## HAZARDOUS WASTE PRELIMINARY SITE INVESTIGATION REPORT TASK ORDER NUMBER 04-911175-DH CONTRACT NUMBER 43A0012

# SOUTH OAKLAND MAINTENANCE STATION 1112 29th AVENUE OAKLAND, CALIFORNIA

5-25-99

prepared for

# CALIFORNIA DEPARTMENT OF TRANSPORTATION District 4

111 Grand Avenue Oakland, California 94623

prepared by

Professional Service Industries, Inc. 1320 West Winton Avenue Hayward, California 94545

(510) 785-1111

May 25, 1999 575-9G014

# **TABLE OF CONTENTS**

| STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION                                                            | i      |
|--------------------------------------------------------------------------------------------------------------------|--------|
| 1.0 INTRODUCTION                                                                                                   | 1      |
| 2.0 PRE-FIELD ACTIVITIES                                                                                           | 2      |
| 3.0 SUBSURFACE INVESTIGATION  3.1 GEOPHYSICAL SURVEY  3.2 SOIL BORINGS  3.3 TEMPORARY MONITORING WELL INSTALLATION | 3<br>3 |
| AND DEVELOPMENT                                                                                                    | 4<br>4 |
| 4.0 LABORATORY ANALYSIS PROGRAM                                                                                    |        |
| 5.0 LABORATORY RESULTS                                                                                             | 7<br>7 |
| 6.0 CONCLUSIONS AND RECOMMENDATIONS                                                                                | 9      |
| REFERENCES                                                                                                         | 10     |
|                                                                                                                    |        |

# **FIGURES**

FIGURE 1: SITE LOCATION

FIGURE 2: SITE PLAN

FIGURE 3: GROUNDWATER ELEVATION MAP: 4/8/99

## **TABLE OF CONTENTS**

## **TABLES**

TABLE 1: GROUNDWATER ELEVATION DATA

TABLE 2: ANALYTICAL RESULTS FOR SOIL SAMPLES

TABLE 3: ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

#### **APPENDICES**

APPENDIX A: FIELD PROCEDURES

**APPENDIX B: BORING LOGS** 

APPENDIX C: SURVEY INFORMATION

APPENDIX D: LABORATORY RESULTS AND CHAIN-OF-CUSTODY RECORDS

#### STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION

Information provided in this Site Investigation Report, prepared by Professional Service Industries, Inc. (PSI), is intended exclusively for the use of Caltrans for the evaluation of subsurface conditions as it pertains to the subject site. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted identified any or all sources or locations of contamination.

This report is issued with the understanding that Caltrans is responsible for ensuring that the information contained herein is brought to the attention of the appropriate regulatory agency. This report has been reviewed by a geologist who is registered in the State of California and whose signature and license number appear below.

Frank R. Poss, R.E.A. Senior Hydrogeologist

Scott A. Bowers Staff Geologist Timothy R. O'Brien RG/CEG/CHG Senior Geologist



#### 1.0 INTRODUCTION

Professional Service Industries, Inc. (PSI) has been retained by the California Department of Transportation (Caltrans), under Task Order Number 04-911175-DH and Contract Number 43A0012, to conduct a hazardous waste site assessment of current soil and groundwater conditions at the South Oakland Maintenance Station at 1112 29<sup>th</sup> Avenue, Oakland, California (subject site; Figure 1). The scope of work for this investigation included:

- A geophysical investigation to clear borings;
- Installation of six temporary groundwater monitoring wells;
- Collection of soil and groundwater samples to characterize soil and groundwater;
- Preparation of a report detailing the results of the investigation.

#### 1.1 SITE DESCRIPTION

The site is currently used as a maintenance station by Caltrans. The maintenance station includes offices, a repair shop, a sign shop, and several material storage bins. The entire property covers approximately two acres. The site is paved with asphalt and is relatively flat. The Alameda/Oakland Estuary is approximately 0.5 miles southwest of the site.

One 4,000-gallon diesel underground storage tank (UST) and one 2,000-gallon gasoline UST were removed from the site on March 11, 1997. The tank pit was over-excavated and soil samples were collected. Sidewall and bottom samples collected from the excavation contained concentrations of Total Petroleum Hydrocarbons as Gasoline (TPH-G, [as high as 380 milligrams per kilogram (mg/kg)]), and Total Petroleum Hydrocarbons as Diesel (TPH-D, [as high as 21 mg/kg]). Concentrations of Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), ranged from 0.010 to 48 mg/kg. Methyl Tertiary Butyl Ether (MTBE) concentrations ranged from 0.041 to 9.15 mg/kg. Groundwater samples were not collected (Caltrans, 1999).

#### 1.2 PROJECT OBJECTIVE

The objective of the project is to delineate the extent of hydrocarbon impacted soil and groundwater at the site. Analytical results from the soil and groundwater investigations were examined with respect to regulatory requirements and guidelines.

#### 2.0 PRE-FIELD ACTIVITIES

Prior to initiation of field activities, PSI marked the drilling locations with white paint and contacted Underground Service Alert a minimum of 48-hours prior to beginning work to locate any potential buried utilities.

A site-specific Health and Safety Plan (HSP) was developed in compliance with 29 CFR 1910.120, under the supervision of a Certified Industrial Hygienist. The HSP was designed to address the potential hazardous materials that may be encountered during field activities at the site and to minimize the exposure to potentially hazardous materials and unsafe working conditions to on-site personnel (PSI, 1999).

#### 3.0 SUBSURFACE INVESTIGATION

#### 3.1 GEOPHYSICAL SURVEY

PSI utilized Norcal Geophysical Surveys of Petaluma, California to perform a geophysical survey to clear soil boring locations. Norcal Geophysical completed the geophysical survey using ground-penetrating radar, magnetometry, and electromagnetic line locating.

The geophysical survey found no evidence of subsurface debris or utilities that may have obstructed drilling operations. The geophysical investigation was performed under the supervision of a California Registered Geophysicist (Norcal, 1999).

#### 3.2 SOIL BORINGS

On April 6 and 7, 1999, Borings B1 through B6 were drilled at the site. The boring locations are presented in Figure 2. All of the borings were converted to 1.3 centimeter (cm) (0.5-inch) inside diameter temporary groundwater monitoring wells. Borings were drilled using a Geoprobe 5300 drill rig. Fisch Environmental of Valley Springs, California provided drilling services.

The borings were advanced using a 0.038 meter (1.5-inch) diameter core sampler fitted with a retractable tip and lined with acetate sleeves. Soil samples were collected from each boring at depths of 1.52, 3, and 4.56 meters (5, 10, and 15 feet) below ground surface (bgs).

Soils were logged according to the "Soil and Rock Logging Classification Manual" of the State of California, Department of Transportation. Boring logs are presented in Appendix B. Soils observed during drilling activities consisted primarily of clay and sand mixtures. Groundwater was encountered approximately 1.5 meters (49 feet) below ground surface (bgs).

The soil samples were logged on chain-of-custody records and transported to Pace Analytical of Long Beach, California, a California Department of Health Services certified hazardous materials testing laboratory, following chain-of-custody protocol. The samples were maintained in a cooler with ice, or a refrigerator until transported to the analytical laboratory. The analytical results are described in Section 4.

#### 3.3 TEMPORARY MONITORING WELL INSTALLATION AND DEVELOPMENT

Temporary groundwater monitoring wells were constructed in all six of the soil borings. The well casings consisted of 1.3 centimeter (cm) (0.5-inch) inside diameter, Schedule 40 Polyvinyl chloride (PVC) casing with 0.025 cm (0.010-inch) machine-slotted screen from 1.5 to 6 meters (5 to 20 feet) bgs. The temporary wells were installed with a prepackaged sand pack and a sanitary seal. Following groundwater sampling, the casing of the temporary wells was removed and the borings were grouted with neat cement to grade using a tremie pipe.

Following installation, the wells were developed by bailing. The development water was collected in 55-gallon drums for proper disposal. Following completion of the well installation, the newly installed well casings and boring locations were surveyed by a professional Land Surveyor. The surveyor's report is presented in Appendix C. Elevation and location were surveyed to accuracy of at least 0.003 m (0.01 foot) vertically and 0.003 m (0.01 foot) horizontally.

#### 3.4 GROUNDWATER SAMPLING

#### 3.4.1 Groundwater Elevation and Hydraulic Gradient

On April 8, 1999 depth to groundwater measurements were collected from six wells (B1 through B6) at the site. The groundwater depths were measured using a groundwater probe. Based on a lack of product sheen or measurable thickness of product in sampling bailers, floating product was not encountered in any of the wells. The groundwater measurements were converted to groundwater elevation data. The data is presented in Table 1 and Figure 3. The calculated groundwater flow direction is to the east with a hydraulic gradient of 0.053 meter per meter (foot per foot).

Groundwater flow direction was measured to be to the east. Interpretation of the United States Geological Survey's topographic map titled, Oakland West, indicates groundwater would be expected to flow to the southwest, towards the Alameda Channel. The deviation from the expected direction may be due to operation of groundwater extraction well(s) for industrial use, dewatering of underground structures, or localized hydrogeology. It is noted that the highest concentrations of contaminants were reported in the well located south of the former tank pit, consistent with the expected flow direction.

#### 3.4.2 Groundwater Sampling

Groundwater samples were collected from the temporary monitoring wells. Prior to the collection of groundwater samples, the monitoring wells were purged of a minimum of three well volumes of water until pH, conductivity, and temperature stabilized. The wells were allowed to recover to at least 80 percent of their original static groundwater levels prior to sampling.

The following procedures for well monitoring, well purging, and water sampling were implemented while sampling the wells:

- 1. All equipment was washed prior to entering the well with an Alconox solution, followed by one tap water rinse and a deionized water rinse.
- 2. Prior to purging the wells, depth-to-water was measured using a groundwater interface probe to an accuracy of 0.003 meters (0.01 foot). The measurements were made to the top of the well casing on the north side.
- 3. Water samples were collected with a single-use Teflon bailer after the well had been purged and water in the well had equilibrated to approximately 80 percent of the static water level. The water collected was immediately decanted into laboratory supplied vials and bottles. The containers were overfilled, capped, labeled, and placed in a chilled cooler prior to delivery to the laboratory for analysis.
- 4. Chain-of-custody procedures, including chain-of-custody forms, were used to document water sample handling and transport from collection to delivery to the laboratory for analyses.
- 5. Groundwater samples were delivered to the State-certified hazardous waste laboratory within approximately 48-hours of collection.
- 6. Purged water was contained in a DOT approved 55-gallon drum. The drum was labeled with the contents, date, well number, client name, and project number.

#### **4.0 LABORATORY ANALYSIS PROGRAM**

The soil and groundwater samples collected during this investigation were submitted to Pace Analytical, a State of California Department of Health Services certified hazardous waste laboratory.

#### 4.1 SOIL AND GROUNDWATER

The following analytical methods were used to analyze soil and groundwater samples:

- EPA Method 8015 modified Total Petroleum Hydrocarbons as Gasoline (TPH-G);
- EPA Method 8015 modified Total Petroleum Hydrocarbons as Diesel (TPH-D);
- EPA Method 8260 Volatile Organic Compounds (VOCs)

#### **5.0 LABORATORY RESULTS**

A summary of the analytical results are presented in Tables 2 and 3. A copy of the laboratory reports and chain-of-custody records are included in Appendix D.

#### 5.1 LABORATORY ANALYTICAL RESULTS - SOIL

The soil analytical results are presented in Table 2. TPH-G was detected in one soil sample (B6-10 [13 mg/kg]). None of the soil samples contained detectable concentrations of TPH-D.

MTBE was the only VOC detected in the soil samples analyzed. MTBE was detected in the sample B5-1.5 meters (0.16 mg/kg). No other soil sample contained a detectable concentration of MTBE. The MTBE found in the soil sample collected from Boring B5 at 1.5 meters (5 feet) bgs could be related to the release from the former tank pit. The lack of other contaminants in Boring B5 and the lack of contaminants in any of the other soil samples collected from the borings located adjacent to the former tank pit indicates that soil contamination is limited to the former tank pit.

#### 5.2 LABORATORY ANALYTICAL RESULTS - GROUNDWATER

Groundwater samples from temporary wells B1 through B6 were submitted to the laboratory for analysis. The groundwater analytical results are presented in Table 3

TPH-G was detected in groundwater samples from Wells B3 (520  $\mu$ g/l) and B4 (520  $\mu$ g/l). No other groundwater samples contained detectable concentrations of TPH-G. No TPH-D was detected in any of the groundwater samples.

Benzene was detected in the water sample from Well Wb3 (6.3 ug/l). MTBE was detected in the samples from Well WB5 (6,600 ug/l) and WB6 (24 ug/l). Concentrations of other gasoline related compounds were detected in samples from Wells WB1, WB3, WB4, and WB5.

Chloroform was detected in water samples from Wells WB4 (2.4 ug/l) and WB6 (2.7 ug/l). Tetrachloroethene (synonym Perchloroethene [PCE]) was detected in the water sample from Well WB6 (12 ug/l)

#### 5.3 COMPARISON OF GROUNDWATER RESULTS WITH REGULATORY CRITERIA

The concentrations of contaminants reported by the analytical laboratory were compared to State of California Primary and Secondary Drinking Water Standards (PDWS and SDWS). The following samples were above their respective PDWS and/or SDWS.

- The benzene concentration detected in Well B3 (6.3 ug/l) exceeded the PDWS (1.0 ug/l).
- The MTBE concentration detected in Wells B5 (6,600 ug/l) and B6 (24 ug/l) exceeded the SDWS (5.0 ug/l).
- The PCE concentration detected in Well B6 (12 ug/l) exceeded the PDWS (5.0 ug/l).

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the information presented in this report, the following conclusions have been reached:

- The groundwater flow direction measured at the site is east with a hydraulic gradient of 0.053 meter per meter (foot per foot). The measured groundwater flow direction is not consistent with the anticipated flow direction interpreted from a topographic map. This anomaly may be due to nearby groundwater extraction or local hydrogeology.
- TPH-G and VOC concentrations were detected in two soil samples at the site. Soil
  contamination appears to be limited to the tank pit.
- TPH-G concentrations were detected in two of six groundwater samples at low concentrations
- A low concentration of benzene was detected in one groundwater sample.
- A moderate concentration of MTBE was detected in one groundwater sample, and a low concentration was detected in a second sample.
- Gasoline related compounds were reported in for of the six groundwater samples.
- Chloroform and/or PCE were detected in two groundwater samples.

Based on the results presented in this report, PSI recommends additional investigation to better delineate the extent of impacted groundwater. PSI recommends drilling three additional hydropunch borings to the south and east of Boring B5 to determine the extent of the MTBE impacted groundwater.

#### REFERENCES

Caltrans, 1999, Task Order # 04-911175-DH, Hazardous Waste Preliminary Site Investigation, prepared for Caltrans, March 4.

PSI, 1999, Health and Safety Plan, prepared for Caltrans, March 26.

PSI, 1997, Hazardous Waste Preliminary Site Investigation Workplan, prepared for Caltrans, March 26.

Norcal, 1999, Geophysical Results for the South Oakland Maintenance Station, prepared for PSI, April 6.







0 35 70 SCALE IN FEET

LEGEND

SOIL BORING/TEMPORARY WELL LOCATION

28.40 GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL

LINE OF EQUAL GROUNDWATER ELEVATION

0.053 FT/FT GROUNDWATER FLOW DIRECTION AND GRADIENT

AN ASTERISK (\*) INDICATES DATA NOT USED IN CONTOURING DUE TO ANOMALOUS READING.



GROUNDWATER ELEVATION MAP: 4/8/99
CALTRANS MAINTENANCE STATION
1112 29TH AVENUE
OAKLAND, CALIFORNIA
PROJECT NUMBER: 575-9G014

DATE: 4/22/99

CKD BY:

FIGURE NO.: 3

FILE NO: 90014-2

DRAWN BY: S.BOWERS

## TABLE 1

# GROUNDWATER ELEVATION DATA SOUTH OAKLAND MAINTENANCE STATION 1112 29TH AVENUE OAKLAND, CALIFORNIA

| TEMPORARY<br>WELL | TOC<br>ELEVATION<br>(feet msl) | DEPTH TO GROUNDWATER | GROUNDWATER<br>ELEVATION |
|-------------------|--------------------------------|----------------------|--------------------------|
| B-1               | 32.41                          | NM                   |                          |
| B-2               | 32.97                          | 4.57                 | 28.40                    |
| B-3               | 33.52                          | 8.27                 | 25.25                    |
| B-4               | 32.99                          | 8.81                 | 24.18                    |
| B-5               | 33.11                          | 16.56                | 16.55                    |
| B-6               | 32.59                          | 8.60                 | 23.99                    |

#### Notes:

Depth to water measurements from 4/8/99.

TOC = Top of Casing.

msl = mean sea level.

All measurments are presented in feet.

NM = Not measured

TABLE 2

# ANALYTICAL RESULTS FOR SOIL SAMPLES SOUTH OAKLAND MAINTENANCE STATION 1112 29TH AVENUE OAKLAND, CALIFORNIA

| Sample I.D. | TPH-G<br>mg/kg | TPH-D<br>mg/kg | MTBE<br>µg/kg | VOCs*<br>µg/kg |  |
|-------------|----------------|----------------|---------------|----------------|--|
| B1-5        | <1.0           | <10            | <5            | ND             |  |
| B1-10       | <1.0           | <10            | <5            | ND             |  |
| B2-5        | <1.0           | <10            | <5            | ND             |  |
| B2-10       | <1.0           | <10            | <5            | ND             |  |
| B3-5        | <1.0           | <10            | <5            | ND             |  |
| B3-10       | <1.0           | <10            | <5            | ND             |  |
| B4-5        | <1.0           | <10            | <5            | ND             |  |
| B4-10       | <1.0           | <10            | <5            | ND             |  |
| B5-5        | <1.0           | <10            | 160           | 160            |  |
| B5-10       | <1.0           | <10            | <5            | ND             |  |
| B6-5        | <1.0           | <10            | <5            | ND             |  |
| B6-10       | 13             | <10            | <5            | ND             |  |

#### NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel by EPA Method 8015M.

TPH-G = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015M.

