July 30, 2008

Rita and Tony Sullins Don Sul Inc. 187 North L Street Livermore, CA 94550 **RECEIVED**

1:54 pm, Aug 01, 2008

Alameda County Environmental Health

Re:

Transmittal Letter

Site Location:

Arrow Rentals

Sellino,

187 North L Street, Livermore, CA 94550

Dear Mr. Wickham:

On behalf of Rita and Tony Sullins, Don Sul Inc., Geological Technics Inc. (GTI) prepared the Semiannual Groundwater Monitoring, April of 2008, dated July 30, 2008 that was sent to your office via electronic delivery per Alameda County's guidelines on July 31, 2008.

I declare under penalty of law that the information and/or recommendations contained in the above referenced document or report is true and correct to the best of my knowledge.

Respectfully submitted,

Rita / Tony Sullins

Property Owner

Don Sul Inc.

187 North L Street

Livermore, CA 94550

REPORT

Semiannual Groundwater Monitoring April 2008

> Arrow Rentals Service 187 North L St. Livermore, CA 94550

> > Project No. 1262.2 July 30, 2008

Prepared for:
Tony & Rita Sullins
Arrow Rentals Service
187 North L St.
Livermore, CA 94550

Prepared by:
Geological Technics Inc.
1101 7th Street
Modesto, California 95354
(209) 522-4119

Geological Technics Inc.

Modesto, California 95354 (209) 522-4119/Fax (209) 522-4227

July 30, 2008

Project No.:

1262.2

Project Name:

Sullins (L St.)

Tony & Rita Sullins Arrow Rentals Service 187 North L Street Livermore, CA 94550

RE:

Report:

Semiannual Groundwater Monitoring, April 2008

Location: 187 North L Street, Livermore, CA 94550.

(ACEH Fuel Leak Case No. RO0000394)

Dear Mr. & Ms. Sullins:

Geological Technics Inc. has prepared the following Report for the 1st Semi-annual 2008 groundwater monitoring event performed on April 7 and 8, 2008, at the 187 North L Street property in Livermore. The groundwater data for the event indicate that the plume continues to display a trend of declining concentrations. However, an elevated core of gasoline contamination persists in the location of the former USTs/piping.

Supplemental analysis of groundwater showed pH, metals and cyanide levels that were within acceptable range or below sanitary sewer discharge levels for the City of Livermore.

GTI is currently implementing the Corrective Action Plan (CAP) that includes provisions for performing dual phase extraction to treat the residual contamination at the site, which has received approval from ACEH and cost pre-approval from the UST Cleanup Fund.

If you have any questions, please do not hesitate to call me at (209) 522-4119.

Respectfully submitted,

Tamorah Bryant, P.E.

cc:

Jerry Wickham - ACEH

USTCUF

Chris Davidson - City of Livermore Jennifer Sedlechek - Exxon Mobile Corp.

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1.0 GROUNDWATER MONITORING Hydrology of Site 1.1 Groundwater Sampling Procedure 1.2 Laboratory Analyses 1.3 Supplemental Analysis of W-1 Groundwater Samples 1.4 Well Destruction 1.5 FINDINGS AND DISCUSSION 2.0 CONCLUSIONS AND RECOMMENDATIONS 3.0 LIMITATIONS 4.0 SIGNATURES AND CERTIFICATION

5.0

FIGURES

VICINITY MAP	1
SITE MAP	2
SITE DETAIL MAP	3
WELL SCREENED INTERVAL DIAGRAM	4
GROUNDWATER GRADIENT MAP SHALLOW WELLS	5A
GROUNDWATER GRADIENT MAP INTERMEDIATE WELLS	5B
GROUNDWATER GRADIENT MAP DEEP WELLS	50
SHALLOW WELL APRIL 2008 TPH-G CONCENTRATIONS	6
INTERMEDIATE WELL APRIL 2008 TPH-G CONCENTRATIONS	7
DEEP WELL APRIL 2008 TPH-G CONCENTRATIONS	8
CROSS SECTION A-A'	9
GRAPH OF TPH-G CONCENTRATION VS. TIME W-1s	10
GRAPH OF TPH-G CONCENTRATION VS. TIME W-3s	11
GRAPH OF TPH-G CONCENTRATION VS. TIME W-Bs	12

APPENDICES

SUMMARY TABLES	A
Table 1A: Summary of Groundwater Elevation and Gradient – Water Table Well	S
Table 1B: Summary of Groundwater Elevation and Gradient - Intermediate Well	S
Table 1C: Summary of Groundwater Elevation and Gradient – Deep Wells	
Table 2: Summary of Vertical Gradients	
Table 3: Summary of Well Construction	
Table 4: Summary of Groundwater Analytical Data	
Table 5: Summary of Supplemental Analysis of W-1 Groundwater Sample	
LABORATORY ANALYTICAL DATA SHEETS	В
GROUNDWATER MONITORING FIELD LOGS	C

1101 7th Street Modesto, California 95354 (209) 522-4119/Fax (209) 522-4227

REPORT

Semiannual Groundwater Monitoring April 2008

Arrow Rentals Services 187 North L St. Livermore, CA

> Project No. 1262.2 July 30, 2008

EXECUTIVE SUMMARY

This report summarizes the results of the 1st Semi-annual 2008 groundwater monitoring and sampling event that took place on April 7-8, 2008, as well as supplemental analysis of W-1 groundwater samples and well abandonment activities that have occurred in the last two quarters.

The average shallow groundwater elevation at the site was 33 feet above mean sea level (msl) and the groundwater flow was N64°W at 0.012 ft/ft for this event. This represents a decrease of 6.96 feet since the December 2007 monitoring event.

The analytical results of groundwater samples show that detectable concentrations of gasoline range petroleum hydrocarbons were present in fourteen of the site's sixteen groundwater monitoring wells sampled for this event (down gradient well W-Es was non-detect). A persistent core remains in the vicinity of well W-1 (140,000 μ g/l TPH-G) that is located adjacent to former USTs/piping trenches and is down gradient of the former UST system from which the Pitcock release originated.

On April 14, 2008, shortly after the groundwater monitoring event, monitoring wells W-B, W-C, W-D, and W-E were destroyed.

Supplemental analysis of groundwater showed pH, metals and cyanide levels that were within acceptable range or below sanitary sewer discharge levels for the City of Livermore.

Geological Technics Inc.
Semiannual Groundwater Monitoring Report
Project No. 1262.2
July 30, 2008

GTI is currently implementing the Corrective Action Plan (CAP) that includes provisions for performing dual phase extraction to treat the residual contamination at the site, which has received approval from ACEH and cost pre-approval from the UST Cleanup Fund.

1.0 GROUNDWATER MONITORING

1.1 Hydrogeology of Site

The average groundwater elevation in the site's shallow wells was 447.23 feet above mean sea level (msl) on April 7, 2008. This corresponds to approximately 33 feet below grade surface (bgs) and represents a decrease of 6.96 feet since the December 2007 monitoring event. The depth to groundwater observed in the site's wells has ranged from approximately 20 - 45 feet below grade surface from 1989 to 2007. Refer to Figures 1 through 3 for site details, well and borehole locations.

GTI grouped the five new CMTTM well sets installed in October 2006 and existing wells according to the aquifer interval that the screened section intercepted (see Table 3 in Appendix A for well construction details, and Figure 4 for well screen intervals):

Shallow Wells (screened 20 - 45 feet bgs):

W-1s, W-Bs, W-3s, W-Es, and either {MW-4, MW-5, MW-6, MW-7, MW-8} or {MW-105, MW-106, MW-107, MW-108} depending on groundwater elevation

Intermediate Wells (screened 40 – 60 feet bgs):

W-A, W-B, W-C, W-D, W-E, MW-104, MW-205, MW-206, MW-207, MW-208

Note: Wells W-B, -C, -D, and -E were abandoned on April 14, 2008.

Deep Wells (screened ~ 65 feet bgs):

MW-204, MW-305, MW-306, MW-307, MW-308

Deepest Wells (screened > 70 feet bgs):

MW-304, MW-404

The groundwater elevation data are summarized in Tables 1A, 1B and 1C of Appendix A, for the shallow, intermediate and deep aquifer levels, respectively.

Horizontal Groundwater Gradients:

The calculated gradients for the April 07, 2008 monitoring event are as follows:

Aquifer Zone:	Gradient:	Bearing:
Water table	0.012 ft/ft	N64°W
Intermediate	variable	northwest
Deep	0.10 ft/ft	N26°E

Figures 5A through 5C illustrate the three aquifer groundwater gradient maps for the April 7, 2008 monitoring event.

Vertical Groundwater Gradients:

GTI calculated vertical gradients for well pairs MW-204/304, and MW-207/307 well pairs for the April 7, 2008 monitoring event.

The following procedure is used to calculate vertical groundwater gradients in wells with submerged screens:

- O Determine the vertical distance between the two measuring devices (wells) by calculating the distance between the mid-point between the screen top and bottom in the deep well (MW-304) and the mid-point between the screen top and bottom in the shallower well (MW-204).
- Measure the head in both wells used in the calculations.
- o If the lateral distance between the well pair is greater than a few feet, then calculations must be made to correct the down-gradient piezometric head to account for the sloping water table between the wells. This is not necessary in this case because the wells are adjacent to each other in the CMTTM well sets.
- Divide the difference in head by the difference in vertical distance in the measuring devices to obtain the vertical gradient.

Figure 3 shows the location of the well pairs used for calculating vertical groundwater gradient in this report: MW-204/304, MW-205/305 MW-206/306, and MW-207/307. Table 2 in Appendix A shows the calculated vertical gradients.

For the April 7, 2008 event:

- The vertical gradient for the MW-204/304 pair was negative (or downward) at 0.56 ft/ft.
- o The vertical gradient for the MW-205/305 pair was positive (or upward) at 0.10 ft/ft.
- The vertical gradient for the MW-206/306 pair was negative (or downward) at 0.23 ft/ft
- The vertical gradient for the MW-207/307 pair was positive (or upward) at 0.13 ft/ft.

In their January 16, 2007 letter correspondence Alameda County Environmental Health (ACEH) staff directed that groundwater elevation data for deep wells MW-304 & MW-404 be included in future reports. This data has been added in two columns on the far right of Table 1C, Appendix A.

1.2 Groundwater Sampling Procedure

On April 7th and 8th, 2008 Geological Technics Inc. (GTI) staff mobilized to the site to conduct sounding and sampling of the site's monitoring wells. Before sampling was attempted, the wells were sounded for depth to water and groundwater levels recorded with exceptions as noted. The non-CMTTM wells were purged of at least three well volumes of stagnant water using a dedicated Waterra check-ball. Purging continued until the temperature, conductivity, and pH of the groundwater stabilized (<10% variation in three consecutive readings), indicating that formation water representative of aquifer conditions was entering the wells.

Once purging was complete, water samples were collected from the Waterra tube. Care was taken to minimize sample agitation. Once a sample container was filled and capped, the bottle was inverted, tapped and checked for headspace bubbles. The sample container was identified and labeled with a unique designation, inserted into a foam holder and placed into an ice chest cooled to 4°C for transport to the laboratory. Disposable gloves were used by the technician to collect all samples and were changed with each sample collection.

The following deviations from the sampling protocol are noted:

- Numerous CMTTM wells' Waterra check valves were clogged with clay/silt and multiple removal and rinsing episodes were necessary to clear the tubing. Due to this situation the field technicians were directed to obtain water samples as soon as the tubing was cleared enough to produce water for sampling. In one case only two VOAs were filled before the chamber went dry (MW-107).
- Wells MW-105, MW-106, and MW-404 were not sampled due to a lack of water/recharge for both days.
- Well W-Bs purged dry before three well volumes were removed.

A chain of custody document, listing all samples collected, accompanied the samples from field to laboratory, thereby providing a means to track the movement of and insure the integrity of the samples.

All well purge water was placed in a 55 gallon DOT approved container. These drums were properly labeled and will be stored on site until their proper disposition can be arranged.

Groundwater monitoring field logs are included in Appendix C.

1.3 Laboratory Analyses

The groundwater samples collected on April 7 and 8, 2008, were delivered to Argon Laboratories in Ceres, California (Certification Number 2359) for analysis.

Geological Technics Inc.
Semiannual Groundwater Monitoring Report
Project No. 1262.2
July 30, 2008

The groundwater samples were analyzed for:

- Benzene, Toluene, Ethyl Benzene and Xylene (BTEX) by EPA method 8021B
- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA method 8015M
- Oxygenated Fuel Compound MTBE by EPA method 8021B

The results and detection limits for the above analyses are listed in Table 4 of Appendix A while the lab analytical results are presented in Appendix B.

As required under AB2886, the depth to groundwater data for the 1st Semiannual 2008 was submitted to GeoTracker on July 31, 2008 – confirmation number 7128690421. Due to system problems with GeoTracker, the laboratory data has not been uploaded for 1st Semiannual 2008. GTI will continue to attempt the upload and report the confirmation number in the next semiannual monitoring report.

However, the laboratory data for the 2nd Semiannual 2007 was submitted to Geotracker on February 4, 2008 – confirmation numbers 4167425990 & 6228514254.

1.4 Supplemental Analyses of W-1 Groundwater Samples

Per the direction of the City of Livermore, supplemental analysis of groundwater was performed to compare W-1 levels of various constituents to City of Livermore local limits, prior to discharge into the City of Livermore's sanitary sewer system. On February 14, 2008, unfiltered groundwater samples were collected from W-1 and delivered to Excelchem Environmental Labs (Certification Number 2119) for analysis.

The groundwater samples were analyzed for:

- Metals (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Silver, Zinc) by EPA method 200.7
- Cyanide by method SM 4500-CN-F
- PH by EPA method 150.1
- Total Toxic Organics by EPA method 624

The results and detection limits for the above analysis are listed in Table 5 of Appendix A, and the lab analytical results are presented in Appendix B.

