DEPARTMENT OF TRANSPORTATION

BOX 23660 OAKLAND, CA 94623-0660 (510) 286-4444 TDD (510) 286-4454

July 31, 2002

Mr. Barney Chan Alameda County Environmental Health Service Environmental Protection 1131 Harbor Bay Pkwy; Suite 250 Alameda, California 946502-6577

Subject:

Second Quarter 2002 Groundwater Monitoring Report at

1112 29th Avenue, South Oakland Maintenance Station, Oakland, California

R0397

Dear Mr. Chan:

Please find the attached Second Quarter 2002 Groundwater Monitoring Report for the Maintenance Station at 1112 29th Avenue. This document summarizes the results found at the site from samples taken from the four monitoring wells. TPH-G was found in MW-3 at 2.32 mg/l. Also Benzene and MTBE were found at levels above the primary drinking water standards in MW-3.

CalTrans will continue monitoring groundwater at this site for the next two-quarters of the year.

If you have any questions or require additional information, please contact me at (510) 286-5668 or Mr. Aaron Bennett of my staff at (510) 286-4934.

Sincerely,

RANDELL IWASAKI District Director

PAVEOVED

District Branch Chief

Office of Environmental Engineering

Attachment

cc: SFRWQCB, RBoyer, File

SECOND QUARTER 2002 GROUNDWATER MONITORING REPORT

TASK ORDER NUMBER 04-987901-VU CONTRACT NUMBER 43A0078

> SOUTH OAKLAND MAINTENANCE STATION 1112 29th AVENUE OAKLAND, CALIFORNIA

> > Prepared for

CALIFORNIA DEPARTMENT
OF TRANSPORTATION
District 4
P.O. Box 23660
Oakland, California

Prepared by

Professional Service Industries 4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

> July 29, 2002 575-1G026

TABLE OF CONTENTS

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATION
1.0 INTRODUCTION
2.0 GROUNDWATER MONITORING ACTIVITIES 4 2.1 GROUNDWATER ELEVATION AND HYDRAULIC GRADIENT 4 2.2 GROUNDWATER SAMPLING 4 2.3 LABORATORY ANALYSIS AND RESULTS 5 2.4 COMPARISON OF GROUNDWATER RESULTS WITH REGULATORY CRITERIA
3.0 SUMMARY AND CONCLUSIONS
FIGURES
FIGURE 1: SITE LOCATION FIGURE 2: GROUNDWATER ELEVATION MAP - JUNE 14, 2002 FIGURE 3: MTBE CONCENTRATION MAP - JUNE 14, 2002
TABLES
TABLE 1: SUMMARY OF GROUNDWATER ELEVATION DATA SUMMARY OF GROUNDWATER ANALYTICAL DATA
APPENDICES
APPENDIX A: GROUNDWATER PURGE LOGS APPENDIX B: LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

STATEMENT OF LIMITATIONS AND PROFESSIONAL CERTIFICATIONS

Information provided in Professional Services Industries, Inc., (PSI) report number 575-1G026 is intended exclusively for the California Department of Transportation (Caltrans) for the evaluation of groundwater contamination as it pertains to the subject site. PSI is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the State of California or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. The professional services provided have been performed in accordance with practices generally accepted by other geologists, hydrologists, hydrogeologists, engineers, and environmental scientists practicing in this field. No other warranty, either expressed or implied, is made. As with all subsurface investigations, there is no guarantee that the work conducted will identify any or all sources or locations of contamination.

This report is issued with the understanding that Caltrans is responsible for ensuring that the information contained in this report is brought to the attention of the appropriate regulatory agency. This report has been reviewed by a geologist who is registered in the State of California and whose signature and license number appear below.

Professional Service Industries, Inc.

Frank R. Poss

Senior Hydrogeologist

XII

Chris Merritt R.G. (7156

Project Geologist

×14

1.0 INTRODUCTION

This report summarizes the results of the Second Quarter 2002 groundwater monitoring and sampling activities conducted on June 14, 2002 at the South Oakland Maintenance Yard located at 1112 29th Avenue in Oakland, California. The subject site location is presented on Figure 1. The purpose of this project is to comply with quarterly sampling requirements for Alameda County Department of Environmental Health. The work was conducted under Contract 43A0078 and Task Order Number 04-987901-VC.

1.1 SITE DESCRIPTION AND HISTORY

The site is currently used as a maintenance station by Caltrans. The maintenance station includes offices, a repair shop, a sign shop, and several material storage bins. The entire property covers approximately two acres. The site is paved with asphalt and is relatively. flat. The Alameda/Oakland Estuary is approximately 0.5 miles southwest of the site.

One 4,000-gallon diesel underground storage tank (UST) and one 2,000-gallon gasoline UST were removed from the site on March 11, 1997. The tank pit was over-excavated and soil samples were collected. Sidewall and bottom samples collected from the excavation contained concentrations of Total Petroleum Hydrocarbons as Gasoline (TPH-G, [as high as 380 milligrams per kilogram (mg/kg)]), and Total Petroleum Hydrocarbons as Diesel (TPH-D, [as high as 21 mg/kg]). Concentrations of Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), ranged from 0.010 to 48 mg/kg. Methyl Tertiary Butyl Ether (MTBE) concentrations ranged from 0.041 to 9.15 mg/kg. Groundwater samples were not collected (Caltrans, 1999).

On April 6 and 7, 1999, Boreholes B1 through B6 were drilled at the site. The borehole locations are presented in Figure 2. All of the boreholes were converted to 1.3-centimeter (cm) (0.5-inch) inside diameter temporary groundwater monitoring wells. Soil samples were collected from each borehole at depths of 1.52, 3, and 4.56 meters (5, 10, and 15 feet) below ground surface (bgs).

Soil samples were analyzed for TPH-G and TPH-D by EPA method 8015M. Volatile Organic Compounds (VOCs) were analyzed using EPA Method 8260. TPH-G was detected in one soil sample (B6-10 [13 mg/kg]). None of the soil samples contained detectable concentrations of TPH-D. MTBE was the only VOC detected in the soil samples analyzed. MTBE was detected in the sample B5-1.5 meters (0.16 mg/kg). No other soil sample contained a detectable concentration of MTBE (PSI, 1999).

TPH-G was detected in groundwater samples collected from temporary Wells B3 (520 μ g/l) and B4 (520 μ g/l). No other groundwater samples collected contained detectable concentrations of TPH-G. No TPH-D was detected in any of the groundwater samples collected. Benzene was detected in the groundwater sample collected from Well WB3

(6.3 μ g/I). MTBE was detected in the groundwater samples collected from Well WB5 (6,600 μ g/I) and WB6 (24 μ g/I). Concentrations of other gasoline related compounds were detected in groundwater samples collected from Wells WB1, WB3, WB4, and WB5. Chloroform was detected in groundwater samples collected from Wells WB4 (2.4 μ g/I) and WB6 (2.7 μ g/I). Tetrachloroethene (synonym Perchloroethene [PCE]) was detected in the groundwater sample collected from Well WB6 (12 μ g/I) (PSI, 1999).

On August 13, 1999, Boreholes B7 through B9 were drilled at the site (Figure 2). The boreholes were drilled along the property boundary. Results of the sampling indicated the following:

- TPH-G concentrations were detected in one soil sample [B9-15 (0.54 mg/kg)] at the site.
- TPH-D was detected in one groundwater sample [WB7 (0.73 mg/l)]
- MTBE was detected in grab groundwater samples WB7 (5,600 μg/l) and WB8 (9.0 μg/l).

