DEPARTMENT OF TRANSPORTATION

BOX 23660 OAKLAND, CA 94623-0660 (510) 286-4444 TDD (510) 286-4454

W 397

November 4, 2002

Mr. Barney Chan Alameda County Environmental Health Service Environmental Protection 1131 Harbor Bay Pkwy; Suite 250 Alameda, California 946502-6577 Alameda County

NOV 0 6 2002

Environmental Heatt

SUBJECT: Draft review for the third quarter 2002 groundwater monitoring report on Caltrans South Oakland Maintenance station at 1112 29th Avenue, Oakland, California

Dear Mr. Chan:

Please find attached a draft copy for the third quarter 2002 groundwater monitoring report on Caltrans South Oakland maintenance station at 1112 29th Avenue, Oakland California. This document summarizes the results found at the site from samples taken from the four monitoring wells. Please forward your comments to us so we can implement the requirements in the final copy signed by contractor and submit for your approval.

If you have any questions or require additional information, please contact Bahram Sazegar at

(510) 286-5643.

JAPAR /570-286-6384 ROUDSARI

RAY B**O**YER

District Branch Chief

Office of Environmental Engineering

CALIFORNIA DEPARTMENT OF TRANSPORTATION

District 4, Office of Environmental Engineering Mail Station 6 111 Grand Avenue 94612/Mail: P.O. 23660 Oakland, CA 94623-0660

Attachments

Bahram Sazegar, P.E. Transportation Engineer Hazardous Waste 510.286.5643 Calnet 8.541.5643 Fax 510.286.5728 bahram_sazegar@dot.ca.gov

Cc: Rboyer, File

N 397

Alameda County

NOV 0 6 2002

Environmental Health

DRAFT
THIRD QUARTER 2002
GROUNDWATER MONITORING
REPORT

TASK ORDER NUMBER 04-987901-VU CONTRACT NUMBER 43A0078

> SOUTH OAKLAND MAINTENANCE STATION 1112 29th AVENUE OAKLAND, CALIFORNIA

> > Prepared for

CALIFORNIA DEPARTMENT
OF TRANSPORTATION
District 4
P.O. Box 23660
Oakland, California

Prepared by

Professional Service Industries 4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> October 25, 2002 575-1G026

TABLE OF CONTENTS

STATEMEN	T OF LIMITATIONS AND PROFESSIONAL CERTIFICATION	j
1.0 INTROE 1.1 S	DUCTIONITE DESCRIPTION AND HISTORY	1 1
2.1 G 2.2 G 2.3 L 2.4 C	DWATER MONITORING ACTIVITIES	4 5
3.0 SUMMA	RY AND CONCLUSIONS	7
<u>FIGURES</u>		
	SITE LOCATION GROUNDWATER ELEVATION MAP - September 24, 2002 MTBE CONCENTRATION MAP - September 24, 2002 MTBE vs. TIME: MW-1, MW-2, AND MW-4 MTBE vs. TIME: MW-3	
TABLES		
TABLE 1: TABLE 2:	SUMMARY OF GROUNDWATER ELEVATION DATA SUMMARY OF GROUNDWATER ANALYTICAL DATA	
APPENDICE	<u>s</u>	

APPENDIX B: LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

APPENDIX A: GROUNDWATER PURGE LOGS

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATIONS

Information provided in Professional Services Industries, Inc., (PSI) report number 575-1G026 is intended exclusively for the California Department of Transportation (Caltrans) for the evaluation of groundwater contamination as it pertains to the subject site. PSI is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the State of California or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted will identify any or all sources or locations of contamination.

This report is issued with the understanding that Caltrans is responsible for ensuring that the information contained in this report is brought to the attention of the appropriate regulatory agency. This report has been reviewed by a geologist who is registered in the State of California and whose signature and license number appear below.

Professional Service Industries, Inc.

Frank R. Poss Senior Hydrogeologist Chris Merritt R.G. (7156) Project Geologist

1.0 INTRODUCTION

This report summarizes the results of the Third Quarter 2002 groundwater monitoring and sampling activities conducted on September 24, 2002 at the South Oakland Maintenance Yard located at 1112 29th Avenue in Oakland, California. The subject site location is presented on Figure 1. The purpose of this project is to comply with quarterly sampling requirements for Alameda County Department of Environmental Health. The work was conducted under Contract 43A0078 and Task Order Number 04-987901-VC.

1.1 SITE DESCRIPTION AND HISTORY

The site is currently used as a maintenance station by Caltrans. The maintenance station includes offices, a repair shop, a sign shop, and several material storage bins. The entire property covers approximately two acres. The site is paved with asphalt and is relatively flat. The Alameda/Oakland Estuary is approximately 0.5 miles southwest of the site.

One 4,000-gallon diesel underground storage tank (UST) and one 2,000-gallon gasoline UST were removed from the site on March 11, 1997. The tank pit was over-excavated and soil samples were collected. Sidewall and bottom samples collected from the excavation contained concentrations of Total Petroleum Hydrocarbons as Gasoline (TPH-G, [as high as 380 milligrams per kilogram (mg/kg)]), and Total Petroleum Hydrocarbons as Diesel (TPH-D, [as high as 21 mg/kg]). Concentrations of Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), ranged from 0.010 to 48 mg/kg. Methyl Tertiary Butyl Ether (MTBE) concentrations ranged from 0.041 to 9.15 mg/kg. Groundwater samples were not collected (Caltrans, 1999).

On April 6 and 7, 1999, Boreholes B1 through B6 were drilled at the site. The borehole locations are presented in Figure 2. All of the boreholes were converted to 1.3-centimeter (cm) (0.5-inch) inside diameter temporary groundwater monitoring wells. Soil samples were collected from each borehole at depths of 1.52, 3, and 4.56 meters (5, 10, and 15 feet) below ground surface (bgs).

Soil samples were analyzed for TPH-G and TPH-D by EPA method 8015M. Volatile Organic Compounds (VOCs) were analyzed using EPA Method 8260. TPH-G was detected in one soil sample (B6-10 [13 mg/kg]). None of the soil samples contained detectable concentrations of TPH-D. MTBE was the only VOC detected in the soil samples analyzed. MTBE was detected in the sample B5-1.5 meters (0.16 mg/kg). No other soil sample contained a detectable concentration of MTBE (PSI, 1999).

TPH-G was detected in groundwater samples collected from temporary Wells B3 (520 μ g/l) and B4 (520 μ g/l). No other groundwater samples collected contained detectable concentrations of TPH-G. No TPH-D was detected in any of the groundwater samples collected. Benzene was detected in the groundwater sample collected from Well WB3

(6.3 μ g/l). MTBE was detected in the groundwater samples collected from Well WB5 (6,600 μ g/l) and WB6 (24 μ g/l). Concentrations of other gasoline related compounds were detected in groundwater samples collected from Wells WB1, WB3, WB4, and WB5. Chloroform was detected in groundwater samples collected from Wells WB4 (2.4 μ g/l) and WB6 (2.7 μ g/l). Tetrachloroethene (synonym Perchloroethene [PCE]) was detected in the groundwater sample collected from Well WB6 (12 μ g/l) (PSI, 1999).

On August 13, 1999, Boreholes B7 through B9 were drilled at the site (Figure 2). The boreholes were drilled along the property boundary. Results of the sampling indicated the following:

- TPH-G concentrations were detected in one soil sample [B9-15 (0.54 mg/kg)] at the site.
- TPH-D was detected in one groundwater sample [WB7 (0.73 mg/l)]
- MTBE was detected in grab groundwater samples WB7 (5,600 μ g/l) and WB8 (9.0 μ g/l).

In June and July 2000, PSI completed a supplemental investigation, which included the installation of four monitoring wells at the site. The conclusions and recommendations of the investigation follows:

- None of the soil samples contained detectable concentrations of TPH-G, while TPH-D was detected in two soil samples at concentrations below regulatory concern.
- None of the soil samples contained detectable concentrations of VOCs with the exception of MTBE. The highest MTBE concentration detected was 0.52 mg/kg in soil sample B3-10. All of the MTBE concentrations detected were below first encountered groundwater.
- None of the groundwater samples contained detectable concentrations of TPH-D, while TPH-G was detected in two groundwater samples at a maximum concentration of 2.7 mg/l.
- VOCs were detected in the groundwater samples collected with only benzene and MTBE at concentrations greater than the State of California Primary Drinking Water Standard (PDWS) or Secondary Drinking Water Standard (SDWS). Based on the concentrations detected, MTBE is the primary contaminant of concern (COC).
- The report recommended continued groundwater monitoring and the installation of additional monitoring wells down gradient of monitoring well MW-3. Additionally, as TPH-D was not detected in the groundwater sample from monitoring well MW-3, the report recommended the analyses for TPH-D in this well be eliminated.

In August 2001, PSI completed a subsequent investigation into the lateral extent of groundwater contamination at the site. Three boreholes were drilled at the All Aboard Mini Storage facility located down gradient of the site. Soil and groundwater samples were collected from each of the boreholes. The samples were analyzed for TPH-G and VOCs. The conclusions and recommendations of the investigation follows:

- TPH-G and VOCs were not detected in any of the soil samples above laboratory detection limits.
- TPH-G was detected in the groundwater samples collected from monitoring well MW-1 (1.7 mg/l).
- VOCs were detected in the groundwater samples from the site. However, only MTBE
 were detected in concentrations greater than the PDWS. Based on the concentrations
 detected in the groundwater at the site, the primary COC is MTBE.
- The results of the groundwater sampling conducted at the All-Aboard Mini-Storage indicates that MTBE impacted groundwater above the PDWS has not migrated down gradient onto the All-Aboard Mini-Storage site (downgradient site).
- Based on the results of the soil and groundwater sample analyses, PSI recommends no further down-gradient investigation of the South Oakland Maintenance Station.
- For complete details see PSI's Hazardous Waste Preliminary Site Investigation Report, South Oakland Maintenance Station dated September 27, 2001.

