	19.59	_	18.01	_			-						
	7/26/2000		37.6	19.69		17.91									_	
	10/24/2000		37.6	18.78	_	18.82									_	
	1/19/2001		37.6		_							**	-		-	
	7/25/2001	-	37.6											_	-	f
	1/18/2002		37.6		_			<u> </u>				-	_		-	f
	8/1/2002*		37.6					- <u>-</u> - 						_	_	0
	1/16/2003		37.6		_									****	-	0
	7/7/2003	-	37.6				_						-	_	_	0
	07/01/2004	-	37.60	-					-			_		_	-	0
	<u> </u>					ŀ			-	-	-	***		-	_	Well
8-W	4/5/1991	-	40.86	26.68		4440										inaccessible
	4/1/1992	_	40.86	25.11		14.18	80	1.9	2.2	0.5	1.3	_		SUP		
_	7/6/1992	_	40.86	26.43			73	<0.5	0.7	<0.5	0.6			APP		
	10/7/1992	_	40.86	28.59	-	14.43	<50	<0.5	<0.5	<0.5	<0.5	-		ANA	_	
	1/14/1993	_	40.86	25.55		12.27	<50	<0.5	<0.5	<0.5	<0.5			ANA	-	<u></u> _
	4/22/1993	_	40.86	22.29		15.31	<50	<0.5	<0.5	<0.5	<0.5			ACE		
	7/40/4004	_	40.86	23.42		18.57	<50	<0.5	<0.5	<0.5	<0.5			ACE		
	10/21/1993		40.86	25.42		17.44	<50	<0.5	<0.5	<0.5	<0.5	<5.0			 j-	<u>n</u>
			70.00	20.10		15.71	<50	1.9	1.8	1.3	3.3	<5.0		ACE	n	n

Table 1
Groundwater Elevation and Analytical Data

		Τ	Well		Product	7		Ave., Oak	dand, CA							
Weli No. AW-8	Date 1/27/1994	P/ NP	Elevation/ TOC (feet)	DTW (feet)	Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyi- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	На	Comments
A11-0	4/21/1994		40.86	25.42		15.44	<50	<0.5	0.5	0.6	8.5	<5.0	-	PACE	<u> </u>	m
	9/9/1994	 -	40.86	24.14		16.72	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.5	PACE	1	m
	12/21/1994	 - -	40.86	24.55	-	16.31	<50	<0.5	<0.5	<0.5	<0.5		2.4	PACE	_	
	1/30/1995	_	40.86	22.72	<u> </u>	18.14	<50	<0.5	<0.5	<0.5	<0.5	<5.0	1.1	PACE	4_	m
-	4/10/1995	-	40.86	19.75		21.11	<50	<0.50	1	<0.50	1		0.8	ATI	 	m
	6/29/1995		40.86	17.78	-	23.08	<50	<0.50	<0.50	<0.50	<1.0		8.3	ATI	=	
	9/18/1995	-	40.86	18.18		22.68	<50	<0.50	<0.50	<0.50	<1.0		8.3	ATI	<u> </u>	
	9/19/1995		40.86	20.20		20.66		-					0.5			
	12/7/1995		40.86				<50	<0.50	<0.50	<0.50	<1.0	<5.0	7.7	A T1	-	
 -			40.86	21.54		19.32	<50	<0.50	<0.50	<0.50	<1.0	<5.0	+	ATI		
	3/28/1996		40.86	15.77		25.09	<50	<0.5	<1	<1	<1	<10	4.4	ATI		
	6/20/1996		40.86	16.41	-	24.45	<50	<0.5	<1	<1	<1	<10	3.8	SPL		·
· · · · · · · · · · · · · · · · · · ·	10/11/1996		40.86	19.90		20.96	<50	<0.5	<1.0	<1.0	<1.0		3.6	SPL	_	
	1/2/1997	-	40.86	15.89		24.97	<50	<0.5	<1.0	<1.0	<1.0	<10	6.4	SPL		
	4/14/1997		40.86	17.07	-	23.79	<50	<0.5	<1.0	<1.0	<1.0	<10	5.9	SPL		
	7/2/1997	-	40.86	18.67		22.19	<50	<0.5	<1.0	<1.0	<1.0	<10	4.6	SPL		
	9/30/1997		40.86	22.52	_	18.34	<50	<5	<10	<10	<10	<10	5.6	SPL		
	1/21/1998		40.86	16.01	_	24.85	<50	<0.5	<1.0	<1.0	<1.0	820	6.7	SPL		
	4/9/1998		40.86	11.18		29.68	<50	<0.5	<1.0	<1.0		<10	5.2	SPL	-	
	6/19/1998		40.86	13.01	-	27.85	<50	<0.5	<1.0	<1.0	<1.0	<10	4.4	SPL	-	
	11/30/1998	_	40.86	17.46	-	23.40		_			<1.0	<10	4.1	SPL	_	
	1/21/1999	~	40.86	17.47	_	23.39								_		
	4/30/1999		40.86	17.60	_	23.26									-	
	7/9/1999	-	40.86	16.50	_	24.36									-1	
	11/3/1999		40.86	19.29		21.57							-		-	
	1/12/2000	-	40.86	21.49		19.37			-			-	-		- 1	
	4/13/2000		40.86	21.60		19.26	_								-	
	7/26/2000	-	40.86	21.53	_	19.33									-	
	10/24/2000	-	40.86	19.37		21.49		-					-	_		
	1/19/2001		40.86	18.60		22.26									-1	
	7/24/2001	-	40.86	18.22		22.64							_		-	
	1/18/2002	-	40.86	16.29		24.57		- +							_	
	8/1/2002*	-	40.86	17.25		23.61			-			_	_	_	-	
T	1/16/2003	-	40.86	15.82		25.04	_=		-			_	-	_		
						20.04					-	_			_	

Table 1
Groundwater Elevation and Analytical Data

Weli No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	7	GRO/ TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	00		1	
AW-8	7/7/2003		40.86	18.55	-		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	Lab	рН	Comments
	07/01/2004	-	40.86	18.25	<u>-</u>	22.31	-			-	-	_		 _	† -	
			·	10.25	<u> </u>	22.61			<u> </u>	_	_		_	-	_	
AW-9	1/2/1997	_	37.78	10.00	_	27.78	<50	<0.5	<1.0	<1.0	<1.0	<10	0.7			
	4/14/1997		37.78	, , , , , , , , , , , , , , , , , , , ,	-		_	-		-			6.7	SPL	ļ -	
	7/2/1997		37.78	12.71	_	25.07	<50	<0.5	<1.0	<1.0	<1.0		 	<u> </u>		f
·	9/30/1997	-	37.78	21.22	_	16.56	<50	<0.5	<1.0	<1.0	<1.0	<10	6	SPL		
	1/21/1998		37.78	10.26		27.52	<50	<0.5	<1.0	<1.0	<1.0	<10	6.8	SPL	<u> </u>	
	4/9/1998		37.78	6.77	_	31.01	<50	<0.5	<1.0	<1.0	<1.0	<10	5.3	SPL		
-	6/19/1998		37.78	8.96		28.82	<50	<0.5	<1.0	<1.0	<1.0	<10	5.6	SPL	-	
MW-1	4/5/1991		34.46							11.0	~1.0	<10	4.8	SPL		
	4/1/1992		34.46	11.25			 -			_		-	_			
	7/6/1992		34.46	13.61	0.01 0.02	23.20	-			**						
	10/7/1992		34.46	15.15	0.02	20.83					-		_			<u></u>
	1/14/1993		34.46	10.73	0.09	19.22	-				-		T 1			
	4/22/1993		34.46	11.64	0.16	23.72	-			<u> </u>	-		_			
	7/15/1993		34.46	13.50	1.11	22.66				-		-	1 - 1			
	10/21/1993		34.46	15.21	1.00	19.85					-					·
	1/27/1994	_	34.46	17.48	0.81	18.25										
	4/21/1994		34.46	10.94		16.17			-			-		4		
	9/9/1994	_+	34.46	13.80		23.52	110,000	1,400	9,100	3,400	30,000	11,000	1.6	PACE		·
	12/21/1994	_	34.46	12.60	0.02	20.66						_	1 _ +			
	1/30/1995		34,46	12.00	- 0.02	21.84							 -			
	4/10/1995		34.46	10.62		00.04	_ 									
	6/29/1995	_	34.46	18.72		23.84						-	- 1			
	9/18/1995	_	34.46	12.92	-	15.74 21.54					_	_	_	_	_	
	12/7/1995	_	34.46	13.82		20.64				-			-	_	_	
	3/28/1996	- †	34.46	10.03	0.01							-		_		
	6/20/1996	-	34.46	11.29	0.01	24.42				-		-			_	
	10/11/1996	_	34.46	14.86	0.02	23.15	-				_	-		_	_+	
	1/2/1997	_	34.46	11.03	0.01	19.59				-					_	
	4/14/1997	_	34.46	12.25	0.01	23.42						-			_	
	4/15/1997	_	34.46			22.20		-		_	_			_		
			34.46	14.11		20.05	35,000	130	650	1,700	8,200	4,800		SPL	-	
				1-7.11		20.35	42,000	<250	<500	2,000	9,600	<5000		SPL	- -	

Table 1

Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	Comments
MW-1	9/30/1997	_	34.46	14.40		20.06	61,000	130	1,100	2,700	14,600	2,000	6.7	SPL	 	
	1/21/1998		34,46	7.99	0.01	26.46	14,000	11	60	310	1,790	1,300	4.5	SPL	 _	
·	4/9/1998	-	34.46	7.89		26.57				**		_		 	 _	
	4/10/1998		34.46				45,000	380	520	2,100	6,800	9,300	5.3	SPL	-	
	6/19/1998	-	34.46	10.31		24.15	35,000	170	100	1,100	3,590	5,000	4.9	SPL	-	
	11/30/1998		34.46	11.16		23.30	10,000	100	24	350	1,040	1800/2800	-	SPL	 	
	1/21/1999		34.46	10.76		23.70	18,000	120	37	590	1,800	2,700		SPL	 	<u> </u>
	4/30/1999		34.46	10.78		23.68	17,000	240	89	1,100	1,900	1,600		SPL	 	<u> </u>
	7/9/1999		34.46	12.62		21.84	58,000	140	100	1.800	6,900	1,200		SPL	+-	
·	11/3/1999		34.46	14.00	-	20.46	20,000	62	42	620	2,100	630	 	PACE	-	
	1/12/2000		34.46	15.25		19.21	72,000	110	120	2,400	8,200	630	 _	PACE	 	
	4/13/2000		34.46	15.57	_	18.89	37,000	300	32	1,000	1,700	810		PACE		
<u> </u>	5/24/2000		34.46	11.75		22.71			_	_	-,,,,,,,	 		FACE	_	
	6/1/2000		34.46	11.41	_	23.05		-							<u> </u>	
	6/8/2000		34.46	11.68		22.78	_	_								
	6/15/2000		34.46	11.85		22.61	_								-	
	7/26/2000		34.46	16.19		18.27	10,000	480	210	470	710	1,100				
	10/24/2000		34.46	13.89	_	20.57	9,900	31	7.2	550	1,200			PACE		
	1/19/2001		34.46	12.90		21.56	57,000	199	7.66	1,170	3,260	4,400		PACE		
	7/24/2001		34.46	13.55	_	20.91	27,000	96.7	<5.0	548	1,460	514		PACE		
	1/18/2002		34.46	10.91		23.55	25,000	150	31.5	597		285		PACE	_	
	8/1/2002*		34.46	12.97	_	21.49	25,000	80.2	17.7	714	1,040	138		PACE	~	·
	1/16/2003		34.46	10.45		24.01	22,000	170	110	630	670	489		PACE		
	7/7/2003	_	34.46	12.40	SHEEN	22.06	9,900	42	<5.0	160	150	<500		SEQ		p
	02/05/2004	-	34.46	10.26	_	24.20	6,200	56	11	250	210	24		SEQ		q
	07/01/2004		34.46	13.20	_	21.26	18,000	<50	<50	210	300	9.2		SEQM	6.9	
MW-2	4/5/1991		35.5	16.62		40.00				210	300	<50	(SEQM	-	Sheen
	4/1/1992	_	35.5	11.25		18.88	<50	0.6	0.9	<0.3	<0.3	-		SUP		
	4/2/1992	_	35.5	11.20		24.25						-	_			
	7/6/1992	_	35.5	12.72			<50	<0.5	<0.5	<0.5	<0.5		_	APP	_	· · · · · · · · · · · · · · · · · · ·
	10/7/1992	_	35.5	15.08		22.78	<50	<0.5	<0.5	<0.5	<0.5	_		ANA		
	1/14/1993	_	35.5	9.69		20.42	<50	<0.5	1.8	<0.5	2.3			ANA	_	
	4/22/1993		35.5	10.46	- -	25.81	<50	<0.5	<0.5	<0.5	<0.5			PACE		m
		1_	55.5	10.40		25.04	<50	<0.5	<0.5	<0.5	<0.5	30		PACE	- 6	

Table 1

Groundwater Elevation and Analytical Data

Former BP Station No. 11133

MW-2	Date	P/ NP	Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рН	Comments
	7/15/1993		35.5	12.02	-	23.48	<50	<0.5	<0.5	<0.5	<0.5	21.7		PACE	<u>. </u>	
	1/27/1994		35.5	13.12		22.38	<50	0.7	0.9	<0.5	0.9	14.9		PACE		c, m
	4/21/1994		35.5	12.01		23.49	<50	0.6	<0.5	<0.5	<0.5	11.5	 _ _	PACE	_	m
	9/9/1994		35.5	10.60	<u> </u>	24.90	<50	<0.5	<0.5	<0.5	<0.5	11.4	1.1	PACE		
	12/21/1994		35.5	12.42	-	23.08	<50	<0.5	<0.5	<0.5	0.6	-	2.2	PACE	-	m
	1/30/1995		35.5	10.85		24.65	\$ 50	<0.5	<0.5	<0.5	<0.5	<5.0	1.2	PACE	 	<u>m</u>
	4/10/1995	_=_	35.5	8.38		27.12	<50	<0.50	<0.50	<0.50	<1.0		1.7	ATI	-	m
			35.5	9.00		26.50	<50	<0.50	<0.50	<0.50	<1.0		7.8		_	 -
	6/29/1995		35.5	9.91		25.59	<50	<0.50	<0.50	<0.50	<1.0		9.1	ATI		
	9/18/1995		35.5	10.98		24.52			_				· 	ATI		ļ <u></u>
	9/19/1995		35.5			_	<50	<0.50	<0.50	<0.50	<1.0	<5.0	70			
	12/7/1995		35.5	12.30		23.20	<50	<0.50	<0.50	<0.50	<1.0	<5.0	7.2	ATI		<u> </u>
	3/28/1996		35.5	8.57		26.93	<50	<0.5	<1	<1	<1		2.4	ATI	-	
	6/20/1996		35.5	9.77		25.73	<50	<0.5	<1	- 4	<1	<10	3.2	SPL		
	10/11/1996		35.5	13.32	_	22.18	<50	<0.5	<1.0	<1.0	<1.0	<10	4.2	SPL		
	1/2/1997		35.5	9.60	_	25.90	<50	<0.5	<1.0	<1.0	<1.0	<10	6.3	SPL	-	
	4/14/1997	-	35.5	10.93		24.57	<50	<0.5	<1.0	<1.0	<1.0	<10	6.7	SPL		
	7/2/1997		35.5	12.57	_	22.93	<50	<0.5	<1.0	<1.0		<10	5.7	SPL		
	9/30/1997	_	35.5	12.91		22.59	<50	<0.5	<1.0	<1.0	<1.0	<10	5.9	SPL		
	1/21/1998	-	35.5	10.12	_	25.38	160	<0.5	<1.0	<1.0	<1.0	<10	6.3	SPL	-	
	4/9/1998		35.5	6.82	-	28.68		-	-	<u> </u>	<1.0	100	5.4	SPL		
	4/10/1998	-	35.5				<50	1	<1.0		-			_	-	
	6/19/1998	_	35.5	9.00		26.50	<50	<0.5	<1.0	<1.0	<1.0	23	5	SPL		
	11/30/1998	_	35.5	9.44		26.06		-0.0		<1.0	<1.0	<10	4.9	SPL	-1	
	1/21/1999	- [35.5	8.96		26.54	<50	<1.0	<1.0							
	4/30/1999		35.5	9.15		26.35		-1.0		<.1.0	<1.0	1.9		SPL	-	
	7/9/1999	- T	35.5	10.82		24.68						-		_	-	
	11/3/1999	-	35.5	11.86		23.64			-		-		-	_	_	
1	1/12/2000	-	35.5	12.35		23.15	<50			-				_	- 1	
4	4/13/2000	-	35.5	13.01		22.49		<0.5	<0.5	<0.5	<0.5	<0.5	F	PACE		
7	7/26/2000	_	35.5	13.01		22.49					_				_	
10	0/24/2000		35.5	11.57		23.93	-					-			_	
1	1/19/2001	_ †-	35.5	10.52		24.98		<u> </u>							_+	
7	7/24/2001	_	35.5	11.13		24.98	-					_		_	_+	

Table 1
Groundwater Elevation and Analytical Data

	7	,	100.0	,			2220 90u	Ave., Oal	dand, CA							
Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	pH	Comments
MW-2	1/18/2002	_	35.5	8.85	-	26.65	_	 -		_		(-2)	-	1	l bis	Comments
	8/1/2002*		35.5	10.47	_	25.03				_			 	 	 -	
	1/14/2003	_	35.5	8.49		27.01						 			 −	
	7/7/2003		35.5	9.63	_	25.87	_		-	-				 -		
	02/05/2004		35.50	8.40	-	27.10	_			_		 	-	=	-	<u> </u>
	07/01/2004	NP	35.50	9.94	-	25.56	-			_	_			 - -	 -	
MW-3	4/5/1991	-	36.53	17.84	-	18.69	-50							<u> </u>	_	
	4/1/1992		36.53	15.64			<50	<0.3	<0.3	<0.3	<0.3		_	SUP	<u>-</u>	
	4/2/1992		36.53	13.04		20.89		-		-	••	_	_	_	_	<u> </u>
	7/6/1992		36.53	19.03		47.50	<50	1.4	<0.5	<0.5	<0.5	-	_	APP	_	
	10/7/1992		36.53	21.83		17.50	<50	<0.5	<0.5	<0.5	<0.5	-	_	ANA	_	
	1/14/1993		36.53	15.96		14.70	<50	<0.5	<0.5	<0.5	<0.5	-	_	ANA	_	
	4/22/1993		36.53	16.20		20.57	350	<0.5	<0.5	<0.5	<0.5	714		PACE	_	c, m
· · · · · · · · · · · · · · · · · · ·	7/15/1993	_	36.53			20.33	2,800	<0.5	<0.5	<0.5	<0.5	3,600		PACE		c, m
	10/21/1993	-	36.53	16.82		19.71	1,400	1.2	<0.5	2	3.5	2,204	T	PACE		c, m
	1/27/1994	+		18.84		17.69	370	2.1	2.3	2.3	6	847		PACE		c, m
	4/21/1994	-	36.53 36.53	18.00		18.53	1,300	6.3	<0.5	<0.5	<0.5	3,892	+	PACE		c, m
	9/9/1994		36.53	16.62	-	19.91	2,000	<0.5	<0.5	<0.5	<0.5	3,864		PACE		c, m
<u></u>	12/21/1994			18.38		18.15	1,300	<0.5	<0.5	0.5	1.2		· 	PACE		m
	1/30/1995	-	36.53	15.28		21.25	420	16	0.7	3.5	5.9	800		PACE		m
·	4/10/1995		36.53	12.62		23.91	<50	<0.50	<0.50	<0.50	<1.0		2.5	ATI	_	,
	6/29/1995		36.53	12.41		24.12	150	<0.50	<0.50	<0.50	<1.0		6.9	ATI		· · · · · · · · · · · · · · · · · · ·
	9/18/1995	-	36.53	14.95		21.58	100	<0.50	<0.50	<0.50	<1.0		6.4	ATI	_	
	9/19/1995		36.53	15.82		20.71	-			-		_				
	12/7/1995	-	36.53				82	<0.50	<0.50	<0.50	<1.0	260	7	ATI		·
	3/28/1996	_	36.53	17.09		19.44	<50	<0.50	<0.50	<0.50	<1.0	91	4.5	ATI		
	6/20/1996	-	36.53	11.90		24.63	<50	<0.5	<1	<1	<1	230	4.2	SPL	-	
	10/11/1996		36.53	12.66	_	23.87	260	<0.5	<1	<1	<1	370	4.4	SPL	\exists	
	1/2/1997	_	36.53	16.23		20.30	330	<0.5	<1.0	<1.0	<1.0	440	5.8	SPL	-	
	4/14/1997		36.53	12.17		24.36	<50	<0.5	<1.0	<1.0	<1.0	140	6	SPL		
	4/14/1997		36.53	13.45	-	23.08	_		-					- I	_	
	7/2/1997	-	36.53				1,500	<0.5	<1.0	<1.0	<1.0	1,800		SPL		
		-	36.53	15.60		20.93	880	<0.5	<1.0	<1.0	<1.0	940		SPL	-	
	9/30/1997	_	36.53	17.16	-	19.37	40,000	13,000	2,400	870	3,100	510		SPL		
			*								-,	310	0.6	OPL		