MTBE = Methyl Tertiary Butyl Ether

VOCs\* reported as the sum of all analytes detected in EPA Method 8260

#### TABLE 3

# ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES SOUTH OAKLAND MAINTENANCE STATION 1112 29TH AVENUE OAKLAND, CALIFORNIA

| Sample I.D. | TPH-G<br>µg/l | TPH-D<br>mg/l | MTBE<br>μg/l | Benzene<br>µg/l | Toluene<br>µg/l | Ethyl-<br>benzene<br>µg/l | Total<br>Xylenes<br>µg/l | I-PB<br>µg/l | N-propyl-<br>benzene<br>µg/l | Naph-<br>thalene<br>µg/l | 1,2,4-TMB<br>µg/l | 1,3,5-TMB<br>µg/l | Chloroform<br>µg/l | PCE<br>µg/l |
|-------------|---------------|---------------|--------------|-----------------|-----------------|---------------------------|--------------------------|--------------|------------------------------|--------------------------|-------------------|-------------------|--------------------|-------------|
| WB1         | <500          | <10           | <1.0         | <0.5            | <0.5            | <0.5                      | 2.0                      | <0.5         | <0.5                         | <0.5                     | <0.5              | <0.5              | <0.5               | <0.5        |
| WB2         | <500          | <10           | <1.0         | <0.5            | <0.5            | <0.5                      | <1.5                     | <0.5         | <0.5                         | <0.5                     | <0.5              | <0.5              | <0.5               | <0.5        |
| WB3         | 520           | <10           | <1.0         | 6.3             | 2.2             | 11                        | 40                       | 1.8          | 5.4                          | 3.5                      | 31.0              | 12.0              | <0.5               | <0.5        |
| WB4         | 520           | <10           | <1.0         | <0.5            | <0.5            | 3.7                       | 7.7                      | 1.3          | 3.0                          | 2.6                      | 19.0              | 6.3               | 2.4                | <0.5        |
| WB5         | <500          | <10           | 6,600        | <0.5            | 0.6             | <0.5                      | <1.5                     | <0.5         | <0.5                         | <0.5                     | <0.5              | <0.5              | <0.5               | <0.5        |
| WB6         | <500          | <10           | 24           | <0.5            | <0.5            | <0.5                      | <1.5                     | <0.5         | <0.5                         | <0.5                     | <0.5              | <0.5              | 2.7                | 12          |

#### NOTES:

TPH-D = Total Petroleum Hydrocarbons as Diesel by EPA Method, 8015M.

TPH-G = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015M.

MTBE = Methyl Tertiary Butyl Ether

1,2,4 TMB = 1,2,4 Trimethylbenzene

1,3,5 TMB = 1,3,5 Trimethylbenzene

I-PB = iso-Propylbenzene

PCE = Tetrachloroethene (Synonym perchloroethen

# **APPENDIX A**

**PSI FIELD PROCEDURES** 

# APPENDIX A FIELD PROCEDURES

#### I. FIELD DOCUMENTATION OF SAMPLING PROCEDURES

The following outline describes the procedures adhered by PSI for proper sampling documentation.

- 1. Sampling procedures will be documented in field notes that contain:
  - 1. Sample collection procedures
  - 2. Date and time of collection
  - 3. Date of shipping
  - 4. Sample collection location
  - 5. Sample identification number(s)
  - 6. Intended analysis
  - 7. Quality control samples
  - 8. Sample preservation
  - 9. Name of sampler
  - 10. Any pertinent observations
- 2. Samples will be labeled with the following information:
  - 1. Sample designation number
  - 2. Date and time sample was collected
  - 3. Sampler's name
  - 4. Sample preservatives (if required)
- 3. The following is the sample designation system for the site:

For Borings the samples will be labeled B-(Boring Number)-(Depth) (i.e. sample collected from boring 4 at 5 meters (feet) would be B4-5).

- 4. Handling of the samples will be recorded on a chain of custody form which shall include:
  - 1. Project name
  - 2. Site location
  - 3. Signature of Collector
  - Date and time of collection
  - 5. Sample identification number
  - 6. Number of containers in sample set
  - 7. Description of sample and container
  - 8. Name and signature of persons, and the companies or agencies they represent, who are involved in the chain of possession
  - 9. Inclusive dates and times of possession
  - 10. Analyses to be completed

#### II. ADVANCING OF SOIL BORINGS AND COLLECTION OF SOIL SAMPLES

The following procedures were used for advancing soil borings and collecting soil samples at the site:

- 1. Prior to the commencement of soil boring activities at the site, soil boring locations were marked with white paint. Underground Service Alert (USA) was contacted to identify underground utilities in the vicinity of the soil borings.
- 2. Soil boring and sampling activities were conducted by Fisch Environmental of Valley Springs, California. The soil borings were advanced using GeoProbe direct push method. Flush-threaded rods with a stainless steel sampler were advanced into the ground using a hydraulic press and percussion hammer. The opening of the sampler was sealed with a drive tip held in place by a threaded pin.
- 3. Soil samples were collected using a .45 meter (1.5-foot long), 0.02 meter (1-inch) inside diameter macro-core stainless steel sampler. Soil samplers were washed between sampling intervals with Alconox soap followed by two deionized water rinses. The sampler was lined with clean brass, stainless steel, or acetate sleeves. When the boring was advanced to the desired sampling depth the threaded pin was removed allowing the drive tip to retract as the sampler was advanced 45 meter (1.5-foot long) into native soil using a percussion hammer.

- 4. After the sampler was retrieved the sleeves were extracted from the sampler without disturbing the sample. The sample was collected for analyses from the lowest tube in the sampler. The ends of the sample were covered with Teflon™ sheets and capped with polyethylene end caps. The sample was labeled and placed in a ziplock bag in a chilled cooler prior to delivery to the laboratory for analyses.
- 5. Soil samples were assigned identification numbers such as B1-5, where B1 indicates the boring designation and -5 indicates that the sample was collected at 5 feet bgs. The samples were labeled with the project name, date and time of sample collection, sampling depth, and client name.
- 6. Chain-of-custody procedures using chain-of-custody records were implemented during handling and transportation of the samples to the laboratory for analyses.
- 7. Boring logs were prepared for the soil borings under the supervision of a California-Registered Geologist. Soil from each sample was described in accordance with Unified Soil Classification System by a PSI geologist and recorded on a field boring log. The data recorded on the logs were based on examination of soil samples retrieved in the tubes, and drilling conditions observed in the field. Boring logs include information regarding the location of each boring, geologic descriptions of materials encountered, occurrence of groundwater (if applicable) and organic vapor analyzer (OVA) measurements in the soil samples collected.
- 8. A HNU photoionizer (PID) was used to monitor volatile organic compounds (VOCs) in the ambient air during drilling at the site in accordance with the site health and safety plan. VOC concentrations in the soil were measured at the sampling depths by partially filling a zip-loc bag and closing the top. The components of the soil were allowed to volatilize and fill the head space in the bag for approximately 15 to 30 minutes prior to inserting the OVA probe through the top of the bag and recording the measurements.
- 9. No soil cuttings were generated during drilling, due to the use of a geoprobe drill rig.

# III. BACKFILL OF SOIL BORINGS

The following procedures were used to backfill the soil borings at the site:

1. Soil borings were backfilled to grade with Portland grout slurry. The slurry consisted of neat cement and 5% bentonite powder.

# APPENDIX B

**BORING LOGS** 

| SHEET 1 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOI          | L B        | OI            | RII             | NG         | LOG                                            |             |           |                |          | BORING NO:         | B1       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|---------------|-----------------|------------|------------------------------------------------|-------------|-----------|----------------|----------|--------------------|----------|----------|
| PROJECT NUMBER: 875-96014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |               |                 |            |                                                |             |           |                |          | SHEET 1            | OF       | 2        |
| NORTHINGS:   EASTINGS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |            |               |                 |            | PROJECT N                                      | AME:        | Caltrans  | : South C      | akland N | Maintenance Stat   | tion     |          |
| DRILLING METHOD:   Dived Push (opencies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |               |                 |            | PROJECT N                                      | UMBER:      | 575-9G0   | )14            |          | DATE:              | 4/6/99   |          |
| DRILLING METHOD:   Direct Plath (Geoporbe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| BORING DIAMETER   2 Inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |               |                 |            |                                                |             |           |                |          |                    | al       |          |
| Capability   Cap   |              |            |               |                 |            |                                                |             |           | Dire           |          |                    |          |          |
| DATE   COMMENTS   DEPTH BGS   4/6/99     Sitabilized   3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |            |               |                 |            | BORING DIA                                     | METER:      |           |                |          |                    | 36 feet  |          |
| African   Afri   |              |            |               |                 |            |                                                |             | G         | ROUND          |          |                    |          |          |
| A77/99   Stabilized   6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| Clay   Description   PiD   USCS   Remarks   PiD   Pi   |              |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| Sity Clay, low plasticity, brown, damp, no odor.  CL. Asphalt Surface  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  Clayery Sit, brown, low plasticity, damp, no odor.  ML  Clayery Sit, brown, low plasticity, damp, no odor.  Clayery Sit, brown, low |              |            |               |                 |            | <b>_</b>                                       | 411133      | 1         |                | Stabili  | 260                |          | 0.9      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | рЕРТН (FEET) | SAMPLE NO. | RECOVERY (IN) | SAMPLE INTERVAL | BLOW COUNT | DESCRIPTION                                    | l           |           |                | uscs     | R                  | EMARKS   |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |               |                 |            | Silty Clay, low plasticity, brown, damp, no oc | lor.        |           |                | CL       | Asphalt Surface    |          |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1_           |            |               | ĺ               |            |                                                |             |           |                |          |                    |          |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2            |            |               |                 | $\vdash$   |                                                |             |           |                |          |                    |          |          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| 5— 6— 7— 7— 8— 9— 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3—           |            |               |                 |            |                                                |             |           |                |          |                    | <u>.</u> |          |
| 6 — 7 — 8 — 9 — 14 — 14 — 18 — 18 — 18 — 18 — 19 — 20 — 20 — 20 — Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4—           |            |               | <u> </u>        | <b>├</b> - |                                                |             |           |                |          |                    |          |          |
| 6 — 7 — 8 — 9 — 14 — 14 — 18 — 18 — 18 — 18 — 19 — 20 — 20 — 20 — Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l —          |            | 16            |                 | -          |                                                |             |           | · · · · · ·    |          |                    |          |          |
| 6 — 7 — 8 — 9 — Clayey Silt, brown, low plasticity, damp, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5—           |            | '             |                 |            |                                                |             |           | 0              |          |                    |          |          |
| 7 — 8 — 9 — Clayey Silt, brown, low plasticity, damp, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| 8— 9— 10— 114 110— 114 110— 115— 118 116— 117— 118— 119— 20— 20 Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |               | ł               |            |                                                |             |           |                |          |                    |          |          |
| 9   14   14   17   18   18   18   18   18   18   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7—           |            |               |                 | -          |                                                |             |           |                |          | <b> </b>           |          |          |
| 9   14   14   17   18   18   18   18   18   18   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| 10 — 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *_           |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| 10— 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9            |            |               |                 |            |                                                |             |           |                | 541      |                    |          |          |
| 10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 20 Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _            |            | 14            |                 | -          | Clayey Silt, brown, low plasticity, damp, no   | odor.       | _         |                | ML       |                    |          |          |
| 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 20  Log continues downward.  10— 11— 110— 120— 13— 140— 140— 150— 160— 170— 180— 180— 190— 200— 100— 100— 100— 100— 100— 100— 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10           |            | '             | 100             | 8          |                                                |             |           | 0              |          |                    |          |          |
| 12— 13— 14— 15— 16— 17— 18— 19— 20— Log continues downward.  Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11_          |            |               | and par         |            |                                                |             |           |                | ]        |                    |          |          |
| 13— 14— 15— 16— 17— 18— 19— 20— Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ] ''_        |            |               |                 | -          |                                                |             |           | ļ              | 1        |                    |          |          |
| 13— 14— 15— 16— 17— 18— 19— 20— Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12           |            |               |                 | -          |                                                | <del></del> |           | <del> </del> - |          |                    |          |          |
| 14— 15— 16— 17— 18— 19— 20— Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            | }             |                 |            |                                                |             |           |                | 1        |                    |          |          |
| 15— 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13—          |            |               |                 |            |                                                |             |           |                | ]        |                    |          |          |
| 15— 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14           |            |               | <u>_</u>        |            |                                                |             |           | ļ              |          |                    |          |          |
| 15— 16— 17— 18— 19— 20— Log continues downward.  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |            | 1.0           |                 | <b> </b>   |                                                |             |           |                | -        | moisture increase. |          |          |
| 16— 17— 18— 19— 20— Log continues downward.  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15           |            | '"            |                 |            |                                                |             |           | 0              |          | <u> </u>           |          |          |
| 17— 18— 19— 20— Log continues downward.  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0          |            |               | 4 10            |            |                                                |             |           |                | j        |                    |          |          |
| 18— 19— 20— Log continues downward.  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | "-           |            |               |                 |            |                                                |             |           |                |          |                    |          |          |
| 19— 20 Log continues downward. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17—          |            |               |                 |            |                                                |             |           |                | -        |                    |          |          |
| 19— 20 Log continues downward. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |            |               |                 | $\vdash$   |                                                |             |           | 1              | 1        |                    |          |          |
| 20 Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18—          |            |               | 1               |            |                                                |             |           |                | 1        |                    |          |          |
| 20 Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19—          |            |               | L               |            |                                                |             |           |                |          |                    |          |          |
| Log continues downward.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _            |            |               |                 |            |                                                | <del></del> |           |                | -        |                    | •••      | <u> </u> |
| 1999/1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20           |            | 20            |                 |            | Log continues downward                         |             |           | 0              | -        |                    |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REVIE        | WED B      | Y: T          | im O            | Brie       |                                                | LOGG        | GED BY: S |                | ers      | I                  |          |          |

| SOI          | L B        | OI            | RII             | NG         | LOG                          |                                       |             |                                                  |          | BORING NO:                           | B1           |                   |
|--------------|------------|---------------|-----------------|------------|------------------------------|---------------------------------------|-------------|--------------------------------------------------|----------|--------------------------------------|--------------|-------------------|
|              |            |               |                 |            |                              | ]                                     |             |                                                  |          | SHEET 2                              | OF           | 2                 |
|              |            |               |                 |            |                              | PROJECT NAME:                         | Caltrans    | : South C                                        | akland N | Maintenance Sta                      | tion         |                   |
|              |            |               |                 |            |                              | PROJECT NUMBER:                       | 575-9G      | 014                                              |          | DATE:                                | 4/6/99       |                   |
|              |            |               |                 |            |                              | NORTHINGS:                            |             |                                                  |          | EASTINGS:                            |              |                   |
|              |            |               |                 |            |                              | DRILLING COMPANY                      | :           |                                                  |          | ch Environment                       | al           |                   |
|              |            |               |                 |            |                              | DRILLING METHOD:                      |             | Dire                                             |          | Geoprobe)                            |              |                   |
|              |            |               |                 |            |                              | BORING DIAMETER:                      | 2 inch      |                                                  |          |                                      | 36 feet      |                   |
|              |            |               |                 |            |                              |                                       |             | SROUND                                           |          |                                      |              |                   |
|              |            |               |                 |            |                              | DATE                                  |             |                                                  | COMM     | ENTS                                 | DEP          | TH BGS            |
|              |            |               |                 |            |                              |                                       |             |                                                  |          |                                      |              |                   |
| <del></del>  |            |               |                 |            |                              | I                                     |             |                                                  |          |                                      | <u> </u>     |                   |
| оертн (FEET) | SAMPLE NO. | RECOVERY (IN) | SAMPLE INTERVAL | BLOW COUNT | DE                           | SCRIPTION                             |             | PID<br>(PPM)                                     | USCS     | R                                    | EMARKS       |                   |
|              |            |               |                 |            | Clayey Silt as described abo | ove.                                  |             |                                                  | ML       |                                      |              |                   |
| <br>21       |            |               |                 |            |                              |                                       |             |                                                  | '        |                                      |              |                   |
| _            |            |               |                 | <u> </u>   |                              |                                       |             |                                                  | -        |                                      |              |                   |
| 22 —         |            |               |                 | $\vdash$   |                              | <del></del>                           |             | <u> </u>                                         | 1        |                                      |              |                   |
|              |            | ĺ             |                 |            | <u>.</u> .                   |                                       |             |                                                  | 1        |                                      |              |                   |
| 23—          |            |               |                 |            |                              |                                       |             |                                                  | ]        |                                      |              |                   |
| 24—          |            | ł             |                 |            | ·                            |                                       |             |                                                  |          |                                      |              |                   |
|              |            |               |                 |            | Silty Clay, low to medium pl | asticity, damp, no odor               |             |                                                  | CL       |                                      |              |                   |
| 25 —         |            | 17            |                 |            |                              |                                       |             |                                                  | 1        |                                      |              |                   |
|              |            |               |                 | <u> </u>   |                              |                                       |             | 0                                                |          |                                      |              |                   |
| 26           |            |               | H               |            |                              |                                       |             | <del>                                     </del> |          |                                      |              | <del></del>       |
|              |            |               |                 |            |                              |                                       |             | <b></b>                                          | 1        |                                      |              |                   |
| 27 —         |            |               |                 |            |                              |                                       |             |                                                  | ]        |                                      |              |                   |
| 28—          |            |               |                 |            |                              |                                       |             |                                                  | _        |                                      |              | ******            |
|              |            |               |                 | -          |                              | <u>.</u>                              |             |                                                  | _        |                                      |              |                   |
| 29 —         |            |               | H               | ┼          |                              |                                       |             |                                                  | -        | moisture increase.                   | <u> </u>     |                   |
|              | ]          | 12            |                 |            |                              |                                       |             |                                                  |          |                                      |              |                   |
| 30 —         |            |               |                 |            |                              |                                       |             | 0                                                | ]        |                                      |              |                   |
| 31 —         |            |               | $\prod$         |            |                              |                                       |             |                                                  | 1        |                                      |              |                   |
|              |            |               |                 |            |                              |                                       |             |                                                  | 4        | ļ                                    |              |                   |
| 32—          |            |               |                 | $\vdash$   | <u> </u>                     |                                       |             | <b> </b>                                         | -        | ļ                                    |              | <del></del>       |
|              |            |               |                 | $\vdash$   |                              |                                       |             | <del>                                     </del> | 1        |                                      |              |                   |
| 33           |            |               |                 |            |                              |                                       |             |                                                  | 1        |                                      |              |                   |
| 34—          | 1          |               | L               |            | ]                            |                                       |             |                                                  | <u> </u> |                                      |              |                   |
|              |            |               | $\prod$         |            | Silty Sandy Gravel, coarse   | sand, fine gravel, tan, wet, r        | o odor.     | ļ                                                | GW       |                                      |              |                   |
| 35           |            | 20            |                 |            |                              |                                       |             | <del> </del>                                     | -        |                                      |              |                   |
| -            |            |               |                 |            |                              |                                       |             | 0                                                | 4        |                                      |              |                   |
| 36 —         |            |               | $\vdash$        | +          |                              |                                       |             | 1                                                |          | Total Depth = 36 f                   | feet         | <u></u>           |
| 37—          |            |               |                 |            |                              |                                       |             |                                                  | ]        | Boring drilled to si                 |              | for investigation |
| " _          |            |               |                 |            |                              |                                       |             |                                                  | 4        | Groundwater stab                     |              |                   |
| 38 —         |            | 1             |                 | -          |                              |                                       |             | <b>_</b>                                         | -        | Boring converted                     | to temporary | groundwater       |
| -            |            |               |                 | -          |                              |                                       | <del></del> | <del> </del> -                                   | -        | monitoring well.  Well grouted by re | moving opein | n and tremie      |
| 39           |            |               |                 | $\vdash$   |                              |                                       |             | 1                                                | 4        | placement of neat                    |              | 9 and deline      |
|              |            |               |                 |            |                              |                                       |             | 1                                                | 1        |                                      |              |                   |
| 40           |            |               |                 |            |                              | · · · · · · · · · · · · · · · · · · · |             | 0                                                | 1        |                                      |              |                   |
| REVIE        | WED B      | Y: T          | im O            | 'Brie      | n                            | LOG                                   | GED BY: 9   | Scott A. B                                       | owers    |                                      |              |                   |
|              |            |               |                 |            |                              | <u>1</u>                              |             |                                                  |          |                                      | <del></del>  |                   |

