Engineering & sciences applied to the earth & its environment

April 17, 1992 91C0954A

Mr. Tony Sullins
Don-Sol Inc.
187 North L Street
Livermore, California 94550

Subject: Additional Soil Exploration

Arrow Rentals Site, 187 North L Street

Livermore, California

Dear Mr. Sullins:

This report presents the results of additional exploration to evaluate evidence of leakage of gasoline from the gasoline supply pipes to the former Mobil Oil pump island at Arrow Rentals, 187 North "L" Street, Livermore, California. This report supersedes the draft report dated February 18, 1992. The work was performed by Woodward-Clyde Consultants (WCC) in accordance with the approved Right of Entry and Testing Agreement dated September 10, 1991, and Mobil Work Release FCO 9966 dated October 11, 1991. The scope of work included the excavation of underground gasoline pipelines, drilling of supplemental exploratory borings, and laboratory analysis of soil samples. This information was evaluated and presented below in a report along with a site map showing piping detail and boring locations, logs of borings, and copies of the laboratory analysis reports.

SITE BACKGROUND

Previous exploration at this site discovered soil and groundwater contaminated with leaded gasoline (WCC 1991). The laboratory analyses of groundwater indicated that gasoline in the groundwater has characteristics which indicate the primary source is a reported spill of Chevron gasoline at the site in 1985. The location of leaded gasoline contamination in the soil (at boring B-F), with a high lead content suggests that pipelines from the pump island for a former Mobil service station may have contributed to the soil and groundwater contamination. Exploration and removal of these pipelines, and analysis of underlying soil for gasoline and lead was recommended to evaluate possible pipeline leaks as sources of the site gasoline contamination.

Mr. Tony Sullins Page - 2 April 17, 1992

PIPELINE EXCAVATION

On January 15 and 16, 1992, WCC observed the excavation of gasoline supply lines from the former Mobil Oil pump island towards the former underground tank locations. Balch Petroleum Inc. of Milpitas, California conducted the pipeline excavation under contract with Mobil. The piping was exposed with a backhoe, diagrammed, removed, labeled, and examined for cracks and points of weakness. Surrounding soil was also examined for evidence of contamination by piping leakage. Soil samples were collected for chemical analysis from selected points below the exposed piping.

The piping was exposed initially at a valve box near the southern end of the former pump island (Figure 1). Three gate-valve knobs were visible within the box. Upon removing the elliptical-shaped box and surrounding soil, the gate valves were observed to be connected to three separate pipes. The pipes were followed by excavation from this 3-valve box towards their unknown end point locations. At approximately three feet southward from the 3-valve box, the pipes turned at a 90-degree angle, heading in a westerly direction, parallel with the concrete pad edge (Figure 1). Approximately 8 feet from the 90 degree bend, a second valve box enclosure was discovered below a thin layer of asphalt. This valve box was circular and contained two gate-valve knobs. With further removal of surrounding soil, a fourth pipe was observed at the 2-valve junction. This fourth pipe was trailed back to the former pump island bypassing the 3-valve box. At the 2-valve box, the newly discovered fourth pipe connected to two pipes. Subsequent excavation west of the 2-valve box resulted in the detection of a fifth pipe. A schematic diagram of the five pipes is presented in Figure 1. Excavated soil was placed on, sampled and then covered with polyethylene sheeting, and stored at the site for later disposal.

Three of the five pipes (pipes 1, 2, and 3) were followed westward and ended approximately 35 feet from the former Mobil pump island. These three pipes ended where three of the former underground storage tanks were reportedly located (Figure 1). Pipes 4 and 5 were followed to the southwest and ended approximately 24 and 18 feet, respectively, from the former pump island (Figure 1). Pipes 4 and 5 ended in an area not previously reported to contain underground storage tanks.

Pipe Condition

Pipe sections removed from the excavation were observed for visual evidence of holes or cracks where leakage of gasoline could have occurred. Approximately three-fourths of the

Mr. Tony Sullins Page - 3 April 17, 1992

pipe appeared to be corroded and rusting with portions of corrosive buildup along the pipe bottoms. Remnants of a black "tar-paper" outer seal were observed on approximately 20 percent of the pipe. Bends in the pipeline were constructed by either bending the pipe or using a threaded elbow coupling. The pipe sections were labeled, wrapped in polyethylene sheeting, and stored at the WCC Laboratory in Pleasant Hill, California.

Soil Sampling of Pipeline Excavation

Pipeline excavation soil samples were collected at selected points approximately 0.5 to 2 feet below the existing pipe for chemical analysis. The selected points were located at suspected leak locations (pipe ends), areas of unique pipe character (bends and elbows), and flow control points (valve junctions). No visible staining or odors were observed during the pipe excavation and removal activities. Soil sample locations were approved by Mr. Brian Oliva, of Alameda County, Department of Environmental Health, Division of Hazardous Materials, who was present at the site during excavation and sampling. A copy of the county's Hazardous Materials Inspection Form for the excavation work is included in Attachment A. Pipeline trench soil samples collected for chemical analysis were placed in clean 2-inch I.D. by 4-inch long brass sample tubes sealed with Teflon and plastic endcaps, labeled, placed on ice and transported under chain-of-custody procedures to Sequoia Analytical, a California certified analytical laboratory.

Soil samples SS1,2E, SS3E, SS4E, and SS5E were collected below the points where pipes No. 1, No. 2, No. 3, No. 4 and No. 5 ended, respectively. No odors or staining were observed during sampling at these points. Sample SS5E was collected approximately one foot below the end of pipe No. 5 from a depth of 4.5 feet below existing grade. Samples SS1,2E, SS3E, and SS4E were collected approximately 0.5 feet below the ends of their respective pipes.

Soil samples SS1PB, SS3PB, SS5PB, and SSM90 were collected below the points where bends in the pipe were observed. Sample SSM90 was collected approximately one foot below the 90 degree turn just south of the 3-valve box, at a depth of 2.5 feet below existing grade. Samples SS1PB, SS3PB, and SS5PB were collected below pipes No. 1, No. 3, and No. 5, respectively. Samples SS1PB and SS3PB were collected at a depth of 2 feet below grade. Sample SS5PB was collected at a depth of 3 feet below existing grade. No odors or staining of native soil was observed at these sampling points.

Mr. Tony Sullins Page - 4 April 17, 1992

Soil samples SS2V and SS3V were collected below the 2-valve and 3-valve boxes, respectively. Sample SS2V was collected at a depth of 4 feet below existing grade and approximately 1.5 feet below the 2-valve box. Sample SS3V was collected at a depth of 2.5 feet below existing grade and approximately one foot below the 3-valve box. No odors or stained soil was observed at these sampling points. A summary of pipeline excavation trench soil sample analyses is presented in Table 1.

Excavation Backfilling

The trench excavation was backfilled by Balch on January 16 and 17, 1992 using clean imported granular fill. The fill was placed in 1-foot lifts, compacted by vibratory compactor, brought to approximately six-inches below surface grade, then finished to surface grade with concrete.

SUPPLEMENTAL BORINGS

On January 31, 1992, WCC observed the drilling of two exploratory borings to a depth of 41.5 feet at locations near pipeline excavation trench soil samples that contained elevated concentrations of total lead. Soil boring B-G was drilled to a depth of 41.5 feet where pipes No. 1 and No. 2 ended at the westernmost end of the pipeline excavation trench, near the location of pipeline trench soil sample SS1,2E (Figure 1). Soil samples were collected at one-foot depth intervals in boring B-G from a depth of 4 feet to 20 feet below surface, then every five feet to the termination depth just above the groundwater table. A total of 16 soil samples were collected from B-G for chemical analysis. Soil boring B-H was drilled to a depth of 41.5 feet in the middle of the former Mobile pump island near pipeline trench soil sample SS1PB (Figure 1). Soil samples were collected at 1.5-feet intervals from 3.5 feet to 14 feet, then every five feet to the bottom of the borehole. A total of 12 samples were collected for chemical analysis from boring B-H.

The borings were drilled to explore for evidence of gasoline in soil at greater depths. The borings were drilled by Weeks Drilling and Pump of Sebastopol, California with a truckmounted drill rig using 8-inch diameter hollow-stem augers. Logs of the borings are shown in Attachment B. Soil samples were collected using a 2-1/2-inch I.D. split-spoon sampler with stainless steel 2-1/2-inch I.D. by 6-inch long sample tubes for analytical testing and

Mr. Tony Sullins Page - 5 April 17, 1992

preparation of detailed log of each boring. Drilling and sampling equipment was steam cleaned between each boring. Sampling equipment was cleaned between samples with an alconox detergent wash and double rinsed in tap water to reduce the potential for cross-contamination.

Soil samples collected for chemical analysis were handled in a similar manner as described for pipeline excavation trench soil sampling. Sixteen samples were collected from boring B-G, twelve samples were collected from boring B-H. Some sampled soil was placed in a zip-lock plastic bag to develop a headspace for volatile compounds to emerge if present. The headspace samples were monitored with a HNu photoionization detector for presence of volatile constituents in the soil. The value of the HNu readings were recorded on each boring log. Soil cuttings from each boring were placed alongside the stockpiled soil from the pipeline excavation stored at the site for later disposal. Upon completion, both borings were backfilled to surface grade with a cement grout mixture.

The general subsurface conditions encountered in the borings consists of 5-inch thick concrete, underlain by 2 to 4 feet of sandy gravel granular aggregate fill, which is underlain by up to 6 feet of dark brown, medium dense, clayey sandy gravel. The dark brown sandy gravel is underlain by 15 to 30 feet of dark grayish brown to yellowish brown, dense, clayey gravel. The dense clayey gravel is interlayered with sandy clayey gravels and stiff silty clay. The clayey gravel is underlain by a light olive brown stiff clayey silt to sandy clay unit. Both borings were terminated just above the groundwater table in the moist to very moist clayey silt/sandy clay unit at 41.5 feet below surface grade. Logs of the borings showing the materials encountered, soil sample locations and HNu headspace readings are attached. A summary of the subsurface soil sample analyses is presented in Table 2.

Soil sample B-G-5.5 was collected from a depth of 5.5 feet below ground surface in clayey sandy gravel that contained and exhibited visible petroleum-like product and odor. Samples B-G-7 and B-G-8, collected from depths of 7 and 8 feet, did not exhibit petroleum-like odor. However, HNu headspace readings of 6 parts per million (ppm) and 13 ppm were measured from B-G-7 and B-G-8 samples, respectively. Significant petroleum-like odors and HNu headspace readings were experienced in soil samples collected from 8.5 feet to 41 feet depths in boring B-G. Soil samples B-G-9.5, -11.5,-13, -14, -15, -16, -17.5, -19, -20.5, -26, -31.5, -36, and -41 had measured HNu headspace readings of 38 ppm, 62 ppm, 320 ppm, 420 ppm, 390 ppm, 390 ppm, 260 ppm, 280 ppm, 280 ppm, 220 ppm, 180 ppm, and 100 ppm, respectively.

Mr. Tony Sullins Page - 6 April 17, 1992

No significant odors or HNu headspace readings were measured from soil samples B-H-4.5, -6, -7.5, -9.5, -11, -12.5, -14, and -21. Soil samples collected from 26.5 feet in a sandy clayey gravel unit to the bottom of the borehole at 41 feet in the light olive brown sandy clay unit, exhibited significant petroleum-like odors and HNu readings. B-H-26.5, -31, -36, and -41 had HNu headspace readings of 120 ppm, 200 ppm, 200 ppm, and 40 ppm, respectively.

LABORATORY RESULTS

Pipeline Excavation Soil Samples

A total of 10 soil samples were collected from the pipeline excavation and were analyzed for total petroleum hydrocarbons (TPH) as gasoline by modified EPA Method 8015, benzene, toluene, ethylbenzene, xylenes (BTEX) by EPA Method 8020, and total lead by EPA Method 6010. None of the samples contained concentrations above the detection limit for TPH as gasoline and BTEX.