In June and July 2000, PSI completed a supplemental investigation, which included the installation of four monitoring wells at the site. The conclusions and recommendations of the investigation follows:

- None of the soil samples contained detectable concentrations of TPH-G, while TPH-D
 was detected in two soil samples at concentrations below regulatory concern.
- None of the soil samples contained detectable concentrations of VOCs with the exception of MTBE. The highest MTBE concentration detected was 0.52 mg/kg in soil sample B3-10. All of the MTBE concentrations detected were below first encountered groundwater.
- None of the groundwater samples contained detectable concentrations of TPH-D, while TPH-G was detected in two groundwater samples at a maximum concentration of 2.7 mg/l.
- VOCs were detected in the groundwater samples collected with only benzene and MTBE at concentrations greater than the State of California Primary Drinking Water Standard (PDWS) or Secondary Drinking Water Standard (SDWS). Based on the concentrations detected, MTBE is the primary contaminant of concern (COC).
- The report recommended continued groundwater monitoring and the installation of additional monitoring wells down gradient of monitoring well MW-3. Additionally, as TPH-D was not detected in the groundwater sample from monitoring well MW-3, the report recommended the analyses for TPH-D in this well be eliminated.

groundwater contamination at the site. Three boreholes were drilled at the All Aboard Mini Storage facility located down gradient of the site. Soil and groundwater samples were collected from each of the boreholes. The samples were analyzed for TPH-G and VOCs. The conclusions and recommendations of the investigation follows:

- TPH-G and VOCs were not detected in any of the soil samples above laboratory detection limits.
- TPH-G was detected in the groundwater samples collected from monitoring well MW-1 (1.7 mg/l).
- VOCs were detected in the groundwater samples from the site. However, only MTBE
 were detected in concentrations greater than the PDWS. Based on the concentrations
 detected in the groundwater at the site, the primary COC is MTBE.
- The results of the groundwater sampling conducted at the All-Aboard Mini-Storage indicates that MTBE impacted groundwater above the PDWS has not migrated down gradient onto the All-Aboard Mini-Storage site (downgradient site).
- Based on the results of the soil and groundwater sample analyses, PSI recommends
 no further down-gradient investigation of the South Oakland Maintenance Station.
- For complete details see PSI's Hazardous Waste Preliminary Site Investigation Report, South Oakland Maintenance Station dated September 27, 2001.

On April 10th, 2002, further data was gathered from GEOCON concerning the sampling of the wells on March 27, 2001 and June 26, 2001. The additional groundwater elevation data as well as analytical results were added into Table 1 and Table 2. GEOCON reported the following:

- On March 27, 2001 MW-3 had a TPH-G concentration of 5.2 milligrams per liter (mg/l). MTBE concentrations were: 29 micrograms per liter (ug/l) for MW-1, 110 ug/l for MW-2, 5,500 ug/l in MW-3. MW-3 also had the following VOC concentrations: 220 ug/l of benzene, 5.9 ug/l of Toluene, 2.2 ug/l of Ethylbenzene, 42 ug/l of Thinte, and 270 ug/l of Tert-butanol.
- On June 26, 2001 three wells had TPH-G levels that were above the laboratory detection limit. MW-1 had a TPH-G concentration of 0.24 ug/l, MW-2 had 0.11 ug/l, and MW-3 had 2.5 ug/l. MTBE was found in concentrations of 51 ug/l in MW-2 and 2,800 ug/l in MW-3. MW-3 also had the following VOC concentrations: a benzene concentration of 20 ug/l, 12 ug/l of TAME, and 230 ug/l of Tert-butanol.

2.0 GROUNDWATER MONITORING ACTIVITIES

2.1 GROUNDWATER ELEVATION AND HYDRAULIC GRADIENT

On June 14, 2002, static groundwater elevations were measured in wells MW-1 through MW-4 (Figure 2). The groundwater depths were measured using a groundwater interface probe. A summary of the depth to groundwater data collected during this monitoring event and previous monitoring events is presented in Table 1. Based on the groundwater data, the inferred groundwater flow direction beneath the site is to the west (Figure 2) with a hydraulic gradient of 0.012.

2.2 GROUNDWATER SAMPLING

Groundwater samples were collected from monitoring wells MW-1 through MW-4. Prior to the collection of groundwater samples, the monitoring wells were purged of a minimum of three well volumes of water until pH, conductivity, and temperature stabilized. The wells were allowed to recover to at least 80 percent of their original static groundwater levels or for 2 hours prior to sampling.

The following procedures for well monitoring, well purging, and water sampling were implemented while sampling the wells:

- 1. All equipment was washed prior to entering the well with an Alconox solution, followed by two tap water rinses and a deionized water rinse.
- 2. Prior to purging the wells, depth-to-water was measured using an Solinst groundwater interface probe to an accuracy of approximately 0.01 foot. The measurements were made to the top of the well casing on the north side.
- Monitoring wells at the site were prepared for sampling by purging the well of approximately 3 well volumes of water using disposable Teflon bailers.
- 4. Water samples were collected with a single-use Teflon bailer after the well had been purged and water in the well had equilibrated to approximately 80 percent of the static water level. The water collected was immediately decanted into laboratory-supplied vials and bottles. The containers were overfilled, capped, labeled, and placed in a chilled cooler prior to delivery to the laboratory for analysis.
- Chain-of-custody procedures, including chain-of-custody forms, were used to document water sample handling and transport from collection to delivery to the laboratory for analyses.

- 6. Groundwater samples were delivered to the State-certified hazardous waste laboratory within approximately 24-hours of collection.
- 7. Purged water was contained in a DOT approved 55-gallon drum. The drum was labeled with the contents, date, well number, client name, and project number.

The groundwater monitoring purge logs are presented in Appendix A.

2.3 LABORATORY ANALYSIS AND RESULTS

The groundwater samples were submitted for analyses to Basic Laboratory of Redding, California, a State of California certified hazardous waste analytical laboratory. The samples were analyzed for the following:

- EPA 8015 modified TPH-G;
- EPA 8260 Volatile Organic Compounds (VOCs).

A summary of the laboratory results for groundwater samples is presented in Table 2. A copy of the laboratory reports and chain of custody records are presented in Appendix B. The following are the results of the groundwater sampling:

TPH-G was detected in the groundwater sample collected from monitoring well MW-3
(2.32 mg/l). TPH-G concentrations have generally decreased since the previous
sampling results.

VOCs were detected in the groundwater samples with the highest concentrations detected in the groundwater sample collected from monitoring well MW-3. The compounds detected are common constituents of gasoline. The compound with the highest concentration was INTBE at 5,290 micrograms politically (197) in mentality will MAX a MTRE concentrations decreased in three of the mentaling relia and increased in one of the mentaling will since the project compliance well.

2.4 COMPARISON OF GROUNDWATER RESULTS WITH REGULATORY CRITERIA

The concentrations of contaminants reported by the analytical laboratory were compared to PDWS or SDWS. The following samples were above their respective PDWS or SDWS.

Benzene concentrations detected in groundwater samples MW-3 (3.6 μg/l).

MTBE concentrations detected in groundwater samples MW-2 (25.0 μg/l) and MW-3 (5,290 μg/l).

Based on the concentrations detected in the groundwater at the site, the primary COC is MTBE. The concentrations of MTBE in each of the monitoring wells are shown in Figure 3. This figure indicates that the highest concentrations of MTBE were encountered in the groundwater samples collected in the monitoring wells (MW-3 and MW-2) directly down gradient of the former USTs.

