PAGE.

RECEIVED

By Alameda County Environmental Health at 2:37 pm, Mar 10, 2015

March 5, 2015

Rita and Tony Sullins 187 North L Street Livermore, CA 94550

Re: Transmittal Letter

Site Location: Arrow Rentals

187 North L Street, Livermore, CA 94550

Dear Mr. Wickham:

On behalf of Rita and Tony Sullins, Ground Zero Analysis, Inc. (GZA) prepared the March 4, 2015 Well Installation Report that was sent to your office via electronic delivery per Alameda County's guidelines.

I declare under penalty of law that the information and/or recommendations contained in the above referenced document or report is true and correct to the best of my knowledge.

Respectfully submitted,

Rita / Tony Sullins

Property Owner

Don Sul Inc.

187 North L Street

Livermore, CA 94550

1172 Kansas Avenue, Suite A Modesto, CA 95351 209.522.4119 – PH 209.522.4227 - FAX groundzeroanalysis.com

ERIC LEE PRICE

NO. 8414

Well Installation Report

Arrow Rentals

187 North L Street Livermore, California

March 4, 2015

Prepared for:

Tony and Rita Sullins Arrow Rentals Service 187 North L Street Livermore, CA 94550

Prepared by:

Ground Zero Analysis, Inc. 1172 Kansas Avenue Modesto, CA 95351

Eric L. Price

California Professional Geologist No. 8414

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	GEOLOGY AND HYDROGEOLOGY
3.0	HISTORICAL SITE INVESTIGATIONS
4.0	NATURE AND EXTENT OF CONTAMINATION DATA GAP
5.0	SCOPE OF WORK - MONITORING WELL INSTALLATION
	5.3 Soil Sampling and Analysis
	5.4 Monitoring Well Development and Survey
	5.5 Groundwater Sampling and Analysis
	5.6 Waste Disposal

List of Figures

Figure 1: Vicinity Map

Figure 2: Site Map with Well Locations

Figure 3: Well Construction Diagram – Down-gradient Monitoring Wells

Figure 4: Well Construction Diagram – Pitcock Release Monitoring & Extraction Well

i

List of Tables

Table 1: Well Construction Details

Table 2: Soil Analytical Summary

List of Attachments

Attachment A: Drilling Permit

Attachment B: Field Notes

Attachment C: Boring Logs

Attachment D: Laboratory Analytical Report

1.0 INTRODUCTION

The site is located at 187 North L Street in the central portion of the City of Livermore, California. The subject property is at an elevation of approximately 480 feet above mean sea level (msl). In 1972 and 1986, a total of five former USTs containing gasoline product were removed from the subject property. The sources of petroleum hydrocarbons were purported to be from the former USTs and associated piping as well as a 1985 incident in which a petroleum supplier pumped up to 600 gallons of gasoline into vapor monitoring well (Pitcock release).

Ground Zero Analysis, Inc. (Ground Zero) is submitting this *Well Installation Report* in response to Alameda County Environmental Health's (ACEH) *Technical Report Request* dated October 6, 2014. A vicinity map is included as Figure 1.

2.0 GEOLOGY AND HYDROGEOLOGY

The shallow sediments beneath the subject property (<100 feet below grade) are Pleistocene alluvial fan and flood plain deposits. Regionally, the surrounding area slopes to the west.

The subjective field observations of various field geologists and associated boring logs were included in Geological Technics, Inc.'s (GTI) *Site Conceptual Model* dated December 18, 2006. The subsurface lithology falls into two predominant categories – clayey/sandy gravels and clays; with minor amounts of silt and sand units. The lithology consists of primarily gravelly units from the surface to approximately 35 – 45 feet below grade surface (bgs). Below these depths are 15 to 20 feet of clayey units that seem to retard the vertical migration of contaminants. These fine grained units are underlain by more gravels and a second clay horizon at approximately 78 feet bgs. Silts and sand units are present in the soil profile but are thin (less than 5 feet thick) and less frequent than the soils noted above.

The average depth to groundwater (DTW) in September 2014 was 52 feet bgs corresponding to an average groundwater elevation of about 429 above msl. Groundwater elevation decreased an average of 15.62 feet between December 2013 and September 2014. Groundwater generally flows westerly to northwesterly with a gradient ranging between 0.01 feet per foot (ft/ft) to 0.08 ft/ft.

3.0 HISTORICAL SITE INVESTIGATIONS

Site investigation and/or UST removal activities have been conducted at the Site since 1972. Groundwater monitoring wells have been sampled since 1989. The following is a chronology of historical information and site activities:

- 1972 Three 1,500 gallon USTs were removed from the subject property.
- 1985 Approximately 600 gallons of gasoline are pumped into a vapor monitoring well by Pitcock Petroleum (Pitcock Release).

- 1986 A 4,000 gallon UST and a 6,000 gallon UST were removed from the subject property.
- Three groundwater monitoring wells were installed on-site and adjacent to the site (W-1, W-2 and W-3). Five soil borings were advanced at the subject site (B-1 through B-5).
- Five groundwater monitoring wells were installed on-site and off-site (W-A through W-E). Three soil borings were advanced at the subject site (B-1A, B-7 and B-8).
- One soil boring was advanced at the subject site (B-F).
- 1992 UST associated piping was removed and approximately 10 yd³ of soil was excavated. Two soil borings were advanced at the subject site (B-G and B-H).
- 1994 A dual phase extraction (DPE) pilot test was performed.
- Four groundwater monitoring wells were installed on-site and off-site (W-1s, W-Bs, W-3s and W-Es).
- 1998 A soil gas survey was conducted at the subject site.
- 2005 A soil gas survey was conducted at the subject site.
- 2006 Five multi-chambered "CMTTM" wells were installed on the subject property. A DPE pilot test was performed.
- 2011 Soil and groundwater remediation begins after the installation of a DPE system.
- 2012 Subsurface remediation is enhanced with the installation of an air sparging (AS) system.
- This report documents the installation of two downgradient groundwater monitoring wells (MW-9 and MW-10) and one vapor extraction well (EW-2) near the Pitcock Release. The extraction well was piped into the existing dual phase vapor extraction system and incorporated into the vapor removal stream.

4.0 NATURE AND EXTENT OF CONTAMINATION DATA GAP

The presence of petroleum hydrocarbon constituents in the soil and groundwater has been attributed to historical releases from auto fueling operations at the Site. Groundwater elevation has decreased significantly beneath the subject property. The average groundwater elevation decreased from the April 24, 1996 peak to the September 9, 2014 low by 30.14 feet. The result was dry monitoring wells that were previously used to delineate the downgradient plume boundaries. In addition, remediation activities were focused near EW-1 and there was no active remediation near the Pitcock Release.

5.0 SCOPE OF WORK – GROUNDWATER MONITORING WELL INSTALLATION

Between January 26, 2015 and January 27, 2015, Ground Zero personnel installed two groundwater monitoring wells (MW-9 and MW-10) and one extraction/groundwater monitoring well (EW-2) as shown on Figure 2. The scope of work included the following tasks:

- Obtained Permit and conducted pre-field work activities;
- Installed two groundwater monitoring and one vapor extraction wells;
- Analyzed soil samples;
- Developed monitoring and extraction wells;
- Connected vapor extraction well to the dual phase extraction system;
- Surveyed well-heads for location and elevation control;
- Monitored groundwater; and
- Disposed of soil and groundwater generated during investigation activities.

5.1 Pre-field Work and Permitting Activities

Prior to drilling activities, a well installation permit was obtained from Zone 7 Water Agency. A copy of the permit is included in Attachment A. Underground utilities were cleared by contacting Underground Services Alert (USA) and having underground utilities marked. The locations of the monitoring wells were be pre-cored by Cal-West using a 16-inch concrete core saw. Zone 7 Water Agency and ACEH were given notice at least three business days prior to drilling activities.

5.2 Groundwater Monitoring Well Installation

Drilling and groundwater monitoring well installation was conducted by V&W Drilling of Stockton, California (C-57 #720904) under the supervision of Andrew Dorn, an experienced Ground Zero geologist. Construction of the wells tried to take into account the great variations in groundwater elevation and anticipated future decline. If groundwater elevation increases, monitoring well W-3s will be used to monitor shallow groundwater conditions.

All reusable equipment was decontaminated between borings. Investigation derived waste (IDW) generated during the well installation activities was placed in properly labeled Department of Transportation (DOT) approved 55-gallon drums and temporarily stored on-site pending disposal. Well construction details are summarized in Table 1. Well locations are shown in Figure 2 and well construction details are shown on Figure 3 and Figure 4. Field notes are included in Attachment B and Borehole logs are included in Attachment C.

5.2.1 Construction Details - Down-Gradient Groundwater Monitoring Wells

Two borings (MW-9 and MW-10) were advanced using 8-inch hollow-stem augers to approximately 65 feet bgs. A 2-inch diameter, twenty-foot length, 0.010" slotted well screen was lowered into the augers. The top of the screen was connected to 2-inch diameter PVC blank well casing to approximately 3-inches below ground surface and a filter back consisting of #2/12 sand was added to approximately 24-inches above the well screen. Three feet of bentonite chips or

pellets was placed above the filter pack in approximately 6-inch lifts and hydrated. A Portland cement grout sanitary seal was placed above the transition seal to approximately 6-inches below ground surface. A locking well cap was installed at the top of the well casing and the monitoring wells were completed with an 8-inch traffic-rated well box installed flush with grade surface.

5.2.2 Construction Details – Pitcock Release Monitoring and Extraction Well

One boring (EW-2) was advanced using 8-inch hollow-stem augers to approximately 60 feet bgs. A 2-inch diameter, twenty-foot length, 0.010" slotted well screen was lowered into the augers. The top of the screen was connected to 2-inch diameter PVC blank well casing to approximately 3-inches below ground surface and a filter back consisting of #2/12 sand was added to approximately 24-inches above the well screen. Three feet of bentonite chips or pellets was placed above the filter pack in approximately 6-inch lifts and hydrated. A Portland cement grout sanitary seal was placed above the transition seal to approximately 6-inches below ground surface. A locking well cap was installed at the top of the well casing and the monitoring wells were completed with a 12-inch traffic-rated well box installed flush with grade surface.

A PVC "T" connection was installed on the PVC blank well casing and a locking well cap was installed at the top of the PVC "T" connection. The DPE system was connected to the PVC "T" connection below grade using PVC pipe. A trench was excavated between EW-2 and the DPE system and the PVC pipe installed connecting the well to the existing remediation manifold. The trench was covered with backfill and capped with asphalt.

5.3 Soil Sampling and Analysis

Soil samples were collected using a split spoon style core sampler lined with stainless steel sleeves for analysis of contamination and lithologic identification. Samples were classified in accordance with the Unified Soil Classification System. A photoionization detector (PID) was used to screen soil samples for evidence of hydrocarbon contamination.

Selected soil samples were immediately capped, segregated and preserved by placing in an ice chest at a temperature of less than 6°C and transported to BC Laboratories of Bakersfield, California (ELAP #1186) under chain of custody protocol. Samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg); benzene, toluene, ethyl benzene, total xylenes (BTEX); and methyl *tert*-butyl ether (MTBE) using EPA Method 8260B. Analytical data are summarized in Table 2 and the Laboratory Analytical Report is included in Attachment D.

The findings are briefly discussed below:

• MW-9: Results indicate the presence of TPHg and all or some of the BTEX constituents in each of the sample intervals. MTBE was not reported above laboratory detection limits at any depth interval. The highest concentrations of TPHg (32 mg/Kg) and benzene (0.32 mg/Kg) were detected in the 40-foot bgs sample (capillary fringe). The highest concentrations of toluene (0.29 mg/Kg), ethylbenzene (0.38 mg/Kg) and total xylenes (1.3 mg/Kg) were reported in the 65-foot bgs sample (bottom of the boring).

- MW-10: Results indicate the presence of TPHg (0.71 mg/Kg), toluene (0.020 mg/Kg), ethylbenzene (0.0089 mg/Kg) and total xylenes (0.11 mg/Kg) in the 65-foot bgs (bottom of boring) sample. MTBE was not reported above laboratory detection limits at any depth interval. No analyzed constituent was reported above laboratory detection limits in the 40-foot bgs or 50-foot bgs samples.
- EW-2: Results indicate the presence of TPHg and BTEX constituents in the 35-foot bgs and 40-foot bgs sample intervals. MTBE was not reported above laboratory detection limits at any depth interval. No analyzed constituent was reported above laboratory detection limits in the 65-foot bgs sample. The highest concentrations of TPHg (1,800 mg/Kg), benzene (2.0 mg/Kg), toluene (2.9 mg/Kg), ethylbenzene (16 mg/Kg) and total xylenes (72 mg/Kg) were reported in the 40-foot bgs sample (capillary fringe).

5.4 Monitoring Well Development and Survey

The newly installed groundwater monitoring wells were developed on January 30, 2015. The monitoring wells were developed by mechanical pumping and surging methods until the turbidity of the pumped groundwater is visibly reduced. Approximately 50 to 60 gallons of water was purged from each well. Field notes are included in Attachment B.

The groundwater monitoring wells were surveyed by Epic Land Surveying, Inc (Epic) in accordance with assembly bill 2886 GeoTracker guidelines and the data was uploaded to the State GeoTracker database.

