




1401 LAKESIDE DRIVE, OAKLAND, CALIFORNIA 94612 510 208 9700

FAX 510 208 9711 www.acgov.org/gsa

### Alameda County

AUG 2 0 2003

August 15, 2003

### Environmental Health

TO:

Don Hwang, Hazmat Specialist, HCSA-Environmental Health

FROM:

Rod Freitag, Environmental Program Manager, GSA-TSD

SUBJECT:

SEMIANNUAL GROUNDWATER MONITORING REPORT FOR

ALCOPARK, 165 - 13<sup>TH</sup> STREET, OAKLAND, CA 94612

It's my understanding that you are temporarily replacing Eva Chu as our point of contact for this site. Accordingly, I am submitting to you the enclosed report documenting groundwater monitoring results for the July, 2003 sampling event.

RDF:rdf:i:\e&em\prjt\env\7001\July 2003 report transmittal

Enclosure

## Alameda County

AUG 2 0 2003

**Environmental Health** 

### GROUNDWATER MONITORING REPORT THIRD QUARTER, 2003 ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

### Prepared for

### ALAMEDA COUNTY GENERAL SERVICES AGENCY 1401 Lakeside Drive, 11<sup>th</sup> Floor Oakland, California

Prepared by

### Professional Service Industries, Inc.

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> August 14, 2003 575-0G041

## TABLE OF CONTENTS

| STATEMENT OF L                               | MITATIONS AND PROFESSIONAL CERTIFICATIONII                                          |
|----------------------------------------------|-------------------------------------------------------------------------------------|
| 1. INTRODUCTION                              | N1                                                                                  |
| 1.1 SCOPE OF                                 | WORK1                                                                               |
| 1.2 SITE BACK                                | GROUND1                                                                             |
| 1.2.1 Storage                                | Tank System Upgrades2                                                               |
| 2. GROUNDWATE                                | R MONITORING ACTIVITIES3                                                            |
| 2.1 GROUNDW                                  | ATER ELEVATION AND FLOW DIRECTION3                                                  |
| 2.2 GROUNDW                                  | ATER SAMPLING3                                                                      |
| 3. LABORATORY                                | ANALYSIS PROGRAM4                                                                   |
| 3.1 ANALYTICA                                | L RESULTS4                                                                          |
| 4. CONCLUSIONS                               | 55                                                                                  |
|                                              |                                                                                     |
| TABLE 1                                      | GROUNDWATER ELEVATION AND ANALYTICAL DATA SUMMARY                                   |
|                                              | PUTTER BOATION                                                                      |
| FIGURE 1<br>FIGURE 2<br>FIGURE 3<br>FIGURE 4 | SITE LOCATION GROUNDWATER ELEVATION – 07/15/03 BENZENE VERSUS TIME MTBE VERSIS TIME |

### STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

Information provided in this report, prepared by Professional Service Industries, Inc. (PSI), is intended exclusively for the use of Alameda County General Services Agency (ACGSA), for the evaluation of subsurface conditions as they pertain to the subject site. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted will identify any or all sources or locations of contamination.

This report is issued with the understanding that ACGSA is responsible for ensuring that the information contained herein is brought to the attention of the appropriate regulatory agency.

Frank R. Poss, REA Senior Hydrogeologist Brand Burfield, RG Project Geologist FD GEO

BRAND W. BURFIELL

NO 6986

### 1. INTRODUCTION

Professional Service Industries, Inc. (PSI) was retained by the Alameda County General Services Agency (ACGSA) to perform groundwater monitoring at the ACGSA Alcopark Fueling Facility - Site No. 2 located at 165 13<sup>th</sup> Street, Oakland, California. The site location is presented on Figure 1.

The groundwater monitoring was prompted by a request by the Alameda County Health Care Services Agency (ACHCSA), which requested additional information on the extent of petroleum hydrocarbon impacted groundwater (ACHCSA, 1997a).

### 1.1 SCOPE OF WORK

The scope of work consisted of the following tasks:

- Measure the depth to water in the site wells and prepare a groundwater elevation map.
- Determine the groundwater flow direction and gradient.
- Collect and chemically analyze groundwater samples from wells MW-1, MW-6 and MW-7.
- Prepare a report documenting the field procedures, analytical results, and conclusions regarding the site condition.

### 1.2 SITE BACKGROUND

The ACGSA operates two 10,000-gallon USTs at the Alcopark fueling station to fuel Alameda County vehicles. Three groundwater monitoring wells were installed at the site in March, 1989 to assess environmental conditions subsequent to the repair of a line leak at Dispenser No. 1. Initial sample results indicated the presence of BTEX in the groundwater. Subsequent sample results indicated the presence of TPH-G. Based on the analytical data, it was concluded that contaminants detected on-site had originated from a source area located upgradient of the site. Sampling activities were halted in 1992 pending investigation of an upgradient source (ACGSA, 1997).

In their letter dated May 30, 1997, the ACHCSA instructed ACGSA to resume groundwater monitoring at Alcopark (ACHCSA, 1997b). Sampling resumed in July, 1997. Analytical data from that sampling event indicated elevated TPH-G and BTEX concentrations in the downgradient well. MTBE was also detected. Additional samples collected in October, 1997 provided similar results (ACGSA, 1997). In their letter dated

September 11, 1997, the ACHCSA directed ACGSA to investigate the extent and stability of the plume.

To better define groundwater conditions downgradient of the USTs, two borings were drilled on March 23, 1998. A grab groundwater sample was collected from one of the borings, and Well MW-6 was installed in the other boring. One additional small-diameter groundwater monitoring well (MW-7) was installed by PSI in September, 1999 and the analytical results are presented in the PSI report dated October 14, 1999.

ACHCSA issued a letter, dated July 18, 2000, requiring ACGSA to prepare a Site Conceptual Model in accordance with the Regional Water Quality Control Board's final draft "Guideline for Investigation and Cleanup of MTBE and Other Ether-Based Oxygenates." The Site Conceptual Model, dated November 10, 2000, indicated that there are no drinking water wells within ½ mile of the site, and Lake Merritt, the nearest surface water receptor, is salt water and not a potential source of drinking water. Based on these findings, it was concluded that, "...an Interim Remedial Action should not be required for the subject site because the migration of MTBE contaminated groundwater to the nearest receptor, Lake Merritt, is unlikely. Furthermore, since no potential drinking water sources are at risk, a risk assessment is not necessary for the site."

After reviewing the Site Conceptual Model report, ACHCSA required that a supplemental fate and transport screening be done to assess potential MTBE impacts on the Lake Merritt ecosystem. On June 8, 2001, a report was issued indicating no expectation of a significant impact on the ecology of Lake Merritt.

Groundwater sampling is currently being conducted semiannually, in accordance with ACHCSA's requirements.

### 1.2.1 Storage Tank System Upgrades

In September of 1992, overfill protection, spill containment, and automatic tank gauging were installed on the two underground tanks. In July and August of 1996, additional upgrade work was done to comply with Title 23 of the California Code of Regulations. This included replacement of underground single-walled steel piping with double-wall fiberglass piping, and installation of dispenser sumps, piping sumps, and sump leak sensors (ACGSA, 1997).

### 2. GROUNDWATER MONITORING ACTIVITIES

A PSI representative performed groundwater-monitoring activities on July 15, 2003. The activities were performed in accordance with PSI standard procedures presented in Appendix A, and procedures described in an ACHCSA letter describing collection of samples without purging the wells (ACHCSA, 1997a).

### 2.1 Groundwater Elevation and Flow Direction

Prior to groundwater sampling, depth to groundwater was measured from the top of the well casings in monitoring wells MW-1, MW-4, and MW-5. The groundwater measurements were converted to groundwater elevations and the data plotted on a groundwater elevation map. A groundwater elevation map was prepared for July 15, 2002 (presented as Figure 2). The groundwater elevation data are presented in Table 1 and Appendix A.

PSI's interpretation of the groundwater elevation data indicates the groundwater is flowing to the east under a hydraulic gradient of 0.003. The flow direction is consistent with the flow direction determined for previous quarterly monitoring events.

### 2.2 Groundwater Sampling

Monitoring wells MW-1, MW-6, and MW-7 were sampled without purging, as requested in the ACHCSA letter dated September 11, 1997. The groundwater samples were collected with disposable polyethylene tubing equipped with a check valve. The groundwater samples were collected according to PSI's standard protocol, included in Appendix A, and were stored in an iced cooler through delivery to the analytical laboratory and maintained under Chain-of-Custody protocol.

To minimize the possibility of cross-contamination between sampling locations, most of the sampling equipment used is disposable. To further minimize the possibility of cross-contamination, the water sounder and all other reusable sampling equipment were cleaned with a non-phosphate detergent and rinsed twice with deionized water prior to their use in the next well.

### 3. LABORATORY ANALYSIS PROGRAM

The groundwater samples collected during this investigation were submitted to McCampbell Analytical, Inc. of Pacheco, California. McCampbell Analytical is a State of California Department of Health Services certified hazardous waste laboratory (Environmental Laboratory Accreditation Program #1644). A summary of the analytical methods is presented below.

