p.1

RECEIVED

June 14, 2011

8:34 am, Jun 20, 2011 Alameda County Environmental Health

Rita and Tony Sullins Don Sul Inc. 187 North L Street Livermore, CA 94550

Re:

Transmittal Letter

Site Location:

Arrow Rentals

187 North L Street, Livermore, CA 94550

Dear Mr. Wickham:

On behalf of Rita and Tony Sullins, Don Sul Inc., Geological Technics Inc. (GTI) prepared the 1st Semi-Annual Groundwater Monitoring, April 2011, dated June 13, 2011 that was sent to your office via electronic delivery per Alameda County's guidelines on June 14, 2011.

I declare under penalty of law that the information and/or recommendations contained in the above referenced document or report is true and correct to the best of my knowledge.

Respectfully submitted, to Sellin / De SMM

Rita / Tony Sullins

Property Owner

Don Sul Inc.

187 North L Street

Livermore, CA 94550

Geological Technics Inc._

REPORT

Semi-Annual Groundwater Monitoring April 2011

> Arrow Rentals Service 187 North L St. Livermore, CA 94550

> > Project No. 1262.2 June 13, 2011

Prepared for:
Tony & Rita Sullins
Arrow Rentals Service
187 North L St.
Livermore, CA 94550

Prepared by:
Geological Technics Inc.
1172 Kansas Ave.
Modesto, California 95351
(209) 522-4119

Geological Technics Inc.

Modesto, California 95351 (209) 522-4119/Fax (209) 522-4227

June 10, 2011

Project No.:

1262.2

Project Name:

Sullins (L St.)

Tony & Rita Sullins Arrow Rentals Service 187 North L Street Livermore, CA 94550

RE: Report: 1st Semi-Annual Groundwater Monitoring, April 2011

Location: 187 North L Street, Livermore, CA 94550. (ACEH Fuel Leak Case No. RO0000394)

Dear Mr. & Ms. Sullins:

Geological Technics Inc. has prepared the following Report for the 1st Semi-annual 2011 groundwater monitoring event performed on April 7th and 8th, 2011, at the 187 North L Street property in Livermore. An elevated core of gasoline contamination persists in the location of and down-gradient (northwest) of the former USTs/piping.

GTI is currently implementing the Corrective Action Plan (CAP) that includes provisions for performing dual phase extraction to treat the residual contamination at the site, which has received approval from ACEH.

If you have any questions, please do not he sitate to call me at (209) 522-4119.

Respectfully submitted,

Mongant

Tamorah Bryant, P.E.

cc: Jerry Wickham - ACEH

USTCUF

Chris Davidson - City of Livermore

Jennifer Sedlechek – Exxon Mobile Corp.

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
1.1 1.2		
2.0	GROUNDWATER MONITORING	3
2.1 2.2 2.3	[5
3.0	FINDINGS AND DISCUSSION	6
3.1 3.2		
4.0	CONCLUSIONS & RECOMMENDATIONS	10
5.0	LIMITATIONS	12
	FIGURES	
VICI	NITY MAP	1
	MAP	2
	DETAIL MAP	3
	L SCREENED INTERVAL DIAGRAM	4
	UNDWATER GRADIENT MAP SHALLOW WELLS	5A
	LLOW WELL TPH-G CONCENTRATIONS ERMEDIATE WELL TPH-G CONCENTRATIONS	6
200	P WELL TPH-G CONCENTRATIONS	8
	MAP: CROSS SECTION A-A'	9A
	SS SECTION A-A' W/ TPH-G CONCENTRATIONS	9B
	SS SECTION A-A' W/ BENZENE CONCENTRATIONS	90
	PH OF TPH-G CONCENTRATION VS. TIME W-1s	10
GRA	PH OF TPH-G CONCENTRATION VS. TIME W-3S	11
GRA	PH OF TPH-G CONCENTRATION VS. TIME W-Bs	12

i

SUMMARY TABLES

APPENDICES

Table 1A: Summary of Groundwater Elevation and Gradient - Water Table V	Wells
Table 1B: Summary of Groundwater Elevation and Gradient - Intermediate V	Wells
Table 1C: Summary of Groundwater Elevation and Gradient - Deep Wells	
Table 2: Summary of Vertical Gradients	
Table 3: Summary of Well Construction	
Table 4: Summary of Groundwater Analytical Data	
Table 5: Summary of Field Parameters	
LABORATORY ANALYTICAL DATA SHEETS	В
GROUNDWATER MONITORING FIELD LOGS	C

Geological Technics Inc.

1172 Kansas Ave. Modesto, California 95351 (209) 522-4119/Fax (209) 522-4227

REPORT

Semi-Annual Groundwater Monitoring April 2011

Arrow Rentals Services 187 North L St. Livermore, CA

> Project No. 1262.2 June 10, 2011

1.0 EXECUTIVE SUMMARY

This report summarizes the results of the 1st Semi-annual 2011 groundwater monitoring and sampling event that took place on April 7th and 8th, of 2011.

The average shallow groundwater elevation at the site was 451.15 feet above mean sea level (msl) and the average depth to water was 27.30 feet below grade surface (bgs). This represents an increase of 3.92 feet since the April 2008 monitoring event. The shallow groundwater flow was northwest (N56°W) at a slope of 0.0221 ft/ft for this event.

The analytical results of groundwater samples show that detectable concentrations of gasoline range petroleum hydrocarbons were present in twenty-four of the site's twenty-five groundwater monitoring wells sampled for this event (down gradient well W-Es was non-detect for TPH-G). Detectable concentrations of MTBE were present in four (MW-104, MW-108, MW-207 and down-gradient W-Es) of the site's twenty-five groundwater monitoring wells sampled for this event. A persistent core remains in the vicinity of well W-1 (68,900 μ g/l TPH-g, sampled 04/08/2011) which is located adjacent to former USTs/piping trenches and is down gradient of the former UST system from which the Pitcock release originated.

GTI is currently implementing the Corrective Action Plan (CAP) that includes provisions for performing dual phase extraction to treat the residual contamination at the site, which has received approval from ACEH and cost pre-approval from the UST Cleanup Fund.

1.1 Site History

Gasoline range petroleum hydrocarbons associated with underground storage tank (UST) systems have been documented in soil and groundwater at 187 North L Street, Livermore, CA (sees Figures 1 and 2 for vicinity and site maps). The facility also experienced an environmental impact when a gasoline delivery was introduced into a subsurface vapor/monitoring well rather than the UST fill pipe ("Pitcock Release").

The work performed to date is summarized below*:

- 1972 Three 1,500 gallon gasoline USTs removed.
- 1984 A single 1,000 gallon gasoline UST installed.
- 1986 Two gasoline USTs removed (4,000 & 6,000 gallon).
- June 1985 Pitcock Petroleum dispenses ~600 gallons into a vapor monitoring well adjacent to the 1,000 gasoline UST (Pitcock Release).
- September 1988 Three monitoring wells installed (W-1, W-2 and W-3).
- March 1989 Five soil borings advanced (B-1 through B-5).
- May 1989 Three monitoring wells installed (W-1, W-2 and W-3).
- July 1990 Five monitoring wells installed (W-A through W-E), three soil borings advanced (B-7, B-8 and B-1A), and a soil gas survey was completed.
- March 1991 A single soil boring advanced (B-F).
- January 1992 UST pipeline soil excavation and sampling, two soil borings advanced (B-G and B-H).
- March 1994 Dual Phase Extraction pilot test performed.
- March 1996 Four monitoring wells installed (W-1s, W-Bs, W-3s and W-Es).
- 1998- Soil gas survey.
- November 2005 Soil gas survey.
- October 2006 five continuous tubing multi-Chambered wells installed (the MW-4/104/204/304/404 through MW-8/108/208/308 series).
- October 2006 Dual Phase Extraction pilot test performed.
- August 2007 Final Corrective Action Plan prepared.
- April 2011 Begin implementation of Corrective Action Plan.
- 1988 to present intermittent monitoring/sampling of select monitoring wells.

1.2 Site Setting and Geology

The site is in central portion in the City of Livermore, California, which is located in the Livermore Valley. The shallow sediments (<100 feet below grade) investigated in the project are Pleistocene (recent) alluvial fan and flood plain deposits [source: Geologic Map of California, San Jose Sheet, Division of Mines and Geology, 1966 (truncated geologic map copy located in Appendix D)].

^{*} Data from Woodward Clyde Consultants, GTI, & ACEH documentation.

The subject property is at an elevation of approximately 480 feet above mean sea level based on an October 16, 2006 survey conducted by Keir & Wright Engineers Surveyors Inc. of Livermore, California. Regionally, the surrounding area slopes to the west [source: USGS, Livermore Quadrangle, 7.5 Minute Series Topographic Map, 1980 photo-revision (truncated topographic map copy located in Appendix D)]

The subjective field observations of various field geologists and associated boring logs documented during this investigation were included in GTI's December 18, 2006 SCM report. The subsurface lithology falls into two predominant categories- gravelly soils and clayey soils. The site exhibits little correlation between boreholes and this situation is exacerbated by the fact that different geologists logged the boreholes and a five foot sampling interval was utilized in the past. The Site's geology is summarized as consisting primarily of gravelly units from the surface to approximately 35 – 45 feet bgs. Below these depths are 15 to 20 feet of clayey units that seem to retard the vertical migration of contaminants. These fine grained units are underlain by more gravels and a second clay horizon at approximately 78 feet bgs. Silts and sand units are present in the soil profile but are thin (usually a few inches thick, but much less than 5 feet thick) and less frequent than the soils noted above.

2.0 GROUNDWATER MONITORING

2.1 Groundwater Elevation and Flow Direction

The average groundwater elevation in the site's shallow wells was 451.15 feet above mean sea level (msl) on April 7th and 8th, 2011. This corresponds to 27.30 feet below grade surface (bgs) and represents an increase of 3.92 feet since the April 2008 monitoring event. The depth to groundwater observed in the site's wells has ranged from approximately 20 - 49 feet below grade surface from 1989 to 2011. Refer to Figures 1 through 3 for site details, well and borehole locations.

GTI was unable to obtain depth-to-water measurements in the five CMT[™] wells during the April groundwater monitoring event. Therefore the groundwater gradient for the intermediate and deep aquifers could not be determined during this event.

GTI grouped the five CMTTM well sets installed in October 2006 and existing wells according to the aquifer interval that the screened section intercepted (see Table 3 in Appendix A for well construction details, and Figure 4 for well screen intervals):

Shallow Wells (screened 20 - 45 feet bgs):

W-1s, W-Bs, W-3s, W-Es, and either {MW-4, MW-5, MW-6, MW-7, MW-8} or {MW-105, MW-106, MW-107, MW-108} depending on groundwater elevation

Intermediate Wells (screened 40 – 60 feet bgs):

W-A, W-B, W-C, W-D, W-E, W-1, W-3, MW-104, MW-205, MW-206, MW-207, MW-208.

Note: Wells W-B, -C, -D, and -E were abandoned on April 14, 2008. W-1 and W-3 are considered intermediate and are monitored, however they are not utilized for groundwater gradient measurements

<u>Deep Wells</u> (screened ~ 65 feet bgs):

MW-204, MW-305, MW-306, MW-307, MW-308

Deepest Wells (screened > 70 feet bgs):

MW-304, MW-404

The groundwater elevation data are summarized in Tables 1A, 1B and 1C of Appendix A, for the shallow, intermediate and deep aquifer levels, respectively.

Horizontal Groundwater Gradients:

The calculated gradients for the April 7th and 8th, 2011 monitoring event are as follows:

Aquifer Zone:	Gradient:	Bearing:
Water table	0.0221	N56°W
Intermediate	N/A	N/A
Deep	N/A	N/A

Figures 5A illustrates the shallow aquifer groundwater gradient map for the April 7th and 8th, 2011 monitoring event. Figure 5B and 5C, which illustrate the intermediate and deep aquifer gradient maps, were not included due to a lack of depth-to-water data from the CMTTM wells.

Vertical Groundwater Gradients:

GTI was unable to calculate vertical gradients for well pairs MW-205/305, and MW-206/306 for the April 7th and 8th, 2011 monitoring event.

In their January 16, 2007 letter correspondence Alameda County Environmental Health (ACEH) staff directed that groundwater elevation data for deep wells MW-304 & MW-404 be included in future reports. This data has been added in two columns on the far right of Table 1C, Appendix A. GTI was unable to collect depth-to-water measurements in MW-304 and MW-404 for the April 7th and 8th, 2011 monitoring event.

Groundwater Flow Conclusions

 Obtaining valid water level measurements from the CMT[™] wells remains problematic due to the clayey soils at the site. During this event and past events, the clays clog the

Geological Technics Inc.

Waterra tubing and smear on the inside of the individual chambers, making it not possible to lower the depth-to-water meter measuring tape into the well casing.

- Shallow groundwater flow was northwest (N56°W) at a slope of 0.0221 ft/ft for this event. Figure 5A is a shallow groundwater gradient map.
- Intermediate and deep groundwater flow could not be determined for the April 2011 event due to problems collecting groundwater depth data from the CMTTM wells.
- Vertical groundwater gradients could not be determined for the April 2011 event due to problems collecting groundwater depth data from the CMTTM wells.

2.2 Groundwater Sampling Procedure

On April 7th and 8th, 2011, Geological Technics Inc. (GTI) staff mobilized to the site to conduct depth-to-water measurements and sampling of the site's monitoring wells. Before sampling was attempted, the wells were sounded for depth to water and groundwater levels recorded with exceptions as noted. The CMTTM wells were purged of at least three well volumes of stagnant water by hand. The non-CMTTM wells were purged of at least three well volumes of stagnant water using a dedicated Waterra check-ball. Purging continued until the temperature, conductivity, and pH of the groundwater stabilized (<10% variation in three consecutive readings), indicating that formation water representative of aquifer conditions was entering the wells.

Once purging was complete, water samples were collected from the Waterra tube. Care was taken to minimize sample agitation. Once a sample container was filled and capped, the bottle was inverted, tapped and checked for headspace bubbles. The sample container was identified and labeled with a unique designation, inserted into a foam holder and placed into an ice chest cooled to 4°C for transport to the laboratory. Disposable gloves were used by the technician to collect all samples and were changed with each sample collection.

The following deviations from the sampling protocol are noted:

• Several CMTTM wells did not contain enough water to purge and collect samples. Samples were not collected from the following wells: MW-4, MW-5, and MW-7.

A chain of custody document, listing all samples collected, accompanied the samples from field to laboratory, thereby providing a means to track the movement of and insure the integrity of the samples.

All well purge water was placed in a 55 gallon DOT approved container. These drums were properly labeled and will be stored on site until their proper disposition can be arranged.

Groundwater monitoring field logs are included in Appendix C.

2.3 Laboratory Analyses

The groundwater samples collected on April 7th and 8th, 2011, were delivered to Excelchem Environmental Labs (Department of Health Services Certification No. 2119) of Roseville, California, for analysis.

The groundwater samples were analyzed for:

- Ethyl Benzene and Xylene (BTEX) by EPA method 8021B
- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA method 8015M
- Oxygenated Fuel Compound MtBE by EPA method 8021B

The results and detection limits for the above analyses are listed in Table 4 of Appendix A while the lab analytical results are presented in Appendix B.

As required under AB2886, the depth to groundwater data for the 1st Semiannual 2011 was submitted to GeoTracker on June 13, 2011 – confirmation number 6627961158. Laboratory data was submitted to GeoTracker on June 13, 2011 – confirmation number 7589196741.

3.0 FINDINGS AND DISCUSSION

3.1 Field Parameters

For the April 7th and 8th, 2011 event:

- Dissolved Oxygen (DO) ranged from 0.02 (W-Bs) to 1.06 (W-Es).
- Electrical Conductivity (EC) ranged from 780 (W-Bs) to 967 (W-1s), which is above historical ranges.
- Oxygen Reduction Potential (ORP) ranged from -254.5 (W-A) to 141.3 (W-Es).
- pH ranged from 6.17 (W-1s) to 7.03 (W-Es).
- Temperature ranged from 18.1 °C (W-3s) to 19.5 °C (W-Es).

Field parameters were collected while purging all monitoring wells except the five CMTTM wells. The field parameter results are shown in Table 5 of Appendix A.

3.2 Laboratory Analytical Data

For the April 7th and 8th, 2011 event:

Shallow Aquifer:

• CMTTM monitoring well MW-107 reported the highest concentrations of TPH-g (20,400 μg/l) and benzene (15,100 μg/l) in the shallow aquifer. Contaminant concentrations in MW-107 appear to be increasing over time and are above historical ranges for the April 2011 monitoring event.

- The shallow aquifer TPH-g plume appears to be moving down-gradient, as suggested by the movement of the core of the plume from centered around W-1s and W-4 during the April 2007 monitoring event to centered around CMT-7, which is about 40 feet down-gradient. However, down-gradient well W-3s reported contaminant concentrations within the lower end of historical ranges, suggesting the boundary of the plume is not increasing. However, the data is incomplete and further groundwater monitoring events will allow for a better evaluation of seasonal fluctuations.
- Eleven of the thirteen shallow monitoring wells sampled during this event reported MTBE concentrations below laboratory reporting limits. MW-108 and down gradient W-Es reported MTBE concentrations of 89.6 μg/l and 0.5 μg/l, respectively.
- Well W-1s contained: 13,400 μg/l TPH-g, 2,040 μg/l benzene, 239 μg/l toluene, 1,180 μg/l ethyl benzene, and 877 μg/l xylene.
- Well W-Bs contained: $6,960 \mu g/l$ TPH-g, $1,280 \mu g/l$ benzene, $56.2 \mu g/l$ toluene, $632 \mu g/l$ ethyl benzene, and $432 \mu g/l$ xylene.
- Well W-3s contained: 937 μg/l TPH-g, 422 μg/l benzene, 239 μg/l and 6.5 μg/l ethyl benzene. W-3s was non-detect below laboratory reporting limits for toluene and xylene.
- Well W-Es contained 0.5 μg/l of MTBE. W-Es did not contain BTEX or TPH-g contamination above the laboratory reporting limits.
- CMTTM Well MW-6 contained 220 μg/l TPH-g and 3.2 μg/l benzene. MW-6 was non-detect below laboratory reporting limits for toluene, ethyl benzene and xylene.
- CMTTM Well MW-8 contained 765 μg/l TPH-g, 119 μg/l benzene, 3.0 μg/l ethyl benzene, and 6.0 μg/l xylene. MW-8 was non-detect below laboratory reporting limits for toluene.
- CMTTM Well MW-105 contained 11,300 μg/l TPH-g, 5,870 μg/l benzene, 135 μg/l toluene 518 μg/l ethyl benzene, and 1,110 μg/l xylene.
- CMTTM Well MW-106 contained 247 μg/l TPH-g and 9.3 μg/l benzene. MW-106 was non-detect below laboratory reporting limits for toluene, ethyl benzene and xylene.
- CMTTM Well MW-107 contained 20,400 μg/l TPH-g, 15,100 μg/l benzene and 360 μg/l ethyl benzene. MW-107 was non-detect below laboratory reporting limits for toluene and xylene (<200 μg/l and <400 μg/l, respectively).
- CMTTM Well MW-108 contained: 4,000 μg/l TPH-g, 1,640 μg/l benzene, 10.8 μg/l toluene, 123 μg/l ethyl benzene, 84.2 μg/l xylene and 89.6 μg/l of MTBE.
- CMTTM wells MW-4, MW-5 and MW-7 could not be sampled due to a lack of water in the well casing.
- Figure 6 contains a contour map indicating GTI's interpretation of the shallow TPH-g plume in April 2011. The groundwater plume is localized in the vicinity of the former USTs/piping trenches and appears to be centered around CMTTM cluster 7 (MW-107), which reported a TPH-g concentration of 20,400 μg/l during the April 2011 event.