5.5 Groundwater Sampling and Analysis

The newly installed groundwater monitoring wells will be sampled quarterly for one year and semiannually thereafter in conjunction with monitoring of other site wells. The first quarter 2015 event is scheduled for March 2015. Data from the quarterly monitoring will be discussed in the associated semi-annual groundwater monitoring report.

The groundwater monitoring well caps will be loosened to allow groundwater elevation stabilization. The total depth and depth to groundwater will be measured by an electronic sounding device and used to calculate well casing volume. Groundwater elevations will be calculated by subtracting the measured depth to groundwater in each well from the respective wellhead elevation. A Flow Cell and sensors will be used to provide a constant stream of real time accurate water quality information during the purging process. The purging process will be monitored using an electronic sounding device to ensure the pumping rate does not induce draw-down in the well. Groundwater parameters (temperature, electric conductivity, pH, and oxidation-reduction potential) will be collected and recorded during the purging process.

Once the parameters have stabilized within 10% of the previous readings, the pump rate will be adjusted to the lowest technically feasible setting prior to collecting samples. The groundwater samples will be placed into the appropriate laboratory supplied containers, checked for headspace, uniquely labeled, placed into an ice chest cooled to less than 6°C, and transported or shipped to a certified laboratory under chain of custody protocol for analysis. Groundwater samples will be analyzed for TPHg, BTEX and MTBE using EPA Method 8260B.

5.6 Waste Disposal

Investigation derived waste was placed in properly labeled DOT approved 55-gallon drums and temporarily stored on-site pending disposal. On February 18, 2015, the IDW was removed for disposal by Woodward Drilling of Rio Vista, California. Water produced during groundwater monitoring activities will be processed through the groundwater remediation system.

WELL CONSTRUCTION DIAGRAM - DOWN-GRADIENT MONITORING WELL

SULLINS (ARROW RENTALS) 187 NORTH "L" STREET LIVERMORE, CALIFORNIA FIGURE

3

WELL CONSTRUCTION DIAGRAM
PITCOCK RELEASE MONITORING & EXTRACTION WELL

SULLINS (ARROW RENTALS) 187 NORTH "L" STREET LIVERMORE, CALIFORNIA **FIGURE**

4

Table 1: Summary of Well Construction

Arrow Rentals 187 North L Street Livermore, CA Project No. 1262.2

		Well/Boring			Total	Boring	Well	Casing	Slot Size	Sand	Well	Screen	Filter	Pack	Annul	ar Seal	Grou	t Seal
Aquifer	Well/Boring Type	Number	Status	Date Drilled	Depth (ft)	Diameter (in)	Diameter (in)	Type	(in)	Туре	From	То	From	То	From	То	From	То
	Vapor Extraction	W-ls	Active	03/11/96	45	?	6	PVC	0.010	#2/12	45	20	45	17	17	15	15	S
	Monitoring	W-Bs	Active	03/12/96	45	?	6	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
	Monitoring	W-3s	Active	03/12/96	45	?	4	PVC	010.0	#2/12	45	20	45	18	18	16	16	S
	Monitoring	W-Es	Active	03/13/96	45	?	2	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
	Monitoring	MW-4	Active	10/02/06	82	8	-	MCT	-	#2/12	30	29	30	20	16	14	14	S
≥	Monitoring	MW-5	Active	10/09/06	68	8	-	MCT	-	#2/12	27	26	29	24	24	21.5	21.5	S
Shallow	Monitoring	MW-6	Active	10/10/06	68	- 8		MCT	- 1	#2/12	30	29	31	27	27	24	24	S
S	Monitoring	MW-7	Active	10/04/06	69.5	- 8		MCT	-	#2/12	30	29	30	20	-	-	6	S
	Monitoring	MW-8	Active	10/05/06	66.5	8	-	MCT	- 1	#2/12	30	29	30	30	20	18	18	S
	Monitoring	MW-9	Active	01/27/15	65	8	2	PVC	0.010	#2/12	65	45	65	43	43	40	40	S
	Monitoring	MW-10	Active	01/27/15	65	8	2	PVC	0.010	#2/12	65	45	65	43	43	40	40	S
	Vapor Extraction	EW-1	Active	10/03/06	25	10	4	PVC	0.010	#2/12	25	10	25	9.5	9.5	7.5	7.5	s
	Vapor Extraction	EW-2	Active	01/26/15	60	- 8	2	PVC	0.010	#2/12	60	40	60	38	38	35	35	S
	Vapor Extraction	W-1	Active	05/25/89	56.5	8	2	PVC	0.010	#2/12	55.5	45.5	55.5	41.5	41.5	39	39	S
	Monitoring	W-2	Active	05/26/89	51.5	8	2	PVC	0.010	#2/12	49	39	49	36	36	22.5	22.5	S
	Monitoring	W-3	Active	05/26/89	51.5	8	. 2	PVC	0.010	#2/12	48	38	48	34.5	34.5	32.5	32.5	S
	Vapor Extraction	W-A	Active	07/12/90	63	12	4	PVC	0.010	#2/12	57.5	42	63	40	40	36.5	36.5	S
	Monitoring	W-B *	Active	07/13/90	55	12	4	PVC	0.010	#2/12	55	40	55	32	32	30	30	S
	Monitoring	W-C *	Active	07/11/90	55	8	2	PVC	0.010	#2	55	45	55	37.5	37.5	35	35	S
	Monitoring	W-D *	Active	07/12/90	57.5	8	2	PVC	0.010	#2/12	57.5	42	57.5	39.5	34	32	32	S
Intermediate	Monitoring	W-E *	Active	07/10/90	61	8	2	PVC	0.010	#2/12	60.5	40.5	61	37	30	29	29	S
ned	Monitoring	MW-104	Active	10/02/06	51	8		MCT	-	#2/12	50.5	49.5	52	48	45	30	-	-
Пe	Monitoring	MW-105	Active	10/09/06	37	8	-	MCT		#2/12	37	36	39	34	35	29	_	-
=	Monitoring	MW-106	Active	10/10/06	37	8		MCT	-	#2/12	37	36	39	35	35	31	-	-
	Monitoring	MW-107	Active	10/04/06	40	8		MCT		#2/12	40	39	42	37	37	30	-	-
	Monitoring	MW-108	Active	10/05/06	40	8	-	MCT	-	#2/12	40	39	42	37	37	30	-	-
	Monitoring	MW-205	Active	10/09/06	48	8	-	MCT	-	#2/12	48	47	50	45	45	39	-	_
	Monitoring	MW-206	Active	10/10/06	50	8	-	MCT	-	#2/12	50	49	52	47	47	39	-	-
	Monitoring	MW-207	Active	10/04/06	50	8	-	MCT	-	#2/12	50	49	52	47	47	42	-	-
	Monitoring	MW-208	Active	10/05/06	52	8	-	MCT		#2/12	52	51	54	49	49	42	-	-
	Monitoring	MW-204	Active	10/02/06	66.5	8	-	MCT	-	#2/12	66.5	65.5	68	64	64	52	-	-
•	Monitoring	MW-305	Active	10/09/06	68	8	-	MCT	-	#2/12	66	65	68	63	63	50	-	-
Deep	Monitoring	MW-306	Active	10/10/06	68	8	-	MCT	-	#2/12	66	65	68	63	63	52	-	-
	Monitoring	MW-307	Active	10/04/06	69.5	8	-	MCT	-	#2/12	66	65	68	63	63	52	-	-
	Monitoring	MW-308	Active	10/05/06	66.5	8	-	MCT	-	#2/12	66	65	66	63	63	54	-	-
Deepest	Monitoring	MW-304	Active	10/02/06	75.5	8	-	мст	-	#2/12	75.5	74.5	76	73	73	68	-	-
Dec	Monitoring	MW-404	Active	10/02/06	82	8	-	мст	-	#2/12	81.5	80	81.5	79.5	80	76	-	-

^{* =} well was destroyed in 2008

Table 2. Summary of Analytical Data - Soil Borings

Sullins 187 North L Street Livermore, California Project No. 1262.2

Summary of Soil Analytical Data

_	_	,							-		-		
										l			
		Sample Depth (Ft)											
Date Sampled		:pt	TPH-Gasoline	36			cuc	នួ					
a a	%	Ď	sasc	TEPH-Diesel	_ 2	2	Ethylbenzene	Total Xylenes					
e S	Borchole	gr	≚	五	zer	Toluene	- £	i i	<u>a</u>	ЕТВЕ	<u>8</u>	TAME	< −
ā	8	Sar	£	3E	Benzene	T ₀	£ 5	Ţ	DIPE	ET	MTBE	1 7	TBA
							milligra	ms per kilogran	n (mg/Kg)		<u></u>		
03/02/89	B-1	2	ND		ND	ND	ND	ND	1 .	.	-		
0,000		5	ND		ND	ND	ND	ND		-	-	-	
		01	ND		ND	ND	ND	ND		-	-		
		15	ND	2.3	ND	ND	ND	ND	·	-	-	- 9	-
		20 25	170 220	-:-	2.1	1.4	0.22	1.5		- :	-	- :	
l		23	220		0.38	7.1	6.4	52		-	<u> </u>		-
03/02/89	B-2	2	3.5		ND	ND	ND	0.1			-		
		5	8.2	-	ND	ND	ND	ИD			-	-	
1		10	ND	- 11	ND	ND	ND	ND			-		
		15 25	ND 1.7	2.3	ND ND	ND ND	ND ND	0.55	<u>:</u>	-	-	-	-:-
											-		
03/02/89	B-3	2	ND		ND	ND	ND	ND			-	-	· ·
		5	ND		ND	ND	ND	ND	-		-		
I		10	ND ND	2.6	ND ND	ND ND	ND ND	ND ND			-	-	
		20	ND	2.0	ND ND	ND	ND	ND		-	-	-	
		25	1.3		ND	ND	ND	ND		-	-		-
00.000.00				1000									
03/02/89	B-4	2	ND		ND	ND	ND	ND				-	2
		5 10	ND ND	-	ND ND	ND ND	ND ND	ND ND	-:-	-	-	-	
		15	ND		ND	ND	ND	ND			-	-	
03/03/89	B-5	2	ND	-	ND	ND	ND	ND	-	-	-		(2)
		5 10	I.9 ND	-	ND ND	ND ND	ND ND	ND ND		-	-	-	-
ji		15	ND	-	ND	ND	ND DND	ND	- :	-	-		-
		20	ND	ND	ND	ND	ND	ND			-	-	-
		25	1.7		ND	מא	ND	ND			-		·
05/25/89	W-I	5	ND		ND	ND	ND	ND					
03/23/67	11-1	10	ND	-	ND	ND	ND	ND	- :	-	-	-	
ì		15	1200	-	ND	21	20	130		-	-		-
		20	350	380	2.5	14	6.3	30		-	-		
ſ		25 30	490	-	3.5	24	9.4	46			-	2	•
1		35	160 370		1.0	7.9 20	3.6	18 40			-	-	
}		40	16000	1500	220	1,100	340	1,500			-	- 5	-
		45	1600	-	30	120	34	160					
		50	2500		28	200	59	270	·	. =		-	
1		55	120		3.2	10	2.7	13				*	· .
05/26/89	W-2	5	1,2	-	ND	0.14	ND	ND					- 0
		10	ND	-	ND	0.1	ND	ND	·		V		
		15	ND	-	ND	0.1	ND	ND	-	-	-		· .
		20 25	ND ND	-	ND ND	ND ND	ND ND	ND ND		-			- 1
		30	ND		ND ND	ND	ND	ND	-				- : -
1		35	ND		ND	ND	ND	ND		-		0)	· [
		40	ND		ND_	ND	ND	ND	<u> </u>	-	-		. [
1		45 50	ND ND	ND	ND ND	ND ND	ND ND	ND ND	· ·	-			
		30	עא		ND	ND	, ND	עא	· ·	· ·	-		-
05/26/89	W-3	5	ND		ND	ND	ND	ND					
		10	ND		ND	ND	ND	ND		-	-		
		15	ИD		ND	ND	ND	ND ND	· -	-	-		-
					ND	ND	ND	ND ND	-	-			
		20	ND ND		ND	ND							
			ND ND ND	-	ND ND	ND ND	ND ND	ND	-	-	-		
		20 25 30 35	ND ND ND	-	ND ND	ND ND	ND ND	ND ND					
		20 25 30 35 40	ND ND ND ND		ND ND ND	ND ND ND	ND ND ND	ND ND ND					
		20 25 30 35	ND ND ND	-	ND ND	ND ND	ND ND	ND ND					