1.5 Well Destruction

GTI recommended the closure of several of the site's monitoring wells in our December 18, 2006 "Site Conceptual Model and Semi-Annual Groundwater Monitoring Report". The

Semiannual Groundwater Monitoring Report Project No. 1262.2 July 30, 2008

ACEH approved the destruction of the wells in their January 16, 2007 letter correspondence, and directed that plans to destroy the wells be included as part of the Corrective Action Plan (CAP). The following is a description of the well destruction event that took place on April 14, 2008, where wells W-B, W-C, W-D and W-E (see Figure 2 for well locations) were destroyed, following the semi annual groundwater monitoring event.

- o W-B: Since access to this well was limited, this well was destroyed by pressure grouting with neat cement augmented with less than 5% bentonite. After grouting, a pressure cap was fitted to the casing and air pressure (30 psi) was used to force the grout out of the casing and into the formation. The casing was cut off as deep as possible and then the well box filled and topped off with cement to match grade surface.
- o W-C: Similar to W-B, due to access issues (location in an active traffic lane on L Street), this well was destroyed by pressure grouting except that asphalt patch materials were used to match grade surface instead of cement. encroachment permits were obtained from the City of Livermore Public Works Department.
- W-D: Again, due to access issues, this well was destroyed by pressure grouting similar to well W-B above. The top of the well casing was removed as deep as possible and the well box/cement collar was removed by hand tools. Clean materials and neat cement were used to back fill the hole to grade.
- W-E: Similar to W-B, this well was destroyed by pressure grouting. The top five feet of the hole was over drilled using hollow stem auger to a depth of 5 feet below grade and the top of the casing was removed. Grout was added and allowed to spill over into the hole. Clean materials and neat grout were used to back fill the hole to grade and finished off with cement to match grade surface.

2.0 FINDINGS AND DISCUSSION

The results of the groundwater monitoring and sample analyses indicate the following:

April 7 and 8, 2008-

- Shallow aguifer:
 - o Well W-1s contained: 30,000 μg/l TPH-G, 2,600 μg/l benzene, 340μg/l toluene, 1,800µg/l ethyl benzene, and 1,700µg/l xylene.
 - Well W-3s was not sampled or sounded during this event due to obstructions covering wellhead.
 - Well W-Bs contained: 4,400 μg/l TPH-G, 410 μg/l benzene, 15μg/l toluene, 460 μg/l ethylbenzene, and 71 µg/l xylene.
 - Well W-Es did not contain BTEX, TPH-G and MTBE contamination above the laboratory reporting limits.

Semiannual Groundwater Monitoring Report Project No. 1262.2 July 30, 2008

- Well MW-105 and 106 were not sampled during this event due to poor water production.
- O MW-107 contained 18,000 μg/l TPH-G, 6,100 μg/l benzene, 700 μg/l toluene, 380 μg/l ethylbenzene, and 480 μg/l xylene.
- \circ Well MW-108 contained 2,200 μg/l TPH-, 1,100 μg/l benzene, 24 μg/l toluene, 26 μg/l ethylbenzene and 140 μg/l xylene.
- Figure 6 is a contour map indicating GTI's interpretation of the shallow TPH-G plume in April 2008. The groundwater plume is localized in the vicinity of the former USTs/piping trenches.

Intermediate aquifer:

- O MW-104 contained 32,000 μg/l TPH-G, 7,100 μg/l benzene, 1,400 μg/l toluene, 680 μg/l ethylbenzene, and 1,800 μg/l xylene.
- 0 Well MW-205 contained 31,000 μg/l TPH-G, 20,000 μg/l benzene, 640 μg/l toluene, 510 μg/l ethylbenzene, and 1,400 μg/l xylene.
- O Well MW-206 contained 60 μg/l TPH-G and 1.8 μg/l benzene.
- O MW-207 contained 32,000 μg/l TPH-G, 12,000 μg/l benzene, 350 μg/l toluene, 580 μg/l ethylbenzene, and 790 μg/l xylene.
- o MW-208 contained 19,000 μg/l TPH-G, 3,900 μg/l benzene, 230 μg/l toluene, 550 μg/l ethylbenzene, and 1,200 μg/l xylene.
- Figure 7 is a contour map indicating GTI's interpretation of the intermediate aquifer TPH-G plume in April 2008. The groundwater plume is localized in the vicinity of the former USTs/piping trenches.

Deep aquifer:

- Well MW-204 contained 9,800 μg/l TPH-G, 1,800 μg/l benzene, 340 μg/l toluene, 520 μg/l ethyl benzene, and 560 μg/l xylene.
- ο Well MW-305 contained 290 μ g/l TPH-G, 42 μ g/l benzene, 14 μ g/l toluene, 8.1 μ g/l ethyl benzene, and 28 μ g/l xylene.
- Well MW-306 did not contain any constituents tested for above laboratory reporting limits.
- ο Well MW-307 contained 2,500 μ g/l TPH-G, 720 μ g/l benzene, 110 μ g/l toluene, 69 μ g/l ethylbenzene, and 160 μ g/l xylene.
- \circ Well MW-308 contained 770 μg/l TPH-G, 150 μg/l benzene, 48 μg/l ethylbenzene, and 45 μg/l xylene.
- Figure 8 is a contour map indicating GTI's interpretation of the deep aquifer TPH-G
 plume in April 2008. The groundwater plume is localized in the vicinity of the
 former USTs/piping trenches.

Deepest aquifer wells:

 $_{\odot}$ Well MW-304 contained: 820 μg/l TPH-G, 100 μg/l benzene, and 36 μg/l toluene, 36 μg/l ethyl benzene, and 98 μg/l xylenes.

- o Well MW-404 was not sampled during this event due to poor water production.
- o The vertical extent of the groundwater plume in these two deepest CMT™ well chambers is illustrated in Figure 9, Cross Section A-A' of Figure 9
- Figure 10 illustrates TPH-G concentration versus time in well W-1s (located in the vicinity of the core of the contaminant plume). With the exception of events in 1997 and 2001 the contaminant concentrations display a declining trend. The two peaks evident in Figure 10 suggest that significant contaminant mass is present although decades have past since the original USTs were removed. TPH-G concentrations in the well have remained somewhat stable for the last three monitoring events.
- Figure 11 illustrates TPH-G concentration versus time in well W-3s (located down/cross gradient of the core of the plume). The contaminant concentrations show a declining trend. W-3s was not sampled during this monitoring event.
- Figure 12 illustrates TPH-G concentration versus time in well W-Bs (located down gradient of the core of the plume). The contaminant concentrations showed a declining trend from 1995 2003 but appear to have stabilized.
- Obtaining valid water level measurements from the CMTTM wells remains problematic
 due to the clayey soils at the site. The clays clog the Waterra tubing and smear on the
 inside of the individual chambers. Some well elevations appear to be anomalous when
 utilizing computer-generated contours. Those points were removed in an attempt to
 accurately depict true groundwater gradient and direction.
- Groundwater gradient and direction were variable in the intermediate wells during the April 2008 monitoring event. Wells W-A, MW-104, and MW-206 were used to determine groundwater gradient and direction for this monitoring event. Wells where anomalous water level measurements were detected were omitted from computer generated contouring. Figure 5B is a gradient map showing GTI interpretation of groundwater movement and gradient.
- The deep level aquifer had a northeasterly direction as monitored in CMTTM wells MW-204, MW-305, MW-306, MW-307 and MW-308. See Figure 5C.

Supplemental Analysis of W-1 Groundwater Sample

- Per the direction of the City of Livermore, supplemental analysis of groundwater samples
 was performed for comparison to City of Livermore local limits prior to discharge to the
 City's sanitary sewer system.
- Groundwater samples were collected on February 14, 2008 and analyzed for metals, cyanide, pH, and volatile organic compounds.
- pH was reported to be 6.57.
- Analytical laboratory data results were compared to City of Livermore Local Limits
- As shown on the following page, the groundwater samples contained levels that were below the City of Livermore Local Limits, with the exception of Total Toxic Organics, which exceeded the Local Limit of 1.00 mg/L (or 1,000 μg/L). Per the Corrective Action

Plan, the extracted groundwater will pass through a treatment system, such that any discharge to the City sanitary sewer system is expected to be well below the Local Limit. During the remediation system start up and operation, effluent will be monitored on a regular basis to ensure compliance with the TTO limit.

Semiannual Groundwater Monitoring Report Project No. 1262.2 July 30, 2008

Compound	City of Li Local I		W-1 Analytical Data
	(mg/L)	(µg/L)	(µg/L)
pН	6.0 –9.0	S.U.	6.57
Arsenic	0.06	60	3.5
Cadmium	0.14	140	ND
Chromium	0.62	620	36.2
Copper	1.00	1,000	29.4
Lead	0.20	200	22.9
Mercury	0.01	10	ND
Nickel	0.61	610	115
Silver	0.20	200	ND
Zinc	3.00	3,000	46
Cyanide	0.04	40	ND
TTO	1.00	1,000	GT 22,000

ND = not detected above reporting limit

GT = greater than

3.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 1. Elevated concentrations of BTEX and TPH-G are present in a laterally limited (probably less than 300 foot radius) groundwater plume that is centered in the vicinity of wells W-1 & W-1s.
- 2. The highest level of TPH-G detected, 32,000 ug/l, was present in intermediate depth well MW-104. This well is located just down gradient of the former UST system from which the Pitcock release originated.
- 3. The lateral extent of the TPH-G plume is defined to the west by well W-Es.
- 4. The center of the plume has not migrated beyond the source area providing evidence that the plume is degrading as it migrates laterally by advective flow.
- 5. The data shows that the core of the plume is fairly stable, with concentrations decreasing very slowly by either natural biodegradation causes or by dilution effects.
- 6. Supplemental analysis of groundwater samples show pH, metals and cyanide levels that are within the acceptable range or below sanitary sewer discharge limits for the City of Livermore.

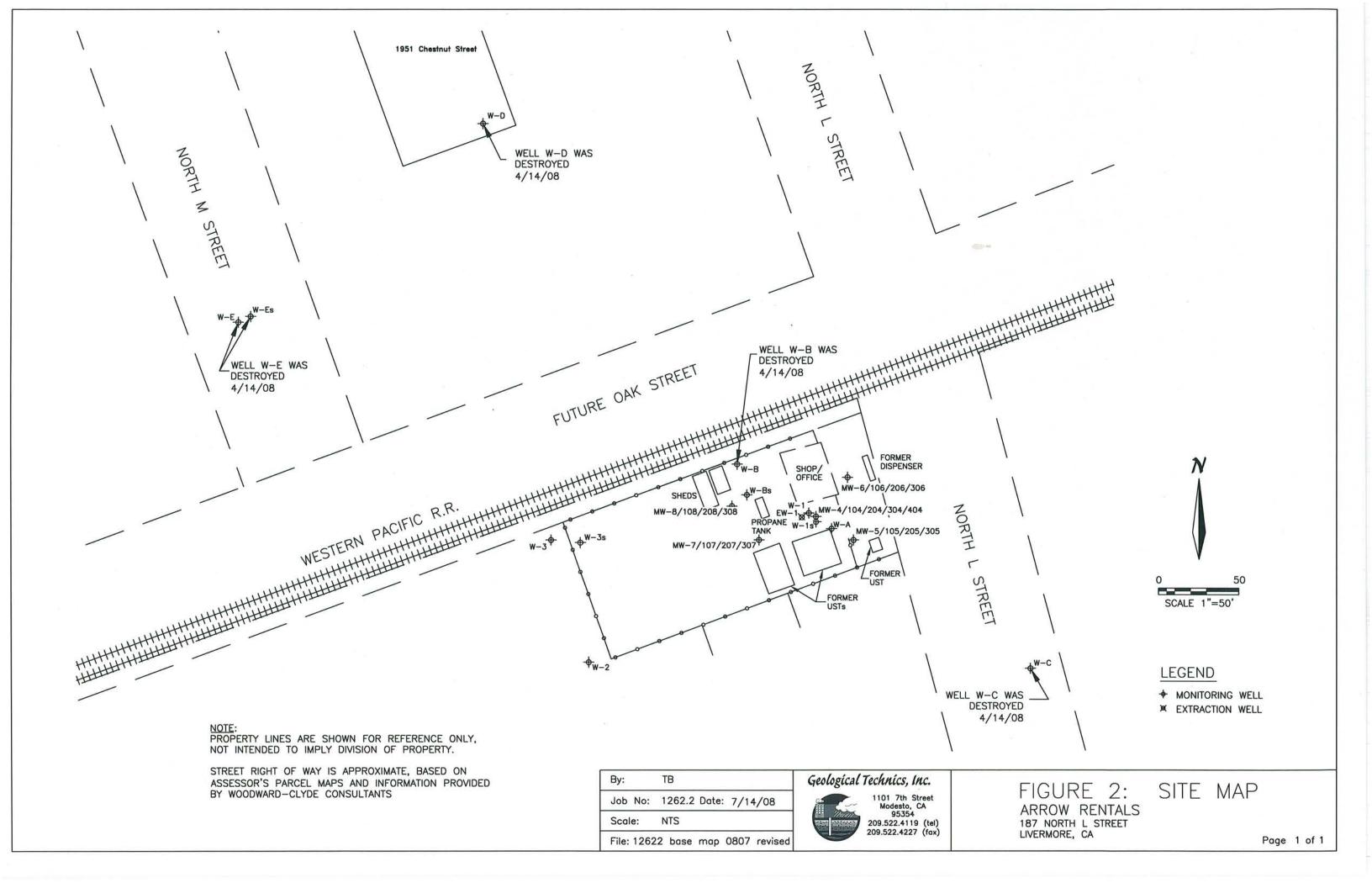
Recommendations

Maintain the current semi-annual monitoring schedule.

- Continue the process of developing and purging the CMTTM well chambers to clear them
 of clay residue/smear that precludes recharge and water level monitoring.
- Continue implementation of the Corrective Action Plan (CAP) that includes provisions for performing dual phase extraction to treat the residual contamination at the site, which has received approval from ACEH and cost pre-approval from the UST Cleanup Fund.