On April 10th, 2002, further data was gathered from GEOCON concerning the sampling of the wells on March 27, 2001 and June 26, 2001. The additional groundwater elevation data as well as analytical results were added into Table 1 and Table 2. GEOCON reported the following:

- On March 27, 2001 MW-3 had a TPH-G concentration of 5.2 milligrams per liter (mg/l). MTBE concentrations were: 29 micrograms per liter (ug/l) for MW-1, 110 ug/l for MW-2, 5,500 ug/l in MW-3. MW-3 also had the following VOC concentrations: 220 ug/l of benzene, 5.9 ug/l of Toluene, 2.2 ug/l of Ethylbenzene, 12 ug/l of TAME, and 270 ug/l of Tert-butanol.
- On June 26, 2001 three wells had TPH-G levels that were above the laboratory detection limit. MW-1 had a TPH-G concentration of 0.24 ug/l, MW-2 had 0.11 ug/l, and MW-3 had 2.5 ug/l. MTBE was found in concentrations of 51 ug/l in MW-2 and 2,800 ug/l in MW-3. MW-3 also had the following VOC concentrations: a benzene concentration of 20 ug/l, 12 ug/l of TAME, and 230 ug/l of Tert-butanol.

2.0 GROUNDWATER MONITORING ACTIVITIES

2.1 GROUNDWATER ELEVATION AND HYDRAULIC GRADIENT

On September 24, 2002, static groundwater elevations were measured in wells MW-1 through MW-4 (Figure 2). The groundwater depths were measured using a groundwater interface probe. A summary of the depth to groundwater data collected during this monitoring event and previous monitoring events is presented in Table 1. Based on the groundwater data, the inferred groundwater flow direction beneath the site is to the west (Figure 2) with a hydraulic gradient of 0.013.

2.2 GROUNDWATER SAMPLING

Groundwater samples were collected from monitoring wells MW-1 through MW-4. Prior to the collection of groundwater samples, the monitoring wells were purged of a minimum of three well volumes of water until pH, conductivity, and temperature stabilized. The wells were allowed to recover to at least 80 percent of their original static groundwater levels or for 2 hours prior to sampling.

The following procedures for well monitoring, well purging, and water sampling were implemented while sampling the wells:

- 1. All equipment was washed prior to entering the well with an Alconox solution, followed by two tap water rinses and a deionized water rinse.
- 2. Prior to purging the wells, depth-to-water was measured using an Solinst groundwater interface probe to an accuracy of approximately 0.01 foot. The measurements were made to the top of the well casing on the north side.
- 3. Monitoring wells at the site were prepared for sampling by purging the well of approximately 3 well volumes of water using disposable Teflon bailers.
- 4. Water samples were collected with a single-use Teflon bailer after the well had been purged and water in the well had equilibrated to approximately 80 percent of the static water level. The water collected was immediately decanted into laboratory-supplied vials and bottles. The containers were overfilled, capped, labeled, and placed in a chilled cooler prior to delivery to the laboratory for analysis.
- 5. Chain-of-custody procedures, including chain-of-custody forms, were used to document water sample handling and transport from collection to delivery to the laboratory for analyses.

- 6. Groundwater samples were delivered to the State-certified hazardous waste laboratory within approximately 24-hours of collection.
- 7. Purged water was contained in a DOT approved 55-gallon drum. The drum was labeled with the contents, date, well number, client name, and project number.

The groundwater monitoring purge logs are presented in Appendix A.

2.3 LABORATORY ANALYSIS AND RESULTS

The groundwater samples were submitted for analyses to Basic Laboratory of Redding, California, a State of California certified hazardous waste analytical laboratory. The samples were analyzed for the following:

- EPA 8015 modified TPH-G;
- EPA 8260 Volatile Organic Compounds (VOCs).

A summary of the laboratory results for groundwater samples is presented in Table 2. A copy of the laboratory reports and chain of custody records are presented in Appendix B. The following are the results of the groundwater sampling:

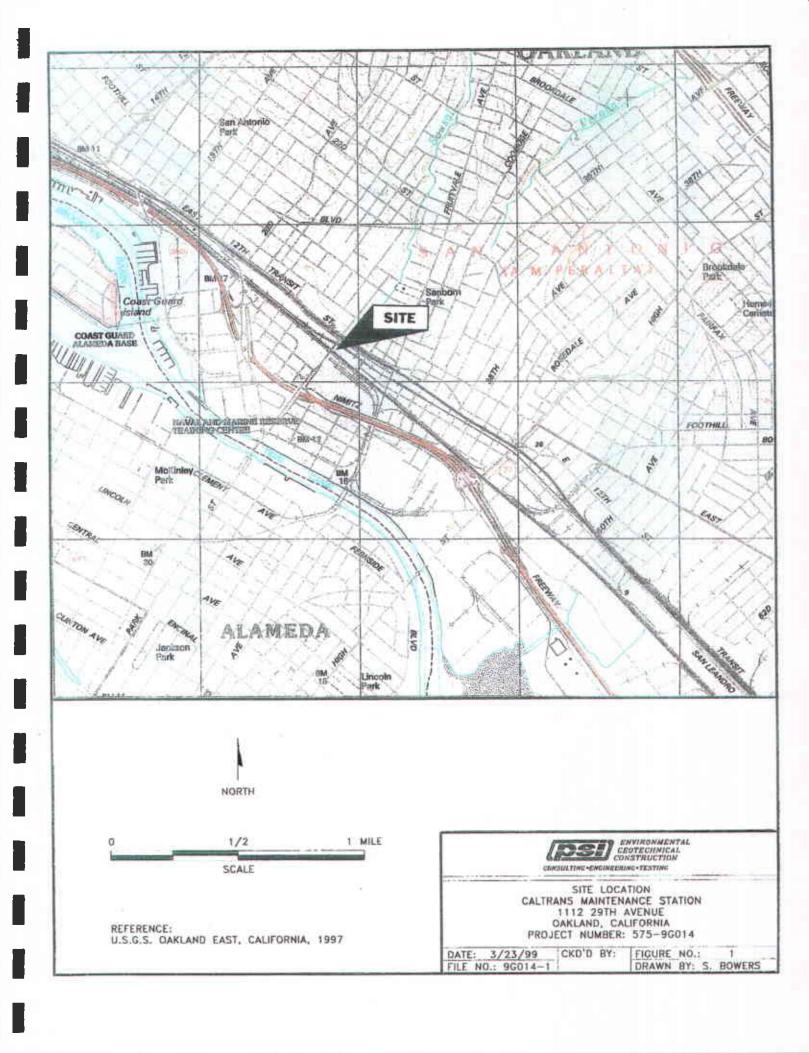
TPH-G was detected in the groundwater samples collected from monitoring wells MW-1 (0.166 mg/l) and MW-3 (2.06 mg/l). TPH-G concentrations have generally decreased since the previous sampling results.

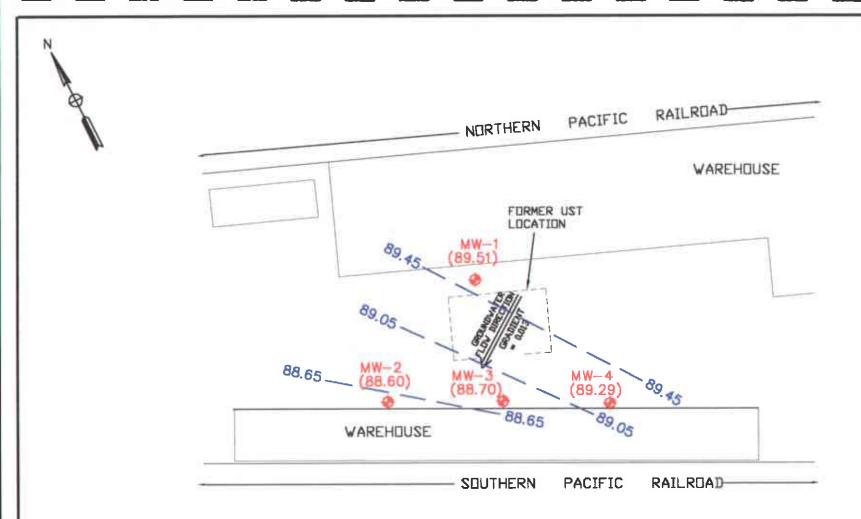
VOCs were detected in the groundwater samples with the highest concentrations detected in the groundwater sample collected from monitoring well MW-3. The compounds detected are common constituents of gasoline. The compound with the highest concentration was MTBE at 2,020 micrograms per liter (µg/l) in monitoring well MW-3. MTBE concentrations decreased in one of the monitoring wells and increased in three of the monitoring wells since the previous sampling event.

2.4 COMPARISON OF GROUNDWATER RESULTS WITH REGULATORY CRITERIA

The concentrations of contaminants reported by the analytical laboratory were compared to PDWS or SDWS. The following samples were above their respective PDWS or SDWS.

Benzene concentrations detected in groundwater samples MW-3 (24.0 μg/l).


• MTBE concentrations detected in groundwater samples MW-1 (60.0), MW-2 (34.6 μg/l), and MW-3 (2,020 μg/l).


Based on the concentrations detected in the groundwater at the site, the primary COC is MTBE. The concentrations of MTBE in each of the monitoring wells are shown in Figure 3. This figure indicates that the highest concentrations of MTBE were encountered in the groundwater samples collected in the monitoring well MW-3, directly down gradient of the former USTs.

3.0 SUMMARY AND CONCLUSIONS

PSI performed a quarterly monitoring event on September 24, 2002. Groundwater samples were collected from monitoring wells MW-1 through MW-4. Based on measurements collected and analytical data the following conclusions are provided. Groundwater elevation data indicates the groundwater flow direction beneath the site is towards the west, with a hydraulic gradient of 0.013.