Table 2. Summary of Analytical Data - Soil Borings

Sullins 187 North L Street Livermore, California Project No. 1262.2

Summary of Soil Analytical Data

Date Sampled	Borcholc	Sample Depth (Ft)	TPH-Gasoline	TEPH-Diesel	Вепхепс	Toluene	Ethylbenzene	Total Xylenes	DIPE	ETBE	MTBE	TAME	ТВА
								ns per kilogram					
									- 15-17-				
07/10/90	B-1A	10	ND<10		-	-	-				-	-	
		15 20	ND<10		<u> </u>	<u> </u>	-				-		
	1	30	ND<10 ND<10				- : -		- :				-
		35	ND<10		-	-	-	-				-	
		40	350								-		-
		45	54 ND-10		-	-	<u> </u>	-	•	<u> </u>	_ :		
		50	ND<10		-	-			· ·			<u> </u>	-
07/10/90	B-7	5	ND	ND	ND	ND	ND	ND					
	-	10	ND_		ND	ND	מא	ND					
07/10/00	D.O.		ND		ND	ND	ND	ND					
07/10/90	B-8	5	ND ND	ND	ND ND	ND ND	ND ND	ND ND	:		-	-	-
							,,,,,						
07/12/90	W-A	20	ND<1		0.41	0.32	0.24	0.21			-	-	-
		30	2		0.39	0.13	0.035	1.2		<u> </u>	-	_ ·	-
		35 40	1,000		12	37	7.5	27		-	-	- :	- :
			.,										
07/13/90	W-B	25	ND<1		-	-		-					
		30		<u> </u>		0.26	-				-		-
		35	ND <i< td=""><td></td><td>0.69</td><td>0.26</td><td>0.11</td><td>0.07</td><td></td><td>-</td><td></td><td></td><td>-</td></i<>		0.69	0.26	0.11	0.07		-			-
03/12/91	B-F	15			0.002	0.025	0.030	0.034					
01/31/92	B-G	5.5	570	-	0.55	1.3	ND<0.25	2.8			-		-
		7 8	ND <i< td=""><td>_:_</td><td>ND<0.005 ND<0.005</td><td>ND<0.005 ND<0.005</td><td>ND<0.005 ND<0.005</td><td>ND<0.005 ND<0.005</td><td></td><td></td><td>-</td><td></td><td></td></i<>	_ : _	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005			-		
		9.5	ND<1		ND<0.005	ND<0.005	ND<0.005	ND<0.005			-		
	[11.5	490		ND<0.1	ND<0.1	ND<0.1	0.53			-		-
		13	3,100 750		ND<2 ND<0.5	4.4 ND<0.5	3.9	330	- :	-:-	-		
		15	1,800		ND<0.5	16	31	220	-		-	7.	
		16	6,700		ND<20	96	120	790		-		-	-
		17.5	3,000		ND<1.3	2.2	19	220					
	-	19 20.5	2,100	 -	ND<0.05	0.45 75	1.3	5.9 180	-:	-	-		
		26	150		1	3.2	0.9	5.3		-	-	-	
		31.5	40		4	4.4	0.48	2.8		-			
		36	1,900		1.8	63	21	120		-	-	-	
		41	12,000		150	520	130	710					
01/31/92	В-Н	4.5	ND <t< td=""><td></td><td>ND<0.005</td><td>0.016</td><td>ND<0.005</td><td>ND<0.010</td><td></td><td></td><td>-</td><td>-</td><td></td></t<>		ND<0.005	0.016	ND<0.005	ND<0.010			-	-	
		6	ND<1		ND<0.005	ND<0.005	ND<0.005	ND<0.005					
	[7.5	ND<1		ND<0.005	ND<0.005	ND<0.005	ND<0.005	-			-	-
]	9.5	ND<1	<u> </u>	ND<0.005 ND<0.005	0.008	ND<0.005 ND<0.005	ND<0.005 ND<0.005		-	-		-
		12.5	ND <i< td=""><td>_ .</td><td>ND<0.005 ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005 ND<0.005</td><td>-</td><td></td><td></td><td>-</td><td>-</td></i<>	_ .	ND<0.005 ND<0.005	ND<0.005	ND<0.005	ND<0.005 ND<0.005	-			-	-
	[14	ND<1		ND<0.005	ND<0.005	ND<0.005	ND<0.005					-
	[21	ND <i< td=""><td></td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>· · ·</td><td>-</td><td>-</td><td></td><td>-</td></i<>		ND<0.005	ND<0.005	ND<0.005	ND<0.005	· · ·	-	-		-
		26.5 31	1,900	.	ND<0.025 0.59	0.12	0.11	3.3	· ·		-:-	· ·	-
	1 1	36	8,000	-	16	18	26	210	-	-	-		-
		41	ND<1	-	0.058	ND<0.005	ND<0.005	ND<0.005			-		
10/02/07	1 100	- 16	64**	0/4	NID co Sc	ND c0.35	0.00	ND-05	NDcaac	ND c0 3/	ND:0.35	NIDGO 25	ND -2 5
10/02/06	MW-4	30	18	3.2*	ND<0.25 0.15	ND<0.25 0.19	0.65	ND<0.5	ND<0.25 ND<0.02	ND<0.25 ND<0.02	ND<0.25 ND<0.02	ND<0.25 ND<0.02	ND<2.5 ND<0.2
		45	820**	360*	ND<0.25	ND<0.25	4.2	7.7	ND<0.25	ND<0.25	ND<0.25	ND<0.02	ND<2.5
		60.5	1100	680*	8.7	1.1	18	62	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<2.5
		73	5.4	ND <i< td=""><td>0.027</td><td>0.065</td><td>0.043</td><td>0.19</td><td>ND<0.01</td><td>ND<0.01</td><td>ND<0.01</td><td>ND<0.01</td><td>ND<0.1</td></i<>	0.027	0.065	0.043	0.19	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.1
		80	12	ND <i< td=""><td>0.013</td><td>0.036</td><td>0.016</td><td>0.084</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.05</td></i<>	0.013	0.036	0.016	0.084	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
10/09/06	MW-5	26	ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
		36	11**	1.1*	ND<0.005	0.021	0.031	0.035	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05
		40.5	110	360*	1.1	1.4	1.2	5.7	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<2.5
		48 55.5	7.6 75	ND <i< td=""><td>0.19</td><td>0.025</td><td>0.067</td><td>0.16</td><td>ND<0.005 ND<0.005</td><td>ND<0.005 ND<0.005</td><td>ND<0.005 ND<0.005</td><td>ND<0.005 ND<0.005</td><td>ND<0.05 ND<0.05</td></i<>	0.19	0.025	0.067	0.16	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.005 ND<0.005	ND<0.05 ND<0.05
		22.2	10	110-1	0.10	0.15	2.07	0.00	1.50 0,000	110 -0.003	110 -0.000	110-0.003	11000000

Page 2 of 3

Table 2. Summary of Analytical Data - Soil Borings

Sullins 187 North L Street Livermore, California Project No. 1262.2

Summary of Soil Analytical Data

Date Sampled	Borchole	Sample Depth (Ft)	TPH-Gasoline	TEPH-Diesd	Вепхепе	Toluene	Ethylbenzene	Total Xylenes	DIPE	ETBE	MTBE	TAME	TBA
							milligrar	ns per kilogran	ı (mg/Kg)				
10/10/06	MW-6	16	ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.0
		26	ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	10.0>DN	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.0
		40.5	ND <i< td=""><td>ND<i< td=""><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.01</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND⊴0.0</td></i<></td></i<>	ND <i< td=""><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.01</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND⊴0.0</td></i<>	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND⊴0.0
	1 [45	7.2**	1.1*	ND<0.005	0.022	0.014	ND<0.01	ND40,005	ND<0.005	ND<0.005	ND<0.005	ND40.0
	1 1	49.5	1.2**	ND<1	ND<0.005	0.0091	0.0052	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.0
		67.5	ND<1	ND<1	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.0
								and the same					
10/04/06	MW-7	15	ND <i< td=""><td>ND<i< td=""><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.01</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.</td></i<></td></i<>	ND <i< td=""><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.01</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.</td></i<>	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.
	L	40	220	23*	3.9	19	8.8	43	ND<0.025	ND<0.025	ND<0.025	ND<0.025	ND<0.2
		45.5	1200	66*	10	56	32	160	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<2.
		49	ND<1	ND<1	0.31	0.051	0.034	0.1	ND<0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.
		68	ND<1	ND <i< td=""><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.01</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.0</td></i<>	ND<0.005	ND<0.005	ND<0.005	ND<0.01	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.0
10/05/06	MW-8	25	ND <i< td=""><td>ND<1</td><td>ND<0.005</td><td>ND -0.005</td><td>N.D. 0.004</td><td>NID -0.01</td><td>No di cos</td><td>ND -0.004</td><td>N.D. 0.00</td><td>315 3 444</td><td>- 1m - 0 -</td></i<>	ND<1	ND<0.005	ND -0.005	N.D. 0.004	NID -0.01	No di cos	ND -0.004	N.D. 0.00	315 3 444	- 1m - 0 -
10/03/06	MW-8	35	2200	800*	3.8	ND<0.005 2,2	ND<0.005 29	ND<0.01	ND<0.005 ND<0.025	ND<0.005 ND<0.025	ND<0.005	ND<0.005	ND<0.0
	l -	45	1.7	ND<1	0.058	ND<0.005	0.011	ND<0.01	ND<0.025		ND<0.025	ND<0.025	ND<0.2
	I -	55	1.8	ND <i< td=""><td>0.038</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.01</td><td>ND-0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.005</td><td>ND<0.0</td></i<>	0.038	ND<0.005	ND<0.005	ND<0.01	ND-0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.0
		65	ND<1	ND <i< td=""><td>0.022</td><td>ND<0.005 ND<0.02</td><td>0.03</td><td>ND<0.01 ND<0.04</td><td>ND<0.02</td><td>ND<0.005</td><td>ND<0.005 ND<0.02</td><td>ND<0.005</td><td>ND<0.0</td></i<>	0.022	ND<0.005 ND<0.02	0.03	ND<0.01 ND<0.04	ND<0.02	ND<0.005	ND<0.005 ND<0.02	ND<0.005	ND<0.0
		65	MD<1	MDel	0.041	ND<0.02	0.03	ND<0.04	ND<0.02	ND<0.02	ND<0.02	ND<0.02	ND<0.
01/27/15	MW-9	35	0.42		0.056	ND<0.005	0.026	0.043	-		ND<0.005		
		40	32		0.32	0.084	0.29	1.2			ND<0.005		
		65	26		0.17	0.29	0.38	1.3			ND<0.005		
					_								
01/26/15	MW-10	40	< 0.20		ND<0.005	ND<0.005	ND<0.005	ND<0.01			ND<0.005		
		50	<0.20		ND<0.005	ND<0.005	ND<0.005	ND<0.01			ND<0.005		
		65	0.71		<0.010	0.020	0.0089	0,11		.0	ND<0.005		
01/26/15	EW-2	35	2.0		0.005	0.0069	0.026	0.20			ND<0.005		
	2	40	1800		2.0	2.9	16	72			<0.12		

^{*=} faithfatory reported as within discal range but does not match diesel chromatogram "fingerprint"
**= laboratory reported as within gasofine range but does not match gasofinel chromatogram "fingerprint"
**= within a sampled or constituent test analysed as the sampled or constituent test analysed as the sampled or constituent test analysed as the sampled or constituent test analysed pre-2006 data adapted from Environmental Sampling Services Reports on file at ACEH

ATTACHMENT A

Drilling Permit

IS AMADON STATE OF THE STATE OF

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	
LOCATION OF PROJECT Arrow Rentals, 187 L Street	PER
Livermore, CA 94550	WEL
	APN
Coordinates Sourceft. Accuracy∀ft.	
LAT:ft. LÖNG:ft. APN098 - 0408 - 001 - 00	
CLIENT Name Rite & Tony Sullins	A.
Address 5476 Maybeck Lane Phone 209-522-4119	
City Livermore, CA Zip 94550	
APPLICANT Name Ground Zero Analysis on behalf of Tony & Rita Sullins	
Email gza@groundzeroanalysis.com Fax 209-522-4227	
Address 1172 Kansas Avenue Phone 209-522-4119 City Modesto Zip 95351	В.
	ъ.
TYPE OF PROJECT: Well Construction 3 Wells Geotechnical Investigation	
Well Destruction Contamination Investigation Cathodic Protection Other	
PROPOSED WELL USE:	
Domestic Irrigation	
Municipal Remediation Industrial Groundwater Monitoring X Dewatering Other	
Dewatering Other	
DRILLING METHOD:	(c.)
Mud Rotary Air Rotary Hollow Stem Auger X Cable Tool Direct Push Other	
DRILLING COMPANY V&W Drilling	
DRILLER'S LICENSE NO	
WELL SPECIFICATIONS: 8 Drill Hole Diameter 8 in. Maximum 6.7	D.
Casing Diameter 2 in. Depth 67 ft.	
Surface Seal Depth 42 ft. Number 3	
SOIL BORINGS: Number of Borings Maximum	E.
Number of Borings Maximum Hole Dlameter in. Depth ft.	
ESTIMATED STARTING DATE 11/3/14	F.
ESTIMATED COMPLETION DATE 11/7/14	G.
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	
	Appr
APPLICANT'S SIGNATURE Date 16/13/14	. 4561

FOR OFFICE USE

PERMIT NUMBER 2014164

WELL NUMBER 38/2E-8R49 to 8R51 (EW-2, MW-9 8

APN 098-0408-001-00 MW-10)

PERMIT CONDITIONS

(Circled Permit Requirements Apply)

A.) GENERAL

- A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date.
- Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well</u> <u>Drillers Report (DWR Form 188)</u>, signed by the driller.
- Permit is void if project not begun within 90 days of approval date.
- 4. Notify Zone 7 at least 24 hours before the start of work.
- B. WATER SUPPLY WELLS
 - Minimum surface seal diameter is four inches greater than the well casing diameter.
 - Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
 - Grout placed by tremie.
 - An access port at least 0.5 Inches in diameter is required on the wellhead for water level measurements.
 - A sample port is required on the discharge pipe near the wellhead.
 - GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
 - Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter.
 - Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
 - 3. Grout placed by tremie.
- D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
- E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
- F. WELL DESTRUCTION. See attached.
- G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.