Total lead concentrations of the samples ranged from 6.7 mg/kg (parts per million) to 250 mg/kg. Soil samples SS1,2E, SS3V, SS3PB, and SS1PB contained 250 mg/kg, 120 mg/kg, 130 mg/kg and 170 mg/kg of total lead, respectively. These four samples were also analyzed for organic lead by LUFT Method. No detectable concentrations of organic lead were found in these four samples. A summary of pipeline excavation trench soil sample analyses is presented in Table 1. Laboratory data reports are provided in Attachment C.

Supplemental Boring Soil Samples

A total of 28 soil samples were collected from borings B-G and B-H and were analyzed for TPH as gasoline by modified EPA Method 8015, BTEX by EPA Method 8020, and total lead by EPA Method 6010.

The results of laboratory analyses of soil samples from borings B-G and B-H are summarized in Table 2. Total lead was detected above background levels in the soil from boring B-G at depths of 5.5 feet down to about 11.5 feet. Lead was detected at background Gwald levels of about 5 mg/kg below that depth to 36 feet. At a depth of 41 feet lead was detected at an elevated concentration of 16 mg/kg. TPH gasoline was detected at 570 mg/kg at 5.5 in B-G and <1mg/kg from 7 feet to 9.5 feet. In boring B-G TPH gasoline was then detected in soil samples from 11.5 feet to the bottom of the boring at concentrations ranging from 490 mg/kg (at 11.5 feet) to 12,000 mg/kg (at 41 feet).

Mr. Tony Sullins Page - 7 April 17, 1992

Analysis of soil samples from boring B-H showed detected concentrations of total lead ranging from 3.4 mg/kg to 8.2 mg/kg. TPH gasoline was not detected in soil samples from B-H from 4.5 feet to 21 feet. However, TPH gasoline was detected at 160 mg/kg at 26.5 feet, 1,900 mg/kg at 31 feet, and 8,000 mg/kg at 36 feet.

Stockpiled Soil Sampling and Analysis

Approximately 10 cubic yards of excavated soil was stockpiled on-site and sampled and analyzed for TPH-gas, BTEX and total lead. Four clean brass sample tubes were used to collect samples that were later composited by the laboratory and labeled soil sample SS-1.

Laboratory analysis of soil sample SS-1 contained non-detectable values of TPH-gas, and BTEX. Sample SS-1 contained 59 mg/kg total lead.

Tetraethyl Lead Analysis

Two soil samples (B-G-11.5 and B-H-26.5) were analyzed for concentrations of tetraethyl lead using a method previously developed by Dr. Brian Andresen, Consultant, for our previous investigation of this site, (Woodward-Clyde Consultants, 1991). The ratio of tetraethyl lead to total petroleum hydrocarbons, as gasoline was used to estimate the amount of tetraethyl lead in the gasoline product released into the soil.

The analysis of the soil sample from 26.5 feet in boring B-H resulted in no detection of tetraethyl lead, and no detection of total petroleum hydrocarbons. The analysis of the soil sample from 11.5 feet in boring B-G resulted in 0.10 mg/kg tetraethyl lead and 30 mg/kg of total petroleum hydrocarbons. Other alkylated lead compounds were detected at 0.15 mg/kg. Coast-to-Coast Analytical Laboratories reports the concentration of tetraethyl lead found in the weathered gasoline is 6.2 g/gallon, and other alkylated lead compounds are 9.3 g/gallon (see Attachment C).

CONCLUSIONS

Excavations revealed the presence of five gasoline pipes extending from the former Mobil pump island to the locations of five former Mobil underground fuel storage tanks. Observations of the condition of those pipes indicate that their exterior surfaces are pitted and rusted, but no clearly visible cracks or holes were found. However, elevated concentrations of lead were detected in soil beneath the pipes at the pump island (170 ppm of total

Mr. Tony Sullins Page - 8 April 17, 1992

lead) and near the pipe ends as they approach the tanks (250 ppm total lead.) Two of the pipes end at locations nearer to north of L Street than were anticipated based upon the previously reported tank locations. Based upon interviews at the site with Mr. Tony Sullins, these two pipes (No. 4 and No. 5) may indicate the location of previously unknown tanks.

Laboratory analyses of soil from boring B-G show evidence of lead contamination just beneath the pipes (250 mg/kg at 3.5 feet, sample SS-1,2E) decreased to 7.3 mg/kg at 13 feet. It is our opinion that these concentrations of total lead in soil indicate leakage of leaded gasoline from the pipelines. Total petroleum hydrocarbons as gasoline was detected at 570 mg/kg at a depth of 5.5 feet in boring B-G. No TPH gasoline was detected at 7, 8, and 9.5 foot depths. However, TPH gasoline was detected at 490 mg/kg at 11.5 feet with increasing concentrations with depth up to 12,000 mg/kg TPH gasoline at 41 feet in B-G. The absence of TPH gasoline in soil samples from 7, 8 and 9.5 foot depths may be a result of selective biodegradation of the TPH in this zone. It is our opinion that the laboratory data show that gasoline contamination in the soil in boring B-G resulted from pipeline leaks.

The laboratory tests of soil from boring B-H, located at the pump island, show only background concentrations of total lead at 3.4 to 8.2 mg/kg from 4.5 feet to 41 feet. TPH gasoline was not detected in soil from B-H above a depth of 26.5 feet, where 160 mg/kg of TPH gasoline was detected. There is no clear pattern of gasoline contamination in boring B-H suggesting that the source of gasoline in soil is potentially from leaks in pipes near the former pump island.

Several selected soil samples (B-G-11.5 and B-H-26.5) from the borings with detected TPH gasoline were analyzed by Coast-to-Coast Analytical Laboratory using a special method previously developed (WCC, 1991) to evaluate the lead content of the spilled gasoline. The laboratory results (Attachment C) show no detection of tetraethyl lead in soil from 26.5 feet in boring B-H, near the former pump island. However, the analysis of soil from a depth of 11.5 feet in boring B-G shows 6.2 g/gallon of tetraethyl lead in gasoline in the soil. Based upon previous laboratory reports (WCC, 1991) it is our opinion that this amount of tetraethyl lead per gallon of gasoline most likely represents a gasoline manufactured before 1985.

LIMITATIONS

The scope of this investigation is limited by time constraints, expense, and practicality. A limited number of samples were taken at selected locations and depths on the site, and a

Mr. Tony Sullins Page - 9 April 17, 1992

limited number of chemical analyses were performed on those samples. Professional opinions concerning the presence of gasoline and petroleum products were developed based upon the resulting locations on and off site for all substances which are now, or in the future might be, considered hazardous. Therefore, WCC cannot be held responsible should the investigation fail to detect the presence or quantity of all hazardous substances at all locations on and off site in the study area.

If you have any questions regarding this report, please call Mr. Ridley at (510) 874-3125. Woodward Clyde has appreciated this opportunity to assist Mobil Oil.

Sincerely,

William Loskutoff Senior Staff Geologist

Albert P. Ridley, CEG

Senior Associate

ADB/WPDOCS/RIDLEY/A-0399.MBL

cc:

Mr. Edgar M. Hoepker, Mobil Oil Corporation

References: Woodward-Clyde Consultants, 1991. "Soil and Groundwater Characterization Study, 187 North L Street, Livermore,

California". June 12. Submitted to Don-Sul, Inc.

Table 1

Analytical Results of Soil from Pipeline Excavation Trench

Table 2

Analytical Results of Soil from Soil Borings

Figure 1

Site Plan of Piping Detail, Pipeline Excavation Trench Soil

Sample Locations and Soil Boring Locations

Attachment A: Alameda County Hazardous Materials Inspection Form

Attachment B: Logs of Borings B-G and B-H

Attachment C: Laboratory Data Reports

TABLE 1. ANALYTICAL RESULTS OF SOIL SAMPLES COLLECTED FROM PIPELINE EXCAVATION TRENCH, ARROW RENTALS, LIVERMORE, CALIFORNIA (Results in mg/kg)

Sample number	Location	Depth in feet	TPH gasoline (1)	Benzene (2)	Toluene (2)	Ethylbenzene (2)	Xylenes (2)	Total Land (3)	Organio Lead (4)
SS5E	End of pipe # 5	4.5	<1.0	<0.005	<0.005	<0.005	<0.005	32	NA
L SSM90	Below 90 degree turn	2.5	<1,0	<0.005	<0.005	<0.005	<0.005	6.7	NA
SS4E	End of pipe #4	4	<1.0	<0.005	<0.005	<0.005	<0.005	17	NA
∪ SS3E	End of pipe #3	3.5	<1.0	<0.005	<0.005	<0.005	<0.005	52	NA
└- S\$1,2E	End of pipes #1	3.5	<1.0	<0.005	<0.005	<0.005	<0.005	250	<0.050
SS2V	Below 2-valve junction	4	<1.0	<0.005	<0.005	⊲ 0.005	<0.005	10	NA
f	Below 3-valve junction	2.5	<1.0	<0.005	<0.005	< 0.005	<0.005	126	<0.050
L- SS5PB	Below pipe #5 to pumps	3	<1.0	<0.005	<0.005	<0.005	<0.005	40	HA
· SS3P8	Below pipe #3 to pumps	2	<1.0	<0.005	<0.005	<0.005	<0.005	130	<0.050
SS1PB	Below pipe #1 to pumpe	2	<1.0	<0.005	<0.005	<0.005	<0.005	170 ~	<0.050

Notes:

NA = Not Analyzed

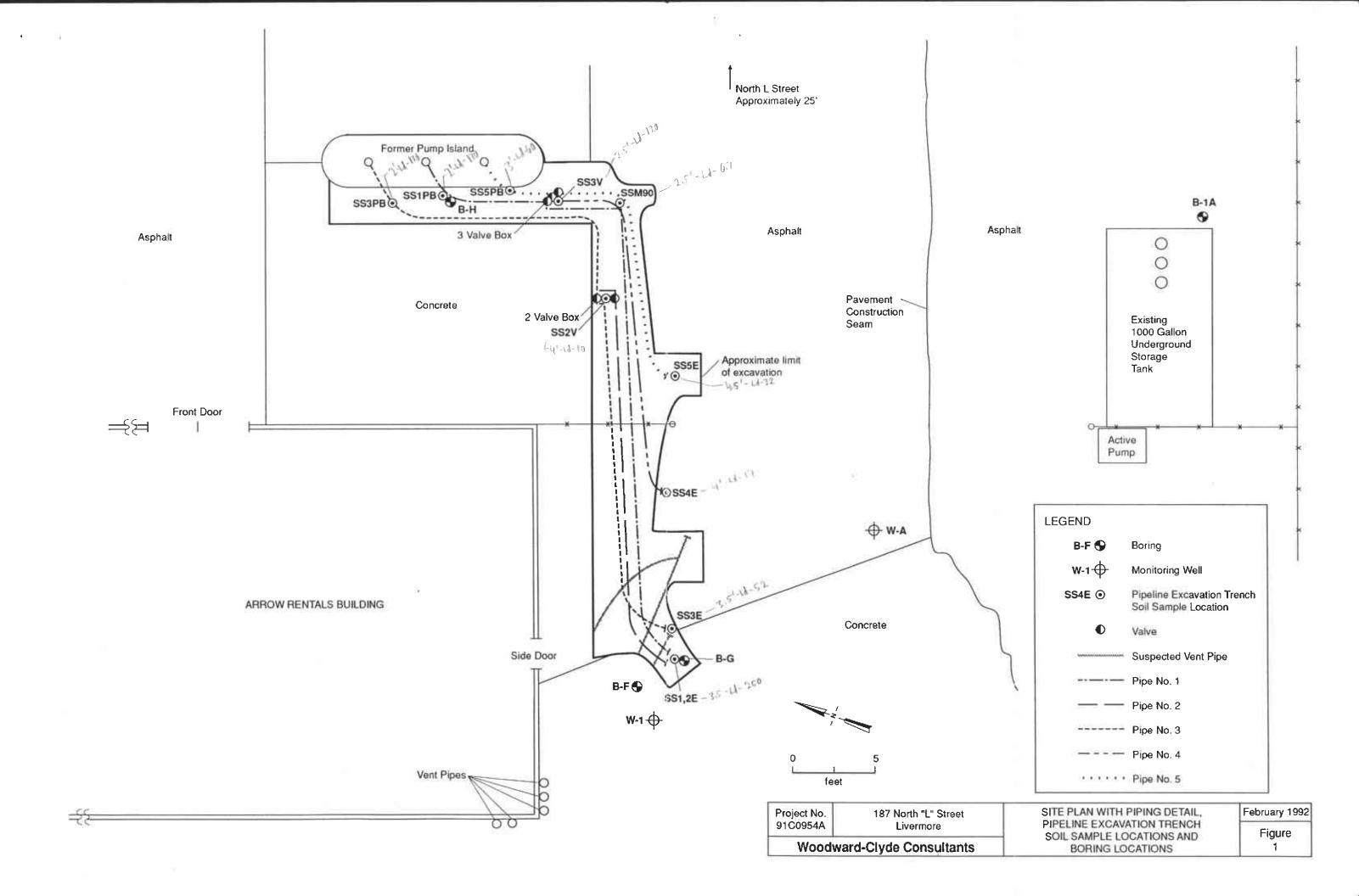
¹ Total Petroluem Hydrocarbons se gasoline by modified EPA Method 8015