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab		S
MW-3	1/21/1998	-	36.53	11.77	_	24.76	120	<0.5	<1.0	<1.0	<1.0	98	4.7	 	рH	Comments
	4/9/1998		36.53	9.42	_	27.11	950	<0.5	<1.0	<1.0	<1.0	890	5.7	SPL		
	6/19/1998		36.53	12.09	-	24.44	1,800	<0.5	<1.0	<1.0	<1.0	1,900	4.7	SPL	<u> </u>	<u> </u>
	6/19/1998		36.53	15.28		21.25	1,800	<0.5	<1.0	<1.0	<1.0	1,900		SPL	<u> </u>	
	1/21/1999		36.53	14.67	_	21.86	1,100	<1.0	<1.0	<1.0	<1.0	1,200	4.7	SPL	_	
	4/30/1999		36.53	16.00		20.53	_					1,200		SPL	 -	
	7/9/1999		36.53	14.64	_	21.89	470	<1.0	<1.0	<1.0	<1.0	460/470		-	-	ļ <u> </u>
	11/3/1999		36.53	16.39	_	20.14		-			-		-	SPL		g
	1/12/2000	_	36.53	16.80		19.73	<50	<0.5	<0.5	<0.5	<0.5	34	 -	-	-	
	4/13/2000		36.53	16.43		20.10	_	-			70.5		<u> </u>	PACE		
	7/26/2000	-	36.53	16.93	_	19.60	<50	<0.5	<0.5	<0.5	<0.5					
	10/24/2000		36.53	15.69		20.84	_	_			-0.0	<0.5	 - -	PACE		
	1/19/2001	-	36.53	14.84	_	21.69	<50	<0.5	<0.5	<0.5		25.0	 -			
	7/23/2001		36.53	15.11	_	21.42	62	<0.5	<0.5	<0.5	<1.5	25.9		PACE		
	1/18/2002		36.53	12.37		24.16	<50	<0.5	<0.5	<0.5	<1.0	28.7	 	PACE		·
	8/1/2002*		36.53	14.44		22.09	66	<0.5	<0.5	<0.5	<1.0	17.8		PACE	-	
	1/16/2003		36.53	12.07		24.46	<50	<0.50	<0.50	<0.50	<0.50	<0.5	 	PACE	_	
·-·	7/7/2003		36.53	13.90	-	22.63	<50	<0.50	<0.50	<0.50	<0.50	20	-	SEQ		p
	02/05/2004	_	36.53	12.60	_	23.93	<50	<0.50	<0.50	<0.50	<0.50	-	-	SEQ		9
	07/01/2004		36.53	14.57	_	21.96	<50	<0.50	<0.50	<0.50	<0.50	4.6			7.0	· · · · · · · · · · · · · · · · · · ·
QC-2	10/7/1992	-	37.73							10.00	~0.50	3.3	:	SEQM		
	1/14/1993		37.73				<50	<0.5	<0.5	<0.5	<0.5	_		ANA		
	4/22/1993		37.73				<50	<0.5	<0.5	<0.5	<0.5	-		PACE	_	 n
	7/15/1993	_	37.73				<50	<0.5	<0.5	<0.5	<0.5			PACE		n
	10/21/1993	_	37.73		-		<50	<0.5	<0.5	<0.5	<0.5	<5.0		PACE	—	n
	1/27/1994		37.73				<50	<0.5	<0.5	<0.5	<0.5	-		PACE		
	4/21/1994	_	37.73		-		<50	<0.5	<0.5	<0.5	<0.5			PACE	_	
	9/9/1994	_	37.73				<50	<0.5	<0.5	<0.5	<0.5			PACE	_	
	12/21/1994	_	37.73	-			<50	<0.5	<0.5	<0.5	<0.5	_		PACE		
	1/30/1995	_	37.73				<50	<0.5	<0.5	<0.5	<0.5	_		PACE		
	4/10/1995	_	37.73				<50	<0.50	<0.50	<0.50	<1.0	_		ATI		
	6/27/1995	_	37.73				<50	<0.50	<0.50	<0.50	<1.0			ATI	=+	
	9/19/1995		37.73				<50	<0.50	<0.50	<0.50	<1.0			ATI	_	
1			31.13				<50	<0.50	<0.50	<0.50	<1.0	<5.0		ATI	_	

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date 12/7/1995	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	рH	Comments
QC-2	3/28/1996		37.73		<u> </u>		<50	<0.50	<0.50	<0.50	<1.0	<5.0		ATI	+-	
			37.73		_	-	<50	<0.5	<1	<1	<1	<10		SPL	+ =	
	6/20/1996		37.73		<u> </u>		<50	<0.5	<1	<1	<1	<10	 	SPL	+-	<u> </u>
RW-1	4/5/1991	_	37.73				T =		1					<u> </u>		<u> </u>
	4/1/1992	_	37.73	22.81	0.30	14.62	 	-							_	
	7/6/1992	-	37.73	26.92	0.41	10.40	 	 		_	**					
	10/7/1992	-	37.73	28.51	1.26	7.96	+ = -	-	-				_			
	1/14/1993	-	37.73	23.75	0.25	13.73	 	-		-			-		_	
	4/22/1993	-	37.73	22.70	1.38	13.65			=-						_	
	7/15/1993	_	37.73	26.10	0.81	10.82	 					<u></u>			_	
	10/21/1993		37.73	25.40	0.49	11.84						-	<u> </u>		_	
	1/27/1994	-	37.73	28.02	0.37	9.34							-		_	
	4/21/1994		37.73	23.10	0.91	13.72	 					_			-	
	9/9/1994		37.73	24.39	1.04	12.30						***		_	-	
	12/21/1994	_	37.73		_								-		1	
	12/7/1995	-	37.73	25.71	1.04	10.98	150,000	34,000	25.000	-						h
	3/28/1996	-	37.73	16.75	0.18	20.80	100,000	34,000	35,000	4,300	21,000	2,700		ATI	_	
	6/20/1996	-	37.73	25.10	0.02	12.61	 _								_	
	10/11/1996		37.73	25.51	0.00	12.22	130,000	20,000	32.000				-			h
	1/2/1997	-	37.73	24.49	0.01	13.23		20,000		2,800	20,700	1400/1200	7.4	SPL		g
	4/14/1997	-	37.73	23.99	0.04	13.70						-		_	-	
	4/15/1997	-	37.73			70170	1,800,000	38,000	400.000	40.000]		
	7/2/1997		37.73	_			130,000	19,000	190,000	48,000	281,000	<25000		SPL		
	7/2/1997	-	37.73	16.40	0.20	21.13	140,000	19,000	54,000 55,000	4,700	33,400	<10000	-	SPL		QC-1, e
	9/30/1997	- [37.73	_	-		140,000	17,000	29,000	4,400	32,400	<10000	5.7	SPL	-	
	9/30/1997		37.73	27.97	0.02	9.74	110,000	13,000	22,000	2,500	15,900	1,200		SPL	_]	QC-1, e
	1/21/1998	-	37.73	14.14	0.44	23.15	270,000	21,000	48,000		12,500	1,100	7	SPL		
	4/9/1998	-	37.73	25.01	0.05	12.67	_	-		3,500	25,000	1,100	4.8	SPL]	
	4/10/1998		37.73		_		220,000	26,000	46,000	4,400	24 500	_		_	-	
	6/19/1998	-	37.73	11.43		26.30	180,000	19,000	32,000	3,000	24,500	<2500		SPL		
	11/30/1998	-	37.73	7.87	_	29.86	_	- 13,000	32,000	3,000	17,400	<2500	4.6	SPL		
	1/21/1999	-	37.73	18.90	0.03		260,000		46,000		20.000	-			_ [
	7/9/1999		37.73	18.58	0.26	18.89				5,100	30,000	1,700		SPL		
					<u>-</u> <u>-</u>								-		_	

Table 1
Groundwater Elevation and Analytical Data

Well No.	Date	P/ NP	Well Elevation/ TOC (feet)	DTW (feet)	Product Thickness (feet)	GWE (feet)	GRO/ TPH-g (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DO (mg/L)	Lab	На	Commonts
RW-1	11/3/1999		37.73	20.85	0.60	16.28	160,000	19,000	37,000	3,800	25,000	1,500	(<u>. </u>	Comments
·	1/12/2000	_	37.73	21.20	0.23	16.30	240,000	18,000	46,000	5.800	26,000	2,100		PACE	-	 -
	4/13/2000	-	37.73	21.71	0.11	15.91	120,000	2,100	33,000	2,800	28,000	1,500	 	PACE	<u> </u>	
	5/24/2000	_	37.73	21.89	0.24	15.60		-					 -	PACE		
	6/1/2000	-	37.73	16.30	0.01	21.42	T _ 1								<u> </u>	
	6/8/2000		37.73	17.88	0.20	19.65			_			-	-	<u> </u>		
	6/15/2000		37.73	16.72	0.04	20.97	 						-			
	6/20/2000	-	37.73	21.04	0.20	16.49	 									
	7/7/2000		37.73	17.21	0.01	20.51	 _ 									
	7/20/2000	-	37.73	21.87	0.18	15.68	 					-				
	7/26/2000		37.73	21.45	0.13	16.15	67,000	160	5,300	0400	42.222		-			
	7/31/2000	-	37.73	22.11	_	15.62	-		5,300	2,100	18,000	1,100		PACE	_	
	8/8/2000		37.73	17.80	0.01	19.92									-	
	8/16/2000	- "	37.73	17.92		19.81						-			1	
	8/23/2000	- 1	37.73	18.11	0.02	19.60	-					-			-	
	10/24/2000		37.73	18.93		18.80						_	_ 	- 1	_	
	10/25/2000	-	37.73	19.04		18.69	360,000	49.000	70.000					_	-	
	1/19/2001	-	37.73	18.19	0.05	19.49	110,000	18,000	78,000	34,000	180,000	2,100		PACE	-	k
	7/24/2001		37.73	17.93		19.80		9,450	19,600	3,510	21,100	1,270		PACE	_	· · · · · · · · · · · · · · · · · · ·
	1/18/2002	_	37.73	14.87		22.86	63.000					-			_	
	8/1/2002*	_	37.73	16.84		20.89	63,000	2,060	4,370	1,770	13,900	491	-	PACE	-	
	1/16/2003	-	37.73	14.42		23.31	60,000	1,210	2,200	1,520	10,600	390		PACE		
	7/7/2003		37.73	16,11	SHEEN		34,000	2,500	2,700	780	5,300	680		SEQ	- 1	9
	07/01/2004	P	37.73	16.75		21.62	50,000	640	280	1,600	10,000	_		SEQ	- 6	1
				10.13		20.98	47,000	320	87	1,900	7.500	72			6.7	<u> </u>

Table 1

Groundwater Elevation and Analytical Data

Former BP Station No. 11133 2220 98th Ave., Oakland, CA

ABBREVIATIONS:

TOC - top of casing

DTW - depth to water

GWE - groundwater elevation

TPH-G - total petroleum hydrocarbons as gasoline

B - benzene

T - toluene

E- ethyl benzene

X - total xvienes

MTBE - methyl tert butyl ether

DO - dissolved oxygen

ug/L - micrograms per liter

ppm - parts per million

- - not sampled

< - not detected at or above the lab reporting limit

PACE - PACE, Inc.

SUP - Superior Analytical Laboratories, Inc.

APP - Applied Analytical Laboratory

ANA - Anametrix, Inc.

ATI - Analytical Technologies, Inc.

SPL - Southern Petroleum Laboratories

SEQ - Sequola Analytical

NOTES:

- (a) Top of casing elevations surveyed to the nearest 0.01 foot above mean sea level.
- (b) Groundwater elevations adjusted assuming a specific gravity of 0.75 for free product.
- (c) A copy of the documentation for this data is included in Appendix C of Alistoreport 10-025-13-003.
- (d) MTBE peak. See documentation in Appendix C of Alisto report 10-025-13-003.
- (e) Blind duplicate.
- (f) Well inaccessible.
- (g) EPA Methods 8020/8260 used.
- (h) Well not monitored and/or sampled due to vapor extraction system.

(i) Travel blank.

- (i) This gasoline does not include MTBE.
- (k) Well was sampled on a different date from the other wells due to lack of proper equipment. (i) Unable to sample due to nature of product.

(m) A copy of the documentation for this data is included in Blaine Tech Services, Inc., Report 010724-B-2. The data for sampling events January 14, 1993 and April 22, 1993 has been destroyed. No chromatograms could be located for samples AW-2 on January 27, 1994, and for samples AW-1, AW-2, AW-3, AW-4, AW-5, AW-6, AW-7, AW-8, MW-2 and MW-3 on September 9, 1994. (n) On June 1, 2001, after reviewing chromatograms, Sequola reported the value as <5.0.

(p) TPH-g data analyzed by EPA Method 8015B modified; BTEX and MTBE by EPA Method 8021B (q) TPH-g, BTEX, and MTBE analyzed by EPA method 8260B beginning on the third quarter 2003 sampling event (07/07/03)

(s) Please note that beginning in the Fourth Quarter 2003, the laboratory modified the reported analyte list. Total Petroleum Hydrocarbons as Gasoline (TPHg) has been changed to Gasoline Range Organics (GRO). The resulting data may be impacted by the potential inclusion of non-TPHg analytes within the requested fuel range resulting in a higher concentration being reported. Also, (t) Well was not gauged during the quarter due to an oversite by the technician.

Table 1

Groundwater Elevation and Analytical Data

^{*} During the second quarter of 2002, URS Corporation assumed groundwater monitoring activities for BP.

Source: The data within this tables collected prior to June 2002 was provided to URS by Atlantic Richfield Company and their previous consultants. URS has not verified the accuracy of this information.

Table 2 Fuel Additives Analytical Data Former BP Station No. 11133

Number Sampled (µg/L) (µg/L) (µg/L) µg/L)	Well	Date	Ethanol		2220 98th Av	etation No. 1113: ve., Oakland, CA	Ň			
1/10 1/10		Sampled	(µg/L)	TBA (µg/L)			1			EDB
07/01/2004 <10,000 <2,000 930 <50 <50 160 <50	747-1			<1,000					(µg/L)	(µg/L)
AW-2 02/05/2004 <100 <20 5.1 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50			<10,000	<2,000	930					_
AW-2 02/05/2004 <100		07/01/2004	<5,000	<1,000	1,100				<50	<50
AW-4 7/7/2003 <1,000 <200	AW-2	02/05/2004	<100	-20		1 720	<25	170	<25	<25
17/10/10/10/10/10/10/10/10/10/10/10/10/10/	A)A/ 4		100		5.1	<0.50	< 0.50	<0.50	#0.F0	
07/01/2004 <200 <40 40 <1.0 <1.0 <5.0 <5.0 AW-5 7/7/2003 <2,000	WAA-4		<1,000	<200		CE 0		-0.00	40.50	<0.50
AW-5 7/7/2003 <2,000 1,200 - <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <			<200	<40	40			<5.0	_	
AW-5 7/7/2003 <2,000 1,200 - <10 <10 <210 - 02/05/2004 <2,000		07/01/2004	<1,000	<200			 	3.7	<1.0	<1,0
02/05/2004 <2,000 1,200 - <10 <10 210 - 07/01/2004 <2,000	AW-5	7/7/2003	£2 000	1 4 2 2		<5.0	<5.0	9.6	<5.0	<5.0
07/01/2004 <1,000 1,600 550 <5.0 <5.0 94 <5.0				 		<10	<10	210		
AW-6 02/05/2004 <10,000 <2,000 5,400 <50 <50 94 <5.0 07/01/2004 <10,000 <2,000 4,600 <50 <50 1,800 <50 MW-1 7/7/2003 <1,000 <200 24 <5.0 <50 1,600 <50 <50 <50 <50 <50 <50 <50 <50 <50 <				 	810	<10				**
AW-5 02/05/2004 <10,000 <2,000 5,400 <50 <50 1,800 <50 <50	414.6		<u> </u>	1,600	550	<5.0	 		 	<10
07/01/2004 <10,000 <2,000 4,600 <50 <50 1,800 <50 MW-1 7/7/2003 <1,000	AW-6		<10,000	<2.000	5.400				<5.0	<5.0
MW-1 7/7/2003 <1,000 <200 24 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0		07/01/2004	<10,000				<50	1,800	<50	<50
02/05/2004 <1,000	MW-1	7/7/2003	ed 000		4,000	<50	<50	1,600		<50
07/01/2004 <1,000 <200 9.2 <5.0 <5.0 <5.0 <5.0 MW-3 7/7/2003 <100					24	<5.0	<5.0			
MW-3 7/7/2003 <100 <20 - <0.50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50					9.2	<5.0	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
MW-3 7/7/2003 <100 <20 - <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.5			<10,000	<2,000	<50	<50			<5.0	<5.0
02/05/2004 <100 <20 4.6 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <th< td=""><td>MW-3</td><td></td><td><100</td><td><20</td><td></td><td></td><td></td><td><50</td><td><50</td><td><50</td></th<>	MW-3		<100	<20				<50	<50	<50
07/01/2004 <100 <20 3.3 <0.50 <0.50 <0.50 <0.50 RW-1 7/7/2003 <50,000		02/05/2004	<100				<0.50	0.65		
RW-1 7/7/2003 <50,000 <10,000 <0.50 <0.50 <0.50		07/01/2004	<100				<0.50	<0.50	——— <u> </u>	-0.F0
<50,000 <10.000	RW-1	7/7/2003	450,000		3.3	<0.50	<0.50	<0.50		<0.50
17/04/2004 3250 3250		07/01/2004			-	<250	<250		-5.50	<0.50
07/01/2004 <10,000 <2,000 72 <50 <50 <50 <50		-770 HZ004	<10,000	<2,000	72		·			

<50

<50

<50

Table 2

Fuel Additives Analytical Data Former BP Station No. 11133 2220 98th Ave., Oakland, CA

Note: All fuel oxygenate compounds analyzed using EPA Method 8260B.
TBA = tert-butyl alcohol
MTBE = methyl tert-butyl ether
DIPE = dl-isopropyl ether
ETBE = ethyl tert butyl ether
TAME = tert-Amyl methyl ether
1, 2-DCA = 1,2-dichloroethane
EDB = 1,2-dibromoethane
ug/L = micrograms per liter
< = less than or equal to the laboratory reporting limit

TABLE 2 RESULTS OF ANALYSIS GROUND WATER SAMPLES

•

Well	TPH (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)
MW-1	FP				
MW-2	ND <50	ND <0.5	ND <0.5	ND <0.5	ND <0.5
MW-3	ND <50	ND <0.5	ND <0.5	ND <0.5	ND <0.5
TW-1	77,000	6,600	5,500	2,900	1,500
TW-2	ND <50	1.4	1.4	0.6	5.0
TW-3	72,000	0.80	2.3	1.4	11
TW-4	FP				
TW-5	66,000	19,000	15,000	1,800	8,600
TW-6	170,000	32,000	41,000	4,500	24,000
TW-7	470,000	11,000	29,000	9,700	48,000
8-WT	720,000	4,200	38,000	12,000	71,000

ND = Nondetectable

FP = Free Product

ppb = parts per billion
MW = Monitoring Well
TW = Temporary Well

CAMBRIA

Table 3. Water Analytical Data - BP Oil Site No. 11133, 2220 98th Avenue, Oakland, California

Well ID (Sample ID)	Date Sampled al Method:	TPHg (ug/l)	Benzene (ug/l) 8260	Toluene (ug/l)	Ethylbenzene (ug/l) 8260	Xylenes (ug/l) 8260	MTBE (ug/l) 8260
Analytic	ai Method:	8015m	0200	8260	8200	0200	0200
B-1-W1	10/22/01	<50	<2.0	2.29	<2.0	<2.0	71.6
B-2-W1	10/22/01	15,000	3,610	1,120	383	1,330	1,500
B-3-W1	10/22/01	4,600	1,410	171	1,010	1,290	1,420
B-4-W1	10/23/01	71,000	7,300	10,800	7,060	36,600	177
DUP	10/23/01	52,000	7,600	9,650	4,230	21,600	<200
B-5-W1	10/23/01	100,000	16,800	42,100	6,720	33,300	244
B-6-W1	10/23/01	110,000	30,600	36,800	5,410	26,900	1,010

Abbreviations and Notes:

ug/l = micrograms per liter

TPHg = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

<n = Below detection limit of n ug/L

Table Historical Groundwater Flow Direction and Gradient

Former BP Site 11133 2220 98th Ave., Oakland, CA

Date Measured	Flow Direction	Hydraulic Gradient (Feet/foot)
07/06/92	South	0.04
07/06/92	Northwest	0.04
07/06/92	East	0.04
10/07/92	Southeast	0.13
01/14/93	East-northeast	0.20
01/14/93	East	0.30
04/22/93	Northeast	0.20
04/22/93	Southeast	0.20
07/15/93	East	0.10
07/15/93	Southeast	0.20
10/21/93	Northeast	0.13
	Southeast	0.15
10/21/93		0.13
01/27/94	East-southeast	0.13
01/27/94	East	0.20
04/21/94	East-southeast	0.14
09/09/94	Southeast	
12/21/94	East	0.07
01/30/95	South-southeast	0.06
04/10/95	East	0.07
06/29/95	South-southeast	0.14
09/18/95	Southeast	0.07
12/07/95	Southeast	0.11
03/28/96	East	0.05
06/20/96	East	0.07
06/20/96	West	0.04
10/11/96	East	0.06
01/02/97	East	0.15
04/14/97	East	0.08
07/02/97	East-northeast	0.05
01/21/98	Southwest	0.04
01/12/00	East	0.07
01/12/00	West	0.07
04/13/00	East	0.05
04/13/00	Southwest	0.05
07/26/00	Southwest	0.03
10/24/00	Southeast	0-04
01/19/01	East-southeast	0.04
07/24/01	East	0.08
07/24/01	West	0.03
01/18/02	West	0.04
08/01/02	East	0.05
08/01/02	South-southwest	0.04
01/16/03	East-southeast	0.06
01/16/03	West	0.02
03/14/03	East	0.06
03/14/03	West	0.02
02/05/04	Southwest	0.03
02/05/04	Northeast	0.06
07/07/03	Southwest	0.03
07/07/03	East	0.08
07/01/04	Southwest	0.03
07/01/04	East	0.08

ATTACHMENT D Remediation System Operation Data and Product Removal Program Summary

TABLE 1 - SUMMARY OF RESULTS OF VAPOR EXTRACTION TREATMENT SYSTEM OPERATION BP OIL COMPANY SERVICE STATION NO. 11133 2220 98TH AVENUE, OAKLAND, CALIFORNIA