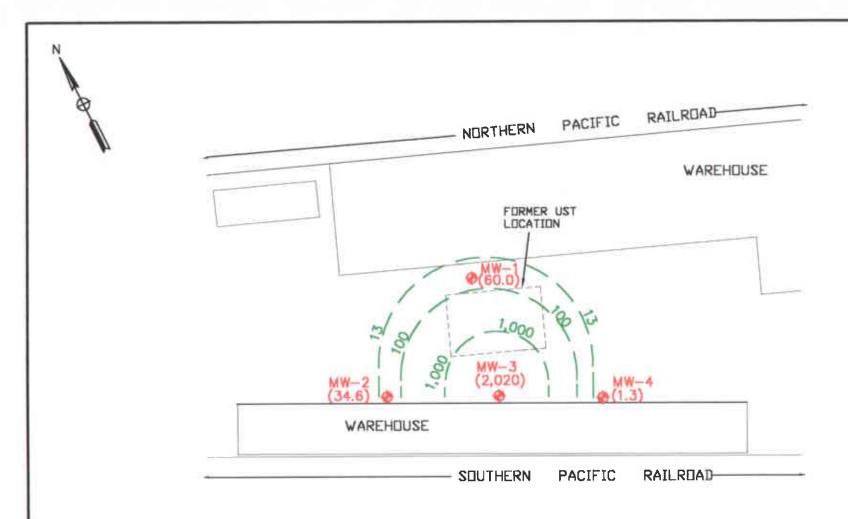
- TPH-G was detected in the groundwater samples collected from monitoring wells MW-1 (0.166 mg/l) and MW-3 (2.06 mg/l).
- VOCs were detected in all four groundwater samples collected from the monitoring wells at the site. Only benzene and MTBE were detected in concentrations greater than the PDWS. Based on the concentrations detected in the groundwater at the site, the primary COC is MTBE.

MW-4 (89.29)

- GROUNDWATER MONITORING WELL LOCATION (GROUNDWATER ELEVATION GIVEN IN FEET MSL)

B9.45

GROUNDWATER ELEVATION CONTOUR
(ELEVATION IN FEET MSL)


4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

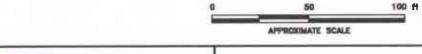
Frader	Name .
	CALTRANS MAINTENANCE STATION
	1112 20TH AVENUE, CARLAND, CALIFORNIA
Title	COLUNDWATER ELEVATION MAP

B.B.	10/02	1G02608	,
Approved Par	Prefeet Hau		ı

u .	GROUNDWATER	ELEV	ATION	MAP
	(September	24,	2002)	

F.P. 575-1G026

EXPLANATION:

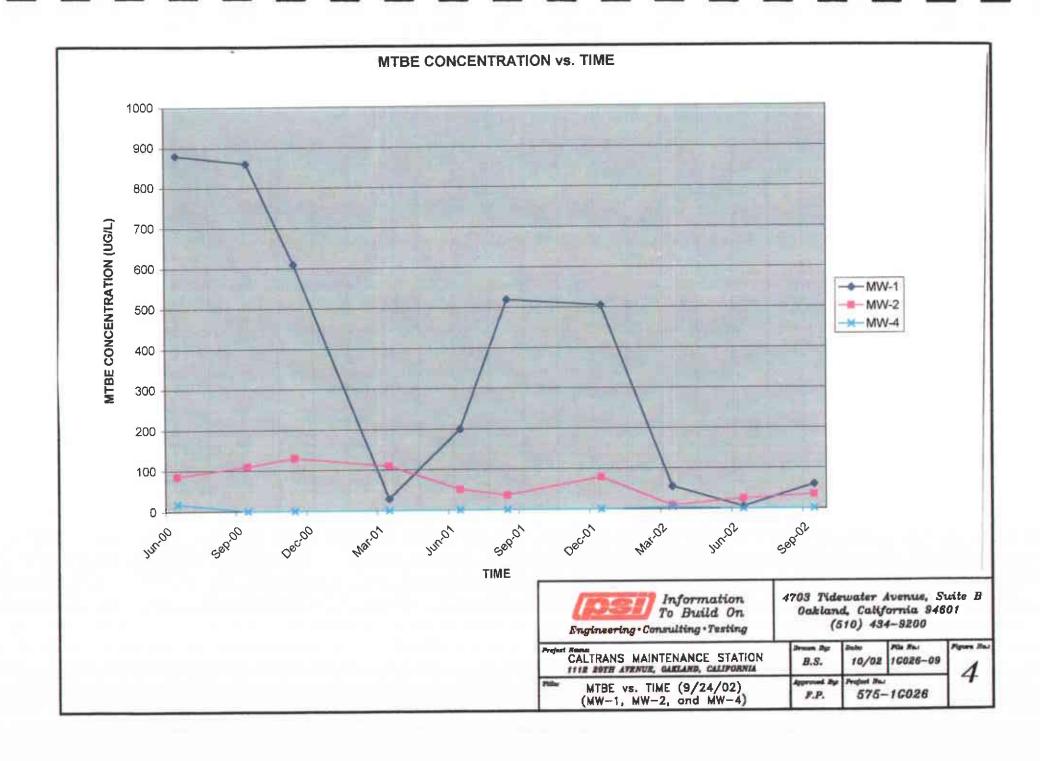

- MTBE CONCENTRATION CONTOUR
(IN MICROGRAMS PER LITER (UG/L))

MW-3

- GROUNDWATER MONITORING WELL LOCATION

(2,020)

 CONCENTRATION (ug/L) OF MTBE DETECTED IN GROUNDWATER SAMPLES (ND INDICATES NOT DETECTED ABOVE LAB METHOD DETECTION LIMITS)


4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

Pile Had

3

Profesi	CALTRANS MAINTENANCE STATION
Piller	MTBE CONCENTRATION CONTOUR MAP (9/24/02)

B.H.	10/02 16026-			
F.P.		1G026		

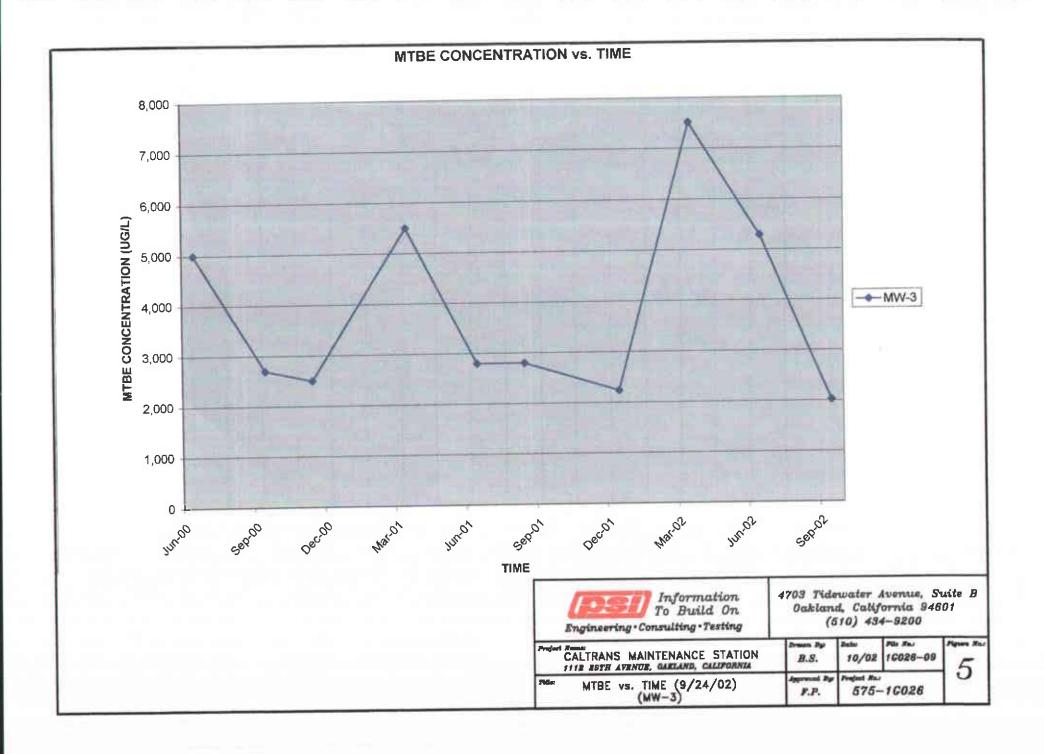


TABLE 1

GROUNDWATER ELEVATION
SOUTH OAKLAND MAINTENANCE STATION
SOUTH OAKLAND, CALIFORNIA

Sample Location	Date	TOC Elevation (feet msl)*	Depth To Groundwater	Groundwater Elevatio (feet msl)*
MW-1	6/27/00	99 57	9.13	90 44
	9/11/00	99 57	9 52	90.05
	11/28/00	99.57	9 62	89.95
	3/27/01	99.57	8.79	90.78
	6/26/01	99.57	9.80	89.77
	12/5/01	99.57	8.32	91.25
	3/4/02	99.57	8.66	90.91
	6/14/02	99.57	9.53	90.04
	9/24/02	99.57	10.06	89.51
MW-2	6/27/00	98.91	9.05	89.86
	9/11/00	98.91	9 95	88.96
	11/28/00	98.91	9.94	88.97
	3/27/01	98.91	8.35	90.56
	6/26/01	98,91	10.76	88 15
	12/5/01	98.91	8.53	90.38
	3/4/02	98,91	8.25	90.66
	6/14/02	98.91	9.50	89 41
	9/24/02	98.91	10.31	88.60
MW-3	6/27/00	98 98	8.76	90 22
*******	9/11/00	98.98	9 28	89.70
	11/28/00	98,98	9 36	89.62
	3/27/01	98.98	8.35	90 63
	6/26/01	98 98	10.51	88 47
	12/5/01	98,98	8.05	90.93
	3/4/02	98,98	8.05	90.93
	6/14/02	98 98	9.35	89.63
	9/24/02	98.98	10.28	88.70
MW-4	6/27/00	99,04	8.74	90.30
	9/11/00	99.04	9.30	89.74
	11/28/00	99.04	9.32	89.72
	3/27/01	99 04	7.96	91.08
	6/26/01	99.04	9.56	89 48
	12/5/01	99.04	8.58	90.46
1	3/4/02	99 04	8.00	91.04
	6/14/02	99.04	8.79	90.25
	9/24/02	99.04	9.75	89 29

Notes:

All measurements are recorded in feet,

* TOC Measurements are from data supplied by Meridian Surveying

Feel msl = feet above mean sea level

TABLE 2

ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES SOUTH OAKLAND MAINTENANCE STATION SOUTH OAKLAND, CALIFORNIA

Sample LD.	Date	TPH-G mg/l	TPH-D mg/l	мтве иод	tert- Butanol (TBA) ug/l	fort-Amyl Mothyl Ether (TAME) ug/l	Benzene µg/l	Toluene yg/l	Ethyl- benzene pg/l	Total Xylenes µg/l	BATE Tou	Di-isopropyl ether ug/l	Other VOCs upil
MW-1	6/27/00	0.85	-	880	<50	<5	20	<1.0	<1.0	19	-	= = 1	
16144-1	9/11/00	0.92	-	860	190	<5	14	<1.0	1.6	3.6	164	227	247
	11/28/00	<0.5		610	<250	<25	3.6	<2.5	<2.5	<7.5	222		-
	3/27/01	<0.20	_	29	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<5.0	<5.0	<5.0
	6/26/01	0.24	-	200	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<5.0	<50	<5 0
	8/24/01	<0.5	-	520	<1,200	<50	<25	<25	<25	<75	100	77.5	
	12/5/01	0.388	-	505	<100	<0.5	3.5	<0.3	2.4	15.4	-	-	
	3/4/02	0.69		55	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	T-1
	6/14/02	<0.5		5.3	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	-
	9/24/02	0.186	74	80,0	<50	<0.5	<0.5	<0.5	0.50	1.80	<0.5	<0.5	napthalene - 0.5 n-propylbenzene - 0.7 1,2,4-htmethylbenzene - 4.8 1,3,5-trimethylbenzene - 1.4 n-Bulylbenzene - 2.3
					*50		-10	41.0	<1.0	<3.0	_		22
MW-2	6/27/00	<0.5		86	<50	<5 <5	<1.0	41.0	<1.0	<3.0	-	-	
	9/11/00	<0.5		110	<50		<1.0	<1.0	<1.0	<30		-	
	11/28/00	<0.5		130	<50	<5.0	<0.50	<0.50	<0.50	<1.0	<50	<5.0	<5.0
	3/27/01	<0.20	-	110	<200		<0.50	<0.50	<0.50	<1.0	<5.0	<5.0	<5.0
	6/26/01	0.11		51	<200	<5.0		<2.0	<2.0	<6.0	- 430	-50	
	8/24/01	<0.5	-	36	<100	<4	<0.3	<0.3	<0.3	<0.6		-	
	12/5/01	0,06	-	79	<100	<0.5		<0.5	<0.5	<1.0	≪0.5	<0.5	- 2
	3/4/02	<0.5	345	9	<50	<0,5	<0.5	40.5	<0.5	<1	<0.5	<0.5	
	6/14/02	<0.5	375	25.0	<0,5	<0.5		<0.5	<0.5	<1.0	<0.5	<0.5	
	9/24/02	<0.05	_	34.6	<60	<0.5	<0.5	<0.5	<0.5	110	40.5	703	
Sample LD.	Date	TPH-G	TPH-O	MTBE Ug/I	tert- Butanol (TBA)	tert-Amyl Methyl Ether	Denzage por	Toluene µg/l	Ethyl- benzene	Total Xylenes	ETRE Ug/I	Di-isopropyl ether	Other VOCs ug/l
		mg/f			901	(ZAME)	par.		hay	pot	991	ug/l	
NAVA-3	6/27/00	2.7	<0.4	5,000			73	1.7	1.2	4.6	-	ug/l	-
MW-3					- pg/l	uga					111.000		
MW-3	6/27/00 9/11/00 11/28/00	2.7	<0.4	5,000	1,500	11	73	1.7	1.2	4.6	-		
MW-3	9/11/00	2.7	<0.4	5,000 2,700	1,500 310	11 10	73 19	1.7	1.2	4.6	-	=	-
MW-3	9/11/00 11/28/00	2.7 1.9 1.7	<0.4	5,000 2,700 2,500	1,500 310 <1,000	11 10 <100	73 19 27	1.7 <1.0 92	1.2 <1 0 <10	4.6 <3.0 <30			
MW-3	9/11/00 11/28/00 3/27/01	2.7 1.9 1.7 5.2	<0.4	5,000 2,700 2,500 5,500	1,500 310 <1,000 270	11 10 <100 12	73 19 27 220	1.7 <1.0 92 5.9	1.2 <1 0 <10 2 2	4.6 <3.0 <3.0 <1.0	- - - <5.0	<5.0	
MW-3	9/11/00 11/28/00 3/27/01 6/26/01	2.7 1.9 1.7 5.2 2.5	<0.4	5,000 2,700 2,500 5,500 2,800	1,500 310 <1,000 270 230	11 10 <100 12 12	73 19 27 220 20	1.7 <1.0 92 5.9 <0.50	1.2 <1.0 <10 <2.2 <0.50	4.6 <3.0 <3.0 <1.0 <1.0	<5.0 <5.0	<50 <50	- - - -
MW-3	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01	2.7 1.9 1.7 5.2 2.5 1.7	<0.4	5,000 2,700 2,500 5,500 2,800 2,800	1,500 310 <1,000 270 230 <5,000	11 10 <100 12 12 <200	73 19 27 220 20 <100	1.7 <1.0 92 5.9 <0.50 <100	1.2 <1.0 <10 2.2 <0.50 <100	4.6 <3.0 <3.0 <1.0 <1.0 <3.00	<5.0 <5.0	<5.0 <5.0	- - - - -
MVV-3	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01	2.7 1.9 1.7 5.2 2.5 1.7	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240	1,500 310 <1,000 270 230 <5,000	11 10 <100 12 12 12 <200 <200	73 19 27 220 20 <100 18.3	1.7 <1.0 92 5.9 <0.50 <100 0.3	1.2 <1.0 <10 2.2 <0.50 <100 1.2	4.6 <3.0 <3.0 <1.0 <1.0 <3.00	- - - <50 <50	<5.0 <5.0	-
MVV-3	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520	1,500 310 <1,000 270 230 <5,000 <5,000	11 10 <100 12 12 <200 <200	73 19 27 220 20 <100 18.3 94.2	1.7 <1.0 92 5.9 <0.50 <100 0.3	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4	4.6 <3.0 <3.0 <1.0 <1.0 <3.00 1	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	-
MW-3	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020	1,500 310 <1,000 270 230 <5,000 <5,000 <50 <0.5	11 10 <100 12 12 <200 <200 11 8.9 7.6	73 19 27 220 20 <100 18.3 94.2 3.6 24.0	1.7 <1.0 92 5.9 <0.50 <100 0.3 0.8 <0.5	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5	4.6 <3.0 <3.0 <1.0 <1.0 <3.00 1 6.9 <1 3.4	<50 <50 <50 - - - <0.5 <0.5 <0.5	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5	
MW-4	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020	1,500 310 <1,000 270 230 <5,000 <5,000 <50 <0.5 <50	11 10 <100 12 12 <200 <200 11 8.9 7.6	73 19 27 220 20 <100 18.3 94.2 3.6 24.0	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4	<50 <50 <50 <0.5 <0.5 <0.5	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5	
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.06	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020	1,500 310 <1,000 270 230 <5,000 <50 <0.5 <50 <50 <50 <50 <50 <50	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5	73 19 27 220 20 <100 18.3 94.2 3.6 24.0	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 12	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5	
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020 18 <10 <10	1,500 310 <1,000 270 230 <5,000 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5	73 19 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 12 <1.0 <1.0 <1.0	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5	<50 <50 <0.5 <0.5 <0.5	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5	
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00 3/27/01	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020 18 <10 <10 <50	1,500 310 <1,000 270 230 <5,000 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <5	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5 0	73 19 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5 <1.0 <1.0 <0.5 <0.5	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5 <1.0	<50 <50 	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5	Chkaroform = 5.1
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00 3/27/01 6/26/01	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08 <0.5 <0.5 <0.20 <0.05	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020 18 <10 <10 <50 <50	1,500 310 <1,000 270 230 <5,000 <50 <0.5 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5 <50 <50	73 19 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5 <0.50	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5 <1.0 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2 <1.0 <1.0 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5 <1.0 <1.0	<50 <50 	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5 <0.5	Chkıroform = 5.1
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00 3/27/01 6/26/01 8/24/01	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08 <0.5 <0.5 <0.05 <0.05	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020 18 <1.0 <1.0 <5.0 <5.0 <2.2	1,500 310 <1,000 270 230 <5,000 <50 <0.5 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5 <50 <50 <4	73 19 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5 <0.50 <0.50 <1.0	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5 <1.0 <1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2 <1.0 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5 <1.0 <3.0 <1.5 <1.0 <3.0	<5.0 <5.0 <0.5 <0.5 <0.5 <0.5	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5 <0.5	Chkaroform = 5.1 <50
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.4	5,000 2,700 2,500 5,500 2,800 2,240 7,520 5,290 2,020 18 <1.0 <1.0 <5.0 <5.0 <2.	1,500 310 <1,000 270 230 <5,000 <5,000 <50 <0.5 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5 <50 <44 <0.5	73 18 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5 <0.50 <1.0 <0.3	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5 <1.0 <1.0 <0.5 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2 <1.0 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5 <1.0 <3.0 <1.6 <1.0 <3.0 <1.0 <1.0 <3.0 <1.0 <1.0 <3.0 <1.0 <1.0 <3.0	<5.0 <5.0 <0.5 <0.5 <0.5 <0.5	<5.0 <5.0 <0.5 <0.5 <0.5 <0.5	Chkroform = 5.1 <50
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05	<0.4	5,000 2,700 2,500 5,500 2,800 2,800 2,240 7,520 5,290 2,020 18 <10 <10 <50 <2 <0.3 5	1,500 310 <1,000 270 230 <5,000 <5,000 <50 <0.5 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5 <50 <44 <0.5 <0.5	73 19 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5 <0.50 <1.0 <0.3 0.5	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5 <1.0 <1.0 <0.5 <0.50 <1.0 <0.5 <0.50 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2 <1.0 <1.0 <0.5 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5 <1.0 <3.0 <1.5 <1.0 <3.0 <1.0 <3.0 <1.0	<5.0 <5.0 <0.5 <0.5 <0.5 <0.5	<5.0 <5.0 <5.0 <0.5 <0.5 <0.5 <5.0 <5.0	Chlaroferm = 5.1 <50
	9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01 3/4/02 6/14/02 9/24/02 6/27/00 9/11/00 11/28/00 3/27/01 6/26/01 8/24/01 12/5/01	2.7 1.9 1.7 5.2 2.5 1.7 1.86 3.23 2.32 2.08 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.4	5,000 2,700 2,500 5,500 2,800 2,240 7,520 5,290 2,020 18 <1.0 <1.0 <5.0 <5.0 <2.	1,500 310 <1,000 270 230 <5,000 <5,000 <50 <0.5 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	11 10 <100 12 12 <200 <200 11 8.9 7.6 <5 <5 <5 <50 <44 <0.5	73 18 27 220 20 <100 18.3 94.2 3.6 24.0 <1.0 <1.0 <0.5 <0.50 <1.0 <0.3	1.7 <10 92 5.9 <0.50 <100 0.3 0.8 <0.5 0.5 <1.0 <1.0 <0.5 <0.50 <1.0 <0.50 <1.0 <0.50 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	1.2 <1.0 <10 2.2 <0.50 <100 1.2 2.4 <0.5 1.2 <1.0 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4.6 <3.0 <30 <1.0 <1.0 <300 1 6.9 <1 3.4 <3.0 <3.0 <1.5 <1.0 <3.0 <1.6 <1.0 <3.0 <1.0 <1.0 <3.0 <1.0 <1.0 <3.0 <1.0 <1.0 <3.0	<5.0 <5.0 <0.5 <0.5 <0.5 <0.5	<5.0 <5.0 <0.5 <0.5 <0.5 <0.5	Chkaroferm = 5.1 <50