² BTEX by EPA Method 8020

³ Total Lead by EPA Method 6010

⁴ Organic Lead by LUFT Method

TABLE 2. ANALYTICAL RESULTS OF SOIL SAMPLES COLLECTED FROM BORINGS B-G AND B-H, ARROW RENTALS, LIVERMORE, CALIFORNIA (Results in mg/kg)


Sample number	Depth in feet	TPH gasoline (1)	Benzene (2)	Toluene (2)	Ethylbenzene (2)	Xylenes (2)	Total Lead (
BORING B-G	-							
B-G-5.5	5.5	570	0.55	1.3	<0.25	2.8	92	
B-G-7	7	<1.0	<0.005	<0.005	<0.005	<0.005	35	
B-G-8	8	<1.0	<0.005	<0.005	<0.005	<0.005	43	
B-G-9.5	9.5	<1.0	<0.005	<0.005	<0.005	<0.005	14	
B-G-11.5	11.5	490	<0.10	<0.10	<0.10	0.53	9.8	
B-G-13	13	3100	<2.0	4.4	38	330	7.3	
B-G-14	14	750	<0.5	<0.5	3.9	38	9.2	
B-G-15	15	1800	< 0.5	16	31	220	8	
B-G-16	16	6700	<20	96	120	790	9.1	
B-G-17.5	17.5	3000	<1.3	2.2	19	220	5.3	
B-G-19	19	240	<0.05	0.45	1.3	5.9	5.1	
B-G-20.5	20.5	2100	4	75	29	180	5.4	
B-G-26	26	150	1	3.2	0.9	5,3	5.3	
B-G-31,5	31.5	40	À	4,4	0.48	2.8	5.7	
B-G-36	36	1900	1.8	63	21	120	5.7	
B-G-41	41	12000	150	520	130	710	16	
BORING B-H	_							
B-H-4.5	4.5	<1.0	<0.005	0.016	<0.005	<0.010	3.4	
B-H-6	6	<1.0	<0.005	<0.005	<0.005	<0.005	5.2	
B-H-7.5	7.5	<1.0	<0.005	<0.005	<0.005	<0.005	8.2	
B-H-9.5	9.5	<1.0	<0.005	0.008	<0.005	<0.005	7.9	
B-H-11	11	<1.0	<0.005	0.009	<0.005	<0.005	5,3	
B-H-12.5	12.5	<1.0	<0.005	<0.005	<0.005	<0.005	5.7	
B-H-14	14	<1.0	<0.005	<0.005	<0.005	<0.005	6.2	
B-H-21	21	<1.0	<0.005	<0.005	<0.005	<0.005	5.2	
B-H-26.5	26.5	160	<0.025	0.12	0.11	2.2	4.6	
B-H-31	31	1900	0.59	1.1	1.1	3.3	8.2	
8-H-36	36	8000	16	18	26	210	2.8	
B-H-41	41	<1.0	0.058	<0.005	<0.005	<0.005	8	

Notes:

¹ Total Petroluem Hydrocarbons as gasoline by modified EPA Method 8015

² BTEX by EPA Method 8020

³ Total Lead by EPA Method 6010

ATTACHMENT A

ALAMEDA COUNTY HAZARDOUS MATERIALS INSPECTION FORM

white -env.health yellow -facility pink -files

ALAMEDA COUNTY, DEPARTMENT OF ENVIRONMENTAL HEALTH

80 Swan Way, #200 . Oakland, CA 94621 (415) 271-4320

<u>Hazardous Materials Inspection Form</u>

11,111

	Site Site	anow Ren	Today's 1, K, 9n
A BUSINESS PLANS (Tifle 19)	ID # Name	11 17 0 (and 1/16/97
1, immediate Reporting 2703 25503(b) 2, 8us. Plan Stats. 25503(b)	Site Address	187 N. L St	
3. RR Cars > 30 days 25503.7 4. Inventory information 25504(a) 5. Inventory Complete 2730	CIN Livers	~~ ZID 94 5 50	Phone EPA CCC
6. Emergency Response 25504(b) 7. Training 25504(c)		stored > 500 lbs, 55 gal.	200 cft.?
8. Deficiency 25505(a) 9. Modification 25505(b)		Categories:	on the 11-
ACUTELY HAZ. MATLS	1. Haz. Mat	t/Waste GENERATOR/TRA	
	11. Business i	Plans, Acute Hazardous I ound Tanks () / () - ()	removal/Sampling
12, RMPP Contents25534(c)13, triplement 5ch. Regid? (Y/N)		0-41-()	/ sor freez
14. OffSite Conseq. Assess. 25524(c) 15. Probable Risk Assessment 25534(d) 16. Persons Responsible 25534(g)	 Calif. Administration 	Code (CAC) or the Healt	th & Safety Code (HS&C)
17. Certification 25534() 18. Exemption Request? (V/N) 25536(b) 19. Trade Secret Requested? 25538	Comments:	bulding	(8) Lorent Cusperson
. UNDERGROUND TANKS (Title 23)	<i>î</i> N		a Thines
1. Permit Application 75784_CH	A5	,	
2. Pipeline Leak Detection25292 (H3. Records Maintenance2712			
4. Release Report 2651 5. Closure Plans 2670	- 1 5 2		IN
6. Method 1) Monthly Test	£41€-?	1	
Daily Vadase Semi-annual gnawater One firms tals		5 4	
3) Daily Vadose One time sols		- 7/	12.00 D
Annual tank test 4) Monthly Gnawater One time sols		10 May 10	mo Con
5) Daily inventory Annual tank testing		TIRM Y. ARI GIVE	The state of the s
Contiple leak det Vadase/gratwater man. 6) Daily Inventory	Simolin	va 9 total	Samples to be /
Annual tank tentra Contiple leak det	TOU : TO	St = 0 4	Jaken /
7) Weekly Tank Gauge Annual tank titing 8) Annual Tank Teiting	15 6 C	0.55	/
Daily Inventory 9) Other		036	Imp- on to war
7. Precis Tank Test	· · · · · · · · · · · · · · · · · · ·	<u>(0.35</u>	most testor today
	1 / N	10 5 /	
9. Sol Testing . 2646 10. Ground Water. 2647		034	
9. Sol Testing . 2646 10. Ground Water. 2647 11. Monitor Plan . 2632 12. Access. Secure . 2634 13. Plans Submit . 2711			and eaker
9. Sol Testing 2646 10. Ground Water. 2647 11. Monitor Plan 2632 12. Access. Secure 2634 13. Plans Submit 2711 Date: 2035	Nor or	7	
9. Sol Testing . 2646	27-100 (July 100)	7	
9. Sol Testing . 2646	Nor or	ED GRAGE	and eater
9. Sol Testing 2646 10. Ground Water. 2647 11. Monitor Plan 2632 12. Access. Secure 2634 13. Plans Submit 2711 Date: 2635 6/88	Story of the	ED GRAGE	and caken
9. Sol Testing . 2646	Story of the	ED GRAGE	and eater

ATTACHMENT B

LOGS OF BORINGS B-G AND B-H

Woo	dw	vard-Clyde Consultants	<u> </u>	Proj	ect:	187 No	orth "L'	" St				954A			
Well	Nu	mber and Location: Near side door to Arro	ow Bu	ilding					Elev. and Datum:						
		Agency: Weeks Drilling & Pun	I	Oriller:	G	ary			Date Started: 1/31/92 Date Completed: 1/31/92						
Drillin	ng E	quipment: Mobile Drill B-53							Total Depth: 40 ft.						
Drillir	ng M	Method: Hollow Stern Auger	I	Drill bit:	7	7/8 inch			Sampler:	2-1/ First	2-inc	h split spoon			
Size	and	Type of Casing:							Water I	Compl. 24 HRS.					
Туре	of I	Perforation:	130000000	From:		ft To:		ft	No. of Samples	Dist.		Undist. 16			
		Type of Pack:		From:		ft To:		ft	Logged by:			Checked by:			
Seal:	_	entonite Pellets	11111	From:		ft To:		_ft_ ft	B. Losku			CHECKED Dy.			
	Gr	out Cement with 5% bentonite		From:	U	ft To:	40	11	L		- 40				
Depth (feet)		LITHOLOGIC DESC	RIPT	ION			LITHOLOGY		NITORING WELL INSTRUCTION	Sample	Blow Counts	REMARKS			
	П	0-5" CONCRETE		•			conc					At surface 5-inches			
	extstyle ext	@ 5"- SANDY GRAVEL,base aggrega	nto fill		aaiah						İ	of concrete			
1		gray, angular gravels to 1 1/2" size,15-					GP					From 5-inches to 4-feet log cuttings			
2	ᅵᅵ	coarse-grained sand, damp, loose										From 4-feet to 20			
-	ĻΙ						1	İ		ļ	1	continuous sample			
3	H											with 2-1/2-inch split-			
	L	1								l		spoon sampler			
4	L				_		-	-		<u> </u>	 _	petroluem-like			
'	니	@ 4' CLAYEY SANDY GRAVEL, dark t	orown,	loose to	med	ium	GP				5	product at 5.5 feet			
5		dense, moist, angular gravels to 1 1/2":		ze, 20-30	1% m	edium-	1			1	6	odor			
	F	grained to coarse-grained sand, 15% cl	ay					ł		<u> </u>	1	B - G - 5.5			
6	H										6 5	HNu:6ppm			
	┝									2	6	B-G-7			
7	\vdash							1			6	1			
1	\vdash						1			3	16	B-G-8			
8										Ť	20	HNu: 13 ppm			
	!]					1				17	slight odor			
9	H	.						1		4	7 27	B-G-9.5			
	\vdash	•						1		\vdash	† 20	HNu:38 ppm			
10	\vdash							1			7	1 .			
	r	@ 10.5 CLAYEY GRAVEL, dark grayis	h hrou	un danse	3 MA	iet	1	1] 3] 18	odor			
11	r	5 % coarse-grained sand, 30-35% clay,				ιςι,	GC			5	30	B-G-11.5			
12		3-inch size		•							50	J			
'*	Γ	İ								<u> </u>	↓_	12 to 12.5 No sample			
1.,	Γ							1		6	50	B - G - 13, odor HNu : 320 ppm			
13	Г									<u></u>	40	B - G - 14, odor			
14		}					1			7	+-	HNu : 420 ppm			
'-	L									<u> </u>	35	B - G - 15, odor			
15										8	50	HNu : 390 ppm			
"											40	15 0 10,000.			
16	Γ									9	4—	1			
'	Γ										23	1			
17								ļ			40 50				
								ì		110	, ~~] ((10 . ZOO DD)			