4.0 LIMITATIONS

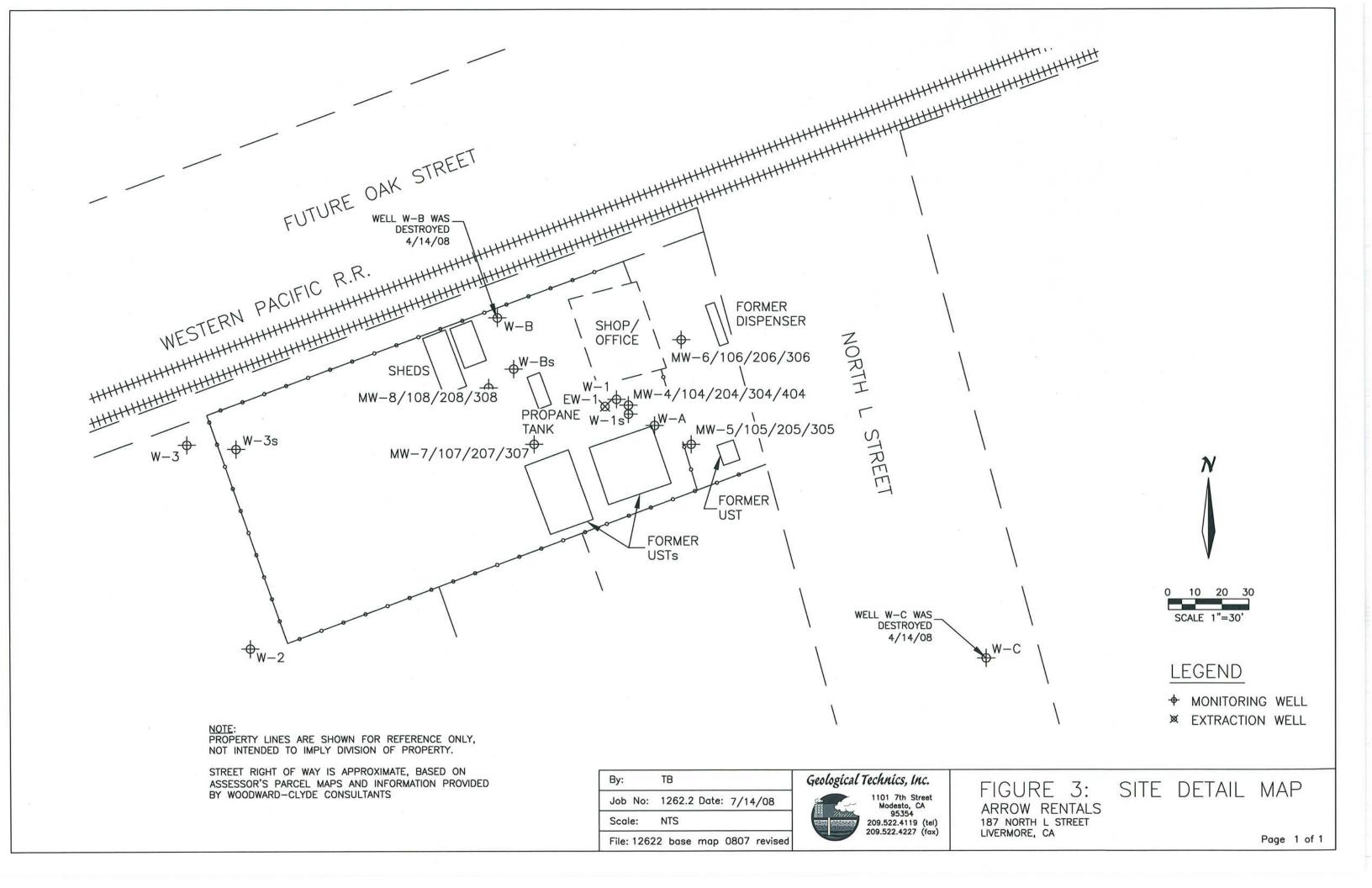
This report was prepared in accordance with the generally accepted standard of care and practice in effect at the time Services were rendered. It should be recognized that definition and evaluation of environmental conditions is an inexact science and that the state or practice of environmental geology/hydrology is changing and evolving and that standards existing at the present time may change as knowledge increases and the state of the practice continues to improve. Further, that differing subsurface soil characteristics can be experienced within a small distance and therefore cannot be known in an absolute sense. All conclusions and recommendations are based on the available data and information.

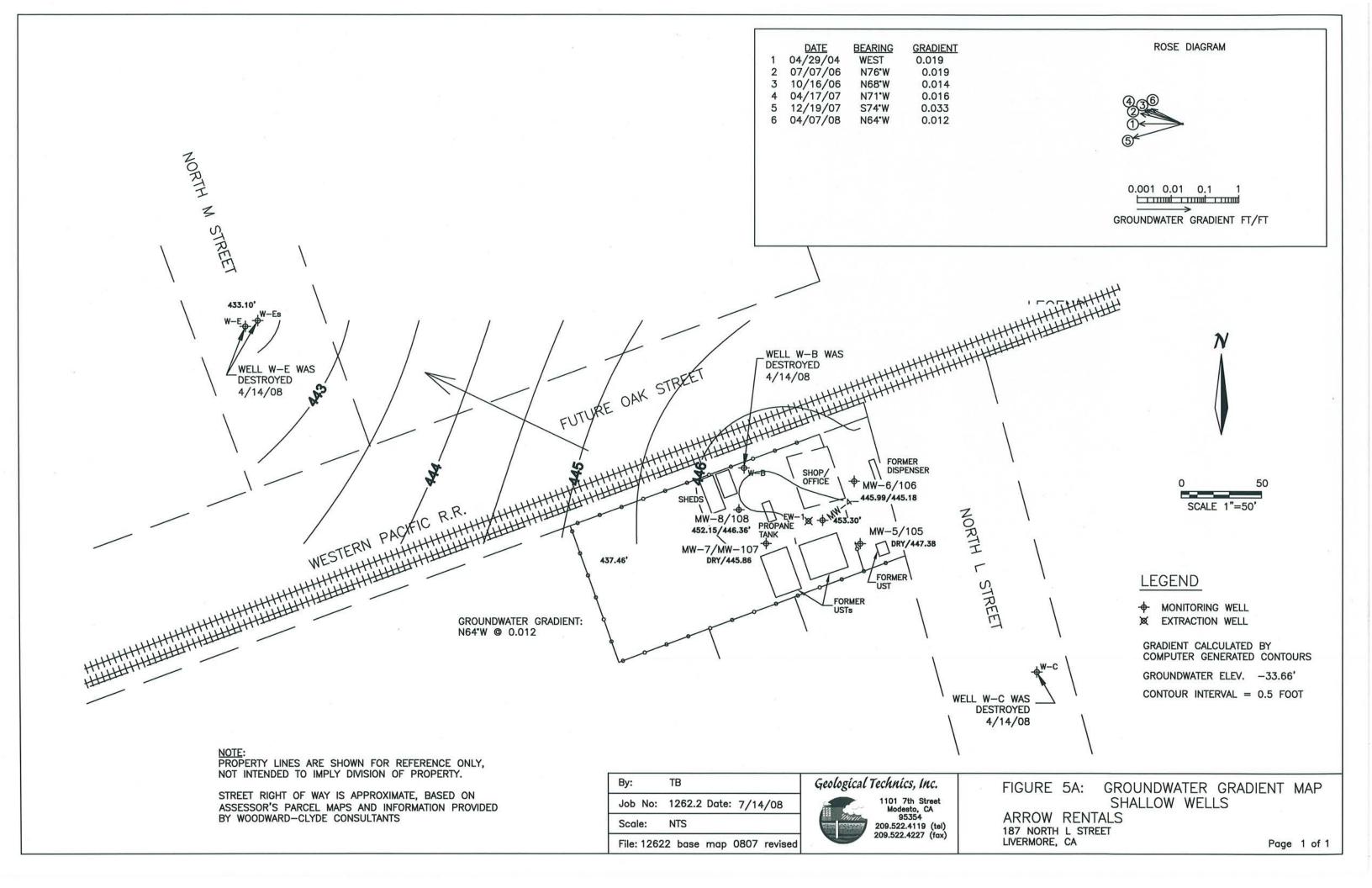
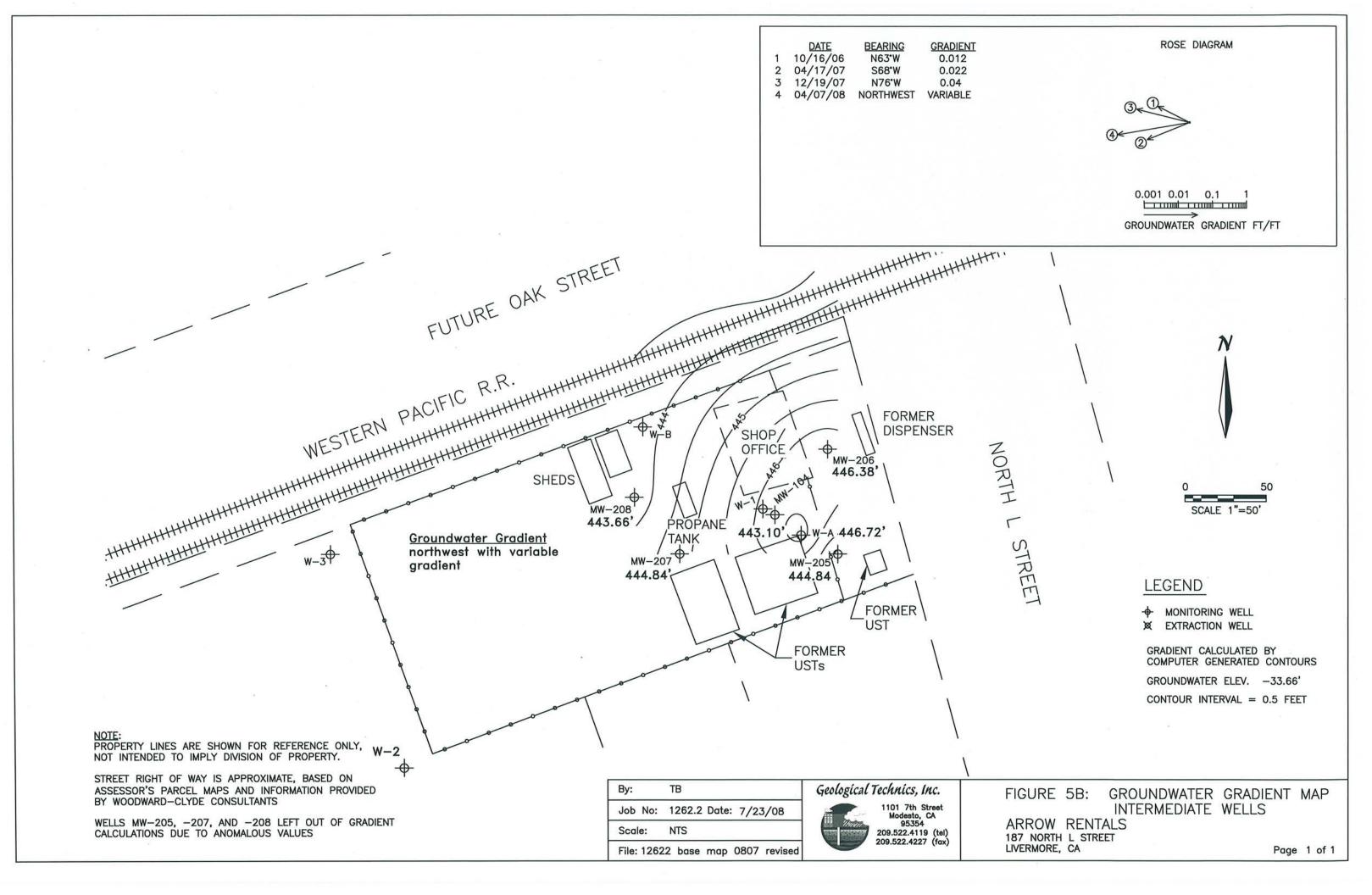

The tasks proposed and completed during this project were reviewed and approved by the local regulatory agency for compliance with the law. No warranty, expressed or implied, is made.