The groundwater samples collected at the site were analyzed for the following constituents by the indicated methods:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) in accordance with Environmental Protection Agency (EPA) Method 8015-Modified.
- Volatile Organic Compounds by EPA Method 8260.

The samples were transported to the laboratory under Chain-of-Custody protocol. Copies of the chain of custody forms are included in Appendix B.

### 3.1 ANALYTICAL RESULTS

The analytical data is summarized in Table 1. Laboratory reports are presented in Appendix B.

VOCs and/or MTBE were detected in groundwater samples from all three groundwater-monitoring wells sampled for this monitoring event.

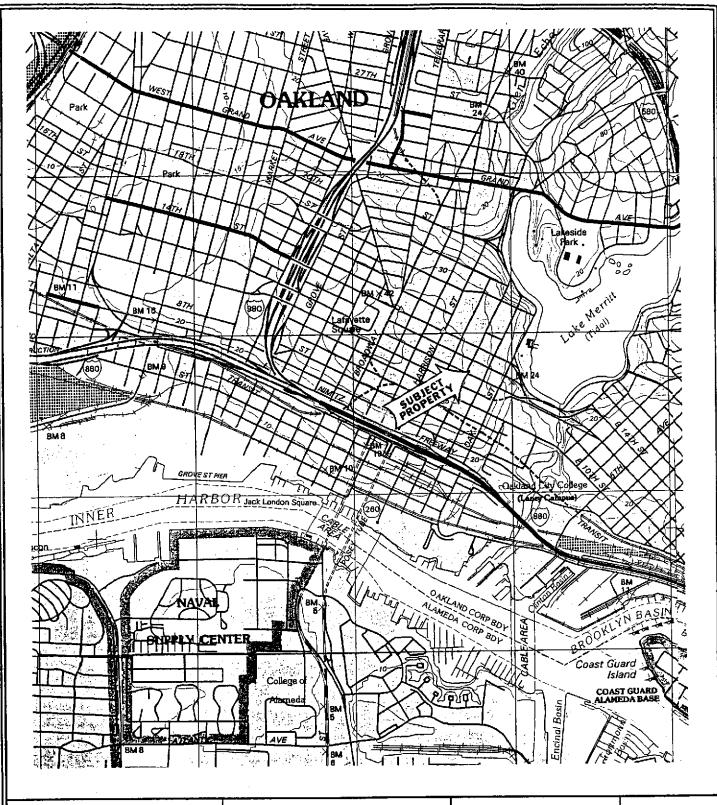
- TPH-G was detected only in Wells MW-1 (370 ug/l) and MW-6 (4,100 ug/l).
- Benzene was detected in Wells MW-1 (31 ug/l) and MW-6 (2,200 ug/l). The benzene concentrations have increased in MW-1 and MW-6 since the previous sampling event. Figure 3 depicts the benzene concentration with time in MW-1, MW-6, and MW-7. Benzene concentrations have varied with time and have not shown a consistent overall trend.
- MTBE was detected in Wells MW-1 (4.6 ug/l), MW-6 (1,200 ug/l) and MW-7 (140 ug/l). Figure 4 depicts the MTBE concentration with time in MW-1, MW-6, and MW-7. MTBE concentrations have generally declined at the site since groundwater monitoring commenced.

- Additional VOCs, commonly associated with gasoline impacted groundwater, were detected in the groundwater samples. The maximum concentrations for each of the additional VOCs detected are presented below.
  - Naphthalene at 300 ug/L in MW-6
  - > 1,2,4 Trimethylbenzene at 89 ug/L in MW-6
  - Xylenes at 260 ug/L in MW-6
  - Tert-Amyl methyl ether (TAME) at 180 ug/L in MW-6

### 4. CONCLUSIONS

Based on the information presented in this report, the following conclusions have been reached:

- Groundwater elevations measured at the site range from approximately 14.80 to 14.94 feet above msl.
- Groundwater flow direction is to the east with a gradient of 0.003.
- The groundwater samples collected from wells MW-1, MW-6 and MW-7 contained measurable concentrations of TPH-G and/or VOCs with MTBE and benzene being the primary contaminants of concern. Concentrations are generally higher than the previous sampling event.


### **REFERENCES**

ACGSA, 1997, Request For Proposal (RFP) for Groundwater Services, December 2.

ACHCSA, 1997a, Workplan Request Letter to Mr. Rodman Freitag, September 11.

ACHCSA, 1997b, Continuation of Groundwater Monitoring Request, Letter to Mr. Jim DeVos, May 20.

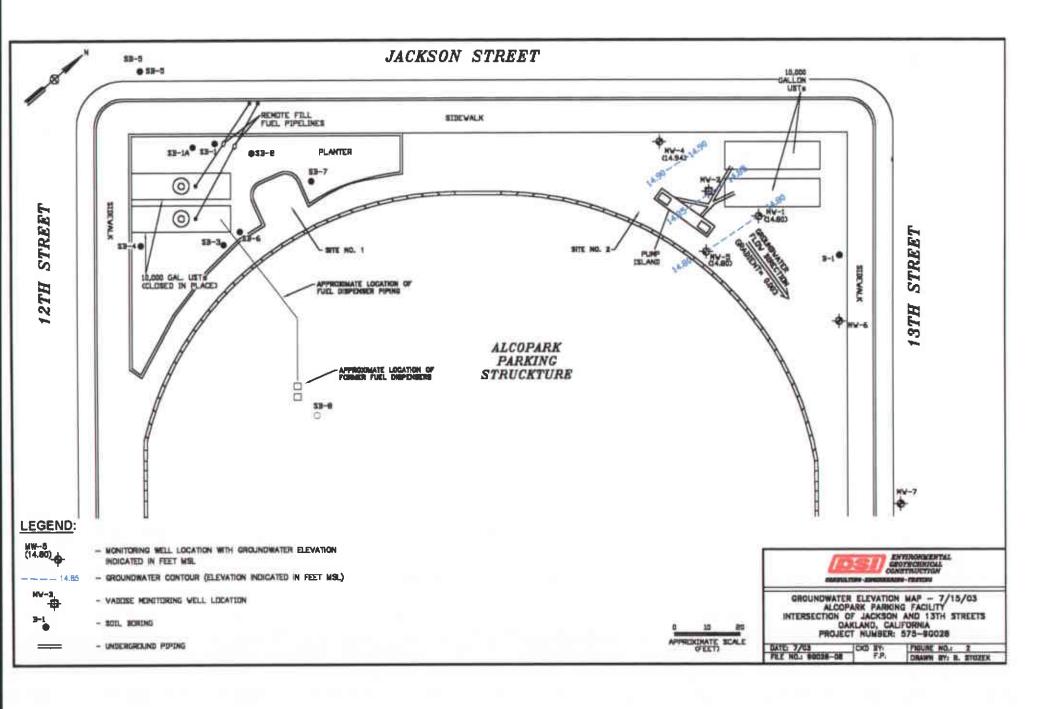
USGS, 1980, Oakland West, California, topographic map.