Pr	ojed	ct: 187 North "L" Street		LOG OF BORING B - G					
Depth (feet)		LITHOLOGIC DESCRIPTION		LITHOLOGY	MONITORING WELL CONSTRUCTION	Sample	Blow Counts	REMARKS	
17	\vdash	as above, CLAYEY GRAVEL		GC					
18		same, increase clay content to 40%, also coarse-grains sand to 20%	ed				40 35		
19		Carlo to Eove				11	35 33	B - G - 19 odor HNu : 280 ppm	
20		same, decrease medium to coarse-grained sand conte	nt to 10%			12		B - G - 20.5	
21	F						38	HNu:280 ppm, odor	
22	F								
23									
24	L								
25	L					_			
26	E	@ 25' SANDY CLAYEY GRAVEL, light yellowish brow coarse-grained sand, 30-40% clay, angular gravels to size, moist, dense to hard		GC		13	25 40 50	B- G - 26 HNu : 220 ppm, odor	
27	-	SIZE, MOISE, CONSCIONANCE					55	7 III do 2 22 5 ph. 11, 9 9 9 1	
28	-								
1	F								
29	F								
30	F		:		!		25 36	HNu : 180 ppm.odor	
31	F	@ 31' SILTY CLAY, yellowish brown, stiff to very stiff 20-30% very fine grained sand	, damp,	CL		14	4 ~~	B-G-31.5	
32	F	20-30 % very fille grained saild							
33	-								
34	F							:	
35	-	@ 35' SANDY CLAYEY GRAVEL, light yellowish brow	wn, 20%	GC	1	15	23		
36	·	coarse-grained sand, 30-40% clay, moist, dense to he 2" angular gravels				Ë	30	1	
37	<u> </u>	@ 36.5' CLAYEY SILT, light olive brown, firm to stiff, very moist at depth, 30-35% clay	moist to	ML					
38	<u> </u>				<u></u>			D	
. L_		Woodward-Clyde Consultant	S					Page 2 of 3	

. .

Projec	t: 187 North "L" Street	LOG OF BORING B - G							
Depth (feet)	LITHOLOGIC DESCRIPTION	LITHOLOGY	MONITORING WELL CONSTRUCTION	Sample	Blow Counts	REMARKS			
38 —	as above, CLAYEY SILT	ML							
39 —					:				
40 -	same, very moist at depth			16	6 10 13	B - G - 41 HNu : 100 ppm, odor			
42 —	BOTTOM OF BOREHOLE					Boring terminated at 41.5 feet below			
43						grade, backfill with cement plus 5% bentonite grout mixture to surface			
44									
						,			
			į						
		-							
	Woodward-Clyde Consultants				rag	e 3 of 3			

		ward-Clyde Consultants ———————————————————————————————————			ect:					Elev. and D				
Drillin	ıg A	Agency: Weeks Drilling & Pump	Dri	iller:	G	ary				Date Started: 1/31/92 Date Completed: 1/31/92				
Drillin	Drilling Equipment: Mobile Drill B-53							Total Depth	: 40) ft.				
Drillin	Diffilling Metrica . Hollow Stells Auger Diffill bit. 1776 (1901)							Sampler:		2-in	ch split spoon Comol 24 HRS			
Size	and	Type of Casing:								Water Level:	First		Compl. 24 HRS	
Туре	of	Perforation:		From:		ft To:			ft	No. of	Dist.		Undist.	
Size	and	Type of Pack:		From:		ft To			ft	Samples			12	
	: Bentonite Pellets From: ft To:								ft	Logged by B. Losku			Checked by:	
	Gr	out Cement with 5% bentonite		From:	0	ft To		40	ft			-	0	
Depth (feet)		LITHOLOGIC DESCRI	PTIC	ON				пиногода		NITORING WELL INSTRUCTION	Sample	Blow	REMARKS	
		0-5" CONCRETE						conc			ľ		At surface 5-inches	
1		@ 5"- SANDY GRAVEL,base aggregate	e fill ro	ock, gree	enish								of concrete	
	L	gray, angular gravels to 1 1/2" size,15-20	0% fin	ne-grain	ed to			GP					5"- 3.5' log cuttings	
2	H	coarse-grained sand, damp, loose					1						From 3.5 to 14 feet	
	-												continuous sample with 2-1/2-inch split-	
3	r												spoon sampler	
	Г											3	1	
4		@ 4' SANDY GRAVEL with clay, dark brow	own, k	oose to	medi	um		GP			1	15 17	_ , , , , , , , , , , , , , , , , , , ,	
5	F	dense, dry, angular to subangular gravels						1				23		
	H	clay, 20% medium-grained sand							1		2	40		
6	H										Ė	43		
,	卜	1							1			15	5	
7		same, clay to 10%						•			3	23	10	
8											\vdash]4		
1	í							1			1	130	٥I	

FIELD LOG OF BORING NO. B-H

@ 10' SANDY CLAYEY GRAVEL, yellowish brown, hard, dry,

angular gravels, 20-30% clay, 15% medium-grained sand

10

11

12

13

14

15

16

17

18

same

27

38

30

42 20

18

35

30

5 45

6

7 50

GC

B-H-9.5

B-H-11

HNu:1 ppm

HNu: 2 ppm

B-H-12.5

HNu:1 ppm

B-H-14

HNu:0

F	roje	ct: 187 North "L" Street	LOG OF BORING B - H						
Depth	(1881)	LITHOLOGIC DESCRIPTION	មា	HOLOGY	MONITORING WELL CONSTRUCTION	Sample	Blow Counts	REMARKS	
17	7 -	as above, SANDY CLAYEY GRAVEL	(GC					
11	3 F								
1	9 _								
2							10		
2	ıF	same, 15-20% medium to coarse-grained sand, clay t	0 40%			8	37 37	B-H-21 HNu: 1 ppm	
2	F								
2	3 F								
2	4								
2	5 						20		
2	6 –	same				9	20 40 44	HNu : 120 ppm B- H - 26.5	
2	7 -					3		B-11-20.5	
2									
	9 —								
	F								
	°	same				10	30 50	HNu : 200 ppm,odor B - H - 31	
	" - -								
	² -								
1	13 								
	⁴								
	35 -	same				11	37 50	B - H - 36, odor	
	36							HNu : 200 ppm	
	37 								
ŀ	38 —	Woodward-Clyde Consultants				_	<u> </u>	Page 2 of 3	
<u> </u>		Woodward-Ciyde Consultant	<u> </u>					 . -	

•

Proje	ct: 187 North "L" Street	LOG	OF BORING	В-	Н	
Depth (feet)	LITHOLOGIC DESCRIPTION	Гітногода	MONITORING WELL CONSTRUCTION	Sample	Blow Counts	REMARKS
38	as above, SANDY CLAYEY GRAVEL	GC				
39 –						
40 -	@ 40' SANDY CLAY, light olive brown, firm to stiff, mo moist, 25% very fine to fine-grained sand	ist to very CL		12	5 7 10	B-H-41
42	BOTTOM OF BOREHOLE			-	10	HNu : 40 ppm, odor Boring terminated at 41.5 feet below
43 -						grade, backfill with cement plus 5% bentonite grout
44					:	mixture to surface
45			, 			
					i	
					i : :	
				•		
	Woodward-Clyde Consultants				Page	e 3 of 3

ATTACHMENT C

LABORATORY DATA REPORTS

Woodwerd Otyle Consultants .500 12th Consultants akland, CA 94607

Chain of Custody Record

. 500	12th St	1001, Odka (41	5) 893-36		1940 0		401	4				•						
PROJEC	T NC	:						Ą	,	ANA	LYS	ES						
PROJECT Mobile SAMPLE		gnaturg)	<u> </u>		. (A)ir	188 2	010	otal		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							Containers	REMARKS (Sample preservation,
	TIME	•	LE NUMB	ER	Sample Matrix (S)oif, (W)ater, (A)ir	EPA Method in	EPA Method 8020	same Tota	EPA Method								Number of Containers	handling procedures, etc.)
16/92	1135	55	5E		5			K			20	أرار	įΩ	<u>3\$</u>	,		1	EPA mod 8015
	1140		m90		S	X	X	×				1		<u>34</u>		_	1	TPH-gos EPA 8020
7 1	150		4E		5	X	K	X				\perp		3	<u> </u>	\perp	1	21A 8020
	1210		3 <i>E</i>		2	X	X	X				$\perp \downarrow$		3	3 !	\bot		RIEX
1	224	551	,2E	*	5	X	X	X				\perp		3		\perp	<u> </u>	Thillead
	1245	<i>S</i> S	2V_		S	X	K	X		_				4	0	_	1	Total Leson
$\neg \neg$	250	<u>SS</u>	3V_	4	5	X		X	_	<u> </u>				4	<u> </u>	4	1	Total Lead All Samples
	1255	<u> </u>	<u>5 PB</u>		5	X		X		<u> </u>					2	_	-	
	300	<u></u>	39B	*	<u>S</u>	K	X	1 —	ļ	_				4	<u>ろ</u> ‡	+	1	
7	1305		IPB	*	3	X	X	_	<u> </u>	_				4		-	1	Composite into
	145	55	5- L		S	X	X	X		ļ		d		4	5	_	4.	SOMPUSICO INTO
						<u> </u>			<u> </u>	<u> </u>		_	_			-		one surprise
					ļ	1		<u> </u>		<u> </u>		<u> </u>	_		- !			C. 10. 14
						1	<u> </u>	<u> </u>	igspace	<u> </u>		<u> </u>	_					send Family
					 	1_	1_	1	ļ	_	<u> </u>	<u> </u>	_					to Al Kidle
					ļ	↓_		-	1_	ļ	<u> </u>	┡	┞	_		}		@(=12) 0711 25
					 	+	\vdash	╀		-	<u> </u>		-					Send Results to Al Ridle @(510)874-31
																		51
		_				\downarrow	╂-	-	\bot	-	-		_					5day TAT
			<u> </u>		╂	+	-	+	╀	+	<u> </u>	┼─	┞	╂-				
						+-	+	+	╂-	+	<u> </u>	-	╁	+				-
					+-	+	+	+	+	+	1	+	\vdash	\vdash				1
		-			-	╫	╁	+	+	+	-	+	┼-	\vdash				-
					\dashv $-$	╫	╫	╫	+	+-	╫	+	╁	\vdash				1
						╁╴	+-	+	+-	+	+-	╁	\vdash	+				
		-			-	+-	+	+	+	+	1		1-	1		<u> </u>		1
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>		1 -					<u> </u>		NUM CONT	TOT IBER AINE	OF	14	
RELINOU (Signatur		BY:	DATE/TIM	(Sign	EIVED I	11	A	/			NQU!		BY	:		DA	TE/TI	IME RECEIVED BY : (Signature)
METHO	10811 25 12	PMENT:	792	SHII	PPED B nature)		<u>/ </u>				RIER					,	CEIVI gnatu	
Por	UNIC	72							ļ			_						1-16 4

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Matrix Descript: Mobil, 10-RVL

Soil

Analysis Method: First Sample #:

EPA 5030/8015/8020

201-2235

Sampled:

Jan 16, 1992 Jan 16, 1992

Received: Analyzed:

1/17-18/92

Reported: Jan 22, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-2235	\$\$5E	N.D.	N.D.	N.D.	N.D.	N.D.
201-2236	SSM90	N.D.	N.D.	N.D.	N.D.	N.D.
201-2237	SS4E	N.D.	N.D.	N.D.	N.D.	N.D.
201-2238	SS3E	N.D.	N.D.	N.D.	N.D.	N.D.
201-2239	SS1, 2E	N.D.	N.D.	N.D.	N.D.	N.D.
201-2240	SS2V	N.D.	N.D.	N.D.	N.D.	N.D.
201-2241	SS3V	N.D.	N.D.	N.D.	N.D.	N.D.

