LETTER OF TRANSMITTAL

To: E	Eva Chu		Date:	April 9, 2001		
E	Invironmental H	ealth				
			Subject:	Quarterly Well Monitoring Report		
Q	St., Oakland					
via:	nding you: US Mail lowing items:	X Attached Overnight/Fe	edEx [Under separate c	over Messenger	
	wings	Crecifications	7 Shon D	rawings X Subm	ittala	
_		Specifications	_ ^	~ <u> </u>		
Sar	mples	Copy of Letter	Change	Order Other	<u></u>	
Copies	Date or No.			Description		
1	3/15/01	Groundwater Monito	oring Repo	ort, I [™] Quarter, Alco	Park	
					**	
These a	re transmitted as	checked below:				
Ap	proved as Submi	tted Resubr	nit Cor	oies for Approval	For Approval	
	proved as Noted	_		s for Distribution	X For Your Files	
	curned for Correc	<u> </u>		eted Copies	As Requested	
		_		-	Other	
For	Review and Cor	nment Return	ing Loane	d Rem(s)	U Otner	
Remarks	<u></u>					
-					•	
County Technic 1401 La Oakland	•				APR 1 2 2001	

GROUNDWATER MONITORING REPORT FIRST QUARTER, 2001 ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

MAR 2001

Prepared for

ALAMEDA COUNTY GENERAL SERVICES AGENCY

1401 Lakeside Drive, 11th Floor Oakland, California

Prepared by

Professional Service Industries, Inc.

1320 West Winton Avenue Hayward, California 94545 (510) 785-1111

March 15 2001 575-9G028

TABLE OF CONTENTS

STAT	EMENT OF L	IMITATIONS AND PROFESSIONAL CERTIFICATION	
1. IN	TRODUCTIO	N	1
1.1	SCOPE OF	WORK	1
1.2	SITE BACK	GROUND	1
1	2.1 Storage	Tank System Upgrades	2
2. G	ROUNDWAT	ER MONITORING ACTIVITIES	3
2.1	Groundwa'	TER ELEVATION AND FLOW DIRECTION	3
2.2	GROUNDWA	TER SAMPLING	3
3. L	ABORATORY	ANALYSIS PROGRAM	4
3.1	ANALYTIC	AL RESULTS	4
4. C	ONCLUSION	s	5
TABL	E 1	GROUNDWATER ELEVATION AND ANALYTICAL DATA SUMMARY, SITE NO.2	
FIGU FIGU		SITE LOCATION GROUNDWATER ELEVATION 02/11/01	
	ENDIX A ENDIX B	FIELD PROCEDURES LABORATORY REPORT AND CHAIN OF CUSTODY	

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

Information provided in this report, prepared by Professional Service Industries, Inc. (PSI), is intended exclusively for the use of Alameda County General Services Agency (AGSA), for the evaluation of subsurface conditions as it pertains to the subject site. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted will identify any or all sources or locations of contamination.

This report is issued with the understanding that AGSA is responsible for ensuring that the information contained herein is brought to the attention of the appropriate regulatory

agency.

Frank R. Poss, REA

Senior Hydrogeologist

Chris Merritt

Project Geologist

ts merritt

1. INTRODUCTION

Professional Service Industries, Inc. (PSI) was retained by the Alameda County General Services Agency (ACGSA) to perform groundwater monitoring at the ACGSA Alcopark Fueling Facility-Site No. 2 located at 165 13th Street, Oakland, California. The site location is presented on Figure 1.

The groundwater monitoring was prompted by a request by the Alameda County Health Care Services Agency (HCSA), which requested additional information on the extent of petroleum hydrocarbon impacted groundwater (HCSA, 1997a).

1.1 SCOPE OF WORK

The scope of work consisted of the following tasks:

- Measure the depth to water in the site wells and prepare a groundwater elevation map.
- Determine the groundwater flow direction and gradient.
- Collect and chemically analyze groundwater samples from well MW-7.
- Prepare a report documenting the field procedures, analytical results, and conclusions regarding the site condition.