Intermediate Aquifer:

- Monitoring well W-1 reported the highest concentrations of TPH-g (68,900 μg/l) in the intermediate aquifer. Contaminant concentrations in W-1 appear to be on an overall decreasing trend and are within historical ranges for the April 2011 monitoring event.
- CMTTM monitoring well MW-205 reported the highest concentrations of benzene (25,000 μg/l) in the intermediate aquifer. Contaminant concentrations in MW-205 appear to be increasing and are above historical ranges for the April 2011 monitoring event.
- The intermediate aquifer TPH-g plume appears to be stationary, as suggested by the fluctuation of the core of the plume between W-1, W-A, MW-104 and MW-205, with contaminant concentrations increasing and decreasing. In addition, down-gradient well W-3 reported the lowest contaminant concentrations to date, suggesting the boundary of the plume is not increasing. However, the data is incomplete and further groundwater monitoring events will allow for a better evaluation of seasonal fluctuations.
- Six of the eight intermediate monitoring wells sampled during this event reported MTBE concentrations below laboratory reporting limits. MW-104 and MW-207 reported MTBE concentrations of 250 μg/l and 108 μg/l, respectively.
- Well W-A contained: 13,200 μg/l TPH-g, 2,370 μg/l benzene, 128 μg/l toluene, 439 μg/l ethyl benzene, and 523 μg/l xylene.
- Well W-1 contained: $68,900 \mu g/l$ TPH-g, $13,800 \mu g/l$ benzene, $8,150 \mu g/l$ toluene, $1,520 \mu g/l$ ethyl benzene, and $11,600 \mu g/l$ xylene.
- Well W-3 contained: 193 μg/l TPH-g, 7.8 μg/l benzene and 0.5 μg/l ethyl benzene.
 W-3 was non-detect below laboratory reporting limits for toluene and xylene.
- CMTTM Well MW-104 contained: 18,500 μ g/l TPH-g, 13,700 μ g/l benzene, 212 μ g/l toluene, 266 μ g/l ethyl benzene, and 384 μ g/l xylene.
- CMTTM Well MW-205 contained: 33,600 μ g/l TPH-g, 25,000 μ g/l benzene, 232 μ g/l toluene, 640 μ g/l ethyl benzene, and 448 μ g/l xylene.
- CMTTM Well MW-206 contained 1,170 μg/l TPH-g and 115 μg/l benzene. MW-206 was non-detect below laboratory reporting limits for toluene, ethyl benzene and xylene.
- CMTTM Well MW-207 contained 19,500 μg/l TPH-g, 15,000 μg/l benzene and 180 μg/l ethyl benzene. MW-207 was non-detect below laboratory reporting limits for toluene and xylene.
- CMTTM Well MW-208 contained: 12,300 μg/l TPH-g, 5,820 μg/l benzene, 75 μg/l toluene, 432 μg/l ethyl benzene, and 270 μg/l xylene.
- Figure 7 contains a contour map indicating GTI's interpretation of the intermediate TPH-g plume in April 2011. The groundwater plume is localized in the vicinity of the former USTs/piping trenches and appears to be centered around monitoring well W-1, which reported a TPH-g concentration of 68,900 μg/l during the April 2011 event.

Deep Aquifer:

- CMTTM monitoring well MW-308 reported the highest concentrations of TPH-g (3,240 μg/l) and benzene (1,230 μg/l) in the deep aquifer. Contaminant concentrations in MW-308 appear to be increasing and are above historical ranges for the April 2011 monitoring event.
- The deep aquifer TPH-g plume appears to be moving down-gradient, as suggested by the movement of the core of the plume from centered around CMTTM well MW-204 during the April 2007 monitoring event to split cores centered around MW-204 and further down-gradient MW-308, which is about 50 feet down-gradient. In addition, down-gradient well MW-308 has reported increasing contaminant concentrations since April 2007. However, the data is incomplete and further groundwater monitoring events will allow for a better evaluation of seasonal fluctuations.
- All five of the deep monitoring wells sampled during this event reported MTBE concentrations below laboratory reporting limits.
- CMTTM Well MW-204 contained: 2,520 μg/l TPH-g, 1,140 μg/l benzene, 27.8 μg/l toluene, 72.8 μg/l ethyl benzene, and 30.6 μg/l xylene.
- CMTTM Well MW-305 contained: 862 μ g/l TPH-g, 193 μ g/l benzene, 10.4 μ g/l toluene, 27.6 μ g/l ethyl benzene, and 69.1 μ g/l xylene.
- CMTTM Well MW-306 contained: 10.4 μg/l benzene and was non-detect below laboratory reporting limits for TPH-G, toluene, ethyl benzene and xylene.
- CMTTM Well MW-307 contained: 70 μg/l TPH-g, 24.3 μg/l benzene, 3.8 μg/l toluene, 0.6 μg/l ethyl benzene, and 3.3 μg/l xylene.
- CMTTM Well MW-308 contained: 3,240 μ g/l TPH-g, 1,230 μ g/l benzene, 18.6 μ g/l toluene, 187 μ g/l ethyl benzene, and 125 μ g/l xylene.
- Figure 8 contains a contour map indicating GTI's interpretation of the deep TPH-g plume in April 2011. The groundwater plume is localized in the vicinity of the former USTs/piping trenches and appears to be centered around monitoring wells MW-204 and MW-308, which reported a TPH-g concentration of 2,520 μg/l and 3,240 μg/l, respectively, during the April 2011 event. The plume appears to attenuate around MW-306 (ND) to the northeast and MW-307 (70 μg/l TPH-g) to the southwest.

Deepest Aquifer

- CMTTM Well MW-304 contained: 2,880 μg/l TPH-g, 657 μg/l benzene, 32.3 μg/l toluene, 93.5 μg/l ethyl benzene, and 262 μg/l xylene.
- CMTTM Well MW-404 contained: 119 μg/l TPH-g, 90.8 μg/l benzene, 1.4 μg/l toluene, 1.0 μg/l ethyl benzene, and 2.6 μg/l xylene.

Figures

 Figure 9B is a cross section illustrating the groundwater TPH-g concentrations reported during the April 2011 event. The figure shows the distribution of the

groundwater TPH-g contamination amongst the shallow, intermediate, deep and deepest aquifers. The highest concentrations appear to span from 35 to 60 feet below grade surface, with consistent concentrations greater than 5,000 μ g/l TPH-g. These depths represent the shallow and intermediate aquifers described in Section 2.1. Figure 9A shows the cross section line A-A'.

- Figure 9C is a cross section illustrating the groundwater benzene concentrations reported during the April 2011 event. The figure shows the distribution of the groundwater benzene contamination amongst the shallow, intermediate, deep and deepest aquifers. The highest concentrations appear to span from 40 to 55 feet below grade surface and centered around the cluster of wells including W-1, MW-104, W-1s, W-A, MW-105 and MW-205 and the further down gradient MW-208, with consistent concentrations greater than 2,000 μg/l of benzene. These depths represent the shallow and intermediate aquifers described in Section 2.1. Figure 9A shows the cross section line A-A'.
- Figure 10 illustrates TPH-g concentration versus time in well W-1s (located in the vicinity of the core of the contaminant plume). With the exception of events in 1997 and 2001 the contaminant concentrations display a declining trend. The two peaks evident in Figure 10 suggest that significant contaminant mass is present although decades have past since the original USTs were removed. The April 2011 monitoring event represents the lowest concentrations of TPH-g in this well since April of 1998.
- Figure 11 illustrates TPH-g concentration versus time in well W-3s (located down/cross gradient of the core of the plume). The contaminant concentrations show an overall declining trend, despite elevated concentrations in October of 1998 and March of 2003.
- Figure 12 illustrates TPH-g concentration versus time in well W-Bs (located down gradient of the core of the plume). The contaminant concentrations showed a rapid declining trend from 1995 2003 but appear to have stabilized since.

4.0 CONCLUSIONS & RECOMMENDATIONS

Conclusions

- 1. The dominant groundwater flow direction is to the northwest, with the average flow bearing being N56°W at a slope of 0.0221 ft/ft.
- 2. For the April 2011 event, the average groundwater elevation and depth is 451.15 feet below mean sea level and 27.30 feet below ground surface, respectively.
- 3. Elevated concentrations of BTEX and TPH-g are present in a laterally limited (probably less than 300 foot radius) groundwater plume that is centered between the vicinity CMTTM Cluster 7 and wells W-1/W-1s. The plume appears to attenuate to the northeast at CMTTM Cluster 6, to the northwest at W-3s and W-3 and unknown to the north and south.

- 4. The highest level of benzene detected, 25,000 µg/l, was present in intermediate depth well MW-205. This well is located just down gradient of the former UST system from which the Pitcock release originated.
- 5. The highest level of TPH-g detected, 68,900 μg/l, was present in intermediate depth well W-1. This well is located just down gradient of the former UST system from which the Pitcock release originated.
- 6. The data shows that the core of the plume is fairly stable, with concentrations decreasing very slowly by either natural biodegradation causes or by dilution effects.
- 7. Overall the contaminant concentrations at the site are following a decreasing trend, as shown in Figures 10, 11 and 12. It appears that there is a direct relationship between groundwater elevation and contaminant concentrations. It is hypothesized that groundwater levels during the April 2011 groundwater monitoring event may be related to high concentrations reported in some wells. Continued sampling will allow for further evaluation of this relationship.

Recommendations

Impending changes within the USTCF process will result in budgetary constraints
placed on all projects. To accommodate these impending changes, GTI proposes that
the groundwater monitoring and sample analysis be revised as outlined below. Please
note that the reductions in frequency and constituents are based on consideration of
historical data.

The current monitoring plan includes semi-annual monitoring of twenty eight groundwater monitoring wells (W-1, W-3, W-A, W-1s, W-3s, W-Bs, W-Es, MW-4, MW-104, MW-204, MW-304, MW-404, MW-5, MW-105, MW-205, MW-305, MW-6, MW-106, MW-206, MW-306, MW-7, MW-107, MW-207, MW-307, MW-8, MW-108, MW-208 and MW-308). These wells range from historically non-detect to historically contaminated with constituents of concern.

The proposed monitoring plan would be effective for the 2011 4th quarter semi-annual event and includes:

- Semiannual monitoring of twenty-six groundwater monitoring wells which have historically contained levels of contaminants of concern (W-1, W-3, W-A, W-1s, W-3s, W-Bs, MW-4, MW-104, MW-204, MW-304, MW-404, MW-5, MW-105, MW-205, MW-305, MW-6, MW-106, MW-206, MW-306, MW-7, MW-107, MW-207, MW-8, MW-108, MW-208, MW-308). Laboratory analysis for the above wells are as follows:
 - TPH-G and BTEX only: W-1, W-3, W-A, W-1s, W-3s, W-Bs, MW-4, MW-304, MW-404, MW-5, MW-105, MW-305, MW-6, MW-106, MW-206, MW-306, MW-7, MW-107, MW-8, and MW-308.
 - TPH-G, BTEX and MTBE: MW-104, MW-204, MW-205, MW-207, MW-108 and MW-208.

Annual monitoring, done in the 2nd quarter semi-annual event, of two
groundwater monitoring wells which have historically low to trace levels of
contaminants of concern (W-Es and MW-307). Laboratory analysis is proposed
to be reduced to TPH-G and BTEX for MW-307 and TPH-G, BTEX and MTBE
for W-Es.

Please note that GTI recommends reverting to the current monitoring schedule as the USTCF process permits.

- 2. Continue the process of developing and purging the CMTTM well chambers to clear them of clay residue/smear that precludes recharge and water level monitoring.
- Continue implementation of the Corrective Action Plan (CAP) that includes
 provisions for performing dual phase extraction to treat the residual contamination at
 the site, which has received approval from ACEH and cost pre-approval from the
 UST Cleanup Fund.

5.0 LIMITATIONS

This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

6.0 SIGNATURES & CERTIFICATION

This report was prepared by:

Andrew Dorn, B.Sc. Geology

This report was prepared under the direction of:

Tamorah Bryant, P.E.

Page 1 of 1

Figure 4: Well Screened Interval Diagram

Sullins 187 North L Street Livermore, CA

Geological Technics Inc.

04/12/11

Page 1 of 1

Page 1 of 1

Figure 11: Sullins 187 N.L Street Livermore, CA

Figure 12: Sullins 187 N.L Street Livermore, CA

Appendix A

Summary Tables

Table 1A: Summary of Groundwater Elevation and Gradient - Water Table Wells

Arrow Rentals 187 North L Street Livermore, CA Project No. 1262.2

Date											Elev	ation of (Groundwater*					Avg. Elv.	Avg. DTW	Gradient	Beari
		W-1s	DTW-W-1s	W-3s	DTW-W-Ja	W-Bs	DTW-W-Ea	W-Es	DTW-W-Ea						7			(feet)	(feet)	(ft/ft)	
	top of casing	479.09		476.98		478.82		474.66										(4454)	(1000)		1
	top of screen	459.09	20	456.98	20	458.82	20	454.66	20							3 -			-		
	bottom of screen	434.09	45	431.98	45	433.82	45	429.66	45												
6/2/1989		435.93		432.48		120		1.0										434.21	43.83		
7/25/1990		-				434.20		431.58										432.89	43.85		
1/1/1992																			41.00		
1/24/1996		461.14		459.28		460.77		456.21										459.35	18.04		
1/22/1996		454.09		451.53		453.12		446.66										451.35	26.04		
//15/1997		448.68		447.81		449.20		443.20										447.22	30.17		
0/29/1997		442.64	36.45	441.53		442.19		437.98										441.09	36.30		
/27/1998		460.48	18.61	457.25		459.96		455.39										458.27	19.12		1
0/23/1998		445.11	33.98	444.01		445.60		440.16										443.72	33.67		
4/9/1999		453.14	25.95	451.02		452.78		447.25								7		451.05	26.34		
10/5/1999		446.66	32.43	445.20		446.72		441.47										445.01	32.38	7	
4/5/2000		453.12	25.97	451.96		453.77		448.04										451.72	25.67		
0/26/2000		447.91	31.18	446.50		448.14		442.43										446.25	31.14		
1/18/2001		447.80	31.29	446.51		446.89		442.63							42 = =			445.96	31.43	-	
1/13/2001		435.69	43,40	433,32		443.59		431.05							- 1			435.91	41.48		
/15/2002		442.46			529	727	- G1	· · · · · ·										442.46	34.93		
/15/2002		441.32			14.	- 2	-	-										441.32	36.07		
/16/2002		441.79		-	132	741	14	- 1										441.79	35,60		
/30/2002		441.80	37.29	439.19		441.50		437.09										439.90	37.49		
/30/2002		439.17	39.92	437.01		439.39		434.50										437.52	39.87		
/19/2003		446.83	32.26	445.03		446.74		441.80										445.10	32.29		
/16/2003		440.88		438.50		441.40		436.14										439.23	38.16		
/29/2004		448.99	30.10	447.39	29,59	448.83	29.99	443.43	31.23									447.16	30.23	0.019	We
7/7/2006 a prior to July 7		450.40	28.69	448.61	28.37	450.25	28.57	444.21	30.45									448,37	29.02	0.019	N76

Date												Elevation of	Groundwater	- Wells Surve	yed October 1	6, 2006 in acce	rdance with S	WRCB Geotr	acker Requir	ements											
		W-1s	DTW-W-Is	W-3s	DTW-W-3s	W-Bs	DTW-W-Ex	W-Es	DTW-W-Es	MW-4	DTW-MW-4	MW-5	DTW-MW-5	MW-6	DTW-MW-6	MW-7	DTW-MW-7	MW-8	DTW-MW-8	MW-105	DTW-MW-105	MW-106	DTW-MW-106	MW-107	DTW-MW-107	MW-108	MW-108	Avg. Elv.	Avg. DTW	Gradient	Bearing
	top of casing	481.19		479.12		480.92		476.78	V	480.84		481.12		480.79		480.91	= -	480.64		481.12		480.79		480.91		480.64		(feet)	(feet)	(ft/ft)	
	top of screen	461.19	20	459.12	20	460.92	20	456.78	20	451.84	29	455.12	26	451.79	29	451.91	29	451.64	29	445.12	36	444.79	36	441.91	39	441.64	39	(122)	1,200		
	bottom of screen	436.19	45	434.12	45	435.92	45	431.78	45	450.84	30	454.12	27	450.79	30	450.91	30	450.64	30	444.12	37	443.79	37	440.91	40	440.64	40				
10/16/2006		447.81	33.38	446.17	32.95	447.93	32.99	442.75	34.03	-	- 1					-				447.97	33.15	447.11	33.68	446.77	34.14	446.34	34.30	446.61	33.58	0.014	N68°W
4/17/2007		449.64	31.55	448.35	30.77	449.51	31,41	444.58	32.20	454.09	26.75	12		927	9	2	-	2				-	-	448.92	31.99	-		448.20	31.58	0.016	N71°W
12/19/2007		438.88	42.31	437.46	41.66	444.51	36.41	433.10	43.68			14	72	12/	- 2		1		- 2	3	- 5	443.07	37.72	442.26	38.65	442.60	38.04	440.27	39.78	0.033	S74°W
4/7/2008		446.97	34.22	V-0.		446.76	34.16	442.34	34.44	453.30	27.54	- 5-	- 1	445.99	34.80	§ .	1	452.15	28.49	447.38	33.74	445.18	35.61	445.86	35.05	446.36	34.28	447.23	33.23	0.012	N64°W
10/8-9/2008		435.40	43.69		-		-	431.01	43.65	-		14	72	14	-	2	-		-	431.68	49.44	431.31	49.48	-	- 29	430.56	50.08	431.99	47.27	0.010	N57°W
4/8/2011		452.00	27.09	452.20	26.92	453.81	27.11	446.59	28.07	-	- 12	12	14	12 =	+		1		4	-	2.	-		26	124			451.15	27.30	0.0221	N56°W

"-" = well dry or depth to water measurement could not be obtained

Table 1B: Summary of Groundwater Elevation and Gradient - Intermediate Wells

Arrow Rentals 187 North L Street Livermore, CA Project No. 1262.2

Date				Elevat	ion of Ground	lwater - Wells	Surveyed Oc	tpber 16, 2006	in accordance	with SWRCB	Geotracker F	Requirements				
		W-A	DTW-W-A	W-B	W-C	W-D	W-E	MW-104	MW-205	MW-206	MW-207	MW-208	Avg. Elv.	Avg. DTW	Gradient	Bearing
	top of casing	481.04		480.74	481.61	477.03	476.56	480.84	481.12	480.79	480.91	480.64	(feet)	(feet)	(ft/ft)	z turing
	top of screen	439.04	42	440.74	436.61	435.03	436.06	431.34	434.12	431.79	431.91	429.64	(1333)	(reet)	(Itale)	
	bottom of screen	423.54	57.5	425.74	426.61	419.53	416.26	430.34	433.12	430.79	430.91	428.64				
10/16/2006		=		-		18	442.63	444.85	446.75	447.03	446.27	445.12	445.44	34.70	0.012	N63°W
4/17/2007		1.77			18	1(=)	-	-	125 125	448.57	447.13	447.05	447.58	33.20	0.012	S68°W
12/19/2007		438.36	42.68		1(#)	(<u>#</u>	121	435.98	-	436.10	434.33	433.92	435.74	45.11	0.022	N76°W
4/7/2008		446.72	34.32	(He)	140	-	12	443.10	444.84	446.38	444.84	443.66	444.92	35.97	northwest	variable
10/8-9/2008		::	æ		12		-	431.08	434.51	431.32		430.68	431.90	48.95	0.12	
4/8/2011		453.38	27.66	12	(2)		-	-	-	-	-	-50.00	453.38	27.66	N/A	N20°W N/A