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2012235.WOO < 1 >

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Matrix Descript: Analysis Method:

First Sample #:

Mobil, 10-RVL

Soil

EPA 5030/8015/8020

Sampled: Received: Jan 16, 1992 Jan 16, 1992

Analyzed:

Jan 18, 1992

Reported: Jan 22, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

201-2242

	Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
2	201-2242	SS5PB	N.D.	N.D.	N.D.	N.D.	N.D.
:	201-2243	SS3PB	N.D.	N.D.	N.D.	N.D.	N.D.
;	201-2244	SS1PB	N.D.	N.D.	N.D.	N.D.	N.D.
:	201-2245	SS-1, Composite	N.D.	N.D.	N.D.	N.D.	N.D.

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2012235.WOO <2>

Dyde Consultants Client Project ID: Woodward-Clyde Consultants 500 12th St., Suite 100 Oakland, CA 94607-4014 Attention: Al Ridley

Sample Descript:

Mobil, 10-RVL

Sampled: Received: Extracted:

Jan 16, 1992 Jan 16, 1992 Jan 21, 1992

Analysis for: First Sample #: Soil Lead 201-2235

Analyzed: Reported:

Jan 21, 1992 Jan 22, 1992

LABORATORY ANALYSIS FOR:

Lead

	DABORATO	NI ANALISIS I	Un.	LE
Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg	
201-2235	SS5E	5.0	32	
201-2236	SSM90	5.0	6.7	
201-2237	SS4E	5.0	17	
201-2238	SS3E	5.0	52	
201-2239	SS1.2E	5.0	250	
201-2240	SS2V	5.0	10	
201-2241	SS3V	5.0	120	
201-2242	SS5PB	5.0	60	
201-2243	SS3PB	5.0	\$30	
201-2244	\$S1PB	5.0	170	
201-2245	SS-1, Composite	5.0	59	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Malle A. Springer Project Manager

Client Project ID: Mobil, 10-RVL

500 12th St., Suite 100 Oakland, CA 94607-4014

Attention: Al Ridley QC Sample Group: 2012241 - 45

Reported:

Jan 22, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	·
·	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 A.Maralit mg/kg Jan 18, 1992 GBLK011892	EPA 8020 A.Maralit mg/kg Jan 18, 1992 GBLK011892	EPA 8020 A.Maralit mg/kg Jan 18, 1992 GBLK011892	EPA 8020 A.Maralit mg/kg Jan 18, 1992 GBLK011892
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.20	0.21	0.21	0.61
Matrix Spike % Recovery:	100	105	105	102
Conc. Matrix Spike Dup.:	0.19	0.19	0.19	0.57
Matrix Spike Duplicate % Recovery:	95	95	95	95
Relative % Difference:	5.1	10	: 10	6.8

SEQUOIA ANALYTICAL

Marin -

Måte A. Springer Project Manager % Recovery: Conc. of M.S. - Conc. of Sample Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D.

x 100

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

Glient Project ID: Mobil, 10-RVL

Oakland, CA 94607-4014
Attention: Al Ridley

QC Sample Group: 2012235 - 40

Reported:

Jan 22, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	× 4
<u> </u>	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 E.Cunanan mg/kg Jan 17, 1992 GBLK011792	EPA 8020 E.Cunanan mg/kg Jan 17, 1992 GBLK011792	EPA 8020 E.Cunanan mg/kg Jan 17, 1992 GBLK011792	EPA 8020 E.Cunanan mg/kg Jan 17, 1992 GBLK011792
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.20	0.20	0.20	0.62
Matrix Spike % Recovery:	100	100	100	103
Conc. Matrix Spike Dup.:	0.21	0.22	0.21	0.65
Matrix Spike Duplicate % Recovery:	105	110	105	108
Relative % Difference:	4.9	9.5	4.9	4.7

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added x 100

11 (cde(+2) >

Maile A. Springer Project Manager Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2012235.WOO <5>

Client Project ID: Mobil, 10-RVL

Oakland, CA 94607-4014
Attention: Al Ridley

QC Sample Group: 2012235 - 45

Reported:

Jan 22, 1992

QUALITY CONTROL DATA REPORT

Method: EPA 6010

Analyst: R. Sharma
Reporting Units: mg/kg
Date Analyzed: Jan 21, 1992
QC Sample #: 201-2236

Sample Conc.: 6.7

Spike Conc. Added: 500

Conc. Matrix Spike: 500

Matrix Spike % Recovery: 99

Conc. Matrix Spike Dup.: 500

Matrix Spike
Duplicate
% Recovery: 99

Relative
% Difference: 0.0

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

Male A. Springer Project Manager

2012235.WOO <6>

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: 10-RVL, Mobil

Sample Descript: S

Analysis Method: First Sample #:

California LUFT Manual, 12/87

201-2239

Sampled: Jan 16, 1992 Received: Jan 16, 1992

Analyzed: Jan 28, 1992

Reported: Jan 29, 1992

ORGANIC LEAD

Sample Number	Sample Description	Sample Results mg/kg (ppm)
201-2239	SS1, 2E	N.D.
201-2241	SS3V	N.D.
201-2243	SS3PB	N.D.
201-2244	SS1PB	N.D.

Detection Limits:

0.050

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

500 12th St., Suite 100 Oakiand, CA 94607-4014

Attention: Al Ridley

Client Project ID: 10-RVL, Mobil

QC Sample Group: 2012239, 41, 43-44

Reported: Jan 29, 1992

QUALITY CONTROL DATA REPORT

ANALYTE Organic
Lead

Method:

LUFT

Analyst:

M.Mistry

Reporting Units: Date Analyzed: mg/kg Jan 28, 1992

QC Sample #:

201-3964

Sample Conc.:

N.D.

Spike Conc.

. Added: 0.60

Conc. Matrix

Spike:

0.47

Matrix Spike

% Recovery:

78

Conc. Matrix

Spike Dup.:

0.45

Matrix Spike

Duplicate

% Recovery:

75

Relative

% Difference:

roject Manager

4.3

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2012239.WOO <2>

				Clyde C 100, Oaklan			nts				С	ha	in of C	Cus		dχ	343	*
1			. (4	15) 893-3600			-401	4								•		•
Ì	PROJE	CT NO.	_011	1		12		Z		ANAL	YSI	ES -		\Box				į
			-RU			X	图图	10							Containers		REMARI	κs
	SAMPL	ERS. (S	ignalurey		3	A	8	Total	:						25		(Sample	
	<i>محدا</i>		210/		———— ¥ ¥ ¥	불	8	1,	q						5		preservation handling	4
	DATE	TIME	SAME	PLE NUMBER	Sample Matrix (Sloil, (Water, (EPA Methoditiod Sy	EPA Wethod 8070	EPA-Motho	EPA Method						Number		procedures.	
	1/31/47	0929	B-6	5-5-S	-/ 5	X	X	X		6	Q	14	915		1	Al	1 Sample	es in
,	6	0735	B-6		5	¥	k	X					16		1		1/2×6"	~
	7	0938	B-6		13	X	Y	Y			Π	\neg	(7		\prod	L	liers.	->
	1	0943	B-6		1 5	╁	1	7			$\dagger \dagger$	十	8		1			
_	}	-	B-6		, //	U		₩			+	\dashv	19	寸	1	A	HI Sap	45
•	/-	0949		1.	, 2	╬	10	₩			+	-	70	1	; 	A	er TPH	-gas,
•	\	1016			, 	-	1	K	┪		+	+	71	\dashv	;	- ``	BIEX	2
•	├ /─	1020	B-6	9 - 14º		()	ĮŽ.	X	_		╫	-		\dashv	1		DIEN	1
•	I/	1025	B-6	<u> -15'</u>	15	·ͺͺͺϪ	<u> </u>	X		╀	+	\dashv	24	\dashv	-	-	Total	Lead
•		1031	B-6			· X	X	X	_		44	_	23		<u>!</u> -			`\
•	{	1035	B-6	<u>,一门子。</u>	5' 5	<u> </u>	()X	X	_		Ш	_	24			[]	5day	.)
•		1043	B-6		کرا	ΙX	X	X	1_		Ш		2\$			{ -	TATO	
л	17	1047		- 20	513	-15	(X	X		T			26		1			
•		IOD	B-6		13	, 13	ZV	X					Z 17 -		1	_		
	 	1110	B-6		5/13	٦ķ	Y	Y	\top				2%		1	(and Pa	sults
,	 	1118	B-6	7//	5	, K		Ý			11	1	241			_ <	gene me	
_	$\vdash \uparrow$	1124	B-6	<u>, - 411</u>	, 2	,		Ý	+	1 1	11	1	30		$\overline{1}$	7	gerd Re to Al.	Kidley
_	1	+**	· · · · · ·	1-4-5	1 3	;₩		X	+		11	\neg	<u> </u>		;	_ <i>j</i>	56)874	-3125
•		1253			- + 3			X	+				32			رد	ון משוב	7165
•	 	1258) 	<u> </u>		+		\dashv	33		/	-	Ax(5w)8	74-5763
•		- · - · - ·	B-1-	<u> </u>	- + 5			10	-		\vdash	\dashv			-;- 	. ,		,, ,,,,,,
3	-	1308		<u> - 7.5'</u>	5			삸	+	+		\dashv	3+			_		
)		13/3	B-H	<u> </u>	, 5	,)	ĹΧ	, K	_	1-1			35		4			
•		1320	B-H	'- 12-5		7)	<u>Y</u> X	ЧX		$\downarrow \downarrow$			36		1	_		
1		132kg	B- H	(- 14 (2	7	XX	X	-				137					
-		1337	B-H	-21		\		K					38					
•		1344	B-H	- 26-5	5' 5		ΚX						3G		1			
•		1352	B-H	1-311	3		Κx	TX					40		1			
_		1402	13-H	$(-36)^{7}$	7	。 「	/ /	X					41		1			
_	17	1400	B - H	1-411	12	5	XX	- X	1				42					
-	-W-	<u>ji w j</u>	11 0	<u>. ['</u>		_1/	7(<u> </u>	`	1 A	لــــا		TO	FAI				
													NUMBER CONTAINS	OF RS	Z8	Ĺ,	·-	
		QUISHED I	BY:	DATE/TIME	RECEIVED					RELING		HED	BY :	DA	TE/TIN	ΛE	RECEIVED BY (Signature)	' :
	(Signat	iure)	1_4	3/	(Signature)			J		(Signal	iare)	1	• •	1/31	/111	<u>,</u>		4.11
	10	U/al	WE	-792 ISIS	1206 K	ee	a	7		15	1/	(ee	gan 430	/	946	01	Jm 4	,
	METH	PD OF SH	IPMENT :		SHIPPED					COUR (Signa		U			DEIVEI Inature		R LAB BY :	DATE/TIME
	1	pur	سرم	ļ	(Signature	·)				(Gigita	nure)					-,		

*

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Matrix Descript:

Analysis Method:

First Sample #:

Mobil, RV1

Soil EPA 5030/8015/8020

201-4915

Sampled:

Reported:

Jan 31, 1992 Jan 31, 1992

Received: Analyzed:

Feb 1, 1992

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4915	B-G-5.5'	570	0.55	1.3	N.D.	2.8

Detection Limits: 50 0.25 0.25 0.25

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

Oakland, CA 94607-4014 Attention: Al Ridley

Client Project ID: Matrix Descript:

Analysis Method:

First Sample #:

Mobil, RV1

Soil

EPA 5030/8015/8020

201-4916

Sampled:

Reported:

Jan 31, 1992

Jan 31, 1992 Received: Feb 1, 1992 Analyzed:

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4916	B -G-7'	N.D.	N.D.	N.D.	N.D.	N.D.
201-4917	B-G-8'	N.D.	N.D.	N.D.	N.D.	N.D.
201-4918	B-G-9.5'	N.D.	N.D.	N.D.	N.D.	N.D.
201-4931	B-H-4.5'	N.D.	N.D.	0.016	N.D.	0.010
201-4932	B-H-6'	N.D.	N.D.	N.D.	N.D.	N.D.
201-4933	B-H-7.5'	N.D.	N.D.	N.D.	N.D.	N.D.
201-4934	B-H-9.5'	N.D.	N.D.	0.0080	N.D.	N.D.
201-4935	B-H-11'	N.D.	N.D.	0.0090	N.D.	N.D.
201-4936	B-H-12.5'	N.D.	N.D.	N.D.	N.D.	N.D.
		•				

				<u> </u>	
Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

Oakland, CA 94607-4014

Attention: Al Ridley **SERVICIO** Client Project ID:

Matrix Descript:

Analysis Method: First Sample #:

Mobil, RV1

Soil EPA 5030/8015/8020

201-4937

Sampled:

Jan 31, 1992: Jan 31, 1992

Received: Feb 2, 1992 Analyzed: Amended:

Feb 10, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4937	B-H-14	N.D.	N.D.	N.D.	N.D.	N.D.
201-4938	B-H-21'	N.D.	N.D.	N.D.	N.D.	N.D.
201-4942	B-H-41'	N.D.	0.058	N.D.	N.D.	N.D.
201-4926	B-G-20.5	2,100	4.0	75	29	180

Detection Limits:	1.0	0.0050	0.0050	0.0050	0.0050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO <3>

Oakland, CA 94607-4014

Client Project ID:

Mobil, RV1

Sampled:

Jan 31, 1992 🛭

Matrix Descript:

Soil

Received: Analyzed: Jan 31, 1992 Feb 1, 1992

Attention: Al Ridley

Analysis Method: First Sample #:

EPA 5030/8015/8020 201-4919

Reported:

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4919	B-G-11.5	490	N.D.	N.D.	N.D.	0.53

0.10 0.10 0.10 **Detection Limits:** 20 0.10

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO <4>

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID:

Mobil, RV1

Sampled: Received:

Jan 31, 1992

Matrix Descript: Analysis Method:

Soil EPA 5030/8015/8020

Analyzed:

Jan 31, 1992 Feb 2, 1992

First Sample #:

201-4920

Reported:

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample	Sample	Low/Medium B.P.	_	-	Ethyl	Volence
Number	Description	Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4920	B-G-13'	3,100	N.D.	4.4	38	330

Detection Limits: 400 2.0 2.0 2.0 2.0

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO <5>

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Matrix Descript: Mobil, RV1

Soil EPA 5030/8015/8020

Analysis Method: EPA 5030 First Sample #: 201-4921 Sampled:

Jan 31, 1992

Received: Analyzed: Jan 31, 1992 Feb 2, 1992

Reported: Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4921	B-G-14'	750	N.D.	N.D.	3.9	38
201-4922	B -G-15'	1,800	N.D.	16	31	220
201-4940	B-H-31'	1,900	0.59	1.1	1.1	3.3

Detection Limits: 100 0.50 0.50 0.50 0.50	Detection Limits:	100	0.50	0.50	0.50	0.50	
---	-------------------	-----	------	------	------	------	--

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

Oakland, CA 94607-4014

Attention: Al Ridley

Client Project ID:

Mobil, RV1

Sampled:

Jan 31, 1992

Matrix Descript: Analysis Method:

Soil

Received:

Jan 31, 1992 Feb 2, 1992

First Sample #:

EPA 5030/8015/8020

Analyzed:

201-4923

Feb 7, 1992 Reported:

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4923	B-G-16'	6,700	N.D.	96	120	790

20 20 20 4,000 20 **Detection Limits:**

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO <7>

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Matrix Descript: Analysis Method:

First Sample #:

Mobil, RV1 Soil

EPA 5030/8015/8020 201-4824 Sampled: Received: Jan 31, 1992 Jan 31, 1992

Analyzed: Reported: Feb 2, 1992 Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4824	B-G-17.5	3,000	N.D.	2.2	19	220
201-4929	B-G-36'	1,900	1.8	63	21	120

Detection Limits:	250	1.3	1.3	1.3	1.3

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

Oakland, CA 94607-4014

Client Project ID:

Mobil, RV1

Sampled:

Jan 31, 1992

Matrix Descript: Analysis Method: Soil EPA 5030/8015/8020 Received: Analyzed: Jan 31, 1992 Feb 6, 1992

Attention: Al Ridley

First Sample #:

201-4925

Reported:

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4925	B-G-19'	240	N.D.	0.45	1.3	5.9
201-4926	B-G-26"	150	1.0	3.2	0.90	5.3

0.050 0.050 0.050 **Detection Limits:** 10 0.050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO <9>

Client Project ID:

Mobil, RV1 Soil

Sampled:

Jan 31, 1992 Jan 31, 1992

Oakland, CA 94607-4014

Matrix Descript: Analysis Method:

EPA 5030/8015/8020

Received: Analyzed:

Feb 2, 1992

Attention: Al Ridley

First Sample #:

201-4928

Reported:

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xyienes mg/kg (ppm)
201-4928	B-G-31.5'	40	4.0	4.4	0.48	2.8
201-4939	B-H-26.5'	160	N.D.	0.12	0.11	2.2

etection Limits: 5.0 0.025 0.025 0.025
--

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO < 10 >

Oakland, CA 94607-4014

Attention: Al Ridley

Client Project ID:

Mobil, RV1

Sampled:

Jan 31, 1992

Matrix Descript:

Soil

Received:

Jan 31, 1992

Analysis Method: First Sample #:

EPA 5030/8015/8020

Analyzed:

Feb 5, 1992

201-4930

Reported:

Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4930	B-G-41'	12,000	150 ⁻	520	130	710

Detection Limits:	1,000	5.0	5.0	5.0	5.0	

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer **Project Manager**

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Matrix Descript:

Mobil, RV1

Soil EPA 5030/8015/8020

Analysis Method: EPA 5030 First Sample #: 201-4941

Sampled: Received: Jan 31, 1992 Jan 31, 1992

Analyzed:

Feb 5, 1992

Reported: Feb 7, 1992

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
201-4941	B-H-36°	8,000	16	18	26	210

Detection Limits: 2,000 10 10 10 10

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO <12>

Woodward-Clyde Consultants

500 12th St., Suite 100

Oakland, CA 94607-4014 Attention: Al Ridley

Mobil, RV1 Client Project ID:

Sample Descript: Soil

Analysis for: First Sample #:

Lead 201-4915 Sampled:

Jan 31, 1992 Jan 31, 1992

Received: Analyzed:

2/4-5/92

LABORATORY ANALYSIS FOR:

Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
201-4915	B-G-5.5'	5.0	92
201-4916	B-G-7	5.0	35
201-4917	B-G-8'	5.0	43
201-4918	B-G-9.5'	5.0	14
201-4919	B-G-11.5	5.0	9.8
201-4920	B-G-13'	5.0	7.3
201-4921	B-G-14'	5.0	9.2
201-4922	8-G-15'	0.25	8.0
201-4923	B-G-16'	5.0	9.1
201-4924	B-G-17.5'	5.0	5.3
201-4925	B-G-19'	5.0	5.1

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

2014915.WOO < 13>

Woodward-Clyde Consultants 500 12th St., Suite 100 Oakland, CA 94607-4014

Client Project ID: Mobil, RV1 Soil Sample Descript: Analysis for: Lead

Sampled: Jan 31, 1992 Jan 31, 1992 Received:

Attention: Al Ridley

First Sample #: 201-4926

2/4-5/92 Analyzed: Amended: Feb 10, 1992

LABORATORY ANALYSIS FOR:

Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
201-4926	B-G-20.5'	5.0	5.4
201-4927	B-G-26	0.25	5.3
201-4928	B-G-31.5'	5.0	5.7
201-4929	B-G-36'	5.0	5.7
201-4930	B-G-41'	5.0	16
201-4931	B-H-4.5	0.25	3.4
201-4932	B-H-6'	0.25	5.2
201-4933	B-H-7.5'	0.25	8.2
201-4934	B-H-9.5°	0.25	7.9
201-4935	B-H-11'	0.25	5.3
201-4936	B-H-12.5°	5.0	5.7

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Project Manager

2014915.WOO < 14>

Oakland, CA 94607-4014 Attention: Al Ridley

Client Project ID:

Mobil, RV1

Sample Descript: Analysis for: First Sample #:

Soil Lead

201-4937

Sampled: Received:

Jan 31, 1992 Jan 31, 1992

Analyzed: Reported:

2/4-5/92 Feb 7, 1992

LABORATORY ANALYSIS FOR:

Lead

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
201-4937	B-H-14'	0.25	6.2
201-4938	B-H-21'	0.25	5.2
201-4939	B-H-26.5°	0.25	4.6
201-4940	B-H-31	0.25	8.2
201-4941	B-H-36'	0.25	2.8
201-4942	B-H-41'	0.25	8.0

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

Woodward-Clyde Consultants

Client Project ID: Mobil, RV1

500 12th St., Suite 100 Oakland, CA 94607-4014

Attention: Al Ridley

QC Sample Group: 2014920 - 24, 26, 28

Reported:

QUALITY CONTROL DATA REPORT

ANALYTE	_	· · · · · · · · · · · · · · · · · · ·	Ethyl-	
	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 A.Maraftab mg/kg Feb 2, 1992 GBLK020292	EPA 8020 A.Marattab mg/kg Feb 2, 1992 GBLK020292	EPA 8020 A.Maraftab mg/kg Feb 2, 1992 GBLK020292	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.19	0.19	0.19	0.57
Matrix Spike % Recovery:	95	95	95	95
Conc. Matrix Spike Dup.:	0.19	0.20	0.19	0.58
Matrix Spike Duplicate % Recovery:	95	100	95	97
Relative % Difference:	0.0	5.1	0.0	1.7

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Rélative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2014915.WOO <16>

Client Project ID: Mobil, RV1

Oakland, CA 94607-4014 Attention: Al Ridley

QC Sample Group: 2014932 - 38-42

Reported:

Feb 7, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	
	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 A.Maraftab mg/kg Feb 2, 1992 GBLK020292 MS/MSD	EPA 8020 A.Maraftab mg/kg Feb 2, 1992 GBLK020292 MS/MSD	EPA 8020 A.Maraftab mg/kg Feb 2, 1992 GBLK020292 MS/MSD	EPA 8020 A Maraftab mg/kg Feb 2, 1992 GBLK020292 MS/MSD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.18	0.19	0.19	0.55
Matrix Spike % Recovery:	90	95	95	92
Conc. Matrix Spike Dup.:	0.19	0.18	0.18	0.54
Matrix Spike Duplicate % Recovery:	95	90	90	90
Relative % Difference:	5.4	5.4	5.4	1.8

SEQUOIA ANALYTICAL

Maile A. Springer
Project Manager

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

2014915.WOO < 17>

Woodward-Clyde Consultants

500 12th St., Suite 100

Oakland, CA 94607-4014

Attention: Al Ridley

Client Project ID: Mobil, RV1

QC Sample Group: 2014915 - 19

Reported:

Feb 7, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			_Ethyl-	
	Benzene	Toluene	Benzene	Xylenes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 A.Maraftab mg/kg Feb 1, 1992 GBLK020192 MS/MSD	EPA 8020 A.Marattab mg/kg Feb 1, 1992 GBLK020192 MS/MSD	EPA 8020 A.Maraftab mg/kg Feb 1, 1992 GBLK020192 MS/MSD	EPA 8020 A.Maraftab mg/kg Feb 1, 1992 GBLK020192 MS/MSD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.21	0.21	0.22	0.68
Matrix Spike % Recovery:	105	105	110	113
Conc. Matrix Spike Dup.:	0.21	0.22	0.22	0.67
Matrix Spike Duplicate % Recovery:	105	110	110	112
Relative % Difference:	0.0	4.7	0.0	1.5