1.2 SITE BACKGROUND

GSA operates two 10,000-gallon USTs to fuel County vehicles. Three groundwater monitoring wells were installed at the Alcopark fueling station in March, 1989 to assess environmental conditions subsequent to the repair of a line leak at Dispenser No. 1. Initial sample results indicated the presence of BTEX in the groundwater. Subsequent sample results indicated the presence of TPH-G. Based on the analytical data, it was surmised that contaminants detected on-site were emanating from a source area located upgradient of the site. Sampling activities were halted in 1992 pending investigation of an upgradient source (GSA, 1997).

By letter dated May 30, 1997, the Alameda County Health Care Services Agency (HCSA) instructed GSA to resume groundwater monitoring at Alcopark (HCSA, 1997b). Sampling resumed in July 1997. Analytical data from that sampling event indicated elevated TPH-G and BTEX concentrations in the downgradient well. MTBE was also detected. Additional samples collected in October 1997 provided similar results (GSA, 1997). By a

letter dated September 11, 1997, the HCSA directed GSA to investigate the extent and stability of the plume.

To better define groundwater conditions downgradient of the UST, two borings were drilled on March 23, 1998. A grab groundwater sample was collected from one of the borings, and Well MW-6 was installed in the other boring. One more small diameter groundwater monitoring well (MW-7) was installed by PSI in September 1999 and the analytical results are presented in the PSI's report dated October 14, 1999.

1.2.1 Storage Tank System Upgrades

In September of 1992, overfill protection, spill containment, and automatic tank gauging were installed on the two underground tanks. In July and August of 1996, additional upgrade work was done to comply with Title 23 of the California Code of Regulations. This included replacement of underground single-walled steel piping with double-wall fiberglass piping, and installation of dispenser sumps, piping sumps, and sump leak sensors (GSA, 1997).

2. GROUNDWATER MONITORING ACTIVITIES

A PSI representative performed groundwater monitoring activities on February 8, 2001. The activities were performed in accordance with PSI standard procedures presented in Appendix A, and procedures described in a HCSA letter describing collection of samples without purging the wells (HCSA, 1997a).

2.1 Groundwater Elevation and Flow Direction

Prior to groundwater sampling, depth to groundwater was measured from the top of the well casings in each monitoring well. The groundwater measurements were converted to groundwater elevation and the data plotted on a groundwater elevation map. A groundwater elevation map was prepared for February 8, 2001. The map is presented as Figure 2. The groundwater elevation data are presented in Table 1.

Interpretation of the groundwater elevation map indicates the groundwater is flowing to the east-southeast under a hydraulic gradient of 0.006. Groundwater elevation is lower than the previous quarter.

2.2 Groundwater Sampling

The monitoring well MW-7 was sampled without purging as requested in the HCSA letter dated September 11, 1997. The groundwater sample was collected with disposable polyethylene tubing equipped with a check valve. The groundwater sample was collected according to PSI's standard protocol, included in Appendix A and were stored in an iced cooler at 4 degrees Celsius and maintained under Chain-of-Custody protocol.

To minimize the possibility of cross-contamination between sampling locations, most of the sampling equipment used is disposable. To further minimize the possibility of cross-contamination, the water sounder and all other reusable sampling equipment were cleaned with a non-phosphate detergent and rinsed twice with deionized water prior to use in the next well.

3. LABORATORY ANALYSIS PROGRAM

The groundwater samples collected during this investigation were submitted to McCampbell Analytical, Inc. of Pacheco, California. McCampbell Analytical is a State of California Department of Health Services certified hazardous waste laboratory (Environmental Laboratory Accreditation Program [ELAP] #1644). A summary of the analytical methods is presented below.

The groundwater samples collected at the site this quarter were analyzed for the following constituents by the indicated methods:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) in accordance with Environmental Protection Agency (EPA) Method 8015-Modified.
- Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) and Methyl Tertiary Butyl Ether (MTBE) by EPA Method 8020.