ALISTO PROJECT NO. 10-025

Monitoring	Date of	Hydrocarbons	Influent	Exhaust	Effluent	Destruction	Hydrocarbon	Period	Total		dditional	Analyti	cal Date	1	LAB/
Point	Monitoring	Detected (ppmv)	Flow Rate (scfm)	Temperature (degrees F)	Flow Rate (acfm)	Efficiency (%)	Discharge (lbs/day)	Hydrocarbons Proccessed (lbs)	Hydrocarbons Removed (lbs)	TPH-G (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	FIELD EQUIPMENT
J-1	12/21/94	162	400	194	503			NC	NC	121	13	14.0	2.4	12.0	ATox
J-1	12/29/94	180	450	190	563			241.7	241.7						HORIBA
J-1	01/03/95	80	450	190	563	***		67.1	308.8	***					HORIBA
J-1	01/12/95	60	425	256	585	7-2		85.6	394.4		***				HORIBA
J-1	01/26/95	10	550	196	694		400	28.7	423.2						HORIBA
1-1	01/30/95	10	525	200	666			7.8	431.0						HORIBA
I-1	02/16/95	460	550	200	698		***	1604.3	2035.3						HORIBA **
1-1	03/02/95	ND<10	650	200	825			NC	2035.3	***					HORIBA
1-1	03/27/95	360	525	254	721			1762.4	3797.7						HORIBA
i-1 -1	04/03/95 05/04/95	30 ND -10	450	221	589			35.2	3832.9	***	***			***	HORIBA
I-1 I-1	05/04/95	ND<10 110	475 525	185 176	589			NC 100.0	3832.9		***				HORIBA
I-1	06/01/95			170	642			409.3	4242.2		20				HORIBA
1-1	06/28/95	20 80	425 500	172 285	517 716			28.5	4270.8		100				HORIBA
I-1	07/31/95	90	500	265 189	624	***		402.8	4673.6 5227.5						HORIBA
H	08/23/95	9.8	425	186	52 4 528			553.9	5227.5		1 40				HORIBA
14	09/28/95	86.8	530	183	655			35.7 617.7	5263.2		-				MINIRAE
i-i	10/31/95	93.5	450	186	559			517.9	5881.0 6398.9		1.000	***			MINIRAE MINIRAE
1-1	11/14/95	86.6	450	201	572			203.5	6602.4		177				MINIRAE
EE 1-1	12/05/95	198.6	475	209	811	THE PARTY NAMED IN	Superior and	738.9	7341.3		-		Section 1	131-153	MINIFIAE
HI (S	12/27/95	2000.0	375	200	476	AN COME TO		6154.5	13495.8	4				NEED!	MINIRAE
E-1	12/21/94	4	400	194	503	97.53%	0.8			4	0.028	0.032	0.004	0.026	ATox
E-1	12/29/94	10	450	190	563	94.44%	2.1								HORIBA
E-1	01/03/95	ND<10	450	190	563	>87.50%	<2.1								HORIBA
E-1	01/12/95	ND<10	425	256	585	>83.33%	<2.2								HORIBA
E-1	01/26/95	ND<10	550	196	694		<2.6								HORIBA
E-1	01/30/95	ND<10	525	200	666		<2.5								HORIBA
E-1 E-1	02/16/95	60	550	200	698	86.96%	15.6								HORIBA
E-1	03/02/95	ND<10	650	200	825		<3.1								HORIBA
E-1	03/27/95 04/03/95	10	525	254	721	97.22%	2.7		***		p				HORIBA
E-1	04/03/95	ND<10 ND<10	450 475	221 185	589	>66.67%	<2.2				***				HORIBA
E-1	05/23/95	20	525	176	589 642	04.000/	<2.2								HORIBA
E-1	06/01/95	ND<10	425	172	542 517	81.82% >50.00%	4.8		***	4.00		50.52	5/5/201		HORIBA
E-1	06/28/95	ND<10	500	285	716	>50.00% >87.50%	<1.9 <2.7					-			HORIBA
E-1	07/31/95	ND<10	500	189	624	>87.50% >88.89%	<2.7 <2.3		***						HORIBA
E-1	08/23/95	1.6	425	186	528	83.67%	<2.3 <2.0						****		HORIBA MINIRAE
Ĕ-1	09/28/95	3.6	530	183	655	95.85%	<2.4					-			MINIRAE
Ē-1	10/31/95	8.8	450	186	559	90.60%	<2.1					250			MINIRAE
E-1	11/14/95	7.1	450	201	572	91.80%	<2.1	***	744-3		- 222			-	MINIRAE
E-1/ F.	12/05/95	8.9	475	209	611	95.50%	<2.3		- 15 E	1445	Alexander .	Too here			MINIRAE
E-1	12/27/95	TA	375	200	476	99.93%	<1.8				152	***			MINIRAE

TABLE 1 - SUMMARY OF RESULTS OF VAPOR EXTRACTION TREATMENT SYSTEM OPERATION BP OIL COMPANY SERVICE STATION NO. 11133 2220 98TH AVENUE, OAKLAND, CALIFORNIA

ALISTO PROJECT NO. 10-025

Monitoring Point	Date of Monitoring	Hydrocarbons Detected (ppmv)	Influent Flow Rate (scfm)	Exhaust Temperature (degrees F)	Effluent Flow Rate (acfm)	Destruction Efficiency (%)	Hydrocarbon Discharge (lbs/day)	Period Hydrocarbons Proccessed (fbs)	Total Hydrocarbons Removed (lbs)	TPH-G (ppm)	Additiona B (ppm)	I Analyt T (ppm)	cal Data E (ppm)	X (ppm)	LAB/ FIELD EQUIPMENT
ABBREVIA ppmv scfm actm ppm I-1 E-1 ND NC TPH-G	Parts per mi Standard cu Actual cubic Parts per mi System influ System efflu Not detected Not calculate	ent ent i above reported	detection lim			B T E X ATOX HORIBA MINIRAE	Benzene Toluene Ethylbenzene Total xylenes Not analyzed/a Air Toxics, Ltd HORIBA Metel MINIRAE PID	pplicable							

TABLE 1 - FLOW DATA FOR GROUNDWATER REMEDIATION SYSTEM BP OIL COMPANY SERVICE STATION NO. 11133 2220 98TH AVENUE, OAKLAND, CALIFORNIA

Date		Flow Meler Reading (gallons)	Effluent Discharged (gallons)	Total Effluent Discharged (gallons)	Average Flow Rate (gpd)	Average Flow Rate (gpm)	Influent TPH-G Concentration (ug/l)	Period Hydrocarbons Removed (lb)	Cumulative Hydrocarbons Removed (lb)
03/21/95		0	0	0			000 400		
03/27/95		3,069	3,069	3,069	512	0.71	299,100	NC	NC
05/02/95		4,280	1,211	4,280	34	0.05	350,600	9.0	9.0
06/01/95		5,390	1,110	5,390	37	0.05	245,400	2.5	11.5
06/28/95		7,634	2,244	7,634	83	0.12	460,600	4.3	15.7
07/31/95		9,480	1,846	9.480	56	0.12	301,300	5.6	21.4
08/30/95		11,869	2,389	11,869	80	0.11	301,300	4.6	26.0
09/28/95		19,572	7,703	19,572	266	0.37	276,700	5.5	31.5
10/18/95		21,266	1,694	21,266	85	0.12	322,800	20.7	52.3
11/14/95		28,880	7,614	28,880	282	0.39	396,200	5.6	57.9
12/27/95		39,395	10,515	39,395	245	0.34	238,100	15.1	73.0
01/22/96		42,994	3,599	42,994	138	0.19	165,100	14.5	87.5
02/27/96		53,058	10.064	53,058	280	0.39	236,400	7.1	94.6
03/01/96		55,609	2,551	55,609	850		380,000	31.9	126.5
03/25/96		59,409	3,800	59,409	158	1.18	380,000	8.1	134,6
04/30/96		65,132	5,723	65,132	159	0.22	266,300	8.4	143.0
05/30/96		82,551	17,419	82,551	581	0.22	189,000	9.0	1 52.1
07/01/96	(a)	83,210	659	83,210	21	0.81	276,200	40.1	192.2
07/31/96	(b)	84,444	1,234	84,444	41	0.03	151,000	8.0	193.0
08/27/96	\ , ,	98,824	14,380	98,824	533	0.06	151,000	1.6	194.6
09/30/96		107,482	8,658	107,482	255	0.74	124,500	14.9	209.5
10/29/96		114,368	6,886	114,368	237	0.35	306,100	22.1	231.6
11/25/96		122,583	8,215	122,583	304	0.33	1,930	0.1	231.7
12/31/96	(a)	131,256	8,673	131,256	241	0.42	154,500	10.6	242.3
02/24/97	(b)	132,257	1,001	132,257	250	0.33	59,740	4.3	246.7
03/25/97	1-7	138,149	5,892	138,149	1,403	0.35	308,300	2.6	249.2
04/14/97	(a)	138,290	141	138,290	30	1.95	340,400	16.7	266.0
05/20/97	(c)	138,372	82	138,372	36	0.04	278,500	0.3	266.3
05/26/98	(b)	138,967	595	138,967	259	0.05	465,600	0.3	266.6
06/25/98	_,	143,256	4,289	143,256	259 143	0.36	294,400	1.5	268.1
07/07/98	(d)	149,459	6,203	149,459	517	0.20	287,300	10.3	278.4
09/26/98	(b)	150,311	852	150,311	11	0.72	287,300	14.9	293.2
09/30/98	1-,	151,021	710	151,021	178	0.01	230,200	1.6	294.9
10/28/98		160,715	9,694	160,715		0.25	230,200	1.4	296.2
11/24/98		162,237	1,522	162,237	346 56	0.48	441,300	35.7	331.9
12/14/98	(0)	166,358	4,121	166,358	508	0.08	441,300	-5.6	337.5
- CONTRACTOR OF STREET	THE OWNER OF THE OWNER O	A STORE STOR	75161	1001000	<ub< td=""><td>0.29</td><td>198,300</td><td>8.8</td><td>344.4</td></ub<>	0.29	198,300	8.8	344.4

TABLE 1 - FLOW DATA FOR GROUNDWATER REMEDIATION SYSTEM BP OIL COMPANY SERVICE STATION NO. 11133 2220 98TH AVENUE, OAKLAND, CALIFORNIA

Date	Flow Meter Reading (gallons)	Effluent Discharged (gallons)	Total Effluent Discharged (gallons)	Average Flow Rate (gpd)	Average Flow Rate (gpm)	Influent TPH-G Concentration (ug/I)	Period Hydrocarbons Removed (lb)	Cumulative Hydrocarbons Removed (lb)
ABBREVIATION	S:							
TPH-G gpd gpm	Total petroleum hydrod Gallons per day Gallons per minute	arbons as gasoline		ug/l lb NC	Micrograms per liter Pounds Not calculated			À.
NOTES:					1			
(a) (b) (c) (d) (e)	Hydrocarbon removal is System shut down due Operation of system res System shut down pend System shut down for o System shut down at the	to equipment failure, sumed. ding approval from Ea arbon changeout.			tration (ug/i) x 3.785 (liters	/gallon) x 1 (lb) / 453.6E	8 (ug),	

Sample ID	Date	TPH-G (ug/l)	B (ug/l)	T (ug/1)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DCA (ug/l)	Lead (mg/l)	Lat
I-1	03/21/95	180,000	32,000	55,000	5,100	27,000				ATI
I-1	04/03/95	210,000	31,000	68,000	6,600	35,000	-		_	ATI
J-1	05/23/95	160,000	17,000	38,000	4,400	26,000		***	0.008	ATI
i-1	06/20/95	330,000	27,000	55,000	7,600	41,000		***	0.00G	ATI
QC-1	06/20/95	200,000	21,000	45,000	5,300	30,000				ATI
I-1	08/29/95	160,000	34,000	54,000	4,700	24,000	7,600	ND<500		ATI
I-1	09/19/95	230,000	28,000	40,000	3,800	21,000		440		ATI
1-1	10/18/95	280,000	38,000	51,000	4,200	23,000	3,000	580		ίΤΑ
J-1	11/14/95	150,000	32,000	33,000	4,100	19,000		560		ATI
l-1	12/11/95	99,000	24,000	26,000	2,100	14,000	1,000	420		ATI
1-1	01/09/96	150,000	28,000	37,000	3,400	18,000	2,000	720		ATI
I-1	02/21/96	230,000	22,000	57,000	10,000	61,000		ND<5	_	SPL
I-1	03/13/96	180,000	29,000	35,000	3,300	19,000	_	ND<5	***	SPL
1-1	04/18/96	95,000	37,000	34,000	4,000	19,000		ND<5		SPL
1-1	05/14/96	170,000	28,000	43,000	5,200	30,000		ND<5		SPL
1-1	06/13/96	96,000	16,000	23,000	2,200	13,800	ND<10,000			SPL
I-1	08/08/96	75,000	23,000	13,000	2,500	11,000	2,300			SPL
I-1	09/17/96	210,000	23,000	33,000	5,100	35,000	ND<10,000		***	SPL
I-1	10/24/96	1,600	140	190	ND<1.0	ND<1.0	160			SPL
I-1	11/14/96	100,000	23,000	20,000	2,600	8,900	ND<2,500			SPL
J-1	12/11/96	39,000	6,800	8,300	740	4,900	ND<2,500			SPL
J-1	02/24/97	220,000	27,000	34,000	4,400	22,900	ND<10,000			SPL
J-1	03/12/97	230,000	24,000	48,000	5,400	33,000	ND<10,000			SPL
1-1	04/08/97	150,000	26,000	61,000	6,500	35,000	ND<25,000			SPL
I-1	05/15/97	330,000	24,000	54,000	7,600	50,000	ND<10,000		•••	SPL
1-1	05/22/98	210,000	20,000	36,000	3,600	24,800	ND<2,500	•••	***	SPL
I-1	06/17/98	230,000	6,000	26,000	2,300	23,000	ND<250			SPL
l-1	09/26/98	150,000	20,000	35,000	3,900	21,300	1,200			SPL
U+1 2012 1-1	10/26/96 12/07/98	320,000 130,000	30,000 19,000	47,000 26,000	8,300 3,200	38,000 20,100	2,400 1,500		第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	SPL
PS-1	03/21/95	47,000	690	4,200	1,400	8,400	***		***	ATI
PS-1	04/03/95	150,000	26,000	42,000	3,500	18,000	***			ATI
PS-1	05/23/95	35,000	1,400	4,900	1,100	6,800				ATI
PS-1	06/20/95	60,000	5,200	11,000	1,400	9,000				ATI
PS-1	08/29/95	25,000	150	1,000	500	3,300	ND<250	****		ATI
PS-1	09/19/95	55,000								ATI
PS-1	10/18/95	12,000	86	660	190	1,400		ND<10		ATI
PS-1	11/14/95	630	9	11	3	20		ND<1	****	ATI

Sample ID	Date	TPH-G (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DCA (ug/l)	Lead (mg/l)	Lab
PS-1	12/11/95	470	34	52	8	81	***	ND<1		ATI
PS-1	01/09/96	110	ND<1	ND<2	ND<1	1	,	ND<1		ATI
PS-1	02/21/96	75,000	4,100	12,000	3,000	20,000		ND<5		ATI SPL
PS-1	03/13/96	71,000	1,200	5,700	2,300	14,000		ND<5	***	
PS-1	04/18/96	190	ND<5	ND<5	ND<5	5		ND<5		SPL
PS-1	05/14/96	15,000	11	360	600	3,700		ND<5		SPL SPL
PS-1	06/13/96	18,000	2,000	3,300	460	3,060	ND<1,000			SPL
PS-1	08/08/96	180	3.2	6.6	1.6	21.2	37		***	SPL
PS-1	09/17/96	600	5.8	7.7	1.9	18.7	39		***	SPL
PS-1	10/24/96	35,000	3,900	4,700	ND<50	ND<50	570			SPL
PS-1	11/14/96	12,000	2,300	2,200	270	1,100	420			SPL
PS-1	12/11/96	17,000	2,900	3,200	330	1,400	640			SPL
PS-1	02/24/97	280,000	12,000	29,000	6,000	37,000	ND<10,000	***		SPL
PS-1	03/12/97	93,000	4,900	11,000	1,600	16,000		***		SPL
PS-1	04/08/97	130,000	10,000	31,000	5,900	30,800	ND<5,000			SPL
PS-1	05/15/97	230,000	11,000	35,000	6,900	46,000	ND<25,000	***		SPL
PS-1	05/22/98	58,000	5,400	11,000	1,200	7,200	ND<5,000 ND<500	***	-	SPL
PS-1	06/17/98	96,000	4,200	14,000	2,200	13,900	330	***		SPL
PS-1	09/26/98	79,000	11,000	19,000	1,900	11,800		***		SPL
PS-1	10/2B/98	120,000	13,000	15,000	1,700	15,100	ND<1,000 ND<2,500		Mark	SPL
PS-1	12/07/98	27,000	4,100	3,000	290	4,700	750	91 32.11		SPL
A-1	03/21/95	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0				
A-1	04/03/95	ND<50	ND<0.50	0.50	ND<0.50	ND<1.0				ATI
A-1	05/23/95	1,200	ND<1.0	2.2	3.4	22			*- =	ATI
A-1	06/20/95	88	ND<0.50	ND<0.50	ND<0.50	ND<1.0				ATI
A-1	08/29/95	340	7.1	68	5.3		_	_	_	ATI
A-1	09/19/95	ND<500	ND<1	ND<2	0.3 ND<1	92	5.2			ATI
A-1	10/18/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
A-1	11/14/95	ND<50	ND<1	ND<2	ND<1	ND<1	•••	ND<1		ATI
A-1	12/11/95	1,200	4	5	3	ND<1		ND<1		ίΤΑ
A-1	01/09/96	ND<50	ND<1	ND⊂2	ND<1	82 ND 4		ND<1		ATI
A-1	02/21/96	4,100	20	90	87	ND<1		ND<1		ATI
A-1	03/13/96	11,000	50	860		580		ND<5	-	SPL
A-1	04/18/96	60	ND<5	ND<5	650	4,100		ND<5		SPL
A-1	05/14/96	60	ND<5		ND<5	ND<5		ND<5		SPL
A-1	06/13/96	ND<50	ND<0.5	ND<5	ND<5	10		ND<5	_	SPL
A-1	08/08/96	60		ND<0.5	ND<0.5	ND<0.5	ND<10			SPL
A-1	09/17/96	140	16	12	1.8	10.9	61		_	SPL
44.1	00/1//00	INU	1.4	1.6	ND<1.0	7.5	ND<10			SPL

Sample ID	Date	TPH-G (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DCA (ug/l)	Lead (mg/l)	Lab
A-1	10/24/96	80	24	15	1.0	8.1	37	***		SPL
A-1	11/14/96	370	83	51	5.3	21	92	***		SPL
A-1	12/11/96	2,400	490	410	39	249	320		***	SPL
A-1	02/24/97	350	1.4	8.4	5.7	55	ND<10			SPL
A-1	03/12/97	90	0.53	ND<1.0	ND<1.0	ND<1.0	ND<10	***		SPL
A-1	04/08/97	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	-		SPL
A-1	05/15/97	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
A-1	05/22/98	120	ND<0.5	ND<1.0	ND<1.0	1.8	ND<10			SPL
A-1	06/17/98	1,400	ND<0.5	7.7	24	132	ND<10	***		SPL
A-1	09/26/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	-		SPL
A-1	10/28/98	ND-<50	ND-0.5	ND<1.0	ND<1.0	ND<1,0	ND<10	200	THE RESERVE WHEN	SPL
A-1	12/07/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	-		SPL SPL
B-1	03/21/95	88	ND<0.50	2	ND<0.50	2		52		ATI
B-1	04/03/95	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0				ATI
B-1	05/23/95	240	ND<0.50	0.68	0.93	7.2				ATI
B-1	06/20/95	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0				ATI
B-1	08/29/95	37,000	54	420	600	3500	260			ATI
B-1	09/19/95	550	ND<1	ND<2	ND<1	9		ND<1		ATI
8-1	10/18/95		-			***			***	ATI
B-1	11/14/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
B-1	12/11/95	270	ND<1	ND<2	ND<1	1	_	ND<1		ATI
B-1	01/09/96	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
B-1	02/21/96	ND<50	ND<5	ND<5	ND<5	ND<5		ND<5		SPL
B-1	03/13/96	ND<50	ND<5	ND<5	ND<5	14		ND<5		SPL
B-1	04/18/96	ND<50	ND<5	ND<5	ND<5	ND<5		ND<5		SPL
B-1	05/14/96	ND<50	ND<5	8	ND<5	11		ND<5		SPL
B-1	06/13/96	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<10	***		SPL
B-1	08/08/96	ND<50	2.3	1.2	ND<1.0	1.3	48		***	SPL
B-1	09/17/96	52	0.78	1.6	ND<1.0	ND<1,0	14			SPL
B-1	10/24/96	70	1.4	ND<1.0	ND<1.0	ND<1.0	13	***	_	SPL
B-1	11/14/96	100	19	9.3	1.1	3.9	24	_		SPL
B-1	12/11/96	80	26	7.1	ND<1.0	2.6	110			SPL
B-1	02/24/97	600	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	***		SPL
B-1	03/12/97	730	5.3	8.1	2.5	51	17	***	400	SPL
B-1	04/08/97	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
B-1	05/15/97	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
B-1	05/22/98	230	2.4	2.7	2.2	15.8	ND<10			SPL
B-1	06/17/98	1,000	0.85	10	15	90	ND<10			SPL

Sample ID	Date	TPH-G (ug/i)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	MTBE (ug/l)	DCA (ug/l)	Lead (mg/l)	Lab
B-1	09/26/98 10/28/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
B-1	12/07/98	ND<50 ND<50	0.9 ND<0.5	ND=1.0 ND=1.0	ND<1.0 ND<1.0	ND<1.0 ND<1.0	ND<10 - 10 ND<10		建筑 类原体	SPL
E-1	03/21/95	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		740	ND<0.002	
E-1	04/03/95	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	_			ATI
E-1	05/23/95	140	ND<0.50	ND<0.50	ND<0.50	2.3	_		0.007	ATI
QC-1	05/23/95	250	ND<0.50	ND<0.50	1.0	7.5				ATI
E-1	06/20/95	ND<50	ND<0.50	ND<0.50	ND<0.50	1.1	•			ATI
E-1	08/29/95	200	ND<1	ND<2	ND<1	ND<1	ND<5		_	ATI
E-1	09/19/95	ND<500	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
QC-1	09/19/95	ND<500							-	ATI
E-1	10/18/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1	_	ATI
QC-1	10/18/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
E-1	11/14/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
QC-1	11/14/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
E-1	12/11/95	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
E-1	01/09/96	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
QC-1	01/09/96	ND<50	ND<1	ND<2	ND<1	ND<1		ND<1		ATI
E-1	02/21/96	ND<50	ND<5	ND<5	ND<5	ND<5		ND<5	-	ATI
E-1	03/13/96	2,600	ND<5	19	49	320	-	ND<5		SPL
E-1	04/18/96	ND<50	ND<5	ND<5	ND<5	ND<5		ND<5	***	SPL
E-1	05/14/96	ND<50	ND<5	ND<5	ND<5	ND<5		ND<5 ND<5		SPL
E-1	06/13/96	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<10			SPL
E-1	08/08/96	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	55			SPL
E-1	09/17/96	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	***	_	SPL
E-1	10/24/96	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
E-1	11/14/96	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	_	_	SPL
E-1	12/11/96	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
E-1	02/24/97	ND<50	0.76	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
E-1	03/12/97	1,800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		***	SPL
E-1	04/08/97	ND<50	ND<1.0	ND<1.0	ND<1.0	1.3	ND<1.0	=	 -	SPL
E-1	05/15/97	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0			SPL
E-1	05/22/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPL
E-1	06/17/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10	***		SPL
E-1	09/26/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10		***	SPL
Eil	10/28/98	ND<50	ND<0.5	NDef.0	ND<1.0	NDe1.0	ND<10	5 7 . 4 4	MUDIES NO.	
E-1	12/07/98	ND<50	ND<0.5	ND<1.0	ND<1.0	ND<1.0	ND<10			SPE