SEQUOIA ANALYTICAL

Relat

Maile A. Springer Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Canc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2014915.WOO < 18>

Oakland, CA 94607-4014

Attention: Al Ridley

Client Project ID: Mobil, RV1

QC Sample Group: 2014925, 27

Reported:

Feb 7, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Panana	Taluana	Ethyl-	Vidonos		
	Benzene	Toluene	Benzene_	Xylenes		
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 C.Donohue mg/kg Feb 6, 1992 GBLK020292 MS/MSD	EPA 8020 C.Donohue mg/kg Feb 6, 1992 GBLK020292 MS/MSD	EPA 8020 C.Donohue mg/kg Feb 6, 1992 GBLK020292 MS/MSD	EPA 8020 C.Donohue mg/kg Feb 6, 1992 GBLK020292 MS/MSD		
Sample Conc.:	N.D.	N.D.	N.D.	N.D.		
Spike Conc. Added:	0.20	0.20	0.20	0.60		
Conc. Matrix Spike:	0.21	0.20	0.19	0.57		
Matrix Spike % Recovery:	105	100	95	95		
Conc. Matrix Spike Dup.:	0.21	0.20	0.20	0.59		
Matrix Spike Duplicate % Recovery:	105	100	100	98		
Relative % Difference:	0.0	0.0	5.1	3.4		

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2014915.WOO <19>

Woodward-Clyde Consultants

500 12th St., Suite 100

Oakland, CA 94607-4014 Attention: Al Ridley Client Project ID: Mobil, RV1

QC Sample Group: 2014929 - 31, 39-41

Reported:

Feb 7, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl- Benzene	Xylenes
-	**·			
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 D. Dreblow mg/kg Feb 5, 1992 GBLK020292 MS/MSD	EPA 8020 D. Dreblow mg/kg Feb 5, 1992 GBLK020292 MS/MSD	EPA 8020 D. Dreblow mg/kg Feb 5, 1992 GBLK020292 MS/MSD	EPA 8020 D. Dreblow mg/kg Feb 5, 1992 GBLK020292 MS/MSD
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.20	0.20	0.20	0.60
Conc. Matrix Spike:	0.19	0.20	0.20	0.60
Matrix Spike % Recovery:	95	100	100	100
Conc. Matrix Spike Dup.:	0.19	0.21	0.21	0.62
Matrix Spike Duplicate % Recovery:	95	105	105	103
Relative % Difference:	0.0	4.9	4.9	3.3

SEQUOIA ANALYTICAL

Maile A. Springer
Project Manager

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2014915.WOO <20>

Woodward-Clyde Consultants

Client Project ID: Mobil, RV1

500 12th St., Suite 100 Oakland, CA 94607-4014

Oakland, CA 94607-4014 Attention: Al Ridley

QC Sample Group: 2014915 - 42

Reported: Feb 7, 1992

QUALITY CONTROL DATA REPORT

ANALYTE	Lead	Lead	Lead
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 6010 C.Medefesser mg/kg Feb 4, 1992 201-4931	EPA 6010 C.Medefesser mg/kg Feb 4, 1992 201-4942	EPA 7421 Suzanne mg/kg Feb 5, 1992 201-4931
Sample Conc.:	N.D.	N.D.	3.4
Spike Conc. Added:	50	50	50
Conc. Matrix Spike:	42	41	53
Matrix Spike % Recovery:	84	82	100
Conc. Matrix Spike Dup.:	43	40	55
Matrix Spike Duplicate % Recovery:	86	80	103
Relative % Difference:	2.4	2.5	3.7

SEQUOIA ANALYTICAL

Maile A. Springer Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2 2014915.WOO <21>

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

141 Suburban Road, San Luis Obispo, California 93401

(805) 543-2553

FAX (805) 543-2685

CLIENT: Bill Loskutoff

Woodward-Clyde Consultants 500 12th St. Ste. 100 Oakland, CA 94607

Lab Number : I-0862-1 : Mobil RVL Project

: 03/04/92 Analyzed

Analyzed by: RF

: As Listed Method

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	O1/31/92 O2/13/92			
I0586-1 B-G-11.5	Soil					
CONSTITUENT		(CAS RN)	*PQL mg/Kg	RESULT mg/Kg	NOTE	
FUEL FINGERPRINT ANALYSIS					2,3,4,5	
Benzene		(71432)	0.001	ND		
Toluene		(108883)	0.001	0.003		
Ethylbenzene		(100411)	0.001	ND		
Xylenes		•	0.001	0.006		
1,2-Dichloroethane (EDC)		(107062)	0.001	ND		
Ethylene Dibromide (EDB)		(106934)	0.001	ND		
Total Petroleum Hydrocarbons (Weathers	ed Gas)	,	0.1	76.		
BTX as a percent of fuel	•			1.2		
Percent Surrogate Recovery				95.		

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187. *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS)
- (2) EXTRACTED by EPA 5030 (purge-and-trap)
- (3) The concentration of Tetraethyl Lead found in the Weathered Gasoline is 6.2 g/Gallon.
- (4) The concentration of Other Alkylated Lead Compounds found in the Weathered Gasoline is 9.3 g/Gallon.
- (5) Weathering of the more volatile portion of Gasoline may cause the concentration of the less volatile Alkylated Lead Compounds to be higher than that in fresh, unweathered product.

03/24/92

MSD2/2T22-24C

MH/bpl/amo/dez/drc/gd

IC042SF

CC: Sequoia Analytical Lab 680 Chesapeak Drive Redwood City, CA 94063 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC. nous Vauleal

Mary Havlicek, Ph.D.

CLIENT: Bill Loskutoff

Woodward-Clyde Consultants

500 12th St. Ste. 100

Oakland, CA 94607

Air, Water & Hazardous Waste Sampling, Analysis & Consultation Certified Hazardous Waste, Chemistry, Bacteriology & Bioassay Laboratories

San Luis Obispo, CA · Goleta, CA · Benicia, CA · Camarillo, CA · Newport Beach, CA · Valparaiso, IN

San Luis Obispo Division

141 Suburban Road, San Luis Obispo, California 93401

(805) 543-2553 FAX (805) 543-2685

Lab Number : I-0862-2

Project

: Mobil RVL

Analyzed : 03/04/92

Analyzed by: QP

Method

: As Listed

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	01/31/92 02/13/92			
10586-2 B-H-26.5	Soil					
CONSTITUENT		(CAS RN)	*PQL mg/Kg	RESULT mg/Kg	NOTE	
FUEL FINGERPRINT ANALYSIS					1,2,3	
Benzene		(71432)	0.005	0.006		
Toluene		(108883)	0.005	0.010		
Ethylbenzene		(100411)	0.005	0.047		
Xylenes			0.005	1.2		
1,2-Dichloroethane (EDC)		(107062)	0.005	ND		
Ethylene Dibromide (EDB)		(106934)	0.005	ND		
Total Petroleum Hydrocarbons (Weathe	ered Gas)		0.5	100.		
BTX as a percent of fuel	•			0.5		
Percent Surrogate Recovery				95.		

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187. *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS)
- (2) EXTRACTED by EPA 5030 (purge-and-trap)
- (3) Sample was extracted by EPA 5030 (purge-and-trap) for Gasoline determination and by EPA 3550 for Tetraethyl Lead determination.

03/19/92 MSD2/2T21C MH/bpl/cmo/drc/gd ICO42SF

C: Sequoia Analytical Lab 680 Chesapeak Drive Redwood City, CA 94063 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC. mes Vaulecil

Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: IC042SF

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 03/04/92

Analyzed by: RF

Method : As Listed

METHOD BLANK

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVE		
METHOD BLANK	Solid				
CONSTITUENT		(CAS RN)	*PQL mg/Kg	RESULT mg/Kg	NOTE
FUEL FINGERPRINT ANALYSIS					1,2,3
Benzene		(71432)	0.001	ND	
Toluene		(108883)	0.001	ND	
Ethylbenzene		(100411)	0.001	ND	
Xylenes			0.001	ND	
1,2-Dichloroethane (EDC)		(107062)	0.001	ND	
Ethylene Dibromide (EDB)		(106934)	0.001	ND	
Total Petroleum Hydrocarbons			0.1	ND	
BTX as a percent of fuel				Not Appl.	
Percent Surrogate Recovery				95.	

Lab Certifications: CAEIAP#1598, NYELAP#11177, UTELAP#E-142, A2IA#0136-01, L.A.Co.CSD#10187.
*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS)
- (2) EXTRACTED by EPA 5030 (purge-and-trap)
- (3) Total Petroleum Hydrocarbons (gasoline, diesel 2, jet fuel, kerosene, Stoddard solvent or crude oil) were not detected at the listed PQL.

03/06/92 MSD2/2T06C MH/bpl/cmo/gd I0862-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: ICO42SF

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 03/04/92

Analyzed by: RF

Method : As Listed

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	? 	SAMPLED DA	TE RECE	EIVED
QC SPIKE	Solid					
CONSTITUENT		*PQL mg/Kg	SPIKE AMOUNT	RESULT mg/Kg	%REC	NOTE
FUEL FINGERPRINT ANALYSIS				· · · · · · · · · · · · · · · · · · ·	<u>.</u>	1,2,3
Benzene		0.001		NS		
Toluene		0.001		ns		
Ethylbenzene		0.001		NS		
Xylenes		0.001		NS		
1,2-Dichloroethane (EDC)		0.001		NS		
Ethylene Dibromide (EDB)		0.001		NS		
Total Petroleum Hydrocarbons (Kerosene	:)	0.1	1.7	1.7	100.	
BTX as a percent of fuel				<0.1		
Percent Surrogate Recovery				92.		

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.

- * RESULTS listed as 'NS' were not spiked. PQL = Practical Quantitation Limit
- (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS)
- (2) EXTRACTED by EPA 5030 (purge-and-trap)
- (3) Spike was in analyte-free soil.

03/06/92 MSD2/2TO2C MH/bpl/cmo/gd IO862-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

aubera

Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: ICO42SF

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 03/04/92

Analyzed by: RF

Method : As Listed

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAM	PLED BY	SAMPLED DATE RECEIVED					
QC SPIKE DUPLICATE	Solid								
CONSTITUENT		*PQL mg/Kg	SPIKE AMOUNT	RESULT mg/Kg	%REC	%DIFF	NOTE		
FUEL FINGERPRINT ANALYSIS							1,2,3		
Benzene		0.001		NS					
Toluene		0.001		NS					
Ethylbenzene		0.001		NS					
Xylenes		0.001		NS					
1,2-Dichloroethane (EDC)		0.001		NS					
Ethylene Dibromide (EDB)		0.001		NS					
Total Petroleum Hydrocarbons (Kerosene)	0.1	1.7	1.7	100.	0.			
BTX as a percent of fuel				<0.1					
Percent Surrogate Recovery				95.					

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.

- * RESULTS listed as 'NS' were not spiked. PQL = Practical Quantitation Limit
- (1) ANALYZED by CAL DHS DRAFT TPH (modified) and EPA 8260 (GC/MS)
- (2) EXTRACTED by EPA 5030 (purge-and-trap)
- (3) Spike was in analyte-free soil.

03/06/92 MSD2/2T03C MH/bpl/cmo/gd 10862-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.