[&]quot;-" = well dry or depth to water measurement could not be obtained

Table 1C: Summary of Groundwater Elevation and Gradient - Deep Wells

Arrow Rentals 187 North L Street Livermore, CA Project No. 1262.2

Date						Elevation of	Groundwater	- Wells Surve	yed October 1	6, 2006 in acc	ordance with S	WRCB Geot	racker Require	ements					
		MW-204	DTW-MW-204	MW-305	DTW-MW-305	MW-306	DTW-MW-306	MW-307	DTW-MW-307	MW-308	DTW-MW-308	Avg. Elv.	Avg. DTW	Gradient	Bearing	MW-304	DTW-MW-304	MW-404	DTW-MW-40-
	top of casing	480.84		481.12		480.79		480.91		480.64	The state of the s	(feet)	(feet)	(ft/ft)		480.84		480.84	
	top of screen	415.34	65.5	416.12	65	415.79	65	415.91	65	415.64	65	3.00000	N-E-E-V	()		406.34	74.5	400.84	80.0
	bottom of screen	414.34	66.5	415.12	66	414.79	66	414.91	66	414.64	66					405.34	75.5	399.34	81.5
10/16/2006		447.09	33.75	447.44	33.68	447.29	33.50	446.63	34.28	446.37	34.27	446.96	33.90	0.014	N78°W	442.76	38.08	444.37	36.47
4/17/2007)+3	448.49	32.63	449.08	31.71		-	-	-	448.79	32.17	0.014	-	442.70	36.06	448.82	32.02
12/19/2007		435.73	45.11	-	-	443.19	37.60	435.20	45.71	434.93	45.71	437.26	43.53	0.18	S39°W	435.45	45.39	435.51	45.33
4/7/2008		446.42	34.42	446.56	34.56	442.68	38.11	446.86	34.05	445.59	35.05	445.62	35.24	0.1	N26°E	441.42	39.42	446.18	34.66
10/8-9/2008		429.90	50.94	444.51	36.61	432.28	48.51	-	-	442.09	38.55	437.20	43.65	-	1120 L	441,42	39.42	432.20	48.64
4/8/2011		627	-1	-	_	_	_		_	-		107120	15.05	2			-	432.20	46.04

[&]quot;-" = well dry or depth to water measurement could not be obtained

Table 2

Arrow Rentals 187 North L Street Livermore CA Project No. 1262.2

		Mid Points			GW Elev.	Vert Head	Vert Dist	Vertica
Date	Well Pair	(TS-BS & TS-BS)	gwl/ts	bs/bs	(Head)	diff.	diff.	Gradie
16-Oct-06	MW-104	430.84	431.34	430.34	444.85	2.240	16.00	0.14
	MW-204	414.84	415.34	414.34	447.09		10100	35.1.4
16-Oct-06	MW-205	433.62	434.12	433.12	446.75	0.690	18.00	0.04
	MW-305	415.62	416.12	415.12	447.44	20.000.00	10.00	0.03
19-Apr-07	MW-107	441.41	441.91	440.91	448.92	-1.790	10.00	-0.18
	MW-207	431.41	431.91	430.91	447.13			
19-Apr-07	MW-206	431.29	431.79	430.79	446.75	0.510	16.00	0.03
	MW-306	415.29	415.79	414.79	447.44	0.000		
19-Dec-07	MW-204	414.84	415.34	414.34	435.73	-0.280	9.00	-0.03
	MW-304	405.84	406.34	405,34	435.45			0.00
19-Dec-07	MW-304	405.84	406.34	405.34	435.45	0.060	5.75	0.01
	MW-404	400.09	400.84	399.34	435.51		21612	0.01
19-Dec-07	MW-207	431.41	431.91	430.91	434.33	0.870	16.00	0.05
	MW-307	415.41	415.91	414.91	435.20	0.010	10.00	0.05
7-Apr-08	MW-204	414.84	415.34	414.34	446,42	-5.000	9.00	-0.56
	MW-304	405.84	406.34	405.34	441.42	1,3,37,37,47,		0.00
7-Apr-08	MW-205	433.62	434.12	433.12	446.75	1.720	18.00	0.10
	MW-305	415.62	416.12	415.12	447.44			
7-Apr-08	MW-206	431.29	431.79	430.79	446.75	-3.700	16.00	-0.23
	MW-306	415.29	415.79	414.79	447.44			
7-Apr-08	MW-207	431.41	431.91	430.91	444.84	2.020	16,00	0.13
	MW-307	415.41	415.91	414.91	446.86			*******
8-Oct-08	MW-204	414.84	415,34	414.34	429.90		9.00	N/A
	MW-304	405.84	406.34	405.34				
8-Oct-08	MW-205	433.62	434.12	433.12	434.51	10.000	18.00	0.56
	MW-305	415.62	416.12	415.12	444.51			
8-Oct-08	MW-206	431.29	431.79	430.79	431.32	0.960	16.00	0.06
	MW-306	415.29	415.79	414.79	432.28		CY80107	
8-Oct-08	MW-207	431.41	431.91	430.91			16.00	N/A
	MW-307	415.41	415.91	414.91	-		40.000.000	a.m.e.e

Table 3: Summary of Well Construction

Arrow Rentals 187 North L Street Livermore, CA Project No. 1262.2

Well/Boring Type	Well/Boring	Status	Date Drilled	Total Depth	Boring	Well Casing	Casina Trees	Clast Cina Cina	C	Well	Screen	Filte	r Pack	Annu	lar Seal	Grove	ut Seal
	Number			(ft)	Diameter (in)	Diameter (in)	Casing Type	Slot Size (in)	Sand Type	From	То	From	То	From	To	From	To
Monitoring	W-1	Active	5/25/1989	56.5	8	2	PVC	0.010	#2/12	55.5	45.5	55.5	41.5	41.5	39	39	S
Monitoring	W-2	Active	5/26/1989	51.5	8	2	PVC	0,010	#2/12	49	39	49	36	36	22.5	22.5	_
Monitoring	W-3	Active	5/26/1989	51.5	8	2	PVC	0.010	#2/12	48	38	48	34.5	34.5	32.5	32.5	S
Monitoring	W-A	Active	7/12/1000													0.2.0	- 3
Monitoring	W-B	Active	7/12/1990	63	12	4	PVC	0.010	#2/12	57.5	42	63	40	40	36.5	36.5	S
Monitoring	W-C		7/13/1990	55	12	4	PVC	0.010	#2/12	55	40	55	32	32	30	30	S
Monitoring	W-D	Active	7/11/1990	-55	8	2	PVC	0.010	#2	55	45	55	37.5	37.5	35	35	S
Monitoring	W-E	Active	7/12/1990	57.5	12	4	PVC	0.010	#2/12	57.5	42	57.5	39.5	34	32	32	
Monnorting	W-E	Active	7/10/1990	61	8	2	PVC	0.010	#2/12	60.3	40.5	61	37	30	29	29	S
Monitoring	MW-1s	Active	3/11/1996	45	2		mua		1000-101								
Monitoring	MW-Bs	Active	3/12/1996	45	2	6	PVC	0.010	#2/12	45	20	45	17	17	15	15	S
Monitoring	MW-3s	Active	3/12/1996	45	2	6	PVC	0.010	#2/12	45	20	45	18	18	16	16	
Monitoring	MW-Es	Active	3/13/1996	45		4	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
		reure	3/13/1990	43	?	2	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
Monitoring	MW-4	Active	10/04/06	82	8		MCT		#2/12	40							
Monitoring	MW-104	Active		100			MCT	-		30	29	30	20	16	14	14	S
Monitoring	MW-204	Active		L L			MCT		#2/12	50.5	49,5	52	48				
Monitoring	MW-304	Active			-		MCT	-	#2/12	66.5	65.5	68	64				
Monitoring	MW-404	Active		-			MCT		#2/12	75.5 81.5	74.5 80	76 81.5	73			-	
The same									- ANTE	01,07	01/	91.3	79.5				
Monitoring	MW-5	Active	10/09/06	68	8		MCT	*	#2/12	27	26	29	24	24	21.5	21.6	-
Monitoring	MW-105	Active					MCT	43,7	#2/12	37	36	39	34	24		21.5	S
Monitoring	MW-205	Active			4	2.	MCT		#2/12	48	47	50	45	_	-	2.6	+
Monitoring	MW-305	Active	-	1.4	(4)		MCT		#2/12	66	65	68	63	-	1	-	-
Monitoring	MW-6	Active	10/10/06	- 60												-	
Monitoring	MW-106	Active	TWTW/G	68	- 8		мст		#2/12	30	29	31	27	27	24	24	S
Monitoring	MW-206	Active					MCT		#2/12	37	36	39	35	- 140			
Monitoring	MW-306	Active		-			MCT		#2/12	50	49	52	47	11 + 2		7.	-
		- Auto-		•	-		МСТ		#2/12	66	65	68	63	(*)	-	12/	,
Monitoring	MW-7	Active	10/05/06	69.5	8		MCT										
Monitoring	MW-107	Active	2		-		MCT		#2/12	30	29	30	20			6	S
Monitoring	MW-207	Active			-	-	MCT		#2/12	40	39	42	37		-		
Monitoring	MW-307	Active			-	1020	MCT		#2/12	50 66	49	52	47		8 0	4	1
							IIIC1	-	#2/12	00	65	68	63	-	- 2	12	
Monitoring	MW-8	Active	10/06/06	66,5	8		MCT		#2/12	30	29	20	20				
Monitoring	MW-108	Active	161			-	MCT		#2/12	40	39	30	30	20	18	18	S
Monitoring	MW-208	Active			-		MCT	-	#2/12	52	51	42	37		*1	-	
Monitoring	MW-308	Active	8.48		-		MCT		#2/12	66	65	54 66	63				0.5
Manage Patental and	FW 4									.00	0.0	00	0.5	-			
Vapor Extraction	EW-1	Active	10/3/2006	25	10	4	PVC	0.010	#2/12	25	10	25	9.5	9.5	7.5	7.5	S

5/23/2011 Page1

nary of Groundwater A
Arrow Rentals
187 North L Street
Livermore CA
Project No. 1262.2

		EDB ug/L	,						1/4/3			1.						Ţ.,				000							, ,	, , ,		.0.5							, ,		.50					2 62					0.5			Ш	П			Ш	П	Γ
	100.	1,2 DCA ug/L				, ,																000			*								2				.,.	6 60		. ,.,	- 50										c0.5					_	-			
	YG.	ug/L						c •														001							2 48			01>		•							<400										- 10			-						
Column C	TAME	TAME ug/L	a								3 3											000									, ,	9									-500		* 024					i du			. 9			-				-		
Column C	DOIN	ng/L			5 25																	000										9									<200										. 9	.,,	.,					-		
Column C	727	ug/L										5	, ,		,	a a																. 99			e vex						<200										. 99									
1971 1979	MTRE	ug/L	00301	<12500	<2000	. 92	-2500	<0.5		<100 <20				18	410000 4800 4800	<3000	360	170	<2000	<1000	<1000 <2500 100 100 100 100 100 100 100 100 100		-200	<120	<20 7.5	4100	8 63 8	<12 <6	\$ 65	<25	\$ 52 52	425	, 52 2	45	<2500 <600 <600	<600	<300	150	<150 <170 <250	<120 <150	<40	<100	<200 <50 <10	ų	99.	4	. 4	+ 65		φ. 4	2.4	£ \$ \$	<5 0.5	<500				<0.5		
1989 1989	1262 To	Xylenes ug/L	24,000	10,000	11,600	1.3	140	8 ⊽	3,400	3,000	3,700	5	- 5	<0.5	18,000	35,000	8,900	6,100	33,000	9,400	4,700	3,500	1,800	1,700	14	100	<0.5	9.8	1.2		27	4.5	<2.5 <1	012	7,800	9,100	5,900	1,800	360	160	950 440 83	20	<100 71 432	400	2.2	8.0	. 41.0				<0.5	<0.5 <1		DRY DRY 19,000	DRY	DRY	PAD	DRY DRY	DRY	-
111/10881 111/1089 11/1089	Project No	Benzene ug/L	5,400	2,000	3,000	0.5	150	0.5	620 21	1,600	1,800	7	۵ ۲	<0.5	3,500	7,800	1,800	1,500	7,200	1,300	1 200	1,500	1,200	1,400	1,180	33	40.5 80.5	37	6.4	54 . 2	140	23	<2.5 <0.5	6.5	1,400	1,900	1,400	1,100	1,100 660 260	820 580	820 410	1.7	380 460 632	202	89.	<0.5	<0.5	<0.5		*0.5	<0.5 <0.5	<0.5 <0.5	<0.5	3,800		111		<0.5		
11/1988 12/2000 12/2	Tolliene	ng/L	30,000	11,000	17,000	2.1	120	<0.5	5,500	330	7,900	₽ .	۵ ۲	<0.5	18,000	19,000	7,000	2,300	7,800	1,500	1,200	1,300	460	340	239	29	40.5 28	9.5	3.5	5.5	24	5.1	<2.5 <0.5	999	3,100	5,400	390	210	38 28	36	160	100	450 15 56.2	405	9.0	8.0	<0.5	<0.5			<0.5	<0.5 <0.5 <0.5	<0.5	21,000		111	H	<0.5		
11/1988 (?) 11/1000	Renzene	ng/L	29,000	9,700	13,800	6.7	290	7.8	6,900	2,370	22,000	₽,	- 5	4 000	13,000	410	6,500	3,800	9,500	3,400	3,700	5,000	2,200	3,900	2,040	270	<0.5 500	240	150 83 320	320	920	210	1.3	422	5,100	6,100	3,800	2,500	1,000	1,300	1,900	1,500	360 410 1,280	505	24	-0.5	<0.5	0.7		- ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	<0.5 <0.5	<0.5 <0.5 <0.5	<0.5	24,000				3.2		
International Composition International Composition International Compositional	НДТ	Diesel ug/L	300,000	. , .	٠.	<50	2,200		2,400		1,700	×100	×100 ×100		38,000	2,200	24,000	1,200	8,200	1,200	5,900	<470				340	450	1,000	320 120 1,600	490	1,500	400 <500	00		17,000	9,600	7,300	650	2,300	3,900	<50 <47	<47		H ,		69	. 88	<50			<50 <50	. , ,						-		
11/1988 (?) 1/1998 (?) 1/	HdT	asoline ug/L	10,000	77,000	40,000	360	11,000	193	450	13,200	13,000	c10	100	95	70,000	6,700	0,000	000'0	50,000	9,000	3,000	0,000	1,000	00000	3,400	2,100	<50	980	310	,400	3,300	110	320	937	₩	Н	+	Н	+		H	2,000	,400 ,960	290	280	82	. 89	01.		98	650	50	200	000'				50		
	Date	B				13/1995		Н	1990 1990 20/2006	29/2007		1990	1990	13/1995	15/1997	27/1997 6	/9/1999 7	5/2000 4	13/2001 7.	30/2002 1	29/2004 3	17/2006 3	20/2005	8/2008 3	2/1996	15/1997	27/1998	9/1999	5/2000 26/2000 8/2001	13/2001	9/2003	7/2006	9/2007	2/1996 R	5/1997 64	7/1998 6 :23/1998 4	5/1999 34	8/2001 20	0/2002 1	6/2003 9	7/2006 1	9/2007 12	3/200/ 8 3/2008 4 3/2011 6	2/1996	5/1997	7/1998	5/1999	6/2000 9/2001 3/2001	0/2002 0/2002	3/2003 7/2007 1/2004	772006	9/2007	72011	6/2006 7/2007 9/2007 46C	9/2007	6/2006	2011	72007 9/2007 2011 2	3/2006	
	Vells		W-1 11/	9 0 0	12	W-2 11/	W-3 11/		(dup) 10	++	(dnp)	O-W	W-E	9/2 W-1e	11/1	0 4 6	10 4	401	11/4	8 8	4/2	0 10	4/1	10	1-3s 3/2	7/1	10/2	10/	100	4/3	8 8 16	777	127	-Be 3/2	11/2	4/2	10/	107	4/3	9/1	101	4/1	4/8	Es 3/22	7/15	4/2	10/5	4/18	4/30	4/29	10/1	12/1		MW-4 10/16 4/17 10/29	12/1	MW-5 10/16	4/8/ 10/16	12/15	AW-7 10/16	