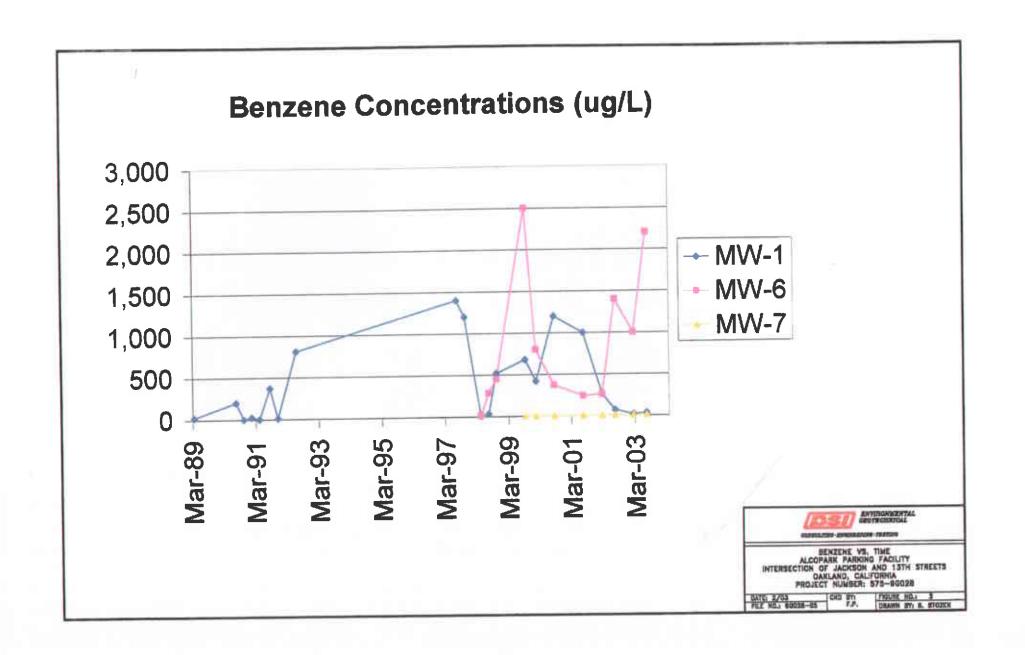


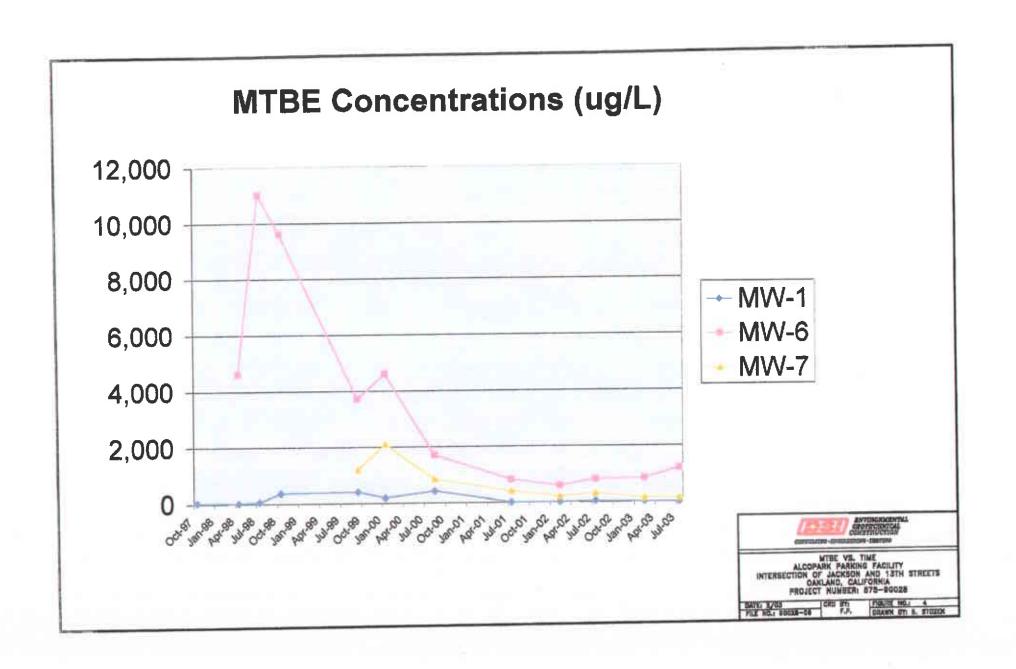


### FIGURE 1 - SITE LOCATION MAP

Former Alcopark Fueling Facility Jackson and 12th Streets Oakland, California


PROJECT NO.: 9G004


SOURCE


USGS Topographic Maps Oakland West, CA Oakland East, CA

DATE: Photorevised 1993









### TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL DATA, SITE NO. 2 ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

|              | All concentrations in ug/l (PPB). |                |           |          |           |            |              |            |  |
|--------------|-----------------------------------|----------------|-----------|----------|-----------|------------|--------------|------------|--|
|              | Groundwater                       |                |           |          |           |            |              |            |  |
| Well         | Date _                            | Elevation      | TPH-G     | MTBE     | Benzene   | Toluene    | Ethylbenzene | Xylenes    |  |
| MW-1         | 3/21/1989                         | 12.2           | ND        | NA       | 21        | 3.9        | 0.4          | 4.5        |  |
| MW-1         | 7/26/1990                         | 12.3           | 1,400     | NA       | 200       | 45         | ND           | 53         |  |
| MW-1         | 10/25/1990                        | 12.1           | 1,200     | NA       | ND        | 7.3        | 2.2          | 46         |  |
| MW-1         | 1/25/1991                         | 11.9           | 270       | NA       | 23        | 1.5        | ND           | 3.1        |  |
| MW-1         | 4/25/1991                         | 11.8           | 230       | NA       | ND        | ND         | ND           | ND         |  |
| MW-1         | 8/27/1991                         | 11.8           | 8,300     | NA       | 370       | 64         | ND           | 120        |  |
| MW-1         | 11/25/1991                        | 11.7           | 810       | NA       | 9.3       | ND         | 7.8          | 32         |  |
| MW-1         | 6/11/1992                         | 12.85          | 2,600     | NA       | 810       | 16         | 21           | 42         |  |
| MW-1         | 7/16/1997                         | 14.36          | 19,000    | ND (150) | 1,400     | 2,800      | 500          | 2,600      |  |
| MW-1         | 10/21/1997                        | 13.92          | 14,000    | 29       | 1,200     | 1,000      | 590          | 2,800      |  |
| MW-1         | 3/11/1998                         | 17.14          | NS        | NS       | NS        | NS         | NS           | NS         |  |
| MW-1         | 4/1/1998                          | 17.14          | ND (50)   | 6.3      | 5.4       | ND (0.5)   | ND (0.5)     | 0.82       |  |
| MW-1         | 7/15/1998                         | 16,41          | 71        | 57       | 31        | ND (0.5)   | ND (0.5)     | 3.1        |  |
| MW-1         | 10/22/1998                        | 15.62          | 5,100     | 360      | 520       | 140        | 250          | 950        |  |
| MW-1         | 9/9/1999                          | 15.42          | 2,400     | 400      | 680       | 140        | 130          | 370        |  |
| MW-1         | 1/18/2000                         | 14,49          | 4,100     | 180      | 420       | 11         | 210          | 350        |  |
| MW-1         | 5/4/2000                          | 16.19          | NS        | NS       | NS        | NS         | NS           | NS         |  |
| MW-1         | 8/22/2000                         | 15.34          | 9,400     | 410      | 1,200     | 130        | 410          | 920        |  |
| MW-1         | 2/8/2001                          | 14.53          | NS        | NS       | NS        | NS         | NS           | NS         |  |
| MW-1         | 7/20/2001                         | 14.60          | 9,600     | ND (50)  | 1,000     | 300        | 350          | 2,000      |  |
| MW-1         | 2/18/2002                         | 15.08          | 1,500     | ND (100) | 260       | 6.5        | 2.8          | 49         |  |
| MW-1         | 7/19/2002                         | 14.84          | 180       | 28       | 68        | ND (1.7)   | ND (1.7)     | 6.8        |  |
| MW-1         | 2/10/2003                         | 14.83          | 210       | 11       | 14        | 0.75       | ND (0.5)     | 4.0        |  |
| MW-1         | 7/15/2003                         | 14.80          | 370       | 4.6      | 31        | 0.99       | 22           | 75         |  |
|              | 3/21/1989                         | 12.4           | ND        | NA       | 13        | 1.4        | 1.0          | ND         |  |
| MW-4<br>MW-4 | 7/26/1990                         | 12.5           | NA.       | NA.      | 0.8       | ND         | ND           | ND         |  |
| MW-4         | 10/25/1990                        | 12.2           | NA.       | NA       | 120       | 1.2        | 1.1          | 0.9        |  |
| MW-4         | 1/25/1991                         | 12.0           | NA.       | NA       | 230       | 2.8        | 1.2          | 2.0        |  |
| MW-4         | 4/25/1991                         | 13.0           | 170       | NA       | 12        | ND         | ND<br>0.0    | 2.3        |  |
| MW-4         | 8/27/1991                         | 11.8           | ND        | NA       | 87        | 1.3        | 0.8<br>8.6   | 0,8<br>3,6 |  |
| MW-4         | 11/25/1991                        | 11.8           | 1,400     | NA       | ND<br>150 | 1.7<br>1.8 | 1.8          | 1.1        |  |
| MW-4         | 6/11/1992                         | 12.93          | 560<br>50 | NA<br>ND | ND        | ND         | ND           | ND         |  |
| MW-4         | 7/16/1997                         | 14.46<br>14.10 | ND<br>ND  | ND       | ND        | ND         | ND           | ΝĐ         |  |
| MW-4<br>MW-4 | 3/11/1998                         | 17.39          | NS NS     | NS       | NS        | NS         | NS           | NS         |  |
| MW-4         | 4/1/1998                          | 17.40          | ND (50)   | ND (5.0) | ND (0.5)  | ND (0.5)   | ND (0.5)     | ND (0.5)   |  |
| MW-4         | 7/15/1998                         | 16.92          | ND (50)   | ND (5.0) | ND (0.5)  | NTD (0.5)  | ND (0.5)     | ND (0.5)   |  |
| MW-4         | 10/22/1998                        | 15.75          | ND (50)   | ND (5.0) | ND (0.5)  | ND (0.5)   | ND (0.5)     | ND (0.5)   |  |
| MW-4         | 9/9/1999                          | 15.57          | NS        | NS       | NS        | NS<br>NS   | NS<br>NS     | NS<br>NS   |  |
| MW-4         | 1/18/2000                         | 14.32          | NS<br>NC  | NS       | NS<br>NS  | NS<br>NS   | NS<br>NS     | NS         |  |
| MW-4         | 5/4/2000                          | 16.34<br>15.47 | NS<br>NS  | NS<br>NS | NS<br>NS  | NS NS      | NS           | NS         |  |
| MW-4<br>MW-4 | 8/22/2000<br>2/8/2001             | 15.47<br>14.73 | NS NS     | NS       | NS        | NS         | NS           | NS         |  |
| MW-4         | 7/20/2001                         | 14.73          | NS NS     | NS       | NS        | NS         | NS           | NS         |  |
| H            |                                   | 15.05          | NS NS     | NS       | NS        | NS         | NS           | NS         |  |
| MW-4         | 2/18/2002                         | 14.97          | NS        | NS       | NS        | NS         | NS           | NS         |  |
| MW-4         | 7/19/2002                         | 14.97          | NS        | NS       | NS        | NS         | NS           | NS         |  |
| MW-4<br>MW-4 | 2/10/2003<br>7/15/2003            | 14.94          | NS        | NS       | NS        | NS         | NS           | NS         |  |
| MW-5         | 3/21/1989                         | 12.2           | ND        | NA.      | ND        | ND<br>ND   | ND<br>ND     | ND<br>ND   |  |
| MW-5         | 7/26/1990                         | 12.4           | 670       | NA<br>NA | 0.8       | ND<br>ND   | ND           | ND         |  |
| MW-5         | 10/25/1990                        |                | 120       | NA<br>NA | 13<br>3.2 | ND         | ND           | ND         |  |
| MW-5         | 1/25/1991                         | 11.9<br>12.3   | 120<br>ND | NA<br>NA | ND        | ND         | ND           | ND         |  |
| MW-5<br>MW-5 | 8/27/1991<br>8/27/1991            | 12.3           | ND        | NA NA    | 20        | ND         | 0.5          | ND         |  |
| MW-5         | 11/25/1991                        |                | 190       | NA.      | 2.7       | ND         | 0.8          | 2.5        |  |
| MW-5         | 6/11/1992                         | 12.85          | 150       | NA       | 37        | ND         | ND           | ND         |  |
| MW-5         | 7/16/1997                         |                | ND        | 22       | ND        | ND         | ND<br>ND     | ND<br>ND   |  |
| MW-5         | 10/21/1997                        |                | DИ        | 14       | ND        | ND<br>NS   | ND<br>NS     | ND<br>NS   |  |
| MW-5         | 3/11/1998                         | 17.14          | NS        | NS       | NS        | INO        | .1           | 1          |  |

# TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL DATA, SITE NO. 2 ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

| All concentrations in ug/l (PPB). |            |             |          |                    |          |          |              |           |
|-----------------------------------|------------|-------------|----------|--------------------|----------|----------|--------------|-----------|
| <del></del>                       |            | Groundwater |          |                    |          |          |              |           |
| Well                              | Date       | Elevation   | TPH-G    | MTBE               | Benzene  | Toluene  | Ethylbenzene | Xylenes   |
| MW-5                              | 4/1/1998   | 17,14       | ND (50)  | 11                 | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-5                              | 7/15/1998  | 16,43       | ND (50)  | ND (5.0)           | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-5                              | 10/22/1998 | 15.60       | ND (50)  | ND (5.0)           | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-5                              | 9/9/1999   | 15.44       | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 1/18/2000  | 14.67       | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 5/4/2000   | 16.18       | N\$      | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 8/22/2000  | 15.32       | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 2/8/2001   | 14.53       | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 7/20/2001  | 14.59       | ทร       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 2/18/2002  | 14.94       | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 7/19/2002  | 14.83       | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-5                              | 2/10/2003  | 14.83       | NS       | NS                 | NS '     | NS       | NS           | NS        |
| MW-5                              | 7/15/2003  | 14.80       | NS       | NS                 | NS       | NS       | NS           | NS        |
| G-VVIV                            | 1/10/2003  | 14.00       |          | ,,,                |          |          |              |           |
| MW-6                              | 4/1/1998   | NA          | 740      | 4.600              | 8.6      | 3.2      | 3,0          | 15        |
| MW-6                              | 7/15/1998  | NA<br>NA    | 6.200    | 11,000             | 280      | 43       | 180          | 350       |
| MW-6                              | 7/15/1998  | AN          | NA<br>NA | 13,000             | ND (500) | ND (500) | ND (500)     | ND (500)  |
| MW-6                              | 10/22/1998 | NA.         | 4,700    | 9,600              | 450      | 13       | 200          | 200       |
| MW-6                              | 10/22/1998 | NA.         | NA       | 9.100              | 470      | ND (250) | ND (250)     | ND (250)  |
| MW-6                              | 9/9/1999   | NA NA       | 6,600    | 3,700              | 2,500    | 43       | 310          | 250       |
| MW-6                              | 1/18/2000  | NA          | 3,500    | 4,600              | 800      | ND (5.0) | 40           | 13        |
| MW-6                              | 5/4/2000   | NA          | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-6                              | 8/22/2000  | NA          | 1,400    | 1,700              | 370      | 4.8      | 12           | 35        |
| MW-6                              | 2/8/2001   | NA          | NS       | NS                 | NS       | NS       | NS           | NS        |
| MW-6                              | 7/20/2001  | NΑ          | 1,100    | 800                | 240      | 2.9      | 2.3          | 3.4       |
| MW-6                              | 2/18/2002  | NA          | 1,500    | 570                | 260      | ND (2.0) | 11           | 4.3       |
| MW-6                              | 7/19/2002  | NA !        | 1,800    | 800                | 1400     | ND (50)  | ND (50)      | ND (50)   |
| MW-6                              | 2/10/2003  | NA          | 4,000    | 830                | 1000     | ND (50)  | ND (50)      | ND (50)   |
| MW-6                              | 7/15/2003  | NA NA       | 4,100    | 1200               | 220D     | ND (25)  | 180          | 260       |
| MAA-0                             | 7/15/2003  | 170         | 4,100    | 1200               | ]        | ' ' ' '  |              |           |
| MW-7                              | 9/9/1999   | NA.         | 92       | 1,200              | 1.6      | ND (0.5) | ND (0.5)     | NO (0.5)  |
| MW-7                              | 1/18/2000  | NA NA       | ND       | 2,100              | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-7                              | 5/4/2000   | NA NA       | 140      | 1,100              | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-7                              | 8/22/2000  | NA NA       | 160      | 830                | 0.62     | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-7                              | 2/8/2001   | NA NA       | 130      | 650                | ND (0.5) | 0.53     | ND (0.5)     | ND (0.5)  |
| MW-7                              | 7/20/2001  | NA NA       | 56       | 400                | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
| MW-7                              | 2/18/2002  | NA NA       | ND (50)  | 200                | ND (0.5) | ND (0.5) | ND (0.5)     | ND (0.5)  |
|                                   |            | NA<br>NA    | ND (50)  | 300                | ND (5.0) | ND (5.0) | ND (5.0)     | ND (5.0)  |
| MW-7                              | 7/19/2002  |             |          | 140                | ND (5.0) | ND (5.0) | ND (5.0)     | ND (5.0)  |
| MW-7                              | 2/10/2003  | NA .        | ND (50)  | , . <del>.</del> . | 1 ' '    |          | ND (2.5)     | ND (2.5)  |
| MW-7                              | 7/15/2003  | NA NA       | ND (50)  | 140                | ND (2.5) | ND (2.5) | 140 (2.0)    | 110 (2.0) |
|                                   |            | l           |          | 4.000              | 250      | 18       | 160          | 290       |
| W-B1                              | 3/23/1998  | NA          | 3,100    | 4,200              | 250      | 10       | 100          | 230       |

### Notes

TPH-G denotes Total Petroleum Hydrocarbons as Gasoline. MTBE denotes Methyl tert-Butyl Ether. NA denotes Not Analyzed. NS denotes Not Sampled. ND denotes Not Detected. () denotes detection limit. Data collected prior to 1998 was reported in Alameda County Request for Proposal dated December 2, 1997. Duplicate results presented in italics performed by EPA method 8260.

### APPENDIX A

GROUNDWATER SAMPLING FIELD PROCEDURES & WATER ELEVATIONS

### APPENDIX A

### **GROUND-WATER SAMPLING**

The following procedures will be used for ground water sampling:

- 1. All equipment shall be washed prior to entering the well with an Alconox solution, followed by two tap water rinses and a deionized water rinse.
- 2. Prior to purging wells, depth-to-water will be measured using an electronic sounder with an accuracy of approximately 0.01 foot. The measurements will be made to the top of the well casing on the north side.
- 4. Free floating product thickness and depth-to-ground water will be measured in wells containing free floating product using a Solinst oil-water interface probe to an accuracy of approximately 0.003 meters (0.01 foot). The measurements will be made to the top of the well casing on the north side.
- 5. Water samples will be collected with a Teflon disposable bailer. In the case of grab groundwater sampling, samples will be collected with a disposable Teflon lined plastic tube equipped with a check valve. The water collected will be immediately decanted into laboratory-supplied vials and bottles. The containers will be overfilled, capped, labeled, and placed in a chilled cooler, prior to delivery to the laboratory for analysis.
- 6. Chain of custody procedures, including chain of custody forms, will be used to document water sample handling and transport from collection to delivery to the laboratory for analysis.
- 7. Ground-water samples will be delivered to a State-certified hazardous waste laboratory within approximately 24 hours of collection.