| PROJECT NAME: Caltrans: South Oakland Maintenance Station PROJECT NUMBER: 575-9G014 DATE: 4/6/99 NORTHINGS: EASTINGS: DRILLING COMPANY: Fisch Environmental DRILLING METHOD: Direct Push (Geoprobe) BORING DIAMETER: 2 inch DEPTH: 20 feet GROUNDWATER LEVELS DATE COMMENTS DEPTH: 4/6/99 initial 19 4/6/99 stabilized 5    Caltrans: South Oakland Maintenance Station   PROJECT NUMBER: 575-9G014 DATE: 4/6/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| PROJECT NUMBER: 575-9G014 DATE: 4/6/99 NORTHINGS: EASTINGS: DRILLING COMPANY: Fisch Environmental DRILLING METHOD: Direct Push (Geoprobe) BORING DIAMETER: 2 inch DEPTH: 20 feet GROUNDWATER LEVELS DATE COMMENTS DEPTH: 4/6/99 stabilized 19 4/6/99 stabilized 5   (I) AVAILABLE TOWN ON THE STABLE TOWN  |           |
| PROJECT NUMBER: 575-9G014   DATE: 4/6/99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| NORTHINGS: EASTINGS: DRILLING COMPANY: Fisch Environmental DRILLING COMPANY: Fisch Environmental DRILLING COMPANY: Fisch Environmental DRILLING METHOD: Direct Push (Geoprobe) BORING DIAMETER: 2 inch DEPTH: 20 feet GROUNDWATER LEVELS DATE COMMENTS DEPTH: 4/6/99 stabilized 5  LIDD A4/6/99 stabilized 5  DESCRIPTION PID USCS REMARKS (PPM)  Sity Clay with some fine grained gravet, low to medium plasticity, brown, damp, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| DRILLING COMPANY: Fisch Environmental DRILLING METHOD: Direct Push (Geoprobe)  BORING DIAMETER: 2 inch DEPTH: 20 feet  GROUNDWATER LEVELS  DATE COMMENTS DEPTH: 4/6/99 initial 19  4/6/99 stabilized 5   (N) A WAR WAR WAR WAR WAR WAR WAR WAR WAR W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| DRILLING METHOD: Direct Push (Geoprobe) BORING DIAMETER: 2 inch DEPTH: 20 feet  GROUNDWATER LEVELS  DATE COMMENTS DEPTH: 4/6/99 initial 19 4/6/99 stabilized 5  CI STANDON ON A STANDON ON  | •         |
| BORING DIAMETER: 2 inch DEPTH: 20 feet  GROUNDWATER LEVELS  DATE COMMENTS DEPTH: 4/6/99 initial 19  4/6/99 stabilized 5  ON JUNEAN STABILIZED S |           |
| DATE COMMENTS DEPTH 4/6/99 initial 19 4/6/99 stabilized 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| DATE COMMENTS DEPTH 4/6/99 initial 19 4/6/99 stabilized 5  (I) VALUE OF THE PROPERTY OF THE PR |           |
| 4/6/99 initial 19 4/6/99 stabilized 5  (Lag Variable Plant   Variable Plan |           |
| 4/6/99 stabilized 5  (Light of the content of the c | BGS       |
| DESCRIPTION PID USCS REMARKS  REMARKS  PID USCS REMARKS  REMARKS  PID USCS REMARKS  REMARKS  PID USCS REMARKS  REMARKS  PID USCS REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| Silty Clay with some fine grained gravel, low to medium  plasticity, brown, damp, no odor.   The state of the |           |
| 1—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 2—<br>3—<br>4—<br>5—<br>6—<br>7—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 3—<br>4—<br>5—<br>6—<br>7—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 3—<br>4—<br>5—<br>6—<br>7—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 5— 17 0 0 — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 5— 17 0 0 — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 5— 17 0 0 — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 5— 17 0 0 — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 6— 7— — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 6— 7— — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 0— 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 3_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 6— Groundwater encountered at 19 fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | et bgs.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Total Depth = 20 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 8— Boring drilled to sufficient depth for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| Groundwater stabilized at 5 feet bg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Boring converted to temporary grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | undwater  |
| 22   monitoring well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 0 Well grouted by removing casing a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | na tremie |
| placement of neat cement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| REVIEWED BY: Tim O'Brien LOGGED BY: Scott Bowers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |

| SOIL BORING LOG                                                  |                                          |                     | BORING NO:                              | B3                                |
|------------------------------------------------------------------|------------------------------------------|---------------------|-----------------------------------------|-----------------------------------|
|                                                                  |                                          |                     | SHEET 1                                 | OF 1                              |
|                                                                  | PROJECT NAME:                            | Caltrans: South Oak | and Maintenance Sta                     | tion                              |
|                                                                  | PROJECT NUMBER:                          | 575-9G014           | DATE:                                   | 4/6/99                            |
|                                                                  | NORTHINGS:                               |                     | EASTINGS:                               |                                   |
|                                                                  | DRILLING COMPANY:                        | <del></del>         | Fisch Environmenta                      |                                   |
|                                                                  | DRILLING METHOD:                         | Direct P            | ush (Geoprobe)                          |                                   |
|                                                                  | BORING DIAMETER:                         | 2 inch              |                                         | 20 feet                           |
|                                                                  | are the trace well within I had to       | GROUNDWA            |                                         | : <del></del>                     |
|                                                                  | DATE                                     |                     | OMMENTS                                 | DEPTH BGS                         |
|                                                                  | 4/6/99                                   |                     | initial                                 | 10                                |
|                                                                  | 4/6/99                                   |                     | stabilized                              | 5                                 |
|                                                                  | 410/33                                   | <del></del>         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <del></del>                       |
| DEPTH (FEET) SAMPLE NO. RECOVERY (IN) SAMPLE INTERVAL BLOW COUNT | DESCRIPTION                              | PID US              | SCS R                                   | EMARKS                            |
| Sitty Clay with                                                  | some gravel, fine grained gravel, low to |                     | CL Concrete surface                     |                                   |
| 1 medium plastic                                                 | ty, brown, damp, no odor.                |                     |                                         |                                   |
|                                                                  |                                          |                     |                                         |                                   |
| 2_                                                               |                                          |                     |                                         |                                   |
| 2 — 3 — 4 — 2a                     |                                          | <del></del>         |                                         |                                   |
| 3                                                                |                                          |                     |                                         |                                   |
|                                                                  | ·                                        |                     |                                         |                                   |
| 4-                                                               |                                          |                     |                                         |                                   |
| 20                                                               |                                          |                     |                                         |                                   |
| 5—                                                               |                                          | 0                   |                                         |                                   |
| 6—                                                               |                                          |                     |                                         |                                   |
| \ <u> </u>                                                       |                                          |                     |                                         |                                   |
| 7                                                                |                                          |                     |                                         |                                   |
|                                                                  |                                          |                     |                                         |                                   |
| 8                                                                |                                          |                     |                                         |                                   |
|                                                                  |                                          | <del></del>         |                                         |                                   |
| 9-1                                                              |                                          | -                   | ••                                      |                                   |
| 21                                                               |                                          |                     |                                         |                                   |
| 10—                                                              |                                          | 0                   | Groundwater enco                        | untered.                          |
| 1 -                                                              |                                          |                     |                                         | ****                              |
|                                                                  |                                          |                     |                                         |                                   |
| 12—                                                              |                                          | `                   |                                         |                                   |
|                                                                  | -                                        |                     |                                         | ····                              |
| 13—                                                              |                                          |                     |                                         |                                   |
| <u> </u>                                                         |                                          |                     |                                         |                                   |
| 1 14 —                                                           |                                          |                     |                                         | <del></del>                       |
|                                                                  | ·-                                       |                     |                                         | <del>.</del>                      |
| 15—                                                              |                                          | 0                   |                                         |                                   |
| 16                                                               |                                          |                     |                                         |                                   |
| 16—                                                              |                                          |                     |                                         |                                   |
| 17—                                                              |                                          |                     | <u></u>                                 |                                   |
|                                                                  | <u> </u>                                 |                     | Total Depth = 20 f                      |                                   |
| 18—                                                              |                                          |                     | /                                       | ufficient depth for investigation |
| -          -                                                     |                                          |                     |                                         | to temporary groundwater          |
| 19—                                                              |                                          | <del> </del> ,      | monitoring well.                        | o tamperary groundinates          |
|                                                                  |                                          | 0                   |                                         | moving casing and tremie          |
| 20 —                                                             |                                          |                     | placement of neat                       |                                   |
| REVIEWED BY: Tim O'Brien                                         | LOGGE                                    | ED BY: Scott Bowe   | ers                                     |                                   |

| SOI           | L B        | 0             | RII             | NC         | LOG                          |                               |             |                                                  |                | BORING NO:                                  | В4                                        |
|---------------|------------|---------------|-----------------|------------|------------------------------|-------------------------------|-------------|--------------------------------------------------|----------------|---------------------------------------------|-------------------------------------------|
|               |            |               |                 |            |                              |                               |             |                                                  |                | SHEET 1                                     | OF 1                                      |
|               |            |               |                 |            |                              | PROJECT NAME:                 | Caltrans    | s: South C                                       | akland         | Maintenance Sta                             | tion                                      |
|               |            |               |                 |            |                              | PROJECT NUMBER:               | 575-9G      | 014                                              |                | DATE:                                       | 4/6/99                                    |
|               |            |               |                 |            |                              | NORTHINGS:                    |             |                                                  |                | EASTINGS:                                   |                                           |
|               |            |               |                 |            |                              | DRILLING COMPANY:             |             |                                                  | Fis            | ch Environment                              | al                                        |
|               |            |               |                 |            |                              | DRILLING METHOD:              |             | Dire                                             | ct Push        | (Geoprobe)                                  |                                           |
|               |            |               |                 |            |                              | BORING DIAMETER:              | 2 inch      |                                                  |                |                                             | 20 feet                                   |
|               |            |               |                 |            |                              |                               |             | SROUND                                           |                |                                             |                                           |
|               |            |               |                 |            |                              | DATE                          |             |                                                  | COMM           |                                             | DEPTH BGS                                 |
|               |            |               |                 |            |                              | 4/6/99<br>4/6/99              |             |                                                  | init<br>stabil |                                             | 9.5<br>9.5                                |
|               | Γ-         | l             |                 |            |                              | 4/0/33                        |             |                                                  | Statili        | 260                                         | 9.5                                       |
| рертн (FEET)  | SAMPLE NO. | RECOVERY (IN) | SAMPLE INTERVAL | BLOW COUNT | DE                           | SCRIPTION                     |             | PID<br>(PPM)                                     | USCS           | R                                           | EMARKS                                    |
|               |            |               |                 |            | Silty Clay with some gravel, | fine grained gravel, low to m | edium       |                                                  | CL             | Asphalt surface                             |                                           |
| 1             |            |               |                 |            | plasticity, brown, damp, no  | odor.                         |             |                                                  |                |                                             |                                           |
| <b>-</b>      |            |               |                 | -          |                              |                               |             | ·                                                |                | <u> </u>                                    |                                           |
| 2—            |            |               |                 |            |                              |                               |             |                                                  |                |                                             |                                           |
| 3             |            |               |                 |            |                              |                               |             |                                                  |                |                                             |                                           |
|               |            |               |                 |            |                              |                               |             | <u> </u>                                         |                |                                             |                                           |
| 4             | l          |               | ┢               | ┼          |                              |                               |             |                                                  |                |                                             |                                           |
| 5—            | '          | 10            |                 | $\vdash$   |                              |                               |             |                                                  |                |                                             |                                           |
| - 1           |            |               |                 |            |                              |                               |             | 0                                                |                |                                             |                                           |
| 6             |            |               | Щ               | +          |                              |                               |             |                                                  |                |                                             |                                           |
| <b>-</b>      |            |               |                 |            |                              |                               |             |                                                  |                |                                             |                                           |
| 7—            |            |               |                 |            |                              |                               |             |                                                  | ]              |                                             |                                           |
| 8             |            |               |                 | <u> </u>   |                              |                               |             | -                                                |                |                                             |                                           |
| 8—            |            |               |                 | $\vdash$   |                              |                               |             | <u> </u>                                         | -              |                                             |                                           |
| 9             |            |               | П               |            |                              |                               |             |                                                  | 1              |                                             |                                           |
| 10—           |            | 20            |                 |            |                              |                               |             |                                                  |                | Groundwater enco                            | ountered.                                 |
| 10—           |            |               |                 |            |                              |                               |             | 0                                                |                |                                             |                                           |
| 11—           |            | İ             | ۲               | +          |                              |                               |             |                                                  | 1              | -                                           |                                           |
| 12            |            |               |                 |            |                              |                               | `           |                                                  | 1              |                                             |                                           |
| <b>■</b>   `` |            |               |                 |            |                              |                               |             |                                                  | 1              |                                             |                                           |
| 13—           |            |               |                 | $\vdash$   |                              |                               |             | <del>                                     </del> | 1              |                                             |                                           |
|               | •          |               |                 |            |                              |                               | <u></u>     |                                                  | 1              |                                             |                                           |
| ■ 14—         |            |               | $\prod$         |            |                              |                               |             | [                                                | ]              |                                             |                                           |
| _ 15—         |            | 24            |                 |            |                              |                               |             | 0                                                | -              |                                             |                                           |
| —<br>16—      | ·          |               |                 |            |                              |                               | <del></del> | <del>                                     </del> | 1              |                                             |                                           |
| 16—           |            |               |                 | 1          |                              |                               |             |                                                  | ]              |                                             |                                           |
| 17—           |            |               |                 |            |                              |                               |             |                                                  | 1              | T-4-1 D. H. CO.                             |                                           |
| 1/            | -          |               |                 | $\vdash$   |                              |                               |             | <del> </del>                                     | 1 /            | Total Depth = 20 to<br>Boring drilled to se | reet<br>ufficient depth for investigation |
| 18—           | -          |               | T               | +-         |                              |                               |             |                                                  | 1 /            | Groundwater stab                            | ilized at 5 feet bgs.                     |
| 19            | []         | 1             |                 |            |                              |                               |             |                                                  | ] /            |                                             | to temporary groundwater                  |
| 19            | -          | 24            |                 |            |                              |                               |             | 0                                                |                | monitoring well.                            | emoving casing and tremie                 |
| 20—           | -          |               |                 |            |                              |                               |             | 1 0                                              | <b>-</b> [     | placement of near                           |                                           |
| REVIE         | WED E      | 3Y: T         | im C            | )'Brie     | en                           | Logo                          | ED BY:      | Scott Bo                                         | owers          |                                             |                                           |