The samples were transported to the laboratory under Chain-of-Custody protocol. Copies of the chain of custody forms are included in Appendix B.

3.1 ANALYTICAL RESULTS

The groundwater samples were collected and chemically analyzed in accordance with the analytical method requirements. The analytical data is summarized in Table 1. Laboratory reports are presented in Appendix B.

TPH-G, MTBE and the BTEX compound Toluene were detected in the groundwater sample from MW-7.

- TPH-G was detected in well MW-7 (130 μg/l).
- MTBE was detected in well MW-7 (650 ug/l) by the analytical method EPA 8020.
- Toluene was detected in MW-7 (0.53 ug/l) which was just above the reporting limit of 0.50 ug/l.

4. CONCLUSIONS

Based on the information presented in this report, the following conclusions have been reached:

- Groundwater exists at an elevation of approximately 14.53 to 14.73 feet above msl.
- Groundwater flow direction is to the east-southeast with a gradient of 0.006.
- The groundwater sample collected from well MW-7 contained measurable concentrations of TPH-G and MTBE and the BTEX compound Toluene.

Based on the results presented in this report, PSI recommends additional groundwater monitoring be performed to determine contaminant trends. Evaluation of the trends will assist in differentiating between a one time leak event (such as might have happened during piping upgrade work) and an on-going source.

REFERENCES

GSA, 1997, Request For Proposal (RFP) for Groundwater Services, December 2.

HCSA, 1997a, Workplan Request Letter to Mr. Rodman Freitag, September 11.

HCSA, 1997b, Continuation of Groundwater Monitoring Request, Letter to Mr. Jim DeVos, May 20.

HCSA, 1998, Quarterly Groundwater Monitoring Report Approval Letter, June 22.

Lawrence Livermore National Laboratory, 1995a, Recommendations to Improve the Cleanup Process for California's Leaking Underground Fuel Tanks, prepared for California State Water Resources Control Board, October 16.

Lawrence Livermore National Laboratory, 1995b, California Leaking Underground Fuel Tank Historical Case Analyses, prepared for California State Water Resources Control Board, November 16.

Lawrence Livermore National Laboratory, 1998, An Evaluation of MTBE Impacts to California Groundwater Resources, prepared for California State Water Resources Control Board, June 11.

Personal Communication, 1998, Mr. Rod Freitag of the Alameda General Services Agency. Discussion of the leak detection system at the Alcopark facility, April 15.

PSI 1998, Soil and Groundwater Investigation, Alcopark Fueling Facility, prepared for Alameda GSA, April 17.

PSI 1998a, Groundwater Monitoring Report, Third Quarter, 1998, Alcopark Fueling Facility, prepared for Alameda GSA, August 12.

PSI, 1999, Final Report, Soil And Groundwater Investigation, Alcopark Fueling Facility, prepared for Alameda GSA, October 14.

PSI, 2000, Quarterly Report, Alcopark Fueling Facility, prepared for Alameda GSA March 6, 2000.