### APPENDIX B

LABORATORY REPORT AND CHAIN OF CUSTODY

| <b>T</b>                   | 110 2nd Avenue South, #D7, Pacheco, CA 94553-5560     |
|----------------------------|-------------------------------------------------------|
| McCampbell Analytical Inc. | Telephone: 925-798-1620 Fax: 925-798-1622             |
|                            | http://www.mccampbell.com E-mail: main@mccampbell.com |

| Professional Service Industries | Client Project ID: #OG041; Alco Park | Date Sampled:   | 07/15/03 |
|---------------------------------|--------------------------------------|-----------------|----------|
| 4703 Tidewater Ave., Suite B    |                                      | Date Received:  | 07/16/03 |
| O-1-11 CA 04601                 | Client Contact: Brian Storek         | Date Reported:  | 07/23/03 |
| Oakland, CA 94601               | Client P.O.:                         | Date Completed: | 07/23/03 |

WorkOrder: 0307253

July 23, 2003

Dear Brian:

Enclosed are:

- 1). the results of 3 analyzed samples from your #OG041; Alco Park project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

| 6          |
|------------|
| ( <b>1</b> |
|            |

### McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Professional Service Industries | Client Project ID: #OG041; Alco Park | Date Sampled: 07/15/03            |
|---------------------------------|--------------------------------------|-----------------------------------|
| 4703 Tidewater Ave., Suite B    |                                      | Date Received: 07/16/03           |
| Oakland, CA 94601               | Client Contact: Brian Storek         | Date Extracted: 07/17/03-07/22/03 |
| Cariand, CA 94001               | Client P.O.:                         | Date Analyzed: 07/17/03-07/22/03  |

|        | Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*  Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0307253 |            |        |      |           |           |              |                                       |          |          |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|------|-----------|-----------|--------------|---------------------------------------|----------|----------|
| Lab ID |                                                                                                                                                                  |            |        |      |           |           | Ethylbenzene | Xylenes                               | DF       | % SS     |
|        | - CHOIL ID                                                                                                                                                       | 11-Iddille | 111(6) |      | Dettizone | 1 0 0 0 0 | 227,74       | -                                     | <u> </u> |          |
| 001A   | MW-1                                                                                                                                                             | W          | 370,a  | ND   | 23        | 0.72      | 16           | 63                                    | l        | 100      |
| 002A   | MW-6                                                                                                                                                             | w          | 4100,a | 1000 | 1200      | 7.2       | 57           | 61                                    | 10       | 105      |
| 003A   | MW-7                                                                                                                                                             | w          | ND     | 120  | ND        | ND        | ND           | ND                                    | 1        | 100      |
|        |                                                                                                                                                                  |            |        |      |           |           |              | · · · · · · · · · · · · · · · · · · · |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       | -        |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              | <del></del>                           |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          |          |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          | -        |
|        |                                                                                                                                                                  |            |        |      |           |           |              |                                       |          | <u> </u> |
|        | g Limit for DF =1;<br>s not detected at or                                                                                                                       | W          | 50     | 5.0  | 0.5       | 0.5       | 0.5          | 0.5                                   | 1_       | μg/L     |
|        | he reporting limit                                                                                                                                               | S          | NA     | NA   | NA        | NA        | NA           | NA                                    | 1        | mg/Kg    |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

| = |
|---|
|   |
| - |
|   |
|   |

### McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 http://www.mccampbell.com E-mail: main@mccampbell.com

| Professional Service Industries | Client Project ID: #OG041; Alco Park | Date Sampled: 07/15/03            |
|---------------------------------|--------------------------------------|-----------------------------------|
| 4703 Tidewater Ave., Suite B    |                                      | Date Received: 07/16/03           |
| O-1-1                           | Client Contact: Brian Storek         | Date Extracted: 07/17/03-07/22/03 |
| Oakland, CA 94601               | Client P.O.:                         | Date Analyzed: 07/17/03-07/22/03  |

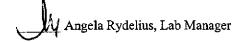
| Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline * |                                       |        |                              |             |      |  |
|-------------------------------------------------------------|---------------------------------------|--------|------------------------------|-------------|------|--|
| xtraction method: SV                                        |                                       |        | Analytical methods: SW8015Cm | Work Order: |      |  |
| Lab ID                                                      | Client ID                             | Matrix | ТРН(g)                       | DF          | % SS |  |
| 001A                                                        | MW-1                                  | w      | 370,a                        | 1           | 100  |  |
| 002A                                                        | MW-6                                  | w      | 4100,a                       | 10          | 105  |  |
| 003A                                                        | MW-7                                  | w      | ND                           | 1           | 100  |  |
|                                                             |                                       |        |                              | -           |      |  |
|                                                             |                                       |        |                              |             |      |  |
| ,                                                           |                                       |        |                              |             |      |  |
|                                                             |                                       |        |                              |             |      |  |
|                                                             |                                       |        |                              |             |      |  |
|                                                             |                                       |        |                              | ,           |      |  |
|                                                             |                                       |        |                              |             |      |  |
| ·                                                           |                                       | '      |                              |             |      |  |
| Reporting                                                   | Limit for DF =1;                      | W      | 50                           | u           | g/L  |  |
| ND means                                                    | not detected at or<br>reporting limit | S      | NA                           |             | NA.  |  |

\* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 voi. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

| Professional Service Industries | Client Project ID: #OG041; Alco Park | Date Sampled: 07/15/03   |
|---------------------------------|--------------------------------------|--------------------------|
| 4703 Tidewater Ave., Suite B    |                                      | Date Received: 07/16/03  |
| 0.11 1.04.0401                  | Client Contact: Brian Storek         | Date Extracted: 07/17/03 |
| Oakland, CA 94601               | Client P.O.:                         | Date Analyzed: 07/17/03  |
| •                               |                                      | 1                        |


### Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

|                            | <br>     | •                  | - |  |                     |
|----------------------------|----------|--------------------|---|--|---------------------|
| Extraction Method: SW5030B | Analytic | al Method: SW8260B |   |  | Work Order: 0307253 |