3.0 SUMMARY AND CONCLUSIONS

were collected from monitoring wells with the state of th

- TPH-G was detected in the groundwater sample collected from monitoring well MW-3 (2.32 mg/l).
- VOCs were detected in all four groundwater samples collected from the monitoring wells at the site. Only benzene and MTBE were detected in concentrations greater than the PDWS. Based on the concentrations detected in the groundwater at the site, the primary COC is MTBE.

Based on the results of this report, PSI recommends continued groundwater monitoring.

EXPLANATION

MW-4 (90.25)

- GROUNDWATER MONITORING WELL LOCATION (GROUNDWATER ELEVATION GIVEN IN FEET MSL)

90.10

GROUNDWATER ELEVATION CONTOUR (ELEVATION IN FEET MSL)

APPROXIMATE SCALE

Engineering · Consulting · Testing

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

CALTRANS MAINTENANCE STATION 1112 29TH AVENUE, GARLAND, CALIFORNIA

GROUNDWATER ELEVATION MAP (June 14, 2002)

B.B.

1/02 10026-02

575-1G026 F.P.

2

100 ft

EXPLANATION

MW-3

- GROUNDWATER MONITORING WELL LOCATION

(5,290)

- CONCENTRATION (ug/L) OF MIBE DETECTED IN GROUNDWATER SAMPLES (ND INDICATES NOT DETECTED ABOVE LAB METHOD DETECTION LIMITS)

Engineering · Consulting · Testing

4703 Tidewater Avenue, Suite B Oakland, California 94601 (510) 434-9200

10026-03

rajaa	CALTRANS MAINTENANCE STATION 1112 MOTH AVENUE, GARLAND, CALIFORNIA	B.B.
Ulles	MTBE CONCENTRATIONS IN GROUNDWATER (JUNE 14, 2002)	F.P

Project No.: 575-1G026

1/02

TABLE 1

GROUNDWATER ELEVATION SOUTH OAKLAND MAINTENANCE STATION SOUTH OAKLAND, CALIFORNIA

Sample Location	Date	TOC Elevation (feet mal)*	Depth To Groundwater	Groundwater Elevation (feet msl)*
MW-1	6/27/00	99.57	9.13	90.44
	9/11/00	99.57	9.52	90,05
	11/28/00	99.57	9 62	89.95
	3/27/01	99.57	8.79	90.78
	6/26/01	99.57	9.80	89.77
	12/5/01	99.57	8.32	91,25
	3/4/02	99.57	8.66	90,91
	6/14/02	99.57	9.53	90.04
MW-2	6/27/00	98.91	9.05	89,86
	9/11/00	98.91	9.95	88.96
	11/28/00	98.91	9.94	88 97
	3/27/01	98 91	8.35	90.56
	6/26/01	98.91	10_76	88.15
	12/5/01	98,91	8.53	90.38
	3/4/02	98.91	8.25	90 66
	6/14/02	98.91	9.50	89 41
MW-3	6/27/00	89,88	8 76	90.22
	9/11/00	98,98	9 28	89.70
	11/28/00	98.98	9 36	89.62
	3/27/01	98.98	8 35	90.63
	6/26/01	98 98	10.51	88.47
	12/5/01	98 98	8.05	90 93
	3/4/02	98.98	8 05	90.93
	6/14/02	98.98	9.35	89.63
MW-4	6/27/00	99.04	8.74	90,30
	9/11/00	99.04	9.30	89,74
	11/28/00	99 04	9.32	89,72
	3/27/01	99.04	7 96	91.08
	6/26/01	99.04	9.56	89.48
	12/5/01	99 04	8 58	90,46
	3/4/02	99,04	8.00	91,04
- 1	6/14/02	99 04	8.79	90.25

Notes

All measurements are recorded in feet

Feet msl = feet above mean sea level

^{*} TOC Measurements are from data supplied by Meridian Surveying

TABLE 2

ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES SOUTH OAKLAND MAINTENANCE STATION SOUTH OAKLAND, CALIFORNIA

Sample I.D.	Date	TPH-G mg/l	TPH-D mg/l	MTBE µg/l	tert- Butanol (TBA) ug/l	Methyl Ether (TAME) ug/l	Benzene µg/l	Toluene µg/l	Ethyl- benzene µg/l	Total Xylenes µg/l	ETBE ug/l	Di-isopropyl ether ug/l	Other VOCs ug/l
MW-1	6/27/00	0.85	147	880	<50	<5	20	<1.0	<1.0	19	-	<u>,,—</u>	-
	9/11/00	0.92	111	860	190	<5	14	<1_0	1.6	3.6			
	11/28/00	<0.5		610	<250	<25	3.6	<2.5	<2.5	<7.5	77	1,533	
	3/27/01	<0.20	***	29	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<5.0	<5.0	<5.0
	6/26/01	0.24	-	200	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<5_0	<5.0	<5.0
	8/24/01	<0.5	1.777	520	<1,200	<50	<25	<25	<25	<75	_		222
	12/5/01	0.388		505	<100	<0.5	3.5	<0.3	2.4	15.4	-	Sim	
	3/4/02	0.69	Aug.	55	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	100
	6/14/02	<0.5	1000	5.3	<0.5	<0,5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	
MW-2	6/27/00	<0.5	-	86	<50	<5	<1.0	<1.0	<1.0	<3.0	***		0.0
	9/11/00	<0.5	-	110	<50	<5	<1.0	<1.0	<1.0	<3.0	-	2.64	-
	11/28/00	<0.5	nee.	130	<50	<5	<1.0	<1.0	<1.0	<3.0	-		
	3/27/01	<0.20		110	<200	<5.0	<0,50	<0.50	<0.50	<1.0	<50	<5.0	<5.0
	6/26/01	0.11	040	51	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<5.0	<5.0	<5.0
	8/24/01	<0.5		36	<100	<4	<2.0	<2.0	<2.0	<6.0			2 344
	12/5/01	0.06	1777	79	<100	<0.5	<0.3	<0.3	<0.3	<0.6			
	3/4/02	<0.5	3-40	9	<50	<0.5	<0.5	<0.5	<0.5	<1.0	<0.5	<0,5	_
	6/14/02	<0.5	::	25.0	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	
MW-3	6/27/00	2.7	<0.4	5,000	1,500	11	73	1.7	1.2	4.6	34	5 <u>=</u>	Œ
	9/11/00	1.9	1997	2,700	310	10	19	<1.0	<1.0	<3.0	-	-	S##
	11/28/00	1.7	740	2,500	<1,000	<100	27	92	<10	<30	-		
	3/27/01	5.2		5,500	270	12	220	5.9	2.2	<1.0	<5.0	<5,0	
	6/26/01	2.5		2,800	230	12	20	<0.50	<0.50	<1.0	<50	<5.0	
	8/24/01	1.7	***	2,800	<5,000	<200	<100	<100	<100	<300	100	; —	
	12/5/01	1.86		2,240	<5,000	<200	18,3	0.3	1.2	1	1.00	77-	_
	3/4/02	3.23		7,520	<50	11	94.2	0.8	2.4	6.9	<0.5	<0.5	
	6/14/02	2.32	=	5,290	<0,5	8.9	3.6	<0.5	<0.5	<1	<0.5	<0.5	_
MW-4	6/27/00	<0.5	-	18	<50	<5	<1.0	<10	<1.0	<3.0			
	9/11/00	<0.5	=	<1.0	<50	<5	<1.0	<10	<1.0	<3.0			
	11/28/00	<0.5	100	<1.0	<50	<5	<0.5	<0.5	<0.5	<1.5	\leftarrow	=0	
	3/27/01	<0.20		<5.0	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<50	<5.0	Chloroform =
	6/26/01	<0.05	(#4)	<5.0	<200	<5.0	<0.50	<0.50	<0.50	<1.0	<50	<5.0	<5.0
	8/24/01	<0.5	2	<2	<100	<4	<1,0	<1.0	<1.0	<3.0	-		7-1
	12/5/01	<0.05	-	<0.3	<100	<0.5	<0.3	<0.3	<0.3	<0.6	-	=	=
	3/4/02	<0.5	-	5	<0.5	<0,5	0.5	<0.5	<0.5	<10	<0.5	<0.5	-
	6/14/02	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.5	<0.5	Chloroform =