ADDRESS: BOO 12	st outer 100))		<u> </u>					•			IID .			B IIR.	
The Contract	-3600	3		BILL	ING TO	:				•	24 HR.		48 NR.		72 IIR. 3	
PHONE: 3010-893	-3600		1	<u> </u>	<u></u>						5 DAY		10 DAY		15 DAY	
PROJECT HAHE/SITE: MG	bol 201			PO#/0	пци	REFE	RENCE	:							1 324	
AHPLER:	311 100 (┦ ,	1	1	AHALY I	SIS REQ	UESTED	1	ı				4 7 3	1
ANFLEK:	ı	DATE:														**
AMPLE ID#/ SAM STATION DESCRI	1	TYPE	SAMPLING TIME/DATE								REHARX	: \$			NUHBER	
13-6-1	1,5 1	Core	131 M2 0949		i	-	7	08	6.	-/	I05	86				
B-1+-	06.5	Con	1344						-	-2			- 2	1,10.1	10.4	
'	•				_ _	_								;	3 just	
· ·					_	-		_		_	·					
			•	.	_ _	'					•					_
		 	•		-	-						- ,				
					-	-			-			·		:		
				<u> </u> -	1				 -					<u> </u>	\$1.0°	
														· [
THOUTSHED BY	7	DATE:	TINE:	RECEIV	ED BY:		•			TRAVE	L TIHE:			4-1	11.	
INOUISHED BY:	3/ 3/	DATE		RECEIV	ED RY:	 _	· · · · · · · · · · · · · · · · · · ·	··			TE TIME:				· · · · · · · · · · · · · · · · · · ·	_
								_		OTHER	SAMPLES:	· - ··		res ·	NO.	
THOUISHED DY:		DATE	TIME:	ECE IV	ו או נו	LAB BY	116	2000	2/13/	Z PRESEI	RVED 7		. -	N	1 2	\exists
				9 / LE	KUNG	l {f}	MX	X7V.	<u></u>	<u>-/111 GCX</u>	OO CONDITIONS			-} -		

POW INDEX

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

CLIENT: Bill Loskutoff

Woodward-Clyde Consultants 500 12th St. Ste. 100 Oakland, CA 94607

Lab Number : I-0586-2 : Mobil RVL Project

Analyzed : 02/25/92

Analyzed by: DP

: EPA 8270/SIM Method

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMP	LED DATE	RECEIVED	
В-H-26.5	Soil		01	/31/92	02/14/92	
CONSTITUENT	, 	(CAS RN)	*PQL mg/Kg	RESULT	r note	
Semi-Volatile Organic Analysis Tetraethyl Lead Total Petroleum Hydrocarbons (Diesel	#2)		0.01	ND ND	1,2	

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187. *RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) Sample Preparation on 02/20/92 by TJD using EPA 3550
- (2) TPH was analyzed on 03/10/92 by EPA Method 8270.

03/23/92 MSD5/YB08-IC17A MH/lap/bdm/cmo/drc/dsp TB20M550 OC: Sequoia Analytical Lab 680 Chesapeak Drive

Redwood City, CA 94063

Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

and Kurling Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: IB20M550

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 02/25/92

Analyzed by: DP

Method : EPA 8270/SIM

INSTRUMENT BLANK
REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAM	PLED DATE 1	RECEIVED
INSTRUMENT BLANK	Solid				
CONSTITUENT		(CAS RN)	*PQL mg/Kg	RESULT mg/Kg	NOTE
Semi-Volatile Organic Analysis Tetraethyl Lead Total Petroleum Hydrocarbons			0.01 5.	ND ND	

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.
*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

03/26/92 MSD5/YB06A MH/lap/bdm/cmo/dsp 10586-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: IB20M550

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 02/25/92

Analyzed by: DP

Method :

: EPA 8270/SIM

METHOD BLANK

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	MATRIX SAMPLED BY			ECEIVED
METHOD BLANK	Solid				
CONSTITUENT		(CAS RN)	*PQL mg/Kg	RESULT mg/Kg	NOTE
Semi-Volatile Organic Analysis Tetraethyl Lead Total Petroleum Hydrocarbons			0.01	ND ND	1,2

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.
*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

(1) Sample Preparation on 02/20/92 by TJD using EPA 3550

(2) TPH was analyzed on 03/10/92 by EPA Method 8270.

03/25/92 MSD5/YB07-IC16A MH/lap/bdm/cmo/dsp I0586-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: IB20M550

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 02/26/92

Analyzed by: DP

Method: EPA 8270/SIM

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED E	BYY	SAMPLED DA	TE REC	EIVED
QC SPIKE	Solid					
CONSTITUENT		*PQL mg/Kg	SPIKE AMOUNT	RESULT mg/Kg	%REC	NOTE
Semi-Volatile Organic Analysis Tetraethyl Lead Total Petroleum Hydrocarbons (Diesel #2	2)	0.01	1.4 170.	0.62 84.	44. 49.	1,2,3

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.
*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) Sample Preparation on 02/20/92 by TJD using EPA 3550
- (2) TPH was analyzed on 03/10/92 by EPA Method 8270.
- (3) Spike was in analyte-free soil.

03/25/92 MSD5/YB10-IC19A MH/lap/bdm/cmb/dsp I0586-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

QC Batch ID: IB20M550

CLIENT: Coast-to-Coast Analytical Services, Inc.

Analyzed : 02/26/92

Analyzed by: DP

Method: EPA 8270/SIM

QC SPIKE

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SA	MPLED BY	SAMPLED DATE RECEIVED						
QC SPIKE DUPLICATE	Solid	, <u></u>			-	_				
CONSTITUENT		*PQL mg/Kg	SPIKE AMOUNT	RESULT mg/Kg	%REC	%DIFF	NOTE			
Semi-Volatile Organic Analysis Tetraethyl Lead Total Petroleum Hydrocarbons (Diesel #	2)	0.01 5.	1.4 170.	0.56 110.	40. 65.	10. 27.	1,2,3			

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.
*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) Sample Preparation on 02/20/92 by TJD using EPA 3550
- (2) TPH was analyzed on 03/10/92 by EPA Method 8270.
- (3) Spike was in analyte-free soil.

03/25/92 MSD5/YB11-IC20A MH/lap/bdm/cmo/dsp I0586-1 Respectfully submitted,

COAST-TO-COAST ANALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.

Woodward-Clyde Con 500 12th Street, Suite 100, Oakland, CA (415) 893-3600	sultants 94607	Chain of Cu	stody Record
PROJECT NO. Mobil - RUL SAMPLERS: (Signafure) DATE TIME SAMPLE NUMBER 1/31/92 0929 B-G-5-5'	Sample Matrix (S)oil, (W)ater, (A)ir EPA Method Mcd 80/5885 EPA Method 80/20 BJF X EPAMethod 70fa 100 d	ANALYSES ROLL RO	REMARKS (Sample preservation, handling procedures, etc.) All Samples in
(0935 B-6-7' 0938 B-6-8' 0938 B-6-8' 0949 B-6-11-5' 1016 B-6-13' 1020 B-6-15' 1035 B-6-15' 1047 B-6-20-5' 1100 B-6-26' 1118 B-6-36'			1 2/2 × 6" SS liners. 1 All samples 1 for TPH-gas, 1 BTEX and 1 Total Lead 1 Sand Results 1 Send Results 1 to Al Ridley
1253 B-H-4-5' 1258 B-H-6' 1303 B-H-7-5' 1308 B-H-9-5' 1308 B-H-11' 1326 B-H-12-5' 1326 B-H-14' 1337 B-H-21' 1344 B-H-26-5' 1402 B-H-31'	5 X X X X 5 X X X X 5 X X X X 5 X X X X 5 X X X X 5 X X X X 5 X X X X 5 X X X X 5 X X X X X 5 X X X X X 5 X X X X X X X X X X X X X X X X X X X	33 33 33 34 35 35 36 37 38 39 40 41	1 (510)874-3125 1 FAX(510)874-3268 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RELINQUISHED BY: (Signature) DATE/TIME RE (S S METHOD OF SHIPMENT: S	ECEIVED BY: ignature) HIPPED BY: Signature)	RELINOUISHED BY : (Signature)	of [7] [8]

	•	:		CHAIN	OF	CU	TOD	Y I	ŒΡ	ORT	Kristopassississ	565650000000	**********		********	www.essessessessessessessessessessessessess	unggang tercenteraph	aghara	<u> </u>
	diened the	•			REPOR	et to	•				_			TURNARCU	HD T	IHE:	,		 -
	ociast a														1	1	B IIR	:	
CC	ik Courte en	9960	2		BILL	ING T	0:							24 HR.		48 HR.	72 11	R.	-
<u> </u>	10-893-3600			l										5 DAY		10 DAY	15 D	ΑY	
	SITE: Mobil RI				PO#/I	B1LL1	NG REF			REQUE	STED		 1	<u> </u>					
SAHPLER:			DATE:										ļ				SAHF		
SAMPLE ID#/	SAHPLE	NUMBER	TYPE	SAMPLING								 - -		REHA	RKS		มบหเ	ь L R	
HOTTATE	DESCRIPTION	OF CONT.	YOUR	731 May 0749										TOF	<u>8</u>			_	
	18-14-265	1	Cour	1349						_ _						-2			
								_ _	_ _	_	<u> </u>							<u>-</u>	
					<u> </u>			<u> </u>	- -	_	 	 							
		<u> </u>	<u> </u>		1			_	<u> </u>	_	-	!							
					-			- -		_	-					,			
			1		-	<u> </u>		_	 -	- -	 	<u> </u>			<u>-</u>				
		<u> </u>	<u> </u>								-								
	1		<u> </u>			 		\dashv			1-						j		
			DATE	TINE:	REC	_l E]VED	<u>I — I</u> ВҮ:		¹			. 1	TRAV	EL TIHE:					
RELINOUISHED	WIKE D	ے	11219	300ar	7								OH S	ITE TIME:			,		
RELINOUISHED	BY:		DATE	TIME:	REC	EIVED	BY:						OTKE				YES	ис	
		·····			 			n hv			2/1	3/42	. 4	SAMPLES: ERVED 7			N		
RELIHOUTSHED	BY:		DATE	TIME:		LIVE	047		Ub	402	110			000 CONDITI	0117		17		

San Luis Obispo, CA • Goleta, CA • Benicia, CA • Camarillo, CA • Newport Beach, CA • Valparaiso, IN

San Luis Obispo Division

(805) 543-2553

141 Suburban Road, San Luis Obispo, California 93401

FAX (805) 543-2685

CLIENT: Bill Loskutoff

Lab Number : I-0586-1 Project : Mobil RVL

Woodward-Clyde Consultants

-5---

500 12th St. Ste. 100 Oakland, CA 94607

Analyzed : 02/26/92 Analyzed by: DP

Method

: EPA 8270/SIM

REPORT OF ANALYTICAL RESULTS

Page 1 of 1

SAMPLE DESCRIPTION	MATRIX	SAMPLED BY	SAMPLED DATE RECEIVE				
B-G-11.5	Soil		01	/31/92	02/14/92		
CONSTITUENT		(CAS RN)	*PQL mg/Kg	RESULT mg/Kg	NOTE		
Semi-Volatile Organic Analysis			• 0, = .		2,3,4,5		
Tetraethyl Lead			0.01	0.10			
Total Petroleum Hydrocarbons (Diesel	#2)		5.	30.			
Other Alkylated Lead Compounds	•		0.01	0.15			

Lab Certifications: CAELAP#1598, NYELAP#11177, UTELAP#E-142, A2LA#0136-01, L.A.Co.CSD#10187.
*RESULTS listed as 'ND' were not detected at or above the listed PQL (Practical Quantitation Limit)

- (1) Sample Preparation on 02/20/92 by TJD using EPA 3550
- (2) TPH was analyzed on 03/10/92 by EPA Method 8270.
- (3) The concentration of Tetraethyl Lead found in the Weathered Gasoline is 6.2 g/Gallon.
- (4) The concentration of Other Alkylated Lead Compounds found in the Weathered Gasoline is 9.3 g/Gallon.
- (5) Weathering of the more volatile portion of Gasoline may cause the concentration of the less volatile Alkylated Lead Compounds to be higher than that in fresh, unweathered product.

03/23/92 MSD5/YB09-IC18A MH/lap/bdm/cmo/drc/dsp/phi IB20M550

CC: Sequoia Analytical Lab 680 Chesapeak Drive Redwood City, CA 94063 Respectfully submitted,

COAST-TO-COAST AVALYTICAL SERVICES, INC.

Mary Havlicek, Ph.D.