Arrow Rentals 187 North L Street Livermore CA Project No. 1262.2

1 10 10 10 10 10 10 10			Gasoline	Diesel	ng/L	ug/L	Benzene ug/L		ng/L	ng/L	ng/L	ng/L		ng/L	ug/L
10010000000 100000000 10000 10000 10000 100000000			ug/L	ng/L									-		
1000-1000000 1,00	V-104	9	096		250	170	20	83 DR							
Colorado Colorado		12/19/2007	1,300		210	82	110	380	\$2	•	,				
1,000,000,000,000,000,000,000,000,000,0		4/8/2008	32,000	,	7,100	1,400	680	1,800	<250		. ,				
1,11,120,000 1,11,120 1,11,	7,105	-													
1997/2002/000 54 11 11 11 11 11 11 11			13,000		4,300	980	490	1,500 DR	<250						-
101000000		10/9/2008	11,000		3,800	70	40	110 110	<50						e
1,000,000,000,000,000,000,000,000,000,0		4/8/2011	11,300	2	5,870	135	518	1,110	<40						
1001020000	V-106	10/16/2006	240		7.6	<0.5	0.57	<0.5							
10492008 300 0.05		12/20/2007	88		1.0	<0.5	<0.5	<0.5	₽ 80 10						4
4/49/2019 240 250 4/10/2009<		4/8/2008	OB OB		90	307	200	DRY	4						
Margonia Margonia		4/14/2009	8		0.0	6,05	6,03	7	0						
140 150		+	247		9.3	<0.5	<0.5	v	<0.5						
1011/16/2009 1,000	V-107		320		3 400	290	33	140	.000					×	
1016/2008 18,000 18,100 20 380 440		12/19/2007	201		oot's	20	051	DRY	2000						
1019/2006 3,400 7,90 46 460 650 650 440/2009 440/2009 5,400 5,400 4,20		4/8/2008	18,000		6,100	700	380	480	<500						
47192007 420,000 5,440 420	V-108	_	3.400		790	46	<20	S		Ī.	ı,	T.			
101/19/2008 2,100 1,100 2,4 1,100		1	<20,000		5,400	<200	400	220	<400						- -
4082008 2,200 1,1400 2,4 2,6 140 4082018 2,100 1,1400 1,2 1,140 1,140 1,100 2,0 1,100 2,0 1,100 2,0 1,100 2,0 1,100 2,0 1,100 2,0 1,100 2,00 2,00		12/19/2007			3	4.0	2	DRY	6.						
1949/2006 4,000 1,100 650 123 642 14,000 14,000 1,100 650 1,100 650 1,100 650 1,100 1,		10/9/2008	2,100		1,100	8.4	35	140	<25						
10/19/2006 5,800		4/8/2011	4,000		1,640	10.8	123	84.2	89.6						
10/18/2007 710 710 710 850 210 870 10/18/2007 710 71	V-204	+	5,800	3	260	420	110	580			•				
4820000 22,000		10/29/2007	710		2,700	9.9	11	34	<200						
10/16/2008		12/20/2007	22,000	a i	1 800	1,100	490	1,400	×800						
10/16/2006 5.250 1.140 27.8 72.8 30.6 10/16/2006 5.100 2.000 190 520 544 10/16/2006 5.100 2.000 190 520 544 10/17/2006 5.100 2.000 190 520 544 10/16/2006 5.100 2.000 190 520 544 10/16/2006 5.100 2.000 190 520 540 10/16/2006 5.200 2.000 6.40 5.00 5.00 10/16/2006 5.50 0.26 6.40 6.40 10/16/2006 5.50 0.26 6.40 6.40 10/16/2006 5.50 0.26 6.40 6.40 10/16/2006 5.50 0.26 6.40 6.40 10/16/2006 5.50 0.26 6.40 6.40 10/16/2006 5.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 6.50 0.26 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 6.40 10/16/2006 1.500 0.20 0.20 6.40 10/16/2006 1.500 0.20 0.20 6.40 10/16/2006 1.500 0.20 0.20 6.40 10/16/2006 1.500 0.20 0.20 6.40 10/16/2006 1.500 0.20 0.20 6.40 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006 1.500 0.20 0.20 10/16/2006	П	10/8/2008	18,000		9,200	360	130	370	<100						
10/16/2006 5.100 890 6.3 5.20 5.40 5		-	2,520		1,140	27.8	72.8	30.6	<10				100		
4/82008 4/182007 4/0,000 4/0 550 4/0 6/0	V-205	—	<2000		2.000	190	<20	54	. ,						
UNIVERSIDES 31,000 C 20,000 C 440 S 10 1,400 UNIVERSIDES C 50 C 5 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 C 0.5 UNIVERSIDES C 50 C 50 C 0.5 UNIVER		4/18/2007	<40,000	2.1	14,000	250	<400	<400	<800						. .
10/19/2006		4/8/2008	31,000		20,000		510	1,400	<250						
10/16/2006		4/8/2011	33,600		25,000	Ш	640	448	<200						
10/19/2006 630 - 1.5 -0.5 -	1-206	-	<50		0.72	<0.5	<0.5	<0.5					•		*
4/8/2008 60 1,8 <.0.5 <.0.5 <.1 4/8/2011 1,170 115 <.0.5 <.0.5 <.1 4/8/2011 1,170 115 <.0 <.0 <.0 4/8/2017 1,000 9,700 480 <.250 2.50 4/8/2017 1,500 1,5000 1,500 4/8/2017 1,500 1,5000 1,500 4/8/2018 1,5000 1,5000 1,500 4/8/2019 1,5000 1,5000 1,500 4/8/2019 1,5000 1,5000 1,500 4/8/2019 1,5000 1,5000 1,500 <		12/19/2007	84		0.71	<0.5	<0.5	<0.5	₽ 00						
11019/2006 1,000 1,100		4/8/2008	1 170		1.8	<0.5	<0.5	7 6	155						
1019/2006 1,000 - 170 52 18 67 1419/2007 -25,000 - 9,700 480 -250 250 1219/2007 -25,000 - 10,000 15,000 100 100 100 1219/2007 1,500 - 15,000 -100 100 100 1219/2007 1,500 - 2,500 -100 -100 -100 1219/2007 1,500 - 2,500 -100 -100 -100 1219/2007 1,500 - 2,500 -200 -200 -200 1219/2007 1,500 - 3,300 -230 -250 -1,200 1219/2007 1,500 - 3,300 -230 -250 -1,20 1219/2007 1,500 - 3,300 -230 -250 -250 1219/2007 1,500 - 3,500 -230 -250 -250 1219/2007 1,500 - 3,500 -230 -250 -250 1219/2007 1,500 - 3,500 -250 -250 -250 1219/2007 1,500 - 3,500 -250 -250 -250 1219/2007 -2,500 - 3,500 -250 -250 -250 1219/2007 -2,500 - 3,500 -250 -250 -250 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,50 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 3,500 -2,50 -2,50 -2,50 1219/2007 -2,500 - 2,50 -2,50 -2,50 -2,50 1219/2007 -2,500 - 2,50 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50 -2,50 1219/2007 -2,500 -2,50 -2,50		1000	2111		2	200	012	025	AID.						
12/19/2007 12/2008 1	1-207	10/19/2006	1,000		9.700	52	18	550	. 500	. ,					
4//12/2006 4//12/2006 4//12/2006 4//12/2006 4//12/2006 4//12/2006 4//12/2006 4//12/2006 4//12/2007 4//12/2006 4//12/2		12/19/2007	000					DRY							
1011/72006 1,500		4/8/2011	19,500		15,000	350 <100	180	<200	108	, .					
4/19/2007 c10,000	1-208	10/17/2006	1,500		520	39	<10	100		Ī,					
10/18/2006 19,000		4/19/2007	<10,000		2,500	<100	<100	<100	<200						
10/18/2006 3,300 2,800 240 56 530 10/18/2006 3,300 3,100 450 240 56 530 4/19/2007 4/10/2009 3,100 450 450 420		4/8/2008	19,000		3,900	230	920	1,200	<200						
10/18/2006 3,300		-	12,300		5,820	75	432	270	<50						•
12/20/2007 13/1000 450 450 420	-304	\vdash	3,300		290	240	99	530							•
4/7/2008 4820 100 36 36 96 4/8/2011 2,880 - 657 32,3 93,5 262 10/18/2006 - 550 - 1,8 - 0,5 - 0,5 - 0,5 4/8/2007 - 20,000 - 3,600 - 200 - 200 - 200 12/19/2007 - 20,000 - 3,600 - 200 - 200 - 200 12/19/2007 - 20,000 - 3,600 - 200 - 200 - 200 12/19/2007 - 50 - 0,5 - 0,5 - 0,5 - 0,5 11/19/2006 - 50 - 0,5 - 0,5 - 0,5 - 0,5 4/18/2011 - 50 - 0,5 - 0,5 - 0,5 - 0,5 4/18/2011 - 50 - 0,5 - 0,5 - 0,5 - 0,5 4/18/2011 - 50 - 0,5 - 0,5 - 0,5 - 1,1 4/18/2011 - 50 - 0,5 - 0,5 - 0,5 - 1,1 4/18/2011 - 50 - 0,5 - 0,5 -		12/20/2007	1.500		3,100	43	32	110	<200						
10/16/2006		4/7/2008	820		100	36	36	88	45						
10/16/2006 450 18		4/8/2011	2,880		657	32.3	93.5	262	9				•	,	
4/19/2007 4/20/000 4/20	1-305	10/16/2006	<50	,	1.8	<0.5	<0.5	0.67		١.					
4/8/2008 290 42 144 8,1 28 4/8/2011 862 . 183 10,4 27,6 68,1 1/10/16/2006 <50		12/19/2007	250,000		3,600	002>	<200		<400			,	,		
10/18/2006 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0		4/8/2008	290	*	42	14	8.1	28	<5						,
101/18/2006 <50 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05		4/0/2011	700		26	10.4	97.7	69.1	0				•		š
12/20/2007	-306	10/16/2006	×50		<0.5	<0.5	<0.5	<0.5			ī			•	
47/2008 <50		12/20/2007	<50		0.54	<0.5	<0.5	40.5	42						
10/19/2006		4/7/2008	<50		<0.5	<0.5	<0.5	7	\$			٠	ē		ì
1/2 1/2			000		10.4	20.0	C.U.D		60.0						
12/19/2007 1,500 200 500 500 510 440/2011 70 24.3 510 440/2011 70 24.3 510	-307	10/19/2006	<50		1.200	1.5	<0.5	4.7	. 00					÷	
4/7/2008 2.500 - 720 110 69 160 - 6 4/7/2008 2.500 - 720 110 69 160 - 6 10/16/2006 - 500 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 4/7/2000 - 7500 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 4/7/2000 7 190 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 4/7/2000 7 190 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 4/8/2011 3,240 - 1,230 18.6 187 125 - 0.5 10/19/2006 1,700 - 1,200 - 120 73 27 280 4/8/2011 3,240 - 1,400 440 130 550 - 0.5 1/18/2007 - 10,000 - 140 440 130 550 - 0.5 1/219/2007 - 1,400 - 130 550 - 0.5 - 0.5 0.0 1/8/2009 - 1,400		12/19/2007	1,500		200	50	29	140	×80 ×40						
10/16/2006		4/7/2008	2,500		720	110	69	160	<25		-				
4/19/2007 4/10/200 7,600 4/10/2007	300	40/46/9006	09,												$\cdot \ $
12/19/2007 190	200	4/19/2007	<10,000		1,600	<0.5	<0.5	<0.5	<200						
4/8/2011 3,240 1,230 18.6 187 10/19/2006 1,700 273 27 4/18/2007 1,2100 1,400 440 130 1/8/2008 2,200 160 63 92 4/8/2008 2,200 160 63 92		4/7/2008	190		150	1.5	7.2	8.4	4 4						
10/19/2006 1,700 . 120 73 27 4/18/2007 <10,000 . 1,400 440 130 12/18/2007 2,200 . 160 63 92 4/18/2008		4/8/2011	3,240		1,230	18.6	187	125	<10				,		
2,200 160 63 92	404	-	1,700		120	73	27	280	,		ā			2.	
400		12/19/2007	2,200		1,400	440	130	550	<200						
110		- Western			001	63	92	300	<40			,			

Table 5: Summary of Field Parameters

Arrow Rentals 187 North L Street Livermore, California Project No. 1262.2

								W 2c					W-Bs					W-Es		
Monitoring Well			W-1s	20				W-3s	1 3000020		77.0	E.C.	Temp	ORP	DO	рН	E.C.	Temp	ORP	DO
Monitoring tres	рН	E.C.	Temp	ORP	DO	pH	E.C.	Temp	ORP	DO	pН	E.C.	00	On		P1.1		°C		1
Date	p	2.0.	°C					°C					C		0.00	7.05	339	20.9	32.9	0.06
Date				400 E	0.13	-	-			0.07	-		*	-107.3	0.09	7.05	339	20.5	02.0	0.00
7/7/2006	-	17.		-128.5	0.13	145.5	-	- 2	188			-				•		3.72	5 1	-
12/29/2007		- 4		-		- 5		-	-			-			0.28	7.07	503	25.1	121.4	6.85
4/8/2008	6.76	514	24.8	-95.5		•	-			-						- 1	- 2	-	-	
10/8-9/2008		8-3		-	· ·	-		(*)		-	-		10.5	-198.2	0.02	7.03	790	19.5	141.3	1.06
4/7-8/2011	6.17	967	19.1	-221.5	0.37	6.63	964	18.1	40.7	0.72	6.61	780	18.5	-198.2	0.02	7.00	,,,,			

		_	W 1					W-3					W-A		
Monitoring Well			W-1	Towns T				Temp	ORP	DO	На	E.C.	Temp	ORP	DO
	pH	E.C.	Temp	ORP	DO	pH	E.C.	_	Oili		-		°C		
Date			°C					°C				007	_	-254.5	0.04
and the second s	6.30	917	19.0	-164.3	0.40	6.94	928	18.3	-185.7	0.10	6.85	907	18.9	-254.5	0.04
4/7-8/2011	0.30	317	10.0	10110											

[&]quot; - " = insufficient data no result reported

Appendix B

Laboratory Analytical Data Sheets

EXCELCHEM Environmental Labs

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449

ELAP Certificate No.: 2119

21 April 2011 Geological Technics Geological Technics 1172 Kansas Ave

Modesto, CA 95351

RE: Sullins

Sincerely,

Workorder number: 1104120

Enclosed are the results of analyses for samples received by the laboratory on 04/12/11 15:00. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

John S	Somers	, Lab	Directo	or

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

Project Number: Project Manager: 1262.2

Geological Technics

Date Reported: 04/21/11 12:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
V-ES	1104120-01	Water	04/07/11 14:00	04/12/11 15:00
V-3S	1104120-02	Water	04/08/11 09:30	04/12/11 15:00
V-BS	1104120-03	Water	04/07/11 16:20	04/12/11 15:00
V-3	1104120-04	Water	04/07/11 14:40	04/12/11 15:00
V-A	1104120-05	Water	04/08/11 10:20	04/12/11 15:00
V-1S	1104120-06	Water	04/08/11 12:20	04/12/11 15:00
/-1	1104120-07	Water	04/08/11 13:00	04/12/11 15:00
IW-104	1104120-08	Water	04/08/11 16:05	04/12/11 15:00
IW-204	1104120-09	Water	04/08/11 16:00	04/12/11 15:00
IW-304	1104120-10	Water	04/08/11 15:55	04/12/11 15:00
IW-404	1104120-11	Water	04/08/11 15:50	04/12/11 15:00
W-305NP	1104120-12	Water	04/08/11 10:20	04/12/11 15:00
W-105	1104120-13	Water	04/08/11 10:55	04/12/11 15:00
W-205	1104120-14	Water	04/08/11 10:45	04/12/11 15:00
W-305P	1104120-15	Water	04/08/11 10:40	04/12/11 15:00
W-6	1104120-16	Water	04/08/11 12:40	04/12/11 15:00
W-106	1104120-17	Water	04/08/11 12:30	04/12/11 15:00
W-206	1104120-18	Water	04/08/11 12:15	04/12/11 15:00
W-306	1104120-19	Water	04/08/11 12:00	04/12/11 15:00
W-107	1104120-20	Water	04/08/11 15:35	04/12/11 15:00
W-207	1104120-21	Water	04/08/11 15:30	04/12/11 15:00
W-307	1104120-22	Water	04/08/11 15:25	04/12/11 15:00
W-8	1104120-23	Water	04/07/11 16:00	04/12/11 15:00
W-108	1104120-24	Water	04/07/11 15:50	04/12/11 15:00
W-208	1104120-25	Water	04/07/11 15:45	04/12/11 15:00
W-308	1104120-26	Water	04/07/11 15:40	04/12/11 15:00

Excelchem Environmental Lab.

Dr Dun

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

imber: 1263

Project Number: Project Manager: 1262.2 Geological Technics

Date Reported: 04/21/11 12:17

W-ES 1104120-01 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	ND	50.0	ug/l	AUD0159	04/14/11	04/14/11	EPA 8260B	
Methyl tert-Butyl Ether	0.5	0.5	"	3.0	16	.0	**	
Benzene	ND	0.5				30	**	
Toluene	ND	0.5			85	28	**	
Ethylbenzene	ND	0.5	"					
n,p-Xylene	ND	0.5			.0			
o-Xylene	ND	0.5				H		
Kylenes, total	ND	1.0	"	*	W	п		
Surrogate: Dibromofluoromethane	99.0 %	% Recovery Limits	- 1	70-130			"	
Surrogate: Toluene-d8	102 %	% Recovery Limits		70-130			"	
urrogate: 4-Bromofluorobenzene	94.0 %	% Recovery Limits		70-130			"	

Excelchem Environmental Lab.

Dr Dr

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

Project Number: Project Manager: 1262.2

Geological Technics

Date Reported: 04/21/11 12:17

W-3S 1104120-02 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	937	500	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	5.0	11	*	**			
Benzene	422	5.0	ï	**	*			
Toluene	ND	5.0	π		*			
Ethylbenzene	6.5	5.0	н.					
n,p-Xylene	ND	5.0	**	(#2	H		n	
o-Xylene	ND	5.0		10	W	н		
Kylenes, total	ND	10.0	99	900	36		19	
Surrogate: Dibromofluoromethane	98.6 %	% Recovery Limits		70-130				
urrogate: Toluene-d8	98.7 %	% Recovery Limits		70-130			**	
urrogate: 4-Bromofluorobenzene	99.4 %	% Recovery Limits		70-130			9.00	

Excelchem Environmental Lab.

Dr Down

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

W-BS 1104120-03 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	6960	1000	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	10.0	н			**		
Benzene	1280	10.0	10	W.			u u	
Foluene	56.2	10.0	2005	.0	W	5003	**	
Ethylbenzene	632	10.0	1980		M		30	
n,p-Xylene	417	10.0	**	.**	100		w	
o-Xylene	15.4	10.0	**		#1	:29	78	
Kylenes, total	432	20.0	"		*		**	
iurrogate: Dibromofluoromethane	98.1 %	% Recovery Limits		70-130			W	
Surrogate: Toluene-d8	101 %	% Recovery Limits		70-130			n	
urrogate: 4-Bromofluorobenzene	98.3 %	% Recovery Limits		70-130				

Excelchem Environmental Lab.

Dr Dun

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

W-3 1104120-04 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Note
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	193	50.0	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	0.5	ï.			11	"	
Benzene	7.8	0.5	**				(2)	
Toluene	ND	0.5	nr.			**		
Ethylbenzene	0.5	0.5	m.		-		W	
n,p-Xylene	ND	0.5	nc.	(m)	iii	44	0.0	
o-Xylene	ND	0.5	115		**		30	
Xylenes, total	ND	1.0		**	×			
Surrogate: Dibromofluoromethane	99.9 %	% Recovery Limits		70-130				
Surrogate: Toluene-d8	104 %	% Recovery Limits		70-130			a.	
Surrogate: 4-Bromofluorobenzene	101 %	% Recovery Limits		70-130				

Excelchem Environmental Lab.

Dr som

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

W-A 1104120-05 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	13200	2000	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	20.0	"			190		
Benzene	2370	20.0	"	**	**	561	311	
Foluene	128	20.0	"	**	**	*	.00	
Ethylbenzene	439	20.0	90				"	
n,p-Xylene	458	20.0	00		*	**		
-Xylene	65.2	20.0	100		*	*	"	
Kylenes, total	523	40.0	(100)	900	î			
Surrogate: Dibromofluoromethane	95.8 %	% Recovery Limits		70-130			"	
urrogate: Toluene-d8	101 %	% Recovery Limits		70-130			2 10 C	
Surrogate: 4-Bromofluorobenzene	96.9 %	% Recovery Limits		70-130			2.00.0	

Excelchem Environmental Lab.

De de

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

Project Number: 1

Project Number: Project Manager: 1262.2 Geological Technics

Date Reported: 04/21/11 12:17

W-1S 1104120-06 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	13400	2000	ug/l	AUD0159	04/15/11	04/16/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	20.0	n			"	"	
Benzene	2040	20.0	**			"		
Гoluene	239	20.0	30					
Ethylbenzene	1180	20.0	ж					
n,p-Xylene	743	20.0	n		н			
-Xylene	134	20.0	"	1.0	*	290		
Kylenes, total	877	40.0	"	0.99.0	31	(10)		
urrogate: Dibromofluoromethane	99.6 %	% Recovery Limits		70-130			,	
urrogate: Toluene-d8	101 %	% Recovery Limits		70-130				
urrogate: 4-Bromofluorobenzene	97.7 %	% Recovery Limits		70-130			n	

Excelchem Environmental Lab.