TPH-D = Total Petroleum Hydrocarbons as Diesel by EPA Method 8015M. TPH-G = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015M_s MTBE = Methyl Tertiary Butyl Ether ETBE = Ethyl Tertiary Butylether

VOCs = Volatile Organic Compounds mg/l = milligrams per liter ug/l = micrograms per liter — = Not measured/ No

APPENDIX A

GROUNDWATER PURGE LOGS

FLUID MEASUREMENT FIELD DATA

	102	PROJECT NAME:	Sour	th Oaklon	8	PROJECT NO:	575-16-0	526
VATER LEVEL ME	ÀSUREMENT INS	STRUMENT:	Solinst			SERIAL NO:		11
RODUCT DETEC	TION INSTRUME	NT:				SERIAL NO:		
QUIP. DECON:	☐ ALCONOX ER WASH ☐	WASH DIST	DEION 1 RINSE	ISOPROPANOL ON 2 RINSE	☐ ANALYTE OTHER SOLVENT	FREE FINAL RINSE DIST/DEION	TAP WATER F	☐ AIR DRY
WELL NUMBER	GROUND SURFACE ELEVATION	TOP OF CASING ELEVATION	DEPTH TO PRODUCT BELOW TOC	DEPTH TO WATER BELOW TOC	WELL DEPTH BELOW TOC	PRODUCT THICKNESS	WATER TABLE ELEVATION	ACTUAL TIME
WW-1-8				9.59	25.18			958
Mw-2				(1,50)	19.47			10:24
MW-3				9.35	20,20'			10:33
mw-4				8.79	24-37			1045
								TOTAL CONT.
				1				
						-		
						-		
		THICKNESS FOR DE		1		PREPARED BY:	25	

12.90 mulan

PS

Rev. 12/95

						<u> </u>	WELL N	0:	MW-1
DATE:	14/02	PROJECT	NAME:	Soci	th a	akland	PROJEC	CT NO:	575-16021
WEATHE	R CONDITI	ONS:	Cloudy				<u></u>		
WELL DIA	METER (II		☐ 1 ´	2 2	4	□ 6	OTHER		
SAMPLE	TYPE:	GROUN	OWATER	☐ WAST	EWATER	SURF	ACE WATE	R [OTHER
WELL DE	PTH (TOC)		25.18	FT.	DEPTH	TO WATER	RBEFORE	PURGI	NG (TOC) 9.53 FT.
LENGTH	OF WATER	}	15.6	5 FT.	CALCU	LATED ON	E WELL VO	LUME	2,70 GAL.
PURGING	DEVICE:				Ø DEDIC	CATED [] DISPOSAI	BLE 🏄	DECONTAMINATED
SAMPLIN	SAMPLING DEVICE: DEDICATED DISPOSABLE DECONTAMINATED								
EQUIP. DECON. TAP WATER WASH ISOPROPANOL ANALYTE FREE FINAL RINSE									
. –	☐ ALCONOX WASH ☐ DIST/DEION 1 RINSE ☐ OTHER SOLVENT ☐ DIST/DEION FINAL RINSE								
<u> </u>	☐ LIQUINOX WASH								
	NALYZER					PRESERV			
WATERA	MALIZEN	MODEL &	M	yron 1	· 				
ACTUAL TIME (MIN)	CUMUL. VOLUME PURGED (GAL)	TEMP □ °F Ø °C	SPECIFIC CONDUCT.	рΗ	DISS. OXYGEN	TURBIDITY (NTUs)	WATER APPEAR CL#CLEAR CO=CLOUDY TU=TURBID	(EVII	REMARKS DENT ODOR, COLOR, PID)
1044	INITIAL	19.3	440.1	7.30			CO		
10:46	3,0	19.3	4727	6.57	-		Co		
0 48	6.0	19.0	4829	6.51			CT		
10:49	9.0	19.0	4696	6.54			CL	:	
		Ü							
	<u> </u>								
parameter.		#							
	-								
									·
DEPTH T	O WATER	AFTER PU	JRGING (T	OC)	FT.	SAMPLE	FILTERED	YES	NO SIZE
NOTES:	<u> </u>				SAMPLE	ΓΙΜΕ: Ì	0:50		D# MW-1
					DUPLICA	re 🗌	TIME:	ll	D#:
					EQUIP. BI	ANK: 🗌	TIME:	- 1	D#:
<u> </u>					PREPARE	D BY:	BS		

PSI 1A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIP Rev. 12/95

							WELL N	Q:	MU	1-2
DATE: 67	14/02	PROJECT	NAME:	Sout	K C	akland	PROJEC	CT NO:	55	16-026
WEATHER	CONDIC	ONS:		loudy.	Coo	<u> </u>				
WELL DIA	METER (II)	7)	<u> </u>	2	<u> </u>	<u> </u>	OTHER			
SAMPLE	TYPE:	GROUNI	OWATER	☐ WAST	EWATER	SURF	ACE WATE	R 🗌	OTHER	
WELL DE	TH (TOC)		19.4	7 FT.	DEPTH	TO WATER	BEFORE	PURGIN	IG (TO	C)9,50 FT.
LENGTH (OF WATER	<u> </u>	9.0	(7 _{, FT.}	CALCU	LATED ON	E WELL VO	LUME1:		70 GAL.
PURGING	DEVICE:				DEDIC	CATED [] DISPOSAI	BLE Ø	DECON	ITAMINATED
SAMPLIN	SAMPLING DEVICE:									
EQUIP. D			P WATER V			ISOPROPA	_			FINAL RINSE
. –	CONOX WA		_	ION 1 RINSE	_		LVENT 🔲 R FINAL RIN		ION FIN	
LIQUINOX WASH DIST/DEION 2 RINSE TAP WATER FINAL RINSE AIR DRY CONTAINER PRESERVATION: LAB PRESERVED FIELD PRESERVED										
WATER ANALYZER MODEL & SERIAL NO:										
								÷		
ACTUAL TIME (MIN)	CUMUL. VOLUME PURGED (GAL)	TEMP	SPECIFIC CONDUCT.	pН	DISS. OXYGEN	TURBIDITY (NTUs)	WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID	(EVIDE		ARKS R, COLOR, PID)
11.12	INITIAL	18.7	560.9	7.08			CI			
11:15	20	18,2	5631	(79		-	CI			
11:17	40	18.1	561.5	680			CI			
119	6.0	10.3	560.7	7.00			U			
		-1-0								
					€ .,	<u> </u>		_		
					:		\hat{x}_{j}^{i}			
		iters	- c.							
		·.						_		
	974	,						·		
			<u> </u>		<u> </u>			<u></u>		
DEPTH T	O WATER	AFTER PU	JRGING (T	OC)	FT.	l	ILTERED			SIZE
NOTES:					SAMPLE TIME: 11-22 ID# MW-2					
		e ^s			DUPLICATE TIME: ID#:					
					EQUIP. BL		TIME:	ID	#:	
	PREPARED BY:									