| Extraction Method: SW5030B  |                 |              | Work Order: 0307253 |                               |                 |     |                    |  |  |  |
|-----------------------------|-----------------|--------------|---------------------|-------------------------------|-----------------|-----|--------------------|--|--|--|
| Lab ID                      |                 | 0307253-001B |                     |                               |                 |     |                    |  |  |  |
| Client ID                   |                 |              |                     | MW-1                          |                 |     |                    |  |  |  |
| Matrix                      |                 | Water        |                     |                               |                 |     |                    |  |  |  |
| Compound                    | Concentration * | DF           | Reporting<br>Limit  | Compound                      | Concentration * | DF  | Reporting<br>Limit |  |  |  |
| Acetone                     | ND              | 1.0          | 5.0                 | tert-Amyl methyl ether (TAME) | 1.0             | 1.0 | 0.5                |  |  |  |
| Benzene                     | 31              | 1.0          | 0.5                 | Bromobenzene                  | ND              | 1.0 | 0.5                |  |  |  |
| Bromochloromethane          | ND              | 1.0          | 0.5                 | Bromodichloromethane          | ND              | 1.0 | 0.5                |  |  |  |
| Bromoform                   | ND              | 1.0          | 0.5                 | Bromomethane                  | ND              | 1.0 | 0.5                |  |  |  |
| 2-Butanone (MEK)            | ND              | 1.0          | 1.0                 | t-Butyl alcohol (TBA)         | 12              | 1.0 | 5.0                |  |  |  |
| n-Butyl benzene             | 1.3             | 1.0          | 0.5                 | sec-Butyl benzene             | ND              | 1.0 | 0.5                |  |  |  |
| tert-Butyl benzene          | ND              | 1.0          | 0.5                 | Carbon Disulfide              | ND              | 1.0 | 0.5                |  |  |  |
| Carbon Tetrachloride        | ND              | 1.0          | 0.5                 | Chlorobenzene                 | ND              | 1.0 | 0.5                |  |  |  |
| Chloroethane                | ND              | 1.0          | 0.5                 | 2-Chloroethyl Vinyl Ether     | ND              | 1.0 | 0.5                |  |  |  |
| Chloroform                  | ND              | 1.0          | 0.5                 | Chloromethane                 | ND              | 1.0 | 0.5                |  |  |  |
| 2-Chlorotoluene             | ND              | 1.0          | 0.5                 | 4-Chlorotoluene               | ND              | 1.0 | 0.5                |  |  |  |
| Dibromochloromethane        | ND              | 1.0          | 0.5                 | 1,2-Dibromo-3-chloropropane   | ND              | 1.0 | 0.5                |  |  |  |
| 1,2-Dibromoethane (EDB)     | ND              | 1.0          | 0.5                 | Dibromomethane                | ND              | 1.0 | 0.5                |  |  |  |
| 1,2-Dichlorobenzene         | ND              | 1.0          | 0.5                 | 1,3-Dichlorobenzene           | ND              | 1.0 | 0.5                |  |  |  |
| 1,4-Dichlorobenzene         | ND              | 1.0          | 0.5                 | Dichlorodifluoromethane       | ND              | 1.0 | 0.5                |  |  |  |
| 1,1-Dichloroethane          | ND              | 1.0          | 0.5                 | 1,2-Dichloroethane (1,2-DCA)  | 0.71            | 1.0 | 0.5                |  |  |  |
| 1,1-Dichloroethene          | ND              | 1.0          | 0.5                 | cis-1,2-Dichloroethene        | ND              | 1.0 | 0.5                |  |  |  |
| trans-1.2-Dichloroethene    | ND              | 1.0          | 0.5                 | 1,2-Dichloropropane           | ND              | 1.0 | 0.5                |  |  |  |
| 1,3-Dichloropropane         | ND              | 1.0          | 0.5                 | 2,2-Dichloropropane           | ND              | 1.0 | 0.5                |  |  |  |
| 1,1-Dichloropropene         | ND              | 1.0          | 0.5                 | cis-1,3-Dichloropropene       | ND              | 1.0 | 0.5                |  |  |  |
| trans-1,3-Dichloropropene   | ND              | 1.0          | 0.5                 | Diisopropyl ether (DIPE)      | ND              | 1.0 | 0.5                |  |  |  |
| Ethylbenzene                | 22              | 1.0          | 0.5                 | Ethyl tert-butyl ether (ETBE) | ND              | 1.0 | 0.5                |  |  |  |
| Hexachlorobutadiene         | ND              | 1.0          | 0.5                 | 2-Hexanone                    | ND              | 1.0 | 0.5                |  |  |  |
| Iodomethane (Methyl iodide) | ND              | 1.0          | 5.0                 | Isopropylbenzene              | 2.1             | 1.0 | 0.5                |  |  |  |
| 4-Isopropyl toluene         | ND              | 1.0          | 0.5                 | Methyl-t-butyl ether (MTBE)   | 4.6             | 1.0 | 0.5                |  |  |  |
| Methylene chloride          | ND              | 1.0          | 0.5                 | 4-Methyl-2-pentanone (MIBK)   | ND              | 1.0 | 0.5                |  |  |  |
| Naphthalene                 | 14              | 1.0          | 0.5                 | n-Propyl benzene              | 4.9             | 1.0 | 0.5                |  |  |  |
| Styrene                     | ND              | 1.0          | 0.5                 | 1,1,1,2-Tetrachloroethane     | ND              | 1.0 | 0.5                |  |  |  |
| 1,1,2,2-Tetrachloroethane   | ND              | 1.0          | 0.5                 | Tetrachloroethene             | ND              | 1.0 | 0.5_               |  |  |  |
| Toluene                     | 0.99            | 1.0          | 0.5                 | 1,2,3-Trichlorobenzene        | ND              | 1.0 | 0.5                |  |  |  |
| 1,2,4-Trichlorobenzene      | ND              | 1.0          | 0.5                 | 1,1,1-Trichloroethane         | ND              | 1.0 | 0.5                |  |  |  |
| 1,1,2-Trichloroethane       | ND              | 1.0          | 0.5                 | Trichloroethene               | ND              | 1.0 | 0.5                |  |  |  |
| Trichlorofluoromethane      | ND              | 1.0          | 0.5                 | 1,2,3-Trichloropropane        | ND              | 1.0 | 0.5                |  |  |  |
| 1,2,4-Trimethylbenzene      | 37              | 1.0          | 0.5                 | 1,3,5-Trimethylbenzene        | 9.6             | 1.0 | 0.5                |  |  |  |
| Vinyl Acetate               | ND              | 1.0          | 5.0                 | Vinyl Chloride                | ND              | 1.0 | 0.5                |  |  |  |
| Xylenes                     | 75              | 1.0          | 0.5                 |                               |                 |     |                    |  |  |  |
|                             |                 | Sur          | rogate R            | ecoveries (%)                 |                 |     |                    |  |  |  |
| %SS1:                       | 10:             |              |                     | %SS2:                         | 99.             | i   |                    |  |  |  |
| %SS3:                       | 97.             |              |                     |                               |                 |     |                    |  |  |  |
| 7,000                       |                 |              |                     |                               | 10              |     |                    |  |  |  |

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.



<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<sup>#</sup> surrogate diluted out of range or surrogate coelutes with another peak.

| d | McCampbell Analytical Inc. |
|---|----------------------------|
|---|----------------------------|

| Professional Service Industries | Client Project ID: #OG041; Alco Park | Date Sampled: 07/15/03   |
|---------------------------------|--------------------------------------|--------------------------|
| 4703 Tidewater Ave., Suite B    |                                      | Date Received: 07/16/03  |
|                                 | Client Contact: Brian Storek         | Date Extracted: 07/17/03 |
| Oakland, CA 94601               | Client P.O.:                         | Date Analyzed: 07/17/03  |

### Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

| Extraction Method: SW5030B  | <del>-</del>    | Work Order: 0307253 |                    |                               |                 |     |                    |
|-----------------------------|-----------------|---------------------|--------------------|-------------------------------|-----------------|-----|--------------------|
| Lab ID                      |                 |                     |                    | 0307253-002B                  |                 |     |                    |
| Client ID                   |                 |                     |                    | MW-6                          |                 |     |                    |
| Matrix                      |                 |                     |                    | Water                         |                 |     |                    |
| Compound                    | Concentration * | DF                  | Reporting<br>Limit | Сотроила                      | Concentration * | DF  | Reporting<br>Limit |
| Acetone                     | ND<250          | 50                  | 5.0                | tert-Amyl methyl ether (TAME) | 180             | 50  | 0.5                |
| Benzene                     | 2200            | 50                  | 0.5                | Bromobenzene                  | ND<25           | 50  | 0.5                |
| Bromochloromethane          | ND<25           | 50                  | 0.5                | Bromodichloromethane          | ND<25           | 50  | 0.5                |
| Bromoform                   | ND<25           | 50                  | 0.5                | Bromomethane                  | ND<25           | 50  | 0.5                |
| 2-Butanone (MEK)            | ND<50           | 50                  | 1.0                | t-Butyl alcohol (TBA)         | 480             | 50  | 5.0                |
| n-Butyl benzene             | ND<25           | 50                  | 0.5                | sec-Butyl benzene             | ND<25           | 50  | 0.5                |
| tert-Butyl benzene          | ND<25           | 50                  | 0.5                | Carbon Disulfide              | ND<25           | 50  | 0.5                |
| Carbon Tetrachloride        | ND<25           | 50                  | 0.5                | Chlorobenzene                 | ND<25           | 50  | 0.5                |
| Chloroethane                | ND<25           | 50                  | 0.5                | 2-Chloroethyl Vinyl Ether     | ND<25           | 50  | 0.5                |
| Chloroform                  | ND<25           | 50                  | 0.5                | Chloromethane                 | ND<25           | 50  | 0.5                |
| 2-Chlorotoluene             | ND<25           | 50                  | 0.5                | 4-Chlorotoluene               | ND<25           | 50_ | 0.5                |
| Dibromochloromethane        | ND<25           | 50                  | 0.5                | 1,2-Dibromo-3-chloropropane   | ND<25           | 50  | 0.5                |
| 1.2-Dibromoethane (EDB)     | ND<25           | 50                  | 0.5                | Dibromomethane                | ND<25           | 50  | 0.5                |
| 1,2-Dichlorobenzene         | ND<25           | 50                  | 0.5                | 1,3-Dichlorobenzene           | ND<25           | 50  | 0.5                |
| 1.4-Dichlorobenzene         | ND<25           | 50                  | 0.5                | Dichlorodifluoromethane       | ND<25           | 50  | 0.5                |
| 1.1-Dichloroethane          | ND<25           | 50                  | 0.5                | 1,2-Dichloroethane (1,2-DCA)  | ND<25           | 50  | 0.5                |
| 1.1-Dichloroethene          | ND<25           | 50                  | 0.5                | cis-1,2-Dichloroethene        | ND<25           | 50  | 0.5                |
| trans-1,2-Dichloroethene    | ND<25           | 50                  | 0.5                | 1,2-Dichloropropane           | ND<25           | 50  | 0.5                |
| 1,3-Dichloropropane         | ND<25           | 50                  | 0.5                | 2,2-Dichloropropane           | ND<25           | 50  | 0.5                |
| 1,1-Dichloropropene         | ND<25           | 50                  | 0.5                | cis-1,3-Dichloropropene       | ND<25           | 50  | 0.5                |
| trans-1,3-Dichloropropene   | ND<25           | 50                  | 0.5                | Diisopropyl ether (DIPE)      | ND<25           | 50  | 0.5                |
| Ethylbenzene                | 180             | 50                  | 0.5                | Ethyl tert-butyl ether (ETBE) | ND<25           | 50  | 0.5                |
| Hexachlorobutadiene         | ND<25           | 50                  | 0.5                | 2-Hexanone                    | ND<25           | 50  | 0.5                |
| Iodomethane (Methyl iodide) | ND<250          | 50                  | 5.0                | Isopropylbenzene              | ND<25           | 50  | 0.5                |
| 4-Isopropyl toluene         | ND<25           | 50                  | 0.5                | Methyl-t-butyl ether (MTBE)   | 1200            | 50  | 0.5                |
| Methylene chloride          | ND<25           | 50                  | 0.5                | 4-Methyl-2-pentanone (MIBK)   | ND<25           | .50 | 0.5                |
| Naphthalene                 | 300             | 50                  | 0.5                | n-Propyl benzene              | ND<25           | 50  | 0.5                |
| Styrene                     | ND<25           | 50                  | 0.5                | 1,1,1,2-Tetrachloroethane     | ND<25           | 50  | 0.5                |
| 1,1,2,2-Tetrachloroethane   | ND<25           | 50                  | 0.5                | Tetrachloroethene             | ND<25           | 50  | 0.5                |
| Toluene                     | ND<25           | 50                  | 0.5                | 1,2,3-Trichlorobenzene        | ND<25           | 50  | 0.5                |
| 1,2,4-Trichlorobenzene      | ND<25           | 50                  | 0.5                | 1,1,1-Trichloroethane         | ND<25           | 50  | 0.5                |
| 1,1,2-Trichloroethane       | ND<25           | 50                  | 0.5                | Trichloroethene               | ND<25           | 50  | 0.5                |
| Trichlorofluoromethane      | ND<25           | 50                  | 0.5                | 1,2,3-Trichloropropane        | ND<25           | 50  | 0.5                |
| 1,2,4-Trimethylbenzene      | 89              | 50                  | 0.5                | 1,3,5-Trimethylbenzene        | ND<25           | 50  | 0.5                |
| Vinyl Acetate               | ND<250          | 50                  | 5.0                | Vinyl Chloride                | ND<25           | 50  | 0.5                |
| Xylenes                     | 260             | 50                  | 0.5                |                               |                 |     |                    |
|                             |                 | Sur                 | rogate R           | lecoveries (%)                |                 |     |                    |
| %SS1:                       | 10              | 5                   |                    | %SS2:                         | 10              | 1   |                    |
| %SS3:                       | 10              | 6                   |                    |                               |                 |     |                    |
| Comments                    |                 | <del>-:</del>       |                    |                               |                 |     |                    |