Dr m

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Project Manager:

Sullins

Project Number: 12

1262.2

Geological Technics

Date Reported: 04/21/11 12:17

W-1 1104120-07 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	68900	20000	ug/l	AUD0159	04/14/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	200	n	200	N .	200	.00	
Benzene	13800	200		300				
Toluene	8150	200	11	(100)	36	3.00	m.	
Ethylbenzene	1520	200	"	1967		100		
n,p-Xylene	8250	200	**	.0.				
-Xylene	3300	200		**				
Cylenes, total	11600	400	"	*	*		20	
urrogate: Dibromofluoromethane	105 %	% Recovery Limits		70-130			"	
urrogate: Toluene-d8	99.0 %	% Recovery Limits		70-130				
urrogate: 4-Bromofluorobenzene	95.4 %	% Recovery Limits		70-130			130	

Excelchem Environmental Lab.

Dr Dun

Geological Technics 1172 Kansas Ave Modesto, CA 95351 Project:

Project Manager:

Sullins

Project Number: 1262

1262.2 Geological Technics Date Reported: 04/21/11 12:17

MW-104 1104120-08 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	18500	10000	ug/l	AUD0159	04/19/11	04/19/11	EPA 8260B	
Methyl tert-Butyl Ether	250	100		95				
Benzene	13700	100		10	**			
Toluene	212	100		"	*			
Ethylbenzene	266	100	.0			o.		
m,p-Xylene	326	100			**			
o-Xylene	ND	100	30	9		*	"	
Xylenes, total	384	200	30	ű.	7 n		300	
Surrogate: Dibromofluoromethane	96.4 %	% Recovery Limits		70-130			"	
Surrogate: Toluene-d8	98.3 %	% Recovery Limits		70-130			"	
Surrogate: 4-Bromofluorobenzene	100 %	% Recovery Limits		70-130			"	

Excelchem Environmental Lab.

Du Down

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project: Project Number: Sullins

1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-204 1104120-09 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	2520	1000	ug/l	AUD0159	04/15/11	04/16/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	10.0	11			**	0:	
Benzene	1140	10.0		**	300	w	W.	
Toluene	27.8	10.0	"		1000	n	0.	
Ethylbenzene	72.8	10.0	**	"	(8)	**		
m,p-Xylene	23.6	10.0					2.00	
o-Xylene	ND	10.0	11		w	m.		
Kylenes, total	30.6	20.0	u					
urrogate: Dibromofluoromethane	99.7 %	% Recovery Limits		70-130			W	
urrogate: Toluene-d8	97.0 %	% Recovery Limits		70-130			"	
urrogate: 4-Bromofluorobenzene	104 %	% Recovery Limits		70-130			**	

Excelchem Environmental Lab.

De de

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-304 1104120-10 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	2880	500	ug/l	AUD0159	04/14/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	5.0	"	**	10			
Benzene	657	5.0	en i	Ti .	H.	Til .	w.	
Toluene	32.3	5.0	0.000	in .	ńű.	26	**	
Ethylbenzene	93.5	5.0	30	96		ж	и.	
m,p-Xylene	186	5.0	2.972	"	n	"	16	
o-Xylene	76.0	5.0	n.	**	100	28		
Xylenes, total	262	10.0	"	"	5.55	"		
Surrogate: Dibromofluoromethane	102 %	% Recovery Limits		70-130			(0)	
Surrogate: Toluene-d8	98.9 %	% Recovery Limits		70-130			"	
Surrogate: 4-Bromofluorobenzene	96.6 %	% Recovery Limits		70-130			**	

Excelchem Environmental Lab.

Dr Dun

Geological Technics

1172 Kansas Ave Modesto, CA 95351 Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-404 1104120-11 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	119	50.0	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	0.5	"	n	10	**	"	
Benzene	90.8	0.5	(100)	30	*	ж	100	
Γoluene	1.4	0.5		er.		**	10)	
Ethylbenzene	1.0	0.5	"	25	90		00	
n,p-Xylene	1.1	0.5	"	77	7	,,		
o-Xylene	1.5	0.5			**	"		
Kylenes, total	2.6	1.0	**	"		ii.		
Surrogate: Dibromofluoromethane	100 %	% Recovery Limits		70-130			"	
Gurrogate: Toluene-d8	95.3 %	% Recovery Limits		70-130				
urrogate: 4-Bromofluorobenzene	102 %	% Recovery Limits		70-130			"	

Excelchem Environmental Lab.

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

Project Number: Project Manager: 1262.2

Geological Technics

Date Reported: 04/21/11 12:17

MW-305NP 1104120-12 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	2710	1000	ug/l	AUD0159	04/14/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	10.0	"					
Benzene	689	10.0			*	**		
Toluene	61.8	10.0	W.		*	**	*	
Ethylbenzene	110	10.0	00					
m,p-Xylene	292	10.0	100		W	794		
o-Xylene	52.8	10.0		000	#	34	*	
Kylenes, total	344	20.0	11		*	:0	w	
Surrogate: Dibromofluoromethane	102 %	% Recovery Limits		70-130				
Surrogate: Toluene-d8	98.4 %	% Recovery Limits		70-130			00€	
Surrogate: 4-Bromofluorobenzene	99.0 %	% Recovery Limits		70-130				

Excelchem Environmental Lab.

De Down

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-105 1104120-13 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	11300	4000	ug/l	AUD0159	04/15/11	04/16/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	40.0	"		*	**		
Benzene	5870	40.0	H		H		*	
Toluene	135	40.0	ж.	M	*		***	
Ethylbenzene	518	40.0	95	**	*	(90)	10	
m,p-Xylene	934	40.0		1000	96		31	
o-Xylene	172	40.0	19			2000	w	
Kylenes, total	1110	80.0			75			
urrogate: Dibromofluoromethane	99.7 %	% Recovery Limits		70-130			in .	
Surrogate: Toluene-d8	96.4 %	% Recovery Limits		70-130				
Surrogate: 4-Bromofluorobenzene	101 %	% Recovery Limits		70-130			**	

Excelchem Environmental Lab.

Dr Dun

Geological Technics 1172 Kansas Ave Modesto, CA 95351 Project:

Sullins

Project Number:

1262.2

Project Manager: Geological Technics

Date Reported: 04/21/11 12:17

MW-205 1104120-14 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	33600	20000	ug/l	AUD0159	04/14/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	200	.0.	36	0.90			
Benzene	25000	200		38	(0.0	.00	**	
Foluene	232	200	**		0.99		#:	
Ethylbenzene	640	200			"	*		
n,p-Xylene	388	200		×		"		
o-Xylene	ND	200	"	"		**	MC.	
Kylenes, total	448	400	u		4		*	
Surrogate: Dibromofluoromethane	99.9 %	% Recovery Limits		70-130				
Surrogate: Toluene-d8	96.9 %	% Recovery Limits		70-130			<u>*</u>	
Surrogate: 4-Bromofluorobenzene	101 %	% Recovery Limits		70-130			"	

Excelchem Environmental Lab.

Dr Dun

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project: Project Number: Sullins

1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-305P 1104120-15 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	862	500	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	5.0	"	1.90		(10	"	
Benzene	193	5.0	"					
Toluene	10.4	5.0	"	**		n	7900	
Ethylbenzene	27.6	5.0	10			**		
n,p-Xylene	60.3	5.0	66	**				
-Xylene	8.8	5.0	00					
Kylenes, total	69.1	10.0	11		¥.	*		
urrogate: Dibromofluoromethane	98.8 %	% Recovery Limits		70-130			5(11 .)	
urrogate: Toluene-d8	97.4 %	% Recovery Limits		70-130				
urrogate: 4-Bromofluorobenzene	99.3 %	% Recovery Limits		70-130			(W)	

Excelchem Environmental Lab.

Dr Don

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project: Project Number: Sullins

1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-6 1104120-16 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							100
Gasoline Range Hydrocarbons	220	50.0	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	0.5	"	"		"	" "	
Benzene	3.2	0.5				"	H.f.	
Γoluene	ND	0.5	10		*	"		
Ethylbenzene	ND	0.5			*			
n,p-Xylene	ND	0.5						
-Xylene	ND	0.5	30	11		ii.		
(ylenes, total	ND	1.0	n				и	
urrogate: Dibromofluoromethane	99.0 %	% Recovery Limits		70-130			"	
urrogate: Toluene-d8	99.1 %	% Recovery Limits		70-130			"	
urrogate: 4-Bromofluorobenzene	99.5 %	% Recovery Limits		70-130			*	

Excelchem Environmental Lab.

Dr Dun

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-106 1104120-17 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	247	50.0	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	0.5	"			"	" "	
Benzene	9.3	0.5	18		Gi .			
Γoluene	ND	0.5	10	- 11	ж	w		
Ethylbenzene	ND	0.5		36	*			
n,p-Xylene	ND	0.5	11		*	n		
-Xylene	ND	0.5	11					
Cylenes, total	ND	1.0	"	2977	w;			
urrogate: Dibromofluoromethane	100 %	% Recovery Limits		70-130			"	
urrogate: Toluene-d8	101 %	% Recovery Limits		70-130			5 4 0	
urrogate: 4-Bromofluorobenzene	102 %	% Recovery Limits		70-130				

Excelchem Environmental Lab.

De Don

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-206 1104120-18 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Note
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	1170	1000	ug/l	AUD0159	04/14/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	10.0	"		*	"	" "	
Benzene	115	10.0	. 0	**		,,	21	
Γoluene	ND	10.0						
Ethylbenzene	ND	10.0			,,		u	
n,p-Xylene	ND	10.0			w			
-Xylene	ND	10.0	10			н		
Kylenes, total	ND	20.0		ŵ	ė.			
urrogate: Dibromofluoromethane	102 %	% Recovery Limits		70-130				
urrogate: Toluene-d8	98.8 %	% Recovery Limits		70-130			,,	
urrogate: 4-Bromofluorobenzene	101 %	% Recovery Limits		70-130			**	

Excelchem Environmental Lab.

De dons

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-306 1104120-19 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	ND	50.0	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	0.5	"			.0		
Benzene	10.4	0.5	"			0.00		
Γoluene	ND	0.5	211	"		10		
Ethylbenzene	ND	0.5		"				
n,p-Xylene	ND	0.5	26					
o-Xylene	ND	0.5	11				w	
Kylenes, total	ND	1.0	11		*		300	
urrogate: Dibromofluoromethane	101 %	% Recovery Limits		70-130			"	
urrogate: Toluene-d8	96.9 %	% Recovery Limits		70-130				
Surrogate: 4-Bromofluorobenzene	98.4 %	% Recovery Limits		70-130			W	

Excelchem Environmental Lab.

De De

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

Project Number: Project Manager: 1262.2

Geological Technics

Date Reported: 04/21/11 12:17

MW-107 1104120-20 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	20400	20000	ug/l	AUD0159	04/14/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	200	11		W.		"	
Benzene	15100	200	.00				*	
Toluene	ND	200	**					
Ethylbenzene	360	200				70		
n,p-Xylene	220	200		.0	9	796	w	
o-Xylene	ND	200	**		1383	70		
Xylenes, total	ND	400		*	121		*	
Surrogate: Dibromofluoromethane	101 %	% Recovery Limits		70-130				
urrogate: Toluene-d8	97.4 %	% Recovery Limits		70-130			(n	
urrogate: 4-Bromofluorobenzene	100 %	% Recovery Limits		70-130			"	

Excelchem Environmental Lab.

De De

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins

Project Number: 1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-207 1104120-21 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Note
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	19500	10000	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	108	100	"	"	"	04/13/11	EFA 8200B	
Benzene	15000	100	**		39	. 11		
Toluene	ND	100	**					
Ethylbenzene	180	100	w		W.	**		
n,p-Xylene	ND	100	uc.					
-Xylene	ND	100	#1	100			**	
(ylenes, total	ND	200	.00	989	· ·			
urrogate: Dibromofluoromethane	98.6 %	% Recovery Limits		70-130				
urrogate: Toluene-d8	96.5 %	% Recovery Limits		70-130			,,	
urrogate: 4-Bromofluorobenzene	102 %	% Recovery Limits		70-130			"	

Excelchem Environmental Lab.

Dr Dur

Geological Technics 1172 Kansas Ave

Project:

Sullins

1262.2

Project Number: Modesto, CA 95351 Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-307 1104120-22 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	70.0	50.0	ug/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	0.5		"	40			
Benzene	24.3	0.5	30	"				
Toluene	3.8	0.5	50	W.				
Ethylbenzene	0.6	0.5	30	W.		W.	**	
m,p-Xylene	1.5	0.5	99	W.			w	
o-Xylene	1.8	0.5	20.	16	(0)	(0)		
Xylenes, total	3.3	1.0		00		(00)	н	
Surrogate: Dibromofluoromethane	99.5 %	% Recovery Limits		70-130			"	
Surrogate: Toluene-d8	97.1 %	% Recovery Limits		70-130			"	
Surrogate: 4-Bromofluorobenzene	104 %	% Recovery Limits		70-130			*	

Excelchem Environmental Lab.

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project: Project Number: Sullins

1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-8 1104120-23 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Note
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	765	200	ug/l	AUD0159	04/19/11	04/19/11	ED 4 02/0D	
Methyl tert-Butyl Ether	ND	2.0	"	"	"	04/19/11	EPA 8260B	
Benzene	119	2.0		#:			100	
Coluene	ND	2.0						
Ethylbenzene	3.0	2.0	36				2000	
n,p-Xylene	4.1	2.0	**					
-Xylene	ND	2.0	n				,	
(ylenes, total	6.0	4.0	w		*			
urrogate: Dibromofluoromethane	98.8 %	% Recovery Limits		70-130				
urrogate: Toluene-d8	99.5 %	% Recovery Limits		70-130			"	
urrogate: 4-Bromofluorobenzene	99.0 %	% Recovery Limits		70-130				

Excelchem Environmental Lab.

Dr Du

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project: Project Number: Sullins

1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-108 1104120-24 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	4000	1000	uġ/l	AUD0159	04/15/11	04/15/11	EPA 8260B	
Methyl tert-Butyl Ether	89.6	10.0	"				"	
Benzene	1640	10.0	39	0.		**		
Toluene	10.8	10.0	311	*				
Ethylbenzene	123	10.0			56			
n,p-Xylene	75.4	10.0		1000	*			
-Xylene	ND	10.0	"		*	0.00	W	
Kylenes, total	84.2	20.0	"					
urrogate: Dibromofluoromethane	101 %	% Recovery Limits		70-130			,,	
urrogate: Toluene-d8	96.5 %	% Recovery Limits		70-130			"	
urrogate: 4-Bromofluorobenzene	99.4 %	% Recovery Limits		70-130				

Excelchem Environmental Lab.

Dr Dur

Geological Technics 1172 Kansas Ave Project:

Project Number:

Project Manager:

Sullins

1262.2

Modesto, CA 95351

1262.2

Date Reported: 04/21/11 12:17

Geological Technics

MW-208 1104120-25 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	12300	5000	ug/l	AUD0159	04/15/11	04/16/11	EPA 8260B	
Methyl tert-Butyl Ether	ND	50.0	"	**			*	
Benzene	5820	50.0	"	"	,		**	
Foluene	75.0	50.0	"	"	•		**	
Ethylbenzene	432	50.0	**		4			
m,p-Xylene	247	50.0	11		×			
o-Xylene	ND	50.0	**		*	7007		
Xylenes, total	270	100	æ	000	36		786	
Surrogate: Dibromofluoromethane	102 %	% Recovery Limits		70-130			"	
Surrogate: Toluene-d8	97.7 %	% Recovery Limits		70-130			W;	
Surrogate: 4-Bromofluorobenzene	100 %	% Recovery Limits		70-130			•	

Excelchem Environmental Lab.

De Don

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project:

Sullins 1262.2

Project Number: Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

MW-308 1104120-26 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Note
Volatile Organic Compounds by	GC/MS							
Gasoline Range Hydrocarbons	3240	1000	ug/l	AUD0159	04/15/11	04/14/11	PR / 2422	
Methyl tert-Butyl Ether	ND	10.0	ug/1	MOD0139	04/13/11	04/16/11	EPA 8260B	
Benzene	1230	10.0				,,		
Coluene	18.6	10.0	31					
Ethylbenzene	187	10.0	31		*		. 0	
n,p-Xylene	105	10.0	"		*			
-Xylene	19.8	10.0	n:				(0)	
Cylenes, total	125	20.0			*			
urrogate: Dibromofluoromethane	99.7 %	% Recovery Limits		70-130		989	,,	
urrogate: Toluene-d8	98.3 %	% Recovery Limits		70-130				
urrogate: 4-Bromofluorobenzene	94.5 %	% Recovery Limits		70-130			•	

Excelchem Environmental Lab.

De Don

Geological Technics 1172 Kansas Ave Modesto, CA 95351

Project: Project Number: Sullins

1262.2

Project Manager:

Geological Technics

Date Reported: 04/21/11 12:17

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AUD0159 - EPA 8260B										
Blank (AUD0159-BLK1)				Prepared &	Analyzed:	04/14/11				
Surrogate: Dibromofluoromethane	12.1		ug/l	12.5		96.6	70-130			
Surrogate: Toluene-d8	12.7		"	12.5		102	70-130			
Surrogate: 4-Bromofluorobenzene	13.0		"	12.5		104	70-130			
Gasoline Range Hydrocarbons	ND	50.0	"							
Methyl tert-Butyl Ether	ND	0.5	200							
Benzene	ND	0.5								
Toluene	ND	0.5								
Ethylbenzene	ND	0.5								
m,p-Xylene	ND	0.5								
o-Xylene	ND	0.5	**							
Kylenes, total	ND	1.0								
Blank (AUD0159-BLK2)				Prepared: 0	4/14/11 An	alyzed: 04	/15/11			
Surrogate: Dibromofluoromethane	12.4		ug/l	12.5		98.9	70-130			
Surrogate: Toluene-d8	12.4		"	12.5		99.3	70-130			
Surrogate: 4-Bromofluorobenzene	13.0		"	12.5		104	70-130			
Gasoline Range Hydrocarbons	ND	50.0	"							
Methyl tert-Butyl Ether	ND	0.5	**							
Benzene	ND	0.5								
oluene	ND	0.5	**							
Ethylbenzene	ND	0.5	30							
n,p-Xylene	ND	0.5	22.							
-Xylene	ND	0.5								
Kylenes, total	ND	1.0	"							
CS (AUD0159-BS1)				Prepared &	Analyzed:	04/14/11				
urrogate: Dibromofluoromethane	11.8		ug/l	12.5		94.7	70-130			
urrogate: Toluene-d8	12.1		"	12.5		97.1	70-130			
urrogate: 4-Bromofluorobenzene	12.8		"	12.5		102	70-130			
enzene	19.2	0.5	"	20.0		96.1	80-120			
oluene	17.7	0.5		20.0		88.6	80-120			
1-Dichloroethene	17.9	0.5	"	20.0		89.6	80-120			
richloroethene	17.6	0.5	*	20.0		87.9	80-120			
hlorobenzene	17.9	0.5	**	20.0		89.3	80-120			

Excelchem Environmental Lab.