Sample ID	Date	TPH-G (ug/l)	B (ug/1)	T (ug/l)	€ (ug/l)	X (ug/l)	MTBE (ug/l)	DCA (ug/l)	Lead (mg/l)	Lab
ABBREVIAT	TONS:									
TPH-G 8 T E X MTBE DCA ug/l mg/l	Benzene Toluene Ethylbenzene Total xylenes Methyl tert butyl e 1,2-Dichloroethar Micrograms per lite Milligrams per lite	ie Ier			PS-1 A-1 B-1 E-1 QC-1 ND ATI SPL	Sample collected Sample collected Sample collected Blind duplicate sa	ve reported detection	ampling port ampling port ng port		

TABLE PRODUCT REMOVAL STATUS

WELL ID	DATE OF MONITORING	PRODUCT REMOVED (Gallons)	PRODUCT REMOVED CUMULATIVE (Gallons)
RW-1	10/6/1993	1.00	1.00
	10/14/1994	1.00	2.00
	10/20/1994	18.00	20.00
	10/26/1994	3.00	23.00
	11/2/1993	5.00	28.00
	11/10/1994	6.00	34.00
	11/16/1994	2.50	36.50
	11/23/1994	5.00	41.50
	11/30/1993	2.00	43.50
	12/7/1993	4.00	47.50
	12/17/1993	1.50	49.00
	1/4/1994	5.00	54.00
	1/12/1994	3.50	57.50
	1/20/1994	2.50	60.00
	2/11/1994	4.00	64.00
	2/18/1993	3.50	67.50
	2/25/1994	3.00	70.50
	3/4/1994	3.50	74.00
	3/18/1994	5.50	79.50
	3/30/1994	4.00	83.50
	4/13/1994	4.60	88.10
	4/21/1994	4.20	92.30
	4/29/1994	4.50	96.80
	5/6/1994	5.50	102.30
	5/13/1994	3.50	105.80
	5/20/1994	3.50	109.30
	5/26/1994	4.50	113.80
	6/2/1994	3.50	117.30
	6/9/1994	2.50	119.80
	6/16/1994	3.50	123.30
	6/23/1994	4.00	127.30
	6/29/1994	2.50	129.80
	7/7/1994	2.00	131.80
	7/12/1994	3.00	134.80
	7/20/1994	1.50	136.30
	7/29/1994	3.50	139.80
	8/5/1994	1.50	141.30
	8/12/1994	2.00	143.30
	8/18/1994	2.50	145.80
	9/9/1994	3.50	149.30
	9/16/1994	4.00	153.30

TABLE PRODUCT REMOVAL STATUS

WELL ID	DATÉ OF MONITORING	PRODUCT REMOVED (Gallons)	PRODUCT REMOVED CUMULATIVE (Gallons)
RW-1	9/23/1994	2.00	155.30
	12/7/1995	0.00	155.30
	3/28/1996	0.01	155.31
	06/20/96	0.00	155.31
	4/14/1997	< 0.05	155.31
	7/2/1997	0.25	155.56
	9/30/1997	<0.01	155.56
	1/21/1998	0.5	156.06
	4/10/1998	0.09	156.15
	6/19/1998	<0.01	156.15
	11/30/1998	0.00	156.15
	1/21/1999	0.00	156.15
	4/30/1999	0.11	156.26
	7/9/1999	0.00	156.26
	11/3/1999	1.06	157.32
	1/12/2000	0.53	157.85
	4/13/2000	0.26	158.11
	5/24/2000	0.53	158.64
	6/1/2000	0.00	158.64
	6/8/2000	0.26	158.90
	6/15/2000	0.13	159.03
	6/20/2000	0.53	159.56
	7/7/2000	0.01	159.57
	7/20/2000	0.11	159.68
	7/26/2000	0.13	159.81
	7/31/2000	0.00	159.81
	8/8/2000	0.01	159.82
	8/16/2000	0.00	159.82
	8/23/2000	0.13	159.95
	8/31/2000	0.40	160.35
	9/8/2000	0.53	160.88
	9/25/2000	0.01	160.89
	10/24/2000	0.00	160.89
	2/14/2000	0.01	160.90
	3/20/2000	0.13	161.03
	4/26/2000	0.00	161.03
	5/17/2000	0.00	161.03
	6/28/2000	0.00	161.03
	1/19/2001	0.11	161.14
	2/14/2001	0.01	161.15
	3/20/2001	0.13	161.28
	4/26/2001	0.00	161.28
	5/17/2001	0.00	161.28

TABLE PRODUCT REMOVAL STATUS

WELL ID	DATE OF MONITORING	PRODUCT REMOVED (Gallons)	PRODUCT REMOVED CUMULATIVE (Gallons)
	6/28/2001	0.00	161.28
	7/24/2001	0.00	161.28
	9/21/2001	0.01	161.29
	10/23/2001	0.00	161.29
	11/30/2001	0.00	161.29
	1/18/2002	0.00	161.29
	2/7/2002	0.00	161.29
MW-1	10/20/1993	0.10	0.10
	11/10/1993	0.10	0.20
	9/9/1994	SHEEN	0.20
	10/26/1994	SHEEN	0.20
	11/16/1994	SHEEN	0.20
	12/21/1994	0.25	0.45
	2/8/1995	0.00	0.45
	4/10/1995	0.25	0.70
	6/29/1995	SHEEN	0.70
	9/18/1995	SHEEN	0.70
	12/7/1995	SHEEN	0.70
	3/28/1996	<.001	0.70
	06/20/96	0.002	0.70
	10/11/1996	<0.001	0.70
	1/2/1997	<0.01	0.70
	4/14/1997	< 0.01	0.70
	7/2/1997	<0.01	0.70
	1/21/1998	<0.01	0.70
	6/19/1998	<0.01	0.70
	11/30/1998	0.00	0.70
	1/21/1999	SHEEN	0.70
	4/30/1999	SHEEN	0.70
	7/9/1999	SHEEN	0.70
	11/3/1999	0.00	0.70
	1/12/2000	0.00	0.70
	4/13/2000	0.00	0.70
	5/24/2000	0.00	0.70
	6/1/2000	0.00	0.70
	6/8/2000	0.00	0.70
	6/15/2000	0.00	0.70

NOTE: Groundwater and soil vapor extraction equipment installed in RW-1 in October 1994.

ATTACHMENT E

RBCA Exposure Evaluation Flow Charts, Tier 1, 2 and 3 evaluations, and Statistical analysis Results

Source: MWH 2002. Risk-Based Corrective Action (RBCA) Evaluation For BP Oil Facility No. 11133, 2220 98th Avenue, Oakland, California. March.

Figure 5. Tier 1 and 2 RBCA Conceptual Site Model

	Primary			Pote	ential Recep	tors
Primary Source	Release Mechanism	Exposure Media	Exposure Route	Construction Workers	Commercial Workers	Residential Receptor
			Dermal Contact	1		
Soil		Soil	Ingestion	1		
	Volatilization	Indoor Air	Inhalation of Volatiles		1	1
	Volatilization	Outdoor Air	Inhalation of Volatiles	/		
Ground-water			Inhalation of Volatiles	1	1	1

[✓] Potentially complete exposure pathway.

Risk-Based Corrective Action (RBCA) Evaluation

Figure 6. Tier 3 RBCA Conceptual Site Model

	Primary			Pot	ential Recep	tors
Primary Source	Release Mechanism	Exposure Media	Exposure Route	Construction Workers	Commercial Workers	Residentia Receptor
			Dermal Contact	~		
Soil		Soil	Ingestion	1		
	Volatilization	Indoor Air	Inhalation of Volatiles		1	1
	Volatilization	Outdoor Air	Inhalation of Volatiles	1		
	Leaching*	Ground-water	Inhalation of Volatiles	·	1	1

- ✓ Potentially complete exposure pathway.
- * Evaluated using the RBCA equations.

Table 1. Soil RBCA Tier 1 Analysis

			Soil Co	ncentration ((mg/kg)		
			Ethyl-				
	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-G	TPH-D
Minimum	0.01	0.01	0.003	0.01	0.10	1.00	3,900
Mean	0.08	0.04	0.025	0.14	0.5	3.0	
Maximum	1.0	0.71	0.520	3.0	4.0	33.0	3,900
Location of Maximum	RW-1@25°	RW-1@25°	P3@2.5 ^d	P3@2.5 ^d	P3@3.5 ^d	RW-1@25°	TD-5-0.5 ^e
Soil Direct Contact-Construction Tier 1 level (Oakland-RBCA, ^b Proceed to Tier 2?	195.0 No	5,833 No	3,438 No	31,250 No	177 No	NA Yes	NA Yes
Soil to Outdoor Air-Construction Tier 1 level (Oakland-RBCA, ^b Proceed to Tier 2?	18.3 No	SAT No	SAT No	SAT No	SAT No	NA Yes	NA Yes
Soil to Enclosed Space Air-Workers Tier 1 level (Oakland-RBCA) Proceed to Tier 2?	1.1 No	SAT No	SAT No	SAT No	SAT No	NA Yes	NA Yes
Soil to Enclosed Space Air-Residents Tier 1 level (Oakland-RBCA) Proceed to Tier 2?	0.069 Yes	SAT No	SAT No	SAT No	SAT No	NA Yes	NA Yes

From soil sampling for the site

^bConstruction benzene Tier 1 level was calculated using construction worker exposure parameters (480 mg/day ingestion, exposure duration of one year). cAlton Geoscience (1990b).

Gettler-Ryan Inc (1999).

^eEMCON (1994).

SAT = soil saturation concentration

Table 3. Soil RBCA Tier 2 Analysis

	Conc	entration (m	g/kg)
	Benzene	ТРН-G	TPH-D
Minimum	0.01	1.00	3,900
Mean	0.08	3.0	
Maximum	1.00	33.0	3,900
Location of Maximum	RW-1@25 ^d	RW-1@25 ^d	TD-5-0.5 ^e
Soil Direct Contact-Construction			
Tier 2 level (Oakland-RBCA-Sandy Silts),c	NA	NA	NA
Proceed to Tier 3	NA	Yes	Yes
Soil to Outdoor Air-Construction			
Tier 2 level (Oakland-RBCA-Sandy Silts),c	NA	NA	NA
Tier 2 level (Cal-EPA adjusted)	NA		
Proceed to Tier 3	NA	Yes	Yes
Soil to Enclosed Space Air-Workers			
Tier 2 level (Oakland-RBCA-Sandy Silts)	NA	NA	NA
Proceed to Tier 3	NA	Yes	Yes
Soil to Enclosed Space Air-Residents			
Tier 2 level (Oakland-RBCA-Sandy Silts)	1.1	NA	NA
Proceed to Tier 3	No	Yes	Yes

^aFrom soil sampling for the site.

SAT = soil saturation concentration

^bConstruction benzene Tier 1 level was adjusted to reflect the difference between the construction worker exposure duration (1 year) versus the commercial worker exposure duration (assumed to be 25 years).

^cSandy Silts Tier 2 values are used because they are considered the most appropriate based on the soil types beneath the site.

^dAlton Geoscience (1990b).

^eEMCON (1994).

Table 5. Soil Statistical Analysis

		So	oil Concentr	ation (mg/kg	g) ^a		
	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ	TPH-G	TPH-D
Soil (all depths)							
Samples	58	58	58	58	16	58	2
Detections	29	19	19	22	5	11	1
Detection Frequency	50%	33%	33%	38%	31%	19%	50%
Minimum Detection	0.01	0.01	0.030	0.01	0.10	1.00	3,900
Mean	0.14	0.10	0.061	0.29	0.5	9.20	NA
Maximum Detection	1.0	0.71	0.520	3.0	4.0	33	3,900
Standard Deviation	0.28	0.18	0.12	0.73	1.59	8.79	NA
Distribution	Lognormal	Lognormal	Lognormal	Lognormal	Normal	NP	NA
95% UCL	0.41	0.42	0.18	1.2	3.0	8.7*	3,900
Soil (0-10 feet)							
Samples		THE RESIDENCE				23	2
Detections	担国新国					8	1
Detection Frequency						35%	50%
Minimum Detectior	1011	THE WAY	治 原長種			1.20	3,900
Mean-Detects						8.3	NA
Mean			En her		7.	8.3	NA
Maximum Detection						23.0	3,900
Standard Deviation				ALTERNATION AND ADDRESS OF THE PARTY OF THE		7.46	NA
Distribution						Normal	NA
95% UCL						13.2	3,900

^{*} Determined assuming the underlying distribution of the data is normal. See text a Half the detection limit was used for non-detect values

NP = Non-parametric

NA= not applicable

Table 7. Soil Vapor Statistical Analysis

		Soi	l Concentr	ation (ppm	$(\mathbf{v})^{\mathbf{a}}$	
			Southe	astern ^b		
			Ethyl-			
	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-G
Soil Vapor		-				
Samples	9	9	9	9	9	9
Detections	8	9	1	8	4	9
Detection Frequency	89%	100%	11%	89%	44%	100%
Minimum Detection	0.0014	0.0033	0.0010	0.0013	0.0013	1.6
Mean	0.0082	0.0079	0.0015	0.0048	0.0027	5.2
Maximum Detection	0.026	0.019	0.0027	0.0098	0.0050	11
Standard Deviation	0.0070	0.0045	0.00051	0.0025	0.0016	3.6
Distribution	Lognormal	Lognormal	NP	Normal	NP	Normal
95% UCL	0.018	0.012	0.0018*	0.0064	0.0037*	7.4
			Eas	tern ^c		
			Ethyl-			
	Benzene	Toluene	benzene	Xylenes	MTBE	TPH-G
Soil Vapor						
Samples	9	9	9	9	9	9
Detections	8	9	4	8	6	8
Detection Frequency	89%	100%	44%	89%	67%	89%
Minimum Detection	0.0021	0.0055	0.0012	0.0021	0.0013	1.3
Mean	0.05	0.041	0.020	0.085	0.01	2.6
Maximum Detection	0.34	0.23	0.15	0.59	0.062	6.2
Standard Deviation	0.11	0.073	0.049	0.19	0.019	1.6
Distribution	Lognormal	Lognormal	NP	Lognormal	Lognormal	Lognorm
95% UCL	0.34	0.19	0.050*	0.59	0.041	4.0

^{*} Determined assuming the underlying distribution of the data is normal. See text.

NP = Non-parametric

^aHalf the detection limit was used for non-detect values.

^bLocated near southeastern property line, adjacent to a 2-story apartment building; borings B-1, B-2, and B-3.

^cLocated near eastern property line, adjacent to a single-story residence; borings B-4, B-5, and B-6.

Table 8. On-Site Vapor Diffusion Model - Subsurface Soil to Ambient and Indoor Air^a

			TPH-D				
		_	C9-C18	aliphatics	C9-C22	aromatics	
		_		Indoor		Indoor	
Parameter	Abbrev.	Units	Outdoor	Commercial	Outdoor ·	Commercial	
Henry's law constant	H	unitless	250.51	250.51	0.17	0.17	
Volumetric air content in vadose zone soils ^b	$oldsymbol{ heta}_{ m as}$	cm ³ /cm ³	0.13	0.13	0.13	0.13	
Volumetric water content in vadose zone soils ^b	$oldsymbol{ heta}_{ ext{ws}}$	cm³/cm³	0.35	0.35	0.35	0.35	
Volumetric air content in crack ^b	$oldsymbol{ heta}_{ ext{acrack}}$	cm ³ /cm ³	0.26	0.26	0.26	0.26	
Volumetric water content in crack ^b	$oldsymbol{ heta}_{ ext{wcrack}}$	cm ³ /cm ³	0.12	0.12	0.12	0.12	
Total soil porosity ^b	$oldsymbol{ heta}_{ extsf{T}}$	cm³/cm³	0.45	0.45	0.45	0.45	
Diffusion coefficient in water ^b	\mathbf{D}^{wat}	cm²/s	1.0 E-5	1.0 E-5	1.0 E-5	1.0 E-5	
Vapor phase diffusion coefficient in air ^b Effective diffusion coefficient-soil ^e	D ^{air} ,	cm²/s cm²/s	0.100 4.6 E-4	0.100 4,9 E-4	0.100 4.6 E-4	0.100 4.9 E-4	
Effective diffusion coefficient-crack ^c	D ^{ett} crack		5.2 E-3	5.2 E-3	5.2 E-3	5.2 E-3	
Wind speed ^d	Uair	cm/s	322.0		322.0		
Mixing zone height ^b	$oldsymbol{\delta}_{ ext{air}}$	cm	200		200		
Partition coefficient for organic carbon ^e	k _{oc}	cm³/g	341,455	341,455	4,217	4,217	
Organic carbon content of soil ^b	$f_{ m oc}$		1.8%	1.8%	1.8%	1.8%	
Sorption coefficient ^f	k_s	cm³/g	5975.46	5975.46	73.80	73.80	
Soil bulk density ^b	$ ho_{ extsf{s}}$	g/cm ³	1.5	1.5	1.5	1.5	
Depth to subsurface soil sources ^d	L_{S}	cm	15.2	15.2	15.2	15.2	
Width of source area parallel to wind ^d	W	cm	305	~ -	305		
Enclosed space air exchange rate ^b Enclosed space volume/infiltration area ratio ⁸	ER	sec ⁻¹		1.4 E-3 9.4 E+3		1.4 E-3 9.4 E+3	
Enclosed space or wall thickness ^b	$\mathbf{L}_{\mathtt{B}}$	cm		9.4 E+3 15		9.4 E+3 15	
_	\mathbf{L}_{crack}	cm cm²/cm²	_	· -			
Areal fraction of cracks in foundations/walls ^b	η			0.001		0.001	
Soil to ambient air volatilization factor ⁿ	VF	$(mg/m^3) / (mg/kg)$	6.0 E-6	1.0 E-7	3.4 E-7	5.9 E-9	
Concentration in soil	C _s	mg/kg	2,535	2,535	1,365	1,365	
Ambient air concentration	\mathbf{C}_{air}	mg/m³	1.5 E-2	2.6 E-4	4.6 E-4	8.0 E-6	

Table 9. On-Site Vapor Diffusion Model - Groundwater to Indoor Aira

				TPH-G	
Parameter	Abbrev.	Units	C5-C8 aliphatics	C9-C18 aliphatics	C9-C22 aromatics
Henry's law constant	H	unitless	42.64	250.51	0.17
Volumetric air content in vadose zone soils ^b	$ heta_{ extsf{as}}$	cm ³ /cm ³	0.13	0.13	0.13
Volumetric air content in capillary fringe soils ^b	$\theta_{ m a,cap}$	cm ³ /cm ³	0.015	0.015	0.015
Volumetric water content in vadose zone soils ^b	θ_{ws}	cm^3/cm^3	0.33	0.33	0.33
Volumetric water content in capillary fringe soils ^b	$\theta_{ m w,cap}$	cm ³ /cm ³	0.44	0.44	0.44
Volumetric air content in foundation/wall cracks ^b	θ_{acrack}	cm ³ /cm ³	0.26	0.26	0.26
Volumetric water content in foundation/wall cracks ^b	$\theta_{ m wcrack}$	cm ³ /cm ³	0.12	0.12	0.12
Effective diffusion coefficient through capillary fringe	$\mathbf{D}_{eff,cap}$	cm²/s	5.0 E-7	4.3 E-7	2.0 E-5
Effective diffusion coefficient in soil ^d	$\mathbf{D}_{eff,s}$	cm²/s	4.9 E-4	4.9 E-4	4.9 E-4
Effective diffusion coefficient between groundwater and soil e	$D_{eff,ws}$	cm ² /s	2.5 E-6	2.2 E-6	8.6 E-5
Effective diffusion coefficient through cracks ^f	$\mathbf{D}_{eff,crack}$	cm ² /s	5.6 E-3	5.6 E-3	5.6 E-3
Thickness of capillary fringe ^b	h _{cap}	cm	106	106	106
Thickness of vadose zone ⁸	h _v	cm	427	427	427
Total soil porosity ^b	Θ_{T}	cm ³ /cm ³	0.45	0.45	0.45
Diffusion coefficient in water ^b	$\mathbf{D_w}$	cm ² /s	1.1 E-5	1.1 E-5	1.1 E-5
Vapor phase diffusion coefficient in airb	\mathbf{D}_{air}	cm ² /s	0.100	0.100	0.100
Soil bulk density ^b	ρ_{s}	g/cm ³	1.5	1.5	1.5
Depth to groundwater ⁸	L_{GW}	cm	533.4	533.4	533.4
Enclosed-space volume/infiltration ratiob	$L_{\mathtt{B}}$	cm	305	305	305
Enclosed-space foundation or wall thickness ^b	L_{crack}	cm	1	1	1
Areal fraction of cracks in foundations/walls ^b	η	cm ² /cm ²	0.001	0.001	0.001
Enclosed space air exchange rate ^b	ER	L/s	1.4 E-3	1.4 E-3	1.4 E-3
	1779	(mg/m ³)/			
Groundwater to indoor air volatilization factor ^h	VF_{es}	(mg/L)	4.7 E-4	2.4 E-3	6.4 E-5
Concentration in groundwater ⁸	C_{gw}	mg/L	12.8	9.1	14.6
Enclosed-space air concentration	C _{es}	mg/m³	5.9 E-3	2.2 E-2	9.3 E-4

Table 10. On-Site Vapor Diffusion Model - Groundwater to Ambient Air

		_		TPH-G	
		_	C5-C8	C9-C18	C9-C22
Parameter	Abbrev.	Units	aliphatics	aliphatics	aromatics
Henry's law constan ^b	H	unitless	42.64	250.51	0.17
Volumetric air content in vadose zone soils ^b	Θ_{as}	cm³/cm³	0.13	0.13	0.13
Volumetric air content in capillary fringe soils ^b	$\theta_{ m a,cap}$	cm ³ /cm ³	0.015	0.015	0.015
Volumetric water content in vadose zone soils ^b	$\boldsymbol{\Theta}_{\mathbf{ws}}$	cm³/cm³	0.33	0.33	0.33
Volumetric water content in capillary fringe soils ^b	$\boldsymbol{\theta}_{w,cap}$	cm ³ /cm ³	0.44	0.44	0.44
Effective diffusion coefficient through capillary fringe	$\mathbf{D}_{eff,cap}$	cm ² /s	4.9 E-7	4.3 E-7	1.8 E-5
Effective diffusion coefficient in soild	$\mathbf{D}_{eff,s}$	cm ² /s	4.9 E-4	4.9 E-4	4.9 E-4
Groundwater/soil effective diffusion coefficient ^e	$D_{eff,ws}$	cm ² /s	2.5 E-6	2.2 E-6	7.9 E-5
Thickness of capillary fringe ^b	${ m h_{cap}}$	cm	106	106	106
Thickness of vadose zone ^f	h _v	cm	427	427	427
Total soil porosity ^b	Θ_{T}	cm ³ /cm ³	0.45	0.45	0.45
Diffusion coefficient in water ^b	$\mathbf{D}_{\mathbf{w}}$	cm ² /s	1.0 E-5	1.0 E-5	1.0 E-5
Vapor phase diffusion coefficient in airb	$\mathbf{D}_{\mathtt{air}}$	cm ² /s	0.100	0.100	0.100
Wind speed above source parallel to groundwater flow ^b	$\mathbf{U}_{\mathtt{air}}$	cm/s	322	322	322
Ambient air mixing zone height ^b	$\delta_{ m air}$	cm	200	200	200
Width of source area parallel to groundwater flow	w	cm	2,286	2,286	2,286
Soil bulk density ^b	ρ_{s}	g/cm ³	1.5	1.5	1.5
Depth to groundwater	L_{GW}	cm	533.4	533.4	533.4
Groundwater to ambient air volatilization factor ⁸	VF_{am}	(mg/m ³)/ (mg/kg)	7.0 E-6	3.6 E-5	9.2 E-7
Concentration in groundwater ^f	C_{gw}	mg/L	12.8	9.1	14.6
Ambient air concentration ^h	$\mathbf{C}_{\mathtt{am}}^{\mathtt{c}}$	mg/m ³	8.9 E-5	3.3 E-4	1.3 E-5

^aASTM, 1999, Oakland RBCA (2000a).