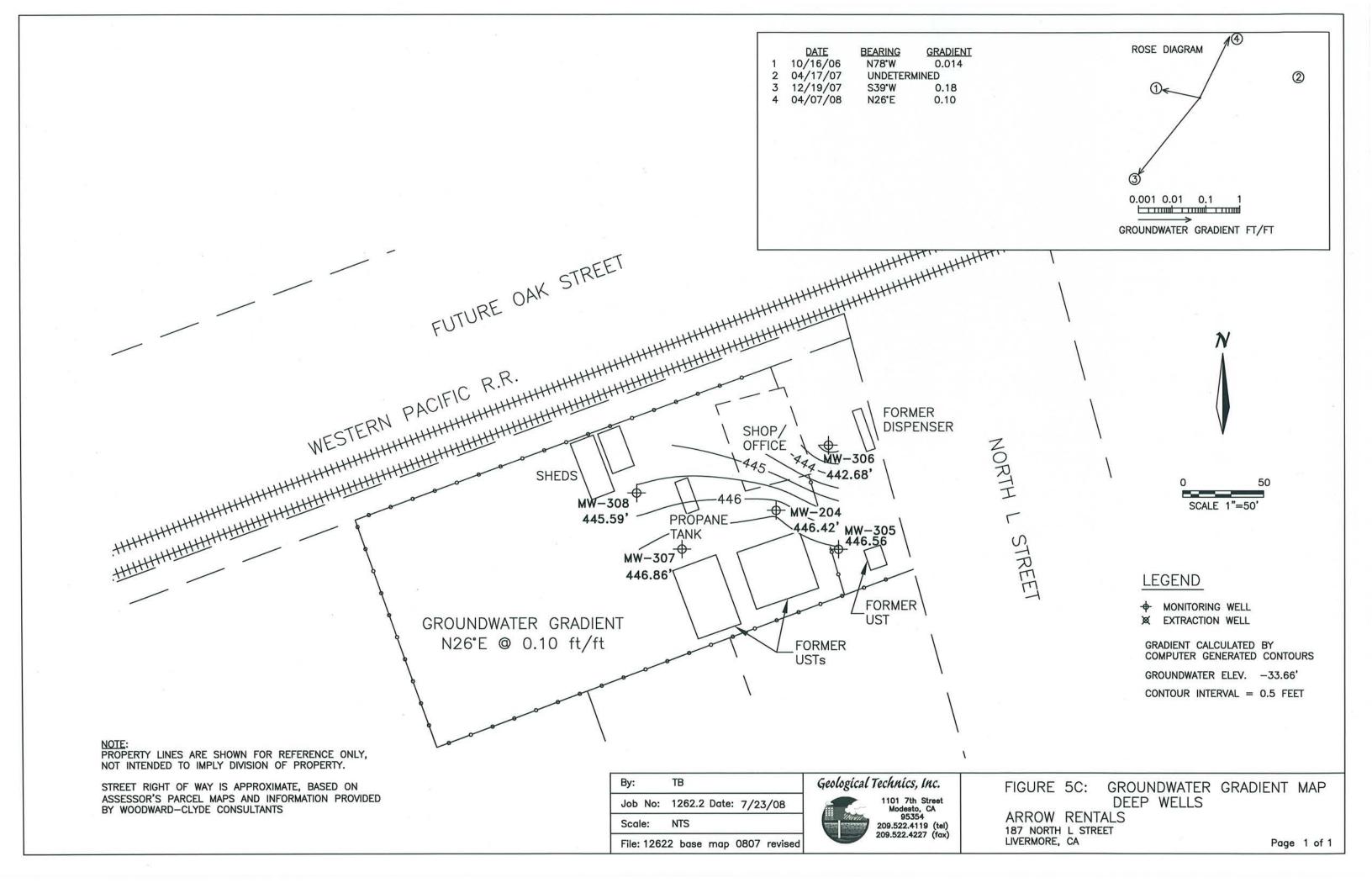
5.0 SIGNATURES & CERTIFICATION

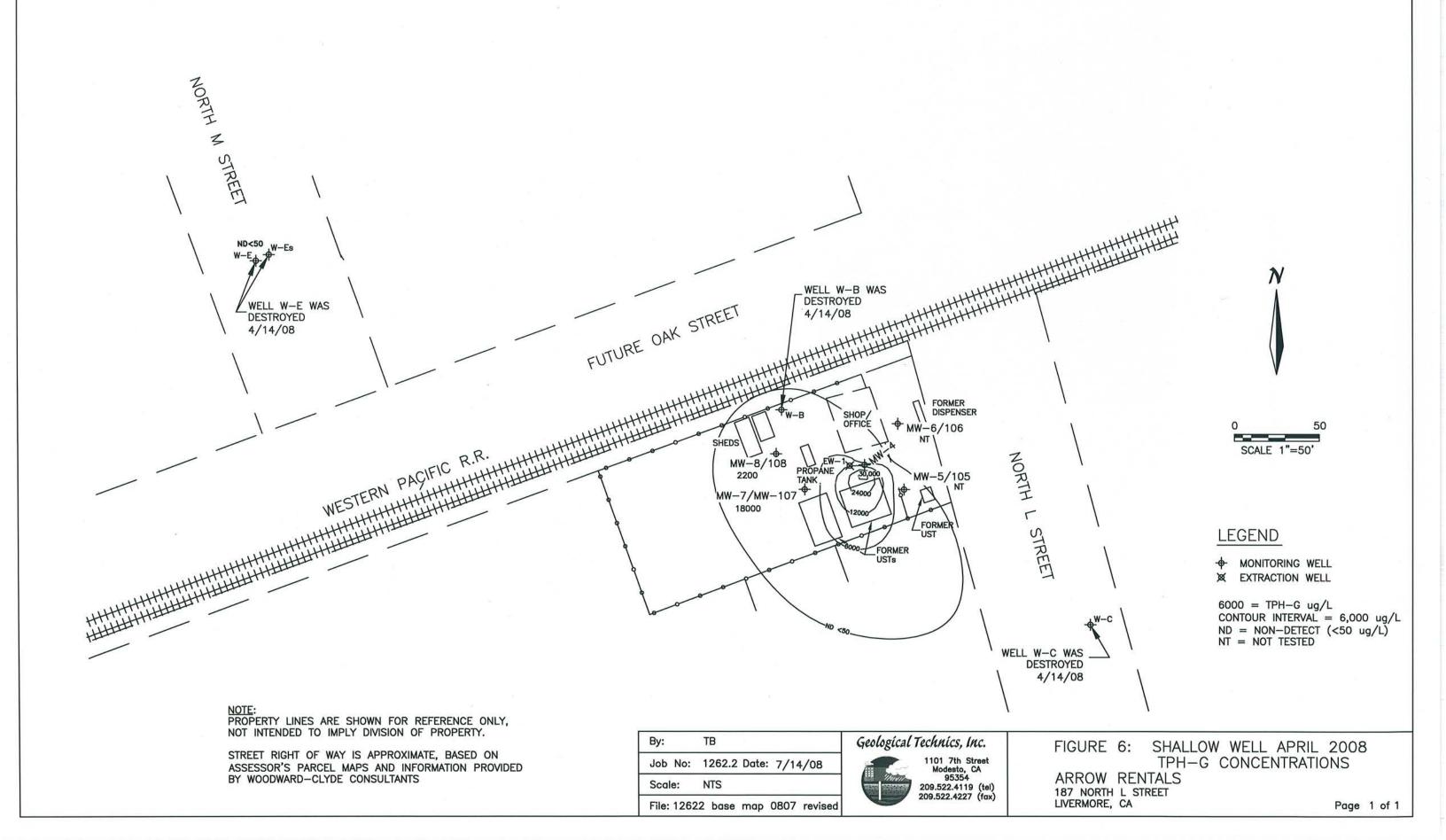
This report was prepared under the direction of:

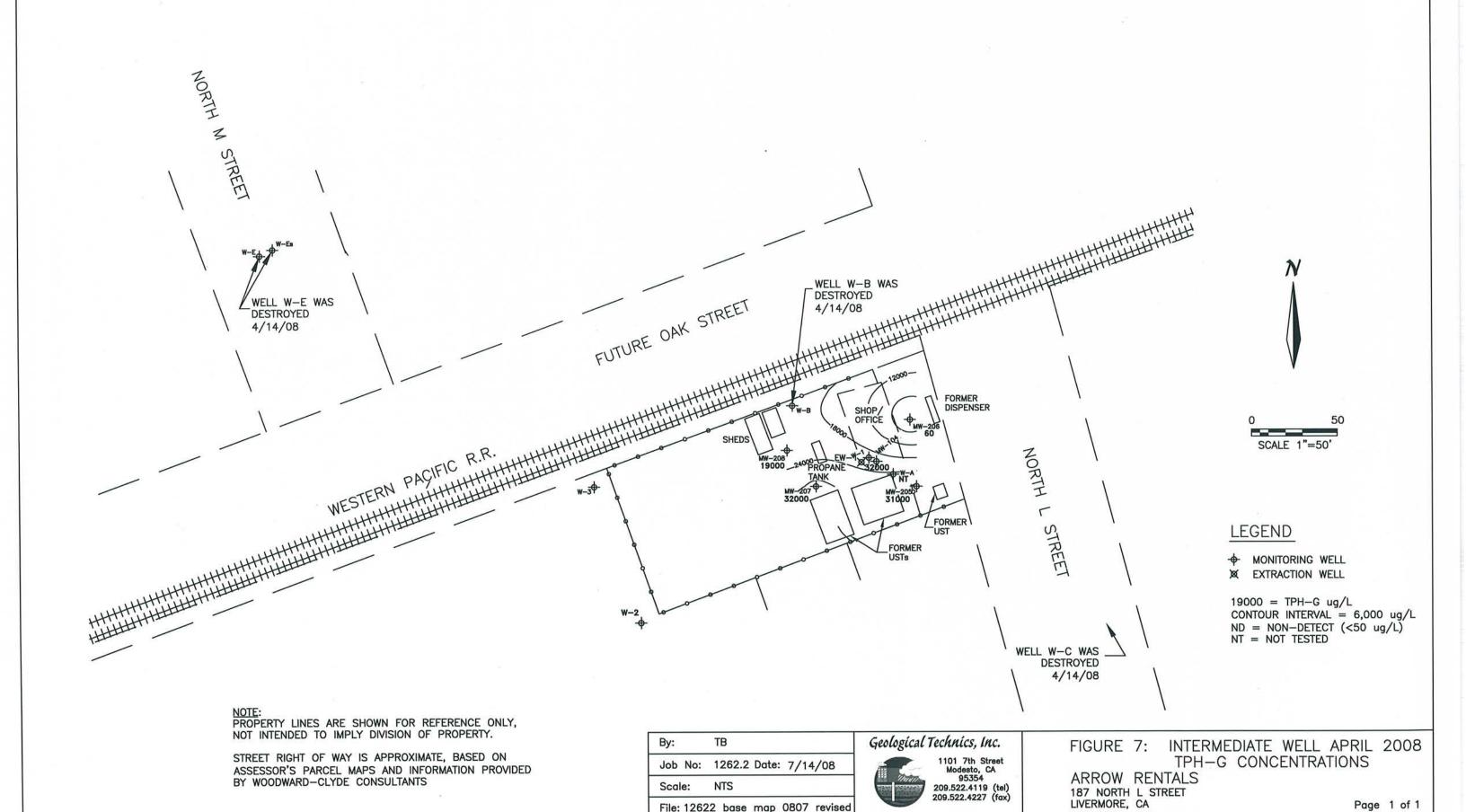
Tamorah Bryant, P.E.