Geological Technics 1172 Kansas Ave

Project:

Sullins

Project Number: Modesto, CA 95351 Project Manager:

1262.2 Geological Technics

Date Reported: 04/21/11 12:17

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch AUD0159 - EPA 8260B										
LCS (AUD0159-BS2)				Prepared &	Analyzed:	04/14/11				
Surrogate: Dibromofluoromethane	12.0		ug/l	12.5		96.1	70-130			
Surrogate: Toluene-d8	12.2		"	12.5		97.9	70-130			_
Surrogate: 4-Bromofluorobenzene	13.0		"	12.5		104	70-130			
Benzene	19.3	0.5	"	20.0		96.4	80-120			
oluene	17.8	0.5	W	20.0		89.0	80-120			
,1-Dichloroethene	17.8	0.5	*	20.0		89.0	80-120			
richloroethene	17.7	0.5		20.0		88.6	80-120			
Chlorobenzene	18.4	0.5		20.0		92.2	80-120			
CS Dup (AUD0159-BSD1)				Prepared &	Analyzed:	04/14/11				
urrogate: Dibromofluoromethane	11.9		ug/l	12.5		95.0	70-130			
urrogate: Toluene-d8	12.1		"	12.5		97.0	70-130			
urrogate: 4-Bromofluorobenzene	13.2		"	12.5		106	70-130			
enzene	19.7	0.5		20.0		98.4	80-120	2.31	15	
oluene	18.1	0.5	000	20.0		90.7	80-120	2.34	15	
1-Dichloroethene	18.1	0.5	0.000	20.0		90.4	80-120	0.834	15	
richloroethene	17.5	0.5	2907	20,0		87.6	80-120	0.342	15	
hlorobenzene	18.4	0.5		20.0		92.2	80-120	3.14	15	
CS Dup (AUD0159-BSD2)				Prepared: 04	1/14/11 Ana	alyzed: 04/	15/11			
urrogate: Dibromofluoromethane	12.0		ug/l	12.5		96.2	70-130			
urrogate: Toluene-d8	12.1		"	12.5		97.1	70-130			
rrogate: 4-Bromofluorobenzene	12.6		"	12.5		101	70-130			
enzene	19.5	0.5	"	20.0		97.5	80-120	1.14	15	
luene	18.0	0.5	30	20.0		89.9	80-120	0.951	15	
-Dichloroethene	18.0	0.5	34	20.0		90.0	80-120	1.17	15	
chloroethene	17.5	0.5	11	20.0		87.6	80-120	1.14	15	
lorobenzene	18.6	0.5	**	20.0		93.2	80-120	1.03	15	

Excelchem Environmental Lab.

Geological Technics
Project: Sullins
1172 Kansas Ave
Project Number: 1262.2
Modesto, CA 95351
Project Manager: Geological Technics

Date Reported: 04/21/11 12:17

Notes and Definitions

ND Analyte not detected at reporting limit.

NR Not reported

Excelchem Environmental Lab.

Dr Du

Excelchem Environmental Lab.

Geological Technics Inc. 1172 Kansas Avenue Modesto, CA (209) 522-4119 Fax 522-4227 E-mail: gti@gtienv.com

187 NORTH L STREET, LIVERMORE, CA

Field LO.

Client/Project Name:

SULLINS

Project #:

1262.2

Site Address:

Global ID No .:

T0600100116

Sampled By: (prim and sign name)
ANDREW DORN

Time

Analysis Requested

9038 COP

TPH-C, BTEX, MTBE BY METH

Matrix (Soil, Water, Gas, Other)

No. of Containers

Sample I.D.

Proservation Typo

Page_ |

Chain of Custody

Laboratory:

EXCELCHEM Temp. @ Shipping: C° Temp. @ Lab Receipt: Co

Purchase Order # 1262 - 213843

EDF Report: XYes Q No. Turnaround Time: S = Standard 2 day 1 day 5 day

Remarks

Project Manager: Project Number:

Geological Technics 1172 Kansas Ave

Modesto, CA 95351

1262.2

Excelchem Environmental Labs

Geological Technics

Date Reported: 04/21/11 12:17

	7		1Z	2	0.	1-1		1 1	-1				Remark	25
04-7-11	1400	W-ES.	13		HCL	X		11					Tierrealt	
U-8-11	0930	W-35	3	T		m	+	11	+					
04-7-11	1620	W-Bs.	3	H	1	$\dagger \dagger \dagger$	+	+	+	-				
04-7-U	1440	W-3-	3	IT		ĦŦ	$\forall t$	+	+	+				_
11-8-11	1020	W-A	3	1		Ħ	+	+	+	-				
	1220	W-15.	3	İ		Ħ	++	+	+	+				
	1300	W-1.	3	i		H	++	+	+	+				
-		MWH	12			#	#	+	+	_				_
	1605	MW-104 .	2			H	+	+	+	+	-			_
	1600	MW-204 4	2				+	+	H	+				_
	1555	MW-304-	2			H	+	+	H	+				
	1550	MM-404 .	12			\Box	\top		H	-				
	1020	MW-\$305 NP	2	1		\Box	+	11						
V	1055	MW-105 -	2	V	V	V	\top	T	\forall	-				
YMA.	by: (signature)	Date: 4-11-11	Time	126)	R	cehed by	c (signstu	re)			Date /i/	11/11	Time
7/10/	by: (signature)	Date: 4/12/11	Time	20	0	R	ceined by	i-(signetu	18)	1		Date Ci /	17/13 13/4	Time;
elinquished	Ve-line state	Dates 4 //2	Time	Sc	Ù	Fu	ceived by	-11	(E)			Date	12/1	Time

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Excelchem Environmental Lab

401/k-1104/20

Project Manager: Project Number:

Geological Technics 1172 Kansas Ave

Modesto, CA 95351

Excelchem Environmental Labs

1262.2

Geological Technics

04/21/11 12:17 Date Reported:

Time:

Geological Technics Inc. Page Z of 2 Die-4/1/16 Chain of Custody 82606 1172 Kansas Avenue Modesto, CA (209) 522-4119 Fax 522-4227 E-mail: gti@gtienv.com Laboratory: 00 Analysis Requested EXCELCHEM Client/Project Name: TPH-G, BIFX, MTEE BY METH Matrix (Soil, Water, Gas, Other) 1262-2 SULLINS Temp. @ Shipping: Co Site Address: Temp. @ Lab Receipt: 187 NORTH L STREET, LINERMORE, CA Purchase Order # Global ID No .: Preservation Type 1262-213843 No. of Containers T0600100116 EDF Report: Yes Sampled By: (print and sign name) urnaround Timer S = Standard ANDREW DORN 2 day 1 day 5 day Date Time Field I.D. Sample I.D. Remarks 4-8-11 1045 MW-205 ; HCL X 1040 MW-305 P: 10 1240 MW-6 1230 MW-106 , 1215 MW-206 1200 MW-306 MW1-7 H 1535 MN-107 A 30 1530 2! MW-207 2) 1525 MW-3071 73 04-T-11 1600 MW-B . 24 1550 MW-108 -75 1545 MW-208. MW-308 -1540 VV V V Received by (signature) Retriquished by Highalure) Dates Time: Time: 830 Date: 4-11-11 0830 Date: Time: Time: Violo12-4-11 Relinquished to 18 granue

Date: //il

Time:

ISCC

Received by: (signature)

custody document. This analytical report must be reproduced in its entirety, The results in this report apply to the samples analyzed in accordance with the chain

Excelchem Environmental Labs

ological Technics	Project:	Sullir	10			
2 Kansas Ave	Project Number:	1262.				
desto, CA 95351	Section of the second section of the second section of the second section sect			2000		Date Reporte
Sample Integrity Date Received: Section 1 - Sample Arrival Info Sample Transport: ONTRAC Transported In: The Chest Describe type of packing mater Has chilling process begun? Temperature of Samples (°C) Was temperature In Range?: Section 2 - Bottle/Analysis Info. Did all bottles arrive unbroken and Did all bottle labels agree with CC) Were correct containers used for the Course of Samples (°C) Were correct preservations used the CC) Was a sufficient amount of samples	Project Manager: UPS USPS Walk- Box Hand rials: None Bubble Wr N Samp N: I intact? I intact? C? ne tests requested? rethe tests requested? rethe tests requested?	In 1538 ap Foar	WOF	M Couri	ts Pa	04/21/11 12:1 ER
Section 3 - COC Info.	(Volatile Methods Only)					A CONTRACTOR OF THE CONTRACTOR
Completed Yes N			-	Yes	No	
Was COC Received 3	Analysis Re	uested		103	NO	Comments
Date Sampled	Samples arrived	within he			-	
Time Sampled	Any hold tin	ies less t	han 72 hrs	\$	1	
Sample ID	Client Name	The second second		1	1	
Rush TAT	Address/Tele	ephone #		-	-	
Section 4 - Comments / Discrepa Was Client notified of discrepancie			No	tified by	/ <u>:</u>	
Explanations / Comments:	107.1112					(19)
2.2.0000						
1	TANK THE PARTY OF					1 200
	•	in the same of the		- Interest		
	- Aller					4.00
		_	•	T	shele :	es Labeled by:
Form	completed by:				-	Data/Firms
Fora	J					Date/Time: 7/12

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Appendix C

Geological Tech	inics,	Inc.
-----------------	--------	------

Well Development Field Log

Project Name:	Sullins	Well I.D.: W-A
Project No.:	1262.2	Date: 4/13/2011
Project Location:	187 N. L Street	
	Livermore, CA	

Time	Cumulative Volume Purged (gal)	Pumping Rate (gpm)	Temp.	C°	E.C. (µmhos/cm)	pН	DO	(mg/L)	Remarks	
11:30-11:40	0-5								Clear, strong odor, no sediments	
12:50	5.0								Brownish black, strong odor, a lot of sediments	
13:00	10.0	Brownish black, strong odor, a lot of sediments		Brownish black, strong odor, a lot of sediments						
13:05	15.0								Brownish black, strong odor, a lot of sediments	
13:15	20.0								Brownish black, strong odor, a lot of sediments	
13:25	25.0								Brownish black, strong odor, a lot of sediments	
13:30	30.0								Brownish black, strong odor, a lot of sediments	
13:40	35.0					Brownish black, strong odor, a lot of sediments				
13:50	40.0								Brownish black, strong odor, a lot of sediments	
14:05	45.0								Brownish black, strong odor, a lot of sediments	

Development Method: Pumping Rate:	☑ Dedicated Waterra w/ su 0.33 gal/min	rge block attachement	pump with dedicated tubing	☐ Other Well Pumped Dry: ☐ Yes ☒ No
Bottom of Well Screen (ft bgs):	63.00	*Well Constructed TD (ft):	63.00	Notes: 1st 1/2 gal purged water was clear and then changed
* Top of Well Screen (ft bgs):	-	* Well TD (ft):	58.34	to black, collected a sample with a bailer.
**Well Screen Interval (ft):		**Silt Thickness (ft):	4.66	
Casing diameter (in):	4"	Final DTW (ft):	57.75	Developed By: E. Nona
Initial DTW (ft):	-	Initial Apprnc (clr-odor):	Brn Blk/Strong	
Water column height (ft):	1987	Final Apprnc (clr-odor):	Lt Brn/Strong	Develop Water Drummed: ☐ Yes ☐ No
**Volume (gal/linear ft):	144	Total Developed Vol (gal):	95	No. of Drums: 7
**One casing volume (gal):		Develop Duration (min):	155	

Gallons per foot of casing. 2° dia. = 0.17, 3° dia. = 0.38 4° dia. = 0.65, 5° dia. = 1.02, 6° dia. = 1.48

* = constructed

Geological '	Technics,	Inc.
--------------	-----------	------

Livermore, CA

Well Development Field Log

Project Name: Sullins	Well I.D.: W-A
Project No.: 1262.2	Date: 4/13/2011
Project Location: 187 N. L Street	

Time	Cumulative Volume Purged (gal)	Pumping Rate (gpm)	Temp.	C°	E.C. (μmhos/cm)	рН	DO	(mg/L)	Remarks	
14:20	50.0								Brownish black, strong odor, a lot of sediments	
14:25	55.0								Brownish black, strong odor, a lot of sediments	
14:30	60.0								Brownish black, strong odor, a lot of sediments	
14:40	65.0								Light brown, strong odor, a lot of sediments	
14:45	70.0								Light brown, strong odor, a lot of sediments	
14:50	75.0								Light brown, strong odor, a lot of sediments	
14:55	80.0								Light brown, strong odor, a lot of sediments	
15:05	85.0								Light brown, strong odor, a lot of sediments	
15:10	90.0								Light brown, strong odor, a lot of sediments	
15:15	95.0								Light brown, strong odor, a lot of sediments	

_		_			Ligiti 2	brown, earling easi, a lot of ecalmonts
	Development Me Pumping Rate		☑ Dedicated Waterra w/ sur	rge block attachement	pump with dedicated tubing us 🗵 Intermittent	Well Pumped Dry: ☐ Yes ☒ No Notes:
	* Bottom of Well Screen (f	(ft bgs):	63.00	*Well Constructed TD (ft):	63.00	
	* Top of Well Screen ((ft bgs):	2	* Well TD (ft):	58.34	
	**Well Screen Interv	val (ft):	<u>.</u>	**Silt Thickness (ft):	4.66	N. Carlotte and Ca
	Casing diameter	er (in):	4"	Final DTW (ft):	57.75	Developed By: E. Nona
	Initial DT	W (ft):	-	Initial Apprnc (clr-odor):	Brn Blk/Strong	
	Water column heigh	iht (ft):		Final Apprnc (clr-odor):	Lt Brn/Strong	Develop Water Drummed: X Yes No
	**Volume (gal/line	near ft):	=	Total Developed Vol (gal):	95	No. of Drums: 7
	**One casing volume	e (gal):	2	Develop Duration (min):	155	

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

* = constructed

** = calculated

Geological	Technics,	Inc.
. 0	,	

Well	Develo	pment	Field	Log
		DANK CARE	-	200

Project Name:	Sullins

Well I.D.: W-1

Project No.: 1262.2

Date: 4/13/2011 Project Location: 187 N. L Street

		Livermore, CA		
7250	Cumulative Volume Purged	Pumping Rate		

Time	Cumulative Volume Purged (gal)	Pumping Rate (gpm)	Temp.	C°	E.C. (μmhos/cm)	рН	DO	(mg/L)	Remarks
12:35	0.0								Greyish green, strong odor, a lot of sediments
12:45	5.0								Greyish green, strong odor, a lot of sediments
12:53	10.0								Greyish green, strong odor, a lot of sediments
13:05	15.0								Greyish green, strong odor, a lot of sediments
13:17	20.0								Light green, strong odor, few sediments
14:00	25.0								Light green, strong odor, few sediments
14:06	30.0								Light green, strong odor, few sediments
14:15	35.0								Light green, strong odor, few sediments
14:25	40.0								Light green, strong odor, few sediments
14:35	45.0								Light green, strong odor, few sediments

☐ Other

Development Method: 🗵 Dedicated Waterra w/ surge block attachement ☐Centrifugal pump with dedicated tubing Pumping Rate: 0.38 gal/min Develop Style: ☐ Continuous ☒ Intermittent * Bottom of Wall Co

56.50	* Bottom of Well Screen (ft bgs):
16	* Top of Well Screen (ft bgs):
191	**Well Screen Interval (ft):
2"	Casing diameter (in):
27.72	Initial DTW (ft):
•	Water column height (ft):
161_	**Volume (gal/linear ft):
(1 - 1)	**One casing volume (gal):

*Well Constructed TD (ft):	56.60
* Well TD (ft):	54.56
**Silt Thickness (ft):	2.04
Final DTW (ft):	55.00
Initial Apprnc (clr-odor):	Grey/Grn/Strong
Final Apprnc (clr-odor):	Lt Gry Grn/strong
Total Developed Vol (gal):	35
Develop Duration (min):	110

	Well Pumped Dry:	☐ Yes	⊠ No
Notes:			
	Developed By:	E. Nona	Fred Nom
De	velop Water Drummed:	Yes	□ No
		7	

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

* = constructed

** = calculated

	Project Name:	Sullins (L St)	1				Well I.D.: W-1
	Project No.:						Date: 4/8/2011
	Project Location:						
		Livermore, CA				e c	Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
12:37	0.00	16.00	860	6.87	-62.5	19.35	Light grey, strong odor, few sediments
12:41	4.75	18.90	924	5.96	-137.6	1.14	Clear/milky, strong odor, no sediments
12:45	9.50	18.96	921	6.07	-147.4	0.82	Clear/milky, strong odor, no sediments
12:49	14.25	18.96	917	6.30	-164.3	0.40	Clear/milky, strong odor, no sediments
13:00							Collected samples
-							
Well	Purge Method Pumping Rate Constructed TD (ft) * Well TD (ft	1.19	Waterra □Ce		mp with dedicated		# VOAs
	Silt Thickness (ft	A COMMENT	1			/	# polys preserved non-preserved
	Initial DTW (#		1				# polys preserved non-preserved
Mate	er column height (fi	7	1		Notes	s: Small droplets	of sheen were observed on top of purge water.
	casing volume (gal		1			٨	Ĭ
One	** Final DTW (ff		1		Sampled By	y: A. Dorn	India day
	Casing diameter (in	2"				7	
Sample N	Method: Gallons per foot of casing		ailer Other Other Odia. = 0.38 4" dia. = 0		* = measured : 1.02, 6* dia. = 1.48	** = @ sampling	Purged Water Drummed:

Project Name: Sullins (L St)							Well I.D.: W-1s
Project No.: 1262.2							Date: 4/7/2011
	Project Location:	187 N. L Street					
		Livermore, CA					Samples sent to: Excelchem
Time	Cumulative Volume Purged	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:43	0.0	17.34	1006	6.75	-173.1	5.91	Clear, strong odor, few sediments
11:15	26.0	18.91	976	6.01	-229.9	0.16	Clear, strong odor, few sediments
11:45	52.0	18.92	976	6.18	-247.4	0.09	Clear, strong odor, few sediments
12:15	78.0	19.06	967	6.17	-221.5	0.37	Clear, strong odor, few sediments
12:20							Collected samples
	Purge Method Pumping Rate	0.85	Waterra □Ce gal/min		mp with dedicated		# VOAsX preserved non-preserved
Well	Constructed TD (ft)		1	Sample	Containers used.		# amber liters preserved non-preserved
	* Well TD (ft)	10000	1				# polys preserved non-preserved
	Silt Thickness (ft) Initial DTW (ft)		-				# polys preserved non-preserved
14/24-		-	1		Notes	Small dronlets	of sheen were observed in the purged water.
1	r column height (ff)		-		Notes	. Omail diopicts	A SHOOL HOLD OBSOLVED IN the parigue water.
One	casing volume (gal) ** Final DTW (ff)		-		Sampled By	A Dorn	MIM John
,			-		Sampled by	. A. Doin	Solve Stepho
Sample M	Casing diameter (in	Waterra ⊠ Ba	Lailer D Other D		* = measured	** = @ sampling	Purged Water Drummed: ☒ Yes ☐ No No. of Drums:
G	alions per 100t of casing	j. 2 ula. = 0.17, 3 l	Jia 0.50 4 Gia. = 0	uia. =			