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.



<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<sup>#</sup> surrogate diluted out of range or surrogate coelutes with another peak.

| McCampbell | Analytical | Inc.                  |
|------------|------------|-----------------------|
|            | McCampbell | McCampbell Analytical |

| Professional Service Industries | Client Project ID: #OG041; Alco Park | Date Sampled: 07/15/03   |
|---------------------------------|--------------------------------------|--------------------------|
| 4703 Tidewater Ave., Suite B    |                                      | Date Received: 07/16/03  |
| O-14 1 CA 04601                 | Client Contact: Brian Storek         | Date Extracted: 07/17/03 |
| Oakland, CA 94601               | Client P.O.:                         | Date Analyzed: 07/17/03  |

### Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

| Lab ID                      | ·               |              |          | 0307253-003B                  |                 |     |                    |  |
|-----------------------------|-----------------|--------------|----------|-------------------------------|-----------------|-----|--------------------|--|
| Client ID                   |                 |              |          | MW-7                          |                 |     |                    |  |
| Matrix                      |                 |              |          | Water                         |                 |     |                    |  |
| Compound                    | Concentration * | DF Reporting |          | Compound                      | Concentration * | DF  | Reporting<br>Limit |  |
| Acetone                     | ND<25           | 5.0          | 5.0      | tert-Amyl methyl ether (TAME) | 7.5             | 5.0 | 0.5                |  |
| Benzene                     | ND<2.5          | 5.0          | 0.5      | Bromobenzene                  | ND<2.5          | 5.0 | 0.5                |  |
| Bromochloromethane          | ND<2.5          | 5.0          | 0.5      | Bromodichloromethane          | ND<2.5          | 5.0 | 0.5                |  |
| Bromoform                   | ND<2.5          | 5.0          | 0.5      | Bromomethane                  | ND<2.5          | 5.0 | 0.5                |  |
| 2-Butanone (MEK)            | ND<5.0          | 5.0          | 1.0      | t-Butyl alcohol (TBA)         | ND<25           | 5.0 | 5.0                |  |
| n-Butyl benzene             | ND<2.5          | 5.0          | 0.5      | sec-Butyl benzene             | ND<2.5          | 5.0 | 0.5                |  |
| tert-Butyl benzene          | ND<2.5          | 5.0          | 0.5      | Carbon Disulfide              | ND<2.5          | 5.0 | 0.5                |  |
| Carbon Tetrachloride        | ND<2.5          | 5.0          | 0.5      | Chlorobenzene                 | ND<2.5          | 5.0 | 0.5                |  |
| Chloroethane                | ND<2.5          | 5.0          | 0.5      | 2-Chloroethyl Vinyl Ether     | ND<2.5          | 5.0 | 0.5                |  |
| Chloroform                  | ND<2.5          | 5.0          | 0.5      | Chloromethane                 | ND<2.5          | 5.0 | 0.5                |  |
| 2-Chlorotoluene             | ND<2.5          | 5.0          | 0.5      | 4-Chlorotoluene               | ND<2.5          | 5.0 | 0.5                |  |
| Dibromochloromethane        | ND<2.5          | 5.0          | 0.5      | 1,2-Dibromo-3-chloropropane   | ND<2.5          | 5.0 | 0.5                |  |
| 1,2-Dibromoethane (EDB)     | ND<2.5          | 5.0          | 0.5      | Dibromomethane                | ND<2.5          | 5.0 | 0.5                |  |
| 1,2-Dichlorobenzene         | ND<2.5          | 5.0          | 0.5      | 1,3-Dichlorobenzene           | ND<2.5          | 5.0 | 0.5                |  |
| 1,4-Dichlorobenzene         | ND<2.5          | 5.0          | 0.5      | Dichlorodifluoromethane       | ND<2.5          | 5.0 | 0.5                |  |
| 1,1-Dichloroethane          | ND<2.5          | 5.0          | 0.5      | 1,2-Dichloroethane (1,2-DCA)  | ND<2.5          | 5.0 | 0.5                |  |
| 1,1-Dichloroethene          | ND<2.5          | 5.0          | 0.5      | cis-1,2-Dichloroethene        | ND<2.5          | 5.0 | 0.5                |  |
| trans-1,2-Dichloroethene    | ND<2.5          | 5.0          | 0.5      | 1,2-Dichloropropane           | ND<2.5          | 5.0 | 0.5                |  |
| 1,3-Dichloropropane         | ND<2.5          | 5.0          | 0.5      | 2,2-Dichloropropane           | ND<2.5          | 5.0 | 0.5                |  |
| 1,1-Dichloropropene         | ND<2.5          | 5.0          | 0.5      | cis-1,3-Dichloropropene       | ND<2.5          | 5.0 | 0.5                |  |
| trans-1,3-Dichloropropene   | ND<2.5          | 5.0          | 0.5      | Diisopropyl ether (DIPE)      | ND<2.5          | 5.0 | 0.5                |  |
| Ethylbenzene                | ND<2.5          | 5.0          | 0.5      | Ethyl tert-butyl ether (ETBE) | ND<2.5          | 5.0 | 0.5                |  |
| Hexachlorobutadiene         | ND<2.5          | 5.0          | 0.5      | 2-Hexanone                    | ND<2.5          | 5.0 | 0.5                |  |
| Iodomethane (Methyl iodide) | ND<25           | 5.0          | 5.0      | Isopropylbenzene              | ND<2.5          | 5.0 | 0.5                |  |
| 4-Isopropyl toluene         | ND<2.5          | 5.0          | 0.5      | Methyl-t-butyl ether (MTBE)   | 140             | 5.0 | 0.5                |  |
| Methylene chloride          | ND<2.5          | 5.0          | 0.5      | 4-Methyl-2-pentanone (MIBK)   | ND<2.5          | 5.0 | 0.5                |  |
| Naphthalene                 | ND<2.5          | 5.0          | 0.5      | n-Propyl benzene              | ND<2.5          | 5.0 | 0.5                |  |
| Styrene                     | ND<2.5          | 5.0          | 0.5      | 1,1,1,2-Tetrachloroethane     | ND<2.5          | 5.0 | 0.5                |  |
| 1,1,2,2-Tetrachloroethane   | ND<2.5          | 5.0          | 0.5      | Tetrachloroethene             | ND<2.5          | 5.0 | 0.5                |  |
| Toluene                     | ND<2.5          | 5.0          | 0.5      | 1,2,3-Trichlorobenzene        | ND<2.5          | 5.0 | 0.5                |  |
| 1,2,4-Trichlorobenzene      | ND<2.5          | 5.0          | 0.5      | 1,1,1-Trichloroethane         | ND<2.5          | 5.0 | 0.5                |  |
| 1,1,2-Trichloroethane       | ND<2.5          | 5.0          | 0.5      | Trichloroethene               | ND<2.5          | 5.0 | 0.5                |  |
| Trichlorofluoromethane      | ND<2.5          | 5.0          | 0.5      | 1,2,3-Trichloropropane        | ND<2.5          | 5.0 | 0.5                |  |
| 1,2,4-Trimethylbenzene      | ND<2.5          | 5.0          | 0.5      | 1,3,5-Trimethylbenzene        | ND<2.5          | 5.0 | 0.5                |  |
| Vinyl Acetate               | ND<25           | 5.0          | 5.0      | Vinyl Chloride                | ND<2.5          | 5.0 | 0.5                |  |
| Xylenes                     | ND<2.5          | 5.0          | 0.5      |                               |                 |     |                    |  |
|                             |                 | Sur          | rogate R | ecoveries (%)                 |                 |     | ·                  |  |
| %SS1:                       | 103             | 2            |          | %SS2:                         | 99.0            | 0   |                    |  |
| %SS3:                       | 95.             | 4            |          | 1                             |                 |     |                    |  |

### Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.