^bOakland RBCA (2000a) default value. The soils beneath the site are predominantly silty clay; therefore, soil parameters are the average of the sandy silt and clayey silt parameters. $^{c}D_{a}\times(\theta_{acao}^{-3.33}/\theta_{T}^{-2})+D_{w}\times(1/H)\times(\theta_{w.cao}^{-3.33}/\theta_{T}^{-2}).$ $^{d}D_{a}\times(\theta_{as}^{-3.33}/\theta_{T}^{-2})+D_{w}\times(1/H)\times(\theta_{ws}^{-3.33}/\theta_{T}^{-2}).$

 $^{^{}e}(h_{cap} + h_{v})/[(h_{cap}/D_{eff,cap}) + (h_{v}/D_{s,eff})].$

^fBased on site data.

 $^{^{}g}1000 \text{ L/m}^{3} \times \text{H/[1 + (U_{air} \times \delta_{air} \times L_{GW})/(W \times D_{eff,ws})]}.$

 $^{^{}h}C_{ew} \times VF_{am}$

Table 12. Leaching Model - Soil to Groundwater^a

		•			Ethyl-		
Parameter	Abbrev.	Units	Benzene	Toluene	benzene	Xylene	MTBE
Henry's law constant	Н	unitless	0.22	0.22	0.22	0.22	0.22
Volumetric air content in vadose zone soils ^b	$oldsymbol{ heta}_{ ext{as}}$	cm ³ /cm ³	0.13	0.13	0.13.	0.13	0.13
Volumetric water content in vadose zone soils ^b	$oldsymbol{ heta}_{ ext{ws}}$	cm ³ /cm ³	0.33	0.33	0.33	0.33	0.33
Groundwater darcy velocity ^b	$\mathbf{U}_{\mathtt{air}}$	cm/s	33.0	33.0	33.0	33.0	33.0
Groundwater mixing zone thickness ^b	$oldsymbol{\delta}_{ ext{gw}}$	cm	1143	1143	1143	1143	1143
Partition coefficient for organic carbon ^b	k _{oc}	cm³/g	83	83	83	83	83
Organic carbon content of soil ^b	$oldsymbol{f_{ ext{oc}}}$		1.8%	1.8%	1.8%	1.8%	1.8%
Sorption coefficient ^d	k_s	cm³/g	1.45	1.45	1.45	1.45	1.45
Soil bulk density ^b	$ ho_{ extsf{s}}$	g/cm³	1.72	1.72	1.72	1.72	1.72
Infiltration rate ^b	I	cm/yr	4.5	4.5	4.5	4.5	4.5
Width of source area	W	cm	2286.0	2286.0	2286.0	2286.0	2286.0
Soil to ambient air volatilization factor ^f	LF	(mg/L) / (mg/kg)	1.3 E-1				
Concentration in soil ^e	C_s	mg/kg	0.41	0.42	0.18	1.23	2.97
Predicted groundwater concentration ^g	C_{gw}	mg/L	0.053	0.054	0.023	0.159	0.384
Current average groundwater concentration ^e	C_{gw}	mg/L	2.81	6.27	1.33	5.91	2.78
Predicted concentration>current concentration?			NO	NO	NO	NO	NO

^{*} This model assumes that the asphalt is removed from the site. If the asphalt remains it will act as an effective barrier to infiltration. If infiltration is impeded, it is considered likely that there will no driving force for this COPC to move through the vadose zone, and if it does reach water it is unlikely to be in detectable amounts.

^aASTM, 1999, Oakland RBCA (2000a).

^bOakland RBCA (2000a) default value. The soils beneath the site are predominantly silty clay; therefore, soil parameters are the average of the sandy silt and clayey silt parameters.

^cBased on available scientific literature.

 $^{^{}d}f_{oc} \times k_{oc}$.

^eBased on site data.

 $^{^{\}rm f}\rho_{\rm s}/[\theta_{\rm as}+{\rm ks}\times{\rm ps}+\theta{\rm as}\times{\rm H}]\times(1+(({\rm U_{\rm gwl}}\times\delta_{\rm gw}/({\rm I}\times{\rm W}))~{\rm cm}^3-{\rm kg/l-g}.$

 $^{{}^{}g}C_{s} \times LF$.

Table 13. Exposure Parameters

				Valu	je ^a	
			Commercial	Construction	Resident	Resident
Parameter	Abbrev.	Units	Worker	Worker	Child	Adult
Dermal absorption factor	ABS		0.1	0.1	NA .	NA
Averaging time for carcinogens	AT_c	days	25,550	25,550	25,550	25,550
Averaging time for non-carcinogens	AT_{nc}	days	9,125	365	2,190	8,760
Body weight	BW	kg	70	70	15	70
Exposure frequency	EF	d/yr	250	183	350	350
Exposure duration	ED	years	25	1	6	24
Skin surface area exposed to soil	SA	cm^2	5,000	5,000	NA	NA
Soil adherence factor	AF	mg/cm ²	0.5	. 0.5	NA	NA
Soil ingestion rate	SI	mg/d	50	480	NA	NA
Exposure time to indoor air	$\mathrm{ET}_{\mathrm{ia}}$	hr/d	9		24	24
Exposure time to outdoor air	ET_{oa}	hr/d		- 9		
Outdoor air inhalation rate	IR_{am}	m ³ /d		20		
Indoor air inhalation rate	IR_{es}	m ³ /d	20		10	15

^aOakland RBCA (2000a) unless otherwise noted.

Table 15. RBCA Tier 3 Evaluation for Soil - On-Site Construction Worker

	Exposure	RfDa	CSF⁴		LADD		ADD^{c}	Hazard	Odor	Nuisance
Chemical	Pathway	(mg/kg-d)	(mg/kg-d) ⁻¹	Conc.b	(mg/kg-d)	ILCR ^d	(mg/kg-d)	Index ^d	Threshold ^b	Index ⁸
Soil										
TPH-G				13.20						
C5-C8 aliphatics	Ingestion	0.06		4.62	2.3 E-7		1.6 E-5	0.0003		
C9-C18 aliphatics	Ingestion	0.6		3.30	1.6 E-7		1.1 E-5	0.00002		
C9-C22 aromatics	Ingestion	0.03		5.28	2.6 E-7		1.8 E-5	0.0006		
TPH-D				3,900						
C9-C18 aliphatics	Ingestion	0.06		2,535	1.2 E-4		8.7 E-3	0.15		
C9-C22 aromatics	Ingestion	0.03		1,365	6.7 E-5	هجي	4.7 E-3	0.16		
TPH-G				13.20						
C5-C8 aliphatics	Dermal	0.06		4.62	1.2 E-7	540	8.3 E-6	0.0001		
C9-C18 aliphatics	Dermal	0.6		3.30	8.4 E-8		5.9 E-6	0.000010		
C9-C22 aromatics	Dermal	0.03		5.28	1.4 E-7		9.5 E-6	0.0003		
TPH-D				3,900						
C9-C18 aliphatics	Dermal	0.06		2,535	6.5 E-5		4.5 E-3	0.076		
C9-C22 aromatics	Dermal	0.03		1,365	3.5 E-5	b-0%	2.4 E-3	0.081		
Outdoor Air										
TPH-G				2.6 E-4					281	9.3 E-7
C5-C8 aliphatics	Inhalation	0.06		2.5 E-4	1.9 E-7		1.4 E-5	0.0002		
C9-C18 aliphatics	Inhalation	0.6		6.2 E-6	4.8 E-9		3.3 E-7	0.0000006		
C9-C22 aromatics	Inhalation	0.03		5.6 E-7	4.3 E-10		3.0 E-8	0.0000010		
TPH-D				1.6 E-2					888	1.8 E-5
C9-C18 aliphatics	Inhalation	0.06		1.5 E-2	1.2 E-5		8.1 E-4	0.014		
C9-C22 aromatics	Inhalation	0.057		4.6 E-4	3.5 E-7	·	2.5 E-5	0.0004		

Table 16. RBCA Tier 3 Evaluation for Groundwater - On-Site Commercial Worker

	Exposure	RfD ^a	CSF ^a		LADD		$\mathbf{ADD^c}$	Hazard	Odor	Nuisance
Chemical	Pathway	(mg/kg-d)	(mg/kg-d) ⁻¹	Conc.b	(mg/kg-d)	ILCR ^d	(mg/kg-d)	Index ^d	Threshold ^b	Index ^h
Indoor Air										
TPH-G				2.9 E-2					281	1.0 E-4
C5-C8 aliphatics	Inhalation	0.06		5.9 E-3	1.6 E-4	***	4.4 E-4	0.0073		
C9-C18 aliphatics	Inhalation	0.6		2.2 E-2	5.7 E-4		1.6 E-3	0.0026		
C9-C22 aromatics	Inhalation	0.03		9.3 E-4	2.5 E-5		6.9 E-5	0.0023		
Total Risk/HI Acros	s Pathways ^c							0.012		
Site-Specific Target	Level (SSTL	, in mg/L) ^f -1	TPG-G				·	2,991		
SSTL Exceeded?			•					NO		
Target Risk		*				1 E-5		1.0		

^aFrom OEHHA (2002), EPA (2002).

^bFor air, concentration is in mg/m³.

^cAir: LADD/ADD = $(C_{air} \times IR \times ED \times EF \times AF_i) / (AT \times BW)$.

 $^{^{}d}ILCR = LADD \times CSF$; HI = ADD × RfD.

^eAssumes either an indoor or outdoor occupational worker.

 $^{^{}f}$ SSTL = (C × (1 × 10⁻⁵)) / ILCR or (C × 1.0) / HI.

^g The most conservative odor thresholds from ATSDR Toxicological Profiles.

^h Nuisance index = air concentration/odor threshold.

Table 18. RBCA Tier 3 Evaluation for Off-Site Residential (Eastern Samples-Adjacent to Single-Story Residence)

	Exposure	RfD°	CSF ^a		LADD	·	ADD ^c	Hazard	Odor	Nuisance
Chemical	Pathway	(mg/kg-d)	(mg/kg-d) ⁻¹	Conc.b	(mg/kg-d)	ILCR ^d	(mg/kg-d)	Index ^d	Threshold ^b	Index
Indoor Air										
Benzene	Inhalation	0.0017	0.1	1.9 E-9	2.4 E-10	2 E-11	1.6 E-9	9.5 E-7	5	3.8 E-10
Toluene	Inhalation	0.11		9.8 E-10	1.2 E-10		8.3 E-10	7.6 E-9	10	9.7 E-11
Ethylbenzene	Inhalation	0.29	***	2.4 E-10	3.0 E-11		2.0 E-10	6.9 E-10	31	7.7 E-12
Xylenes	Inhalation	0.2		2.8 E-9	3.5 E-10		2.4 E-9	1.2 E-8	0	8.0 E-9
MTBE	Inhalation			NA					15.8	
TPH-G				1.3 E-4					281	4.6 E-7
C5-C8 aliphatics	Inhalation	0.06		2.3 E-5	2.9 E-6		1.9 E-5	0.00032		
C9-C18 aliphatics	Inhalation	0.6		3.2 E-5	4.0 E-6		2.7 E-5	0.000045		
C9-C22 aromatics	Inhalation	0.03		7.4 E-5	9.3 E-6		6.3 E-5	0.0021		
Total Risk/HI Acros	s Pathways			·	<u></u>	2 E-11		0.0025		
SSTL Exceeded by		ncentration?				NO		NO		
Target Risk/HI						1 E-5		1.0		_

⁸From OEHHA (2002), EPA (2002).

^bFor air, concentration is in mg/m³. Based on average soil vapor concentrations (See Table 11).

^cAir: LADD/ADD = $(C_{air} \times IR \times ED \times EF \times AF_i) / (AT \times BW)$.

 $^{^{}d}ILCR = LADD \times CSF$; HI = ADD × RfD.

^f The most conservative odor thresholds from ATSDR Toxicological Profiles.

^g Nuisance index = air concentration/odor threshold.

Table 20. Product-Specific Fractions, Fraction Composition, and Toxicity Criteria^a

Product	Fractions	Composition	Toxicity Criteria
Benzene			$CSF = 0.1 \text{ (mg/kg-d)}^{-1b}$
TPH as gasolin	e (TPH-g)		
	C5-C8 aliphatics	35%	RfD = 0.06 mg/kg-d (n-hexane)
	C9-C18 aliphatics	25%	RfD = 0.6 mg/kg-d (n-nonane)
	C9-C22 aromatics	40%	RfD = 0.03 mg/kg-d (pyrene)
TPH as diesel (TPH-d)		
	C9-C18 aliphatics	65%	RfD = 0.6 mg/kg-d (n-nonane)
	C9-C22 aromatics	35%	RfD = 0.03 mg/kg-d oral (pyrene)
			RfD = 0.057 mg/kg-d inhalation (pyrene) ^c

^aFrom MaDEP, 1997.

^bFrom OEHHA, 2002.

^cFrom TPHCWG, 1996.

ATTACHMENT F

Plots of Chemical Concentrations Vs. Time and Distance

TPHg/GRO Concentrations vs. Distance from USTs

Benzene Concentrations vs. Distance from USTs

Concentrations vs. Distance from USTs

ATTACHMENT G

Sensitive Receptor Survey and Well Survey Results

SENSITIVE RECEPTORS SURVEY SITE SURVEY AND LITERATURE SEARCH

Client:	Ŀ	3P Oil Company Project No.: 30-080-0
Station	No.	·:
Locatio	n:	2220 98TH AVE
City/St	ate	: Oakland CA
I. P	Prov	ide answers to the following questions:
A	A.	Is there a public water supply well within 2500 feet? If Yes, Distance Y/Nft.
E	3.	Is there a private water supply well within 1000 feet? If Yes, Distance $\frac{No}{$
C	С.	Is there a subway within 1000 feet? Y/N NOft.
I	D.	Is there a basement within 1000 feet? Y/N NO If Yes, Distance ft.
. 1	Е.	Is there a school within 1000 feet? Y/N Yes If Yes, Distanceft.
1	F.	Is there a surface body of water within 1000 feet? If Yes, Distance Name Y/N NO ft.
II.	Desc	cribe type of local water supply.
		lic:
	- Si - Si - D:	appliers Name: EasT Bry Municipal Water District appliers Source: Sierra SNOW MEIT, PARTEE DAM istance to Site:
	Pri	vate:

SENSITIVE RECEPTORS SURVEY SITE SURVEY AND LITERATURE SEARCH

Page 2

III.	Distance to Nearest Adjacent Properties:	
	Residential Commercial Industrial Hospital E. Marris Cax Elementery School (E. Marris Cax Elementery) Name	~ 50 ft. - ft. - ft. /3,200 ft. ~/000 ft.
IV.	Aquifer Classification, if available.	
	Class I - Special Ground Waters - Irreplaceable Drinking Water Source - Ecologically Vital	
	Class II - Current and Potential Drinking Water Sources	
	Class III - Not Potential Source of Drinking Water	X
v.	Describe observation wells, if any.	
	Number Free Product?	// Y/N <u> </u>
VI.	Signature of Preparer: Matter / /2	
	Date: 2-20-9	/
WT T	Skatch of Site	

Oakland, California

Out 28, 2304 - 412pm

Sensitive Receptor Well Survey

Map Location #	Well Type	Installation Date	Total Depth (ft)	Screened Interval (ft)	Current Status	Well Address (If Available)
1	Domestic	6/1/1977	60	20-50	Unknown	1840 90th Avenue, Oakland, CA
2	Domestic	10/5/1977	62	20-60	Unknown	1910 90th Avenue, Oakland, CA
3	Irrigation	8/1/1977	260	60-180/ 200-240	Unknown	9600 Sunnyside Drive, Oakland, CA
4	Irrigation	10/30/1977	80	40-80	Unknown	533 Victoria Court, San Leandro, CA
5	Domestic	1951	Unknown	Unknown	Unknown	10550 Mark Street, Oakland, CA
6	Domestic	1951	190	Unknown	Unknown	10520 Stella Street, Oakland, CA
7	Domestic	1951	Unknown	Unknown	Unknown	10521 Stella Street, Oakland, CA
8	Domestic	1951	98	Unknown	Unknown	10600 Stella Street, Oakland, CA
9	Domestic	1951	55	Unknown	Unknown	10700 Stella Street, Oakland, CA
10	Domestic	1951	102	Unknown	Unknown	10731 Mark Street, Oakland, CA
11	Domestic	Unknown	100	41-76	Unknown	
12	Domestic	Unknown	97	42-92	Unknown	10544 Stella Street, Oakland, CA
13	Domestic	4/19/1951	100	28-85	Unknown	
14	Irrigation	3/17/1977	79	35-75	Unknown	377 Hollister Court, San Leandro, CA
15	Irrigation	9/25/1977	58	38-58	Unknown	2544 109th Avenue, Oakland, CA
16	Irrigation	8/9/1954	125	40-100	Unknown	
17	Irrigation	8/15/1982	100	68-96	Unknown	93 Broadmore Boulevard, San Leandro, CA
18	Irrigation	5/6/1977	32	None	Unknown	91 Broadmore Boulevard, San Leandro, CA
19	Industial	6/27/1977	77	34-74	Unknown	1500 105th Avenue, Oakland, CA

Note: 15 DWR records did not specify an address. Well potentially could be located within 1-mile radius.

Table 12. Summary of Proposed East Bay Plain **Groundwater Management Zones**

Zone		Historical Public Water Supply	Historical Domestic Water Supply	Existing, Probable or Potential Drinking Water Source	Remediation Strategy	Location
A - Areas of Basin that have moderate to significant deep drinking	Shallow	Yes, but limited	Yes	Potential	For shallow pollution, goal is to maintain and restore drinking water quailty and actively prevent migration into deeper zones. Target areas of Special Concern shown on Table 13.	All of San Leandro and San Lorenzo Subareas; Bulk of Cer Oakland and Richmond Sub A
watert resource	Deep	Yes	Yes	Existing or Probable	For deeper aquifers require active remediation and hydraulic control to maintain and restore drinking water quality.	
B - Areas of basi unlikely to be use drinking water re	d as a	No	Yes	Potential	Passive Remediation to restore drinking water quality as a long-term strategy while actively protecting private irrigation wells, human health and ecological receptors. Utilize risk based corrective action in establishing groundwater cleanup standards.	Berkeley Sub Area and Emery
C - Not a drinking resource	g water	No	No	Neither Existing, Probable or Potential	Protect human health and ecological receptors. Dedesignate MUN in Zone C. Utilize risk based corrective action in establishing groundwater cleanup standards. Locate and seal vertical conduits that extend into deeper portions of Zone B.	Shallow high TDS aquifers alo Oakland and Alameda Shorelin and at Chevron Refinery.

MUN -

Shallow Zone -

Municipal and Domestic Supply Beneficial Use Groundwater within shallow deposits above the Yerba Buena Mud or its lateral equivalent.

Deep Zone -

Groundwater below the Yerba Buena Mud or its lateral equivalent within the Alameda Formation or

Santa Clara Formation as defined by Figuers (1998).