	Project Name:	Sullins (L St)				Well I.D.: W-3		
	Project No.:	1262.2					Date: 4/7/2011	
	Project Location:	187 N. L Street	t					
		Livermore, CA	8				Samples sent to: Excelchem	
Time	Cumulative Volume Purged (gal)	Temp C°	EC (µS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks	
14:17	0.00	15.49	910	7.30	250.6	11.20	Metal gray, mild odor, few sediments (first 1/2 gal was clear)	
14:25	3.75	18.31	931	7.18	-157.7	0.56	Clear, mild odor, very few sediments	
14:28	7.50	18.34	927	7.04	-176.4	0.24	Clear, mild odor, very few sediments	
14:31	11.25	18.25	928	6.94	-185.7	0.10	Clear, mild odor, very few sediments	
14:40							Collected samples	
	Purge Method: Pumping Rate:		Waterra □Cen	trifugal pun	np with dedicated	tubing 🚨 Otl	ner	
Well C	Constructed TD (ft):	51.50		Sample	Containers used:	3	# VOAs X preserved non-preserved	
	* Well TD (ft):	50.01					# amber liters preserved non-preserved	
	Silt Thickness (ft):	1.49					# polys preserved non-preserved	
	Initial DTW (ft):	28.76			:		# polys preserved non-preserved	
Water	column height (ft):	21.25			Notes:	Recharged took	2 minutes, bubbles stopped afterwards.	
One o	asing volume (gal):	3.61				1	10	
	** Final DTW (ft):	29.83			Sampled By:	A. Dorn	MIM DEN	
Ca	asing diameter (in):	2"			,	7		
Sample Me	ethod: lons per foot of casing.		ler Other a. = 0.38 4" dia. = 0.69	5, 5" dia. = 1	* = measured .02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed: Yes No No. of Drums:	

	Project Name:	Sullins (L St)					Well I.D.: <u>W-3s</u>	
	Project No.:	1262.2					Date: 4/7/2011	
	Project Location:	187 N. L Stree	et					
	274	Livermore, CA					Samples sent to: Excelchem	
		Livelinore, or	`			6		
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks	
8:56	0.00	13.58	877	6.85	141.6	10.46	*See below.	
9:05	10.75	18.01	954	6.85	27.0	1.23	Dark brown, no odor, few sediments	
9:15	21.50	18.05	963	6.71	42.4	0.78	Light brown, no odor, few sediments	
9:25	32.25	18.06	964	6.63	40.7	0.72	Light brown, mild odor, few sediments	
9:30							Collected samples	
								-
								-
	Purge Method:	☑ Dedicated	Waterra	trifugal pur	np with dedicated	tubing	ther	_
	Pumping Rate:	3.25	gal/min					
14/-11	Constructed TD (ft):	45.00	7	0	Containers used:	3	# VOAsX preserved non-preserved	
weir	* Well TD (ft):	10000000	-	Sample	Containers used.		# amber liters preserved non-preserved	
	Silt Thickness (ft):	1,000	-				# polys preserved non-preserved	
	Initial DTW (ft):	1.05/0	-				# polys preserved non-preserved	
Water	column height (#):		+		Notes	*In first nurge vo	olume, water condition changed from light brown/clear, no odor, few	
	casing volume (gal):		1		110100.		gal) to dark black, strong odor, few sediments at 2 gals. Recharge	
One	** Final DTW (ff):		1		Sampled By:	Topic and	stayed to 80% and took 5 minutes.	
С	asing diameter (in):		1				+ Xun Tale	
	The second of th		_				3	
Sample M			ailer Other		* = measured	** = @ sampling	Purged Water Drummed: Yes No	
Ga	illons per foot of casing.	2" dia. = 0.17, 3"	dia. = 0.38 4* dia. = 0.6	65, 5" dia. = 1	1.02, 6" dia. = 1.48		No. of Drums:	

Groundwater Monitoring Fie

Project Name: Sullins (L St)							Well I.D.: W-A		
Project No.: 1262.2							Date: 4/7/2011		
	Project Location:	187 N. L Stree	t						
Livermore, CA							Samples sent to: Excelchem		
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks		
9:47	0.0	15.96	618	7.11	72.2	9.50	Black, strong odor, few sediments		
	18.0	18.89	926	6.85	-245.7	0.24	Black, strong odor, few sediments		
	36.0	18.94	849	6.69	-249.7	0.14	Black, strong odor, few sediments		
10:15	54.0	18.94	907	6.85	-254.5	0.04	Black, strong odor, few sediments		
10:20							Collected samples		
	Purge Method: Pumping Rate:		Vaterra ☐Cent	rifugal pumį	o with dedicated to	ubing 🚨 Othe	er		
Well C	constructed TD (ft):	63.00		Sample	Containers used:	3	# VOAs preserved non-preserved		
	* Well TD (ft):	55.12					# amber liters preserved non-preserved		
	Silt Thickness (ft):	7.88			•		# polys preserved non-preserved		
	Initial DTW (ft):	27.66					# polys preserved non-preserved		
Water	column height (ft):	27.46			Notes:	Droplets of bio-fo	oul in black purged water.		
One c	asing volume (gal):	17.85				1	10		
	** Final DTW (ft):				Sampled By:	A. Dorn	de bon		
Ca	sing diameter (in):	4"				1			
Sample Me			ler Other a. = 0.38 4* dia. = 0.65	, 5" dia. = 1.0		** = @ sampling	Purged Water Drummed:		

Project Name: Sullins (L St)							Well I.D.: W-Bs			
Project No.: 1262.2							Date: 4/7/2011			
	Project Location:	187 N. L Stree	t							
		Livermore, CA					Samples sent to: Excelchem			
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks			
14:55	0.00	17.21	690	6.88	-157.8	5.42	Grayish clear, strong odor, very few sediments			
15:23	25.75	18.57	778	6.75	-200.6	0.06	Clear, no odor, no sediments			
15:49	51.50	18.58	781	6.58	-198.5	0.04	Clear, no odor, no sediments			
16:18	77.25	18.53	780	6.61	-198.2	0.02	Clear, no odor, no sediments			
16:20							Collected samples			
	Purge Method:	□ Dedicated	Waterra □Cer	ntrifugal pun	np with dedicated	tubing	her			
	Pumping Rate:		gal/min	nunagai pai	ip mar accidates	g —				
		r um menen	1		220000000000000000000000000000000000000		# VOAs X preserved non-preserved			
Well	Constructed TD (ft):		-	Sample	Containers used:	3	# OF A STATE OF THE STATE OF T			
	* Well TD (ft):		-				# amber liters preserved non-preserved			
	Silt Thickness (ft):		-				# polys preserved non-preserved			
***	Initial DTW (ft):		-				# polys preserved non-preserved			
	column height (ft):		-		Notes:	Recharge took 2	z minutes.			
One c	casing volume (gal):	1000000000	-			A D				
0	** Final DTW (ft):	- OPERATOR -	-		Sampled By:	A. Dorn	Mm John			
Ca	asing diameter (in):	4"	_							
Sample Me	ethod: Illons per foot of casing.		ailer □ Other □ dia. = 0.38 4" dia. = 0.		* = measured .02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed:			

	Project Name:	Sullins (L St)				Well I.D.: W-Es								
	Project No.:	1262.2					Date: 4/7/2011							
	Project Location:	187 N. L Street	t											
		Livermore, CA					Samples sent to: Excelchem							
					1									
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks							
13:40	0.00	17.77	871	7.07	87.2	6.45	Greyish brown/clear, no odor, very few sediments							
13:43	2.75	19.44	778	6.82	96.0	2.14	Greyish brown/clear, no odor, very few sediments							
13:49	5.50	19.36	793	7.05	149.3	19.3 1.30 Greyish brown/clear, no odor, very few sediments								
13:53	8.25	19.47	790	7.03	141.3	1.06	Greyish brown/clear, no odor, very few sediments							
14:00							Collected samples							
	Purge Method: Pumping Rate:		Waterra □Cen	trifugal pun	np with dedicated t	ubing 🗖 Oti	ther							
Well C	Constructed TD (ft):	45.00		Sample	Containers used:	3	_# VOAsX preserved non-preserved							
	* Well TD (ft):	44.17					# amber liters preserved non-preserved							
	Silt Thickness (ft):	0.83					# polys preserved non-preserved							
	Initial DTW (ft):	3589679616					# polys preserved non-preserved							
	column height (ft):				Notes:	Had to clear che	eck valve at 3.5 gal purged, recharge took 1 minute.							
One o	asing volume (gal):													
	** Final DTW (ft):	0 (0)7550000000000000000000000000000000000			Sampled By:	A. Dorn	MM LOPN							
Ca	asing diameter (in):	2"	Į,			V.								
Sample Me	ethod: lons per foot of casing.		iler Other	5, 5" dia. = 1	* = measured .02, 6" dia. = 1.48	** = @ sampling	Purged Water Drummed:							

	Project Name:	Sullins (L	St)				Well I.D.: MW-4						
	Project No.:	1262.2							Date:	4/8/2011			
	Project Location:	187 N. L	Stree	t									
	8	Livermor							Samples sent to:	Excelchem			
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)		Remarks			
13:45	0.1												
	Purge Method:	⊠ Ded	icated	Waterra □Ce	ntrifugal pun	np with dedicated	tubing	☐ Ot	ner				
	Pumping Rate:			gal/min					,	*			
Well	Constructed TD (ft):	30.0	20	1	Sample	Containers used:			# VOAs	preserved non-preserved			
vveii	* Well TD (ft):			1	Sample	Containers used.			# amber liters	preserved non-preserved			
	Silt Thickness (ft)								# polys	preserved non-preserved			
	Initial DTW (ft)		00	(Assumed)					# polys	preserved non-preserved			
Wate	r column height (ft)	3.0	0]		Notes:	Well d	ry.					
One	One casing volume (gal): 0.03							A					
	** Final DTW (ft)	-				Sampled By:	A. Do	rn J	am Jopn				
	asing diameter (in)	: CN	1T										
Sample M				iller Other		• = measured	** = @ \$	sampling]	Purged Water Drummed:			
G	allons per foot of casing.	2" dia. = 0.	17, 3" 0	fia. = 0.38 4" dia. = 0	.65, 5" dia. = 1	.02, 6" dia. = 1.48				No. of Drums:			

	Project Name:	Sullins (L	St)				Well I.D.: MW-5						
	Project No.:	1262.2							Date: 4/8/2011				
	Project Location:		Street	t									
		Livermor							Samples sent to: Excelchem				
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks				
					-								
								220					
	Purge Method			Waterra	entrifugal pur	mp with dedicated	tubing	☐ Ot	ther				
	Pumping Rate			gal/min									
Well	Constructed TD (ff)	27.0	00]	Sample	Containers used:			# VOAs preserved non-preserved				
	* Well TD (ft)	:							# amber liters preserved non-preserved				
	Silt Thickness (ft)	:							# polys preserved non-preserved				
	Initial DTW (ft)	: 27.0	00	(Assumed)			_		# polys preserved non-preserved				
Wate	er column height (ff)	i				Notes	Well D	Ory.					
One	casing volume (gal)	:						A	17				
	** Final DTW (ft	:				Sampled By	: A. Do	orn #	Mm Japa				
	Casing diameter (in	: CN	1T										
Sample M	lethod: allons per foot of casing			ailer Other		* = measured	** = @	sampling	Purged Water Drummed: ☐ Yes ☐ No No. of Drums:				
G	alions per root of casing	. Z uia. = 0.	17, 3 (uia. = 0.00 4 Uia. = 0	J ula. =	5 5/41 - 11-10							

	Project Name:	Sullins (L	St)				Well I.D.: MW-6					
	Project No.:	1262.2							Date: 4/8/2011			
	Project Location:	187 N. L	Street									
	<i>2007</i>	Livermor	e, CA						Samples sent to: Excelchem			
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks			
12:25	0.1								Dark greenish gray, strong odor, a lot of sediments			
12:40									Collected samples			
			_									
	Purge Method: Pumping Rate:			Vaterra □Cer	ntrifugal pum	p with dedicated	tubing	□ Ot				
Well	Constructed TD (ft):		00		Sample	Containers used:		2	# VOAs X preserved non-prese			
	* Well TD (ft):			·					# amber liters preserved non-preserv # polys preserved non-preserv			
	Silt Thickness (ft): Initial DTW (ft):											
Water				(Assumed)		Notes:			# polys preserved non-preserv	ved		
	Water column height (ft): 3.00 One casing volume (gal): 0.03							,	1 —			
	** Final DTW (ft):					Sampled By:	A. Doi	rn 🛆	XID IN SERV			
С	asing diameter (in):	CM	Т			Jan		7	7.			
	Sample Method: Waterra 🗵 Bailer 🗆 Other 🗖 *= measure Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. =								Purged Water Drummed: No. of Drums:	Yes 🔲 No		

	Project Name:	Sullins (L	St)						Well I.D.:	MW-7
	Project No.:	1262.2							Date:	4/8/2011
Р	roject Location:	187 N. L S	Street							
	22 23	Livermore	e, CA						Samples sent to:	Excelchem
Time	Cumulative olume Purged (gal)	Temp	c°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)		Remarks
	0.1									
	Purge Method: Pumping Rate:			Waterra □Cer	ntrifugal pun	np with dedicated	tubing	Ott		
Well Cor	nstructed TD (ft):	30.00	0		Sample	Containers used:			# VOAs	preserved non-preserved
	* Well TD (ft):								# amber liters	preserved non-preserved
S	ilt Thickness (ft):	_							# polys	preserved non-preserved
222	Initial DTW (ft):	-		(Assumed)					# polys	preserved non-preserved
	olumn height (ft):	-				Notes:	Well pi	urged dry	and was not enough water	to collect samples.
	sing volume (gal): ** Final DTW (ft):		3			Sampled By:	A Do	rn A	Ale Day	
1	ng diameter (in):		r			Sampled by.	A. DOI	" PX	MINI- SERVIN	
Sample Metho	od:	Waterra D	☑ Bai	I iler		* = measured .02, 6" dia. = 1.48	•• = @ s	ampling]	Purged Water Drummed:

	Project Name: Sullins (L St)							Well I.D.: MW-8					
	Project No.:	1262.2							Date:	4/7/2011			
	Project Location:	187 N. L	Stree										
	200	Livermor							Samples sent to:	Excelchem			
Time	Cumulative Volume Purged	Temp	C°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)		Remarks			
15;25									Milky metal gray, stron	ng odor, a lot of sediments			
16:00									Collected samples				
	Purge Method: Pumping Rate:			Waterra □Cer	ntrifugal pun	np with dedicated	tubing	☐ Ot					
Well	Constructed TD (ft):	30.0	00		Sample	Containers used:		1	_# VOAs	X preserved non-preserved			
	* Well TD (ft)								# amber liters	preserved non-preserved			
	Silt Thickness (#)								<u> </u>	preserved non-preserved			
	Initial DTW (ft)	-						order and	# polys				
1.5000000000000000000000000000000000000	r column height (ft)					Notes:	Dry, co	ould not p	urge. Collected samples from	m a small volume tubing.			
One	casing volume (gal)			-		2 2 245	AT PARK		1.				
	** Final DTW (ft)	-		-		Sampled By:	A. Do	rn /	Mm John				
C	Casing diameter (in)	: CN	1T										
Sample M	ethod:			tiler Other		* = measured	** = @ \$	sampling]	Purged Water Drummed: Yes No No. of Drums:			

	Project Name:	Sullins (L St)				Well I.D.: MW-104					
	Project No.:	1262.2						Date: 4/8/2011			
	Project Location:	187 N. L Stre	et								
	đ	Livermore, C	A			9		Samples sent to: Excelchem			
Time	Cumulative Volume Purged (gal)	Temp C	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks			
15:00	0.78							Metal gray, strong odor, a lot of sediments			
16:05								Collected samples			
				+							
			<u> </u>								
				-							
			-								
				1							
	Purge Method: Pumping Rate:	☑ Dedicate	d Waterra □C	entrifugal pun	np with dedicated	tubing	□ Ott	ther			
Well 0	Constructed TD (ft):	50.50		Sample	Containers used:		2	# VOAsX preserved non-preserved			
	* Well TD (ft):	Ę						# amber liters preserved non-preserved			
	Silt Thickness (ft):							# polys preserved non-preserved			
040	Initial DTW (ft):		(Assumed)					# polys preserved non-preserved			
	Water column height (ff): 23.50										
One o	asing volume (gal): ** Final DTW (ft):		-			4.5	1	de T			
G	sing diameter (in):	CMT	-		Sampled By:	A. Dor	n X	Mr Japa			
	danie (ii).	CIVIT									
Sample Me	thod:	Waterra ⊠ E	ailer Other	ב	* = measured	** = @ Sa	ampling	Purged Water Drummed:	□ No		
Gal	ons per foot of casing.	2" dia. = 0.17, 3"	dia. = 0.38 4" dia. =	0.65, 5" dia. = 1.	.02, 6" dia. = 1.48			No. of Drums:			

	Project Name:	Sullins (L	St)				Well I.D.: MW-105					
	Project No.:	1262.2							Date: 4/8/2011			
	Project Location:		Street									
									Samples sent to: Excelchem			
		Livermore	e, CA									
-	Cumulative Volume Purged	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks			
Time	(gal)	Temp		LO (µo/cm)	μ	,			Greyish clear, mild odor, no sediments			
10:10	0.33	_	-						Collected samples			
10:55			_									
		1										
	1			ш	atrifusal aus	np with dedicated	tubing	□ Ot	her			
	Purge Method	• • • • • • • • • • • • • • • • • • • •			ntriiugai pui	np with dedicated	tubing					
	Pumping Rate	:		gal/min								
Well	Constructed TD (ft)	37.0	00		Sample	Containers used		2	# VOAs preserved non-preserved			
	* Well TD (ft)	: -							# amber liters preserved non-preserved			
	Silt Thickness (ft)):							# polys preserved non-preserved			
	Initial DTW (ff)	27.	00	(Assumed)			_		# polys preserved non-preserved			
Wate	er column height (ft	10.	00			Notes	·					
One	casing volume (gal):0.1	11			15 45 4481	7	1	A. D			
	** Final DTW (ft):				Sampled By	: A. Do	orn //	M/m m			
	Casing diameter (in): CN	ΛT									
Sample M	Method:			ailer Other C		* = measured	** = @	sampling	Purged Water Drummed: ☐ Yes ☐ No No. of Drums:			
G	alions per tool of casing	g. 2 ula. = 0		una. – 0.00 - 0.00 - 1								

	Project Name:	Sullins (L St)				Well I.D.: MW-106					
	Project No.:	1262.2							Date: 4/8/2011			
	Project Location:	187 N. L	Stree	t								
		Livermo	re, CA						Samples sent to: Excelchem			
Time	Cumulative Volume Purged (gal)	Temp	c°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks			
12:20	0.33								*See below.			
12:30									Collected samples			
	Purge Method:	⊠ Dedi	icated \	Waterra □Cen	trifugal num	p with dedicated t	uhina	□ Oth	ther			
	Pumping Rate:	-		gal/min	anagai pani	p with acaicated t	ability	- 0a				
W-II C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	029400	820	1								
weilC	constructed TD (ft): * Well TD (ft):	37.0	00		Sample	Containers used:		2	_# VOAsX preserved non-preserved			
	Silt Thickness (ft):		-						# VOAs preserved non-preserved preserved non-preserved			
	Initial DTW (ft):	27.0	00	(Assumed)					proservednon-preserved			
Water	column height (ft):	10.0		(Violation)		Notes:	1st pur	ne volume	# polys preserved non-preserved ae: light brownish clear, mild odor, very few sediments; 2nd & 3rd			
One ca	One casing volume (gal): 0.11								sh gray, strong odor, a lot of sediments.			
	** Final DTW (ft):	L.				Sampled By:		//	nder any			
Ca	sing diameter (in):	CM	Т			i i		1	Contract of the contract of th			
Sample Me	thod:			ler Other a. = 0.38 4" dia. = 0.6	5, 5* dia. = 1.0		** = @ sa	mpling	Purged Water Drummed:			