| SOIL BORING LO                                                   | G                                             | BORING NO: <b>B5</b>                                         |
|------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                          |                                               | SHEET 1 OF 1                                                 |
|                                                                  | PROJECT NAME: Caltran                         | ns: South Oakland Maintenance Station                        |
|                                                                  | PROJECT NUMBER: 575-9G                        |                                                              |
|                                                                  | NORTHINGS:                                    | EASTINGS:                                                    |
|                                                                  | DRILLING COMPANY:                             | Fisch Environmental                                          |
|                                                                  | DRILLING METHOD:                              | Direct Push (Geoprobe)                                       |
|                                                                  | BORING DIAMETER: 2 inch                       | DEPTH: 20 feet                                               |
|                                                                  |                                               | GROUNDWATER LEVELS                                           |
|                                                                  | DATE                                          | COMMENTS DEPTH BGS                                           |
|                                                                  | 4/7/99                                        | initial 5                                                    |
|                                                                  | 4/7/99                                        | stabilized 5                                                 |
| DEPTH (FEET) SAMPLE NO. RECOVERY (IN) SAMPLE INTERVAL BLOW COUNT | DESCRIPTION                                   | PID USCS REMARKS                                             |
| Silty Ctay                                                       | with some gravel, fine grained gravel, low to | CL Asphalt surface                                           |
|                                                                  | asticity, brown, damp, no odor.               |                                                              |
| '_                                                               |                                               |                                                              |
| 2—                                                               | <u></u>                                       |                                                              |
| .,                                                               |                                               | <u>                                     </u>                 |
| 3—                                                               |                                               | <del>                                     </del>             |
| 1 -       <del>    -   </del>                                    |                                               | -                                                            |
| <u> </u> 4                                                       |                                               |                                                              |
|                                                                  |                                               |                                                              |
|                                                                  |                                               | 0 Groundwater encountered.                                   |
| 3—<br>4—<br>5—<br>6—<br>7—                                       |                                               |                                                              |
|                                                                  | ·····                                         |                                                              |
| 7                                                                |                                               |                                                              |
|                                                                  |                                               |                                                              |
| 8                                                                |                                               | <del>                                     </del>             |
|                                                                  |                                               | · · · · · · · · · · · · · · · · · · ·                        |
| 9                                                                |                                               |                                                              |
| 10 — 12                                                          |                                               |                                                              |
|                                                                  |                                               | 0                                                            |
| 11                                                               | <del></del>                                   | <u> </u>                                                     |
|                                                                  |                                               |                                                              |
| 12—                                                              |                                               | <del>  </del>                                                |
|                                                                  |                                               |                                                              |
| 13—                                                              |                                               |                                                              |
| 14                                                               |                                               |                                                              |
| 'l                                                               |                                               | <del>                                     </del>             |
| 15                                                               |                                               |                                                              |
|                                                                  |                                               | 0                                                            |
| 16—                                                              |                                               |                                                              |
| <u>                                   </u>                       |                                               |                                                              |
| 17—                                                              |                                               | Total Depth = 20 feet                                        |
| 18—                                                              |                                               | Boring drilled to sufficient depth for investiga             |
|                                                                  |                                               | Groundwater stabilized at 5 feet bgs.                        |
| 19                                                               |                                               | Boring converted to temporary groundwater                    |
| 22                                                               | ,                                             | monitoring well.  Well grouted by removing casing and tremie |
| 20 —                                                             |                                               | placement of neat cement.                                    |
| REVIEWED BY: Tim O'Brien                                         | LOGGED BY:                                    | Scott Bowers                                                 |

| SOII         | LB         | O             | RII             | NC                                  | S LOG                         |                      |          |              |              | BORING NO:            | B6                                           |                                       |
|--------------|------------|---------------|-----------------|-------------------------------------|-------------------------------|----------------------|----------|--------------|--------------|-----------------------|----------------------------------------------|---------------------------------------|
|              |            |               |                 |                                     | <u> </u>                      |                      |          |              |              | SHEET 1               | OF                                           | _1                                    |
|              |            |               |                 |                                     |                               | PROJECT NAME:        | Caltrans | : South C    | Dakland I    | Maintenance Stat      | ion                                          |                                       |
|              |            |               |                 |                                     |                               | PROJECT NUMBER:      | 575-9G   | 014          |              | DATE:                 | 4/7/99                                       |                                       |
|              |            |               |                 |                                     |                               | NORTHINGS:           |          |              |              | EASTINGS:             |                                              |                                       |
|              |            |               |                 |                                     |                               | DRILLING COMPANY:    |          |              |              | ch Environmenta       | I                                            | · · · · · · · · · · · · · · · · · · · |
|              |            |               |                 |                                     |                               | DRILLING METHOD:     |          | Dire         |              | (Geoprobe)            |                                              |                                       |
|              |            |               |                 |                                     |                               | BORING DIAMETER:     | 2 inch   |              |              |                       | t0 feet                                      |                                       |
|              |            |               |                 |                                     |                               |                      |          | ROUND        |              |                       |                                              |                                       |
|              |            |               |                 |                                     |                               | DATE                 | Ì        |              | COMM         |                       | DEP.                                         | TH BGS                                |
|              |            |               |                 |                                     |                               | 4/7/99               |          |              | initi        |                       |                                              | 8                                     |
|              |            |               |                 |                                     |                               | 4/7/99               |          |              | stabil       |                       |                                              | 8                                     |
| Т            |            |               | · ·             |                                     |                               | 477700               |          |              | Otabii       | 1                     |                                              |                                       |
| חברות (רבבו) | SAMPLE NO. | RECOVERY (IN) | SAMPLE INTERVAL | BLOW COUNT                          | DE                            | SCRIPTION            |          | PID<br>(PPM) | USCS         | RE                    | EMARKS                                       |                                       |
|              |            |               |                 |                                     | Silty Clay with some fine gra | ained gravel, low to |          |              | CL           | Asphalt surface       |                                              |                                       |
|              |            |               |                 |                                     | medium plasticity, brown, d   |                      |          |              | ]            |                       |                                              |                                       |
| _            |            |               |                 |                                     |                               |                      |          |              |              |                       |                                              |                                       |
| _            |            |               |                 | $ldsymbol{ldsymbol{ldsymbol{eta}}}$ |                               |                      |          |              |              |                       |                                              |                                       |
|              |            |               | 1               | $\vdash$                            |                               | <del></del>          |          |              |              |                       |                                              |                                       |
| _            |            |               |                 | <del></del>                         |                               |                      |          |              | -            |                       |                                              |                                       |
|              |            |               |                 | $\vdash$                            |                               |                      |          | <u> </u>     | ł            | <u> </u>              |                                              | <u> </u>                              |
| _            |            |               | $\vdash$        | $\vdash$                            |                               |                      |          |              | 1            |                       |                                              |                                       |
| -            |            | 17            |                 | $\vdash$                            |                               |                      |          | -            | 1            |                       |                                              |                                       |
| -            |            |               |                 |                                     |                               |                      |          | 0            | 1            |                       |                                              |                                       |
|              |            |               |                 |                                     |                               |                      |          |              | ]            |                       |                                              |                                       |
| _            |            |               | 广               |                                     |                               |                      |          |              | ]            |                       |                                              |                                       |
| _            |            |               |                 |                                     |                               | <u> </u>             |          |              | ]            |                       |                                              |                                       |
| _            |            |               |                 | _                                   |                               |                      |          | <u> </u>     | 1            |                       |                                              |                                       |
| _            |            |               | 1               | <u> </u>                            |                               |                      |          | ļ            | 4            |                       | -4 '                                         | ···                                   |
| _            |            |               |                 | _                                   |                               |                      |          | ļ            | -            | Groundwater encou     | ntered.                                      |                                       |
|              |            |               | -               | <del> </del>                        |                               |                      |          |              | 1            | <u> </u>              |                                              |                                       |
| -            |            | 12            |                 | $\vdash$                            |                               |                      |          | <del> </del> | 1            |                       |                                              |                                       |
| -            |            | "             |                 | 2020                                |                               |                      |          | 17.5         | 1            |                       | <del>.</del>                                 |                                       |
| -            |            |               |                 | $\top$                              |                               |                      |          | <u> </u>     | 1            |                       |                                              |                                       |
| -            |            |               | 一               | 1                                   |                               |                      |          | <del></del>  | 1            | ***                   |                                              |                                       |
| -            |            |               |                 |                                     |                               |                      |          |              | ]            |                       | <u>.                                    </u> |                                       |
| _            |            |               |                 |                                     |                               |                      |          |              | ]            |                       |                                              |                                       |
| _            |            | 1             |                 |                                     |                               |                      |          |              | 1            |                       |                                              |                                       |
| _            | 1          |               |                 |                                     | ļ                             |                      |          | ļ            | 4            |                       |                                              |                                       |
| _ !          |            | -             | <b>_</b>        | <u> </u>                            |                               |                      |          |              | -            | <u> </u>              |                                              |                                       |
| _            | İ          | L             |                 | <u> </u>                            | -                             |                      |          | ļ            | 4            |                       |                                              |                                       |
| _            |            | 21            |                 |                                     |                               |                      |          | <del> </del> | 1            |                       |                                              |                                       |
|              |            |               |                 |                                     |                               |                      |          | 0            | 1            |                       |                                              |                                       |
|              |            |               | -               | +-                                  |                               |                      |          |              | 1            | · ·                   |                                              |                                       |
|              |            |               | 1               | -                                   |                               |                      |          | 1            | 1            |                       |                                              |                                       |
| _            | Ì          | 1             | -               | <del></del>                         |                               |                      |          | <u> </u>     | 1 /          | Total Depth = 20 fe   | et                                           |                                       |
| _            |            |               |                 |                                     |                               |                      |          |              | ] / /        | Boring drilled to suf |                                              | n for investigati                     |
| _            |            |               | $\prod$         |                                     |                               |                      |          |              | ] /          | Groundwater stabil    | ized at 8 fee                                | et bgs.                               |
|              |            |               |                 |                                     |                               |                      |          |              | ] /          | Boring converted to   | temporary                                    | groundwater                           |
| _            |            | 22            |                 |                                     |                               |                      |          |              | <b>↓/</b>    | monitoring well.      |                                              |                                       |
| _            |            |               |                 | 800                                 |                               |                      |          | 0            | ¥            | Well grouted by rer   |                                              | ng and tremie                         |
|              |            |               | Ш.              |                                     | 1                             | r                    |          | <u> </u>     | <u> </u>     | placement of neat     | cement.                                      |                                       |
| VIEV         | NED 8      | Y: T          | im C            | 'Brie                               | en                            | Logo                 | ED BY:   | Scott Bo     | wers         |                       |                                              |                                       |
|              |            |               |                 |                                     |                               |                      |          |              | <del>.</del> |                       |                                              |                                       |
|              |            |               |                 |                                     |                               |                      |          |              |              |                       |                                              |                                       |

# **APPENDIX C**

**SURVEY DATA** 

#### GENERAL NOTES:

- (1) ALL DISTANCES ARE IN DECIMAL FEET UNLESS OTHERWISE NOTED.
- IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO HAVE ALL THE UTILITIES MARKED BY THE RESPECTIVE UTILITY COMPANY PRIOR TO CONSTRUCTION.
- (3) PRIOR TO ANY DIGGING, CALL U.S.A. (1-800-642-2444) AT LEAST 48
- (4) GROUND CONDITIONS SHOWN HEREON REFLECT CONDITIONS ON THE DATE OF THE SURVEY.
- THIS MAP WAS PREPARED FOR THE EXCLUSIVE USE OF PSI ENVIRONMENTAL, INC., USE BY ANY OTHER PARTY FOR ANY PURPOSE WHATSOEVER IS PROHIBITED AND NOT WARRANTED.
- (6) ELEVATIONS SHOWN HEREON ARE TOP OF PVC PIPES AT THE NORTHERLY (PROJECT) EDGE.

Ø 32.50 9−6

(6) THIS IS NOT A BOUNDARY SURVEY.

#### BASIS OF ELEVATION

FOUND STANDARD CITY OF OAKLAND MONUMENT. IN THE EASTERLY SIDEWALK OF 29TH AVENUE, 5.9' SOUTHERLY OF THE SO. RAIL OF S.P.R.R., 7' EASTERLY OF THE EAST CURB OF 29TH AVENUE. EL = 26.873' NGVD'29 DATUM.



STORAGE

₹27.11

₫ 32.00

32.97 B-2

\$33.52 6-3

CALTRANS WAREHOUSE

STREET 29TH AVENUE E.12TH 07



\$ 32.41

LEGEND

TEMPORARY WELL

# TEMPORARY WELL SURVEY

CALTRANS SO. OAKLAND MAINTENANCE STA. 1112 - 29TH AVENUE PSI PROJECT NO. 575-9G014 · CITY OF OAKLAND PREPARED AT THE REQUEST OF PSI ENVIRONMENTAL, INC.



#### MERIDIAN SURVEYING ENGINEERING, INC.

1812 UNION STREET SAN FRANCISCO 94123 (415) 440-4131

100 DRAKES LANDING #164 GREENBRAE, CA 94904 (415) 461-1241

| men     | DMD/PC | DATE 04/08/99        |
|---------|--------|----------------------|
| sine:   | DMD    | MM 194 99044         |
| mmosso. | S70    | MENTERN HOL ORIGINAL |
| eseme.  | 99044  | _ 1 _ 1              |

# APPENDIX D

LABORATORY RESULTS AND CHAIN-OF-CUSTODY RECORDS

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

> > Page 1 of 6

Client Name:

PROFESSIONAL SERVICE INDUSTRIES, INC.

1320 W. WINTON AVE HAYWARD, CA 94545

Report To:

FRANK POSS

Project Name: Site Location:

CALTRANS: S. OAKLAND M.S.

PACE ANALYTICAL Project #: 6029329
PACE ANALYTICAL WO #: 14723A

Client ID #: 575-9G-014

Date:

4/26/99

Pace Analytical Services, Inc. is pleased to provide you with analytical data for your above referenced project. Samples were collected on 04/06/99 and received on 04/08/99. Please refer to the chain of custody included at the end of this report for conditions of the samples upon receipt. In accordance with the chain of custody, the samples were analyzed for the following analytical parameters:

| ANALYTICAL TEST                       | <u>PAGE</u> |
|---------------------------------------|-------------|
| TPH-G (Soil)                          | 2-3         |
| TPH-D (Soil)                          | 4-5         |
| List of Abbreviations and Definitions | 6           |

The analysis for 8260 was subcontracted to an outside laboratory with results attached.

Reviewed by,

Lily Bayati, Project Manager

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. All samples are analyzed on an as received (wet weight) basis. Sampling, handling and analytical methods must be in accordance with EPA established protocols. Deviations from these protocols may compromise analytical results. All method numbers referenced are EPA method numbers except where otherwise noted. This report is submitted for the exclusive use of the client to whom it is addressed and is only valid in its entirety. ELAP certification #2310.

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 2 of 6 PACE ANALYTICAL Project#:6029329 PACE ANALYTICAL WO#:14723A Client ID#:575-9G-014

Analyst:

VN

Preparation Method:

5030 Soil Matrix:

### ANALYSIS OF VOLATILE ORGANICS BY GAS CHROMATOGRAPHY/FID GASOLINE (TPH-G) BY DOHS METHOD

| Units           |          | TPH<br>Gasoline<br>µg/kg | Surrogate<br>Recovery<br>% | PRL<br>µg/kg | DF |
|-----------------|----------|--------------------------|----------------------------|--------------|----|
|                 | Analysis |                          |                            |              |    |
| Sample ID       | Date     |                          |                            |              |    |
| Method Blank    | 04/08/99 | <1000                    | 88                         | 1000         | 1  |
| B1-5            | 04/08/99 | <1000                    | 81                         | 1000         | 1  |
| B1-10           | 04/08/99 | <1000                    | 88                         | 1000         | 1  |
| B2-5            | 04/08/99 | <1000                    | 88                         | 1000         | 1  |
| B2-10           | 04/08/99 | <1000                    | 81                         | 1000         | 1  |
| B3-5            | 04/08/99 | <1000                    | 87                         | 1000         | 1  |
| B3-10           | 04/08/99 | <1 <b>00</b> 0           | 84                         | 1000         | 1  |
| B4-5            | 04/08/99 | <1000                    | 84                         | 1000         | 1  |
| B4-10           | 04/08/99 | <1000                    | 85                         | 1000         | 1  |
| B5-5            | 04/08/99 | <1000                    | 84                         | 1000         | 1  |
| B5-10           | 04/08/99 | <1000                    | 85                         | 1000         | 1  |
| B6-5            | 04/08/99 | <1000                    | 81                         | 1000         | 1  |
| B6-10           | 04/08/99 | 13,000                   | 78                         | 1000         | 1  |
| B4-10 Duplicate | 04/08/99 | <1000                    | 83                         | 1000         | 1  |
| B5-5 Duplicate  | 04/08/99 | <1000                    | 82                         | 1000         | 1  |

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 3 of 6 PACE ANALYTICAL Project#:6029329 PACE ANALYTICAL WO#:14723A

**QUALITY ASSURANCE/QUALITY CONTROL SUMMARY** 

Client ID#:575-9G-014

Analyst:

VN

Preparation Method: Matrix:

5030 Soil

ANALYSIS OF VOLATILE ORGANICS BY GAS CHROMATOGRAPHY/FID

GASOLINE (TPH-G) BY DOHS METHOD

| •              | Matrix<br>Spike<br>% REC | Matrix<br>Spike Dup.<br>% REC | Acceptable<br>Range | RPD<br>% | Acceptable<br>Range |  |
|----------------|--------------------------|-------------------------------|---------------------|----------|---------------------|--|
| Analysis Date: | 04/19/99                 | 04/19/99                      |                     |          |                     |  |
| Gasoline       | 98                       | 99                            | 70-130              | 2.0      | 0-25                |  |

### REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 4 of 6 PACE ANALYTICAL Project#:6029329 PACE ANALYTICAL WO#:14723A Client ID#:575-9G-014

Analyst: Preparation Analyst: WK WK

Matrix:

Soil

ANALYSIS OF TOTAL PETROLEUM HYDROCARBONS - DIESEL EPA 8015 Modified

| ·•              |             |          | TPH<br>Diesel | PRL   | DF |
|-----------------|-------------|----------|---------------|-------|----|
| Units           |             |          | mg/Kg         | mg/Kg |    |
|                 | Preparation | Analysis |               |       |    |
| Sample ID       | Date        | Date     |               |       |    |
| Method Blank    | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| 31-5            | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| 31-10           | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| 32-5            | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B2-10           | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B3-5            | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B3-10           | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B4-5            | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B4-10           | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B5-5            | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B5-10           | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B6-5            | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B6-10           | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B1-10 Duplicate | 4/9/99      | 4/9/99   | <10           | 10    | 1  |
| B6-5 Duplicate  | 4/9/99      | 4/9/99   | <10           | 10    | 1  |

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 5 of 6 PACE ANALYTICAL Project#:6029329 PACE ANALYTICAL WO#:14723A Client ID#:575-9G-014

### QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

Analyst:

Matrix:

WK WK

Preparation Analyst:

Soil

ANALYSIS OF TOTAL PETROLEUM HYDROCARBONS - DIESEL EPA 8015 Modified

|                | Matrix<br>Spike<br>% REC | Matrix<br>Spike Dup.<br>% REC | Acceptable<br>Range | RPD<br>% | Acceptable<br>Range | <u>.</u> |
|----------------|--------------------------|-------------------------------|---------------------|----------|---------------------|----------|
| Analysis Date: | 4/9/99                   | 4/9/99                        | e.                  |          |                     |          |
| TPH-Diesel     | 118                      | 115                           | 61-127              | 2.6      | 0-25                |          |

# REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 6 of 6 PACE ANALYTICAL Project#:6029329 PACE ANALYTICAL WO#:14723A Client ID#:575-9G-014

### **List of Abbreviations and Definitions**

|   | SM    | =   | Standard Methods for the examination of water and waste water                                                                                                                  |
|---|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | EPA   | =   | EPA approved methodology, 40 CFR Part 136                                                                                                                                      |
|   | sw    | =   | EPA SW 846, Test Methods for Evaluating Solid Wastes                                                                                                                           |
|   | TCLP  | =   | Toxicity Characteristic Leaching Procedure                                                                                                                                     |
|   | STLC  | =   | Soluble Threshold Limit Concentration                                                                                                                                          |
|   | mg/L  | =   | milligrams per liter, parts per million (ppm), unit of measurement for a liquid                                                                                                |
|   | mg/Kg | =   | milligrams per kilogram, parts per million (ppm), unit of measurement for a solid                                                                                              |
|   | μg/L  | =   | micrograms per liter, parts per billion (ppb), unit of measurement for a liquid                                                                                                |
|   | µg/Kg | =   | micrograms per kilogram, parts per billion (ppb), unit of measurement for a solid                                                                                              |
|   | MDL   | =   | Laboratory Method Detection Limit, minimum level of detection derived from actual laboratory data                                                                              |
|   | DF    | =   | Dilution Factor, the magnitude in which a sample must be diluted to eliminate matrix interference and/or to bring the sample concentration within the linear calibration range |
|   | RPD   | =   | Relative Percent Difference, measure of precision                                                                                                                              |
|   | % REC | =   | Percent Recovery, measure of accuracy                                                                                                                                          |
|   | <     | = . | less than, analyte of interest below stated numerical value                                                                                                                    |
|   | NA    | =   | Not Applicable                                                                                                                                                                 |
|   | LCS   | =   | Laboratory Control Sample                                                                                                                                                      |
|   | DOHS  | =   | Department of Health Services                                                                                                                                                  |
|   | ELAP  | =   | Environmental Laboratory Accreditation Program                                                                                                                                 |
|   | PRL   | =   | Pace Reporting Limit                                                                                                                                                           |

# Centrum Analytical Laboratories, Inc.

CERTIFIED HAZARDOUS WASTE TESTING LABORATORY . CHEMICAL AND BIOLOGICAL ANALYSES

Client:

Pace Analytical

3960 E. Gilman Street

Long Beach, CA 90815

Date Sampled:

04/06/99

Date Received:

04/09/99

Job Number:

14729

Project: Caltrans: S. Oakland

#### **CASE NARRATIVE**

The following information applies to samples which were received on 04/09/99:

The samples were received at the laboratory chilled and sample containers were intact.

Unless otherwise noted below, the Quality Control acceptance criteria were met for all samples for every analysis requested.

Report approved

Robert R. Clark, Ph.D. Laboratory Director

**ELAP #1184** 

DL: Detection Limit - The lowest level at which the compound can reliably be detected under normal laboratory conditions,

ND: Not Detected -- The compound was analyzed for but was not found to be present at or above the detection limit.

NA: Not Analyzed - Per client request, this analyte was not on the list of compounds to be analyzed for.



Client: Pace Analytical

Project: Caltrans: S. Oakland

Job No.: 14729 Matrix: Soil Analyst: JMR Date Sampled: 04/06/99
Date Received: 04/09/99

Date Analyzed: 04/12-13/99 Batch Number: 8260S1642

8260S1644

|                           | Sample ID: | Blank | B1-5  | B1-10 | B2-5  | B2-10 | B3-5  |
|---------------------------|------------|-------|-------|-------|-------|-------|-------|
| Compounds                 | DL         | mg/Kg | mg/Kg | mg/Kg | mg/Kg | mg/Kg | mg/Kg |
| Acetone                   | 0.05       | ND    | ND    | ND    | ND    | ND    | ND    |
| Benzene                   | - 0.001    | ND    | ND    | ND    | ND    | ND    | ND    |
| Bromobenzene              | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| Bromochloromethane        | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| Bromodichloromethane      | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| Bromoform                 | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| Bromomethane              | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| 2-Butanone (MEK)          | 0.01       | ND    | ND    | ND    | ND    | ND    | ND    |
| n-Butylbenzene            | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| sec-Butylbenzene          | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| tert-Butylbenzene         | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| Carbon disulfide          | 0.01       | ND    | ND    | ND    | ND:   | ND    | ND    |
| Carbon tetrachloride      | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| Chlorobenzene             | 0,001      | ND    | ND    | ND    | ND    | ND    | . ND  |
| Chloroethane              | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| Chloroform                | 0.002      | ND    | ND    | ND    | ND    | NO    | ND    |
| Chloromethane             | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 2-Chlorotoluene           | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| 4-Chlorotoluene           | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| Dibromochloromethane      | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2-Dibromoethane         | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2-Dibromo-3-chloropropa | ine 0.01   | ND    | ND    | ND    | ND    | ND    | ND    |
| Dibromomethane            | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2-Dichlorobenzene       | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,3-Dichlorobenzene       | 0.002      | ND    | ND    | , ND  | ND    | ND    | ND    |
| 1,4-Dichlorobenzene       | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| Dichlorodifluoromethane   | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,1-Dichloroethane        | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2-Dichloroethane        | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,1-Dichloroethene        | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| cis-1,2-Dichloroethene    | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| trans-1,2-Dichloroethene  | 0.002      | ND    | ND    | ND    | ND ND | ND    | ND    |
| 1,2-Dichloropropane       | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,3-Dichloropropane       | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 2,2-Dichloropropane       | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,1-Dichloropropene       | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| cis-1,3-Dichloropropene   | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| trans-1,3-Dichloropropene | 0.001      | ND ND | ND    | ND    | ON    | ND    | ND    |



Client:

Pace Analytical

Project:

Caltrans: S. Oakland

Job No.:

14729

Matrix:

Soil

Analyst: **JMR**  Date Sampled:

Date Received:

04/06/99 04/09/99

Date Analyzed:

04/12-13/99

Batch Number:

8260S1642

8260S1644

|                              | Sample ID: | Blank        | B1-5  | B1-10 | B2-5  | B2-10 | B3-5  |
|------------------------------|------------|--------------|-------|-------|-------|-------|-------|
| Compounds                    | DL         | mg/Kg        | mg/Kg | mg/Kg | mg/Kg | mg/Kg | mg/Kg |
| Ethylbenzene                 | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| Hexachlorobutadiene          | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| 2-Hexanone                   | 0.01       | ND           | ND    | ND    | ND    | ND    | ND    |
| Isopropylbenzene             | 0.001      | ND           | ND    | ND    | ND    | ND:   | ND    |
| p-Isopropyltoluene           | 0.002      | ND           | ND    | ND    | ND    | ND    | ND    |
| Methylene chloride           | 0.01       | ND           | ND    | ND    | ND    | ND    | ND    |
| 4-Methyl-2-pentanone         | 0.01       | ND           | ND    | ND    | ND    | ND    | ND    |
| Methyl-tert-butyl ether (MtB | E) 0.005   | ND           | ND    | ND    | ND    | ND    | ND    |
| Napthalene                   | 0.002      | ND           | ND    | ND    | ND    | ND    | ND    |
| n-Propylbenzene              | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| Styrene                      | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,1,1,2-Tetrachloroethane    | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,1,2,2-Tetrachloroethane    | 0.002      | ND           | ND    | ND    | ND    | ND    | ND    |
| Tetrachloroethene            | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| Toluene                      | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,2,3-Trichlorobenzene       | 0.002      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,2,4-Trichlorobenzene       | 0.002      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,1,1-Trichloroethane        | 0.001      | ND           | ND    | ND    | ND    | ND .  | ND    |
| 1,1,2-Trichloroethane        | 0.003      | ND           | ND    | ND    | ND    | ND    | ND    |
| Trichloroethene              | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,2,3-Trichloropropane       | 0.003      | ND           | ND    | ND    | ND    | ND    | ND    |
| Trichlorofluoromethane       | 0.001      | ND           | ND    | ND    | ND    | ND    | ND    |
| Trichlorotrifluoroethane     | 0.005      | ND           | ND    | ND    | ND    | ND    | ND    |
| 1,2,4-Trimethylbenzene       | 0.001      | · · ND · · · | ND    | ND    | ND    | ND    | ND    |
| 1,3,5-Trimethylbenzene       | 0.001      | ND           | ND    | ' ND  | ND    | ND    | ND    |
| Vinyl chloride               | 0.002      | ND           | ND    | ND    | ND    | ND    | ND    |
| Xylenes (total)              | 0.003      | ND           | ND    | ND    | ND    | ND    | ND    |

Surrogates (% recovery) Limits: 80 - 130

|                     | Sample ID: | Blank | B1-5 | B1-10 | B2-5 | B2-10 | B3-5 |
|---------------------|------------|-------|------|-------|------|-------|------|
| Dibromofluoromethan | e          | 108   | 107  | 111   | 107  | 107   | 104  |
| Toluene-d8          |            | 98    | 98   | 102   | 99   | 99 -  | 96   |
| Bromofluorobenzene  |            | 107   | 99   | 105   | 103  | 102   | 95   |



Client: Pace Analytical
Project: Caltrans: S. Oakland

Job No.: 14729 Matrix: Soil Analyst: JMR 

 Date Sampled:
 04/06/99

 Date Received:
 04/09/99

 Date Analyzed:
 04/12-13/99

 Batch Number:
 8260S1642

| 8260 | 181 | 64 | 4 |
|------|-----|----|---|

|                           | Sample ID: | B3-10 | B4-5           | B4-10 | B5-5   | B5-10 | B6-5  |
|---------------------------|------------|-------|----------------|-------|--------|-------|-------|
| Compounds                 | DL         | mg/Kg | mg/Kg          | mg/Kg | mg/Kg  | mg/Kg | mg/Kg |
| Acetone                   | 0.05       | ND    | . ND           | ND    | ND ·   | ND    | ND    |
| Benzene                   | 0.001      | ND    | ND             | ND    | NĐ     | ND    | ND    |
| Bromobenzene              | 0.005      | ND    | ND             | ND .  | ND     | ND    | ND    |
| Bromochloromethane        | 0.005      | ND    | ND             | · ND  | ND     | ND    | ND.   |
| Bromodichloromethane      | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| Bromoform                 | 0.005      | ND    | ND             | ND    | ND     | ND    | ND    |
| Bromomethane              | 0.005      | ND    | ND             | ND    | ND     | ND /  | ND    |
| 2-Butanone (MEK)          | 0.01       | ND    | ND             | ND    | ND     | ND    | ND    |
| n-Butyibenzene            | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| sec-Butylbenzene          | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| tert-Butylbenzene         | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| Carbon disulfide          | 0.01       | ND    | · · · ND · · · | ND    | ND     | ND .  | ND    |
| Carbon tetrachloride      | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| Chlorobenzene             | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| Chloroethane              | 0.005      | ND    | ND             | ND    | ND     | ND    | ND    |
| Chloroform                | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| Chloromethane             | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| 2-Chlorotoluene           | 0.002      | ND    | ND             | ND    | ₩D     | ND    | ND    |
| 4-Chlorotoluene           | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| Dibromochloromethane      | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,2-Dibromoethane         | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,2-Dibromo-3-chloropropa | ne 0.01    | ND    | ND             | ND ** | ND     | ND    | ND    |
| Dibromomethane            | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,2-Dichlorobenzene       | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,3-Dichlorobenzene       | 0.002      | ND    | ND             | , ND  | ND     | ND    | ND    |
| 1,4-Dichlorobenzene       | 0.002      | ND    | ND             | ND    | ND     | ND    | ND    |
| Dichlorodifluoromethane   | 0.005      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,1-Dichloroethane        | 0.001      | DM    | ND             | ND    | ND     | ND    | OM    |
| 1,2-Dichloroethane        | 0.001      | ND    | ND             | ND    | ND .   | ND    | ND    |
| 1,1-Dichloroethene        | 0.005      | ND    | ND             | ND    | ND     | ND    | ND    |
| cis-1,2-Dichloroethene    | 0.002      | ND    | ND             | ND    | ND     | ND .  | ND    |
| trans-1,2-Dichloroethene  | 0.002      | ND    | ND             | ND    | . ND ∞ | ND    | ND    |
| 1,2-Dichloropropane       | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,3-Dichloropropane       | 0.001      | ND    | ND             | ND    | ND     | ND    | ND.   |
| 2,2-Dichloropropane       | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| 1,1-Dichloropropene       | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| cis-1,3-Dichloropropene   | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |
| trans-1,3-Dichloropropene | 0.001      | ND    | ND             | ND    | ND     | ND    | ND    |



Client: Pace Analytical

Project: Caltrans: S. Oakland

Job No.: 14729 Matrix: Soil Analyst; JMR Date Sampled:

Batch Number:

04/06/99 04/09/99

Date Received: Date Analyzed:

04/12-13/99

8260S1642 8260S1644

|                              | Sample ID: | B3-10 | B4-5  | B4-10 | B5-5  | B5-10 | B6-5  |
|------------------------------|------------|-------|-------|-------|-------|-------|-------|
| Compounds                    | DL         | mg/Kg | mg/Kg | mg/Kg | mg/Kg | mg/Kg | mg/Kg |
| Ethylbenzene                 | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| Hexachlorobutadiene          | 0.001      | ND    | ND .  | ND    | ND    | ND    | ND    |
| 2-Hexanone                   | 0.01       | ND    | ND    | ND    | ND    | ND    | - ND  |
| lsopropylbenzene             | 0.001      | ND    | ND    | ND    | ИD    | ND    | ND .  |
| p-Isopropyltoluene           | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| Methylene chloride           | 0.01       | ND    | ND    | ND    | ND    | ND    | ND    |
| 4-Methyl-2-pentanone         | 0.01       | ND    | ND    | ND    | ND    | ND    | ND    |
| Methyl-tert-butyl ether (MtB | E) 0.005   | ND.   | ND    | ND    | 0.16  | ND    | ND    |
| Napthalene                   | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| n-Propylbenzene              | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| Styrene                      | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,1,1,2-Tetrachloroethane    | 0.001      | ND    | ND    | ND    | ND    | ND    | . ND  |
| 1,1,2,2-Tetrachloroethane    | 0.002      | ND    | ND    | ND    | ND    | ND    | . ND  |
| Tetrachloroethene            | 0.001      | ND    | ND    | ND    | МD    | ND    | ND    |
| Toluene                      | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2,3-Trichlorobenzene       | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2,4-Trichlorobenzene       | 0.002      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,1,1-Trichloroethane        | 0.001      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,1,2-Trichloroethane        | 0.003      | ND    | ND    | ND    | ND    | ND    | ND    |
| Trichloroethene              | 0.001      | ND    | ND    | : OM  | ND    | ND    | ND    |
| 1,2,3-Trichloropropane       | 0.003      | ND    | ND    | ND    | ND    | ND    | ND    |
| Trichlorofluoromethane       | 0.001      | ND    | ND    | ND    | . ON  | ND    | ND    |
| Trichlorotrifluoroethane     | 0.005      | ND    | ND    | ND    | ND    | ND    | ND    |
| 1,2,4-Trimethylbenzene       | 0,001      | ND    | ND    | ND    | ИD    | ND    | ND    |
| 1,3,5-Trimethylbenzene       | 0.001      | ND    | ND    | , ND  | ND    | ND    | ND    |
| Vinyl chloride               | 0.002      | ND    | ND    | ND    | ON    | ND    | ND    |
| Xylenes (total)              | 0.003      | ND    | ND    | ND    | ND    | ND    | ND    |

Surrogates (% recovery) Limits: 80 - 130

| Danogatos (Artedovery) Entit | 113. 50 - 100 |      |       |      |       |      |
|------------------------------|---------------|------|-------|------|-------|------|
| Sample                       | ID: B3-10     | B4-5 | B4-10 | B5-5 | B5-10 | B6-5 |
| Dibromofluoromethane         | 111           | 100  | 109   | 104  | 108   | 106  |
| Toluene-d8                   | 100           | 98   | 99    | 101  | 99    | 98   |
| Bromofluorobenzene           | 106           | 97   | 100   | 100  | 102   | 99   |