PSI 1 A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIPE Rev. 12/95

							WELL N	IO:	Mw-	3
DATE: 6	14/02	PROJECT	NAME:	5.	uth_	Oaklan	PROJEC	CT NO:	575-1	6-626
WEATHER	CONDITI	ONS:	Clo		Cool					
WELL DIA	METER (IN	1.)	<u> </u>	2	4	□ 6	OTHER			
SAMPLE T	YPE:	GROUNE	OWATER	WAST	EWATER	SURF	ACE WATE	R 🔲	OTHER	
WELL DEF	TH (TOC)		20,2	O FT.	DEPTH	TO WATER	R BEFORE	PURGIN	G (TOC) 9,	35 FT.
LENGTH C	OF WATER		10.	85. FT.	CALCUI	ATED ON	E WELL VO	DLUME1:	1.84	GAL.
PURGING	PURGING DEVICE: DEDICATED DISPOSABLE DECONTAMINATED									
SAMPLING DEVICE: DEDICATED DISPOSABLE DECONTAMINATED										
EQUIP. DE	ECON.	☐ TA	P WATER V]	ISOPROPA			FREE FINA	
	☐ ALCONOX WASH ☐ DIST/DEION 1 RINSE ☐ OTHER SOLVENT ☐ DIST/DEION FINAL RINSE ☐ AIR DRY									
☐ LIQUINOX WASH										
	WATER ANALYZER MODEL & SERIAL NO:									
ACTUAL TIME (MIN)	CUMUL. VOLUME PURGED (GAL)	TEMP □ °F Ø °C	SPECIFIC CONDUCT.	ρΗ	DISS. OXYGEN	TURBIDITY (NTUs)	WATER APPEAR CL=CLEAR CO=CLOUDY TU=TURBID	(EVIDE	REMARKS INT ODOR, COL	.OR, PID)
11:38	INITIAL	188	612-1	7.00			Co			
(1:34	2.0	18-3	6120	Cha			Cl			
11750	40	18.2	595.4	6.77			CI			
11:42	6.0	18.4	6175	50000			Ci			
11		10	9	3						
									: 	
					·					
					<u> </u>		ų.			
									•	
DEPTH TO	O WATER	AFTER PL	JRGING (T	OC)	FT.	SAMPLE	ILTERED	YES	□ NO SIZ	E
NOTES:					SAMPLE 1	IME:	14a	ID#	# MW	<u>-3</u>
					DUPLICAT		TIME:	ID#	\$:	
					EQUIP. BL	ANK: 🗌	TIME:	ID	4 : 	
			,		PREPARE	D BY:	135			

PSI 1 A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIP Rev. 12/95

					WELL N	O: M	u-4		
DATE: 6/14/02 PROJ	ECT NAME:	South	Oa	Kland	PROJEC	CT NO: 5	15-16-02		
WEATHER CONDITIONS:	Cloud		001						
WELL DIAMETER (IN.)	1	2	<u> </u>	<u> </u>	OTHER				
SAMPLE TYPE: GRO	DUNDWATER	WASTE	WATER	SURF	ACE WATE	R 🗌 OTH	HER		
WELL DEPTH (TOC)	24.37	7 FT.	DEPTH	TO WATER	BEFORE	PURGING (TOC) 8, 77 F		
LENGTH OF WATER	15.5	8 гт.	CALCUL	ATED ONE	WELL VO	LUME ¹ :	2.65 GA		
PURGING DEVICE:			DEDIC	ATED [] DISPOSA	BLE 🕏 DEC	CONTAMINATED		
SAMPLING DEVICE:	SAMPLING DEVICE: DEDICATED DISPOSABLE DECONTAMINATED								
EQUIP. DECON.									
ALCONOX WASH	DIST/DEIO					_	AIR DRY		
LIQUINOX WASH DIST/DEION 2 RINSE TAP WATER FINAL RINSE AIR DRY CONTAINER PRESERVATION: LAB PRESERVED FIELD PRESERVED									
WATER ANALYZER MODE	L & SERIAL NO:	1	٠٠						
	My	ron L					· · · · · · · · · · · · · · · · · · ·		
ACTUAL CUMUL. TEM TIME VOLUME 0 °F (MIN) PURGED 0 °C (GAL)	CONDUCT.	рН	DISS. OXYGEN	TURBIDITY (NTUs)	WATER APPEAR CL=CLEAR CO=CLOUDY		REMARKS ODOR, COLOR, PID)		
1206 INITIAL 19	11 110/ 01-		-		TU=TURBID		<u></u>		
1,000		7.75			$\frac{0}{0}$		<u> </u>		
14000	8 485.0 (2.67)		······································		
		6.75	=		01				
1260 9.0 18	1 C . OCT.	(J J J			<u> </u>				
				-					
			•						
	- - -								
DEPTH TO WATER AFTE	R PURGING (TO	C)	FT.	SAMPLE F	ILTERED	YES]	NO SIZE		
NOTES:			AMPLE 1	IME: 121	2	ID#	Mw-4		
			UPLICAT		TIME:	ID#:			
			QUIP. BL	ANK: 🔲	TIME:	ID#:			
		F	REPARE	D BY:	B 5				

PSI 1 A 1 FOOT LENGTH OF WATER = 0.05 GAL IN 1" DIA. PIPE 0.17 GAL IN 2" DIA PIPE 0.65 GAL IN 4" DIA PIPE 1.5 GAL IN 6" DIA PIP Rev. 12/95

APPENDIX B

LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

Report To:

Attention:

P.S.I.

4703 TIDEWATER AVE., STE.B

OAKLAND, CA 94601

Lab No: Date:

0206470

Phone:

06/26/02 (510) 434-9200

Date Sampled:

06/14/02

Date Received: Project No.:

06/17/02

FRANK POSS

Project Name: CALTRANS / SOUTH OAKLAND

1G026

Sample

Description:

WATER TESTING

Page 1 of 9

Test: Method: TPH-Gas Range **Organics** 8015 ug/l

4-Bromofluorobenzene Surrogate %

43-155

Reporting <u>Limit</u>

ug/l

Date Analyzed

Sample ID

Control Limit:

Units:

					1
MW-1	1	n	65.5	50	06/19/02
MW-2	2	n	90.8	50	06/19/02
MW-3	3	2320	87.4	50	06/19/02
MW-4	4	n	86.8	50	06/19/02

California D.O.H.S. Cert. #1677.

n - Not detected at the reporting limit.