NOTES

TPH-D = Total Petroleum Hydrocarbons as Diesel by EPA Method 8015M
TPH-G = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015M
MTBE = Methyl Tertiary Butyl Ether
ETBE = Ethyl Tertiary Butylether

VOCs = Volatile Organic Compounds mg/l = milligrams per liter ug/l = micrograms per liter --- = Not measured/ N

APPENDIX A

GROUNDWATER PURGE LOGS

FLUID MEASUREMENT FIELD DATA

· als	d ₂	PROJECT NAME:	Calde	South C	Del 1	PROJECT NO:	SHEET: (OF /
NATER LEVEL ME	EASUREMENT INS		Solins	South C	cirlord	SERIAL NO:	2/3-11	-026
	TION INSTRUME		SULLO			SERIAL NO:		
QUIP, DECON:	☐ ALCONOX		/DEION 1 RINSE	☐ ISOPROPANOL	☐ ANALYTE	FREE FINAL RINSE	☐ TAP WATER F	INAL RINSE
TAP WAT		LIQUINOX WASH	☐ DIST/DE	- I - I - I - I - I - I - I - I - I - I	OTHER SOLVENT	☐ DIST/DEION	The state of the s	☐ AIR DRY
WELL NUMBER	GROUND SURFACE ELEVATION	TOP OF CASING ELEVATION	DEPTH TO PRODUCT BELOW TOC	DEPTH TO WATER BELOW TOC	WELL DEPTH BELOW TOC.	PRODUCT THICKNESS	WATER TABLE ELEVATION	ACTUAL TIME
MW-1				10.00	25.18			9:56
mwa				10.31	19.47			9:58
mw3				10.28	20.20		۸	10:00
mw4				9.75	24.37			10.04
			(i)			in a		
						(60)		
-								
						3		
				W.				
				· · · · · · · · · · · · · · · · · · ·		12		
					17	40		
		-				-,-		
		-			793	7.50		
					-	-		
							-	
			V	CULATING WATER TA		PREPARED BY:	126	

	WELLNO: MW-1							
DATE: 9/24/02 PROJECT NAME: South	Oakland PROJECTNO: 575-16026							
WEATHER CONDITIONS: Sway was a								
WELL DIAMETER (IN.)	46OTHER							
SAMPLE TYPE: GROUNDWATER WAS	STEWATER SURFACE WATER OTHER							
WELL DEPTH (TOC) 25.18 F	T. DEPTH TO WATER BEFORE PURGING (TOC) 10.06 FT.							
LENGTH OF WATER 15.12 F	T. CALCULATED ONE WELL VOLUME ¹ : 2.57 GAL							
PURGING DEVICE: DEDICATED DISPOSABLE DECONTAMINATED								
SAMPLING DEVICE:	DEDICATED A DISPOSABLE DECONTAMINATED							
EQUIP. DECON. TAP WATER WASH	☐ ISOPROPANOL ☐ ANALYTE FREE FINAL RINSE							
ALCONOX WASH DIST/DEION 1 RINS	SE OTHER SOLVENT DIST/DEION FINAL RINSE							
LIQUINOX WASH DIST/DEION 2 RINS	SE TAP WATER FINAL RINSE AIR DRY							
CONTAINER PRESERVATION: D LAB PRESERV	ED FIELD PRESERVED							
WATER ANALYZER MODEL & SERIAL NO:	n L 602154							
ACTUAL CUMUL TEMP SPECIFIC pH TIME VOLUME □ °F CONDUCT. (MIN) PURGED 🖾 °C	DISS. TURBIDITY WATER REMARKS OXYGEN (NTUs) APPEAR (EVIDENT ODOR, COLOR, PID) CL=CLEAR CL=CLEAR							
(GAL)	TU=TURBID ORP TOS							
10:32 INITIAL 21.8 506.2 7.78	CL 49.0 344.2							
10:37 2.6 22.7573.9 7.78	CL 48.2 390.5							
10:42 5.0 21.6 473.7 7.87	CL 50.3 320.8							
10:45 7.5 21.4 4807 7.83	CL 50.3 325.2							
DEPTH TO WATER AFTER PURGING (TOC)	FT. SAMPLE FILTERED YES NO SIZE							
NOTES: PRO	SAMPLE TIME: 10:50 ID# MWT							
	DUPLICATE TIME: ID#:							
	EQUIP. BLANK: TIME: ID#:							
	PREPARED BY:							

PSI 1 A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIP Rev. 12/95

		. '					WELL N	O:	MW	-2
DATE: q	126/02	PROJECT	NAME: C	altrans	South	L Oaklo	PROJEC	CT NO:	575	- 16-026
WEATHE	R CONDIT		_		varm					
WELL DIA	AMETER (II	N.)	1	2	<u> </u>	☐ 6	OTHER			
SAMPLE	SAMPLE TYPE: 🚜 GROUNDWATER 🗌 WASTEWATER 🗌 SURFACE WATER 🔲 OTHER									
WELL DE	VELL DEPTH (TOC) 19.47 FT. DEPTH TO WATER BEFORE PURGING (TOC) 10.31 FT.									
LENGTH	ENGTH OF WATER 9. [6 FT. CALCULATED ONE WELL VOLUME ¹ : 1.56 GAL.									
PURGING	PURGING DEVICE: DECONTAMINATED									
SAMPLIN	G DEVICE:	:		·	DEDIC	ATED 1	DISPOSA			
EQUIP. D	ECON.	TA	P WATER W	/ASH		ISOPROPA	_			FINAL RINSE
AL	CONOX WA	ASH	DIST/DE	ION 1 RINSE			DLVENT [ł l
	AM XONIUC	<u>'</u>		ION 2 RINSE	·		R FINAL RIN	ISE	AIR C	PRY
				PRESERVE) FIELD	PRESERV	ED			
WATER A	NALYZER	MODEL &	SERIAL N	O: YYran L	60	2154	t			
ACTUAL TIME (MIN)	CUMUL. VOLUME PURGED	TEMP □ °F Ø °C	SPECIFIC CONDUCT.	ρН	DISS. OXYGEN	TURBIDITÝ (NTUs)	WATER APPEAR CL=CLEAR	(EVIDI	REMA ENT ODO	RKS R, COLOR, PID)
	(GAL)		:				CO=CLOUDY TU=TURBID	6	RP	IDS
11:09	INITIAL 1	23.1	5666	7.78			CL)	3872
11:15	1.6	22.1	565.1	7.82			CI	52	27	<u> 385.6</u>
11:18	3.0	21.6	572.7	7.82			Ci	_52	5_	3893
11.23	4.8	226	5670	750			CI	5/8	? [\$25-7
									<u></u> -	
	-									
								<u></u>		
<u> </u>										
			<u> </u>							
DEPTH T	O WATER	AFTER P	URGING (T	OC)	FT.	SAMPLE	FILTERED	YES	□ NC	SIZE
NOTES:		- 		ī.	SAMPLE	TIME:	2:06	IC)# <i>/</i>	14-2
			-		DUPLICA	TE 🗍	TIME:	10	D#:	
					EQUIP. B	LANK: 🗌	TIME:	11	D#:	<u></u>
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	PREPARE	D BY:	RS			
							1). /			

PSI 1 A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIP Rev. 12/95

, 					WELL N	0: MI	v-3			
DATE: 912462 PROJE	CT NAME:	Utrans	South	Oakli	PROJEC	OT NO: 57	5-1G026			
WEATHER CONDITIONS:		War								
WELL DIAMETER (IN.)		2 2	<u> </u>	6_	OTHER					
SAMPLE TYPE: 💆 GROU	NDWATER	WASTE	WATER	SURI	FACE WATE	Р □ОТНІ	ĒR			
WELL DEPTH (TOC) 20.20 FT. DEPTH TO WATER BEFORE PURGING (TOC) 10.28										
LENGTH OF WATER	9.92	FT.	CALCUL	ATED ON	E WELL VO	LUME1:	.69 GAL			
PURGING DEVICE:			☐ DEDIC	ATED	DISPOSA	BLE DEC	ONTAMINATED			
SAMPLING DEVICE:			DEDIC	ATED 1	DISPOSAI	BLE DEC	ONTAMINATED			
ALCONOX WASH LIQUINOX WASH CONTAINER PRESERVATIO	ALCONOX WASH DIST/DEION 1 RINSE OTHER SOLVENT DIST/DEION FINAL RINSE									
WATER ANALYZER MODEL	& SERIAL NO	myro	^	(v	154					
ACTUAL CUMUL TEMP TIME VOLUME □ °F (MIN) PURGED Ø °C (GAL)	SPECIFIC CONDUCT.	рН	DISS. OXYGEN	TURBIDITY (NTUs)	WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID		EMARKS DOR, COLOR, PID)			
11:30 INITIAL 22 11:33 1.7 215	.9 58].9 553.8	7.80			CI	520 524	377.6 369.8			
11:36 34 21.6	7591.2	7.85 7.83			CI	528 529	378.0 43.4			
1					<u>'</u>					
							š.			
DEPTH TO WATER AFTER	PURGING (TO	C)	FT.	SAMPLE	FILTERED	YES [NO SIZE			
NOTES:		;	SAMPLE	гімЕ:	12:13	ID#	Mu-3			
			DUPLICA	TE 🗌	TIME:	ID#:	.			
			EQUIP. BI	ANK: 🗌	TIME:	ID#:				
PREPARED BY: RS										