Table 13. Proposed Strategy by Sub-Area for Addressing Groundwater Contamination in the East Bay Plain

Sub-Area	Vertical Subdivisions	Areas of special concern	Areas proposed for less aggressive or passive remediation.	Areas proposed for dedesignation
RICHMOND		Areas with a have high density of back yard irrigation wells in east central Richmond and western San Pablo (See Figure 17). Northcentral portion is deepest and potentially most productive (See Figure 10).	None defined, however, portions of Richmond Inner Harbor / South Shore Area may qualify. Bedrock is less than 200 feet deep in this area (See Figure 10).	Chevron Richmond Refinery
CENTRAL	Shallow	Area on Alameda Island with a high density of existing back yard irrigation wells pumping from Merritt Formation (See Figure 17). Bay front groundwater with potential to impact San Francisco Bay.	Shallow brackish artificial fill areas on a case-by- case basis (See Figure 17).	Portion of Alameda Point and Oakland Shorline
	Deep	Area south of the Bay Bridge where basin is deepest and potentially most productive (See Figure 10). High density of deep historic wells in City of Alameda (See Fig. 2 and Table 4).	None	None
BERKELEY	None	Areas with moderate density of back yard irrigation wells (see Figure 17).	Berkeley/ Albany Groundwater Management Zone. Emeryville Brownfields Groundwater Management Zone (see Figure 19).	None
OAKLAND	Shallow	Areas with moderate density of back yard irrigation wells (See Figure 17).	Regional Board will consider applicability of City of Oakland's Urban Land Redevelopment Protocol once it is finalized (see Section 14.1).	None
	Deep	Area south of Lake Merritt is deepest and historically most productive portion of the Oakland Sub-Area (See Figure 3). SWPZ for EBMUD aquifer storage and recovery test well near Oakland Coliseum (See Figure 14). High density of deep historic wells in City of Oakland (See Fig. 2 and Table 4).	None	None
SAN LEANDRO	Shallow	Areas with a high density of back yard irrigation wells (See Figure 17).	Shallow groundwater pollution sites that meet remediation and investigation criteria on a case- by-case basis (See Section 17.11).	None
	Deep	SWPZ for 2 small DHS Permitted Drinking Water Systems (See Figure 14).	None	None
SAN LORENZO	Shallow	Areas with a high density of back yard irrigation wells (Figure 17).	Shallow groundwater pollution sites that meet remediation and investigation criteria on a case- by-case basis (See Section 17.11).	None
	Deep Water Protection	SWPZ for 2 small DHS Permitted Drinking Water Systems, 5 City of Hayward Emergency Supply Wells, and EBMUD aquifer storage and recovery test well near Ora Loma Waste Water Treatment Plant.	None	None

ATTACHMENT H Well Construction Details, Historic Hydrogeologic Cross-sections and Boring Logs

Well Construction Table

Former BP 11133: 2220 98th Avenue, Oakland, California

Well ID	Install Date	Total Well Depth (ft)	Total Boring Depth (ft)	Boring Diameter (inches)	Well Diameter (inches)	Screened Interval (ft)	Sreen Slot Size (inches)	Bentonite Seal (ft)	Sand Pack Interval (ft)	Sand Pack Type
MW-1	5/6/1988	29.0	29.0	8.0	2.0	10-29	0.020	8-9	9-29	No.3
MW-2	5/6/1988	32.0	32.0	8.0	2.0	12-32	0.020	9-10	10-32	No.3
MW-3	5/6/1988	34.0	34.0	8.0	2.0	14-34	0.020	10.5-11.5	11.5-34	No.3
AW-1	6/5/1990	35.0	35.0	10.0	2.0	15-35	0.020	16-18	18-35	No.3
AW-2	6/5/1990	35.0	35.0	10.0	2.0	20-35	0.020	16-18	18-35	No.3
AW-3	6/6/1990	35.0	35.0	10.0	2.0	15-35	0.020	16-18	18-35	No.3
AW-4	6/6/1990	35.0	35.0	10.0	2.0	15-35	0.020	16-18	18-35	No.3
AW-5	2/27/1991	45.0	46.5	10.0	4.0	20-45	0.020	17-18	18-45	No.3
AW-6	2/28/1991	35.0	36.5	10.0	4.0	20-35	0.020	17-18	18-35	No.3
AW-7	3/1/1991	35.0	36.5	8.0	2.0	20-35	0.020	17-18	18-35	No.3
AW-8	2/28/1991	40.0	41.5	8.0	2.0	20-40	0.020	17-18	18-40	No.3
AW-9	12/3/1996	40.0	33.0	8.0	2.0	12.5-27.5	0.010	9-11	11-28	No.12
RW-1	6/5/1990	40.0	40.0	10.0	6.0	15-40	0.020	11-13	13-40	No.3
VEW-9	5/9/1996	20.0	21.5	12.0	4.0	6-20	0.010	4-5	5-20	No.3
VW-1	3/26/1992	16.5	16.6	12.0	4.0	9-16.5	0.10	6-8	8-16.5	No.3
VW-2	3/26/1992	16.5	16.5	12.0	4.0	9-16.5	0.10	6-8	8-16.5	No.3
VW-3	3/26/1992	16.5	16.5	12.0	4.0	9-16.5	0.10	6-8	8-16.5	No.3

PROJECT NO. 32006.03

12/92

2220 98th Avenue Oakland, California

Explo	rato	ry Boring	Log
Project No.	Boring	& Casing Diameter	Logged By
KEI-P87-064A-1	8 in.	2 in. csg.	JS
Project Name	Casing	Elevation	Date Drilled
Mobil #10-MGV			5-6-88
Boring No.	Hollow-	-stem Flight Auger	Depth to Groundwater
MW-1			20.5 ft.
Penetra- G. W. Depth (ft) L	itho-	_	
tion level Samples U	graphy SCS	De	scription
	858	ASPHALT & BASERO	OCK.
31	T.	CLAY: dark grey black N2/, hi dry SANDY CLAY: dar moderately to	k greenish grey 5GY 4/1 highly plastic, very sand, well sorted

Expl	orato	ry Boring	Log
Project No.	Boring	& Casing Diameter	Logged By
KEI-P87-064A-1	Chaina	Floration	Date Drilled
Project Name Mobil #10-MGV	Casing	Elevation	5-6-88
	Holler.	-stem Flight Auger	Depth to Groundwater
Boring No. MW-1	HOLLOW-	-stem riight Augei	bepth to Groundwater
tion level Samples	Litho- graphy USCS	De	scription
25	СН	SANDY CLAY: as CLAY: moderatel	
30 —		TOTAL DE	EPTH 29 FEET

WELL DETAILS

PROJECT NAME: Mobil #10-MGV 2220 98th Ave.

BORING/WELL NO. MW-1_

Oakland, CA

PROJECT NUMBER: KEI-P87-064A-1

CASING ELEVATION:

WELL PERMIT NO .: 88-156 Alameda Co. Flood Control SURFACE ELEVATION:

, c		
 F	E	6
 	- - -	D

- Total Depth: 29 ft.
- B. Boring Diameter: 8 in. Drilling method: Hollow stem
- C. Casing Length: 29 ft. Material: Schedule 40 PVC
- Casing Diameter: 2 in. D.
- Depth to Perforations: 10 ft.
- F. Perforated Length: 19 ft. Perforated Interval: 29 to 10 ft. Perforation Type: slot Perforation Size: 0.02 in.
- G. Surface Seal: 8 to 0 ft. Seal Material: concrete
- H. Seal: 9 to 8 ft. Seal Material: bentonite
- I. Gravel Pack: 29 to 9 ft. Pack Material: Monterey sand Size: No. 3
- J. Bottom Seal: none Seal Material:___

Explo	rato	ry Boring	Log
Project No.	Boring	& Casing Diameter	Logged By
KEI-P87-064A-1	8 in.		JS
Project Name	Casing	Elevation	Date Drilled
Mobil #10-MGV			5-6-88
Boring No.	Hollow-	stem Flight Auger	Depth to Groundwater
MW-2			24 ft.
	itho-		
tion level Samples U	graphy SCS	De	scription
0	V(32)	ASPHALT & BASER	OCK.
	4.7.4	FILL	JCK
1 1 6 3	> <		
	СН	CLAY: verv dar	k greyish brown 10YR 3/2
1 1 5 3		highly plast	ic, stiff, dry
1 1 1 1			
1 1 5 5			Ja
_ 5			i i
1 1 F 3			
1 1 1 1			
1 1 1 7			
1 1 1 -			
1 1 1 1			
1 1 1 - 19	T		y dark greyigh brown
27 - 10			y fine grained sand c clay, 5% fine gravel
27		mighij plasti	ic clay, 5% line graver
1 1 1 -			
1 1 1 1			
1 1 5 7			1
1 1 1 -	199		1
1 1 5 5	3.0		1
1 1 5 3			
19 - 15		brown 10YR 5/	'3
			1
[]			1
1 1 1 1			1
			- 1
1 1 1 1			
.,			1
21 - 20 -	(1)(1)		

Exploratory Boring Log oject No. Boring & Casing Diameter Logged By EI-P87-064A-1 project Name Casing Elevation Date Drilled Mobil #10-MGV 5-6-88 Boring No. Hollow-stem Flight Auger Depth to Groundwater MW-2Penetra-G. W. Depth (ft) Lithotion level graphy Description Samples USCS blows/ft 20 SANDY CLAY: as above moist SC CLAYEY SAND: yellowish brown 10YR 5/4 fine grained well sorted sand, low 25. plastic fines 30 . CH dark brown 10YR 4/3, stiff to CLAY: hard, plastic, dry TOTAL DEPTH 32 FEET 35

WELL DETAILS

OJECT NAME: Mobil #10-MGV 2220 98th Ave.

BORING/WELL NO. MW-2

Oakland, CA

PROJECT NUMBER: KEI-P87-064A-1

CASING ELEVATION:

WELL PERMIT NO .: 88-156 Alameda Co. Flood Control SURFACE ELEVATION:

	F		E	
		-	· · ·	
		 		D

- A. Total Depth: 32 ft.
- B. Boring Diameter: 8 in. Drilling method: Hollow stem
- C. Casing Length: 32 ft. Material: Schedule 40 PVC
- D. Casing Diameter: 2 in.
- E. Depth to Perforations: 12 ft.
- F. Perforated Length: 20 ft. Perforated Interval: 32 to 12 ft. Perforation Type: slot Perforation Size: 0.02 in.
- G. Surface Seal: 9 to 0 ft. Seal Material: concrete
- H. Seal: 10 to 9 ft.

Seal Material: bentonite

I. Gravel Pack: 32 to 10 ft.

Pack Material: Monterey sand

Size: NO. 3

none J. Bottom Seal:

Seal Material:

Exploratory Boring Log roject No. Boring & Casing Diameter Logged By KEI-P87-064A-1 8 in. 2 in. csg. JS Project Name Casing Elevation Date Drilled 5-6-88 Mobil #10-MGV Boring No. Hollow-stem Flight Auger Depth to Groundwater 29.5 ft. MW-3Penetra- G. W. Depth (ft) Lithotion level graphy Description Samples USCS blows/ft ASPHALT & BASEROCK FILL CLSANDY CLAY: brown 10YR 4/3, very fine grained sand, well sorted, low plasticity clay SILTY CLAY: brown 10YR 4/3, very well ML sorted, moderatley plastic, stiff, 10. 33 dry SC 13 CLAYEY SAND: dark yellowish brown 15: very fine grained well sorted sand, low to mod. plastic fines, soft, damp coarser sand with depth gravel lens 18 to 19 ft.

Project No.			ry Boring	rog
		Boring	& Casing Diameter	Logged By
KEI-P87-06	4A-1	-		
Project Name		Casing	Elevation	Date Drilled
Mobil #10-	MGV	Woll low	-stem Flight Auger	5-6-88
Boring No. MW-3			-stem riight Auger	Depth to Groundwater
Penetra-G. W tion level blows/ft	Samples U	itho- graphy SCS	De	scription
12	25	TL WILL	very fine gra	wn 10YR 4/3, hard, dry, sand and mod. plastic

WELL DETAILS

WECT NAME: Mobil #10-MGV 2220 98th AVe.

Oakland, CA

BORING/WELL NO. MW-3

PROJECT NUMBER: KEI-P87-064A-1

CASING ELEVATION:

WELL PERMIT NO.: 88-156 Alameda Co. Flood Controlsurface ELEVATION:

G-5 Vault Box

Е	
C F	

- A. Total Depth: 34 ft.
- B. Boring Diameter: 8 in. Drilling method: Hollow stem
- C. Casing Length: 34 ft. Material: Schedule 40 PVC
- D. Casing Diameter: 2 in.
- E. Depth to Perforations: 14 ft.
- F. Perforated Length: 20 ft. Perforated Interval: 34 to 14 ft. Perforation Type: slot Perforation Size: 0.02 in.
- G. Surface Seal: 10.5 to 0 ft. Seal Material: concrete
- H. Seal: 11.5 to 10.5 ft.

Seal Material: bentonite

I. Gravel Pack: 34 to 11.5 ft.

Pack Material: Monterey sand

Size: No. 3

J. Bottom Seal: none

Seal Material:

BORING NO. ALTON GEOSCIENCE, Inc. PROJECT NO. 30-080 ___ DATE DRILLED_6/5/90 LOG OF EXPLORATORY CLIENT BP OIL COMPANY **BORING** WELL NO. LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY AW-1 FIELD SKETCH OF BORING LOCATION DRILLING METHOD HOLLOW-STEM AUGER HOLE DIAM, 10 inch SAMPLER TYPE SEE MONITORING WELL CONSTRUCTION DETAIL CASING DATA TOP OF CASING ELEVATION __98.99_ DRILLER WEST HAZMAT WELL CONSTRUCTION OR BORNING CLOSURE WATER LEVEL: 26.87 BLOWS PER CGI (PPM) DEPT FOOT(N) DATE: JULY, 1990 SAMPLE 536n TIME: DESCRIPTION Christy Box 0 ASPHALT 2 SILTY CLAY; moderately stiff, damp, light gray 2" sch. SILTY CLAY; moderately stiff, damp, brown, some organic material 40 PVC 5,12,20 Casing 6 As above 7,17,31 As above 8,23,45 10 12 8,21,29 SILTY CLAY; brown, damp 14 As above, increasing sand 11,17,28 16 8,12,30 75 CLAYEY SILT; moderately stiff, damp 18 8,13,24 ND 20 sch. 40 22 As above, softer, very moist 4,6,11 25 **PVC** .020 24 Slot CLAYEY SAND; very fine grained, saturated, moderately loose, tan 4,6,10 26 5,20,34 28 SILTY CLAY; w/ sand, saturated, moderately stiff, brown w/ gray motlling CONTINUED ON NEXT PAGE 30

LO		FE		SCIENCE, In ORATORY	c.		1	CLIENT	CT NO30-080 DATE_DRILLED_5/17/90 BP OIL COMPANY CON2201 98TH AVENUE, OAKLAND, CA D BY _M. TAYLOR APPROVED BY	BORING NO. WELL NO. AW-1
FIELD	SKE	TCF	OF	BORING LOCAT	ЮN				HOLLOWSTEN AUGED	40 INCH
тор	OF C	ASIN	IG EL	EVATION				SAMPLE CASING	G METHOD HOLLOW-STEM AUGER HOLE DER TYPE DATA SEE MONITORING WELL CONSTRUCTION WEST HAZMAT	
	£			WELL CONSTRUCTION OR BORING CLOGURE				ATER LEVE	iL	
BLOWS PER FOOT(N)	CGI (PPM)	SAMPLE	Ę	T STANCE OF THE	8	PROFILE	_	ME		
H &	<u>8</u>	SAN	F	SON	80gh	Ě			DESCRIPTION	
11,23, 35		Ι	- 30 - - 32		sc			CLAYEY light brow	SAND; very fine grained, very moist, moderately den	ense, tan to
8,25	,	П	- 34	₽ ■%				As above	, some coarse sand	
33		Τ	- 36	End Cap				BOREHO	LE TERMINATED AT 35 FEET	
			- 38 - 40	-						
	1		- 42 -							
1			- 44							
1			- 46							
1	1		- 48							
1			- -50						G G	
1	1		ŀ							
			-							
			-	Portlan	d Ce	ment			Sample	
			•	Sand #					Driven interval	
			Γ	Bento	nae F	enets	-			-X

		G C	F		SCIENCE, Ir LORATORY	ic.			PROJECT NO. 30-080 DATE DRILLED 6/5/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY	BORING NO. WELL NO. AW-2
ļ	FIELD	SKE	ETC	1 OF	BORING LOCAT	ION				
	тор с	OF C	ASII	NG E	LEVATION <u>97</u>	.69	-	200	DRILLING METHOD HOLLOW-STEM AUGER HOLE DI SAMPLER TYPE SEE MONITORING WELL CONSTRUCTION CASING DATA DRILLER WEST HAZMAT	
[a					NOL	Ι		W	ATER LEVEL: 24.88	
DI OWE PER	€	CGI(PPM)	뿌	DEPTH	WELL CONSTRUCTY OR BORING CLOSURE		ا و ا	D,	ATE: JULY, 1990	
	FOOT(N)	 등	SAMPLE	쩝	HE NET NO STATE OF SECURE	909	MOFILE	TI	ME:	
Ľ	u.	0	S	_	불용등당 Christy Box	3	<u> </u>	_	DESCRIPTION	
				-0	Chinsiy Box	F	200		Native soil	
				2	2" sch.				SILTY CLAY; dark brown, damp, medium plasticity	
1	6, 20, 26		Ι	-6 -8	40 PVC Casing				SILTY CLAY; brown, dry to damp, medium plasticity, hard	
7	, 7, 8		Ι	- 10 - 12					SILTY CLAY; w/ fine sand, reddish brown, damp, medium plati stiff	city,
L	', 10, !1		Ι	- 14 - 16 - 18	₩ ¥	CL.			SILTY CLAY; w/ slight gravels, brown, damp, high platicity, ve	ry stiff
	, 15, 3		I	20	2"	o de la company			SILTY CLAY; brown, damp, low platicity, hard	
	, 10			24 26	.020 Slot			¥	SILTY CLAY; sandy brown, moist, medium plasticity, very stiff	
2	0		L	28					CONTINUED ON NEXT PAGE	
				- 30						¥

	GO	FE		SCIEN(LORAT	-). 			PROJECT NO. 30-080 DATE DRILLED 6/5/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY	BORING NO. WELL NO. AW-2
FIELD	SKE	TCF	OF	BORING I	LOCATIO				LOGGLO BT INFTRACTOR AT THOTEO BT	
TOP (OF C	ASIN	IG E	LEVATION	N		-		DRILLING METHOD HOLLOW-STEM AUGER HOLE SAMPLER TYPE SEE MONITORING WELL CONSTRUCT CASING DATA DRILLER WEST HAZMAT	TION DETAIL
BLOWS PER FOOT(N)	CGI (PPM)	SAMPLE	DEPTH	WELL CONSTRUCTION	CLOSURE	308N	PROFILE	D/ Ti		
9, 17, 25		П	- 30			SC		s	TY SAND; brown, saturated, hard	
17, 23 50/5		Ī	- 32 - 34 - 36	2" sch. 40 PVC .020 Slot		a			.TY CLAY; w/ fine sand, brown, dry to damp, low plasticity, rd	
27, 39, 50/5		\blacksquare	- 38					\$	LTY CLAY; brown, damp, low plasticity, hard	
			- 40 - 42 - 44 - 46	End	Сар			E	DREHOLE TERMINATED AT 35 FEET	
			- 48 -50							
			-							
			E		Portland	i C	ement		Sample	
				***	Sand #				Driven interval	21
	_	_		1.00	Dauroll	NG I		_		

1			O	FE		SCIENCE, In LORATORY	c.		۱	PROJECT NO. 30-080 DATE DRILLED 6/6/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY	BORING NO. WELL NO. AW-3
	F	IELD	SKE	TC	HOF	BORING LOCATI	ON			LOGGED BY MILITATEON APPROVED BY	A11-5
1.											AM, 10 inch
										SAMPLER TYPE	LOCTAL
	Т	OP O	F C	ASII	NG E	LEVATION 100	.00			CASING DATA SEE MONITORING WELL CONSTRUCTION DRILLER WEST HAZMAT	IDETAIL
	_	_	_	_		-			الم		
	Æ		5		-	<u>o</u>				ATER LEVEL: 24.75	
	BLOWS PER	FOOT(N)	CGI(PPM)	SAMPLE	문구	WELL CONSTRUCTI ORBORING CLOSURE	<u>.</u>	ROFILE	_	ATE : JULY, 1990	
1.	임	8	ğ	SAM		PBC	538n	Ě	-"	ME: DESCRIPTION	
k -	⊢	-	Ť	-	-	Stoou Christy Box		_		DESCRIPTION	
			1		-0		F	m.		ASPHALT	
!.	9, 1	9, 12		Ι	2 4 6	2* sch. 40 PVC Casing				SILTY CLAY; brown, damp, medium plastictity	25
1.5	11, 21	15,		Ι	- 10 - 12				5#	SILTY CLAY; brown, damp, low plasticity, very stiff	
	9, 1	17, 32		Ι	- 14 - 16	\$ \$	a.			SILTY CLAY; brown, damp, low to medium plasticity, hard	
!	27,	, 50/5		Ι	- 18 - 20 - 22	2" sch. 40				SILTY CLAY; gravelly, medium size gravel, moist, hard	
	21, 39	, 29,		Ι	24 26 28	PVC .020 Slot			=	SILTY CLAY; gravelly, reddish brown, saturated, hard	
lī					-:					CONTINUED ON NEXT PAGE -	
					- 30						
l ž											
**					-						
1.	L			_	े		_	_			
										\$	

. .