Client: Pace Analytical
Project: Caltrans: S. Oakland

Job No.: 14729 Matrix: Soil Analyst: JMR Date Sampled: 04/06/99
Date Received: 04/09/99
Date Analyzed: 04/12-13/99
Batch Number: 8260S1642
8260S1644

| *                         | Sample ID: | B6-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . •                                            |
|---------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Compounds                 | DL         | mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٠                                              |
| Acetone                   | 0.05       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Benzene                   | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Bromobenzene              | 0.005      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Bromochloromethane        | 0.005      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Bromodichloromethane      | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Bromoform                 | 0.005      | ND DIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 100 000 000 000                              |
| Bromomethane              | 0.005      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                              |
| 2-Butanone (MEK)          | 0.01       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 000000000000000000000000000000000000         |
| n-Butylbenzene            | 0.002      | ND .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| sec-Butylbenzene          | 0.002      | N/D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |
| tert-Butylbenzene         | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Carbon disulfide          | 0_01       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Carbon tetrachloride      | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Chlorobenzene             | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 (2002) 38 (4                                 |
| Chloroethane              | 0.005      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Chloroform                | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Chloromethane             | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 2-Chlorotoluene           | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 4-Chiorotoluene           | 0.002      | ND 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .*                                             |
| Dibromochloromethane      | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . (5.5 4 69 4 9 6 6 6<br>. (5.5 4 69 4 9 6 6 6 |
| 1,2-Dibromoethane         | 0.002      | ND .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 1,2-Dibromo-3-chloropropa | ane 0.01   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Dibromomethane            | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1,2-Dichlorobenzene       | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1,3-Dichlorobenzene       | 0.002      | ND `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
| 1,4-Dichlorobenzene       | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| Dichlorodifluoromethane   | 0.005      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1,1-Dichloroethane        | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10000 COM 000 UCC                              |
| 1,2-Dichloroethane        | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1,1-Dichloroethene        | 0.005      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essenerieden.<br>Levenerieden                  |
| cis-1,2-Dichloroethene    | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| trans-1,2-Dichloroethene  | 0.002      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1,2-Dichloropropane       | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 1,3-Dichloropropane       | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| 2,2-Dichloropropane       | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an and decreed the                             |
| 1,1-Dichloropropene       | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| cis-1,3-Dichloropropene   | 0.001      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
| trans-1,3-Dichloropropene | 0.001      | ND CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTO |                                                |



Client: Pace Analytical
Project: Caltrans: S. Oakland

Job No.: 14729 Matrix: Soil Analyst: JMR 

 Date Sampled:
 04/06/99

 Date Received:
 04/09/99

 Date Analyzed:
 04/12-13/99

 Batch Number:
 8260S1642

8260S1644

|                              | Sample ID: | B6-10                                    |
|------------------------------|------------|------------------------------------------|
| Compounds                    | · DL       | mg/Kg                                    |
| Ethylbenzene                 | 0.001      | ND                                       |
| Hexachlorobutadiene          | 0.001      | ND                                       |
| 2-Hexanone                   | 0.01       | ND                                       |
| Isopropyibenzene             | 0 001      | ND                                       |
| p-isopropyltoluene           | 0.002      | ND                                       |
| Methylene chloride           | 0.01       | ND                                       |
| 4-Methyl-2-pentanone         | 0.01       | ND                                       |
| Methyl-tert-butyl ether (MtB | E) 0.005   | ND .                                     |
| Napthalene                   | 0.002      | ND                                       |
| n-Propylbenzene              | 0.001      | ND                                       |
| Styrene                      | 0.001      | ND                                       |
| 1,1,1,2-Tetrachloroethane    | 0.001      | ND                                       |
| 1,1,2,2-Tetrachloroethane    | 0.002      | ND                                       |
| Tetrachloroethene            | 0.001      | 0.003                                    |
| Toluene                      | 0.001      | ND                                       |
| 1,2,3-Trichlorobenzene       | 0.002      | ND                                       |
| 1,2,4-Trichlorobenzene       | 0.002      | ND                                       |
| 1,1,1-Trichloroethane        | 0,001      | ND                                       |
| 1,1,2-Trichloroethane        | 0.003      | ND                                       |
| Trichloroethene              | 0.001      | NO                                       |
| 1,2,3-Trichloropropane       | 0.003      | ND                                       |
| Trichlorofluoromethane       | 0.001      | ND                                       |
| Trichlorotrifluoroethane     | 0.005      | ND .                                     |
| 1,2,4-Trimethylbenzene       | 0.001      | ND                                       |
| 1,3,5-Trimethylbenzene       | 0.001      | ND * * * * * * * * * * * * * * * * * * * |
| Vinyl chloride               | 0.002      | ND                                       |
| Xylenes (total)              | 0.003      | ND .                                     |

Surrogates (% recovery) Limits: 80 - 130

| Sample ID:            | B6-10 |      |  |
|-----------------------|-------|------|--|
| Dibromofluoromethane  | 115   |      |  |
| Toluene-d8            | 92    | et e |  |
| IDIQITIO NUOTODGIZGIG | 88    |      |  |

# QC Sample Report - EPA Method 8260

Matrix: Soil

Batch #: 8260S1642

### **Batch Accuracy Results**

| Sample ID: Laboratory Cont | troi Sampi                   | е              |                                 |           |
|----------------------------|------------------------------|----------------|---------------------------------|-----------|
| Analyte                    | Spike Concentration<br>mg/Kg | % Recovery LCS | Acceptance Limits<br>% Recovery | Pass/Fail |
| 1,1-Dichloroethene         | 0.020                        | 92             | 59 - 172                        | Pass      |
| Benzene                    | 0.020                        | 97             | 66 - 142                        | Pass      |
| Trichloroethene            | 0.020                        | .97            | 71 - 137                        | Pass      |
| Toluene                    | 0.020                        | 97 🎄           | 59 - 139                        | Pass      |
| Chlorobenzene              | 0.020                        | 99             | 60 - 133                        | Pass      |

# Analytical Notes:

### **Batch Precision Results**

| MS/MSD Sample ID: B2-10 | )                              |                                   |                                      |                            |           |
|-------------------------|--------------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------|
| Analyte                 | Spike Sample<br>Recovery mg/Kg | Spike Duplicate<br>Recovery mg/Kg | Relative Percent<br>Difference (RPD) | Upper Control Limit<br>RPD | Pass/Fail |
| 1,1-Dichloroethene      | 0.0182                         | 0.0211                            | 15%                                  | 22%                        | Pass      |
| Benzene                 | 0,0189                         | 0.0217                            | 14%                                  | 21%                        | Pass      |
| Trichloroethene         | 0.0193                         | 0.0210                            | 8%                                   | 24%                        | Pass      |
| Toluene                 | 0.0184                         | 0.0207                            | 12%                                  | 21%                        | Pass      |
| Chlorobenzene           | 0.0191                         | 0.0221                            | 15%                                  | 21%                        | Pass      |

MS: Matrix Spike Sample
MSD: Matrix Spike Duplicate

| Analytical Notes: |     |     |
|-------------------|-----|-----|
|                   | •   |     |
| 4 1               | •   |     |
|                   |     |     |
|                   |     |     |
|                   |     |     |
| 4                 |     |     |
| •                 |     | •   |
|                   |     |     |
|                   |     |     |
|                   |     |     |
|                   |     | · · |
|                   | : ' | e   |
|                   |     |     |



# QC Sample Report - EPA Method 8260

Matrix: Soil

Batch #: 8260S1644

### **Batch Accuracy Results**

| Sample ID: Laboratory ( | Jontrol Sample               | <del>}</del>   |                                 |           |
|-------------------------|------------------------------|----------------|---------------------------------|-----------|
| Analyte                 | Spike Concentration<br>mg/Kg | % Recovery LCS | Acceptance Limits<br>% Recovery | Pass/Fail |
| 1,1-Dichloroethene      | 0.020                        | 95             | 59 - 172                        | Pass      |
| Benzene                 | 0.020                        | 99             | 66 - 142                        | Pass      |
| Trichloroethene         | 0.020                        | 96             | 71 - 137                        | Pass      |
| Toluene                 | 0.020                        | 92             | 59 - 139                        | Pass      |
| Chlorobenzene           | 0.020                        | 97             | 60 - 133                        | Pass      |

| Analytical | Notes: | <u> </u> |
|------------|--------|----------|
|            | .*     |          |
| ٠.         |        |          |
|            |        |          |
| ļ          |        |          |
| ,          | **     |          |
|            |        |          |
|            |        |          |
| ľ          | •      |          |
|            |        |          |
|            |        |          |
|            |        |          |

### **Batch Precision Results**

MS/MSD Sample ID: Laboratory Control Samples

| Analyte            | Spike Sample<br>Recovery mg/Kg | Spike Duplicate<br>Recovery mg/Kg | Relative Percent<br>Difference (RPD) | Upper Control Limit<br>RPD | Pass/Fail |
|--------------------|--------------------------------|-----------------------------------|--------------------------------------|----------------------------|-----------|
| 1,1-Dichloroethene | 0.0190                         | 0.0202                            | 6%                                   | 22%                        | Pass      |
| Benzene            | 0.0199                         | 0.0202                            | 2%                                   | 21%                        | Pass      |
| Trichloroethene    | 0.0191                         | 0.0208                            | 8%                                   | 24%                        | Pass      |
| Toluene            | 0.0186                         | 0.0194                            | 4%                                   | 21%                        | Pass      |
| Chlorobenzene      | 0.0195                         | 0,0203                            | 4%                                   | 21%                        | Pass      |

| Analytical I | Notes: |  |  |
|--------------|--------|--|--|
|              |        |  |  |
|              |        |  |  |
| ľ            |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
| -            |        |  |  |
|              |        |  |  |
|              |        |  |  |
|              |        |  |  |
| i            |        |  |  |
|              |        |  |  |

MS: Matrix Spike Sample
MSD: Matrix Spike Duplicate

# Centrum Analytical Laboratories, Inc.

290 TENNESSEE STREET

REDLANDS, CA 92373

(909) 798-9336 • (800) 798-9336 FAX (909) 793-1559 Chain C

**Chain of Custody Record** 

Centrum Job #

14723A

6029329

Page 1 of 2

|                                                                         |                                                                        |            |                                  |                 |                                                  |                        |                           |                                      |                          |               |                 | Ana                   | lyses                   | s Rec                  | quest     | :ed          |              | 29                 | 99   |   |                                                        |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|------------|----------------------------------|-----------------|--------------------------------------------------|------------------------|---------------------------|--------------------------------------|--------------------------|---------------|-----------------|-----------------------|-------------------------|------------------------|-----------|--------------|--------------|--------------------|------|---|--------------------------------------------------------|
| Project No.:                                                            |                                                                        |            |                                  | Project N       |                                                  | · C A 1.1              | 1 44 6                    | Τ.                                   | <u>"</u>                 |               | *               |                       |                         |                        |           | T            |              |                    |      |   | Turn-around time                                       |
|                                                                         | 75-9GO                                                                 | <u> 14</u> |                                  | La              | 1 tran                                           | <u>s: 5. Oaklan</u>    | M.S.                      | 1                                    | Pest/PCB                 |               |                 |                       | i                       | RCR\$                  |           | 8            | Hex Chrome   | Ì                  |      |   | 24 Hr. RUSH*                                           |
| Project Mar<br>Fra                                                      | nager:<br>nk Poss                                                      |            |                                  | Phone:          | 70E-                                             | Fax:<br>1111 (510) 785 | - 1107                    | 1                                    | 4                        |               |                 |                       | χ                       | ı K                    |           | Conductivity | Ş            |                    |      |   | 1 24 Hr. RUSH*                                         |
| Client Name                                                             |                                                                        |            | {                                | Δddroee:        |                                                  |                        | -                         | ιи.                                  | i 👸                      |               | 8               |                       | 9                       | Ē                      |           |              |              | Į                  |      |   | Normal TAT                                             |
| (Company)                                                               | PSI                                                                    |            |                                  | 1320            | W.                                               | Winton Aver, Hay       | grand, CA                 | #                                    | ¥                        | 12°  <br>15°  | i i             |                       | 827                     | 3                      | [ i       |              | Fluoride     |                    |      |   | * Requires prior approval,<br>additional charges apply |
| Centrum ID<br>(Lab use only)                                            | Sample ID<br>(As it should appear on report)                           |            | pled                             | Time<br>sampled | Sample<br>matrix                                 | Site location          | Containers:<br># and type | GCMS: 8260                           | 8080: Pesticides PCBs    | 8015M: Diesel | 8015M: Gasoline | 418.1 (TRPH)          | Semivolatiles: 8270 625 | Metals: TTLC(CAM) PP   | Lead Only | pH TDS TSS   | Flashpoint F |                    |      |   | Remarks/<br>Special Instructions                       |
|                                                                         | B1-5                                                                   | 4/6,       | 99                               | 900             | 5                                                |                        | Acctate<br>Sleeve         | X                                    |                          | X             | X               |                       |                         |                        |           |              |              |                    |      |   | 6029329                                                |
|                                                                         | B1-10                                                                  |            |                                  | 915             |                                                  |                        |                           |                                      |                          | Ш             | Ц               |                       |                         |                        |           |              | ,            |                    |      |   | 602494163                                              |
|                                                                         | BZ-5                                                                   |            |                                  | 1215            |                                                  |                        |                           | $\coprod$                            |                          | Ш             | Ц               |                       |                         |                        |           |              |              |                    |      |   | 602494171                                              |
|                                                                         | BZ-10                                                                  |            |                                  | 1230            |                                                  |                        |                           | $\coprod$                            | _                        | Ш             |                 |                       |                         |                        |           |              |              |                    |      |   | 602494189                                              |
|                                                                         | B3-5                                                                   |            |                                  | 1310            |                                                  |                        | <u> </u>                  | $\coprod$                            | <u> </u>                 | Ш             | $\coprod$       |                       |                         |                        |           |              | _            |                    |      | - | 602494197                                              |
|                                                                         | B3-10                                                                  |            |                                  | 1320            | '                                                |                        |                           | $\coprod$                            |                          |               | $\coprod$       |                       |                         |                        |           |              |              |                    |      |   | 602494205                                              |
|                                                                         | B4-5                                                                   |            |                                  | 1450            |                                                  |                        |                           | Ц                                    | _                        |               | Щ               |                       |                         |                        |           |              |              | <u> </u>           |      |   | 602494213                                              |
|                                                                         | 34-10                                                                  | <u> </u>   | <u>'</u>                         | 1500            | <del>                                     </del> |                        | <u> </u>                  | $\prod$                              |                          | Ш             | $\coprod$       |                       |                         |                        |           |              |              |                    |      |   | 602494270                                              |
|                                                                         | B5-5                                                                   | 4/7        | 19                               | 845             |                                                  | -                      |                           | Ц                                    |                          |               | Ц               | ļ                     |                         |                        |           |              |              |                    |      |   | 602494288                                              |
|                                                                         | B5-10                                                                  |            | ,                                | 900             | \V                                               |                        | 14                        | V                                    | L                        | V             | V               |                       |                         |                        |           |              |              |                    |      |   | 602494296                                              |
| Relinquished t                                                          | by; (Sampler's Signature)                                              | _          |                                  | Date: 4/7/49    | 1700                                             | Relinguished by:       |                           | Date                                 | l                        | Time          |                 | Tob                   | ж соп                   | nplete                 | d by la   | aborat       | tory p       | ersonr<br>—        | nel: |   | Sample Disposal                                        |
| Received by:                                                            | Sin Race                                                               |            | ,                                | 71849           | Time                                             | Received by:           | ·                         | Date                                 | te Time Samples chilled? |               | İ               | ☐ Client will pick up |                         |                        |           |              |              |                    |      |   |                                                        |
| The delivery of samples and the signature on this chain of custody form |                                                                        | stody form | Relinquished by:                 |                 | Date                                             |                        | Time                      |                                      |                          |               |                 | ainers                | -                       |                        | Yes (     | J No         |              | ☐ Return to client |      |   |                                                        |
|                                                                         | onstitutes authorization to perform the analyses specified above under |            | Received for Laboratory by: Date |                 | 1                                                | Time C                 |                           | Courier 5/1/PS/Fed Ex   Hand carried |                          |               |                 |                       |                         | ☐ Lab disposal fee \$5 |           |              |              |                    |      |   |                                                        |
| Laboratory f                                                            | aboratory Notes: * Include oxygenates in 8260 analysis                 |            |                                  |                 |                                                  |                        |                           | Sample Locator No.                   |                          |               |                 |                       |                         |                        |           |              |              |                    |      |   |                                                        |
|                                                                         |                                                                        |            |                                  |                 |                                                  |                        |                           |                                      |                          |               |                 |                       |                         |                        |           |              |              |                    |      |   | Ì                                                      |