· · · · · · · · · · · · · · · · · · ·	WELL NO: MW-4
DATE: 9 24/02 PROJECT NAME: Sout	4 Oakland PROJECT NO: 575-16026
	arm
WELL DIAMETER (IN.) 1 🔯 2	6OTHER
SAMPLE TYPE: GROUNDWATER WAS	STEWATER SURFACE WATER OTHER
WELL DEPTH (TOC) 24.37 F	T. DEPTH TO WATER BEFORE PURGING (TOC) 9.75 FT.
LENGTH OF WATER 14,62 F	T. CALCULATED ONE WELL VOLUME!: 2.49 GAL
PURGING DEVICE:	☐ DEDICATED
SAMPLING DEVICE:	☐ DEDICATED
EQUIP. DECON. TAP WATER WASH	SOPROPANOL ANALYTE FREE FINAL RINSE
ALCONOX WASH DIST/DEION 1 RINS	
LIQUINOX WASH DIST/DEION 2 RINS	
CONTAINER PRESERVATION: 2 LAB PRESERVE WATER ANALYZER MODEL & SERIAL NO:	
WATER ANALIZER MODEL & OLIVIAL NO.	Myron L 602154
ACTUAL CUMUL, TEMP SPECIFIC pH TIME VOLUME	DISS. TURBIDITY WATER REMARKS OXYGEN (NTUs) APPEAR (EVIDENT ODOR, COLOR, PID) CL=CLEAR CO=CLOUDY
1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	TU=TURBID ON 1
11:45 INITIAL 21.8 493.47.83	(1 331 3%)
11:54 25 2224962 7.80	$\begin{array}{c c} CO & 2 & 3329 \\ \hline CO & 2 & 3289 \\ \hline \end{array}$
11:51 5.0 20 4780 1-83	(0) (5) 338.7
129 7.5 4.8 4789 7.07	CO 11 339.2
DEPTH TO WATER AFTER PURGING (TOC)	FT. SAMPLE FILTERED YES NO SIZE
NOTES:	SAMPLETIME: 12:20 ID# MW-4
"	DUPLICATE TIME: ID#:
	EQUIP. BLANK: TIME: ID#:
	PREPARED BY:

APPENDIX B

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

Basic Laboratory, Inc.

EPA METHOD 8015 / 8260

Report To:

Attention:

PROFESSIONAL SERVICE INDUSTRIES INC Lab Number:

0209757-1

4703 TIDEWATER AVE SUITE B

Date:

10/09/02

OAKLAND CA 94601

Phone:

510-434-9200

Date Sampled:

09/24/02

Date Received: FRANK POSS

09/25/02

Date Analyzed:

09/28/02

Project Name:

CALTRANS / SOUTH OAKLAND

P.O. #:

Sample Type:

WATER

Page 1 of 12

Sample Description:

MW-1

COMPOUND	RESULTS	REPORTING UNITS	QUANTITATION LIMIT
TPH - Gas	166	ug/l	50
	RECOVERY	%	CONTROL
SURROGATES	RECOVERT	/6	LIMITS (%)
4-Bromofluorobenzene	103	%	43-155

Comments:

California D.O.H.S Cert # 1677

EPA METHOD 8015 / 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC Lab Number:

0209757-2

4703 TIDEWATER AVE SUITE B

Date:

10/09/02

OAKLAND CA 94601

FRANK POSS

Phone:

510-434-9200

Date Sampled:

09/24/02

Date Received: Date Analyzed:

09/25/02 09/28/02

Project Name:

Attention:

CALTRANS / SOUTH OAKLAND

P.O. #:

Sample Type:

WATER

Page 2 of 12

Sample Description:

MW-2

COMPOUND	RESULTS	REPORTING	QUANTITATION
		UNITS	LIMIT
		/1	50
TPH - Gas	n n	ug/l	30
		<u> </u>	·
	<u> </u>		
SUPPOSATES	RECOVERY	%	CONTROL
SURROGATES	RECOVER	79	LIMITS (%)
			40.455
4-Bromofluorobenzene	89.8	%	43-155
		. ~	

Comments:

California D.O.H.S Cert # 1677

EPA METHOD 8015 / 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC Lab Number:

0209757-3

4703 TIDEWATER AVE SUITE B

Date:

10/09/02

OAKLAND CA 94601

Phone:

510-434-9200

09/24/02

FRANK POSS

Date Sampled: Date Received:

09/25/02

Date Analyzed:

09/28/02

Project Name:

Attention:

CALTRANS / SOUTH OAKLAND

P.O. #:

Sample Type:

WATER

Page 3 of 12

Sample Description:

MW-3

COMPOUND	RESULTS	REPORTING UNITS	QUANTITATION LIMIT
TPH - Gas	2060	ug/l	50
	RECOVERY	%	CONTROL
SURROGATES	RECOVERY	70	LIMITS (%)
4-Bromofluorobenzene	83.3	%	43-155
			<u> </u>

Comments:

California D.O.H.S Cert # 1677

Basic Laboratory, Inc.

EPA METHOD 8015 / 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC Lab Number:

Date Sampled:

0209757-4

4703 TIDEWATER AVE SUITE B

Date:

10/09/02

OAKLAND CA 94601

FRANK POSS

Phone:

510-434-9200

09/24/02

Date Received:

09/25/02

Date Analyzed:

10/04/02

Project Name:

Attention:

CALTRANS / SOUTH OAKLAND

P.O. #:

Sample Type:

WATER

Page 4 of 12

Sample Description:

MW-4

COMPOUND	RESULTS	REPORTING	QUANTITATION
		UNITS	LIMIT
TPU Coo	n	ug/l	50
TPH - Gas	11	ugn	
SURROGATES	RECOVERY	%	CONTROL
		<u> </u>	LIMITS (%)
4-Bromofluorobenzene	82.8	%	43-155

Comments:

California D.O.H.S Cert # 1677

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-1

4703 TIDEWATER AVE SUITE B

Phone:

510-434-9200

OAKLAND CA 94601

Date Sampled:

09/24/02

Attention:

FRANK POSS

Date Received:

09/25/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

09/28/02

Project Number:

1G026

Date Reported:

10/09/02

Sampling Location:

Sample ID:

MW-1

Sample Matrix:

WATER

Sample Collected By:

BRIAN STOZEK

PAGE 5 OF 12

		PAGE 5 OF 12	
COMPOUND	RESULT	REPORTING	QUANTITATION
ŀ		UNITS	LIMIT
Acetone	n	ug/l	5.0
Acrylonitrile	n	ug/l	5.0
Benzene	n	ug/l	0.5
Bromobenzene	n	ug/l	0.5
Bromochloromethane	n	ug/l	0.5
Bromodichloromethane	n	ug/l	0.5
Bromoform	n	ug/l	0.5
Bromomethane	n	ug/l	0.5
2-Butanone (MEK)	n	ug/l	5.0
n-Butylbenzene	2.3	ug/l	0.5
sec-Butylbenzene	n	ug/l	0.5
tert-Butylbenzene	n	ug/l	0.5
Carbon Disulfide	'n	ug/l	0.5
Carbon tetrachloride	n	ug/l	0.5
Chlorobenzene	n	ug/l	0.5
Chloroethane	n	ug/l	0.5
2-Chloroethylvinylether	n	ug/l	0.5
Chlaroform	n	ug/l	0.5
Chloromethane	n	ug/l	0.5
2-Chlorotoluene	n	ug/l	0.5
4-Chlorotoluene	n	ug/l	0.5
Dibromochloromethane	n	ug/l	0.5
1,2-Dibromo-3-Chloropropane	n	ug/l	0.5
1,2-Dibromoethane	n	ug/l	0.5
Dibromomethane	n	ug/l	0.5
1,2-Dichlorobenzene	n n	ug/l	0.5
1.3-Dichlorobenzene	n	ug/t	0.5
1,4-Dichlorobenzene	n	ug/i	0.5
Dichlorodifluoromethane	n	ug/l	0.5
1,1-Dichloroethane	π	ug/l	0.5
1.2-Dichloroethane	п	ug/l	0.5
1,1-Dichloroethene	n	ug/l	0.5
cis-1.2-Dichloroethene	n	ug/l	0.5
trans-1,2-Dichloroethene	n	ug/l	0.5
1,2-Dichloropropane	n	ug/l	0.5

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-1

PAGE 6 OF 12

		PAGE 6 OF 12	
COMPOUND	RESULT	REPORTING	QUANTITATION
		UNITS	LIMIT
1,3-Dichloropropane	n	ug/l	0,5
2,2-Dichloropropane	n	ug/l	0.5
1,1-Dichloropropene	n	ug/l	0.5
cis-1,3-Dichloropropene	n	ug/l	0.5
trans-1,3-Dichloropropene	n	ug/l	0.5
1,4-Dioxane	n	ug/l	25
Ethyl Benzene	0.5	ug/l	0.5
Ethyl-Tert-Butyl Ether (ETBE)	П	ug/l	0.5
Hexachlorobutadiene	п	ug/l	0.5
2-Hexanone (MBK)	n	ug/l	5.0
Isopropylbenzene	0.5	ug/l	0.5
Di-Isopropyl Ether (DIPE)	п	ug/l	0.5
p-Isopropyltoluene	n	ug/l	0.5
4-Methyl-2-Pentanone (MIBK)	n	ug/l	5.0
Methylene Chloride	п	ug/l	1.0
Methyl Tert-Butyl Ether (MTBE)	60.0	ug/l	0.5
Napthalene	0.6	ug/l	0.5
n-Propylbenzene	0.7	ug/l	0.5
Styrene	n	ug/l	0.5
Tert-Amyl Methyl Ether (TAME)	n	ug/l	0.5
1,1,1,2-Tetrachloroethane	n	ug/l	0.5
1.1.2,2-Tetrachloroethane	n	ug/l	0.5
Tetrachloroethene	n	ug/l	0.5
Tetrahydrofuran	n	ug/l	5.0
tert - Butanol (TBA)	n	ug/l	50
Toluene	n	ug/l	0.5
1,2,3-Trichlorobenzene	ħ	ug/l	0.5
1,2,4-Trichlorobenzene	n	ug/l	0.5
1,1,1-Trichloroethane	n	ug/l	0.5
1,1,2-Trichloroethane	n	ug/l	0.5
Trichloroethene	n	ug/l	0.5
1.1.2-Trichlorotrifluoroethane	n	ug/l	0.5
Trichlorofluoromethane	n	ug/l	0.5
1.2.3-Trichloropropane	n	ug/l	0.5
1,2,4-Trimethylbenzene	4.8	ug/l	0.5
1,3,5-Trimethylbenzene	1.4	ug/l	0.5
Vinyl Acetate	n	ug/l	0.5
Vinyl Chloride	ก	ug/l	0.5
Total Xylenes	1.6	ug/i	1.0
SURROGATES	RECOVERY	%	CONTROL
			LIMITS (%)
	108	%	28-129
1,2-Dichloroethane-d4	117	- %	52-150
Toluene-d8	103		43-155
4-Bromofluorobenzene	103	/6	

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the quantitation limit.