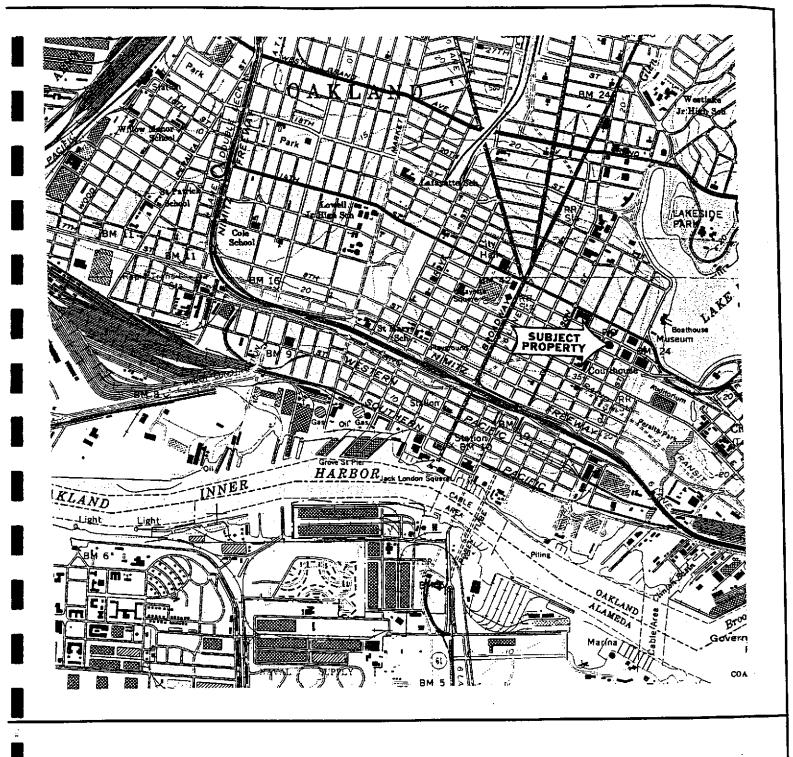
USGS, 1980, Oakland West, California, topographic map.

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL DATA, SITE NO. 2 ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

	All concentrations in ug/l (PPB).								
		Groundwater							
Well	Date	Elevation	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	
W-MW1	3/21/89	12.2	ND	NA	21	3.9	0.4	4.5	
W-MW1	7/26/90	12.3	1,400	NA .	200	45	ND	53	
W-MW1	10/25/90	12.1	1,200	NA	ND	7.3	2.2	46	
W-MW1	1/25/91	11.9	270	NA	23	1.5	ND	3.1	
W-MW1	4/25/91	11.8	230	NA	ND	ND	ND	ND	
W-MW1	8/27/91	11.8	8,300	NA	370	64	ND	120	
W-MW1	11/25/91	11.7	810	NA	9.3	ND	7.8	32	
W-MW1	6/11/92	12.85	2,600	NA	810	16	21	42	
W-MW1	7/16/97	14.36	19,000	ND (150)	1,400	2,800	500	2,600	
W-MW1	10/21/97	13.92	14,000	29	1,200	1,000	590	2,800	
W-MW1	3/11/98	17.14	NS	NS	NS	NS	NS	NS	
W-MW1	4/1/98	17.14	ND (50)	6.3	5.4	ND (0.5)	ND (0.5)	0.82	
W-MW1	7/15/98	16.41	71	57	31	ND (0.5)	ND (0.5)	3.1	
W-MW1	10/22/98	15.62	5,100	360	520	140	250	950	
W-MW1	9/9/99	15.42	2,400	400	680	140	130	370	
W-MW1	1/18/00	14.49	4,100	180	420	11	210	350	
W-MW1	5/4/00	16.19	NS	NS	NS	NS	NS	NS	
W-MW1	8/22/00	15.34	9,400	410	1,200	130	410	920	
W-MW1	2/8/01	14.53	NS	NS	NS	NS	NS	NS	
W-MW4	3/21/89	12.4	ND	NA	13	1.4	1.0	ND	
W-MW4	7/26/90	12.5	NA	NA.	0.8	ND	ND	ND	
W-MW4	10/25/90	12.3	NA	NA	120	1.2	1.1	0.9	
W-MW4	1/25/91	12.0	NA NA	NA	230	2.8	1.2	2.0	
	4/25/91	13.0	170	NA NA	12	ND	ND	2.3	
W-MW4 W-MW4	8/27/91	11.8	ND	NA NA	87	1.3	0.8	0.8	
W-MW4	11/25/91	11.8	1,400	NA NA	ND	1.7	8.6	3.6	
W-MW4	6/11/92	12.93	560	NA	150	1.8	1.8	1.1	
W-MW4	7/16/97	14.46	50	ND	ND	ND	ND ·	ND	
W-MW4	10/21/97	14.10	ND	ND	ND	ND	ND	ND	
W-MW4	3/11/98	17.39	NS	NS	NS	NS	NS	NS	
w-mw4 W-MW4	4/1/98	17.39	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	
W-MW4		16.92	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5	
W-MW4	7/15/98 10/22/98	15.75	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	
	9/9/99	15.75	NS (SU)	NS NS	NS NS	NS NS	NS NS	NS NS	
W-MW4		li e	NS	NS	NS NS	NS	NS	NS	
W-MW4	1/18/00	14.32	NS NS	NS	NS	NS	NS	NS	
W-MW4	5/4/00	16.34	NS NS	NS	NS NS	NS	NS	NS	
W-MW4 W-MW4	8/22/00 2/8/01	15.47 14.73	NS	NS	NS	NS	NS	NS	
W-MW5	3/21/89	12.2	ND	NA	ND	ND	ND	ND ND	
W-MW5	7/26/90	12.4	670	NA	0.8	ND	ND	ND	
W-MW5	10/25/90	12.1	120	NA	13	ND	ND	ND	
W-MW5	1/25/91	11.9	120	NA	3.2	ND	ND	ND ND	
W-MW5	4/25/91	12.3	ND	NA	ND	ND	ND 0.5	ND ND	
W-MW5	8/27/91	11.5	ND	NA	20	ND	0.5	ND 2.5	
W-MW5	11/25/91	11.7	190	NA	2.7	ND	0.8	2.5	
W-MW5	6/11/92	12.85	150	NA	37	ND	ND	ND	
W-MW5	7/16/97	14.33	ND	22	ND	ND	ND	ND	
W-MW5	10/21/97	13.88	ND	14	ND	ND	ND	ND	
W-MW5	3/11/98	17.14	NS	NS	NS	NS	NS NS	NS ND (0.5	
W-MW5	4/1/98	17.14	ND (50)	11	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5	
W-MW5	7/15/98	16.43	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5	
W-MW5	10/22/98	15.60	ND (50)	ND (5.0)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5	