Reported by

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-1

4703 TIDEWATER AVE., STE.B

Phone:

510-434-9200

OAKLAND, CA 94601

Date Sampled:

06/14/02

Attention:

FRANK POSS

Date Received:

06/17/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

06/19/02

Project Number:

1G026

Date Reported:

06/26/02

Sampling Location:

Sample ID:

MW-1 WATER

Sample Matrix: Sample Collected By:

BRIAN STOZEK

DACE 2 OF 0

	PAGE 2 OF 9							
COMPOUND	RESULT	REPORTING	QUALIFICATION					
		UNITS	LIMIT					
Acetone	n	ug/l	5					
Acrylonitrile	n	ug/l	5					
Benzene	ก	ug/l_	0.5					
Bromobenzene	n	ug/l	0.5					
Bromochloromethane	П	ug/l	0.5					
Bromodichloromethane	п	ug/l	0.5					
Bromoform	n	ug/l	0.5					
Bromomethane	n	ug/l	0.5					
2-Butanone (MEK)	n	ug/l	5					
n-Butylbenzene	n	ид/І	0.5					
sec-Butylbenzene	n	ug/l	0.5					
tert-Butylbenzene	n	ug/l	0.5					
Carbon Disulfide	n	ug/l	0.5					
Carbon tetrachloride	n	ug/l	0.5					
Chlorobenzene	n	ug/l	0.5					
Chloroethane	n	ug/l	0.5					
2-Chloroethylvinylether	n	ug/l	0.5					
Chloroform	n.	ug/l	0.5					
Chloromethane	n	ug/l	0.5					
2-Chlorotoluene	n	ug/l	0.5					
4-Chlorotoluene	n	ug/l	0.5					
Dibromochloromethane	n	ug/l	0.5					
1,2-Dibromo-3-Chloropropane	D	ug/l	0.5					
1.2-Dibromoethane	n	ug/l	0.5					
Dibromomethane	n	ug/l	0.5					
1,2-Dichlorobenzene	n	ug/l	0.5					
1.3-Dichlorobenzene	n	ug/l	0.5					
1.4-Dichlorobenzene	n	ug/l	0.5					
Dichlorodifluoromethane	n	ug/l	0.5					
1.1-Dichloroethane	n	ug/l	0.5					
1.2-Dichloroethane	n n	ug/l	0.5					
1,1-Dichloroethene	n n	ug/l	0.5					
cis-1,2-Dichloroethene	n	ug/l	0.5					
trans-1,2-Dichloroethene	n	ug/l	0.5					
1,2-Dichloropropane	n	ug/l	0.5					

Basic Laboratory, Inc.

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-1

PAGE 3 OF 9

		PAGE 3 OF 9	<u> </u>
COMPOUND	RESULT	REPORTING	QUALIFICATION
	·	UNITS	LIMIT
		ual.	0.5
1,3-Dichloropropane	n	ug/l	0.5
2,2-Dichloropropane	n	ug/l	0.5
1,1-Dichloropropene	n	ug/l	0.5
cis-1,3-Dichloropropene	<u> </u>	ug/l	
trans-1,3-Dichloropropene	<u>n</u>	ug/l	0.5
1,4-Dioxane	n	ug/l	25
Ethyl Велzепе	<u>n</u>	ug/l	0.5
Ethyl-Tert-Butyl Ether (ETBE)	n	ug/l	0.5
Hexachlorobutadiene	n	ug/l	0.5
2-Hexanone (MBK)	n n	ug/l	5
Isopropylbenzene	Π	ug/l	0.5
Di-Isopropyl Ether (DIPE)	n	ug/l	0.5
p-Isopropyltoluene	C	ug/l	0.5
4-Methyl-2-Pentanone (MIBK)	n	ug/l	5
Methylene Chloride	n	ug/l	1
Methyl Tert-Butyl Ether (MTBE)	5.3	ug/l	0.5
Napthalene	n	ug/l	0.5
n-Propylbenzene	П	ug/l	0.5
Styrene	n	ug/l	0.5
Tert-Amyl Methyl Ether (TAME)	n	ug/l	0.5
1,1,1,2-Tetrachloroethane	n	ug/t	0.5
1,1,2,2-Tetrachloroethane	n	ug/l	0.5
Tetrachloroethene	П	ug/l	0.5
Tetrahydrofuran	n	ug/l	5
tert - Butanol (TBA)	C	ug/t	0.5
Toluene	Π	ug/l	0.5
1,2,3-Trichlorobenzene	n	ug/l	0.5
1,2,4-Trichlorobenzene	n	ug/l	0.5
1.1.1-Trichloroethane	n	ug/l	0.5
1.1.2-Trichloroethane	п	ug/l	0.5
Trichloroethene	n	ug/l	0.5
1.1.2-Trichlorotrifluoroethane	n	ug/l	0.5
Trichlorofluoromethane	n	ug/l	0.5
1,2,3-Trichloropropane	n	ug/l	0.5
1,2,4-Trimethylbenzene	c	ug/l	0.5
1,3,5-Trimethylbenzene	n	ug/l	0.5
Vinyl Acetate	n	ug/l	0.5
Vinyl Chloride	n	ug/l	0.5
Total Xylenes	n	ug/l	1 1
SURROGATES	RECOVERY	%	CONTROL LIMITS (%)
1,2-Dichloroethane-d4	83.6	%	28-129
Toluene-d8	70.7	%	52-150
4-Bromofluorobenzene	65.5	%	43-155
		 · ·	
·			

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

Reported By

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-2

4703 TIDEWATER AVE., STE.B

Phone:

510-434-9200

OAKLAND, CA 94601

Date Sampled:

06/14/02

Attention:

FRANK POSS

Date Received:

06/17/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

06/19/02

Project Number:

1G026

Date Reported:

06/26/02

Sampling Location:

Sample ID:

MW-2

Sample Matrix:

WATER

Sample Collected By:

BRIAN STOZEK

PAGE 4 OF 9

•	PAGE 4 OF 9			
COMPOUND	RESULT	REPORTING	QUALIFICATION	
		UNITS	LIMIT	
Acetone	n	ug/l	5	
Acrylonitrile	<u>''</u>	ug/l	5	
Benzene	n	ug/l	0.5	
Bromobenzene	n	ug/l	0.5	
Bromochloromethane	n	ug/l	0.5	
Bromodichloromethane	n	ug/l	0.5	
Bromoform	n n	ug/l	0.5	
Bromomethane		ug/l	0.5	
2-Butanone (MEK)	П	ug/l	5	
n-Butylbenzene	<u>n</u>	ug/l	0.5	
sec-Butylbenzene	<u> </u>	ug/l	0.5	
	<u>n</u>	ug/l	0.5	
tert-Butylbenzene Carbon Disulfide	n		0.5	
	<u> </u>	ug/l	0.5	
Carbon tetrachloride	<u>n</u>	ug/l	0.5	
Chlorobenzene	<u>n</u>	ug/l	1	
Chloroethane	n	ug/l	0.5	
2-Chloroethylvinylether	<u>n</u>	ug/l	0.5	
Chloroform	n	ug/l	0.5	
Chloromethane	ń	ug/l	0.5	
2-Chlorotoluene	n	ug/I	0.5	
4-Chlorotoluene	n	ug/l	0.5	
Dibromochloromethane	n	ug/l	0.5	
1,2-Dibromo-3-Chloropropane	r).	ug/i	0.5	
1,2-Dibromoethane	п	ug/l	0.5	
Dibromomethane	n	ug/l	0.5	
1,2-Dichlorobenzene	n	ug/l	0.5	
1,3-Dichlorobenzene	n	ug/l	0.5	
1,4-Dichlorobenzene	n	ug/l	0.5	
Dichlorodifluoromethane	n	ug/l	0.5	
1.1-Dichloroethane	n	ug/l	0.5	
1,2-Dichloroethane	n	ug/l	0.5	
1.1-Dichloroethene	п	ug/l	0.5	
cis-1,2-Dichloroethene	n	ug/l	0.5	
trans-1,2-Dichloroethene	n	ug/I	0.5	
1,2-Dichloropropane	1	ug/l	0.5	