Reported By

Basic Laboratory, Inc.

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-2

4703 TIDEWATER AVE SUITE B

Phone:

510-434-9200

OAKLAND CA 94601

Date Sampled:

09/24/02

Plus in a A Alaman

Attention:

FRANK POSS

Date Received:

09/25/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed: Date Reported: 09/28/02 10/09/02

Project Number: Sampling Location:

Sample ID:

MW-2

1G026

|V| 44-Z

Sample Matrix: Sample Collected By: WATER BRIAN STOZEK

PAGE 7 OF 12

		PAGE 7 OF 12	
COMPOUND	RESULT	REPORTING	QUANTITATION
!		UNITS	LIMIT
			<u> </u>
Acetone	n	ug/l	5.0
Acrylonitrile	n	ug/l	5.0
Benzene	п	ug/l	0.5
Bromobenzene	n	ug/l	0.5
Bromochloromethane	п	ug/l	0.5
Bromodichloromethane	n	ug/l	0.5
Bromoform	n	ug/l	0.5
Bromomethane	n	ug/l	0.5
2-Butanone (MEK)	n	ug/l	5.0
n-Butylbenzene	0	ug/l	0.5
sec-Butylbenzene	n	ug/l	0.5
tert-Butylbenzene	n	ug/l	0.5
Carbon Disulfide	n	ug/l	0.5
Carbon tetrachloride	n	ug/l	0.5
Chlorobenzene	n	ug/i	0.5
Chloroethane	n	ug/l	0.5
2-Chloroethylvinylether	n	ug/l	0.5
Chloroform	n	ug/l	0.5
Chloromethane	n	ug/l	0.5
2-Chlorotoluene	n	ug/l	0.5
4-Chlorotoluene	n	ug/l	0.5
Dibromochloromethane	n	ug/l	0.5
1,2-Dibromo-3-Chloropropane	n	ug/l	0.5
1,2-Dibromoethane	n	ug/l	0.5
Dibromomethane	n	ug/l	0.5
1,2-Dichlorobenzene	n	ug/l	0.5
1,3-Dichlorobenzene	n	ug/l	0.5
1,4-Dichlorobenzene	n .	ug/l	0.5
Dichlorodifluoromethane	n	ug/l	0.5
1,1-Dichloroethane	n	ug/l	0.5
1,2-Dichloroethane	n	ug/l	0.5
1.1-Dichloroethene	n	ug/l	0.5
cis-1,2-Dichloroethene	Π	ug/l	0.5
trans-1,2-Dichloroethene	n	ug∕l	0.5
1,2-Dichloropropane	П	ug/l	0.5

Basic Laboratory, Inc.

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-2

		PAGE 8 OF 12	
COMPOUND	RESULT	REPORTING	QUANTITATION
		UNITS	LIMIT
1,3-Dichloropropane	n	ug/l	0.5
2,2-Dichloropropane	n	ug/l	0.5
1,1-Dichloropropene		ug/l	0.5
cis-1,3-Dichloropropene	μ μ · · · · · · · · · · · · · · · · · ·	ug/l	0.5
trans-1,3-Dichloropropene	n	ug/l	0.5
1,4-Dioxane	n	ug/l	25
Ethyl Benzene	n	ug/l	0.5
Ethyl-Tert-Butyl Ether (ETBE)	n	ug/l	0.5
Hexachlorobutadiene		ug/l	0.5
		ug/l	5.0
2-Hexanone (MBK)	n	ug/l	0.5
Isopropylbenzene	<u>n</u>	ug/I	0.5
Di-Isopropyl Ether (DIPE)	<u>n</u>	ug/l	0.5
p-isopropyltoluene	<u>n</u>	ug/I	5.0
4-Methyl-2-Pentanone (MIBK)	<u>n</u>	ug/l	1.0
Methylene Chloride	n	ug/i	0.5
Methyl Tert-Butyl Ether (MTBE)	34.6	ug/l	0.5
Napthalene	n		0.5
n-Propylbenzene	<u>n</u>	ug/l ug/l	0.5
Styrene	n	ug/I	0.5
Tert-Amyl Methyl Ether (TAME)	n		0.5
1,1,1,2-Tetrachloroethaпe	n	ug/l ug/l	0.5
1,1,2,2-Tetrachloroethane	n		0.5
Tetrachloroethene	n	ug/l	5.0
Tetrahydrofuran	n	ug/l	50
tert - Butanol (TBA)	n	ug/l	0.5
Toluene	<u> </u>	ug/l	0.5
1,2,3-Trichlorobenzene	n	ug/l	0.5
1,2,4-Trichlorobenzene	П	ug/l	0.5
1,1,1-Trichloroethane	n	ug/l	0.5
1,1,2-Trichloroethane	n	ug/l	0.5
Trichloroethene	<u>n</u>	ug/l	0.5
1,1,2-Trichlorotrifluoroethane	<u>n</u>	ug/l	0.5
Trichlorofluoromethane	<u>n</u>	ug/l	0.5
1,2,3-Trichloropropane	<u> </u>	ug/l	0.5
1,2,4-Trimethylbenzene	<u>n</u>	ug/l	0.5
1,3,5-Trimethylbenzene	n	ug/l	0.5
Vinyl Acetate	<u>n</u>	ug/l	0.5
Vinyl Chloride	<u>n</u>	ug/l ug/l	1.0
Total Xylenes	<u>n</u>		
SURROGATES	RECOVERY	%	CONTROL
			LIMITS (%)
1,2-Dichloroethane-d4	105	- %	28-129
Toluene-d8	92.8	%	52-150
4-Bromofluorobenzene	89.8	%	43-155
T-DI GINGING I CONTROL I C	00.0		
			<u> </u>

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the quantitation limit.

Reported By

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-3

4703 TIDEWATER AVE SUITE B

Phone:

510-434-9200

OAKLAND CA 94601

Date Sampled:

09/24/02

Attention:

FRANK POSS

Date Received:

09/25/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

09/28/02

Project Number:

1G026

Date Reported:

10/09/02

Sampling Location:

Sample ID: Sample Matrix: MW-3

WATER

Sample Collected By:

BRIAN STOZEK

PAGE 9 OF 12

		PAGE 9 OF 12	
COMPOUND	RESULT	REPORTING	QUANTITATION
		UNITS	LIMIT
A		· · · · · · · · · · · · · · · · · · ·	5.0
Acetone	<u>n</u>	ug/l	5.0
Acrylonitrile	<u>n</u>	ug/l	
Benzene	24.0	ug/l	0.5
Bromobenzene	<u> </u>	ug/l	0.5
Bromochloromethane	n	ug/l	0.5
Bromodichloromethane	n	ug/l	0.5
Bromoform	<u>n</u>	ug/l	0.5
Bromomethane	П	ug/I	0.5
2-Butanone (MEK)	П	ug/I	5.0
n-Butylbenzene	л	ug/l	0.5
sec-Butylbenzene	n	ug/l	0.5
tert-Butylbenzene	0.5	ug/l	0.5
Carbon Disulfide	n	ug/ĭ	0.5
Carbon tetrachloride	n	ug/l	0.5
Chlorobenzene	n	ug/l	0.5
Chloroethane	n	ug/l	0.5
2-Chloroethylvinylether	n	ug/l	0.5
Chloroform	'n	ug/l	0.5
Chloromethane	n	ug/l	0.5
2-Chlorotoluene	n	ug/l	0.5
4-Chlorotoluene	л	ug/l	0.5
Dibromochloromethane	n	ug/l	0.5
1,2-Dibromo-3-Chloropropane	n	ug/l	0.5
1.2-Dibromoethane	n	ug/l	0.5
Dibromomethane	n	ug/l	0.5
1,2-Dichlorobenzene	n	ug/l	0.5
1,3-Dichlorobenzene	n	ug/l	0.5
1,4-Dichlorobenzene	n	ug/I	0.5
Dichlorodifluoromethane	n	ug/I	0.5
1,1-Dichloroethane	n	ug/l	0.5
1.2-Dichloroethane	n	ug/l	0.5
1.1-Dichloroethene	n	ug/l	0.5
cis-1.2-Dichloroethene	n	ug/l	0.5
trans-1,2-Dichloroethene	n	ug/l	0.5
1,2-Dichloropropane	n	ug/l	0.5

Basic Laboratory, Inc.