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL DATA, SITE NO. 2 ALCOPARK FUELING FACILITY OAKLAND, CALIFORNIA

	All concentrations in ug/l (PPB).									
		Groundwater								
Well	Date	Elevation	TPH-G	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes		
W-MW5	9/9/99	15.44	NS	NS	NS	NS	NS	NS		
W-MW-5	1/18/00	14.67	NS	NS	NS	NS	NS	NS		
W-MW-5	5/4/00	16.18	NS	NS	NS	NS	NS	NS		
W-MW-5	8/22/00	15.32	NS	NS	NS	NS	NS	NS		
W-MW-5	2/8/01	14.53	NS	NS	NS	NS	NS	NS		
W-MW6	4/1/98	NA NA	740	4,600	9.8	3.2	3.0	15		
W-MW6	7/15/98	l na l	6,200	11,000	280	43	180	350		
W-MW6	7/15/98	NA	NA	13,000	ND (500)	ND (500)	ND (500)	ND (500)		
W-MW6	10/22/98	NA	4,700	9,600	450	13	200	200		
W-MW6	10/22/98	NA	NA	9,100	470	ND (250)	ND (250)	ND (250)		
w-mw6	9/9/99	NA	6,600	3,700	2,500	43	310	250		
W-MW6	1/18/00	NA	3,500	4,600	800	ND (5.0)	40	13		
W-MW6	5/4/00	NA	NS	NS	NS	NS	NS	NS		
W-MW6	8/22/00	NA NA	1,400	1,700	370	4.8	12	35		
W-MW6	2/8/01	NA	NS	NS	NS	NS	NS	NS		
W-MW7	9/9/99	NA NA	92	1,200	1.6	ND (0.5)	ND (0.5)	ND (0.5)		
W-MW7	1/18/00	NA	ND	2,100	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)		
W-MW7	5/4/00	NA NA	140	1,100	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)		
W-MW7	8/22/00	NA	160	830	0.62	ND (0.5)	ND (0.5)	ND (0.5)		
W-MW7	2/8/01	NA	130	650	ND (0.5)	0.53	ND (0.5)	ND (0.5)		
W-B1	3/23/98	NA	3,100	4,200	250	18	160	290		