Centrum Job #

290 TENNESSEE STREET REDLANDS, CA 92373

(909) 798-9336 • (800) 798-9336 FAX (909) 793-1559

# **Chain of Custody Record**

ob# 14723A
Page Z of 2

|                                   | ·                                                           |                 |                            |                  |                             |                           |            |                               |               |                                           | Ana          | ilyse:                  | s Re                      | quest     | ed           |               | 2        | 99     | q       |                                                                |
|-----------------------------------|-------------------------------------------------------------|-----------------|----------------------------|------------------|-----------------------------|---------------------------|------------|-------------------------------|---------------|-------------------------------------------|--------------|-------------------------|---------------------------|-----------|--------------|---------------|----------|--------|---------|----------------------------------------------------------------|
| Project No.:<br>57<br>Project Man | 5-96014                                                     |                 | Project N<br>Cal<br>Phone: | ame:<br>+rans    | : S, Oakland<br>Fax:        | M, S.                     | 2783-      | Pest/PCB                      | 1             | N. S. S. S. S. S. S. S. S. S. S. S. S. S. |              |                         |                           |           | 8            | x Chrome      |          |        |         | Turn-around time  24 Hr. RUSH*                                 |
| Client Name<br>(Company)          | PSI                                                         |                 | Address:                   | <del></del>      |                             |                           |            | es PCBs                       | BEZ           | ine seed                                  |              | 8270 62                 | (CAM) PP                  |           | Conductivity | Fluoride Hex  |          |        |         | Normai TAT  *Requires prior approval, additional charges apply |
| Centrum ID<br>(Lab use only)      | Sample ID (As it should appear on report)                   | Date<br>sampled | Time<br>sampled            | Sample<br>matrix | Site location               | Containers:<br># and type | GCMS: 8260 | 8080: Pestiddes PCBs Pest/PCB | 8015M: Diesel | 8015M: Gasoline                           | 418.1 (TRPH) | Semivolatiles: 8270 625 | Metals: TTLC(CAM) PP RCRA | Lead Only | E TOS TSS    | Plashpoint Fl |          | :      |         | Remarks/<br>Special Instructions                               |
|                                   | B6-5                                                        | 4/7/99          | 1020                       | 5                |                             | Acetate<br>Sleeve         | X          |                               | X             | X                                         |              |                         |                           |           |              |               |          |        |         | 602494304                                                      |
|                                   | B6-10                                                       | 4/7/99          | 1030                       | 2,               |                             | V                         | X          |                               | X             | X                                         |              |                         |                           |           |              |               |          |        |         | 602494312                                                      |
|                                   |                                                             | <u> </u>        | 1000                       |                  |                             | /                         | 7          |                               |               |                                           | <u> </u>     |                         |                           |           |              |               | 7        |        |         |                                                                |
|                                   |                                                             |                 |                            |                  |                             |                           |            |                               | -             |                                           |              |                         |                           |           |              | /             |          |        | 一       |                                                                |
|                                   | /                                                           |                 | /                          |                  | /                           | /                         |            |                               |               |                                           | 1-           | H                       | -                         |           | 7            |               |          |        |         |                                                                |
|                                   |                                                             | /               |                            | <del></del> ,    |                             |                           |            |                               | 7             |                                           |              |                         |                           |           | <u> </u>     |               |          |        | 7       |                                                                |
|                                   |                                                             |                 |                            |                  |                             |                           |            | 7                             | 1             |                                           |              |                         | 7                         |           |              |               |          | /      |         |                                                                |
|                                   |                                                             | /               |                            |                  |                             |                           | 7          | 1                             |               | _                                         |              |                         | 7                         |           |              |               |          |        |         |                                                                |
|                                   |                                                             | <del></del>     |                            | /                |                             | /                         | 1          |                               | 1             |                                           |              |                         | _                         |           |              |               |          |        |         |                                                                |
|                                   |                                                             |                 | /                          |                  |                             |                           |            |                               |               |                                           |              |                         |                           |           |              |               |          |        |         | _                                                              |
| Relinquished t                    | y: (Sampler's Signature)                                    | <u> </u>        | Date /                     | Time             | Relinquished by:            |                           | Date       |                               | Time          | <u>/-</u>                                 | Tot          | be cor                  | mplete                    | d by i    | aborai       | tory p        | erson    | nel:   | <u></u> | Sample Disposal                                                |
| Received by:                      | welim                                                       |                 | Date<br>1/7/49<br>Date:    | Time             | Received by:                |                           | Date       | ,                             | Time          |                                           | 1            | •                       |                           | #7 @ Y    |              |               |          |        |         | ☐ Client will pick up                                          |
|                                   | of samples and the signature                                | ure on this     | <del>7/3</del>             | tody form        | Relinquished by:            |                           | Date       |                               | Time          |                                           | Alla         | -<br>sampl              | e com                     | tainers   | intac        | t7 🗆          | ,<br>Yes | □ No   |         | ☐ Return to client                                             |
| constitutes a                     | uthorization to perform the<br>ad Conditions set forth on t | analyses s      | pecified abo               | -                | Received for Laboratory by: |                           | Date       | •                             | Time          |                                           | 00           | Courle                  | r 🗆 (                     | UPS/F     | ed Ex        | - <b>-</b> 1  | land o   | arried |         | (1 Lab disposal fee \$5                                        |
| Laboratory f                      | Votes: XI                                                   | ncli            | vlo_                       | οκγ              | genates in                  | 826                       | 0          | ,                             | an            | al                                        | ysi          | ìs.                     |                           |           |              | ••            |          |        |         | Sample Locator No.                                             |
|                                   |                                                             |                 |                            |                  |                             |                           |            |                               |               |                                           |              |                         |                           |           |              |               |          |        |         |                                                                |

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

> > Page 1 of 6

Client Name:

PROFESSIONAL SERVICE INDUSTRIES, INC.

1320 W. WINTON AVE HAYWARD, CA 94545

Report To:

FRANK POSS

**Project Name:** Site Location:

CALTRANS: S. OAKLAND M.S.

PACE ANALYTICAL Project #: 6029331

PACE ANALYTICAL WO #: 14738A

Client ID #: 575-9G-014

Date:

4/30/99

Pace Analytical Services, Inc. is pleased to provide you with analytical data for your above referenced project. Samples were collected on 04/08/99 and received on 04/09/99. Please refer to the chain of custody included at the end of this report for conditions of the samples upon receipt. In accordance with the chain of custody, the samples were analyzed for the following analytical parameters:

| ANALYTICAL TEST                       | <u>PAGE</u> |
|---------------------------------------|-------------|
| TPH-G (Water)                         | 2-3         |
| TPH-D (Water)                         | 4-5         |
| List of Abbreviations and Definitions | 6           |

The analysis for 8260 was subcontracted to an outside laboratory with results attached.

Lily Bayati, Project Manager

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. All samples are analyzed on an as received (wet weight) basis. Sampling, handling and analytical methods must be in accordance with EPA established protocols. Deviations from these protocols may compromise analytical results. All method numbers referenced are EPA method numbers except where otherwise noted. This report is submitted for the exclusive use of the client to whom it is addressed and is only valid in its entirety. ELAP certification #2310.

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 2 of 6 PACE ANALYTICAL Project#:6029331 PACE ANALYTICAL WO#:14738A Client ID#:575-9G-014

Analyst:

VN

Preparation Method: Matrix:

5030

Water

### ANALYSIS OF VOLATILE ORGANICS BY GAS CHROMATOGRAPHY/FID GASOLINE (TPH-G) BY DOHS METHOD

| Units        | V19445           | TPH<br>Gasoline<br>µg/L | Surrogate<br>Recovery<br>% | PRL<br>µg/L | DF |
|--------------|------------------|-------------------------|----------------------------|-------------|----|
| Sample ID    | Analysis<br>Date |                         |                            |             |    |
| Method Blank | 04/16/99         | <500                    | 106                        | 500         | 1  |
| WB1          | 04/16/99         | <500                    | 108                        | 500         | 1  |
| WB2          | 04/16/99         | <500                    | 105                        | 500         | 1  |
| WB3          | 04/16/99         | 520                     | 130                        | 500         | 1  |
| WB4          | 04/16/99         | 520                     | 136                        | 500         | 1  |
| WB5          | 04/16/99         | <500                    | 87                         | 500         | 1  |
| WB6          | 04/16/99         | <500                    | 98                         | 500         | 1  |

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 3 of 6 PACE ANALYTICAL Project#:6029331 PACE ANALYTICAL WO#:14738A

#### **QUALITY ASSURANCE/QUALITY CONTROL SUMMARY**

Client 1D#:575-9G-014

Analyst:

VN

Preparation Method:

5030

Matrix:

Water

ANALYSIS OF VOLATILE ORGANICS BY GAS CHROMATOGRAPHY/FID GASOLINE (TPH-G) BY DOHS METHOD

|                | Matrix<br>Spike<br>% REC | Matrix<br>Spike Dup.<br>% REC | Acceptable<br>Range | RPD<br>% | Acceptable<br>Range |  |
|----------------|--------------------------|-------------------------------|---------------------|----------|---------------------|--|
| Analysis Date: | 04/16/99                 | 04/16/99                      |                     |          |                     |  |
| Gasoline       | 95                       | 95                            | 70-130              | 0.0      | 0-25                |  |

### REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 4 of 6 PACE ANALYTICAL Project#:6029331 PACE ANALYTICAL WO#:14738A Client ID#:575-9G-014

Analyst: Preparation Analyst: WK WK

Matrix:

Water

# ANALYSIS OF TOTAL PETROLEUM HYDROCARBONS - DIESEL EPA 8015 Modified

| -            |             |          |        |      |    |
|--------------|-------------|----------|--------|------|----|
|              |             |          | Dieşel | PRL  | DF |
| Units        |             |          | mg/L   | mg/L |    |
|              | Preparation | Analysis |        |      |    |
| Sample ID    | Date        | Date     |        |      |    |
| Method Blank | 4/16/99     | 4/16/99  | <10    | 10   | 1  |
| WB1          | 4/16/99     | 4/16/99  | <10    | 10   | 1  |
| WB2          | 4/16/99     | 4/16/99  | <10    | 10   | 1  |
| WB3          | 4/16/99     | 4/16/99  | <10    | 10   | 1  |
| WB4          | 4/16/99     | 4/16/99  | <10    | 10   | 1  |
| WB6          | 4/16/99     | 4/16/99  | <10    | 10   | 1  |

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 5 of 6
PACE ANALYTICAL Project#:6029331
PACE ANALYTICAL WO#:14738A
Client ID#:575-9G-014

### **QUALITY ASSURANCE/QUALITY CONTROL SUMMARY**

Analyst: Preparation Analyst: WK WK

Matrix:

Water

ANALYSIS OF TOTAL PETROLEUM HYDROCARBONS - DIESEL EPA 8015 Modified

|                | Matrix<br>Spike<br>% REC | Matrix<br>Spike Dup.<br>% REC | Acceptable<br>Range | RPD<br>% | Acceptable<br>Range |
|----------------|--------------------------|-------------------------------|---------------------|----------|---------------------|
| Analysis Date: | 4/16/99                  | 4/16/99                       |                     |          |                     |
| TPH-Diesel     | 106                      | 104                           | 61-127              | 1.9      | 0-25                |

Pace Analytical Services, Inc. 3970 Gilman St. Long Beach, CA 90815

> Tel: 562-498-9515 Fax: 562-597-0786

Page 6 of 6 PACE ANALYTICAL Project#:6029331 PACE ANALYTICAL WO#:14738A Client ID#:575-9G-014

### List of Abbreviations and Definitions

|   | SM    | = | Standard Methods for the examination of water and waste water                                                                                                                  |
|---|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | EPA   | = | EPA approved methodology, 40 CFR Part 136                                                                                                                                      |
|   | sw    | = | EPA SW 846, Test Methods for Evaluating Solid Wastes                                                                                                                           |
|   | TCLP  | = | Toxicity Characteristic Leaching Procedure                                                                                                                                     |
|   | STLC  | = | Soluble Threshold Limit Concentration                                                                                                                                          |
|   | mg/L  | = | milligrams per liter, parts per million (ppm), unit of measurement for a liquid                                                                                                |
|   | mg/Kg | = | milligrams per kilogram, parts per million (ppm), unit of measurement for a solid                                                                                              |
|   | μg/L  | = | micrograms per liter, parts per billion (ppb), unit of measurement for a liquid                                                                                                |
|   | μg/Kg | = | micrograms per kilogram, parts per billion (ppb), unit of measurement for a solid                                                                                              |
|   | MDL   | = | Laboratory Method Detection Limit, minimum level of detection derived from actual laboratory data                                                                              |
|   | DF    | = | Dilution Factor, the magnitude in which a sample must be diluted to eliminate matrix interference and/or to bring the sample concentration within the linear calibration range |
|   | RPD   | = | Relative Percent Difference, measure of precision                                                                                                                              |
|   | % REC | = | Percent Recovery, measure of accuracy                                                                                                                                          |
|   | <     | = | less than, analyte of interest below stated numerical value                                                                                                                    |
|   | NA    | = | Not Applicable                                                                                                                                                                 |
|   | LCS   | = | Laboratory Control Sample                                                                                                                                                      |
|   | DOHS  | = | Department of Health Services                                                                                                                                                  |
|   | ELAP  | = | Environmental Laboratory Accreditation Program                                                                                                                                 |
|   | PRL   | = | Pace Reporting Limit                                                                                                                                                           |

# REPORT OF LABORATORY ANALYSIS

# Centrum Analytical Laboratories, Inc.

CERTIFIED HAZARDOUS WASTE TESTING LABORATORY . CHEMICAL AND BIOLOGICAL ANALYSES

Client:

Pace Analytical

3960 E. Gilman Street

Long Beach, CA 90815

Date Received:

Date Sampled:

04/06/99

04/09/99

Job Number:

14730

Project: Caltrans: S. Oakland

### **CASE NARRATIVE**

The following information applies to samples which were received on 04/09/99:

The samples were received at the laboratory chilled and sample containers were intact.

Unless otherwise noted below, the Quality Control acceptance criteria were met for all samples for every analysis requested.

Report approved

Rebert R. Clark, Ph.D. Laboratory Director

**ELAP #1184** 

DL: Detection Limit - The lowest level at which the compound can reliably be detected under normal laboratory conditions.

ND: Not Detected - The compound was analyzed for but was not found to be present at or above the detection limit.

NA: Not Analyzed -- Per client request, this analyte was not on the list of compounds to be analyzed for.



Client:

Pace Analytical

Project:

Caltrans: S. Oakland

Job No.:

14730

Matrix:

Water JMR

Analyst:

Date Sampled:

04/06/99

Date Received:

04/09/99

Date Analyzed:

04/12-13/99

| satcn | Number:               | 8260771641 |
|-------|-----------------------|------------|
|       |                       |            |
|       | and the second second |            |
|       |                       |            |

|                           | Sample ID: | Blank        | WB1  | WB2  | WB3  | WB4  | WB5  |
|---------------------------|------------|--------------|------|------|------|------|------|
| Compounds                 | DL         | μ <b>g/L</b> | μg/L | μg/L | μg/L | μg/L | μg/L |
| Acetone                   | 50         | ND           | ND   | ND   | ND   | ND   | ND   |
| Benzene                   | 0.5        | ND           | ND   | ND   | 6,3  | ND   | ND   |
| Bromobenzene              | 1.0        | ND           | ND   | ND   | ND   | ND   | ND   |
| Bromochloromethane        | 1.0        | ND           | ND   | ND   | ND   | ND   | ND   |
| Bromodichloromethane      | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| Bromoform                 | 0:5        | ND           | ND   | ND   | ND   | ND   | ND   |
| Bromomethane              | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 2-Butanone (MEK)          | 10         | ND           | ND   | ND   | ND   | ND   | ND   |
| n-Butylbenzene            | 0.5        | ND           | ND   | ND   | ND   | ND . | ND   |
| sec-Butylbenzene          | 0,5        | ND           | ND   | ND   | ND   | ND   | ND   |
| tert-Butylbenzene         | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| Carbon disulfide          | 10         | ND           | ND   | ND   | ND   | ND   | ND   |
| Carbon tetrachloride      | 0.5        | ND           | ND   | ND   | ND   | ND - | ND   |
| Chlorobenzene             | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| Chloroethane              | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| Chloroform                | 0.5        | NĐ           | ND   | ND   | ND   | 2.4  | ND   |
| Chloromethane             | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 2-Chlorotoluene           | 0.5        | ND           | ND   | ND   | ND   | ND.  | ND   |
| 4-Chlorotoluene           | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| Dibromochloromethane      | 0,5        | NO           | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dibromoethane         | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dibromo-3-chloropropa | ne 10      | ND           | ND   | ND   | ND   | ND   | ND   |
| Dibromomethane            | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dichlorobenzene       | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,3-Dichlorobenzene       | 0.5        | ND           | ND   | , ND | ND   | ND   | ND   |
| 1,4-Dichlorobenzene       | 0.5        | ND           | ND   | ND   | ND   | ND   | · ND |
| Dichlorodifluoromethane   | 0,5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,1-Dichloroethane        | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dichloroethane        | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,1-Dichloroethene        | 0.5        | ND           | ND   | ND   | ND   | ND . | ND   |
| cis-1,2-Dichloroethene    | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| trans-1,2-Dichloroethene  | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dichloropropane       | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,3-Dichloropropane       | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 2,2-Dichloropropane       | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| 1,1-Dichloropropene       | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| cis-1,3-Dichloropropene   | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |
| trans-1 3-Dichloropropene | 0.5        | ND           | ND   | ND   | ND   | ND   | ND   |



Client: Pace Analytical
Project: Caltrans: S. Oakland

Job No.: 14730 Matrix: Water Analyst: JMR Date Sampled:

04/06/99

Date Received:

04/09/99

Date Analyzed: Batch Number: 04/12-13/99 8260W1641

|                              | Sample ID: | Blank   | WB1  | WB2  | WB3  | WB4          | WB5   |
|------------------------------|------------|---------|------|------|------|--------------|-------|
| Compounds                    | DL         | . µg/L_ | μg/L | μg/L | μg/L | μg/ <b>L</b> | μg/L  |
| Ethylbenzene                 | 0.5        | ND      | ND   | ND   | 11   | 3.7          | ND    |
| Hexachlorobutadiene          | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 2-Hexanone                   | 10         | ND      | ND   | ND   | ND   | ND           | ND    |
| lsopropylbenzene             | 0.5        | ND      | ND   | ND   | 1,8  | 1.3          | ND    |
| p-Isopropyltoluene           | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| Methylene chloride           | 10         | ND      | ND   | ND   | ND   | ND           | ND    |
| 4-Methyl-2-pentanone         | 5.0        | ND      | ND   | ND   | ND   | .ND          | ND    |
| Methyl-tert-butyl ether (MtB | 3E) 1.0    | ND      | ND   | ND   | ND   | ND           | 6,600 |
| Napthalene                   | 0.5        | ND      | ND   | ND   | 3,5  | 2.6          | ND    |
| n-Propylbenzene              | 0.5        | ND      | ND   | ND   | 5.4  | 3.0          | ND:   |
| Styrene                      | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,1,1,2-Tetrachloroethane    | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,1,2,2-Tetrachloroethane    | 1.0        | ND      | ND   | ND   | ND   | ND           | ND    |
| Tetrachioroethene            | 0.5        | MD      | ND   | ND   | ND   | ND           | ND    |
| Toluene                      | 0.5        | ND      | ND   | ND   | 2.2  | ND           | 0.6   |
| 1,2,3-Trichlorobenzene       | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,2,4-Trichlorobenzene       | 0,5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,1,1-Trichloroethane        | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,1,2-Trichloroethane        | 0,5        | ND      | ND   | ND   | ND   | ND           | ND    |
| Trichloroethene              | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,2,3-Trichloropropane       | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| Trichlorofluoromethane       | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| Trichlorotrifluoroethane     | 5.0        | ND      | ND   | ND   | ND   | ND           | ND    |
| 1,2,4-Trimethylbenzene       | 0.5        | ND      | ND   | ND   | 31   | 19           | ND    |
| 1,3,5-Trimethylbenzene       | 0.5        | ND      | ND   | 、 ND | 12   | 6.3          | ND    |
| Vinyl chloride               | 0.5        | ND      | ND   | ND   | ND   | ND           | ND    |
| Xylenes (total)              | 1.5        | ND      | 2.0  | ND   | 40   | 7.7          | ND    |