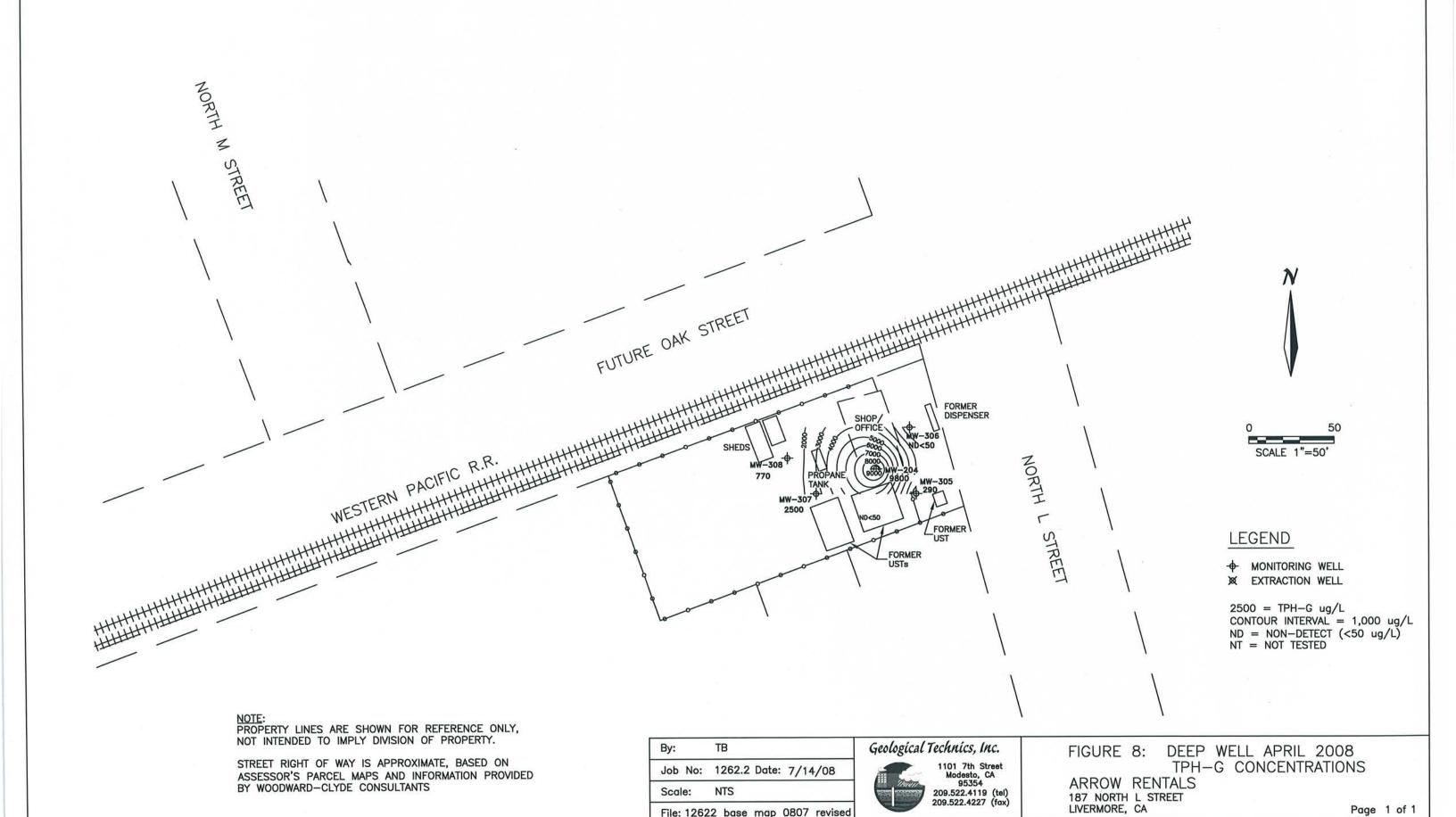


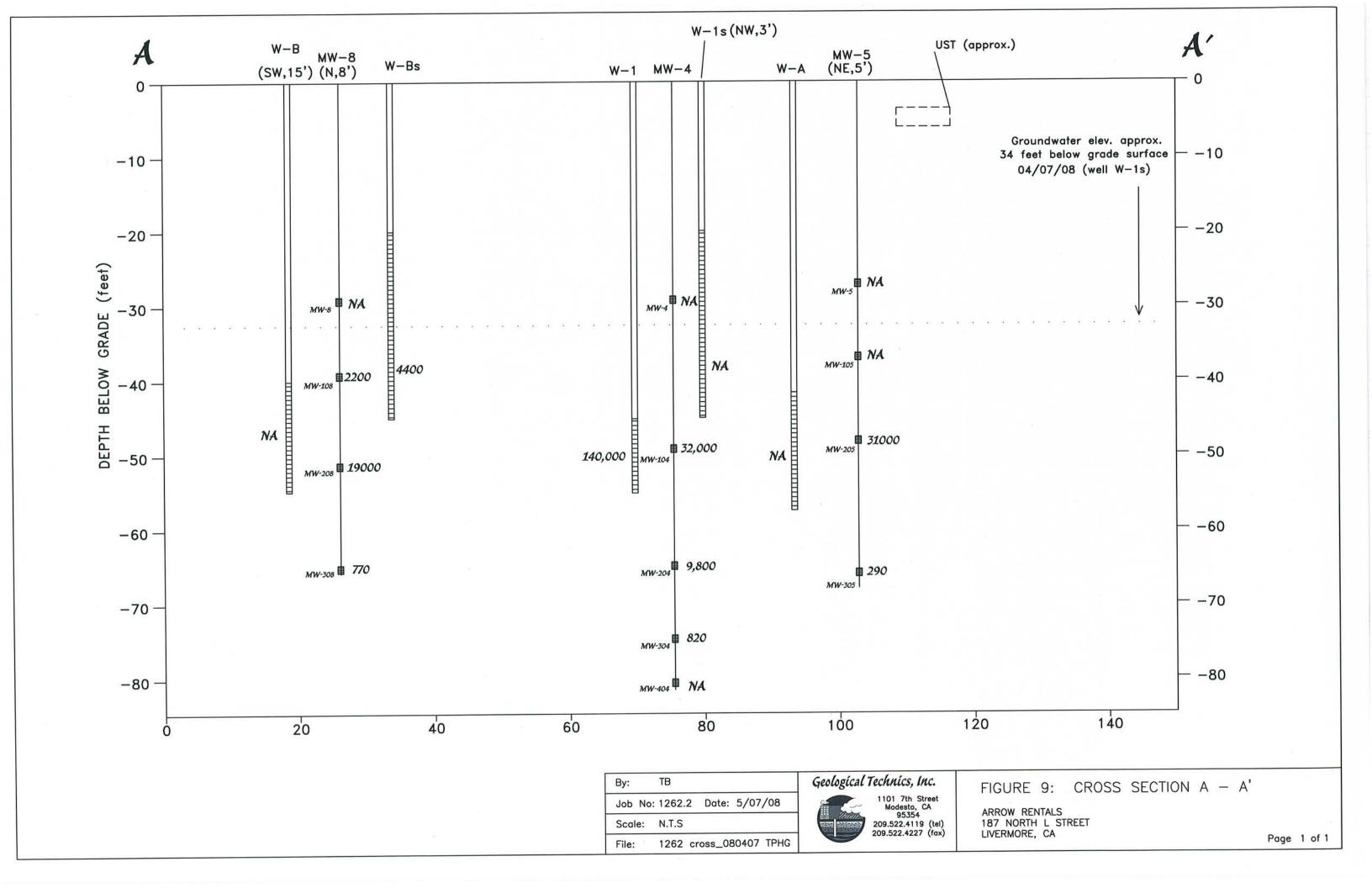



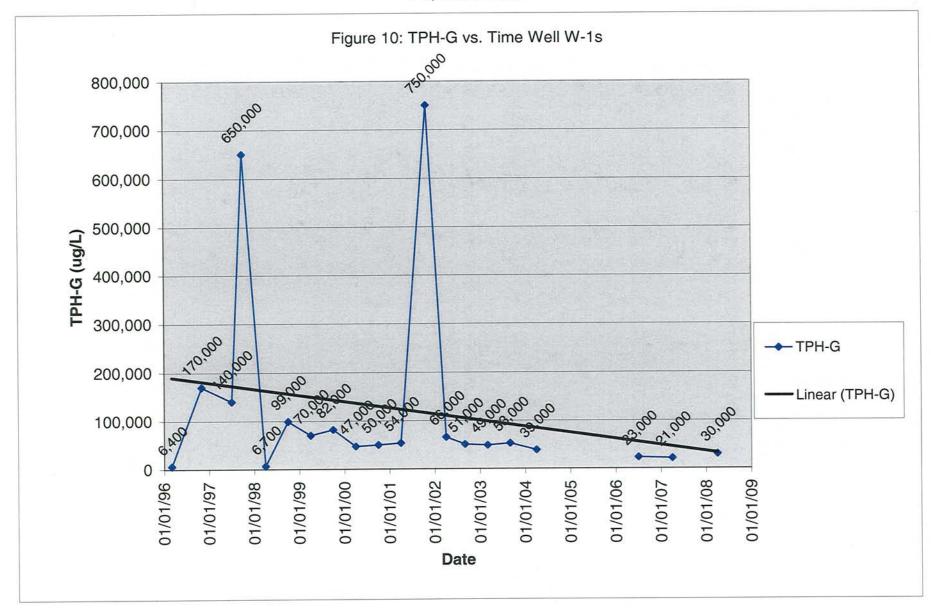

Fig 4: Well Screened Interval Diagram

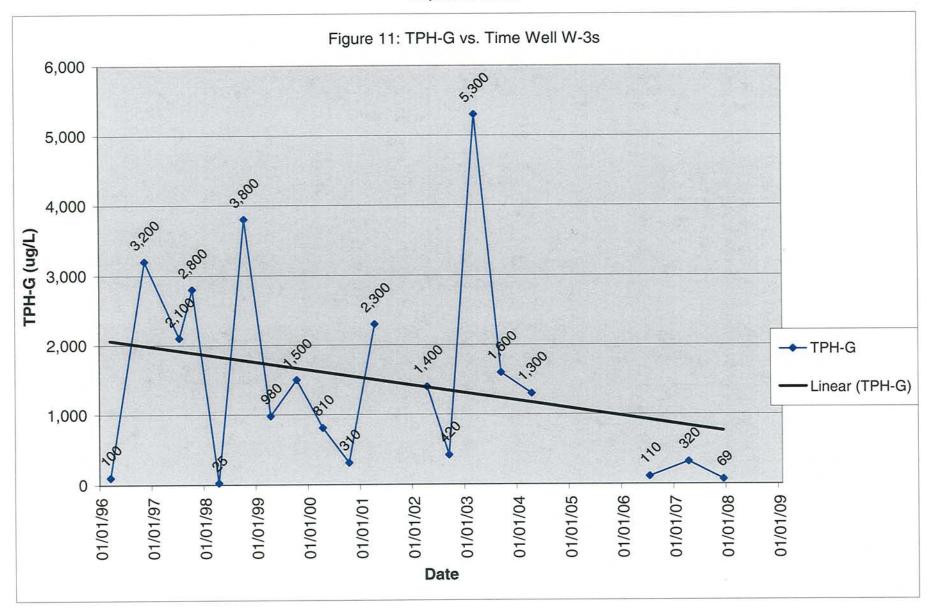


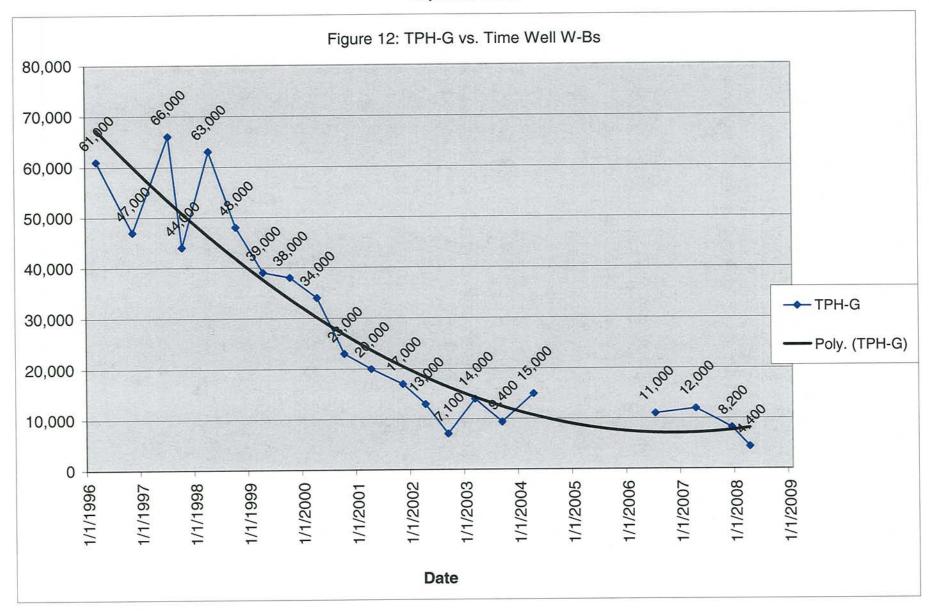

Sullins 187 North L Street Livermore, CA




File: 12622 base map 0807 revised


Page 1 of 1




File: 12622 base map 0807 revised

Page 1 of 1

Appendix A

Summary Tables

Table 1A: Summary of Groundwater Elevation and Gradient - Water Table Wells

Date						Elevation	on of Grour	dwater*				Avg. Elv.	Avg. DTW	Gradient	Bearing
		W-1s	W-3s	W-Bs	W-Es				7.5			(feet)	(feet)	(ft/ft)	
	top of casing	479.09	476.98	478.82	474.66										
	top of screen	459.09	456.98	458.82	454.66										
	bottom of screen	434.09	431.98	433.82	429.66										
7/15/97		448.68	447.81	449.20	443.20										
10/29/97		442.64	441.53	442.19	437.98							and the			
4/27/98		460.48	457.25	459.96	455.39										
10/23/98		445.11	444.01	445.60	440.16										
4/9/99		453.14	451.02	452.78	447.25										
10/5/99		446.66	445.20	446.72	441.47										
4/5/00		453.12	451.96	453.77	448.04										
10/26/00		447.91	446.50	448.14	442.43										
4/18/01		447.80	446.51	446.89	442.63										
11/13/01		435.69	433.32	443.59	431.05		19								
4/30/02		441.80	439.19	441.50	437.09										
9/30/02		439.17	437.01	439.39	434.50										
3/19/03		446.83	445.03	446.74	441.80										
9/16/03		440.88	438.50	441.40	436.14										
4/29/04		448.99	447.39	448.83	443.43		+					447.16	30.23	0.019	West
7/7/06		450.40	448.61	450.25	444.21							448.37	29.02	0.019	N76°W

*Data prior to July 7, 2006 from Environmental Sampling Services 5/27/04 Groundwater Monitoring Report

Date	Elevation of Groundwater - Wells Surveyed October 16, 2006 in accordance with SWRCB Geotracker Requirements																	
		W-1s	W-3s	W-Bs	W-Es	MW-4	MW-5	MW-6	MW-7	MW-8	MW-105	MW-106	MW-107	MW-108	Avg. Elv.	Avg. DTW	Gradient	Bearing
	top of casing	481.19	479.12	480.92	476.78	480.84	481.12	480.79	480.91	480.64	481.12	480.79	480.91	480.64	(feet)	(feet)	(ft/ft)	
	top of screen	461.19	459.12	460.92	456.78	451.84	455.12	451.79	451.91	451.64	445.12	444.79	441.91	441.64				
	bottom of screen	436.19	434.12	435.92	431.78	450.84	454.12	450.79	450.91	450.64	444.12	443.79	440.91	440.64				
10/16/06		447.81	446.17	447.93	442.75	-	-		-	1-	447.97	447.11	446.77	446.34	446.61	33.58	0.014	N68°W
4/17/07		449.64	448.35	449.51	444.58	454.09	5 4	ī	-	-	-		448.92	-	448.20	31.58	0.016	N71°W
12/19/07		438.88	437.46	444.51	433.10	-	(=	-	. /2		ra - c	443.07	442.26	442.60	440.27	39.78	0.033	S74°W
4/7/08		446.97	-	446.76	442.34	453.30	4=	445.99	-	452.15	447.38	445.18	445.86	446.36	447.23	33.23	0.012	N64°W

"-" = well dry or depth to water measurement could not be obtained

Table 1B: Summary of Groundwater Elevation and Gradient - Intermediate Wells

Data	Elevation of Groundwater - Wells Surveyed Octpber 16, 2006 in accordance with SWRCB Geotracker Requirements														
Date		W-A	W-B	W-C	W-D	W-E	MW-104	MW-205			MW-208	Avg. Elv.	Avg. DTW	Gradient	Bearing
	top of casing	481.04	480.74	481.61	477.03	476.56	480.84	481.12	480.79	480.91	480.64	(feet)	(feet)	(ft/ft)	
	top of screen	439.04	440.74	436.61	435.03	436.06	431.34	434.12	431.79	431.91	429.64				
	bottom of screen	423.54	425.74	426.61	419.53	416.26	430.34	433.12	430.79	430.91	428.64				
10/16/2006	bottom of screen	423.54	- 125.71	-	7.61	442.63	444.85	446.75	447.03	446.27	445.12	445.44	34.70	0.012	N63°W
					-	-	-	2	448.57	447.13	447.05	447.58	33.20	0.022	S68°W
4/17/2007		438.36			-	u u	435.98		436.10	434.33	433.92	435.74	45.11	0.04	N76°W
12/19/2007 4/7/2008		446.72					443.10	444.84	446.38	444.84	443.66	444.92	35.97	northwest	variable