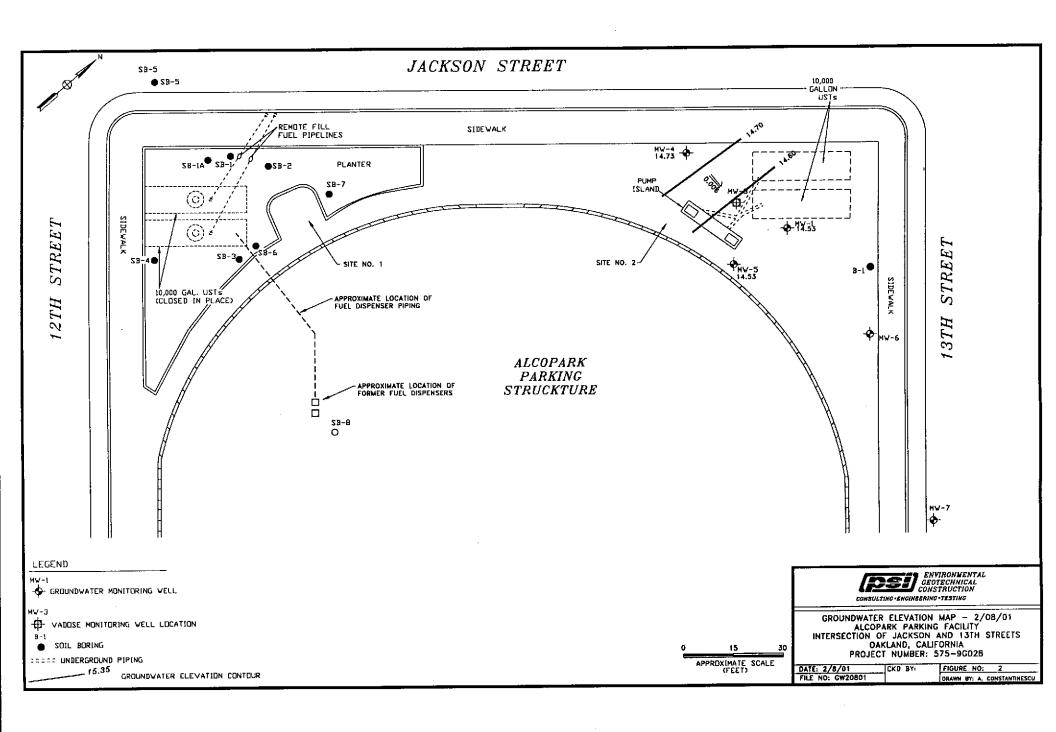

Notes:

TPH-G denotes Total Petroleum Hydrocarbons as Gasoline. MTBE denotes Methyl tert-Butyl Ether.

NA denotes Not Analyzed. NS denotes Not Sampled. ND denotes Not Detected. () denotes detection limit.

Data collected prior to 1998 was reported in Alameda County Request for Proposal dated December 2, 1997.

Duplicate results presented in italics performed by EPA method 8260.


0 1/2 1 MILE
SCALE

REFERENCE: U.S.G.S. OAKLAND WEST, CALIFORNIA, 1959 PHOTOREVISED 1980

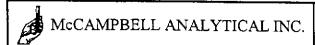
SITE LOCATION
ALCOPARK FUELING STATION
165 13TH STREET
OAKLAND, CALIFORNIA
PROJECT NUMBER: 575-96028

	PRUJE	CI NONELIA.	373 3002	
DATE:		CKD BY:	FIGURE NO:	1
FILE NO:	90028 -1	j	CRAWN BY: A.	CONSTANTINESCU

APPENDIX A

GROUNDWATER SAMPLING FIELD PROCEDURES

APPENDIX A


GROUND-WATER SAMPLING

The following procedures will be used for ground water sampling:

- 1. All equipment shall be washed prior to entering the well with an Alconox solution, followed by two tap water rinses and a deionized water rinse.
- 2. Prior to purging wells, depth-to-water will be measured using an electronic sounder with an accuracy of approximately 0.01 foot. The measurements will be made to the top of the well casing on the north side.
- 4. Free floating product thickness and depth-to-ground water will be measured in wells containing free floating product using a Solinst oil-water interface probe to an accuracy of approximately 0.003 meters (0.01 foot). The measurements will be made to the top of the well casing on the north side.
- 5. Water samples will be collected with a Teflon disposable bailer. In the case of grab groundwater sampling, samples will be collected with a disposable Teflon lined plastic tube equipped with a check valve. The water collected will be immediately decanted into laboratory-supplied vials and bottles. The containers will be overfilled, capped, labeled, and placed in a chilled cooler, prior to delivery to the laboratory for analysis.
- 6. Chain of custody procedures, including chain of custody forms, will be used to document water sample handling and transport from collection to delivery to the laboratory for analysis.
- 7. Ground-water samples will be delivered to a State-certified hazardous waste laboratory within approximately 24 hours of collection.

<u>APPENDIX B</u>

LABORATORY REPORT AND CHAIN OF CUSTODY

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Professional Service Industries	Client Project ID: #9G028; Alcopark	Date Sampled: 02/08/01
1320 West Winton Avenue		Date Received: 02/08/01
Hayward, CA 94545	Client Contact: Frank Poss	Date Extracted: 02/08/01
	Client P.O:	Date Analyzed: 02/08/01

02/15/01

Dear Frank:

Enclosed are:

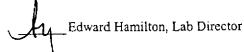
- 1). the results of 1 samples from your #9G028; Alcopark project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

Professional Service Industries	Client Project ID: #9G028; Alcopark	Date Sampled: 02/08/01
1320 West Winton Avenue		Date Received: 02/08/01
Hayward, CA 94545	Client Contact: Frank Poss	Date Extracted: 02/09-02/13/01
	Client P.O:	Date Analyzed: 02/09-02/13/01


Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

FPA methods 5030 modified 8015, and 8020 or 602: California RWOCR (SE Bay Region) method GCEID/5030)

Lab ID	ods 5030, modified Client ID	Matrix	$TPH(g)^{^{\!\!\!\!\!+}}$	MTBE	Benzene	Toluene	Ethyl- benzene	Xylenes	% Recovery Surrogate
59741	MW-7	w	130,f	650	ND	0.53	ND	ND	105
				_					
								,	
•									
-									
			_						
. <u>-</u>			·						
				ļ					
otherw	ng Limit unless ise stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
	t detected above porting limit	s	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than waterimmiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

^{*} cluttered chromatogram; sample peak coelutes with suπogate peak

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

Date:

02/09/01-02/10/01

Matrix:

Water

Extraction:

TTLC

	Concentration: ug/L					%Recovery		
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD	
SampleID: 20801				Instr	ıment: G	C-7		
Surrogate1	0.000	97.0	95.0	100.00	97	95	2.1	
Xylenes	0.000	31.2	31.6	30.00	104	105	1.3	
Ethyl Benzene	0.000	10.0	10.0	10.00	100	100	0.0	
Toluene	0.000	9.7	9.6	10.00	97	96	1.0	
Benzene	0.000	8.8	8.8	10.00	88	88	0.0	
MTBE	0.000	8.7	8.4	10.00	87	84	3.5	
GAS	0.000	99.7	98.5	100.00	100	99	1.2	

SampleID:	20801
-----------	-------

Instrument:	CC 44 A
msamment.	1-1 -1 -1 -1 -1

Surrogate1	0.000	103.0	102.0	100.00	103	102	1.0
TPH (diesel)	0.000		7775.0	! {	106	104	2.2

$$\% \text{ Re covery} = \frac{\left(MS - Sample \right)}{AmountSpiked} \cdot 100$$

$$R^{D}D = \frac{(MS - MSD)}{(MS + MSD)} 2 \cdot 100$$

RPO means Relative Percent Deviation

+2