<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<sup>#</sup> surrogate diluted out of range or surrogate coelutes with another peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0307253

| EPA Method: SW802      | 21B/8015Cm E | xtraction: | SW5030E | 3       | BatchID: | 7835   | Spiked Sample ID: 0307254-001A |          |            |                |  |
|------------------------|--------------|------------|---------|---------|----------|--------|--------------------------------|----------|------------|----------------|--|
|                        | Sample       | Spiked     | MS*     | MSD*    | MS-MSD   | LCS    | LCSD                           | LCS-LCSD | Acceptance | e Criteria (%) |  |
|                        | μg/L         | μg/L       | % Rec.  | % Rec.  | % RPD    | % Rec. | % Rec.                         | % RPD    | Low        | High           |  |
| TPH(btex) <sup>£</sup> | 22.79        | 60         | 131, F1 | 141, F1 | 5.64     | 107    | 107                            | 0        | 70         | 130            |  |
| MTBE                   | 62.46        | 10         | NR      | NR      | NR       | 99.2   | 101                            | 1.30     | 70         | 130            |  |
| Benzene                | 0.6751       | 10         | 106     | 105     | 0.447    | 99.8   | 96.7                           | 3.20     | 70         | 130            |  |
| Toluene                | 0.5749       | 10         | 100     | 102     | 1.45     | 95.2   | 92.5                           | 2.91     | 70         | 130            |  |
| Ethylbenzene           | ND           | 10         | 105     | 105     | 0        | 106    | 103                            | 2.63     | 70         | 130            |  |
| Xylenes                | ND           | 30         | 96.7    | 100     | 3.39     | 100    | 95.7                           | 4.43     | 70         | 130            |  |
| %SS:                   | 116          | 100        | 112     | 108     | 3.14     | 99.7   | 99.3                           | 0.352    | 70         | 130            |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

F1 = MS / MSD exceed acceptance criteria. LCS - LCSD validate prep batch.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

<sup>%</sup> Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS – MSD) / (MS + MSD) \* 2.

<sup>\*</sup> MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if. a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

<sup>£</sup> TPH(btex) = sum of BTEX areas from the FID.

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

### QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0307253

| EPA Method: SW8260B           | E      | Extraction: | SW5030 | 3      | BatchID: | 7838   | Spiked Sample ID: 0307254-005B |          |            |              |  |
|-------------------------------|--------|-------------|--------|--------|----------|--------|--------------------------------|----------|------------|--------------|--|
|                               | Sample | Spiked      | MS*    | MSD*   | MS-MSD*  | LCS    | LCSD                           | LCS-LCSD | Acceptance | Criteria (%) |  |
|                               | µg/L   | μg/L        | % Rec. | % Rec. | % RPD    | % Rec. | % Rec.                         | % RPD    | Low        | High         |  |
| tert-Amyl methyl ether (TAME) | ND     | 10          | 92.7   | 94.6   | 1.93     | 91.4   | 95.2                           | 4.05     | 70         | 130          |  |
| Benzene                       | ND     | 10          | 104    | 110    | 6.02     | 103    | 102                            | 1.09     | 70         | 130          |  |
| Chlorobenzene                 | ND     | 10          | 111    | 110    | 0.882    | 108    | 112                            | 3.54     | 70         | 130          |  |
| 1,1-Dichloroethene            | ND     | 10          | 90.7   | 97.1   | 6.86     | 91.6   | 91.4                           | 0.255    | 70         | 130          |  |
| Diisopropyl ether (DIPE)      | ND     | 10          | 100    | 104    | 4.14     | 99.3   | 99.6                           | 0.294    | 70         | 130          |  |
| Ethyl tert-butyl ether (ETBE) | ND     | 10          | 92.8   | 92.8   | 0        | 90.5   | 91.2                           | 0.778    | 70         | 130          |  |
| Methyl-t-butyl ether (MTBE)   | 1.393  | 10          | 82.9   | 94.4   | 11.2     | 94.1   | 94.7                           | 0.664    | 70         | 130          |  |
| Toluene                       | ND     | 10          | 127    | 127    | 0        | 123    | 128                            | 3.78     | 70         | 130          |  |
| Trichloroethene               | ND     | 10          | 103    | 110    | 6.57     | 102    | 105                            | 2.64     | 70         | 130          |  |
| %SS1:                         | 101    | 100         | 96.9   | 105    | 7.93     | 98.8   | 96.4                           | 2.38     | 70         | 130          |  |
| %SS2:                         | 100    | 100         | 100    | 101    | 0.794    | 100    | 101                            | 0.582    | 70         | 130          |  |
| %SS3:                         | 98.4   | 100         | 95.4   | 95.9   | 0.496    | 94.7   | 96.3                           | 1.68     | 70         | 130          |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / (MS + MSD) \* 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

PSID

を 自然 日本の かんきょう かいかい かいかい

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL INC. 0301253 110 2" AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 72 HR 5 DAY 48 HR RÚSH 24 HR Fax: (925) 798-1622 Telephone: (925) 798-1620 EDF Required (Coelt (Normal) Write On (DW) No No Comments Analysis Request Other Report To: Brion Stock/ Lod Fretza Bill To: Rod Frietza Alameda PSI Company: Total Petroleum Oil & Grease (5520 E&F/B&F) w/oxygenates suile 6 4703 Tidewater Ne SOI S)ANTBE PAH's / PNA's by EPA 625 / 8270 / 8310 Oakland, CA 94601 E-Mail: Total Petroleum Hydrocarbons (418.1) Tele: (5%) 434-7200 Fax: ( ) 06041 Project#: Project Name: BTEX ONLY (EPA 502 / 8020) EPA 608 / 8080 PCB's ONLY Lead (7240/7421/239.2/6010) Oakland Project Location: BTEX & JPH 18 Gas (602/8020 Sampler Signature: EPA 614 / 8240 / 8260 METHOD TPH as Diesel (8015) SAMPLING MATRIX Type Containers PRESERVED CAM-17 Metals EPA 625 / 8270 # Containers EPA 601 / 8010 EPA 608 / 8080 LUFT 5 Metals SAMPLE ID LOCATION Air (Field Foint Name) Water HNO Time Other Date Other Soil HCI SCI Mw-1 1220 MW-6 12:00 Ά MW-7 Time: Received By: Religgo lahed By: Date: METALS OTHER インスト O&G ICE/r PRESERVATION. Heceived By Date: Time: GOOD CONDITION APPROPRIATE 7/6/03 1242 CONTAINERS HEAD SPACE ABSENT PERSERVED IN LAB DECHLORINATED IN LAB Date: Time: Received By:

## McCampbell Analytical Inc.

# **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1



110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0307253

Client:

Professional Service Industries 4703 Tidewater Ave., Suite B Oakland, CA 94601

TEL:

(510) 434-9200

FAX:

ProjectNo:

#OG041; Alco Park

PO:

Date Received:

7/16/03

Date Printed:

7/16/03

|             |              |        |                          |      |                                                  |              | R        | equested Test | s            | <br>                                                 |
|-------------|--------------|--------|--------------------------|------|--------------------------------------------------|--------------|----------|---------------|--------------|------------------------------------------------------|
| Sample ID   | ClientSampID | Matrix | Collecti <b>o</b> n Date | Hold | <>                                               | V8021B/8015C |          |               |              |                                                      |
|             |              |        | 7/15/03 11:45:00 AM      |      | Δ                                                | 1 A 1        | В        |               |              |                                                      |
| 0307253-001 | MW-1         | Water  |                          |      | <del>                                     </del> |              | В        |               |              |                                                      |
| 0307253-002 | MW-6         | Water  | 7/15/03 12:20:00 PM      |      |                                                  | A            |          | <del></del>   | <del> </del> | <br><del>                                     </del> |
| 0307253-003 | MW-7         | Water  | 7/15/03 12:00:00 PM      |      |                                                  | Α            | <u> </u> |               | <u> </u>     | <br>                                                 |

Prepared by: Melissa Valles

### Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.