Approved Wyman Horig Date 10/27/14

WELL CONSTRUCTION DIAGRAM
PITCOCK RELEASE MONITORING & EXTRACTION WELL

SULLINS (ARROW RENTALS)
187 NORTH "L" STREET
LIVERMORE, CALIFORNIA

FIGURE

ATTACHMENT B

Field Notes

Daily Field Record

		Page I of
Project Success	Date1-26-2015	
Project #	Time on job	to
Location	Record Keeper Arone	DOEN
Weather	Wind	Temp
706 /GVM	L 5MFH	60°

PERS	TIME ONSITE				
Name	Company	In	Out		
ANDREW DORN	GZA	0730	1620		
AMHONY	CAL WEST CONCRETE	0N-517E	1002		
LEVUK	Vèn brazzo	ON-SITE	1620		
Arbei	VEN DEWING	ONESITE	1620		
JEFF	ZONE 7	0920 /1245	0945 /1310		
ERIC	GZA	1110	?		

Time	Location of Work / Work Performed / Field Equipment Used / etc.
0730	AFF-UND ON-SITE & OS GOT CHEER - USA MARKENES - 100 CONTENERS
	CAL-WEST SETTING OF EQUIPMENT
7770	BEGAN TUTTE CONTRETE IN FAIL 2 LOCATION
0855	ARGAN CUTTING CONTRACT OF POWER 9 LOCATION
6905	Driv 11' Word = 43-3' 765
0 % 0 ft	Stone w/ EP - 100 a disease of a payarable of the line of the content of the
	A grand of Screens Co-40' Blos
0913	Broom Commission to the state of the second
£124	BEGGN THE FOREST CONTROL TO STATE TO
17.	Association of General Association of the second
6950	BEGAN HAND ANGERING MW-10 LOCATION TO 5'BGS
0950	BEGAN DENCING "EW- 2 LOLATION
1105	FINISHED EW-2 ROLLING & BEGAN COLSTROCTING WELL
1240	AEGAN INSTALLING GROUT COLUMN TO EW-2
1400	REGAT DRILLING MW-10 LOCATION W-34 DIW = 42.9 BUS
1525	FINISHED MW-10 BURING + BIGAN INSTAULING PIPE + SAND PACK

1620 LEFT SITE

Daily Field Record

	rage I or
Date 1-27-2015	
Time on job0635	to
Record Keeper _ Arope w	Dogw
Wind	Temp
Z SMPH	65°
	Time on job <u>0635</u> Record Keeper <u>Arrage was</u> Wind

PERS	TIME ONSITE			
Name	Company	In	Out	
ANDREW DORN	68A	0805	1346	
PRAUK.	Vew Drueno	0N-5:7F	1334	
ANGL	New Observed	0N. 51 TE	1335	
JEFF JONES	ZONE T	0880 /140	0834 1210	

Time	Location of Work / Work Performed / Field Equipment Used / etc.
0805	ARRICO ON-SINE - VEW WAS PERSONS ACTUS FROM WELL ALLOW - CAUSE FROM
	COMPLETE SAND PACK 65'- 43', BENDERED 118'- 40'
6820	DITE DOTES GREETED BY OU CHECK ON PIZOGRESS - TEMPLY WEST THE GREET STAND
	12 pm FOR GROWS
0840	BEGAN INSTALLING MW. 9 BORING - DRILL TO 20' BLS + BEGIN CAMPLE G
0950	FINISHED MW-9 BORING + BECOM INSTALLATION FIFE + TICTER PACK
MW-9 & MW-10	(ONSTRUCTION
	65'-45' 0.01" SCREF~
	65'-43' # 12 SAND FACK
	43'- 40' BENTONITE PELLETS
	40'- SUPFACE GROWT COLLAN
1145	BEGAN INSTALLING MUSTO GROW FOLLOW
1158	BEGAN INSTALLING MW-9 GROW COLUMN
1235	BEGAN INGALLING VALUE BOXES & CLEANUP

1345 LEFT SITE

Daily Field Record Continued

			Page or
Project Name _	SULLINS	Project # 1262.2	Date 1-27-2015
Technician	ANDREW DORN	DPE SYST	FM MONITORING

Time	Location of Work / Work Performed / Field Equipment Used / etc.
1027	TURNED SYSTEM ON
1039	SYSTEM @ TEMP - ELIMINATED DEAD. HEAD IN WITH & MIT - SLOWLY LOWER STIMBER
	WELLS W-15, W-1 & W-A OPEN, EVI-1 CLOSES
	SYSTEM RUNNING HOT 1570-1660°F TEM COMPONER, 1960 HIGH LIMIT
	Hours = 23 268.6
	PGGE = 97096 728843 GALLONS EXTENCTED
	FLOW = 100 CFM (NF PID = 126 PPM
	VACUUM = 18" Hg EFF PID = 1.2 PPM
	PROPERTY TO
1250	to Davin FILLED & RICKED ON AIR STRIPPER

GROUND ZE	RO ANALY	SIS -					
	,				PRO	JECT SULLIN	ς
1	INTERVAL/S.	AMPLE DESC	CRIPTION		WEL	L/BORING NO. E/BY	7015
					DAI		n Dojen .
LOG INTERVAL		5C 20 - 31.5		/*	CL 35-41.5 *	, SC LENSE	7 /
SAMPLE INTERVAL	20-21.5	25-26.5'	30-31.6	35-36.5	40 -41.5	41.5 SHOF	45.465
BLOWCOUNTS	50/-6" -	50/-6" -	50/-6" -	5 - 8 -	8 4-6 -	1	
ZAND	50	50	50	20	30-40	50 .	30-40
GR SIZE/RANGE	(N U ES	FH W CRS	FN N CR	OFH N C	SI (VIN) N CK	S (IN H) CR	S TH (W) CE
ANGULARITY	A SA SR R	(A)SA SR R	(A SA) SR R	A SA SR	t A SA SR R	A SA 58 F	A SA SR
GRADING	* (1)	w (D)	w •) w !	W P	ж .	(F) 1
% GRAVEL	20	20	20	0	0	0	410
GR SIZE/RANGE	TH CERS	FH CRS	PH CRS) FH CR	I IN CRS	FH CRS	רא מכ
ANGULARITY	1 K2 L2 A	(A SA) SX R	(A SL) SR R	A SA SR	A 54 58 R	A SA SR R	A SA ST R
GRADING	W F	W P	W P	W P	₩ .F	w f	W F
COBBLES	UP 10 2cm	UP 70 3cm	UP TO ZENT	,			
% FINES	30	30	30	80	60-70	. 50	50-60
DRY STRENGTH	N L M H VH	K L K K VN	K F K K AH	K F K H A	8 K C K H AM	HLKKY	KTRKA
DILATANCY	N 51.W R	H STA K	N SLW R	N SLW R	M ELW R	H SLW A	N SIM B
TOUGHNESS	L M K	L W H	LWH	L N H	F M K	L W, H	L W H
PLASTICITY	H L W H	K L W H	N L K H	N L N H	DDN H	(A) L> M H	н и и
CMPCTNSS/CNSSTNC	Y						1
COLOR	BRUNN RED	Brown / Reo	BROWN RED	BROWN	BROW: - GRAY	BRING GRAY	BRacio
ODOR	(H)SL M STRNG		K SL M STRHG	H (SL) H STRXG	1		H (SL) H STRHG
ORGANICS	N Y	N Y	H Y	(K) Y	(F) Y		(H.) Y
MOISTURE	DRY WIT WIT		DRY UST WET	DAT WET WET	DRY (KST) WET	DRY (NST) WET	DRY (NST) WET
HCL REACTION	H WEAK STRNO		N WEAK STRIKG	N WEAK STREE		H WEAK STRING	N WEAK STRING
CEMENTATION	WEAK W STRING	WEAK N STRING	WEAK & STRNG	WEAK M STRHO	WEAK LE STRING	WEAK W STRING	WEAK W STRING
STRUCTURE TIME					6915		
1174	INCOMPLEXE	MOMPLETE	INCOMPLETE	OPIO (LAY MATEU	CAPILARY FRINGE		0920 SIMILARP
	MONTHE	Recorder	RECOVERY	M SILT HEAVE	1 1		40' W/1
COMMENTS	SAND WATER	SAND MATEU	CHINE WAS NOT	FRACTURED	1 SANDLONGENT &		GRAIN SIZE
COMMENIA		SIMILAR TO ABOVA		~	bransiren		EM IN BORIN
		W A GRAW SIZE			DERTH		
SAMPLE ID				WM-46 32,			MW-9@45'
111145	CLAYEY			SANDY	SAMOY	CLAYEY	SANOY
NAME	GANEUY SANO			CLAY	CLAY	SAND	CLAY
[
SAMBOL	SC	SC	SC	CL	CL	SC	CL
PIO	0	0	O'	45 ppn	980 ppm		sempfrim.dwg
1				1	· · · · · · · · · · · · · · · · · · ·		130 ppm

GROUND ZE	ero analy	SIS-				Control					
1					PR(DJECTSULL	MW-10				
-	INTERVAL/S.	AMPLE DES	CRIPTION		DAT	E/BY _1-26-	2015				
-		Ch			56/5W	ANDE	L DORN				
LOG INTERVAL		20-31.5			35-41' 41-41.5'						
SAMPLE INTERVAL	20-21.5'	25-26.5	30-31.5	55-36.	5 40-41	41-41.5	45-46-5				
BLOWCOUNTS	501-6" -	50/-6" -	50/-6" -	50/-6"	- 35 -50/6"-						
MAZ %	40	40	40	50	50	20	50				
GR SIZE/RANGE	TH) H CRS	FH W EN	D (N) W C	RS FN N (EED) IN IN CES	R) (A) R C	RS TH W CES				
ANGULARITY	A SA SA R	(A SA SR R	A SA SR	R SU SR	I ASS SR	R A SA SR	R (A SA) 572 F				
GRADING	(E),	<u>•</u>		(v)	r (w) r	w !	w (T				
% GRAVEL	10	10 -	10	2.0	20	0	20				
GR SIZE/RANGE	TN CRS	(FH) DRS	(FN) CR	S (N)	RS CRS	TH CR	S FN EXS				
ANGULARITY	A SA SR R	A SA SX R	A SA SR I	SA SR	A SA SR A	A SA SK F	SA SA R				
GRADING	w r	W F	W F	W I	k .P	W P	W !				
COBBLES	UP 70 1 cm	UP-10 CM	UP TO CM	UP TO lom	UP TO lan		UP 10 2cm				
% FINES	50	50	50	30	30	. 80	30				
DRY STRENGTH	H L W H VH	K L W H VR	H L W H V	н -к г к н	44 T K H A	4 L M H A	H L H K VR				
DILATANCY	N SLW R	H SI¥ R	H ETA K	N SIW R	K ETA K	H SLW R	K SIW R				
TOUGHNESS	(L) N H	L W H	(L) M H	L и н	L W H	L M, H	L W H				
PLASTICITY	H L M H	H L W H	N L W H	H L K H	R L U H	H (L M) H	H T M H				
CMPCTNSS/CNSSTNC	Y										
COLOR	REDDISH BRUIN	REDDISH BROWN	REDDISH BROWN	V L. BROWN	L. BROWN	BROWN	L. BROWN				
ODOR	(N) SL M STRKG	(H) SL K STRHG	H SL N STANG	N SL W STRAC	K SL N STRKG	N SI N STRHG	W SL W STRNG				
ORGANICS	H Y	R Y	N Y	κ Y	н ү	R Y	H Y				
MOISTURE	DRY UST WET	DRY MET WET	DRY WET WET	DAT MET WET	DRY (VST) WET	DRY (NST) WET	DRY UST (WET)				
HCL REACTION	N WEAK STRAG	H WEAK STANG	N WEAK STREET	R WEAK STRE	N WEAK STRING	H WEAK STRING	K WEAK STRING				
CEMENTATION	WEAX N STRING	WEAK N STRHG	(WEAK) IL STIRNG	WEAK M STREE	WEAK IN STRING	WEAK N STRHG	WEAK W STRING				
STRUCTURE TIME					1440						
	INCOMPLETE	INCOMPLETE	INCOMPLETE	COARGE SAVO	CONFLET SKILD	CLAY MATRIX	COARSE SAM				
	RECOVERY	RECOVERY	PERMERY	DOMINAIE	DOMINA IE	W SAVORSILT	DOWING IF				
COMMENTS				LENGES OF CLEAN COARGE			LENSES OF				
l		1		SAMO W/F.	>		SAND W/ F.				
				GRAVEL			GRAVEL				
SAMPLE ID					mw-10@401						
		YOUAS	SAroy	GRAVELLY	GRAVELLY /	SANDY	GRAVELLY				
NAME	SANOY		CLAY	CLAYEY	CLAYEY	CLAY	CLAYFY				
	CLAY	CLAY	CLNY	SAND	SANO		SAMD				
ZYMBOL	CL	CL	CL	sc/sw	Sclsw	CL	sclsp				
PID	O ppm	0	0	0	0	0	semptim.dwg				