Surrogates (% recovery) Limits: 80 - 130

|                      | Sample ID: | Blank | WB1 | WB2 | WB3 | WB4 | WB5 |
|----------------------|------------|-------|-----|-----|-----|-----|-----|
| Dibromofluoromethane |            | 108   | 100 | 105 | 108 | 107 | 105 |
| Toluene-d8           |            | 98    | 95  | 101 | 99  | 98  | 100 |
| Bromofluorobenzene   |            | 107   | 102 | 102 | 96  | 110 | 101 |



Client: Pace Analytical
Project: Caltrans: S. Oakland

Job No.: 14730 Matrix: Water Analyst: JMR 

 Date Sampled:
 04/06/99

 Date Received:
 04/09/99

 Date Analyzed:
 04/12-13/99

 Batch Number:
 8260W1641

|                           | Sample ID: | WB6           | . ,                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
|---------------------------|------------|---------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| Compounds                 | DL         | μ <b>g/</b> L |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                           |                                             | 100                                                    |
| Acetone                   | 50         | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Benzene                   | 0,5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | *                                           |                                                        |
| Bromobenzene              | 1.0        | ND            | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Bromochloromethane        | 1.0        | ND :          | a Polita atomo                     | a kad Nesh agea.<br>Sala Shibbasan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | usanser utensati dis<br>Sur desta abadeas   |                                                        |
| Bromodichloromethane      | 0.5        | ND            |                                    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                                      | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | *                                                           |                                             |                                                        |
| Bromoform                 | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 2 10 10 10 10 10 10 10 10 10 10 10 10 10                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | ig nach nord in de lig<br>Gedaroù one in in | ópskalatoka<br>Rukska akua                             |
| Bromomethane              | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A confineration                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | -                                           |                                                        |
| 2-Butanone (MEK)          | 10         | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| n-Butylbenzene            | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                             |                                                        |
| sec-Butylbenzene          | 0,5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 /4/ 60 60 80 50 10 10<br>6 / 1 2 8 60 80 80 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0.0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                             |                                                        |
| tert-Butylbenzene         | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Carbon disulfide          | 10         |               | <b>V</b>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Carbon tetrachloride      | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Chlorobenzene             | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Chloroethane              | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| Chloroform                | 0.5        | 2.7           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | . 406. 20. 20. 20. 20. 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | ng i galakkar riby:<br>Marajan              |                                                        |
| Chloromethane             | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             | ,                                                      |
| 2-Chlorotoluene           | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 x 13 0x 0 00 x<br>000 0x 00 00 00 00 00 00 00 00 00 00 00 |                                             |                                                        |
| 4-Chlorotoluene           | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                             |                                                        |
| Dibromochloromethane      | 0,5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| 1,2-Dibromoethane         | 0.5        | ND            |                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| 1,2-Dibromo-3-chloropropa | ine 10     | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             | onine sieno e on<br>Sistema e onine<br>Sistema e onine |
| Dibromomethane            | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| 1,2-Dichlorobenzene       | 0.5        | ND            | A1150 050 30 000<br>C044 500 05000 | 803000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . + 189 89000 9 80<br>. A. 00 8800 808 00                                            | 10000000 colo 33 45 45<br>10000 - No. 30 4 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | san y mnodkiča.<br>Hana i koznača                           | Salaka kitabur<br>Alakatan                  | egen propor<br>Ordan Socia                             |
| 1,3-Dichlorobenzene       | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             | and an incident and the street                         |
| 1,4-Dichlorobenzene       | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | add i dagarrain ag<br>Johann Grander (19                    |                                             |                                                        |
| Dichlorodifluoromethane   | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| 1,1-Dichloroethane        | 0.5        | ND:           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | )<br>                                       | vad (0. 600 v. 60                                      |
| 1,2-Dichloroethane        | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| 1,1-Dichloroethene        | 0.5        | ND            | y.<br>Colodoperation               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 3300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88 : 57 : 88 : 53 :                                         | 80.900 00 00 V                              |                                                        |
| cis-1,2-Dichloroethene    | 0.5        | ND            |                                    | action of the test of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second second second                                                         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | · · · · · · · · · · · · · · · · · · ·                       | ****                                        |                                                        |
| trans-1,2-Dichloroethene  | 0,5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | egnes december<br>Kanadansk blade           | 6000000 61 000<br>80 50 50 60 60                       |
| 1,2-Dichloropropane       | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                             |                                                        |
| 1,3-Dichloropropane       | 0.5        | ND            |                                    | an 72 mene age ye<br>Punun Xearesian A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | egendek i Terribada b<br>Parteka Sabarasa                   |                                             |                                                        |
| 2,2-Dichloropropane       | 0,5        | ND            | and the state of the state of      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | e i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gravitation of the property of                              |                                             | a a service of the service of                          |
| 1,1-Dichloropropene       | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48888                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 884 (C. 203.050).                                           |                                             |                                                        |
| cis-1,3-Dichloropropene   | 0.5        | ND            |                                    | outur uterbiili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a a ang magantantan iya i                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summer un sum notal seut (1967)                             | nach nach an such at a 1990                 | on ones X                                              |
| trans-1,3-Dichloropropene | 0.5        | ND            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | \$24598534854                               |                                                        |



Client: Pace Analytical
Project: Caltrans: S. Oakland

Job No.. 14730 Matrix: Water Analyst: JMR Date Sampled: Date Received:

04/06/99 04/09/99 04/12-13/99

Date Analyzed: Batch Number:

8260W1641

| <u> </u>                     | Sample ID: | WB6  |                                       |
|------------------------------|------------|------|---------------------------------------|
| Compounds                    | DL         | μg/L |                                       |
| Ethylbenzene                 | 0.5        | ND   |                                       |
| Hexachlorobutadiene          | 0.5        | ND   |                                       |
| 2-Hexanone                   | 10         | ND   |                                       |
| lsopropylbenzene             | 0.5        | ND   |                                       |
| p-isopropyitoluene           | 0.5        | ND   |                                       |
| Methylene chloride           | 10         | ND   |                                       |
| 4-Methyl-2-pentanone         | 5.0        | ND   |                                       |
| Methyl-tert-butyl ether (MtB | E) 1.0     | 24   |                                       |
| Napthalene                   | 0.5        | ND   |                                       |
| n-Propylbenzene              | 0.5        | ND   |                                       |
| Styrene                      | 0.5        | ND   |                                       |
| 1,1,1,2-Tetrachloroethane    | 0.5        | ND   |                                       |
| 1,1,2,2-Tetrachloroethane    | 1.0        | ND   |                                       |
| Tetrachloroethene            | 0.5        | 12   |                                       |
| Toluene                      | 0.5        | 0.6  |                                       |
| 1,2,3-Trichlorobenzene       | 0.5        | ND   |                                       |
| 1,2,4-Trichlorobenzene       | 0.5        | ND   |                                       |
| 1,1,1-Trichloroethane        | 0.5        | ND   |                                       |
| 1,1,2-Trichloroethane        | 0.5        | ND   |                                       |
| Trichloroethene              | 0.5        | ND   |                                       |
| 1,2,3-Trichloropropane       | 0.5        | ND   |                                       |
| Trichlorofluoromethane       | 0.5        | ND   |                                       |
| Trichlorotrifluoroethane     | 5.0        | ND   |                                       |
| 1,2,4-Trimethylbenzene       | 0.5        | ND   |                                       |
| 1,3,5-Trimethylbenzene       | 0.5        | ND   | · · · · · · · · · · · · · · · · · · · |
| Vinyl chloride               | 0.5        | ND   |                                       |
| Xylenes (total)              | 1.5        | ND   |                                       |

Surrogates (% recovery) Limits: 80 - 130

|                      | Sample       | ID:  | WB6 |                     |                                              |                   |                            |                                                 |                      |                             |  |  |
|----------------------|--------------|------|-----|---------------------|----------------------------------------------|-------------------|----------------------------|-------------------------------------------------|----------------------|-----------------------------|--|--|
| Dibromofluoromethane |              | 4130 | 109 | 1. 13               | - Paradistria extant                         |                   |                            | 6046000                                         |                      | 1                           |  |  |
| Toluene-d8           |              |      | 98  |                     |                                              |                   |                            |                                                 |                      |                             |  |  |
| Bromofluorobenzene   | <u>i. 19</u> | UTBB | 103 | 1.1 + 85.1<br>1.1 - | - 1. 20 mm m m m m m m m m m m m m m m m m m | 200 mg - 1 mg - 1 | 620,600 (1)<br>620,600 (1) | stagnasturi<br>Laboritada - 1<br>Laboritada - 1 | .12022011<br>1227551 | 241,0000010<br>31 (10,00000 |  |  |

# QC Sample Report - EPA Method 8260

Matrix: Water

Batch #: 8260W1641

### **Batch Accuracy Results**

| Sample ID: | Laboratory | Control | Sample |
|------------|------------|---------|--------|
|------------|------------|---------|--------|

| Analyte            | Spike Concentration<br>µg/L | % Recovery LCS | Acceptance Limits<br>% Recovery | Pass/Fail |
|--------------------|-----------------------------|----------------|---------------------------------|-----------|
| 1,1-Dichloroethene | 20.0                        | 92             | 59 - 172                        | Pass      |
| Benzene            | 20.0                        | 97             | 66 - 142                        | Pass      |
| Trichloroethene    | 20.0                        | 97             | 71 - 137                        | Pass      |
| Toluene            | 20.0                        | 97             | 59 - 139                        | Pass      |
| Chlorobenzene      | 20.0                        | 99             | 60 - 133                        | Pass      |

### Analytical Notes:

| <b>Batch</b> | Precision | Results |
|--------------|-----------|---------|

MS/MSD Sample ID: Laboratory Control Sample

| Analyte            | Spike Sample<br>Recovery µg/L | Spike Duplicate<br>Recovery µg/L | Relative Percent<br>Difference (RPD) | Upper Control Limit<br>RPD | Pass/Fail |
|--------------------|-------------------------------|----------------------------------|--------------------------------------|----------------------------|-----------|
| 1,1-Dichloroethene | 18.3                          | 19.1                             | 4%                                   | 22%                        | Pass      |
| Benzene            | 19.5                          | 21.4                             | 9%                                   | 21%                        | Pass      |
| Trichloroethene    | 19.4                          | 20.8                             | 7%                                   | 24%                        | Pass      |
| Toluene            | 19.5                          | 20.5                             | 5%                                   | 21%                        | Pass      |
| Chlorobenzene      | 19.8                          | 21.6                             | 9%                                   | 21%                        | Pass      |

MS: Matrix Spike Sample MSD: Matrix Spike Duplicate

| Analytical N | otes: |  |
|--------------|-------|--|
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |
|              |       |  |

# Centrum Analytical Laboratories, Inc.

Centrum Job #

602933/

290 TENNESSEE STREET REDLANDS, CA 92373

(909) 798-9336 • (800) 798-9336 FAX (909) 793-1559

**Chain of Custody Record** 

Page\_\_\_\_of\_\_\_

|                                                                                                                                                                                                        |                                              |                  |                                                |                               |                                                      |                           |                                                               |                                |                           |                     | Anal                                       | yses                 | Req               | uest      | ed                          |                     |                      |                       |                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------|---------------------------------------------------------------|--------------------------------|---------------------------|---------------------|--------------------------------------------|----------------------|-------------------|-----------|-----------------------------|---------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                        | ack Poss                                     |                  | Project N  Cal  Phone:  (510)  Address:  (320) | ame:<br>trans<br>785.<br>W. h | : S. Oakland M<br>-1111 (510) 785<br>Into the Haywar | , S.<br>-119Z<br>(LA 149  | 0 <u>8540 0018 634</u> 2                                      | 8080: Pesticides PCBs Pest/PCB | 8015M: Diesel Fuel Screen | soline 8020 CHENTER | £                                          | ns: 8270 625         | C(CAM) PP RCRA    |           | pH TDS TSS Conductivity COD | Fluoride Hex Chrome |                      |                       | Turn-around time  24 Hr. RUSH*  48 Hr. RUSH*  Normal TAT Requires prior approval additional charges apply |
| Centrum ID<br>(Lab use only)                                                                                                                                                                           | Sample ID<br>(As it should appear on report) | Date<br>sampled  | Time<br>sampled                                | Sample<br>matrix              | Site location                                        | Containers:<br># and type | GCIMS: 8260                                                   | 8080: Pesti                    | 8015M: Die                | 8015M: Gasoline     | 118.1 (TRPH)                               | Serrivolatiles: 8270 | Metals: TTLC(CAM) | Lead Only | n som Hq                    | Flashpoint          |                      |                       | Remarks/<br>Special Instructions                                                                          |
|                                                                                                                                                                                                        | MB)                                          | 4/8/99           | 855                                            | W                             |                                                      | 5- VOAS<br>1-1LAML        | X                                                             |                                | X                         | X                   |                                            |                      |                   |           |                             |                     |                      |                       | 602 494 353                                                                                               |
|                                                                                                                                                                                                        | WBZ                                          |                  | 915                                            | 1                             |                                                      |                           |                                                               |                                | $\times$                  |                     |                                            |                      |                   |           |                             |                     |                      |                       | 602494361                                                                                                 |
|                                                                                                                                                                                                        | WB3                                          |                  | 1015                                           |                               |                                                      |                           |                                                               |                                | X                         |                     |                                            |                      |                   |           |                             |                     |                      |                       | 602494379                                                                                                 |
|                                                                                                                                                                                                        | W B4                                         |                  | 1030                                           |                               |                                                      | - V n 50                  |                                                               |                                | X                         | 1                   |                                            |                      |                   | 7.        |                             |                     |                      |                       | 602494387                                                                                                 |
|                                                                                                                                                                                                        | W B5                                         |                  | 1100                                           |                               |                                                      | 4-Vons                    |                                                               |                                |                           |                     |                                            |                      |                   |           |                             |                     |                      |                       | 602494486                                                                                                 |
|                                                                                                                                                                                                        | WB6                                          |                  | 1148                                           | V                             |                                                      | 5-Voas<br>1-11 Ambir      | . 🗸                                                           |                                | X                         |                     |                                            |                      |                   |           |                             |                     |                      |                       | 602494494                                                                                                 |
|                                                                                                                                                                                                        |                                              |                  |                                                |                               |                                                      |                           |                                                               |                                |                           |                     | ,                                          |                      |                   |           |                             |                     |                      |                       | ,                                                                                                         |
| ·                                                                                                                                                                                                      |                                              |                  |                                                |                               |                                                      |                           |                                                               |                                |                           |                     |                                            |                      |                   |           |                             |                     |                      |                       |                                                                                                           |
|                                                                                                                                                                                                        |                                              |                  |                                                |                               |                                                      |                           |                                                               |                                |                           |                     |                                            |                      |                   |           |                             |                     |                      |                       |                                                                                                           |
|                                                                                                                                                                                                        |                                              |                  |                                                |                               |                                                      |                           |                                                               |                                |                           | ٠.                  |                                            |                      |                   |           |                             |                     |                      |                       |                                                                                                           |
| Relinguished by                                                                                                                                                                                        | y: (Sampler's Signature)                     |                  | Date 4/8/99                                    | Time<br>1700                  | Relinquished by Pace                                 |                           | Date<br>4                                                     | ila<br>1                       | ∏me<br>  £                | 180                 | . To be completed by laboratory personnel: |                      |                   |           |                             |                     |                      | Sample Disposal       |                                                                                                           |
| Received by:                                                                                                                                                                                           |                                              |                  | Date                                           | Time                          | Received 6.                                          |                           | Date Time                                                     |                                | r ·                       |                     |                                            |                      |                   |           |                             | 10                  | _                    | ☐ Client will pick up |                                                                                                           |
| The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analyses specified above under the Terms and Conditions set forth on the back hereof. |                                              | Relinquished by: |                                                | Date Time                     |                                                      | •                         | Custody seals? X Yes No  All sample containers intact? Xes No |                                |                           |                     |                                            | ☐ Return to client   |                   |           |                             |                     |                      |                       |                                                                                                           |
|                                                                                                                                                                                                        |                                              | ve under         | Received for Laboratory by:                    |                               | Date                                                 |                           | Time                                                          |                                | □ Co                      | ourler              | ×ψ                                         | PS/Fe                | ed Ex             | □ H       | and ca                      | ırried              | Lab disposal fee \$5 |                       |                                                                                                           |
| Laboratory Notes:                                                                                                                                                                                      |                                              |                  |                                                | •                             |                                                      |                           |                                                               |                                |                           |                     |                                            |                      |                   |           | Sample Locator No.          |                     |                      |                       |                                                                                                           |
|                                                                                                                                                                                                        |                                              |                  |                                                |                               |                                                      |                           |                                                               |                                |                           |                     |                                            |                      |                   |           |                             |                     |                      |                       |                                                                                                           |