		G O	FE		SCIENCE, Inc LORATORY	c.		PROJECT NO. 30-080 DATE DRILLED 6/6/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY BORING N WELL NO. AW-3	
ha ex	FIELD	SKE	TCI	HOF	BORING LOCATION	ON		EOGGED BY M. IAILON APPROVED BY	
	тор с	OF C	ASII	VG EL	EVATION		-	DRILLING METHOD HOLLOW-STEM AUGER HOLE DIAM. 10 inch SAMPLER TYPE CASING DATA SEE MONITORING WELL CONSTRUCTION DETAIL DRILLER WEST HAZMAT	
1			-		O N			WATER LEVEL	
10	BLOWS PER FOOT(N)	£ €	<u>س</u>		WELL CONSTRUCT) ORBORING CLOGURE		ıı,	DATE	
	FOOT(N)	CGI(PPM)	SAMPLE	MEP TH	WELL CONSTI	338	PROFILE	TIME DESCRIPTION	_
Pos-	21, 25,	ř		- 30	3 0 0 0	Ė		SILTY CLAY; greyish brown, damp, medium plasticity,	
	37		Ц	- 1		CL		hard	
k a				32		~			
	21, 37,			34				SILTY CLAY; brown, damp, medium to high plasticity, "very tight"	
18	41			36	End Cap			BOREHOLE TERMINATED AT 35 FEET.	
				- 38 -					
1				40					
1.				42					
150				44					
1.				46					
10				48					
				50					
Į.									
i.				ŀ					
1.				-					
١.				[
1.5					Portland	Сө	ment	Sample	
1.					Sand #	3 Lo	nesta	Driven interval	
11		_		्	Benton	ite P	ellets	LI Dilyon illeryal	
4.4									

	BO	G C RIN	F E	EXP	SCIENCE, In LORATORY BORING LOCATI				CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY AT DRILLING METHOD HOLLOW-STEM AUGER HOLE DIAM. 1	ELL NO. W-4
	тор с	OF C	ASI	NG E	LEVATION 99.	96	-		CASING DATA SEE MONITORING WELL CONSTRUCTION DET. DRILLER WEST HAZMAT	rail
DI OMIC DED	FOOT(N)	CGI (PPM)	SAMPLE	DEPTH	WELL CONSTRUCTION ORBORING CLOSURE	SOSI	PROFILE	_	TER LEVEL: 27.29 TE: JULY, 1990 AE: DESCRIPTION	
┢		Ť	-	-	Christy Box	\vdash	\vdash	_	DESCRIPTION	
. 3.	12, 16			-0 -2 -4	2" sch.			(ASPHALT CLAY w/ roots, dark brown, organic, damp, high plasticity SILTY clay w/ root fragments, greyish brown, damp, medium plastic	
. 2	3, 50/5		T	- 6 - 8 - 10	Casing				odor,very stiff SILTY CLAY; brown, damp, medium plasticity,no odor, hard	,
2	8, 36, 1	No. of the second	I	- 12 - 14 - 16	35 S	a			SILTY CLAY; brown, moist, medium to high plasticity, no odor, hard	i
9	17, 32	37	Ι	- 18 - 20 - 22	2" sch. 40 PVC				SILTY CLAY; brown, moist, low to medium plasticity, gas odor, hard	
1 2	1, 15, 2		Ι	- 24 - 26 - 28	.020 Slot			<u>r</u> 5	SILTY CLAY; brown, moist, medium plasticity, gas odor, hard	
				30					CONTINUED ON NEXT PAGE	

	I	LOC BOF	O S RIN	F E	XP	SCIENCE, Inc LORATORY			PROJECT NO. 30-080 DATE DRILLED 6/6/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY	BORING NO. WELL NO. AW-4
12	FI	ELD	SKE	TC	OF	BORING LOCATION	NC			
l.							,		DRILLING METHOD HOLLOW-STEM AUGER HOLE DI	AM. 10 inch
, ,									CASING DATA SEE MONITORING WELL CONSTRUCTION	ON DETAIL
i.	т	OP O	F C	ASI	IG E	LEVATION		-	DRILLER WESTHAZMAT	
1.						¥			WATER LEVEL	
$I_{\mathcal{X}}$	BLOWS PER	£	₽.	щ		WELL CONSTRUCTION OR BORING CLOSURE		ni I	DATE	
1.	SMO-	FOOT(N)	CGI (PPM)	SAMPLE	DEPTH	NSTE BOST FURTHER	908N	PROFILE	TIME	
١.,	<u> </u>	α	<u>გ</u>	Š	*	# S & 9	š	Æ	DESCRIPTION	
	15, 23	19,		Н	- 30				SILTY CLAY; brown, moist, low plasticity, gas odor, hard	
	23			۳	- 32		αL		Ť	
1	6,2	3,31	-		- 34				SILTY CLAY; brown, damp, high platicity, no odor, hard	1
4				۲	- - 36	End Cap			BOREHOLE TERMINATED AT 35 FEET	
1					- - 38				•	
k.s.					- 40					
1				3	•					
l.			IC.	1 3	- 42 -					
1					- 44 -					
1.					- 46				3*	
1				3	- - 48					
* 1					- -50					
1										
					-					
1					-					
Z a					-					
1					-				· ·	
ki.										
1 1					ŀ	Portland			sample	
11					-	Sand #3			Driven interval	

1 P

ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING

FIELD SKETCH OF BORING LOCATION

PROJECT NO. 30-080-01 DATE DRILLED 2-27-91
CLIENT BP Oil Company
LOCATION 2201 98th Ave. Oakland
LOGGED BY M. Taylor APPROVED BY M. Hopwood

BORING NO. SBA-5 WELL NO. AW-5 Page 1 of 2

DRILLING METHOD Hollow stem auger HOLE DIAM. 10"

SAMPLER TYPE Modified split spoon

CASING DATA See well construction details

DRILLER Soils Exploration Services Inc.

TOP OF CASING ELEVATION 39.35'

L					CEVATION _ OO TO		-		DRILLER_SO	ils Exploration S	ervices , Inc.	
E					WELL CONSTRUCTION OR BORING CLOSURE			W	ATER LEVEL	26.00'	25.48'	
BLOWS PER	FOOT(N)	CGI[PPM]	삗	Æ	를 돌 # 등 돌 #		PROFILE	DA	ATE .	2/27/91	4/5/91	
\$	8		SAMPLE	DEPTH	1,1 NS	SOS	Š	TI	ME	2:00 pm	1:00 pm	
Ľ	ш	Ö	ŝ	_	#82£9	š				DE	SCRIPTION	
ı				-0	Christy Box				A			
				2				I.	'Asphalt			
3,	,5,9			6	4" sch. 40 PVC	۵.		S	ILTY CLAY: brown	, damp, stiff, medi	um plasticity	
4,	.10, 5		+	8 10 12	Casing	CL		Si	ame, becomes vei	y stiff		
3,	4,6		+	14 16 18	8 8			Si	ame, becomes mo	ist, stiff		
2,	2,4		-	20				SI	LTY SAND: black	to brownish green	, moist, firm, low plasticity	*****
3	,5,5		+	24 26	4" 40 sch. PVC - 0.020"	SM		조 8	ame, becomes bro 26'	wnish green, wet,	stiff	
3,	8,11		Ξ	28 30 32	Slot			s	ame, becomes vei	ry stiff, low to med	ium plasticity	
L				34								

	BO	G C	F E	EXP	SCIENCE, In LORATORY		\## 		CLIENT BP	Oil Company 2201 98th Ave			BORING NO. SBA-5 WELL NO. AW-5
- 1	FIELD	SKE	:TCI	HOF	BORING LOCATI	ON							Page 2 of 2
	TOP C	F C	ASII	NG E	LEVATION 39.	35'	_		SAMPLER TYP	E <u>Modified</u> See well co		HOLE DI	AM10*
- 1	æ	CGI (PPM) SAMPLE DEPTH WELL CONSTRUCTION OR BORING CLOGURE USCS FRORLE							ATER LEVEL	26.00'	25.48'		
- 1	BLOWS PER FOOT(N)	CGI (PPM)	Щ	DEPTH	E CT		וֹשֶׁ וֹ	D/	ATE	2/27/91	4/5/91		
	GLOWS M FOOT(N)	9	SAMPLE	뿅	1 & Q & C	SOS	PROFILE	Til	ME	2:00 pm	1:00 pm		
- [# K	8	_		# 0 e 9	ğ					DESCRIPTION		
	4,7,12		-	- 36 - 38		SM		SI	ILTY SAND: brown	, wet, very stiff	, medium plasticity		
	3,4,8		#	40 42 44		CL		SI	ILTY CLAY: light br	own, wet to me	oist, stiff, medium to l	high plast	licity
	4,7,9		Ŧ	46	End Cap			Sa	ame, becomes moi	ist, very stiff			
				- 48 -				В	ORING TERMINATI	ED AT 46.5 FEI	ET BELOW GRADE		
				- 50									
				- 52 - 54									
				ŀ									
				- 56									
				- 58									
				- 60	177								
													×
-							1, 11,	F	Portland Cement		Sample		
				1					Sand #3 Lonestar	Ш	Driven Interval		
							64.5		Sentonite Pellets	₹ Z	Water level encoun	tered dur	ing drilling
				_		_	_	_				_	

.

.

.

.

.

1

i.

100

.

.

ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING

FIELD SKETCH OF BORING LOCATION

PROJECT NO. 30-080-01 DATE DRILLED 2-28-91 CLIENT BP Oil Company LOCATION 2201 98th Ave, Oakland

SBA-6 WELL NO. AW-6

HOLE DIAM. 10"

Page 1 of 2

BORING NO.

LOGGED BY M. Taylor APPROVED BY M. Hopwood

DRILLING METHOD Hollow stem auger SAMPLER TYPE Modified split spoon

CASING DATA See well construction details

DRILLER Soils Exploration Services , Inc.

TOP OF CASING ELEVATION 37.95'

e.			П		WELL CONSTRUCTION ORBORING CLOSURE	Г		WATER LEVEL	25.00'	22.48'					
<u> </u>	E	₹	삘	E	얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼 얼			DATE	2/28/91	4/5/91					
BLOWS PER	FOOT(M)	CGI(PPM)	SAMPLE	DEPTH	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	506	PROFILE	TIME	10:00 am	1:10 pm					
	a	ಶ	Ŋ		WELL CONS CLOSI	§	Ľ		DE	SCRIPTION					
		П	П	- 0	Christy Box			0.1							
ı			Н	(A)	\ \\		1111	2" Asphalt							
3	,3,5		Ŧ	-4		CL		SILTY CLAY: brown	n, damp, firm, low	to medium plasticity					
3,	6,10			- 10 - 12	4" sch. 40 PVC Casing			Same, becomes si	iff medium plastic	oity					
ı				14		ļ									
2	,3,6		Ξ	- 16	g x			SANDY SILT: brow	SANDY SILT: brown, moist, stiff, medium plasticity						
				- 18 - - 20				SILTY SAND: brow	n moist von stiff	f modium placticity					
3,	9,10			22		SM		SILT SAND, BION	ii, moist, very stir	, medium plasticity					
1				- 24			Ш	_							
3	,5,8		Ŧ	26	4" sch. 40			Same, becomes we	et, stiff						
				- 28 -	PVC 0.020*										
4,	,7,11		Ξ	- 30 - 32		CL		SILTY CLAY: brow	n, wet, very stiff,	medium plasticity, with	sand				
L				34	End Cap										

ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING FIELD SKETCH OF BORING LOCATION								CLIENT BP LOCATION L LOGGED BY	Oil Company 2201 98th Ave M. Taylor HOD Hollow	., Oakland APPROVED BY M. stem auger	Hopwood	BORING NO. SBA-6 WELL NO. AW-6 Page 2 of 2
TOP	TOP OF CASING ELEVATION 37.95'									nstruction detail ns Services, Inc.		
5	CGI (PPM) SAMPLE DEPTH WELL CONSTRUCTION ORBORING CLOSURE USCS USCS						W	WATER LEVEL 25.00' 22.48'				
BLOWG PER FOOT(N)	CGI[PPM	SAMPLE	E E	DE SENSO	ا ۾ ا	PROFILE	_	ATE	2/28/91	4/5/91	-	
F &	50	SAM	ျိ	MD NO	Soen	Ě -	Π	ME	10:00 am	1:10 pm DESCRIPTION		
4,7,12	Н	\forall	- 36	3000	CL		S	ILTY CLAY: brown		, medium plasticity,	with some	sand
		٦	200			11111	_		•	ET BELOW GRADE		
		-	38				_		LD A1 00.01 L	.E. I DELOW GIB-DE		
		1	40									
		ł	- 42									
	Ш	-	44									
	Н	ł	46									
	П	-										
		١	48									
		H	- 50									
		-	- 52									
		١	54									
		1	.									
		1	- 56									
		ł	- 58									
		- 1	- 60									
- 9												
								8				
						1	F	ortiand Cement	9000	Sample		
								Sand #3 Lonestar		Driven interval		
						部	E	Sentonite Pellets	포	Water level encour	ntered duri	ng drilling

JF 5

[

1.

ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING

FIELD SKETCH OF BORING LOCATION

PROJECT NO. 30-080-01 DATE DRILLED 3-1-91
CLIENT BP Oil Company

LOCATION 2201 98th Ave. Oakland

LOGGED BY M. Taylor APPROVED BY M. Hopwood

BORING NO. SBA-7 WELL NO. AW-7

Page 1 of 2

DRILLING METHOD Hollow stem auger HOLE DIAM. 8"

SAMPLER TYPE Modified split spoon

CASING DATA See well construction details

DRILLER Soils Exploration Services , Inc.

TOP OF CASING ELEVATION 38.17'

L	. .				ELVATION			DHILLER S	olis Exploration s	Services , Inc.	
Æ					WELL CONSTRUCTION OR BORING CLOSURE			WATER LEVEL	28.00'	23.38'	
BLOWG PER	Ξ	CGI (PPM)	삨	=	2		삧	DATE	3/1/91	4/5/91	
₹	FOOT(N)	읖	SAMPLE	DEPT	1 2 2 2 5 E	SOGN	PROFILE	TIME	11:00 am	1:20 pm	
듑	X.	ဗ	જ	<u>a</u>	CONS CONS CONS CLOSI	9	اء		DE	SCRIPTION	
\vdash			П	- 0	Christy Box						
ш			l			1	um.	Grass (Top Soil) M	edian		
3,	9,13		-	-4	2" sch. 40	CL		SILTY CLAY: brow	n, damp, very stiff	, low to medium pla	sticity
6,	15,19	10000		- 10 - 12	PVC Casing			Same, becomes ha	ard, low plasticity,	with gravel	
6,	10,11		-	- 14 - 16 - 18	9 9	SM		SANDY SILT: brow	vn, moist, very stif	f, low plasticity, with	n gravel
6,	12,16		#	20 22				SILTY CLAY: light	brown, moist, very	y stiff, low plasticity	, with fine sand
4	,6,8		#	24 26 28	sch. 40. PVC 0.020*	ÇL		Same, becomes be	rown, moist to wet	, stiff, medium plas	ticity
2	2,4,5		Ŧ	30 32	End Cap			Same, becomes s	aturated, stiff, low	to medium plasticit	y, with sand
L				- 34		1_					

ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING								CLIENT BP	Oil Con 2201 98	npany th Ave.,	DATE DRILLED 3/1/91 Oakland APPROVED BY M. Hopwo	SBA-7 WELL NO.
FIELD	SKE	TCH	OF	BORING LOCATION	ON			LOGGED B1_	WI. Lay	<u>101</u> /	THOUSED BY ME TISSUE	Page 2 of 2
тор с	TOP OF CASING ELEVATION 38.17'								E Mo	dified s	split spoon estruction detail s Services, Inc.	DIAM8"
s					W	ATER LEVEL	28	3.001	23.38'			
£ €	<u>₹</u>	삗		는 # H.		PROFILE	D.	ATE		1/91	4/5/91	
BLOWS PER FOOT(N)	CGI (PPM)	SAMPLE	ఠ	128	906n	≩ -		ME	11:	:00 am	1:20 pm	
_	10	S		₹ % ₽ ₽	_				_		ESCRIPTION	
2,4,6		7	- 36	X	CL		_ 5	SILTY CLAY: brown	n, satural	ted, stiff	f, medium plasticity, with	some sand
			- 38				E	ORING TERMINAT	ED AT 3	36.5 FEE	ET BELOW GRADE	
		1	- 40									
	П		- 42									0
			2///									
0			- 44 -									
			- 46									
			- 48									
			- 50									
			- - 52									
			- 54									
			- - 56									
			- 58									
	1		- 30									
. 1	1		- 60									
1	1											
						***		Portland Cement Sand #3 Lonestar Bentonite Pellets		云 □	Sample Driven interval Water level encountered	during drilling

1.

1.

ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY **BORING**

FIELD SKETCH OF BORING LOCATION

22

24

26

28

30

32

0.020

Slot

7,13,18

3,6,10

PROJECT NO. 30-080-01 DATE DRILLED 2-28-91

CLIENT BP Oil Company

LOCATION 2201 98th Ave. Oakland

LOGGED BY M. Taylor APPROVED BY M. Hopwwod

BORING NO. SBA-8 WELL NO. 8-WA

Page 1 of 2

DRILLING METHOD Hollow stem auger HOLE DIAM. 8" SAMPLER TYPE Modified split spoon CASING DATA See well construction details

TOP OF CASING ELEVATION 41.74' DRILLER Soils Exploration Services, Inc. WELL CONSTRUCTION OR BORING CLOGUNE WATER LEVEL 27.00 26.68' OLOWS PER CGI (PPM **FOOT(N)** 2/28/91 4/5/91 DATE SAMPLE 3:00 pm 1:30 pm TIME DESCRIPTION Christy Box 0 2" Asphalt(Street) 2

sch. 40 PVC SAND: brown, moist to wet, very stiff, fine to medium grain **모** 27'

SILTY SAND: brown, wet, very stiff, low plasticity

	ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING								CLIENT BP	Oil Compa 2201 98th A	nv lve.	DATE DRILLED 2/28/91 , Oakland APPROVED BY M. Hopwox	SBA-8 WELL NO.
F	IELD	SKE	TC	1 OF	BORING LOCATI	ON			20002501_	100 100/100	`		Page 2 of 2
	TOP OF CASING ELEVATION 41.74'						_			E <u>Modifie</u> See well	ed s		DIAM8*
E.					Ŏ.		П	W	ATER LEVEL	27.00		26.68'	-
	£	ž	Щ	DEPTH	E SE CE]ؾ	D.	ATE	2/28/91		4/5/91	
BLOWS PER	ROOT(N)	CGI(PPM)	SAMPLE	路	WELL CONSTRUCTION OR BORING CLOGURE	3	PROFILE	ា	ME	3:00 pm		1:30 pm	
	a	ŏ			₹869	Ĭ						DESCRIPTION	
5,	8,11			- 36 - 38		CL		S	ILTY CLAY: brown,	wet, very s	stiff,	medium plasticity	*
4	,8,9		Ŧ	40	End Cap			S	ame, becomes satu	rated, low p	olas	ticity, with some fine sand	
1				· 42				В	ORING TERMINATE	ED AT 41.5	FEE	T BELOW GRADE	
ı				- 44									
L				46									
L													
L				· 48									
L				- 50									
				- 52									
l				- 54									
l				- 56									
l				- 58	· c								
1				- 60									
							ناور		Daniland Co			Sample	
							MEN		Portland Cement		7	Driven interval	
							***	_	Sand #3 Lonestar				lucios dellina
							33	ž.	Bentonite Pellets	Z	-	Water level encountered d	oring ariting
L		_				_	_	_			_		

1.

.

ľ

1

1

1 -

4 +

1

		O ENGINEERING GROUP OUT CREEK, CALIFORNIA		L	OG	OF BORING	AW-9	Page 1 of 1		
	SEE	SITE PLAN	CLIENT LOCATI DRILLIN DRILLIN	ALISTO PROJECT NO: 10-025-12 DATE DRILLED: 12/03/98 CLIENT: BP Oil Company LOCATION: 2231 Warner Avenue, Oakland, California DRILLING METHOD: Hollow-stem Auger (8") DRILLING COMPANY: V & W Drilling Inc. CASING ELEVATION: 'MSI LOGGED BY: Chris Reinheimer APPROVED BY: AI Sevilla						
BLOWS/6 IN.	PID VALUES	WELL DIAGRAN	DEPTH feet	SAMPLES GRAPHIC LOG	SOIL CLASS	GEO	LOGIC DESCRIPTION			
17,20,21	0	PVC ————————————————————————————————————	5—	T	GC ML		e. RAVEL; gray-green; dam -brown, damp, medium-gr			
17,20,25	٥	2° Sch. 40 PVC	Bentonite seal			5%, root traces and or				
20,21,23	0	screen ———————————————————————————————————	15-		SM	med-coarse, gravel to	medium red-brown, moist 1.5 cm 10%, dense.	to wet, sand		
13,14,14	0	2" 0.010" slatted PVC scre	20-		GM	Same				
17,11,21 17,19,31	O NM		Bentonite Pellets		GM GC	clayey to silty GRAVEI	.: medium red-brown, wet medium to coarse grained	, gravel to 1.5 I sand to 20%,		
18,18,31	NM		30-		G.		wn, wet, coarse-grained	sand <5%,		
11,18,24	NM				1	Same Boring terminated at 3 measured on .	3 feet. Stabilized water	level		

ar

120

.

10

.