GROUND ZE	RO ANALY	SIS				-	
- GROOND ZE	NO ANALI				PROJE	CT SULLIA	JS
Í	INTERVAL/SA	MPLE DESC	CRIPTION		WELL	BORING NO.	MW-9
					DATE	ANDRE	W DORN.
LOG INTERVAL	50 - 51.5	S5-56.5	5	5c, 60-66.5*			
SAMPLE INTERVAL	50-51.5	55-56.5	60-61.5	65-66-5			
BLOWCOUNTS	50/-6" -	50/-6" -	10 - 10 -	11 50/-6" -			
Z SAND	50	20	60	70			
GR SIZE/RANGE	IN M CHS	VFH W ERS	(FN) N CR	E) (H) (E)	FN N CRS	FR M CRS	LM FI CTZ
ANGULARITY	A SA SR R	A SA SR R	A SA SR R	A SA SR I	A SA 5R R	Á SA SR R	A SA SR R
GRADING	w ,	w r	(E) 1	(E)	w r	ж , г	W 1
% GRAVEL	30	0	< 5	10			
GR SIZE/RANGE	FN DES	FH CRS	(FN) GRS	TH DE	IN ERS	FIX CRS	PH 2525
ANGULARITY	A SA ST R	A SA SX R	A SA SA A	(A SOL) SR I	A SA SR R	A 54 58 R	A SA ST R
GRADING	W F	W P	W F	(1)	W .P	W F	W 1
COBBLES	UP -10 2cm		UP TO 1/2 (M	uf to Your			
% FINES	20	80	35	20			
DRY STRENGTH	N L K H VR	H L W H VH	H F K H AH	K L K R VE	н г и и и	4 L M H AH	и г и к <i>м</i> и
DILATANCY	K SLW R	H SLW R	N ETA K	K ZTM K	H SLW R	K SIW R	H SLW R
TOUGHNESS	LWH	L W H	L W H	Ł W H	L W H	L K K	L W H
PLASTICITY	к г п н	(R L) H	(H) L K H	N L N H X	ь и н	K L M H	E N H
CMPCTNSS/CNSSTNC	Υ .						
COLOR	GRAY	Brown	KFOISH AROUN	RED/ GROWN			
DDOR	N (SL) STRNG	N SL N STRHG	H SL JU STRHG		SL W STRNG N	SL W STRKG W	SL W STRNG
ORGANICS	(H) Y	R (Y)	(H) Y	(F) Y	ч ү	K Y	Y Y
MOISTURE	DRY UST WILT	DRY NST WET	DRY MST (WET)	DKY MST WET D	RY WST WET I	DRY KST WET D	RY WST WET
HCL REACTION	N WEAK STENO	H WEAK STANG	N WEAK STRHE	N WEAK STREE N	WEAK STRNG H	WEAK STREE K	WEAK STRAG
CEMENT ATION	WEUX N STRING	WEAK N STRNG	WEAK W STRNG	WEAK N STRHO WE	AX W STRHO WI	EAX & STRHG WE	AK W STERIG
STRUCTURE TIME				0945	-	-	
	PECOUERY	W SILT & SAUD	SENO MAGELY WHO CORT	LECONERA INCOMBRETE			
COMMENTS	{,	NE TUNE COME	Mosily Fine Sand of Some Med & Coatse	*			
SAMPLE ID				MW-9065			
NAME	CLAYEY CLAYEY	SANDY ·CLAY	CLMYEY	CLAYEY GRAVELLY GAMO			
SYMBOL	SC	CL	SC	56			ľ
PID	84 ppm	O bbw	19 ppm	37 ppm		sc	mpfrim.dwg

GROUND ZE	RO ANALY	SIS					PAGE 2
					PRO	JECT SUL	N MS
_	INTERVAL/SA	AMPLE DESC	CRIPTION		WEL	L/BORING NO	- 2015
		de	2		· · · · · · · · · · · · · · · · · · ·	Anot	etu Dopn.
LOG INTERVAL		50,5W/51 45'- 51			CL 60 - 66.5'		
SAMPLE INTERVAL	50-51.5	55-56!	56-56.	5' 60-61:	5 65-66-5		
BLOWCOUNTS	50/-6" -	28-50/6"-		12-14 -	28 50/-6 -		
DHAZ X	60	10	50	30-40	30-40		
GR SIZE/RANGE	(VIN W) CRS	FH W CES	FH W CRES	O (H N C	IN R CR	3) LH FF C1	15 PH N CE
ANGULARITY	A (\$1 58) R	A SA SR R	A SA SR R	A SA SR	E A SR R	A 54 58	R A SA SR
GRADING	(K) P	(w) 1	w (F		(P	w .	M ^A P
% G RAVEL	410	20	20	30	30		
GR SIZE/RANGE	(FIX) EXS	(FH) ERS	TH CRS	TH CR	IN CRS	S FH CRS	FH SRS
ANGULARITY	A (54) 57 R	A SL SI R	(X) SA SA A	A SA SR	SA SR R	A SA SR R	A SA SE R
GRADING	w e	(W) P	w r	W	K .P	W P	K F
COBBLES	UP TO 10M	UP to Icm	UP TO 20M.	UP TO 2cm	UP TO ZCM		
% FINES	30	1.0	30	30-40	30-40		
DRY STRENGTH	N L M H AH	K L M K AH	N L M H AM	KFKHY	8 K K H AH	HLHHV	K L M H AH
DILATANCY	K SLW R	H SLW R	H SLW R	K STM B	H ELW R	K SIW R	R SLW R
TOUGHNESS	LWK	F R H	LWH	L # H	L W H	L W, H	L W H
PLASTICITY	H L W H	H L W H	K L K H	H L H H	R L M H	RLMH	N L N K
CMPCTHSS/CHSSTHC	,						
COLOR	BROWN	L. BROWN	L. Brown	L. BROWN	L. BROWN		
DDDR	K SL M STRNG	H SL K STRHG	(N)SL W STANG	N SL W STRUG	(K) SL N STRNG	N SI U STRNG	N 51 N STRKG
ORGANICS	(N) Y	R Y	н ү	K Y	H Y	н ү	H Y
MOISTURE	DRY (KST WET)	DRY MET WET	DRY MET WET	DAT MESS (WET	DRY WET WET	DRY KST WET	DRY WET WET
HCL REACTION	K WEAK STRKO	H WEAK STREE	N WEAK STRNG	H WEAK STREE	N WEAK STRING	R WEAK STRAG	N WEAK STRING
CEMENTATION	WEAK M STRING	WEAK N STRNG	WEAK LI STRING	WEAK M STREO	WEAX W STRNG	WEAK W STRHG	WEAK IN STRICE
STRUCTURE- TIME	1465				1520		
	MOSTLY UF SAND	if to clay, 1	OARSE SAMD DOMINATE	CLAY MATRIX	CLAS MARILY		
COMMENTS	INCOMPLETE PECOVERY	MICOANFLETE RECORFY					
SAMPLE ID	MW-10@50'	-			MW-10@65'		
NAME	CLAYEY SAND	- SAND	SAND	General	GRAVELLY CLAY		-
ZYMBOL	5 C	SW	sclsp	CL	CL		
PID	17 ppm	0	Ö	0	0		sempfrim.dwg

GROUND ZI	ero anal	YSIS ——	-	-			-					-				_	_
_	INTERVAL/	SAMPLE DE	SCI	RIPTIC	NC						WELL	_/B0	DRIN	G NO	<u> </u>	w-2	2
		/							7				Ar	WILFU	u D	ماره	
LOG INTERVAL	PEA GRAVEL VST PIT ?					GM/GC								/,	<u> </u>		
SAMPLE INTERVAL	_ 5-6.9	10-11-	5	15	-16.5		20.	21.5		25-	26.5		30 -	31.5		3 5 -	36.6
BLOWCOUNTS		501-6"	-	50/-	6" -	5	0/-	6'' -	50	1-6	., -	5	0/-6	, " -	11	3 •	જ •
Z SAND		40		L	0		40)		40	,		Ч	0		20	2
GR SIZE/RANGE	ы и (ERS FH M	ERS	(N	N CK	5) (FN	N CI	;> <	TH I	CRS	7 (FH	R CI		(KT	H CE
ANGULARITY	A \$A \$R	R A SA SR	R	(A SA	SR I	4 (A SA)SR 1	(SU	SR R	(à SI		R	S SA	225
GRADING	- w		9	w	(*	21	₩	(t	<u> </u>	w	(•)	_	W	F		W ⁴	P
% G RAVEL		50		4	٥		50)		30			3	0		C)
GR SIZE/RANGE	PH E	es PH G	23	FH	CRS) (TH	CRE		N	CRS		FH	CRS	<u>· L</u> _	н [:]	, pres
ANGULARITY	A SA SR	R (A) SA SA	R	(A SI) 5R R	0	9 54	SR A	(4	(نو	5R R	(4		SR R		SA	57 R
GRADING	- W .		_	-	r	\perp	₩		<u> </u>	· -	P	-	W	•		*	
COBBLES		UP to 300	<u>1</u>	UP 70	360	V	0r 91	7 _{)/_} /v%	V	f ://	Hens	:	> 4	CM			
% FINES		10	_	20			10)		50		<u> </u>	30			80	
DRY STRENGTH	N L M H	AN H T N N	VH	н L ц	H VH	ı ⋅x	L H	H 48	H 1		н м	н	LW	H VI	1 ×	L N	н и
DILATANCY	N SLW R	H STAK B		N ET	.₩ R	N	21)	W R	×	ETM	R	н	51	w R	×	SLW	ł R
TOUGHNESS	LWX	L M H		L M	К		u	н	L	ĸ	К	ι	N.	н		п	ĸ
PLASTICITY	R L H R	RLWH		N L	K H	к	L 4	1 К	N	LU	н	ĸ	L I	y H	H C) W) н
CMPCTNSS/CNSSTNC	Y					T									İ		
COLOR		BROWN /RED		Birn	1650	Pe,	mu-16	26 tO	Pricer	.,~/ ß	<i>(.0</i>	Ran	~/R	 ٤n	Bros	.vN	
DDOR	(N) SL N STRNG	E N SL N STRH)sl n							$\overline{}$	_		STRHG	N SL) u	STENG
ORGANICS	N Y	R Y		ĸ	Y	ĸ~		Y	н		Y	н	_	Y			Y
MOISTURE	DRY WST WEI	DRY MET WE	, ,	DRY (UST) WET	DRY) K21	WET	(ORY)	N2.	WET	(DRY)	K2L	WET	DRY	N21)	WET
HCL REACTION	N WEAK STRU	IS H WEAK STRI	KS K	WEAK	STRHS	H	WEAK	STRAT	H	WEAK	STRNG	N	WEAK	STRHG	1	WELK	STRKG
CEMENTATION	WEAK W STRNG	WEAK N STRNG	; w	EAK M	STRNG	WEAK	и	STRKO	WEAK	u :	STRNG	WEAK	<u> </u>	STRKO	WEAK	<u> </u>	STRHG
STRUCTURE TIME			+			10	210		(0)	ر ح		·			10	27	
	UST BACKSIIL	OST CARSING Synce control MARCON	- 1	comple to		bi co	PLF		unati Cold d Unation	(4.5 (1.7k)	1		AKI		50~ F 612AV SLVF	AVGI EL-1	
COMMENTS									RECOVE						CLAY W/SA	MATT	zix ILT
SAMPLE ID			1			Ew-2	262	0'	Ew -	202	,s'				Éw.	202	头,
IAME		SANOY		SANON	,		noy not		CAY	-			ryfy Auto		Sp.r	i Piy	
AMBOF		6 M		6 M		(-	_s M		6	<u> </u>		G	<u> </u>		Cl	_	
PID	0 ppm	0		Ö			O		()			().	r 1	semp		

PIPE TO = 60'4"

SAND PACK 60 - 38

SRI SUPERIAL # 12 SAND scmptrim.dwg

BOREHULD TO = (50)

Paravorts 38 - 35

Daily Field Record

	1 = 1	Page 1 of
Project \(\mathcal{U}\) \(U \/ \/ \/ \/ \/ \S	Date 01/30/15	
Project # 5262 TAPK 6	Time on job 0630	to 1600
Location Survy		coma
Weather Qlesn	Wind	Temp
	14	フェゲ

PERSON	PERSONNEL ONSITE						
Name	Company	In	Out				
Anthony Scoms	GZA	0748	1500				
		P					

Time	Location of Work / Work Performed / Field Equipment Used / etc.
0630	Lang Escalar
0730	Home Deput Livermore Parts Pick up.
	on sit 0748 Noticed the System was not in operation
	Removed Lib 1 plays in wells (W-2, MW-9, MW-10
	WHP used Montes DIN DIB order MW 10, 9, EW 2
	Singe Blocked each well, Right after hand
	Bailed 3 to 4 gallons from each well then
	I want an eletic pump to remove all
	silt and develope each (ue).
	I poly drum was used, filled with 55 gallons
	of Purge Weter
	V
	Teflor Blailor, Surge Block, eletine Pung,
	210' DISPOSSIBLE TUBING Was word, Poly drum
	·