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-4

4703 TIDEWATER AVE SUITE B

Phone:

510-434-9200

OAKLAND CA 94601

Date Sampled:

09/24/02

Attention:

FRANK POSS

Date Received:

09/25/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

10/04/02

Project Number:

Date Reported:

10/09/02

Sampling Location:

Sample ID:

MW-4

Sample Matrix:

WATER

Sample Collected By:

BRIAN STOZEK

PAGE 11 OF 12

		PAGE IT OF IZ	
COMPOUND	RESULT	REPORTING	QUANTITATION
		UNITS	LIMIT
Acetone	П	ug/l	5.0
Acrylonitrile	n	пд/І	5,0
Benzene	n	ug/l	0.5
Bromobenzene	П	ug/l	0.5
Bromochloromethane	n	ug/l	0.5
Bromodichloromethane	n	ug/l	0.5
Bromoform	n	ug/l	0.5
Bromomethane	ח	ug/l	0.5
2-Butanone (MEK)	п	ug/l	5.0
n-Butylbenzene	n	ug/l	0.5
sec-Butylbenzene	n	ug/l	0.5
tert-Butylbenzene	n	ug/l	0.5
Carbon Disulfide	n	ug/l	0.5
Carbon tetrachloride	n	ug/l	0,5
Chlorobenzene	n	ug/l	0.5
Chloroethane	n	ug/l	0.5
2-Chloroethylvinylether	n	ug/l	0.5
Chloroform	5.3	ug/l	0.5
Chloromethane	n	ug/l	0.5
2-Chlorotaluene	n	ug/l	0.5
4-Chlorotoluene	n	ug/l	0.5
Dibromochloromethane	n	ug/l	0.5
1,2-Dibromo-3-Chloropropane	n	ug/l	0.5
1,2-Dibromoethane	n	ug/l	0.5
Dibromomethane	n	ug/l	0.5
1,2-Dichiorobenzene	n	ug/l	0.5
1,3-Dichioropenzene	n	ug/l	0.5
1,4-Dichlorobenzene	n	ug/l	0.5
Dichlorodifluoromethane	n	ug/l	0.5
1,1-Dichloroethane	n	ug/l	0.5
1,2-Dichloroethane	n	ug/l	0.5
1,1-Dichloroethene	n	ug/l	0.5
cis-1,2-Dichloroethene	n	ug/l	0.5
trans-1,2-Dichloroethene	n	μg/l	0.5
1.2-Dichloropropane	n	ug/l	0.5

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-3

PAGE 10 OF 12

		PAGE 10 OF 12	
COMPOUND	RESULT	REPORTING	QUANTITATION
		UNITS	LIMIT
1,3-Dichloropropane	n	ug/l	0.5
2,2-Dichloropropane	n	ug/l	0.5
1,1-Dichloropropene	Ċ.	ug/l	0.5
cis-1,3-Dichloropropene	r.	ug/l	0.5
trans-1,3-Dichloropropene	ņ	ug/l	0.5
1,4-Dioxane	ח	ug/l	25
Ethyl Benzene	1.2	ug/l	0.5
Ethyl-Tert-Butyl Ether (ETBE)	n	ug/l	0.5
Hexachlorobutadiene	n	ug/i	0.5
2-Hexanone (MBK)	n	ug/l	5.0
Isopropylbenzene	n	ug/l	0.5
Di-Isopropyl Ether (DIPE)	П	ug/l	0.5
p-Isopropyltoluene	Π	ug/l	0.5
4-Methyl-2-Pentanone (MIBK)	Π	ug/l	5.0
Methylene Chloride	П	ug/l	1.0
Methyl Tert-Butyl Ether (MTBE)	2020	ug/l	0.5
Napthalene	n	ug/l	0.5
n-Propylbenzene	0.7	ug/l	0.5
Styrene	n	ug/l	0.5
Tert-Amyl Methyl Ether (TAME)	7.6	ug/l	0.5
1,1,1,2-Tetrachloroethane	n	ug/l	0.5
1,1,2,2-Tetrachloroethane	n	ug/l	0.5
Tetrachloroethene	n	ug/l	0.5
Tetrahydrofuran	Л	ug/l	5.0
tert - Butanol (TBA)	n	ug/l	50
Toluene	0.5	ug/l	0.5
1,2,3-Trichlorobenzeпe	П	ug/l	0.5
1,2,4-Trichlorobenzeпe	П	ug/l	0.5
1,1,1-Trichloroethane	П	ug/l	0.5
1,1,2-Trichloroethane	π	ug/l	0.5
Trichloroethene	п	ug/l	0.5
1,1,2-Trichlorotrifluoroethane	n	ug/l	0.5
Trichlorofluoromethane	n	ug/l	0.5
1,2,3-Trichloropropane	n	ug/l	0.5
1,2,4-Trimethylbenzene	0.9	ug/l	0.5
1,3,5-Trimethylbenzene	n	ug/l	0.5
Vinyl Acetate	n	ug/l	0.5
Vinyl Chloride	n	ug/l	0.5
Total Xylenes	3.4	ug/l	1.0
SURROGATES	RECOVERY	%	CONTROL
			LIMITS (%)
		0/	28-129
1,2-Dichloroethane-d4	104	% %	52-150
Toluene-d8	91.3	%	43-155
4-Bromofluorobenzene	83.3	70	43-133

Comments:

Calfornia D.O.H.S Cert # 1677

n - Not detected at the quantitation limit.

Reported By

EPA METHOD 8260

Report To:

PROFESSIONAL SERVICE INDUSTRIES INC

Lab Number:

0209757-4

PAGE 12 OF 12

		PAGE 12 OF 12	·
COMPOUND	RESULT	REPORTING	QUANTITATION
		UNITS	LIMIT
40.72.14			0.5
1,3-Dichloropropane	<u> </u>	ug/l	0.5
2,2-Dichloropropane	n	ug/l	
1,1-Dichloropropene	n	ug/l	0.5
cis-1,3-Dichloropropene	n	ug/l	0.5
trans-1,3-Dichloropropene	n	ug/l	0.5
1,4-Dioxane	n	ug/l	25
Ethyl Benzene	<u> </u>	ug/i	0.5
Ethyl-Tert-Butyl Ether (ETBE)	n	ug/l	0.5
Hexachlorobutadiene	n	ug/l	0.5
2-Hexanone (MBK)	n	ug/l	5.0
Isopropylbenzene	n	ug/l	0.5
Di-Isopropyl Ether (DIPE)	n	ug/l	0.5
p-Isopropyltoluene	n	ug/l	0.5
4-Methyl-2-Pentanone (MIBK)	n	ug/l	5.0
Methylene Chloride	n	ug/l	1.0
Methyl Tert-Butyl Ether (MTBE)	1.3	ug/l	0.5
Napthalene	n	ug/l	0.5
n-Propylbenzene	n	ug/l	0.5
Styrene	n	ug/l	0.5
Tert-Amyl Methyl Ether (TAME)	n	ug/l	0.5
1.1.1.2-Tetrachloroethane	n	ug/l	0.5
1.1.2.2-Tetrachlorgethane	n	ug/l	0.5
Tetrachloroethene	n	ug/l	0.5
Tetrahydrofuran	n	ug/l	5.0
tert - Butanol (TBA)	n	ug/l	50
Toluene	n	ug/l	0.5
1,2,3-Trichlorobenzene	n	ug/l	0.5
1,2,4-Trichlorobenzene	n	ug/l	0.5
1,1,1-Trichloroethane	n	ug/l	0.5
1,1,2-Trichloroethane	n	ug/l	0.5
Trichloroethene		ug/l	0.5
1.1.2-Trichlorotrifluoroethane	n	ug/l	0,5
		ug/l	0.5
Trichlorofluoromethane	<u> </u>	ug/l	0.5
1,2,3-Trichloropropane	<u>n</u>	ug/i	0.5
1,2,4-Trimethylbenzene	<u>n</u>	ug/i ug/i	0.5
1,3,5-Trimethylbenzene	<u> </u>	ug/l	0.5
Vinyl Acetate	n		0.5
Vinyl Chloride	<u> </u>	ug/l ug/l	1.0
Total Xylenes	<u>n</u>		
SURROGATES	RECOVERY	%	CONTROL
			LIMITS (%)
1,2-Dichloroethane-d4	106	- %	28-129
Toluene-d8	92.2	%	52-150
4-Bromafluorobenzene	82.8	%	43-155
T DIGITAL ADVISOR DE LA CONTRACTOR DE LA			

Comments:

Caifomia D.O.H.S Cert # 1677

n - Not detected at the quantitation limit.

Reported By

BASIC LABORATORY CHAIN OF O	LAB #:				
2218 Railroad Ave., Redding, CA 96001 (530) 2		0209757			
CLIENT NAME:	PROJECT NAME: PROJECT #:	SAMPLE TYPE:			
PSI	Caltrons South Caklaid 16026	ω			
ADDRESS:	REQUESTED COMP. DATE: STATE FORMS?	# OF SAMPLES:			
on fite	10-10-02	4			
	TURN AROUND TIME: STD MA RUSH	PAGE / OF /			
	ANALYSIS REQUESTED	TAGEOF			
ROJECT MANAGER:		REP:			
Frank Pass PHONE: FAX: FAX:	# // //	10.11			
SHONE: FAX: E-MAIL:	0 3	ID#:			
INVOICE TO: PO#:		SYSTEM#:			
Same	В 0	01.004.10.11			
PECIAL MAIL E-MAIL FAX EDT		GLOBAL ID #:			
W C S					
T O O I	17/11	QC=1 2 3 4			
DATE TIME R P L SAMPLE DESCRIPTION	愛 〒	LAB ID REMARKS			
1/24/02 10:50 X MW-1 3	14 X	1			
1 12:06 X MW-2	4 X	2			
_/ 212 X / / NW-3	 	3			
12-20 X MW-4	4 X	4			
		7			
A I voa broken in shy	2.01.04	. 2			
1 1000 17010 VI 1/1 3/14		· · ·			
N 10 - TR					
		-			
PRESERVED WITH: HNO ₃ H ₂ SO ₄ NaOH ZnAce/NaOH SAMPLED BY: DATE/TIME: /0.5C-		DATE/TIME: 9/34/-7			
SAMPLED BY: DATE/TIME: 10:50- Brian Stozek 9/24/02:20	Bria Stock	DATE/TIME: 9/24/02			
		DATE/TIME:			
CEIVED BY: (SAMPLES UNVERIFIED) DATE/TIME:	RELINQUISHED BY:	DATE/TIME:			
PSCEIVED BY LAB: (VERIFIED) DOWN MOWITON 9-25 02 3:60	SAMPLES SHIPPED VIA: UPS FEDEX POST BUS	OTHER			
STRUCTIONS, TERMS AND CONDITIONS ON BACK.					