[&]quot;-" = well dry or depth to water measurement could not be obtained

Table 1C: Summary of Groundwater Elevation and Gradient - Deep Wells

Date	Elevation of Groundwater - Wells Surveyed October 16, 2006 in accordance with SWRCB Geotracker Requirements														
Date	2.0	MW-204	MW-305	MW-306	MW-307	MW-308	Avg. Elv.	Avg. DTW	Gradient	Bearing	MW-304	MW-404			
	top of casing	480.84	481.12	480.79	480.91	480.64	(feet)	(feet)	(ft/ft)		480.84	480.84			
	top of casing	415.34	416.12	415.79	415.91	415.64					406.34	400.84			
	bottom of screen	414.34	415.12	414.79	414.91	414.64					405.34	399.34			
		447.09	447.44	447.29	446.63	446.37	446.96	33.90	0.014	N78°W	442.76	444.37			
10/16/2006		447.09	448.49	449.08	- 110.00	-	448.79	32.17	-	-	1.5	448.82			
4/17/2007		435.73	440.47	443.19	435.20	434.93	437.26	43.53	0.18	S39°W	435.45	435.51			
12/19/2007 4/7/2008		446.42	446.56	442.68	446.86	445.59	445.62	35.24	0.1	N26°E	441.42	446.18			

[&]quot;-" = well dry or depth to water measurement could not be obtained

Table 2

Date	Well Pair	Mid Points (TS-BS & TS-BS)	gwl/ts	bs/bs	GW Elev. (Head)	Vert Head diff.	Vert Dist diff.	Vertical Gradient
16-Oct-06	MW-104	430.84	431.34	430.34	444.85	2.240	16.00	0.14
	MW-204	414.84	415.34	414.34	447.09			
16-Oct-06	MW-205	433.62	434.12	433.12	446.75	0.690	18.00	0.04
	MW-305	415.62	416.12	415.12	447.44			
19-Apr-07	MW-107	441.41	441.91	440.91	448.92	-1.790	10.00	-0.18
	MW-207	431.41	431.91	430.91	447.13			
19-Apr-07	MW-206	431.29	431.79	430.79	446.75	0.510	16.00	0.03
1, 1, 1, 0,	MW-306	415.29	415.79	414.79	447.44			
19-Dec-07	MW-204	414.84	415.34	414.34	435.73	-0.280	9.00	-0.03
1) Bec of	MW-304	405.84	406.34	405.34	435.45			
19-Dec-07	MW-304	405.84	406.34	405.34	435.45	0.060	5.75	0.01
1) Dec of	MW-404	400.09	400.84	399.34	435.51			
19-Dec-07	MW-207	431.41	431.91	430.91	434.33	0.870	16.00	0.05
1) Bee or	MW-307	415.41	415.91	414.91	435.20			
7-Apr-08	MW-204	414.84	415.34	414.34	446.42	-5.000	9.00	-0.56
,	MW-304	405.84	406.34	405.34	441.42			
7-Apr-08	MW-205	433.62	434.12	433.12	446.75	1.720	18.00	0.10
	MW-305	415.62	416.12	415.12	447.44			
7-Apr-08	MW-206	431.29	431.79	430.79	446.75	-3.700	16.00	-0.23
	MW-306	415.29	415.79	414.79	447.44			
7-Apr-08	MW-207	431.41	431.91	430.91	444.84	2.020	16.00	0.13
	MW-307	415.41	415.91	414.91	446.86			Marian

Table 3: Summary of Well Construction

Well/Boring Type	Well/Boring	Status	Date Drilled	Total Depth	Boring Diameter	Well Casing Diameter	Casing Type	Slot Size	Sand Type	Well S	Screen	Filter	Pack	Annula	ar Seal	Grout	t Seal
	Number	110000		(11)	(in)	(in)	1,700	()		From	То	From	То	From	То	From	То
Mantendan	W-1	Active	5/25/1989	56.5	8	2	PVC	0.010	#2/12	55.5	45.5	55.5	41.5	41.5	39	39	S
Monitoring Monitoring	W-2	Active	5/26/1989	51.5	8	2	PVC	0.010	#2/12	49	39	49	36	36	22.5	22.5	S
Monitoring	W-3	Active	5/26/1989	51.5	8	2	PVC	0.010	#2/12	48	38	48	34.5	34.5	32.5	32.5	S
		Active	7/12/1990	63	12	4	PVC	0.010	#2/12	57.5	42	63	40	40	36.5	36.5	S
Monitoring	W-A W-B	destroyed	7/13/1990	55	12	4	PVC	0.010	#2/12	55	40	55	32	32	30	30	S
Monitoring	W-B W-C		7/11/1990	55	8	2	PVC	0.010	#2	55	45	55	37.5	37.5	35	35	S
Monitoring	W-C W-D	destroyed destroyed	7/12/1990	57.5	12	4	PVC	0.010	#2/12	57.5	42	57.5	39.5	34	32	32	S
Monitoring	W-E	destroyed	7/10/1990	61	8	2	PVC	0.010	#2/12	60.3	40.5	61	37	30	29	29	S
Monitoring					2	6	PVC	0.010	#2/12	45	20	45	17	17	15	15	S
Monitoring	MW-1s	Active	3/11/1996	45	?	6	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
Monitoring	MW-Bs	Active	3/12/1996	45 45	2	4	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
Monitoring	MW-3s	Active	3/12/1996 3/13/1996	45	?	2	PVC	0.010	#2/12	45	20	45	18	18	16	16	S
Monitoring	MW-Es	Active							#2/12	30	29	30	20	16	14	14	S
Monitoring	MW-4	Active	10/04/06	82	8	-	MCT	-	#2/12	50.5	49.5	52	48	-	-		9-1
Monitoring	MW-104	Active	(4)	-		-	MCT		#2/12	66.5	65.5	68	64	-	-	- 2	-
Monitoring	MW-204	Active		-	-	-	MCT		#2/12	75.5	74.5	76	73		-	-	100
Monitoring	MW-304	Active	•	-	-	-	MCT MCT		#2/12	81.5	80	81.5	79.5		-	-	-
Monitoring	MW-404	Active		-	-	-		1,-1						24	21.5	21.5	S
Monitoring	MW-5	Active	10/09/06	68	8		MCT		#2/12	27	26	29	24 34	24		21.3	3
Monitoring	MW-105	Active	(*)		-		MCT		#2/12	37	36	39	45	-	-	-	-
Monitoring	MW-205	Active	-		-	-	MCT	-	#2/12	48	47	50	_	-	-	-	-
Monitoring	MW-305	Active		-		-	MCT		#2/12	66	65	68	63				
Monitoring	MW-6	Active	10/10/06	68	8	2	MCT	-	#2/12	30	29	31	27	27	24	24	S
Monitoring	MW-106	Active	140	-	(*)		MCT		#2/12	37	36	39	35	-	-	-	-
Monitoring	MW-206	Active	-	2		-	MCT		#2/12	50	49	52	47	-		-	-
Monitoring	MW-306	Active					MCT	: 4:	#2/12	66	65	68	63	-		-	-
Monitoring	MW-7	Active	10/05/06	69.5	8		MCT	1.5	#2/12	30	29	30	20	-		6	S
Monitoring	MW-107	Active	-	-	-		MCT	-	#2/12	40	39	42	37	-	•	-	
Monitoring	MW-207	Active				2	MCT	-	#2/12	50	49	52	47	-	-	-	-
Monitoring	MW-307	Active	+	-			MCT		#2/12	66	65	68	63	-		-	
100000000000000000000000000000000000000	MW-8	Active	10/06/06	66.5	8		MCT		#2/12	30	29	30	30	20	18	18	S
Monitoring	MW-8 MW-108	Active	10/00/00	- 00.5	-	-	MCT		#2/12	40	39	42	37	-		-	-
Monitoring	MW-108	Active	-	-			MCT		#2/12	52	51	54	49	-	-		-
Monitoring	MW-208	Active	-	-	-		MCT		#2/12	66	65	66	63	- 2			-
Monitoring Vapor Extraction	EW-1	Active	10/3/2006	25	10	4	PVC	0.010	#2/12	25	10	25	9.5	9.5	7.5	7.5	S

Table 4: Summary of Groundwater Analytical Data

Wells	Date	TPH	TPH	Benzene	Toluene	Ethyl	Total	MTBE	ETBE	DIPE	TAME	TBA	1,2 DCA	EDB
		Gasoline	Diesel	ug/L	ug/L	Benzene	Xylenes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		ug/L	ug/L			ug/L	ug/L							
W/ 4	44/4000 (2)	210,000	300,000	29,000	30,000	5,400	24,000	-	197		-	-		-
W-1	11/1988 (?) 9/13/1995	666,000	-	65,000	78,000	6,400	36,000	<12500	-		-			-
_				9,700	11,000	2,000	10,000	-	(4)	-		-		-
	10/19/2006	77,000	- 1	4,600	7,200	3,900	11,000	340		-	-		-	-
	10/20/2006	110,000		20,000	17,000	3,000	16,000	<2000			2	-		-
	12/20/2007	140,000	•	20,000	17,000	3,000	10,000	\2000						
W-2	11/1988 (?)	360	<50	6.7	2.1	0.5	1.3				-		12	
11-2	9/13/1995	90	-	<0.5	<0.5	<0.5	<0.5	<5		-			-	
W-3	11/1988 (?)	11,000	2,200	290	120	150	140	•				•	-	-
	9/13/1995	27,000	1	5,600	290	460	280	<2500	. • .		-	•		-
							0.400		ends.			-		-
W-A	1990	10,000	2,400	6,800	5,500	620	3,400 6,800	-		-		-	-	-
(dup)	1990		-	6,900	5,600	620 21	33	-	-				12	-
	10/20/2006	450		40	19		3,000	<100	-:-	<u> </u>				-
	10/29/2007	40,000	•	4,000	330	1,600	3,000	<100						
W-B	1990	13,000	1,700	22,000	7,900	2,000	4,000							
(dup)	1990	21,000	1,600	21,000	7,300	1,800	3,700						-	
(dup)	1330	21,000	1,000	2.,555	.,	1,555								
W-C	1990	<10	<100	<1	<1	<1	<1		•	-	-			-
W-D	1990	100	<100	1	2	2	1	-	-		- 2	-	-	-
W-E	1990	<10	<100	<1	<1	<1	<1	-			-		120	
W-E	9/13/1995	95	-	4	<0.5	<0.5	<0.5	18	3.		-		(-)-	-
	0,10,1000													
W-1s	3/22/1996	6,400	2	580	470	85	1,100	<500				•		
	11/22/1996	170,000		13,000	18,000	3,500	18,000	<10000		(*)		•	-	
	7/15/1997	140,000	38,000	12,000	12,000	2,600	16,000	<800	(±)	-			-	
	10/29/1997	650,000	180,000	14,000	19,000	7,800	35,000	<3000	1.4	-			-	-
	4/27/1998	6,700	2,200	410	250	77	870	<30	-			-	- 1	
	10/23/1998	99,000	18,000	9,800	9,400	1,800	11,000	<600	15	-		-	120	
	4/9/1999	70,000	24,000	6,500	7,000	1,800	8,900	360	(I =)					-
	10/5/1999	82,000	60,000	5,500	4,500	2,500	14,000	<300	70.00			•	-	-
	4/5/2000	47,000	15,000	4,300	2,300	1,500	6,100	170	(*)		-	•	•	
	10/26/2000	50,000	1,200	3,800	1,800	1,700	7,600	<50	14		-			
	4/18/2001	54,000	6,800	5,200	1,800	1,500	7,000	<330		1.00			•	
	11/13/2001	750,000		9,500	7,800	7,200	33,000	<2000						
	4/30/2002	66,000	8,200	6,000	2,700	2,300	11,000	<1200	- 2	- 2	-	-		
	9/30/2002	51,000	1,200	5,600	1,500	2,000	9,400	<1000		•		- 2	•	
	3/19/2003	49,000	9,800	3,400	880	1,300	7,300	<500					•	
	9/16/2003	53,000	24,000	4,100	1,200	1,400	6,600	<1000				-	•	
	4/29/2004	39,000	5,900	3,700	1,200	810	4,700	<2500	-	-	-	- 4000		-
	7/7/2006	23,000	<500	4,000	710	1,200	2,900	<100	<500	<500	<500	<1000	<50	<5
	10/17/2006	35,000	<470	5,000	1,300	1,500	3,500	-		•			•	_
	10/19/2006	40,000	-	6,000	3,800	1,300	4,400	-			-			- 10
	10/20/2006	32,000	-	2,100	2,700	1,200	3,600			741		-		
	4/19/2007	21,000		2,200	460	1,200	1,800	<200			-	-	•	
	10/29/2007	68,000	.*	19,000	830	2,700	4,000	<400	-				•	
	4/8/2008	30,000		2,600	340	1,800	1,700	<120				-		