	ALISTO ENGINEERING GROUP WALNUT CREEK, CALIFORNIA					LO	G	OF BORING VEW-9 Page 10	f f				
				ALIS	ALISTO PROJECT NO: 10-025-06 DATE DRILLED: 05/09/96								
				CLIE	NT:	BP (OII C	ompany					
1	SEE SITE PLAN			LOCA	LOCATION: 98th Avenue, Oakland, CA								
				DAIL	DRILLING METHOD: Hallow-stem Auger (12")								
								Y: V&W Drilling Inc. CASING ELEVATION: N/A					
	_			LOGG	ED E	_	_	s Reinheimer APPROVED BY: Al Sevilla					
BLOWS/6 IN.	PID VALUES	MELL	DIAGRAN	DEPTH	SAMPLES	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION					
		177	ZZ è		-		ML	6" asphalt	_				
4,5,9	3.2	blank casing		Bentunite Seat				clayey SILT: medium orange brown, damp, stiff; gravel to i centimeter to approximately 5%; organics to 2%.					
7,11,18	0.2	4° Sch. 40 PVC, ch. 40 PVC Screen, 0.010" Slat		10				Same: medium brown, very stift.					
5,12,21	4.3	. 4 Sch. 40 PVC S	#3 Monterey Sand	15			CL	silty CLAY: orange tan, damp to moist, hard; organics < 2%.					
4,8,11	им			20			SC	clayey SAND: medium orange brown, wet, medium dense; fine-grained sand; Fe oxide to 5%; organics < 2%.					
				25 ⁻									

32006.01

Grab sample

role and definitions may not be appli

NR

No recovery

LO	ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING FIELD SKETCH OF BORING LOCATION								PROJECT NO. 30-080 DATE DRILLED 6/5/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY	BORING NO. WELL NO. RW-1
FIELD	FIELD SKETCH OF BORING LOCATION									
 тор с	TOP OF CASING ELEVATION 98.60								DRILLING METHOD HOLLOW-STEM AUGER HOLE DI SAMPLER TYPE CASING DATA SEE MONITORING WELL CONSTRUCT DRILLER WEST HAZMAT	
3	6			TION	8		-	_	ATER LEVEL: 27.93	
HLOWG PEH FOOT(N)	CGI (PPM)	SAMPLE	æ	FING	H		: :	_	ATE : JULY, 1990	•
E CO	8	SAM	HT 4 BO	MELL CONSTRIC	CLOSURE	506N	PROFILE	- 11	ME: DESCRIPTION	
	Ť	Ť		Christy B	ox o					
	Ш		0	_		\vdash	1111	_	ASPHALT	
(^{4,6,11}	ND	I	2 4 6 8	6" sch. 40 PVC Casing		CL.			SILTY CLAY; w/ sand, damp, moderately stiff, tan w/ grey mottling	
7,11,	1 0	I	- 10 - 12 - 14 - 16 - 18		3333	ML			CLAYEY SILT; w/ slight sand, damp, moderately stiff,tan As above, sand grains larger	
7,16, 21	ND	Ι	- 20 - 22	sch. 40				¥	CLAYEY SAND; moderately dense, very moist, fine grained	۸
7, 11, 25	500	I	24 26			sc			As above, less clayey , i.e., sand w/ slight clay	
7, 13,		Ι	- 28 - - 30 -			sc			SANDY CLAY; stiff, damp tan to light brown, sand clasts to 3 m organic matter CONTINUED ON NEXT PAGE	nm, some dark

LO BO	ALTON GEOSCIENCE, Inc. LOG OF EXPLORATORY BORING FIELD SKETCH OF BORING LOCATION TOP OF CASING ELEVATION								PROJECT NO. 30-080 DATE DRILLED 6/5/90 CLIENT BP OIL COMPANY LOCATION 2201 98TH AVENUE, OAKLAND, CA LOGGED BY M. TAYLOR APPROVED BY DRILLING METHOD HOLLOW-STEM AUGER HOLE DI SAMPLER TYPE CASING DATA SEE MONITORING WELL CONSTRUCT					
TOP									DRILLER WEST HAZMAT					
Æ	CGI (PPM) SAMPLE DEPTH WELL CONGITHUCTION OR BORING CLOSURE USCS PROFILE							D.	DATE TIME					
9 g	ŏ	Ś	Z	₩ 0 6	5 3	ğ	7777		DESCRIPTION					
7, 13, 29 7, 11, 23		I	- 32 - 34 - 36 - 38	6" sch. 40 PVC .020 Slat		a.			As above, more sand, strong TPH odor					
5, 11, 26		Н	- 40				Y /////	_	As above, some coarse sand					
20		Τ	- 42	End C	,ap				BOREHOLE TERMINATED AT 40 FEET					
			- 44						©					
			- 46											
			- - 48											
			- -50											
			-											
			-											
			ţ											
			Ė											
							•		_					
			-				Cem		Sample					
			-	*****	_		Lone e Pe		Driven interval					
	_		_			_								

.

BORING/WELL LOG

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME BP Oil Company **BORING/WELL NAME** JOB/SITE NAME BP-11133 22-Oct-01 **DRILLING STARTED** LOCATION 2220 98th Avenue, Oakland, California DRILLING COMPLETED 23-Oct-01 **PROJECT NUMBER** 852-1692 WELL DEVELOPMENT DATE (YIELD) 22-Oct-01 (0.87 gal purge volume) Grega Drilling DRILLER **GROUND SURFACE ELEVATION DRILLING METHOD** Hydraulic push TOP OF CASING ELEVATION NA BORING DIAMETER SCREENED INTERVAL 18 to 28 ft bgs S. Dwight **LOGGED BY** DEPTH TO WATER (First Encountered) 19.5 ft (22-Oct-01) K. Rahman, RG REVIEWED BY **DEPTH TO WATER (Static)** 18.5 ft (22-Oct-01)

REMARKS Hand augered to 5 feet. Located on southern property boundary adjacent to apartment complex. CONTACT DEPTH (# bg: Vapor THC (ppmv) SAMPLE ID GRAPHIC LOG ГРНд (ррт) EXTENT (mdd) DEPTH (ft bgs) U.S.C.S. LITHOLOGIC DESCRIPTION Soil BORING BACKFILL 윤 SILT (ML); brown; dry; 90% silt, 10% fine grained sand; no plasticity; moderate to high estimated permeability. ML @4": very stiff; 10% clay, 85% silt, 5% fine grained sand; B-1-4.5 B-1-V 1 0.49 - 5 low plasticity; low estimated permeability. 3/4" diam., 0.46.6 Schedule 40 **PVC** 8.0 SANDY SILT (ML); brown; dry; medium stiff; 5% clay, ML 80% silt, 15% fine grained sand; no plasticity; low to Open Borehole B-1-9.5 moderate estimated permeability. 10.0 SILT (ML); brown; dry; very stiff; 10% clay, 85% silt, 5% fine grained sand; no plasticity; low estimated 0.4 9.9 MŁ permeability; some roots. 12.0 0.4 CLAYEY SILT (ML); brown; dry; soft; 15% clay, 75% silt, 10% fine grained sand; low to medium plasticity; low to moderate estimated permeability. <0.050 B-1-1 3.5 ML B-1-V 3 📆 1.8 17.0 SANDY SILT (ML); brown; damp; 15% clay, 65% sift, 20% fine grained sand; low to medium plasticity; low to ML 0.4 Ţ WELL LOG (PIDAPPSCIL) H'BRITTS-111133-118P-11133 GPJ DEFAULT.GDT 2/19/02 moderate estimated permeability. 19.0 Ų SILTY SAND (SM); brown; wet; 20% silt, 60% fine to B-1-1 9.5 coarse grained sand, 20% fine gravel; no plasticity; high Monterey estimated permeability. Sand #2/12 SM 23.0 ◀ 3/4"-diam., GRAVELLY SAND (SP); brown; wet; 15% silt, 45% 0.010" Slotted B-1-2 3.5 medium to coarse grained sand, 40% fine gravel; no Schedule 40 plasticity; high estimated permeability. **PVC** SP 28.0 Bottom of Total depth = 28'. Boring @ 28 ft Temporary well casing installed. Well purged and grab water sample collected using baller. Casing removed and sealed with grout after sampling. PAGE 1 O

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	BP Oil Company	BORING/WELL NAME B-2	
JOB/SITE NAME	BP-11133	DRILLING STARTED 22-Oct-01	
LOCATION	2220 98th Avenue, Oakland, California	DRILLING COMPLETED 23-Oct-01	
PROJECT NUMBER	852-1692	WELL DEVELOPMENT DATE (YIELD)	22-Oct-01 (0.93 gal purge volume
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION NA	
BORING DIAMETER	2"	SCREENED INTERVAL 18 to 28 f	t bgs
LOGGED BY	S. Dwight	DEPTH TO WATER (First Encountered)	18.0 ft (22-Oct-01) ∑
REVIEWED BY	K. Rahman, RG	DEPTH TO WATER (Static)	18.0 ft (22-Oct-01)

REMARKS Hand augered to 5 feet. Located on southern property boundary adjacent to apartment complex. CONTACT DEPTH (ft bgs) Soil TPHg (ppm) SAMPLE ID GRAPHIC LOG Vapor THC (ppmv) EXTENT U.S.C.S. DEPTH (ft bgs) PiD (ppm) LITHOLOGIC DESCRIPTION BORING BACKFILL SANDY SILT (ML); dark brown; dry; 5% clay, 80% slit, 15% fine grained sand; no plasticity; low estimated permeability. ML 4.0 SILT (ML); brown; dry; very stiff; 5% clay, 85% silt, 10% fine grained sand; no plasticity; low estimated 3/4" diam., 큥 B-2-V 1, 7.0 2.4 1.6 permeability. Schedule 40 B-2-5 ML **PVC** 8.0 SANDY SILT (ML); dark brown; dry; 5% clay, 80% silt, ML 15% fine grained sand; no plasticity; low to moderate Open Borehole estimated permeability, some roots. 10.0 8-2-9 5 B-2-V 2 -10 5 20 11 SILT (ML); brown; dry; very stiff; 5% clay, 85% silt, 10% fine grained sand; no plasticity; low estimated ML permeability. 12.0 SANDY SILT (ML); brown; dry; medium stiff; 10% clay, 6.0 70% silt, 20% fine grained sand; no plasticity; low estimated permeability. <0.050 B-2-1 3.5 ML 6 B-2-V 3 4.5 @16': damp; 15% clay, 60% silt, 25% fine grained sand; low to medium plasticity; low to moderate estimated permeability. 18.0 GRAVELLY SAND (SP); brown; wet; 10% silt, 50% WELL LOG (PIDWP/SOIL) H-BRITIS-111133--118P-11133 GPJ DEFAULT GDT 2/19/02 SP 19.0 medium to coarse grained sand; 40% fine to coarse gravel; no plasticity; high estimated permeability. SILTY SAND (SM); brown; wet; 15% slit, 85% fine grained SM 20.0 B-2-1 9.5 Monterey 6.0 ML Sand #2/12 21.0 sand; no plasticity; high estimated permeability.
SANDY SILT (ML); brown; wet; 15% clay, 60% silt, 25% SM 22.0 fine grained sand; low to medium plasticity; moderate estimated permeability. 3/4"-diam., SP SILTY SAND (SM); brown; wet; 15% silt, 85% fine grained 0.010" Slotted 24.0 sand; no plasticity; high estimated permeability. GRAVELLY SAND (SP); brown; wet; 10% silt, 50% B-2-2 3.5 Schedule 40 SM 25.0 **PVC** medium to coarse grained sand; 40% fine to coarse 5.0 gravel; no plasticity; high estimated permeability.
SILTY SAND (SM); brown; wet; 15% silt, 85% fine grained sand; no plasticity; high estimated permeability.
GRAVELLY SAND (SP); brown; wet; 10% silt, 50% SP 27.0 ML 28.0 B-2-2 7.5 medium to coarse grained sand; 40% fine to coarse Bottom of Boring @ 28 ft gravel; no plasticity; high estimated permeability. CLAYEY SILT (ML); brown; damp; 15% clay, 75% slit, 10% fine grained sand; low to medium plasticity; low to moderate estimated permeability. Total depth = 28'. Temporary well casing installed. Well purged and grab water sample collected using baller. Casing removed and sealed with grout after sampling. PAGE 1 OF

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700

Fax: (510) 420-9170

CLIENT NAME	BP Oil Company	BORING/WELL NAME B-3
JOB/SITE NAME	BP-11133	DRILLING STARTED 22-Oct-01
LOCATION	2220 98th Avenue, Oakland, California	DRILLING COMPLETED 23-Oct-01
PROJECT NUMBER	852-1692	WELL DEVELOPMENT DATE (YIELD) 22-Oct-01 (0.58 gal purge volum
DRILLER	Grega Drilling	GROUND SURFACE ELEVATION
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION NA
BORING DIAMETER	2*	SCREENED INTERVAL 20 to 30 ft bgs
LOGGED BY	S. Dwight	DEPTH TO WATER (First Encountered) 21.0 ft (22-Oct-01)
REVIEWED BY	K. Bahman, BG	DEPTH TO WATER (Static) 21.0 ft (22-Oct-01)

Hand augered to 5 feet. Located on southern property boundary adjacent to apartment complex. REMARKS CONTACT DEPTH (ft bgs) Soll TPHg (ppm) GRAPHIC LOG Vapor THC (ppmv) SAMPLE ID EXTENT U.S.C.S. PID (ppm) DEPTH (ft bgs) BORING BACKFILL LITHOLOGIC DESCRIPTION SANDY SILT (ML); brown; dry; 70% silt, 30% fine to coarse grained sand; no plasticity; high estimated permeability. ML SILT (ML); brown; dry; very stiff; 5% clay, 85% silt, 10% B-3-4.5 fine grained sand; no plasticity; low estimated <0.050 ■ 3/4" diam... - 5 B-3-V 1 3 6.0 7.0 Schedule 40 permeability. PVC ML B-3-9.5 Open Borehole B-3-V 2 2.2 4.0 12.0 SANDY SILT (ML); brown; dry; stiff; 10% clay, 75% silt, 15% fine grained sand; low plasticity; low estimated 5.0 ML permeability. <0.050 B-3-1 3.5 15.0 B-3-V 3 💆 1.6 SILT (ML); brown; dry; 10% clay, 80% silt, 10% fine grained sand; low plasticity; low estimated permeability. ML 17.0 SANDY SILT (ML); brown; damp; 15% clay, 65% silt, 20% fine grained sand; low to medium plasticity; low estimated WELL LOG (PIDVPISOIL) H:BRITTS-111133-118P-11133.GPJ DEFAULT.GDT 2/191/2 permeability. ML, B-3-1 9.5 -20 4.0 **2**1.0 SILTY SAND (SM); brown; wet; 25% silt, 75% fine grained SM sand; no plasticity; high estimated permeability. Monterey Sand #2/12 23.0 CLAYEY SILT (ML); brown; damp; stiff; 20% clay, 75% 3.0 B-3-2 3.5 ML silt, 5% fine grained sand; medium plasticity; low to moderate estimated permeability. 25.0 ◀ 3/4"-diam., SILTY SAND (SM); brown; wet; 25% silt, 75% fine grained 0.010" Slotted SM 26.0 sand; no plasticity; high estimated permeability. CLAYEY SILT (ML); brown; wet; 20% clay, 70% silt, 5% Schedule 40 **PVC** fine grained sand, 5% fine gravel; medium plasticity; low 3.0 B-3-2 7.5 to moderate estimated permeability. ML @27': 30% clay, 65% silt, 5% fine grained sand. 30.0 30 Bottom of Total depth = 30'. Boring @ 30 ft Temporary well casing installed. Well purged and grab water sample collected using baller. Casing removed and sealed with grout after sampling. PAGE 1 OF

PAGE 1 OF

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	BP Oil Company	BORING/WELL NAME B-4					
JOB/SITE NAME	BP-11133	DRILLING STARTED 22-Oct-01	22-Oct-01				
LOCATION	2220 98th Avenue, Oakland, California	DRILLING COMPLETED 23-Oct-01					
PROJECT NUMBER	852-1692	WELL DEVELOPMENT DATE (YIELD) 23-Oct-01 (0.66 gal purge yo					
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION					
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION NA SCREENED INTERVAL 18 to 28 ft bgs					
BORING DIAMETER	2"						
LOGGED BY	S. Dwight	DEPTH TO WATER (First Encountered)	21.0 ft (22-Oct-01)				
REVIEWED BY	K. Rahman, RG	DEPTH TO WATER (Static)	21.0 ft (23-Oct-01)				
DELLADVO	Uppel assessed to E-toot. I appeted an apptore	property boundary adjacent to alpejo story regid	anaa				

BORING/WELL LOG

PAGE 1 O

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700

Fox: (510) 420-9170

CLIENT NAME BP Oil Company **BORING/WELL NAME** B-5 **JOB/SITE NAME** BP-11133 **DRILLING STARTED** 23-Oct-01 LOCATION 2220 98th Avenue, Oakland, California DRILLING COMPLETED 23-Oct-01 PROJECT NUMBER 852-1692 WELL DEVELOPMENT DATE (YIELD) 23-Oct-01 (0.44 gal purge volume) DRILLER Gregg Drilling **GROUND SURFACE ELEVATION** DRILLING METHOD Hydraulic push TOP OF CASING ELEVATION NA BORING DIAMETER SCREENED INTERVAL 15 to 25 ft bgs S. Dwight LOGGED BY DEPTH TO WATER (First Encountered) 24.0 ft (23-Oct-01) REVIEWED BY K. Rahman, RG **DEPTH TO WATER (Static)** 18.0 ft (23-Oct-01)

REMARKS Hand augered to 5 feet. Located on eastern property boundary adjacent to single story residence. CONTACT DEPTH (# bgs Soil TPHg (ppm) Vapor THC (ppmv) GRAPHIC LOG U.S.C.S. PID (ppm) EXTENT DEPTH (ft bgs) SAMPLE LITHOLOGIC DESCRIPTION BORING BACKFILL SANDY SILT (ML); dark brown; dry; 70% silt, 15% medium to coarse grained sand; 15% fine gravel; no plasticity; moderate estimated permeability. - 5 3/4" diam., 0 B-5-V 1 6.2 @5': brown; hard; 80% silt, 20% medium grained sand; Schedule 40 0.084 B-5-5.5 ML low estimated permeability. PVC Open Borehole @8": very stiff; 5% clay, 75% silt, 15% medium grained sand, 5% fine gravel; low plasticity. 0.5 B-5-9.5 10 2.0 B-5-V 2 @10': 65% silt, 25% medium gralned sand, 10% fine gravel; no plasticity. 12.0 0.5 SILTY SAND (SM); brown; dry; 40% silt, 60% fine to SM 13.0 medium grained sand; no plasticity; moderate estimated pearmeability. B-5-1 3.5 SANDY SILT (ML); brown; dry; 5% clay, 55% silt, 40% ML fine grained sand; low plasticity; low estimated 1.7 B-5-V 3 permeability. 16.0 SILT (ML); brown; dry; very stiff; 5% clay, 85% silt, 10% ML 17.0 fine grained sand; low plasticity; low estimated Monterey permeability. CLAYEY SILT (ML); brown; damp; stiff; 20% clay, 70% ML Sand #2/12 WELL LOG (PIDMP/SCIL) HYBRITIS-111135-148P-11133 GPJ DEFAULT GDT 2/19/02 19.0 silt, 10% fine grained sand; low plasticity; low estimated 5.0 permeability. <0.050 B-5-1 9.5 SANDY SILT (ML); brown; damp; 5% clay, 65% silt, 25% -20 3/4"-diam... 0.010" Slotted fine grained sand; low plasticity; low to moderate ML estimated permeability. Schedule 40 @20": medium stiff; 15% clay, 55% silt, 30% fine grained **PVC** sand; low to medium plasticity. 23.0 @22": stiff; 65% silt, 20% fine grained sand 3.5 B-5-2 3.5 SILTY SAND (SM); brown; wet; 30% silt, 50% fine to coarse grained sand, 20% fine gravel; no plasticity; high SM estimated permeability. @24': 5% clay, 30% silt, 65% fine grained sand; low plasticity. 27.0 @26': 20% silt, 60% fine to coarse grained sand, 20% fine 2.5 gravel; no plasticity; moderate estimated permeability. SANDY SILT (ML); brown; wet; medium stiff; 20% clay, Slough B-5-2 7.5 ML 65% silt, 15% fine grained sand; moderate plasticity; low estimated permeability. 30.0 30 Bottom of Total depth = 30'. Boring @ 30 ft Temporary well casing installed. Well purged and grab water sample collected using bailer. Casing removed and sealed with grout after sampling.

 $\overline{\nabla}$

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

B-6 **CLIENT NAME** BP Oil Company BORING/WELL NAME 23-Oct-01 **DRILLING STARTED** JOB/SITE NAME BP-11133 DRILLING COMPLETED 23-Oct-01 LOCATION 2220 98th Avenue, Oakland, Callfornia WELL DEVELOPMENT DATE (YIELD) 23-Oct-01 (0.38 gal purge volume) 852-1692 PROJECT NUMBER **GROUND SURFACE ELEVATION** Grega Drilling DRILLER Hydraulic push TOP OF CASING ELEVATION NA **DRILLING METHOD**

BORING DIAMETER 2 SCREENED INTERVAL 20 to 30 ft bgs

LOGGED BY S. Dwight DEPTH TO WATER (First Encountered) 23.0 ft (23-Oct-01)

LOGGED BY S. Dwight REVIEWED BY K. Rahman, RG						DO.		DEPTH TO WATER (Static)		23.0 ft (23-Oct-01)		
		вт					dear To	DEPTH TO WATER (Static) cated on eastern property boundary adjacent to single story resi	100	0 II (23-C		
REMA	HKS		н	ano	augere	10 5	teet. Lo	ocated on eastern property boundary adjacent to single story resi				
PID (ppm)	Vapor THC (ppmv)	Soil TPHg (ppm)	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (# bgs)	BOR	ING BACKFILL	
						ML		GRAVELLY SILT (ML); dark brown; dry; 70% silt, 15% medium to coarse grained sand, 15% fine gravel; no plasticity; moderate estimated permeability.	5.0			
5	4.2	<0 250	8-6-V 1 B-6-5 .5	杏	-5-	ML		SILT (ML); brown; dry; very stiff; 5% clay, 85% silt, 10% fine to medium grained sand; no plasticity; low estimated permeability.	9.0		3/4" diam., Schedule 40 PVC	
3.7	2.3		8-6-9 .5 B-6-V 2	15	10 	ML		SANDY SILT (ML); brown; dry; 5% clay, 80% silt, 15% fine to coarse grained sand; no plasticity; low to moderate estimated permeability. @10': brown mottled with white; 65% silt, 35% fine to medium grained sand; moderate estimated permeability. @12': 60% silt, 5% fine gravel.	5.0		✓ Open Boreho	
	2.4		B-6-1 3.5 B-6-V 3	100	-15-	ML		SILT (ML); brown; dry; 5% clay, 85% silt, 10% fine grained sand; low plasticity; low estimated permeability.	15.0			
		-0.050	B-6-1 9.5]	ML		SANDY SILT (ML); brown; dry; 5% clay, 80% silt, 15% fine grained sand; low plasticity; low to moderate estimated permeability.	20.0			
		<0.050	0-0-1 8.2	50103	8.5	- 20-	ML		CLAYEY SILT (ML); brown; damp; 30% clay, 60% silt, 10% fine grained sand; moderate plasticity; low to moderate estimated permeability.	22.0		✓ Monterey
			B-6-2 3.5	5		ML		SANDY SILT (ML); brown; wet; 20% clay, 50% silt, 30% fine grained sand; moderate plasticity; moderate estimated permeability.			Sand #2/12	
					-25-	SM		SILTY SAND (SM); brown with grey; wet; 10% clay, 25% silt; 65% fine grained sand; low plasticity; high estimated	26.0 27.0		3/4"-diam., 0.010" Slotte Schedule 40 PVC	
			B-6-2 7.1	5		ML		permeability. SILT (ML); brown; damp; 10% clay, 80% silt, 10% fine grained sand; low plasticity; low to moderate estimated permeability.	30.0			
						-30-			Total depth = 30'. Temporary well casing installed. Well purged and grab water sample collected using bailer. Casing removed and sealed with grout after sampling.			Bottom of Boring @ 30 ft