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-2

	PAGE 5 OF 9		
COMPOUND	RESULT	REPORTING	QUALIFICATION
		UNITS	LIMIT
1,3-Dichloropropane	n	ug/l	0.5
2,2-Dichloropropane	n	ug/l	0.5
1,1-Dichloropropene		ug/l	0.5
		ug/l	0.5
cis-1,3-Dichloropropene trans-1,3-Dichloropropene		ug/l	0.5
1.4-Dioxane		ug/l	25
.,. =		ug/l	0.5
Ethyl Benzene Ethyl-Tert-Butyl Ether (ETBE)		ug/l	0.5
Hexachlorobutadiene	<u></u>	ug/l	0.5
2-Hexanone (MBK)	n n	ug/l	5
		ug/l	0.5
sopropylbenzene	n	ug/l	0.5
Di-Isopropyl Ether (DIPE)	n	ug/l	0.5
p-Isopropyltoluene		ug/i	5
4-Methyl-2-Pentanone (MIBK)	n	ug/i	1 1
Methylene Chloride	n 25.0	ug/i	0.5
Methyl Tert-Butyl Ether (MTBE)	25.0	ug/l	0.5
Napthalene	П	ug/l	0.5
n-Propylbenzene	n	ug/l	0.5
Styrene	n		0.5
Tert-Amyl Methyl Ether (TAME)	n	ug/l ug/l	0.5
1,1,1,2-Tetrachloroethane	n	ug/l	0.5
1,1,2,2-Tetrachloroethane	n	ug/l	0.5
Tetrachloroethene	n	ug/l	5
Tetrahydrofuran	n	ug/i	0.5
tert - Butanol (TBA)	П	ug/l	0.5
Toluene	<u>n</u>	ug/l	0.5
1,2,3-Trichlorobenzene	n		0.5
1,2,4-Trichlorobenzene	n	ug/l	0.5
1,1,1-Trichloroethane	п	ug/l	0.5
1,1,2-Trichloroethane	n	ug/l ug/l	0.5
Trichloroethene	n		0.5
1,1,2-Trichlorotrifluoroethane	n	ug/l	0.5
Trichlorofluoromethane	n .	ug/l	0.5
1,2,3-Trichloropropane	<u>n</u>	ug/l	0.5
1,2,4-Trimethylbenzene	n	ug/l	0.5
1,3,5-Trimethylbenzene	<u>n</u>	ug/l ug/l	0.5
Vinyl Acetate	<u> </u>	ug/i ug/i	0.5
Vinyl Chloride	n n	ug/l	1 1
Total Xylenes	UI	u	
SURROGATES	RECOVERY	%	CONTROL LIMITS (%)
1,2-Dichloroethane-d4	108	%	28-129
Toluene-d8	95.2	%	52-150
4-Bromofluorobenzene	90.8	%	43-155

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-3

4703 TIDEWATER AVE., STE.B

Phone:

510-434-9200

OAKLAND, CA 94601

Date Sampled:

06/14/02

Attention:

FRANK POSS

Date Received:

06/17/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

06/19/02

Project Number:

1G026

Date Reported:

06/26/02

Sampling Location:

Sample ID:

MW-3

Sample Matrix:

WATER

Sample Collected By:

BRIAN STOZEK

PAGE 6 OF 9

	PAGE 6 OF 9		
COMPOUND	RESULT	REPORTING	QUALIFICATION
		UNITS	LIMIT
			<u> </u>
Acetone	n	ug/l	5
Acrylonitrile	n	ug/l	5
Benzene	3.6	ug/l	0.5
Bromobenzene	n	ug/l	0.5
Bromochloromethane	n	ug/l	0.5
Bromodichloromethane	n	ug/l	0.5
Bromoform	n	ug/l	0.5
Bromomethane	n	ug/l	0.5
2-Butanone (MEK)	ก	ug/l	5
л-Butylbenzene	n	ug/l	0.5
sec-Butylbenzene	n	ug/l	0.5
tert-Butylbenzene	n	ug/l	0.5
Carbon Disulfide	n	ug/l	0.5
Carbon tetrachloride	n	ug/l	0.5
Chlorobenzene	n	ug/l	0.5
Chloroethane	n	ug/l	0.5
2-Chloroethylvinylether	n	ug/l	0.5
Chloroform	n	ug/l	0.5
Chloromethane	n	ug/l	0.5
2-Chlorotoluene	n	ug/l	0.5
4-Chlorotoluene	л	ug/l	0.5
Dibromochloromethane	n	ug/l	0.5
1,2-Dibromo-3-Chloropropane	n	ug/l	0.5
1.2-Dibromoethane	n	ug/l	0.5
Dibromomethane	n	ug/l	0.5
1,2-Dichlorobenzene	л	ug/l	0.5
1,3-Dichlorobenzene	n	ug/l	0.5
1,4-Dichlorobenzene	n	ug/l	0.5
Dichlorodifluoromethane	n	ug/l	0.5
1,1-Dichloroethane	n	ug/l	0.5
1,2-Dichloroethane	n	ug/l	0.5
1.1-Dichloroethene	n	ug/l	0.5
cis-1,2-Dichloroethene	n	ug/l	0.5
trans-1,2-Dichloroethene	n	ug/l	0.5
1,2-Dichloropropane	n	ug/l	0.5

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-3

PAGE 7 OF 9

n n n n n n n n n n n n n n n n n n n	REPORTING UNITS UNITS UNITS Ug/l Ug/l	QUALIFICATION LIMIT 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.
n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n n n n n n n n n	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.
n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.
n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n n n n n n n n n	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.5 0.5 5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n n n n s290 n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 5 0.5 0.5 0.5 5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n n n n n s290 n n n n n n n n n n n n n n n n n n n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5 0.5 0.5 0.5 5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n n n n see a see	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n n solve to the control of the	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n 5290 n n n 8.9 n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n 5290 n n n 8.9 n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n 5290 n n n 8.9 n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
n 5290 n n n 8.9 n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
5290 n n n 8.9 n	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5 0.5 0.5
n n n 8.9 n n	ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5 0.5
n n 8.9 n n	ug/l ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5
n 8.9 n n	ug/l ug/l ug/l ug/l ug/l	0.5 0.5 0.5 0.5 0.5
8.9 n n n	ug/i ug/i ug/i ug/i	0.5 0.5 0.5 0.5
n n n	ug/l ug/l	0.5 0.5
n n	ug/l ug/l	0.5 0.5
n	ug/l	0.5
n	ı UO/i	5
n	ug/l	0.5
n	ug/l	0.5
n n	ug/l	0.5
n n	ug/i	0.5
n	ug/i	0.5
	ug/l	0.5
<u>n</u>	ug/l	0.5
n n	ug/i	0.5
		0.5
		0.5
		0.5
		0.5
		0.5
		0.5
		1 1
		
COVERY	%	CONTROL LIMITS (%)
103	%	28-129
	%	52-150
87.4	%	43-155
	n n n n n n n n i COVERY	n ug/l cCOVERY %

Comments:

Caifornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

Reported By

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-4

4703 TIDEWATER AVE., STE.B

Phone:

510-434-9200

OAKLAND, CA 94601

Date Sampled:

06/14/02

Attention:

FRANK POSS

Date Received:

06/17/02

Project Name:

CALTRANS / SOUTH OAKLAND

Date Analyzed:

06/19/02

Project Number:

1G026

Date Reported:

06/26/02

Sampling Location:

Sample ID:

MW-4

Sample Matrix:

WATER

Sample Collected By:

BRIAN STOZEK

PAGE 8 OF 9

<u></u>	PAGE 8 OF 9		
COMPOUND	RESULT	REPORTING	QUALIFICATION
		UNITS	LIMIT
Acetone	n	ug/l	5
Acrylonitrile	п	ug/l	5
Benzene	n	ug/l	0.5
Bromobenzene	n	ug/l	0.5
Bromochloromethane	n	ug/l	0.5
Bromodichloromethane	n	ug/l	0.5
Bromoform	n	ug/l	0.5
Bromomethane	n	ug/l	0.5
2-Butanone (MEK)	n	ug/l	5
n-Butylbenzene	n	ug/l	0.5
sec-Butylbenzene	n	ug/l	0.5
tert-Butylbenzene	n	ug/l	0.5
Carbon Disulfide	П	ug/l	0.5
Carbon tetrachloride	0.6	ug/l	0.5
Chlorobenzene	n	ug/l	0.5
Chloroethane	n	ug/i	0.5
2-Chloroethylvinylether	n	ug/l	0.5
Chloroform	5.4	ug/l	0.5
Chloromethane	n	ug/l	0.5
2-Chlorotoluene	n	ug/l	0.5
4-Chlorotoluene	n	ug/l	0.5
Dibromochloromethane	n	ug/l	0.5
1,2-Dibromo-3-Chloropropane	n	ug/l	0.5
1.2-Dibromoethane		ug/l	0.5
Dibromomethane	n	ug/l	0.5
1,2-Dichlorobenzene	n	ug/l	0.5
1.3-Dichlorobenzene	n	ug/l	0.5
1.4-Dichlorobenzene	n	ug/l	0.5
Dichlorodifluoromethane	n	ug/l	0.5
1.1-Dichloroethane	n n	ug/l	0.5
1,2-Dichloroethane	n n	ug/l	0.5
1.1-Dichloroethene	n n	ug/i	0.5
cis-1.2-Dichloroethene	n	ug/l	0.5
trans-1,2-Dichloroethene	n n	ug/l	0.5
1,2-Dichloropropane	n n	ug/l	0.5

EPA METHOD 8260

Report To:

P.S.I.

Lab Number:

0206470-4

PAGE 9 OF 9

COMPOUND	RESULT	REPORTING	QUALIFICATION
Solin Conb	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UNITS	LIMIT
		ONIS	Liter
1,3-Dichloropropane	n	ug/l	0.5
2.2-Dichloropropane	n	ug/l	0.5
1,1-Dichloropropene	n	ug/l	0.5
cis-1,3-Dichloropropene	n	ug/l	0.5
trans-1,3-Dichloropropene	п	ug/l	0.5
1,4-Dioxane	n	ug/l	25
Ethyl Benzene	n	ug/l	0.5
Ethyl-Tert-Butyl Ether (ETBE)	n n	ug/l	0.5
Hexachlorobutadiene	n n	ug/l	0.5
2-Hexanone (MBK)	n n	ug/l	5
sopropylbenzene	n	ug/l	0.5
Di-Isopropyl Ether (DIPE)	n	ug/l	0.5
p-Isopropyl Etner (DIPE)	n	ug/l	0.5
p-isopropyitolitene 4-Methyl-2-Pentanone (MIBK)	n	ug/l	5
Methylene Chloride	n	ug/i	1
Methyl Tert-Butyl Ether (MTBE)	n	ug/l	0.5
Napthalene	n	ug/l	0.5
n-Propylbenzene	n	ug/l	0.5
	n	ug/l	0.5
Styrene (TAME)		ug/l	0.5
Tert-Amyl Methyl Ether (TAME) 1,1,1,2-Tetrachloroethane	n	ug/l	0.5
1.1.2.2-Tetrachioroethane	n	ug/l	0.5
		ug/l	0.5
Tetrachloroethene	n	ug/l	5
Tetrahydrofuran	n n	ug/l	0.5
tert - Butanol (TBA)	n n	ug/l	0.5
Toluene		ug/l	0.5
1,2,3-Trichlorobenzene	n	ug/l	0.5
1,2,4-Trichlorobenzene	n	ug/l	0.5
1,1,1-Trichloroethane	n	ug/l	0.5
1,1,2-Trichloroethane	n	ug/l	0.5
Trichloroethene	n	ug/l	0.5
1,1,2-Trichlorotrifluoroethane	n	ug/l	0.5
Trichlorofluoromethane	<u>n</u>	ug/l	0.5
1,2,3-Trichloropropane	n		0.5
1,2,4-Trimethylbenzene	n	ug/l	0.5
1,3,5-Trimethylbenzene	n	ug/l	0.5
Vinyl Acetate	ก	ug/l	0.5
Vinyl Chloride	n	ug/i ug/i	1 1
Total Xylenes	n	ug/i	<u> </u>
SURROGATES	RECOVERY	%	CONTROL LIMITS (%)
4.2 Dichlerenthone 44	107	%	28-129
1,2-Dichloroethane-d4	90.4		52-150
Toluene-d8 4-Bromofluorobenzene	86.8		43-155
		70	J-100

Comments:

Calfornia D.O.H.S Cert # 1677

n - Not detected at the qualification limit.

Reported By

BASIC LABORATORY CHAIN OF C	CUSTODY RECORD	
2218 Railroad Ave., Redding, CA 96001 (530) 2	243-7234 FAX (530) 243-7494 02064	70
PSI	PROJECT NAME: PROJECT #: SAMPLE TYPE: Caltrons South Oakland 16026	
ADDRESS.	REQUESTED COMP. DATE: STATE FORMS? # OF SAMPLES:	
4703 Tide water Ave, Suite B	7/1/02 4	
Oakland, CA 94601	TURN AROUND TIME: STD RUSH PAGE OF	
OJECT MANAGER:	_ REP:	
Frank POSS HONE: FAX: E-MAIL:	# \$\frac{1}{6}	
FAX: 510-434-9200 510-434-7676 Fronk Poss @ PSTUS	SYSTEM#:	
same	B ON GLOBAL ID	#-
PECIAL MAIL E-MAIL FAX EDT		п.
A C S O	L 67 QC=1 2	3 4
DATE TIME R SAMPLE DESCRIPTION	S LAB ID REMA	RKS
1/4/02 10:50 X MW-1	4X / /	
1 11:22 X MW-2	4 X	
11:42 × Mw-3	4 x 3	
12:12 × nw-4	4X 4 4	
	 	
		
+ NO Trip Bla		
NO Trip Ba		
		<u> </u>
<u> </u>		
PRESERVED WITH: HNO ₃ H ₂ SO ₄ NaOH ZnAce/NaOH SAMPLED BY: DATE/TIME:	DATE/TIME:	
Brian Stozek 6/14/02/0350	1 Brian Stozek 6/14/02	17:30
RECEIVED BY: DATE/TIME:		
ECEIVED BY: (SAMPLES UNVERIFIED) DATE/TIME:	RELINQUISHED BY: DATE/TIME:	
RECEIVED BY LAB: (VERIFIED) DATE/TIME:	SAMPLES SHIPPED VIA: UPS FEDEX POST BUS OTHER	
STRUCTIONS, TERMS AND CONDITIONS ON BACK.	VU	