Continued On Next Page

	Daily Field Report	
Project Name: Sulling	Field Technician: As	Date: 01/30/15
Project Activity: OAM	Job Number: 5262 7012	Page: of

Tim 1300 called office, explained to andrew that the System
was down when I amid at 0748
andrew had me shot main power down
When I switched power back on motival that
Oxioizen High Temperature Lt was on then the Lt word
out.
System Start up 1306
Time 1315 control Power, Limits operational, system at temp,
Flame on Lights are on
·
Ten 1336 opened up delution Value 1/2 Turn
Fin 1344 Total HR's 23312.1 KWN 97778
50% propone, drop tank 3/3 fill , wo water in Knock out
510Wy Pulled Hose's from W-1 & W-A to free Hose's of
any had space to allow water to flow.
Len 5.7 150°

Purge Log Form

Project N	ame: 5.11	1 10 3		Project Nw	mber: 53	Site Location: LIVERMON.					
Well No: 6W 2			Date: 01 30/15				Field Tech:				
Total Depth: 58.20			Depth to	water: 41	L.64		Water Column	Length:			
Casing Di	ameter:		Casing Fa	ctor:		Volume	Calculation:	3.3			
Total Purg	ge Volume:	,	Casing vo	lumes Prod	duced:		Pump Type: 6	ir - /w			
PH Meter:		Cali	brated: Y or N	Со	nd. Meter:_		Calibr	ated: Y or N			
Temp Met	er:	_ Turl	oidity Meter:			Calibrate	d: Y or N				
[Casing Fa	actor: 2"=.17 3	3"=.38 4"=.66	5"=1.02 6"=1	.5 8"=2.6	(In Gallons	s per linear fo	oot)]				
Time	Prod Rate	Gallons(total	N. D. W.	Ph	Be	- Temp (°C)	Tarbidity	Comments			
1142	1 Gpm	b	42.69	er applications.	Service States (A. A. Servi		A STATE OF THE STA	Green ou			
1150	1	8.0						Gooden, so sheen			
1202		20.0	11 1	 			Bolow Brup	WYSUN CYSU - PAIN			
1217		32.9						(lean			
1231	V	49.0	Below fump					off			
			leen -					-			
1234			48.75								
								1			
Storage or I	Disposal Metho	d:	· · ·		Total L	Orums Onsite	:				
Percent Rec	charge Prior to	Sampling:			Sample	Collection I	Method:				
Sample Lab	eled:		Sa	mple Time:	·	_ La	Laboratory:				
Analysis:			 				No. of C	Containers:			
			Trip Blank:				Rinsate Blank:				
Comments:			A		<i></i>	()					
		JUNGE B	A Develop	How	1 Kail	7	Pollons				
		of B affor	n Develop	P	2 7.8	······································					

Purge Log Form

Project N	ame:	Svil	123		Project N	umber: 53	162 To.	k 6 Site I	Location: LIVERAGE	
			Date: O	Date: Ol 30/15° Field Tech: A.						
Total Depth: 69.90				Depth to	water:	42.88	<u> </u>	Water Column	Length:	
Casing Di	ameter:			Casing F	actor:		Volume	Calculation:		
Total Pur	ge Volu	me:							ce- 120 purp	
PH Meter			Ca	alibrated: Y or N	, c	Cond. Meter:_		Calib	rated: Y or N	
Temp Met	er:		_ T\	ırbidity Meter:_			Calibrate	ed: Y or N		
[Casing Fa	ictor: 2		"=,38 4"=.6	66 5"=1.02 6"=1	1.5 8"=2.0	6 (In Gallons	per linear f	oot)]		
Time	Prod	Rate	Gallons(to	āl)	Pb	Ee .	Temp (°C) . Turbidity	Comments	
1036	1) Gpm	7	42.88					Brownis will	
	ļ	1						Pump of	Junger through out	
10014			15:2	48,89				Satten	No oder / Clean	
1020			26.6	·				Lifting	Clerny Gradely	
		/							Clan	
1105	\\	/	57.0	42,99					OFF	
1112.				42.94			<u> </u>			
									1	
Storage or I	Disposa	l Metho	ď:			Total D	rums Onsite	e:		
						Sample	Collection 1	Method:		
						e:				
Analysis:								No. of C	Containers:	
Duplicate:_				Trip Blank:			_ R	insate Blank:	<u> </u>	
			(1011 n.	,					
Comments:_		Lo.		12/1 Reve	1	1 0			7	
		Sun	pe Block	ked well,	1 Con	1 Bales	_5 grd			
						6.5.	D OXB	after De	welgon.	

Purge Log Form

Project Na	ame: Sul	lins	F	Project Nur	mber: 52 (32. 7	-6	Site I	Location: Live	mil	
Well No:_	MW-	/ 0	Date: 1/3	30)15		Field '	Tech: A	ľ			
Total Dep	th: 63,0	0	Depth to v	water: 4	2.47		Water C	Column	Length:		
Casing Dia	ameter: 2										
Total Purge Volume:									E5-100 pu		
PH Meter:		_ Calibr	ated: Y or N						rated: Y or N		
Temp Met	er:	_ Turbio	lity Meter:			Calibra	ated: Y or	N			
[Casing Fa	ctor: 2"=.17 3	"=.38 4"=.66 5	"=1.02 6"=1	.5 8"=2.6	(In Gallons p	er linear	foot)]				
Time -	Prod Rate	Gallons(total)	DTW	æb.	Ec	Temp (C) Tin	ndity	Comments		
0918	1.16pm	ф	42.47		ALL II deliberation of the second	to gradient special and parties they are		8 4 No. 17 No. 113 W 127 No. 115	The second secon	Browns .00	
0925	1	7.7							N 0		
0939		23.1						·			
e950		35:2	Balow AUN.	7°.					Fump out		
0952		37.4	1					•	clan		
1008		22'0	10 1/10						0+3	THE WATER CONTRACTOR OF THE PARTY OF THE PAR	
			·								
1010			46.00							_	
										1	
Storage or I	Disposal Method	d:			Total Dr	ums Ons	ite:				
		Sampling:			Sample (Collectio	n Method:				
					:		Laboratory:				
									Containers:		
										_	
Comments:_		Well	Dev.	elopin	<u>J</u>						
	Sursu	Well Blocke	A & H	and L	Baild	4 62	all ous			i	
)7B a	the	Develop	ing	65	<u>. 42</u>	m)		

Ground Zero Analysis Inc.

Project Name:_	Name Sullins			Date: 1/3	0/15	_	
Project Number	5262	- Task G		ву. Д. г			
WELL ID	TIME	DTW	DTB	DTP	ELEV.	ADJ. DTW	Comments
Ew- 2	0839	42.64	58.20				Other Defore Developing Slight Gas odo
mw-9	0833	42.38	64,40				1 1 1 no ode
mw.10	0876	42.47	63.00				1 1 1 1 1 1 1 cde
			· · · · · · · · · · · · · · · · · · ·				-
							<u> </u>
						1	

ATTACHMENT C

Boring Logs

Log of Boring MW-9

Sullins (Arrow Rentals) 187 N. L Street Livermore, CA Project No.:1262.2 Date : 01/27/15

Drilling Method : Hollow Stem Auger

Driller : V&W Drilling

Logged By : Andrew Dorn

		nscs	GRAPHIC	DESCRIPTION	PID (ppm)	LAB SAMPLE	Blow Count
0-	0				<u> </u>		
5-				Free Drill 0-20'			
15			V: V ·				
-		SC	/ /	CLAYEY GRAVELLY SAND - Brown/red, mostly F-C sand w/ silt/clay and gravel up to 2cm, angular to sub-angular, slightly moist, no odor	0		50/6
25 -		SC		CLAYEY GRAVELLY SAND - same as above at 20-21.5' w/ increased grain size and angularity	0		50/6
30-		SC		CLAYEY GRAVELLY SAND - same as above at 20-21.5' w/ increased grain size and angularity	0		50/6
35-		CL	///	SANDY CLAY - Reddish brown, mostly clay w/ VF sand, v. low plasticity, slightly moist, slight odor	45	MW-9 @ 35' TPHg 0.42 mg/kg Benzene 0.056 mg/kg	5/8/
40 -	40	CL	///	SANDY CLAY - Brown/gray, mostly clay w/ VF sand, v. low plasticity, moist, moderate odor	980	MW-9 @ 40' TPHg 32 mg/kg Benzene 0.32 mg/kg	4/6/
45	45	CL	//,	SANDY CLAY - same as above at 40-41.5' w/ increased grain size	130		
50-		SC	///	CLAYEY GRAVELLY SAND - Gray, F-C sand, mostly C sand, sub-angular to angular gravel up to 2cm, wet, slight odor	84		50/6
55		CL	//	SANDY CLAY - Brown, mostly clay w/ VF sand and no gravel, moderate toughness, v. low plasticity, dry, strong cementation, slight odor	0		50/6
60-		SC	///	CLAYEY SAND - Reddish brown, sand matrix w/ clay, F-c sand, mostly F sand, well graded, some gravel to 1/2cm, slight odor, wet	19	MW-9 @ 65' TPHg 26 mg/kg Benzene 0.17 mg/kg	10/10/
65-	LHL ₆₅	SC	//	CLAYEY GRAVELLY SAND - Gray, F-C sand, mostly C sand, \sub-angular to angular gravel up to 4cm, wet, no odor	37		50/6

Log of Boring MW-10

Sullins (Arrow Rentals) 187 N. L Street Livermore, CA

Date

: 01/26/15

Drilling Method

: Hollow Stem Auger

Driller

: V&W Drilling Project No.:1262.2 Logged By : Andrew Dorn Blow Count (mdd) GRAPHIC **USCS** 2 LAB SAMPLE DESCRIPTION 0-Free Drill 0-20' 10 15 20 0 50/6' CL SANDY CLAY - Brown/red, mostly clay w/ F-C sand and fine gravel to 1cm, angular to sub-angular, well graded, v. low plasticity, dry, no odor 25 CL 0 50/6" SANDY CLAY - Brown/red, mostly clay w/ F-C sand and fine gravel to 1cm, angular to sub-angular, well graded, v. low plasticity, dry, no odor 30 0 CL 50/6 SANDY CLAY - Brown/red, mostly clay w/ F-C sand and fine gravel to 1cm, angular to sub-angular, well graded, v. low plasticity, dry, no odor 35 0 SC/SW 50/6 GRAVELLY CLAYEY SAND - Light brown, F-C sand and fine gravel, angular to sub-angular, well graded, slightly moist, no 03-04-2015 K:\Jobs\S Jobs\Sullins (L St.) 12622\12622\Graphics\borelogs\MW-10.bor odor, interbedded clayey sand and well graded gravelly sand MW-10 @ 40' TPHg ND<0.2 mg/kg Benzene ND<0.005 mg/kg 40 35/50-6' GRAVELLY CLAYEY SAND - same as 35-36.5' above SANDY CLAY - Brown, clay matrix w/ VF sand, low to moderate plasticity, moist, slight odor Y 45-54 SC/SW 50/6" same as 35-36.5 w/ larger grain size MW-10 @ 50' TPHg ND<0.2 mg/kg Benzene ND<0.005 mg/kg 50 SC CLAYEY SAND - Brown, mostly clay w/ VF-M sand and F 17 50/6" gravel to 1cm, slightly wet, no odor 55 0 28/50/6' GRAVELLY SAND - Light brown, F-C sand, fine gravel to 1cm, sub-angular to sub-rounded, wet, no odor same as 35-36.5 w/ larger grain size MW-10 @ 65' TPHg 0.71 mg/kg Benzene ND<0.01 mg/kg 60 CL 2/14/28 GRAVELLY CLAY - Light brown, clay matrix w/ F-C sand and gravel to 2cm, wet, no odor 65 CL GRAVELLY CLAY - Light brown, clay matrix w/ F-C sand and 0 50/6" gravel to 2cm, wet, no odor 70

Log of Boring EW-2

Sullins (Arrow Rentals) 187 N. L Street Livermore, CA Project No.:1262.2

: 01/26/15

Drilling Method

: Hollow Stem Auger

Driller

: V&W Drilling

	Project I	10120		Logged By : Andrew Dorn			
		nscs	GRAPHIC	DESCRIPTION	PID (ppm)	LAB SAMPLE	Blow Count
0-	0						
5-		GP		PEA GRAVEL - Former UST pit fill	0		
10-		GC	10000	SANDY GRAVEL - Brown/red, mostly angular Bcm w/ F-C sand and clay, dry, no odor, possil JST pit fill and native material	gravel up to0		50/6"
15		GC	/: '/: ' _/	SANDY GRAVEL - Brown/red, mostly angular gravel up to 3cm w/ F-C sand and clay, moist, clay than above	to subangular no odor, more		50/6'
20-		GC		SANDY GRAVEL - Brown/red, mostly angular 3cm w/ F-C sand and clay, dry, no odor,	gravel up to		50/6'
25		GC	(), , , , , , , , , , , , , , , , , , ,	SANDY GRAVEL - Brown/red, mostly angular gravel up to 4cm w/ F-C sand and clay, dry, no clay than above	to subangular o odor, more		50/6'
30-			-	SANDY GRAVEL - Brown/red, mostly angular gravel w/ F-C sand and clay, dry, no odor, gravabove	to subangular vel larger than		50/6"
35	35	CL	//	SANDY CLAY - Brown, clay matrix w/ silt and v gravel, slightly moist, slight odor	/F sand, no 1140	EW-2 @ 35' TPHg 2.0 mg/kg Benzene 0.0052 mg/kg	13/8/9
40-	40	CL		SANDY CLAY - Brown/gray, clay matrix w/ silt no gravel, moist, low to moderate plasticity, mi		EW-2 @ 40' TPHg 1800 mg/kg Benzene 2.0 mg/kg	10/10/
45-		CL	///	SANDY CLAY - Brown/gray, clay matrix w/ silt no gravel, moist, low to moderate plasticity, mi			8/8/13
50 —		SP		GRAVELLY SAND - Gray, F-C sand mostly M, angular gravel up to 1 cm, interbedded layers or gravelly sand and fine well graded sand, wet, r	of coarse		23/50-0
55		CL	///	SANDY CLAY - Gray, clay matrix w/ silt and VI nodearte odor	sand, wet,		9/12/2
60-	60 E	CL		SANDY CLAY - Reddish brown/gray, clay matr /F-M sand, wet, modearte odor	ix w/ silt and 44	EW-2 @ 60' TPHg ND<0.2 mg/kg Benzene ND<0.005 mg/kg	10/12/1