	Project Name:	Sullins (L	St)				Well I.D.: MW-107					
	Project No.:	1262.2							Date: 4/8/2011			
	Project Location:	187 N. L	Street									
		Livermor	e, CA						Samples sent to: Excelchem			
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks			
13:50	0.43								Dark grey, strong odor, few sediments			
15:35									Collected samples			
		_										
								Mades				
	Purge Method:				ntrifugal pun	np with dedicated	tubing	☐ Ot	ther			
	Pumping Rate:			gal/min								
Well	Constructed TD (ft):	40.0	00		Sample	Containers used:		2	# VOAs preserved non-preserved			
	* Well TD (ft):								# amber liters preserved non-preserved			
	Silt Thickness (ft):	82							# polys preserved non-preserved			
	Initial DTW (ft):	27.0	00	(Assumed)					# polys preserved non-preserved			
1000	Water column height (ft): 13.00 N											
One	casing volume (gal)		4			RECEIVE THE TORONTON	Ver 1999	1				
	** Final DTW (ft)		000	_		Sampled By:	A. Do	rn /	ndlw John			
С	asing diameter (in)	CM	Т									
Sample Me	ethod:	Waterra	⊠ Ba	iler Other		• = measured	•• = @ s	ampling	Purged Water Drummed: ☐ Yes ☐ No			
Ga	llons per foot of casing.	2* dia. = 0.	17, 3" d	ia. = 0.38 4" dia. = 0.	65, 5" dia. = 1	.02, 6" dia. = 1.48			No. of Drums:			

Project Na	me: Sullins	(L St)				Well I.D.: MW-108					
Project	No.: 1262.2							Date: 4/7/2011			
Project Loca	tion: 187 N.	L Street	t								
	Livermo	ore, CA						Samples sent to: Excelchem			
Cumulativ Volume Pur Time (gal)		C°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks			
15:20								Metal gray, strong odor, few sediments			
15:50								Collected samples			
Purge Me		dicated	Waterra □Ce	ntrifugal pur	mp with dedicated	tubing	Ot	ther			
Well Constructed T	D (ft): 40	.00]	Sample	Containers used:		2	# VOAsX preserved non-preserved			
* Well T	D (ft):	-	1					# VOAs preserved non-preserved			
Silt Thicknes	S (ft):		1					# polys preserved non-preserved			
Initial DT	V (ft):	ē.]					# polys preserved non-preserved			
Water column heigh	t (ft):	-]		Notes:						
One casing volume	(gal):	-]				1				
** Final DT	V (ft):	75]		Sampled By:	A. Do	rn J	Sud um John			
Casing diamete	r (in): C	МТ]				,	Control			
Sample Method: Gallons per foot of o	Waterra	a⊠ Ba	iller Other	1	* = measured	•• = @ s	sampling	Purged Water Drummed: ☐ Yes ☐ No			

	Project Name: Sullins (L St)								Well I.D.:	MW-204	
	Project No.:	1262.2							Date:	4/8/2011	
	Project Location:	187 N. L	Street	t							
	ħ. a	Livermore							Samples sent to:	Excelchem	
	A0000 F0100										
Time	Cumulative Volume Purged (gal)	Temp	c°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)		Remarks	
14:31	0.44								1st purge: Clear, mild	odor, no sediments	
									Metal gray, strong odd	or, few sediments	
14:40	0.88								Metal gray, strong odd	or, few sediments	
14:50	1.32								Metal gray, strong odd	or, few sediments	
16:00									Collected samples		
	Purge Method:	⊠ Dedi	nated !	Waterra DCer	ntrifugal num	np with dedicated	tubina	□ ot	her		
	Pumping Rate:		oatou	gal/min	itinagai pan	ip mai acaicaica	tuon 19				
	Fullipling hate.	- 181		- gaviiiri							
Well	Constructed TD (ft):	66.5	0]	Sample	Containers used:		2	# VOAs	X preserved non-p	preserved
	* Well TD (ft):	+]					# VOAs	preserved non-pre	eserved
	Silt Thickness (ft):								# polys	preserved non-pre	eserved
	Initial DTW (ft):	27.0	0	(Assumed)	T-1				# polys	preserved non-pr	eserved
Water	column height (ft):	39.5	0]		Notes:					
One	casing volume (gal):	0.44	4					1			
	** Final DTW (ft):	-				Sampled By:	A. Do	n	Sud In Sepa		
С	asing diameter (in):	CM.	Т					/ /	70-		
Sample Me				iller Other I		* = measured .02, 6" dia. = 1.48	** = @ S	ampling]	Purged Water Drummed: No. of Drums:	
	etriod: llons per foot of casing.					CONTROL SPACE	- 6 3	amping	1		

	Project Name:	Sullins ((L St)						Well I.D.: MW-205
	Project No.:	1262.2							Date: 4/8/2011
	Project Location:	187 N. I	_ Stree	t					
		Livermo	re, CA						Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks
10:05	0.69								Greyish clear, mild odor, few sediments
10:45									Collected samples
		_							
		_							
		_			-				
	Purge Method: Pumping Rate:			Waterra □Ce	ntrifugal pun	np with dedicated	tubing	□ Ot	her
Well 0	Constructed TD (ft):	100000	00		Sample	Containers used:		2	# VOAsX preserved non-preserved
	* Well TD (ft):								# amber liters preserved non-preserved
	Silt Thickness (ft):					8			# polys preserved non-preserved
Water	Initial DTW (ft): column height (ft):	-		(Assumed)		Natas	-		# polys preserved non-preserved
	casing volume (gal):	100.000	54777-1	-		Notes:		1	
One	** Final DTW (ft):			1		Sampled By:	A Dor	n	Seller John
Ca	asing diameter (in):]		Campica by.	71. 001	1	XIIA DI TOPO
Sample Me	ethod: lons per foot of casing.			iler ☐ Other ☐ ia. = 0.38 4* dia. = 0.		* = measured .02, 6" dia. = 1.48	** = @ sa	ampling	Purged Water Drummed:

	Project Name:	Sullins (L	St)						Well I.D.: MW-206	
	Project No.:	1262.2							Date: 4/8/2011	
	Project Location:	187 N. L	Street							
		Livermore	e, CA						Samples sent to: Excelchem	
Time	Cumulative Volume Purged (gal)	Temp	c°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks	
12:05	0.75								Light greenish gray, mild odor, few sediments	4
12:15									Collected samples	4
										\dashv
										\dashv
										┨
										┨
		_								٦
		_								٦
Well	Purge Method: Pumping Rate: Constructed TD (ft): * Well TD (ft): Silt Thickness (ft)	50.0	00	gal/min		np with dedicated Containers used:		□ Ot	# VOAs	_
Wate	Initial DTW (ft) r column height (ft)			(Assumed)		Notes			# polyo procerved non process	
1	casing volume (gal)					,,,,,,	-			
	** Final DTW (ft)			1		Sampled By	A. Do	rn 7	Kindler Sen	
c	asing diameter (in)	: CM	Т]				,		
Sample M	ethod: allons per foot of casing			iler		* = measured .02, 6* dia. = 1.48	•• = @	sampling	Purged Water Drummed: Yes No. of Drums:	

	Project Name:	Sullins (L	St)						Well I.D.: MW-207
	Project No.:	1262.2							Date: 4/8/2011
	Project Location:	187 N. L	Street						
	,,	Livermore	e, CA						Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (µS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks
14:15	0.78								Light brown, strong odor, few sediments
15:30									Collected samples
		-							
	Purge Method: Pumping Rate:			Waterra □Cer	ntrifugal pun	np with dedicated	tubing	☐ Ot	ther
Well	Constructed TD (ft):	50.0	0		Sample	Containers used:		2	# VOAs X preserved non-preserved
'''	* Well TD (ft):				- Campie				# amber liters preserved non-preserved
	Silt Thickness (ft):						0,		# polys preserved non-preserved
	Initial DTW (ft):		0	(Assumed)					# polys preserved non-preserved
Wate	r column height (#):	23.0	0			Notes:			
One	casing volume (gal):	0.26	6					٨	
	** Final DTW (ft):	-				Sampled By:	A. Do	rn /	Sullin Jan
(Casing diameter (in)	: CM	T						
Sample M	lethod: allons per foot of casing.			iler □ Other □ ia. = 0.38 4" dia. = 0.		* = measured .02, 6" dia. = 1.48	** = @ \$	sampling	Purged Water Drummed: Yes No No. of Drums:

	Project Name:	Sullins (L	St)						Well I.D.: MW-208
	Project No.:	1262.2							Date: 4/8/II
	Project Location:	187 N. L	Street	t					
		Livermore	e, CA	8					Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks
15:15									Greyish clear, mild odor, no sediments
15:45									Collected samples
		-							
	Purge Method:				376 13	mp with dedicated		□ Ot	
Well	* Well TD (ft)			-	Sample	Containers used:		2	# VOAs X preserved non-preserved # amber liters preserved non-preserved
	Silt Thickness (ft)	-		-					# polys preserved non-preserved
	Initial DTW (ft)			1					# polys preserved non-preserved
Wate	r column height (ft)			1		Notes:			
One	casing volume (gal)	: .						1	
	** Final DTW (ft)	: -				Sampled By:	A. Do	rn A	(ndln Japa)
C	asing diameter (in)	: CM	Т						
Sample M	ethod: ullons per foot of casing			ailer ☐ Other ☐ dia. = 0.38 4" dia. = 0.		* = measured 1.02, 6* dia. = 1.48	•• = @	sampling	Purged Water Drummed: Yes No No. of Drums:

	Project Name:	Sullins (L	_St)						Well I.D.: MW-304
	Project No.:	1262.2				-			Date: 4/8/2011
	Project Location:	187 N. L	Stree	t					
		Livermor	e, CA	0		-			Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks
14:12	0.53								Light brown, strong odor, a lot of sediments
14:20	1.06								Light brown, strong odor, a lot of sediments
14:30	1.59								Light brown, strong odor, a lot of sediments
15:55									Collected samples
	Purge Method:			Waterra □Ce	ntrifugal pur	mp with dedicated	tubing	☐ Ot	her
1150.00		1.000		1				88	
Well	Constructed TD (#):	-	1700		Sample	Containers used:		2	# VOAs preserved non-preserved
	* Well TD (ft):								# amber liters preserved non-preserved
	Silt Thickness (#):						,		# polys preserved non-preserved
222	Initial DTW (ft):	-		(Assumed)			2 5		# polys preserved non-preserved
	r column height (ft):					Notes:	Collec	ted sampl	les after 3rd purge volumes, no silting issue.
One	casing volume (gal):	-		-		1			(1, T)
	** Final DTW (ft):	(-		-		Sampled By:	A. Do	rn /	MM JOPA
	asing diameter (in):	CM	IT]					
Sample M	ethod: ullons per foot of casing.			iler ☐ Other ☐ ia. = 0.38 4* dia. = 0.		* = measured 1.02, 6" dia. = 1.48	** = @ \$	ampling	Purged Water Drummed:

	Project Name:	Sullins (L	St)						Well I.D.:	MW-305
	Project No.:	1262.2							Date:	4/8/2011
	Project Location:	187 N. L	Street			141				
		Livermore	e, CA						Samples sent to:	Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)		Remarks
10:15	0.43								Milky brown, mild odo	r, a lot of sediments
10:20									Took 1st purge volum	e samples (MW-305NP
10:32	0.86								Milky brown, mild odo	r, a lot of sediments
10:40	1.29								Light brown, mild odo	r, very few sediments
10:40							-		Took 3rd purge volum	e samples (MW-305P)
Well	Purge Method: Pumping Rate:	*		Waterra □Cer		np with dedicated Containers used:	1,93	□ Ot	# VOAs	X preserved non-preserved
	* Well TD (ft):				Campio				# amber liters	preservednon-preserved
	Silt Thickness (ft):								# polys	preserved non-preserved
	Initial DTW (ft):		0	(Assumed)					# polys	preserved non-preserved
Water	column height (ft):	39.0	0			Notes:	Collec	ted 2 voa	s from 1st purge and 2 voas	s from 3rd purge volumes.
	casing volume (gal)		3					٨		
	** Final DTW (ft)			1		Sampled By:	A. Do	rn A	men du	
С	asing diameter (in)	: CM	Т	1					Gov	
Sample Mo	ethod: llons per foot of casing.			iler ☐ Other ☐ ia. = 0.38 4" dia. = 0.		* = measured .02, 6" dia. = 1.48	** = @ \$	sampling		Purged Water Drummed:

	Project Name:	Sullins (L St	N.					Well I.D.:	MW-306
	Project No.:	1262.2						Date:	4/8/2011
	Project Location:	187 N. L Str	eet						
		Livermore, 0	:A					Samples sent to:	Excelchem
Time	Cumulative Volume Purged (gal)	Temp (° EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)		Remarks
11:15	0.43							Brown, mild odor, a lot	sediments
11:26	0.86							Brown, mild odor, a lot	sediments
11:50	1.29							Brown, mild odor, a lot	sediments
12:00				4				Collected samples	
	Purge Method: Pumping Rate:			entrifugal pun	np with dedicated t	tubing	Ott		
Well C	Constructed TD (ft):	66.00		Sample	Containers used:		2	# VOAs	X preserved non-preserved
	* Well TD (ft):	(**)						# amber liters	preserved non-preserved
	Silt Thickness (ft):	-			21			# polys	preserved non-preserved
	Initial DTW (ft):	27.00	(Assumed)					# polys	preserved non-preserved
Water	column height (ft):	39.00			Notes:	Collect	ed after 3	purge volumes - difficult.	
One o	asing volume (gal):	0.43					\land	1	
	** Final DTW (ft):	•			Sampled By:	A. Dor	n +	Englin Jan	
Ca	sing diameter (in):	CMT							
Sample Me			Bailer Other C		77000 NOTES 00000	** = @ sa	ampling] [Purged Water Drummed: ☐ Yes ☐ No
Gal	ons per foot of casing.	2" dia. = 0.17, 3	" dia. = 0.38 4" dia. = 0).65, 5" dia. = 1	.02, 6" dia. = 1.48			L	No. of Drums:

	Project Name:	Sullins (L S	t)					Well I.D.: MW-307
	Project No.:	1262.2						Date: 4/8/2011
	Project Location:	187 N. L St	reet					
		Livermore,	CA					Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C° EC (μS/cm)	рН	ORP (millivolts)	DO	(mg/L)	Remarks
14:25	0.43							Clear, strong odor, few sediments
14:35	0.86							Light brown, strong odor, few sediments
14:45	1.29							Light brown, strong odor, few sediments
15:25								Collected samples
	Purge Method: Pumping Rate:		ed Waterra QC	entrifugal pur	np with dedicated	tubing	Oti	ther
Well (Constructed TD (ft):	66.00		Sample	Containers used:		2	# VOAsX preserved non-preserved
	* Well TD (ft):	-						# amber liters preserved non-preserved
	Silt Thickness (ft):	- 1						# polys preserved non-preserved
	Initial DTW (ft):	27.00	(Assumed)		18			# polys preserved non-preserved
Water	column height (ft):	39.00			Notes:			
One o	asing volume (gal):	0.43			1			
	** Final DTW (ft):	121			Sampled By:	A. Dor	$n \perp$	Snaw on
Ca	asing diameter (in):	CMT					,	
Sample Me			Bailer ☐ Other 3" dia. = 0.38 4" dia. =		* = measured .02, 6" dia. = 1.48	** = @ S	ampling	Purged Water Drummed:

	Project Name:	Sullins (L St)				20		Well I.D.: MW-308
	Project No.:	1262.2					72		Date: 4/7/2011
	Project Location:	187 N. L	Stree	it			*6		Jac. 4112011
	(A) (CAMPON	Livermo					. (1		
		Liverino	ie, oa				5,		Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	C°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks
15:10									Brownish clear, no odor, a lot of sediments
15:40									Collected samples
									·
	-								
		1/201							
	Purge Method: Pumping Rate:				trifugal pum	p with dedicated t	ubing	☐ Oth	er
Well C	onstructed TD (ft):								
vveiro	* Well TD (ft):	66.0	0		Sample	Containers used: _		2	# VOAsX preserved non-preserved
	Silt Thickness (ft):					-			# amber liters preserved non-preserved
	Initial DTW (ft):		-			-			# polys preserved non-preserved
Water	column height (ft):				1	Notes:			# polys preserved non-preserved
	asing volume (gal):					Notes.			1
	** Final DTW (ft):	1(=)				Sampled By: /	A Dorn	1	MW duy
Ca	sing diameter (in):	СМТ			ı		5011		XUJUN JAYN
Sample Met	hod:	#		er Other	5" dia. = 1.0		*= @ sar	npling	Purged Water Drummed:

	Project Name:	Sullins (L St)						Well I.D.: MW-404
	Project No.:	1262.2							Date: 4/8/2011
	Project Location:	187 N. L	Stree	t					
		Livermo	re, CA	0					Samples sent to: Excelchem
Time	Cumulative Volume Purged (gal)	Temp	С°	EC (μS/cm)	pН	ORP (millivolts)	DO	(mg/L)	Remarks
13:45	0.6								Light brownish clear, mild odor, few sediments
13:57	1.2								Light brownish clear, mild odor, few sediments
14:10	1.8								Light brownish clear, mild odor, few sediments
15:50									Collected samples
	Purge Method:	⊠ Ded	icated \	Waterra	ntrifugal pun	np with dedicated t	tubing	☐ Oti	ner
	Pumping Rate:			gal/min					
Well C	Constructed TD (ft):	81.5	50		Sample	Containers used:		2	# VOAs preserved non-preserved
	* Well TD (ft):	77	,,,		Campic	Containers assu.		-	# amber liters preserved non-preserved
	Silt Thickness (ft):					:			# polys preserved non-preserved
	Initial DTW (ft):	27.0	00	(Assumed)		9			# polys preserved non-preserved
Water	column height (#):	54.5	50	* Control Control Control		Notes:	Collect	ed sampl	e after 3 purge volumes - no silting issue.
One o	asing volume (gal):	0.6	0					/	1
	** Final DTW (ft):	-				Sampled By:	A. Dor	n L	Sullin Can
Ca	sing diameter (in):	СМ	T						
Sample Me	thod: ons per foot of casing.			iler Other	55, 5" dia. = 1	CONTRACTOR CONTRACTOR	** = @ S	ampling	Purged Water Drummed: Yes No No. of Drums:

(209) 522-4119 (Office) * (209) 522-4227 (Fax) 1172 Kansas Avenue, Modesto, CA 95351 gti@gtienv.com

SULLINS PROJECT NO. 1262.2 187 N. L STREET, LIVERMORE

MONITORING WELL FIELD SUMMARY LOG 2011 DEPTH TO WATER MEASUREMENTS

	QTR. 1	QTR. 2	QTR. 3	QTR. 4	WELL
DATE	4/8/2011	mm/dd/yyyy	mm/dd/yyyy	mm/dd/yyyy	TD
	(ft)	(ft)	(ft)	(ft)	
LOCATION					
W-1	27.07				56.50
W-1s	27.09				45.00
W-3	28.76				51.50
W-3s	26.92				45.00
W-A	27.66				63.00
W-Bs	27.11				45.00
W-Es	28.07				45.00

*Geo Assumed MW-4 through MW-307 the depth to be 27.00

NOTE:

ALL MEASUREMENTS ARE MADE FROM THE NORTH SIDE AND TOP EDGE OF THE WELL CASING. THE TOP OF CASING WITH A NOTCH OR PERMANENT MARKINGS, WHICH EVER ONE CONDITION IS APPROPRIATE.