Table 4: Summary of Groundwater Analytical Data

Wells	Date	TPH	TPH	Benzene	Toluene	Ethyl	Total	MTBE	ETBE	DIPE	TAME	TBA	1,2 DCA	EDB
		Gasoline	Diesel	ug/L	ug/L	Benzene	Xylenes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		ug/L	ug/L			ug/L	ug/L							
					22.222	F 400	04.000	-		-				-
W-1	11/1988 (?)	210,000	300,000	29,000	30,000	5,400	24,000 36,000	<12500						-
	9/13/1995	666,000	-	65,000	78,000	6,400	10,000	<12500	•	-1			-	
	10/19/2006	77,000		9,700	11,000	2,000				-:-			-	
	10/20/2006	110,000		4,600	7,200	3,900	11,000	<2000	-:-				-	
	12/20/2007	140,000	•	20,000	17,000	3,000	16,000	<2000						_
W-2	11/1988 (?)	360	<50	6.7	2.1	0.5	1.3						- 3	-
11 2	9/13/1995	90		<0.5	<0.5	<0.5	<0.5	<5			-			
W-3	11/1988 (?)	11,000	2,200	290	120	150	140				*		-	
	9/13/1995	27,000	12	5,600	290	460	280	<2500	(*)(•				
							0.100							
W-A	1990	10,000	2,400	6,800	5,500	620	3,400	*:		-	•	-		
(dup)	1990	- :	•	6,900	5,600	620	6,800	-	•				-	-
77. 37.64	10/20/2006	450		40	19	21	33	100			-:-	-		-
	10/29/2007	40,000	2.00	4,000	330	1,600	3,000	<100			-		-	_
W-B	1990	13,000	1,700	22,000	7,900	2.000	4,000		-		-			
(dup)	1990	21,000	1,600	21,000	7,300	1,800	3,700	-				-	-	-
(dup)	1990	21,000	1,000	21,000	7,000	.,000	4,.55							
W-C	1990	<10	<100	<1	<1	<1	<1	(*)			-		-	
	1000													
W-D	1990	100	<100	1	2	2	1	(4#1				-	-	
		- 10	100		<1	<1	<1		-	-			-41	-
W-E	1990	<10	<100	<1	<0.5	<0.5	<0.5	18		-	-	-	- 20	
	9/13/1995	95	-	+	<0.5	VO.5	V0.5	-10						
W-1s	3/22/1996	6.400		580	470	85	1,100	<500	12	-		- :		-
W-1S	11/22/1996	170,000	-	13,000	18,000	3,500	18,000	<10000			12	12	-	-
	7/15/1997	140,000	38,000	12,000	12,000	2,600	16,000	<800			-			-
	10/29/1997	650,000	180,000	14,000	19,000	7,800	35,000	<3000				-		
	4/27/1998	6,700	2,200	410	250	77	870	<30	-				-	
	10/23/1998	99,000	18,000	9,800	9,400	1,800	11,000	<600	-					
_	4/9/1999	70,000	24,000	6,500	7,000	1,800	8,900	360	-				3.5	
	10/5/1999	82,000	60,000	5,500	4,500	2,500	14,000	<300	-	1(*)	(*)	-	0.50	
	4/5/2000	47,000	15,000	4,300	2,300	1,500	6,100	170	- 8		3.40	•	-	(₩
	10/26/2000	50,000	1,200	3,800	1,800	1,700	7,600	<50		(-)	348	-	(94)	
	4/18/2001	54,000	6,800	5,200	1,800	1,500	7,000	<330		101	120		141	
	11/13/2001	750,000	-	9,500	7,800	7,200	33,000	<2000		72		141	141	-
	4/30/2002	66,000	8,200	6,000	2,700	2,300	11,000	<1200			*	121	12/2/	-
	9/30/2002	51,000	1,200	5,600	1,500	2,000	9,400	<1000						-
	3/19/2003	49,000	9,800	3,400	880	1,300	7,300	<500						-
	9/16/2003	53,000	24,000	4,100	1,200	1,400	6,600	<1000	-	- 5	3.53			-
	4/29/2004	39,000	5,900	3,700	1,200	810	4,700	<2500				1.0		-
	7/7/2006	23,000	<500	4,000	710	1,200	2,900	<100	<500	<500	<500	<1000	<50	<5
	10/17/2006	35,000	<470	5,000	1,300	1,500	3,500		-	- 6	1.0	*		
	10/19/2006	40,000		6,000	3,800	1,300	4,400	-	-					-
	10/20/2006	32,000		2,100	2,700	1,200	3,600	- 2		-			-<	-
	4/19/2007	21,000		2,200	460	1,200	1,800	<200		- 2	-		-	-
	10/29/2007	68,000		19,000	830	2,700	4,000	<400	-				-	-
	4/8/2008	30,000		2,600	340	1,800	1,700	<120			12		-	- 2

Table 4: Summary of Groundwater Analytical Data

Wells	Date	TPH	TPH	Benzene	Toluene	Ethyl	Total	MTBE	ETBE	DIPE	TAME	TBA	1,2 DCA	EDB
		Gasoline	Diesel	ug/L	ug/L	Benzene	Xylenes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		ug/L	ug/L			ug/L	ug/L							
W-3s	3/22/1996	100	-	13	6.9	5.3	14	<5						-
W-35		3,200	-	270	29	63	100	<100	- 2					-
	11/22/1996	2,100	340	230	7	33	51	<20				- 0	12	-
	7/15/1997	2,800	750	630	31	71	69	<30				-		
	4/27/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<3			-		-	-
	10/23/1998	3,800	1,000	500	28	90	37	35						-
	4/9/1999	980	430	240	4	37	3	<12						
	10/5/1999	1,500	1,000	290	9.5	53	9.8	<6		-	-	-		-
	4/5/2000	810	320	150	3	9	5.7	<5		-	-	-	-	-
	10/26/2000	310	120	83	3.5	6.4	1.2	<5		140	-	-	-	-
_	4/18/2001	2,300	1,600	320	8	16	7	<20	540	-	-	-	-	-
_	11/13/2001	2,300	-	320	-	- 10							121	-
	4/30/2002	1,400	490	320	5.5	24	5	<25	-	2	-	-	-	-
	9/30/2002	420	390	68	1.4	3.1	1.1	<5						-
	3/19/2003	5,300	1,500	920	24	140	27	<25		-	-		-	
	9/16/2003	1,600	1,400	270	1.7	5.2	<0.5	<5	-	-			-	-
	4/29/2004	1,300	400	210	5.1	23	4.5	<25	-	-	-		-	
	7/7/2006	110	<500	44	0.77	<0.5	<0.5	<1	<5	<5	<5	<10	<0.5	<0.5
	10/17/2006	1,300	<50	95	<2	2	<2	-	-	-	-	-	-	-
	4/19/2007	320	-	83	<2.5	<2.5	<2.5	<5	-			-	-	
	12/19/2007	69	-	1.3	<0.5	<0.5	<1	<2			-		-	
W-Bs	3/22/1996	61,000		9,800	8,000	2,200	11,000	<5000	- 2		-		-	
	11/22/1996	47,000	-	5,100	3,100	1,400	7,800	<2500			-		-	-
	7/15/1997	66,000	17,000	7,800	4,900	1,900	10,000	<600				-	1.2	-
	10/29/1997	44,000	27,000	6,000	500	1,500	6,400	380	-	•			-	-
	4/27/1998	63,000	17,000	6,100	5,400	1,900	9,100	<600					•	-
	10/23/1998	48,000	9,600	6,700	1,200	1,500	6,200	<300		2.5		,		1.5
	4/9/1999	39,000	12,000	4,100	1,900	1,400	5,600	<300	-	•				
	10/5/1999	38,000	7,300	3,800	390	1,600	5,900	<60	-					
	4/5/2000	34,000	9,600	3,500	1,200	1,400	4,700	<150		(A.#-3)	(4)			-
	10/26/2000	23,000	650	2,500	210	1,100	2,600	150	-	(*)				
	4/18/2001	20,000	2,500	2,400	180	880	1,800	<20	-	(4)	7.4%	181		(+)
	11/13/2001	17,000	3,600	2,000	130	1,100	1,700	<150		7740	(24)S		2.00	
	4/30/2002	13,000	2,300	1,000	38	660	360	<170		114	120	1.41	-	-
	9/30/2002	7,100	1,500	940	28	260	93	<250	-			-		-
	3/19/2003	14,000	3,900	1,200	77	820	900	<120	-			-	-	
	9/16/2003	9,400	1,900	1,300	36	580	160	<150		-	-	•	-	- *
	4/29/2004	15,000	3,300	2,400	170	1,300	950	<200		-	•	-	-	-
	7/7/2006	11,000	<50	1,900	160	820	440	<40	<200	<200	<200	<400	<20	<20
	10/17/2006	6,500	<47	1,000	37	410	83		-	. •	*	(*)	1.00	- 5
	10/20/2006	630	<47	39	8.5	1.7	20	-	-			•		-
	4/19/2007	12,000	2	1,500	100	900	620	<100	-				-	
	12/19/2007	8,200		360	<50	380	<100	<200		-				
	4/8/2008	4,400		410	15	460	71	<50	-	- 2				

Table 4: Summary of Groundwater Analytical Data

Wells	Date	TPH	TPH	Benzene	Toluene	Ethyl	Total	MTBE	ETBE	DIPE	TAME	TBA	1,2 DCA	EDB
		Gasoline	Diesel	ug/L	ug/L	Benzene	Xylenes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		ug/L	ug/L			ug/L	ug/L							
W-Es	3/22/1996	<50		<0.5	<0.5	<0.5	<0.5	<5	*		*			4.5
	11/22/1996	280	-	24	0.6	1.8	2.2	<5	•		-	-	•	
	7/15/1997	1.5		-				•	-		•	-	9.40	
	10/29/1997	- 2	2		-20		-	8					-	(e)
	4/27/1998		2		20	2	2	- 2	- 2	243	14.	- 14		
	10/23/1998	82	69	<0.5	0.8	<0.5	0.8	4	-		- 2	94	34.1	5046
	4/9/1999					-			28				7.00	(22)
	10/5/1999	68	88	<0.5	< 0.5	<0.5	<1.0	4		127			1	523
	4/5/2000		-	-	-	-					27	-		12
	10/26/2000	110	<50	0.7	<0.5	<0.5	<1.0	<5	-		-	-		-
	4/18/2001		-		-	-			-					
	11/13/2001		-	-	-					5.00	-			100
	4/30/2002		-	-			-	-	+:	1.00	(*)	: - 1	-	
	9/30/2002					-	-	-	-	((m)			ie.	
	3/19/2003	86	61	<0.5	<0.5	<0.5	<0.5	<5			(*)		-	
	9/16/2003		-	-		-	-	-	-	0-0	-		1,41	
	4/29/2004	55	87	0.62	<0.5	<0.5	<0.5	<5	-	(4)	(40)	(#)	(4)	-
	7/7/2006	<25	<50	<0.5	<0.5	<0.5	<0.5	2.4	<5	<5	<5	<10	<0.5	<0.5
	10/17/2006	<50	<50	<0.5	<0.5	<0.5	<0.5			-	-	-	-	
	4/17/2007	<50	-	<0.5	<0.5	<0.5	<0.5	<1	- 2	1727	122	145	848	127
	12/19/2007	<50	-	<0.5	<0.5	<0.5	<1	<2	-		-	325	12	12/
	4/7/2008	<50	-	<0.5	<0.5	<0.5	<1	<5		-		-	72	
	4/7/2000	230		V0.0	40.0	40.0		10						
MW-4	10/16/2006							DRY					1	
IAI AA	4/17/2007							DRY						
	10/29/2007	460,000		24,000	21,000	3,800	19,000	<500		7-1				
	12/19/2007	400,000		24,000	21,000	0,000	10,000	DRY	_					
	12/19/2007							T						
MW-5	10/16/2006							DRY			1			
C-WW	4/17/2007							DRY						
	12/19/2007							DRY						
	12/19/2007			_			1	T	1			1	1	
BANK C	10/10/0000							DRY			1			
MW-6	10/16/2006 4/17/2007							DRY						
								DRY						
	12/19/2007			_			1	I		T				
	40/40/0000							DRY					1	
MW-7	10/16/2006							DRY						
	4/17/2007							DRY						
	12/19/2007							DHT	т —	Т	T			
	101101000							DDV	1					
MW-8	10/16/2006							DRY						
	4/17/2007							DRY						
	12/19/2007							DRY		_			1	_
									1	1			1	

Table 4: Summary of Groundwater Analytical Data

Wells	Date	TPH	TPH	Benzene	Toluene	Ethyl	Total	MTBE	ETBE	DIPE	TAME	TBA	1,2 DCA	EDB
		Gasoline	Diesel	ug/L	ug/L	Benzene	Xylenes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		ug/L	ug/L			ug/L	ug/L							
MW-104	10/19/2006	960	122	250	170	20	83	- 2	-	2	-	2	2	12
	4/19/2007							DRY						
	10/29/2007	1,300		210	82	110	380	<5				- 8		
	12/19/2007							DRY						
	4/8/2008	32,000	100	7,100	1,400	680	1,800	<250				•		
MW-105	10/16/2006	-	(€)						*	-	-		15	
	4/19/2007	13,000) E	4,300	980	490	1,500	<250	: * 8		-	-	-	
	12/19/2007							DRY						
	4/8/2008							DRY						
MW-106	10/16/2006	56		2.2	<0.5	0.57	<0.5	-	-	- 14	-		-	
	4/19/2007	240		7.6	<0.5	<0.5	<0.5	<1	-	-	-	-	-	
	10/29/2007	86		<0.5	<0.5	<0.5	<0.5	<1	-		-		-	-
	12/20/2007	54		1.0	<0.5	<0.5	<1	<2				-		
	4/8/2008							DRY						
MW-107	10/19/2006	320		430	290	33	140	-		•				1.00
	4/19/2007	7,400	*:	3,400	150	140	140	<200	•			•	•	
	12/19/2007							DRY						
	4/8/2008	18,000		6,100	700	380	480	<50	•	•		•	-	-
MW-108	10/16/2006	3,400	-	790	46	<20	65	400	-	-			-	340
	4/19/2007	<20,000		5,400	<200	400	220	<400	-	-	-	-		(92)
	10/29/2007	310	-	55	3.2	10	14	DRY	-	-		-	•	
	12/19/2007	0.000		1 1100	0.4	26	140	<25						
	4/8/2008	2,200	-	1,100	24	26	140	<20	-		-	-	-	
MW-204	10/19/2006	5,800		560	420	110	580	-	-		-	-		
WW-204	4/18/2007	<10,000	-	2,700	650	210	970	<200		-	-	-	-	-
	10/29/2007	710	-	18	9.9	11	34	<1				-	-	170
	12/20/2007	22,000		4,700	1,100	490	1,400	<800	-	-	-	-	-	-
	4/8/2008	9,800		1,800	340	520	560	<50	-	-	-	-	-	-
	4/0/2006	5,000		1,000	540	320	300	100						
MW-205	10/16/2006	<2000		880	63	<20	54		12	-	-	-	-	-
1111-200	10/17/2006	5,100		2,000	190	52	220	161	1/21	121	-	2	725	120
_	4/18/2007	<40,000		14,000	550	<400	<400	<800						
	12/19/2007	V40,000		14,000	550	1,100	1 4400	DRY						
-	4/8/2008	31,000		20,000	640	510	1,400	<250						-
	47.072000	01,000		20,000	540	510	., 100	-200	1000	386	- 2			
MW-206	10/16/2006	<50		0.72	<0.5	<0.5	<0.5		2.00				-	
200	4/18/2007	<50	-	0.96	<0.5	<0.5	<0.5	<1		200		-	-	
	12/19/2007	84		0.71	<0.5	<0.5	<1	<2	-		-	-	-	
	4/8/2008	60		1.8	<0.5	<0.5	<1	<5	-	150	-	-	-	
	4/0/2000	- 00		1	10.0	40.0		1						
MW-207	10/19/2006	1,000		170	52	18	67	-			-	1		
201	4/18/2007	<25,000		9,700	480	<250	250	<500	12	- 1	-	-	-	- 2
	12/19/2007	120,000		1 0,1.00				DRY						
	4/7/2008	32,000		12,000	350	580	790	<250			-			
	1112000	02,000		1.2,000										