ATTACHMENT D

Laboratory Analytical Report

Date of Report: 02/12/2015

Project Manager

Ground Zero Analysis, Inc. 1172 Kansas Avenue Modesto, CA 95354

Client Project:

1262.2

BCL Project:

Soil Samples

BCL Work Order:

1502245

Invoice ID:

B195536

Enclosed are the results of analyses for samples received by the laboratory on 1/28/2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Christina Herndon

Client Service Rep

Attheward Circulation

Authorized Signature

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1502245-01 - MW-10@50'	
Volatile Organic Analysis (EPA Method 8260B)	7
1502245-02 - MW-10@40'	
Volatile Organic Analysis (EPA Method 8260B)	8
1502245-03 - MW-10@65'	
Volatile Organic Analysis (EPA Method 8260B)	9
1502245-04 - MW-9@35'	
Volatile Organic Analysis (EPA Method 8260B)	10
1502245-05 - MW-9@40'	
Volatile Organic Analysis (EPA Method 8260B)	11
1502245-06 - MW-9@65'	
Volatile Organic Analysis (EPA Method 8260B)	12
1502245-07 - EW-2@35'	
Volatile Organic Analysis (EPA Method 8260B)	13
1502245-08 - EW-2@40'	
Volatile Organic Analysis (EPA Method 8260B)	14
1502245-09 - EW-2@60'	
Volatile Organic Analysis (EPA Method 8260B)	15
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	16
Laboratory Control Sample	17
Precision and Accuracy	
otes	
Notes and Definitions	19

Chain of Custody and Cooler Receipt Form for 1502245 Page 1 of 2 **≥** 8 O Special Instructions / Remarks 72 □ Yes Email EDF Lab Report (.zip): LABS Email Lab Report (.pdf): 1.28.15 1.28: Date Page 1 of 1 urnaround Time: Purchase Order # BC 2 day Mail Lab Report: CHK BY day 256 1830 REC. Analysis Requested **Chain of Custody** くるがく JEH-6, BTEX, MTRE 8560 egyT nollsvnesen Matrix (Soll, Water, Gas, Other) 5 No. of Containers Sample I.D./Description / Location Clear Email: gza@groundzeroanal II72 Kansas Avenue Modesto, CA (269) 522-4119 Fax 522-4227 E-mall: gza@groundzeroanalysis.com Heat Face (209) 522-422 ,59 웃 D Yes 99 70, 35 35 <u>-</u>9 છુ , GZA cooler / Ice chest to Ground Zero Analysis, MW-10 @ MW-10 @ Type of Event GWM <u>@</u> MW-9 @ **③ @**) (a) EW-2 @ AN-9 @ EDF Report: MW-10 9-MW 5-M3 J EW-2 B 4-INERMORE Sampled By (initials) GROUND ZERO **EDF Field ID** Address: 1172 Kansas Avenue 1, State, Ztp: Modesto, CA 95351 7 7 N. L. STREET ろかける Time 1455 440 1025 040 <u>8</u> 0160 0945 0915 152 Slobal ID No. 51-12-1 1-26-15 61-97-1 1-52-15 -26-15 51-12-15 1-26-15 -27-15 1-26-15 1262.2 Date 187

Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1502245 Page 2 of 2 BC LABORATORIES INC. **COOLER RECEIPT FORM** Of Rev. No. 18 09/04/14 Page Submission #: 15 - 02245 SHIPPING INFORMATION SHIPPING CONTAINER FREE LIQUID Federal Express ☐ UPS ☐ BC Lab Field Service 💢 O Hand Delivery D Ice Chest 🛭 None D Box D YES D NO D Other (Specify) Other (Specify) Ice 🛛 Refrigerant: Blue Ice □ None Other [] Comments: Custody Seals lice Chest @ Containers 🗆 None & Comments: All samples received? Yes No 🗆 All samples containers intact? Yes No 🗆 Description(s) match COC? Yes No [Emissivity: 0.97 Container: PE Thermometer ID: 208 Date/Time 128 15 COC Received Analyst init KIB X YES □ NO ما. ا Temperature: (A) °C / (C) SAMPLE NUMBERS SAMPLE CONTAINERS OT GENERAL MINERAL/GENERAL PT PE UNPRESERVED OT INORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS PT CYANIDE PT NITROGEN FORMS PT TOTAL SULFIDE 20z. NITRATE / NITRITE PT TOTAL ORGANIC CARBON PT TOX PT CHEMICAL OXYGEN DEMAND PLA PHENOLICS 40mi voa vial travel blank 40ml VOA VIAL QT BPA 413.1, 413.2, 418.1 PT ODOR RADIOLOGICAL BACTERIOLOGICAL 40 ml VOA VIAL- 504 QT BPA 508/608/8080 QT EPA 515.1/8150 QT EPA 525 OT EPA 525 TRAVEL BLANK 40ml EPA 547 40ml BPA 531.1 80z Amber BPA 548 **QT EPA 549 QT BPA 632** QT EPA 8015M QT AMBER BOZ. JAR 32 OZ. JAR SOIL SLEEVE PCB VIAL PLASTIC BAG ERROUS IRON NCORE MART KIT umma Canister mments: Date/Time: 12915 0950 [S:IWPDaclWordPerfect|LAB DOCSIFORMSISAMREC] imple Numbering Completed By: = Actual / C = Corrected

Report ID: 1000324198

Reported: 02/12/2015 9:42 Project: Soil Samples Project Number: 1262.2

Project Manager: Project Manager

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	001		
1502245-01	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/26/2015 14:55
	Sampling Location:		Sample Depth:	
	Sampling Point:	MW-10@50'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil
1502245-02	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/26/2015 14:40
	Sampling Location:		Sample Depth:	
	Sampling Point:	MW-10@40'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil
502245-03	COC Number		Bassina Bata	04/20/2045 22:20
	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/26/2015 15:20
	Sampling Location:	MAN 40 @ 651	Sample Depth:	0-1-4-
	Sampling Point:	MW-10@65'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil ————————————————————————————————————
502245-04	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/27/2015 09:10
	Sampling Location:		Sample Depth:	
	. •	MW-9@35'	·	Solids
	Sampling Point:	Andrew Dorn	Lab Matrix:	Soild
	Sampled By:	Andrew Dom	Sample Type:	
502245-05	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/27/2015 09:15
	Sampling Location:		Sample Depth:	
	Sampling Point:	MW-9@40'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil
502245-06	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/27/2015 09:45
	Sampling Location:		Sample Depth:	
	Sampling Point:	MW-9@65'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil
502245-07	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:			01/26/2015 22:20
	•		Sampling Date:	01/26/2015 10:25
	Sampling Location:		Sample Depth:	
	Sampling Point:	EW-2@35'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil

Report ID: 1000324198 Page 5 of 19

Reported: 02/12/2015 9:42 Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	ion		
1502245-08	COC Number:		Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/26/2015 10:40
	Sampling Location:		Sample Depth:	
	Sampling Point:	EW-2@40'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil
1502245-09	COC Number:	~**	Receive Date:	01/28/2015 22:20
	Project Number:		Sampling Date:	01/26/2015 11:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	EW-2@60'	Lab Matrix:	Solids
	Sampled By:	Andrew Dorn	Sample Type:	Soil

Report ID: 1000324198

Page 6 of 19

Reported: 02/12/2015 9:42 Project: Soil Samples

Project Number: 1262.2
Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-01	Client Sampl	e Name:	MW-10@	50', 1/26/20	015 2:55:00PM,	Andrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		ND	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Purgeable Petrole	um	ND	mg/kg	0.20	0.020	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	114	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene ((Surrogate)	105	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch iD
1	EPA-8260B	01/30/15	02/04/15 21:58	ADC	MS-V2	1	BYB0002

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1000324198 4100 Allas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 19

Report ID: 1000324198

02/12/2015 9:42 Reported: Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-02	Client Sampl	e Name:	MW-10@	40', 1/26/20	015 2:40:00PM,	Andrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		ND	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.20	0.020	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sui	rrogate)	108	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	106	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	02/04/15	02/07/15 02:52	XDC	MS-V3	1	BYB0348	

Report ID: 1000324198 Page 8 of 19

Reported:

02/12/2015 9:42

Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-03	Client Sampl	e Name:	MW-10@	65', 1/26/20	015 3:20:00PM,	Andrew Dorr	1	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.010	0.0026	EPA-8260B	ND	A01,S05	1
Ethylbenzene		0.0089	mg/kg	0.010	0.0030	EPA-8260B	ND	J,A01,S05	1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND	S08,Z1	2
Toluene		0.020	mg/kg	0.010	0.0024	EPA-8260B	ND	A01,S05	1
Total Xylenes		0.11	mg/kg	0.020	0.0068	EPA-8260B	ND	A01,S05	1
p- & m-Xylenes		0.093	mg/kg	0.010	0.0044	EPA-8260B	ND	A01,S05	1
o-Xylene		0.014	mg/kg	0.010	0.0024	EPA-8260B	ND	A01,S05	1
Total Purgeable Petrole	eum	0.71	mg/kg	0.40	0.040	Luft-GC/MS	ND	A01,S05	1
1,2-Dichloroethane-d4 (Surrogate)	89.1	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surrogate)	100	%	70 - 121 (LCI	L - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		102	%	81 - 117 (LCI	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.3	%	81 - 117 (LCI	L - UCL)	EPA-82608			2
4-Bromofluorobenzene ((Surrogate)	106	%	74 - 121 (LCI	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	112	%	74 - 121 (LCI	L - UCL)	EPA-8260B			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	02/04/15	02/10/15 23:38	XDC	MS-V3	2	BYB0348
2	EPA-8260B	02/04/15	02/06/15 12:40	XDC	MS-V3	1	BYB0348

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

1D: 1000324198 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000324198

Page 9 of 19

Reported: 02/12/2015 9:42 Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-04	Client Sampl	e Name:	MW-9@3	5', 1/27/20	15 9:10:00AM, A	Andrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		0.056	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		0.026	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND		1
Toluene	-	ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		0.043	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		0.042	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Purgeable Petrole	um	0.42	mg/kg	0.20	0.020	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	105	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (S	Surrogate)	111	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

		Run				QC	
ın# Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1 EPA-8260B	02/04/15	02/05/15 15:32	XDC	MS-V3	1	BYB0348	

Report ID: 1000324198

Reported: 02/12/2015 9:42 Project: Soil Samples

Project Number: 1262.2 Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-05	Client Sampl	ie Name:	MW-9@4	0', 1/27/20	15 9:15:00AM, A	ndrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		0.32	mg/kg	0.12	0.032	EPA-8260B	ND	A01,S05	1
Ethylbenzene		0.29	mg/kg	0.12	0.038	EPA-8260B	ND	A01,S05	1
Methyl t-bulyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND	S08,Z1	2
Toluene		0.084	mg/kg	0.12	0.030	EPA-8260B	ND	J,A01,S05	1
Total Xylenes		1.2	mg/kg	0.25	0.085	EPA-8260B	ND	A01,S05	1
p- & m-Xylenes		1.1	mg/kg	0.12	0.055	EPA-8260B	. ND	A01,S05	1
o-Xylene		0.11	mg/kg	0.12	0.030	EPA-8260B	ND	J,A01,S05	1
Total Purgeable Petroleun Hydrocarbons	n	32	mg/kg	5.0	0.50	Luft-GC/MS	ND	A01,S05	1
1,2-Dichloroethane-d4 (Sur	rogate)	92.3	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Sur	rogate)	93.8	%	70 - 121 (LC	L - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		101	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		110	%	81 - 117 (LC	L - UCL)	EPA-8260B			2
4-Bromofluorobenzene (Su	rrogate)	105	%	74 - 121 (LCI	L - UCL)	EPA-8260B		_	1
4-Bromofluorobenzene (Su	rrogate)	114	%	74 - 121 (LCI	L - UCL)	EPA-8260B			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	02/04/15	02/11/15 12:05	XDC	MS-V3	25	BYB0348
2	EPA-8260B	02/04/15	02/05/15 15:54	XDC	MS-V3	1	BYB0348

Report ID: 1000324198

Page 11 of 19

Reported: 02/12/2015 9:42 Project: Soil Samples Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-06	Client Sampl	e Name:	MW-9@6	5', 1/27/201	15 9:45:00AM, A	Andrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		0.17	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		0.38	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND	2 11 F2-1	1
Toluene		0.29	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		1.3	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		0.93	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		0.40	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Purgeable Petrole	eum	26	mg/kg	5.0	0.50	Luft-GC/MS	ND	A01,S05	2
1,2-Dichloroethane-d4 (Surrogate)	115	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4 (Surrogate)	91.9	%	70 - 121 (LC	L - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)		118	%	81 - 117 (LC	L - UCL)	EPA-8260B		A19,S09	1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LC	L - UCL)	EPA-8260B			2
4-Bromofluorobenzene	(Surrogate)	129	%	74 - 121 (LC	L - UCL)	EPA-8260B		A19,S09	1
4-Bromofluorobenzene	(Surrogate)	106	%	74 - 121 (LC	L - UCL)	EPA-8260B			2

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	01/30/15	02/04/15 23:49	ADC	MS-V2	1	BYB0002	
2	EPA-8260B	01/30/15	02/11/15 13:34	XDC	MS-V3	25	BYB0568	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 19

Report ID: 1000324198

02/12/2015 9:42 Reported: Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	502245-07	Client Sampl	e Name:	EW-2@3	5', 1/26/201	5 10:25:00AM, A	Andrew Dorn	_	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Benzene		0.0052	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		0.026	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND		1
Toluene		0.0069	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		0.20	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		0.15	mg/kg	0.0050	0.0022	EPA-8260B	ND	_	1
o-Xylene		0.043	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		2.0	mg/kg	0.20	0.020	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	108	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		103	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	112	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	01/30/15	02/05/15 00:11	ADC	MS-V2	1	BYB0002	

Page 13 of 19 Report ID: 1000324198

Reported: 02/12/2015 9:42 Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-08	Client Samp	le Name:	EW-2@4	40', 1/26/20	15 10:40:00AM,	Andrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		2.0	mg/kg	0.12	0.032	EPA-8260B	ND	A01,S05	1
Ethylbenzene		16	mg/kg	1.0	0.30	EPA-8260B	ND	A01,S05	2
Methyl t-butyl ether		ND	mg/kg	0.12	0.012	EPA-8260B	ND	A01,S05	1
Toluene		2.9	mg/kg	0.12	0.030	EPA-8260B	ND	A01,S05	1
Total Xylenes		72	mg/kg	2.0	0.68	EPA-8260B	ND	A01,S05	2
p- & m-Xylenes		56	mg/kg	1.0	0.44	EPA-8260B	ND	A01,S05	2
o-Xylene		15	mg/kg	1.0	0.24	EPA-8260B	ND	A01,S05	2
Total Purgeable Petro Hydrocarbons	leum	1800	mg/kg	500	50	Luft-GC/MS	ND	A01,S05	3
1,2-Dichloroethane-d4	(Surrogate)	72.8	%	70 - 121 (L	CL - UCL)	EPA-8260B			1
1,2-Dichloroethane-d4	(Surrogate)	84.7	%	70 - 121 (L	CL - UCL)	EPA-8260B			2
1,2-Dichloroethane-d4	(Surrogate)	92.5	%	70 - 121 (L	CL - UCL)	EPA-8260B			3
Toluene-d8 (Surrogate)	120	%	81 - 117 (L	CL - UCL)	EPA-8260B		A19,S09	1
Foluene-d8 (Surrogate)	102	%	81 - 117 (L	CL - UCL)	EPA-8260B			2
Toluene-d8 (Surrogate)	97.7	%	81 - 117 (LC	CL - UCL)	EPA-8260B			3
I-Bromofluorobenzene	(Surrogate)	114	%	74 - 121 (L	CL - UCL)	EPA-8260B			1
I-Bromofluorobenzene	(Surrogate)	109	%	74 - 121 (L0	CL - UCL)	EPA-8260B			2
-Bromofluorobenzene	(Surrogate)	106	%	74 - 121 (LC	CL - UCL)	EPA-8260B	100000		3

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	02/04/15	02/10/15 16:22	XDC	MS-V3	25	BYB0348	
2	EPA-8260B	02/04/15	02/10/15 16:57	XDC	MS-V3	200	BYB0348	
3	EPA-8260B	02/04/15	02/10/15 17:20	XDC	MS-V3	2500	BYB0348	

Report ID: 1000324198

Page 14 of 19

Reported:

02/12/2015 9:42

Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1502245-09	Client Sampl	e Name:	EW-2@60	0', 1/26/201	5 11:00:00AM,	Andrew Dorn		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kģ	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	0.00050	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		ND	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.20	0.020	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	107	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	103	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260B	01/30/15	02/05/15 00:33	ADC	MS-V2	1	BYB0002

Report ID: 1000324198

Page 15 of 19

02/12/2015 9:42

Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BYB0002						
Benzene	BYB0002-BLK1	ND	mg/kg	0.0050	0.0013	
Ethylbenzene	BYB0002-BLK1	ND	mg/kg	0.0050	0.0015	
Methyl t-butyl ether	BYB0002-BLK1	ND	mg/kg	0.0050	0.00050	
Toluene	BYB0002-BLK1	ND	mg/kg	0.0050	0.0012	
Total Xylenes	BYB0002-BLK1	ND	mg/kg	0.010	0.0034	
p- & m-Xylenes	BYB0002-BLK1	ND	mg/kg	0.0050	0.0022	
o-Xylene	BYB0002-BLK1	ND	mg/kg	0.0050	0.0012	
Total Purgeable Petroleum Hydrocarbons	BYB0002-BLK1	ND	mg/kg	0.20	0.020	
1,2-Dichloroethane-d4 (Surrogate)	BYB0002-BLK1	110	%	70 - 12	1 (LCL - UCL)	
Toluene-d8 (Surrogate)	BYB0002-BLK1	99.0	%	81 - 11	7 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYB0002-BLK1	103	%	74 - 12	1 (LCL - UCL)	
QC Batch ID: BYB0348						
Benzene	BYB0348-BLK1	ND	mg/kg	0.0050	0.0013	
Ethylbenzene	BYB0348-BLK1	ND	mg/kg	0.0050	0.0015	
Methyl t-butyl ether	BYB0348-BLK1	ND	mg/kg	0.0050	0.00050	
Toluene	BYB0348-BLK1	ND	mg/kg	0.0050	0.0012	
Total Xylenes	BYB0348-BLK1	ND	mg/kg	0.010	0.0034	
p- & m-Xylenes	BYB0348-BLK1	ND	mg/kg	0.0050	0.0022	
o-Xylene	BYB0348-BLK1	ND	mg/kg	0.0050	0.0012	
Total Purgeable Petroleum Hydrocarbons	BYB0348-BLK1	ND	mg/kg	0.20	0.020	
1,2-Dichloroethane-d4 (Surrogate)	BYB0348-BLK1	113	%	70 - 12	1 (LCL - UCL)	
Toluene-d8 (Surrogate)	BYB0348-BLK1	101	%	81 - 11	7 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYB0348-BLK1	110	%	74 - 12	1 (LCL - UCL)	
QC Batch ID: BYB0568			-			
Total Purgeable Petroleum Hydrocarbons	BYB0568-BLK1	ND	mg/kg	0.20	0.020	
1,2-Dichloroethane-d4 (Surrogate)	BYB0568-BLK1	86.6	%	70 - 12	1 (LCL - UCL)	
Toluene-d8 (Surrogate)	BYB0568-BLK1	98.8	%	81 - 11	7 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BYB0568-BLK1	101	%	74 - 12	1 (LCL - UCL)	

Report ID: 1000324198

Page 16 of 19

02/12/2015 9:42 Reported:

Project: Soil Samples

Project Number: 1262.2 Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

								Control I	imits	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BYB0002							_			
Benzene	BYB0002-BS1	LCS	0.13507	0.12500	mg/kg	108		70 - 130		
Toluene	BYB0002-BS1	LCS	0.13047	0.12500	mg/kg	104		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BYB0002-BS1	LCS	0.054220	0.050000	mg/kg	108		70 - 121		
Toluene-d8 (Surrogate)	BYB0002-BS1	LCS	0.050710	0.050000	mg/kg	101		81 - 117		
4-Bromofluorobenzene (Surrogate)	BYB0002-BS1	LCS	0.053800	0.050000	mg/kg	1 08		74 - 121		
QC Batch ID: BYB0348										
Benzene	BYB0348-BS1	LCS	0.11261	0.12500	mg/kg	90.1		70 - 130		
Toluene	BYB0348-BS1	LCS	0.11117	0.12500	mg/kg	88.9		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BYB0348-BS1	LCS	0.050740	0.050000	mg/kg	101		70 - 121		
Toluene-d8 (Surrogate)	BYB0348-BS1	LCS	0.049570	0.050000	mg/kg	99.1		81 - 117		
4-Bromofluorobenzene (Surrogate)	BYB0348-BS1	LCS	0.052020	0.050000	mg/kg	104		74 - 121		
QC Batch ID: BYB0568										
1,2-Dichloroethane-d4 (Surrogate)	BYB0568-BS1	LCS	0.047410	0.050000	mg/kg	94.8		70 - 121		
Toluene-d8 (Surrogate)	BYB0568-BS1	LCS	0.050360	0.050000	mg/kg	101		81 - 117		
4-Bromofluorobenzene (Surrogale)	BYB0568-BS1	LCS	0.051070	0.050000	mg/kg	102		74 - 121		

Report ID: 1000324198 Page 17 of 19

02/12/2015 9:42 Reported: Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

					Control Limits						
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BYB0002	Use	ed client samp	ole: N			_					
Benzene	 MS	1502150-03	ND	0.13504	0.12500	mg/kg		108		70 - 130	
	MSD	1502150-03	ND	0.13691	0.12500	mg/kg	1.4	110	20	70 - 130	
Toluene	MS	1502150-03	ND	0.12895	0.12500	mg/kg		103		70 - 130	
	MSD	1502150-03	ND	0.13140	0.12500	mg/kg	1.9	105	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1502150-03	ND	0.053640	0.050000	mg/kg		107		70 - 121	
	MSD	1502150-03	ND	0.054960	0.050000	mg/kg	2.4	110		70 - 121	
Toluene-d8 (Surrogate)	MS	1502150-03	ND	0.049650	0.050000	mg/kg		99.3		81 - 117	
	MSD	1502150-03	ND	0.050030	0.050000	mg/kg	0.8	100		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1502150-03	ND	0.053610	0.050000	mg/kg		107		74 - 121	
	MSD	1502150-03	ND	0.051890	0.050000	mg/kg	3.3	104		74 - 121	
QC Batch ID: BYB0348	Use	d client samp	ole: N								
Benzene	MS	1502150-05	ND	0.11111	0.12500	mg/kg		88.9		70 - 130	
	MSD	1502150-05	ND	0.11716	0.12500	mg/kg	5.3	93.7	20	70 - 130	
Toluene	MS	1502150-05	ND	0.11026	0.12500	mg/kg		88.2		70 - 130	
	MSD	1502150-05	ND	0.11305	0.12500	mg/kg	2.5	90.4	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1502150-05	ND	0.051830	0.050000	mg/kg		104		70 - 121	
	MSD	1502150-05	ND	0.053360	0.050000	mg/kg	2.9	107		70 - 121	
Toluene-d8 (Surrogate)	MS	1502150-05	ND	0.049340	0.050000	mg/kg		98.7		81 - 117	
	MSD	1502150-05	ND	0.050120	0.050000	mg/kg	1.6	100		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1502150-05	ND	0.052230	0.050000	mg/kg		104		74 - 121	
	MSD	1502150-05	ND	0.051340	0.050000	mg/kg	1.7	103		74 - 121	
QC Batch ID: BYB0568	Use	d client samp	le: N								
1,2-Dichloroethane-d4 (Surrogate)	— MS	1502150-08	ND	0.049040	0.050000	mg/kg		98.1		70 - 121	
	MSD	1502150-08	ND	0.047550	0.050000	mg/kg	3.1	95.1		70 - 121	
Toluene-d8 (Surrogate)	MS	1502150-08	ND	0.049950	0.050000	mg/kg		99.9		81 - 117	
	MSD	1502150-08	ND	0.050450	0.050000	mg/kg	1.0	101		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1502150-08	ND	0.051280	0.050000	mg/kg		103		74 - 121	
	MSD	1502150-08	ND	0.052130	0.050000	mg/kg	1.6	104		74 - 121	

Report ID: 1000324198

Page 18 of 19

Reported: 02/12/2015 9:42 Project: Soil Samples

Project Number: 1262.2

Project Manager: Project Manager

Notes And Definitions

Estimated Value (CLP Flag)

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A19 Surrogate is high due to matrix interference. Interferences verified through second extraction/analysis.

S05 The sample holding time was exceeded.

S08 The internal standard on the sample was not within the control limits.

S09 The surrogate recovery on the sample for this compound was not within the control limits.

Z1 Sample was analysed twice at 5.0G and both times it had low internal standards.

Report ID: 1000324198 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 19 of 19