Table 4: Summary of Groundwater Analytical Data

Arrow Rentals 187 North L Street Livermore CA Project No. 1262.2

Wells	Date	TPH	TPH	Benzene	Toluene	Ethyl	Total	MTBE	ETBE	DIPE	TAME	TBA	1,2 DCA	EDB
		Gasoline	Diesel	ug/L	ug/L	Benzene	Xylenes	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
		ug/L	ug/L			ug/L	ug/L							
MW-304	10/19/2006	3,300		290	240	56	530	-		-				
	4/19/2007	<10,000		3,100	450	<100	420	<200		-	-			•
	12/20/2007	1,500		380	43	32	110	<40			-			
	4/8/2008	820	•	100	36	36	98	<5	0.00	3.00			-	100
MW-305	10/16/2006	<50	-	1.8	<0.5	<0.5	0.67		7.00		-			
	4/19/2007	<20,000	£8	3,600	<200	<200	<200	<400		-	14		-	•
	12/19/2007			1 -,				DRY						
	4/8/2008	290	20	42	14	8.1	28	<5	14	140	-			1.6
MW-306	10/16/2006	<50		<0.5	<0.5	<0.5	<0.5	12	72	1927	- 2	- 1		-
	4/18/2007	<50		3.1	<0.5	<0.5	<0.5	<1		-	,			- 52
	12/20/2007	<50	-	0.54	<0.5	<0.5	<1	<2	-	•	-			•
	4/7/2008	<50		<0.5	<0.5	<0.5	<1	<5	0.77	170	<u> </u>			770
MW-307	10/19/2006	<50	×	2.3	1.5	<0.5	4.7	-		8*8	-	-		
	4/18/2007	<4000		1,300	250	78	310	<80	(*)	(*E)	-			3(#)
	12/19/2007	1,500	2	200	50	59	140	<40		7.0	-			
	4/7/2008	2,500	2	720	110	69	160	<25	1.00	(*)		(+	•	900
MW-308	10/16/2006	<50		<0.5	<0.5	<0.5	<0.5		-	-	-	-	-	141
- 3	4/19/2007	<10,000		1,600	<100	<100	<100	<200		- 2	- 1	- 4		14
	12/19/2007	190		25	1.5	7.2	8.4	<4	-		-	-		1/21
	4/7/2008	770	- 5	150	10	48	45	<5	-	•	•	-	-	
MW-404	10/19/2006	1,700		120	73	27	280	-	-	6. 7 8		-		15
	4/18/2007	<10,000	×	1,400	440	130	550	<200	-		- 1		-	-
	12/19/2007	2,200		160	63	92	300	<40	50		2.00			9.5
	4/8/2008							DRY						

pre- 2006 data adapted from *Environmental Sampling Services* 5/27/04 Groundwater Monitoring Report *-* = not analyzed

Table 5: Summary of Supplemental Analysis of W-1 Groundwater Sample

Wells	Date	Ph	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Zinc	Cyanide	Benzene	Toluene	Ethylbenzene	Xylenes, Total
		Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
W-1 2	2/13/08	6.57	35	ND	36.2	29.4	22.9	ND<0.2	115	ND<20	46	ND<20	22,100	20,800	3,000	16,000

Appendix B

Laboratory Analytical Data Sheets

argon laboratories

15 April 2008

Ray Kablanow Geological Technics, Inc. 1101 7th Street Modesto, CA 95354

RE: Sullins Project Data

Enclosed are the results for sample(s) received on 04/09/08 12:15 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

220	1 1	- 1 .	-
GOOL	opical	Technics	INC.
al and a	a Sagara	2 221 21 2222	21.000

	2		
Page 1	_ of		-
		一個	Timer
		10000	1551515

1101 7th Street Modesto, CA (209) 522-4119 Fax 522-4227 **Chain of Custody**

	E-mail: gt	i@geologicalted	hnics.com			200 2411424	4	1	*	Ana	lysis Requeste	d		Laborator	-	E804	027
Project #: · 12 62.2	Client/Pro	ject Name:			4	Other)		SM		*	-			Temp. @			. C°
Site Address	s:	- L 5-	ł.,		on the second second	Gas,		108/	Bo 2	1208)				Temp. @	Order #		C°
Global ID No	010	0116			of Containers	Matrix (Soil, Water,	Preservation Type	9-1	1.	36				EDF Repo	1	s Ol	Vo_
Sampled By:		ign name) I culue	12 D	~		trix (So	servati	-PLI	TE	M+B			-	1 day	2 day	, 5	day
Date	Time	Field I.D.	Sarr	ple I.D.	S _O	Ma		IT	17			_				emarks	
	1005		MW-1	07.	2	W	HCQ	X	×	×	+		01	# 21	50	ug !	Q
4/8/08	1110		MW-3	041	4	W	HCL	4	4	/			-02				
4/6/08 4/8/08 4/8/08 4/8/08	1200		MW-1	04.	4	W	HCL	Ш	1				03	**	511	2.5	ugle
4/8/08	1230		MW-B	s' ·	4	W	HCl	Ш	11				04				J .
418/08	1310		MW-3	805.	4	W	HCl						US				
419/08	0950		MW-1	1 80	4	W	tre	1/1		1		-	dG				
419108	0907		MW-3		4	W	Hee	\prod		11		-	C 7				
4/8/08	1320		MW-		14	W	HCC	Ш	71	T	1	-	de				
4/9/00	0900		MW-		4	V	Hce	П	71	Π		7-	da				
4/8/08	1335		W-15		14	W	Hee	171	11	T		_	10	2	11-7-11	**	
	1130		MW-2		4	W	HLE	П	71	1		7-	11				
477/08	1043		W-85		4	W	Hee	П	1	1		7-	12				
417/08	1447		MW - 3		Ý	W		H	11			1-	13				
417/08	1470		MW-		4	4	HCQ		.V	6	1111	-	14		-		
Relinquished		ure)		Date:	Tim	e:			Rece	ived b	y: (signature)				Date:		Time:
Janz	-			4/6/08		700					a la		ř.		4/9/0	28	800
Relinquished			,	Dáte: ₹/9/08	Tim	e: (4		ived b	y: (signature)	20	M C	10	Date: 4/9/1	D.M.	Time:
1 Dec	by: (signati	ure)		Date:	Tim			-		\sim	y: (signature)	14		<i>J</i> -1	Date:		Time:
, Juniquisireu	- J. (Signal)			TO STANK	A-0000			Ì			· · · · · · · · · · · · · · · · · · ·						

Geological	Technics	Inc.
22222	5 9 91 91 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11000

1101 7th Street Modesto, CA (209) 522-4119 Fax 522-4227 E-mail: ati@geologicaltechnics.com

Chain	of	Custody

E-mail: gti@geologicaltechnics.com			Analysis Requested	Laboratory: ISO4027
Project #: Client/Project Name: Sullin S Site Address: 187 North L St. Global ID No.: TO 600 100116 Sampled By: (print and sign name) Demice Villanupua.		Matrix Preser	X TPH-6(BORM) * X BTEX (BO21) * * X MtBE (BO21) * X MtBE (BO21	Temp. @ Shipping: C° Temp. @ Lab Receipt: C° Purchase Order # 1262-658077 EDF Report: XIYes DNo Turnaround Time: S Standard 1 day 2 day 5 day Remarks ** PL 80 ugle ** PL 80 ugle
Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Date: Tim	(700 ne: _ z15	Received by: (signature) Received by: (signature) Received by: (signature)	Date: Time: 4/9/08 800

Argon Laboratories Sample Receipt Checklist

Client Name:	Geological Tecl	nnics,	Inc.					Date	e & Time R	eceived:	0	1/09/08		12:15
Project Name:	Sullins							Clie	nt Project I	Number:		1:	262.2	
Received By:	S.H.			Mati	rix:	Water	~	Soil			Slud	ge		
Sample Carrier:	Client	Lab	oratory	1	Fed Ex		UPS		Other					
Argon Labs Project	t Number:	1804	027											
Shipper Container in	good condition?					Sample	s receive	d in pro	per containe	ers?	Yes	1	No	
	N/A	Yes	1	No		Sample	s receive	d intact	?		Yes	✓	No	
Samples received un	der refrigeration?	Yes	V	No		Sufficie	nt sample	e volum	e for reques	led tests?	Yes	V	No	
Chain of custody pre-	sent?	Yes	V	No		Sample	s receive	d within	holding time	e?	Yes	✓	No	
Chain of Custody sig	ned by all parties?	Yes	V	No		Do sam	ples cont	ain pro	per preserva N/A	itive?	Yes	V	No	
Chain of Custody ma	tches all sample la	bels?				Do VOA	vials conta	ain zero	headspace?					
		Yes	7	No				(None	submitted	\square)	Yes	1	No	
	ANY "N	lo" RI	SPONSI	E MUST	BE DETA	MLED IN	THE CO	MMEN	S SECTION	N BELOV	V			
Date Client Contac	ted:				Per	rson Co	ntacted:							
Contacted By:					Subject:	-								
Comments:														
		national designation designati												
Action Taken:		-											atteme	
A CONTRACT OF THE CONTRACT OF														-
				OITIQU	NAL TES	1(S) RE	QUEST /	OTHER						
Contacted By:						Da	ate:				Time	e:		
Call Received By:			-		-									
Comments:		-												
Sac B														

angon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2 Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-107	1804027-01	Water	04/08/08 10:05	04/09/08 12:15
MW-304	1804027-02	Water	04/08/08 11:10	04/09/08 12:15
MW-104	1804027-03	Water	04/08/08 12:00	04/09/08 12:15
MW-B s	1804027-04	Water	04/08/08 12:30	04/09/08 12:15
MW-305	1804027-05	Water	04/08/08 13:10	04/09/08 12:15
MW-108	1804027-06	Water	04/08/08 09:50	04/09/08 12:15
MW-206	1804027-07	Water	04/08/08 09:07	04/09/08 12:15
MW-205	1804027-08	Water	04/08/08 13:20	04/09/08 12:15
MW-208	1804027-09	Water	04/08/08 09:00	04/09/08 12:15
W-1 s	1804027-10	Water	04/08/08 13:35	04/09/08 12:15
MW-204	1804027-11	Water	04/08/08 11:30	04/09/08 12:15
W-E s	1804027-12	Water	04/07/08 10:45	04/09/08 12:15
MW-306	1804027-13	Water	04/07/08 14:47	04/09/08 12:15
MW-308	1804027-14	Water	04/07/08 14:20	04/09/08 12:15
MW-207	1804027-15	Water	04/07/08 15:15	04/09/08 12:15
MW-307	1804027-16	Water	04/07/08 15:00	04/09/08 12:15

@175000 laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-107 (I804027-01) Water Sampled	: 08-Apr-08 10:05	Received: 09-Apr	r-08 12:15				
Total Petroleum Hydrocarbons @	18000	500	ug/L	10	10-Apr-08	EPA	
Gasoline						8015M/8021B	
Benzene	6100	5.0		900			
Toluene	700	5.0	*	**		"	
(ylenes (total)	480	10		**		"	
Ethylbenzene	380	5.0	н	"	- 11	"	
Methyl-t-butyl ether	ND	50		.0	380		
Surr. Rec.:		111 %			"	"	
MW-304 (1804027-02) Water Sampled	i: 08-Apr-08 11:10	Received: 09-Apr	r-08 12:15				
Total Petroleum Hydrocarbons @ Gasoline	820	50	ug/L	1	10-Apr-08	EPA 8015M/8021B	
Senzene	100	0.5			0.00	"	
Foluene	36			50m2			
Kylenes (total)	98	1.0		()(()			
Ethylbenzene	36	0.5				"	
Methyl-t-butyl ether	ND	5.0		u	n:	2 W	
Surr. Rec.:		115 %				*	
MW-104 (1804027-03) Water Sampled	l: 08-Apr-08 12:00	Received: 09-Ap	r-08 12:15				
Total Petroleum Hydrocarbons @	32000	2500	ug/L	50	10-Apr-08	EPA 8015M/8021B	
Gasoline	7100	25		A) =			
Benzene	1400	25					
Foluene	1800	50				:0	
Xylenes (total)	680			110		,	
Ethylbenzene			"				
Methyl-t-butyl ether	ND	250			 "	"	

argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

Analyte	Result	Reporting Limit	Units	Dilution		Analyzed	Method	Notes
MW-B s (1804027-04) Water	Sampled: 08-Apr-08 12:30	Received: 09-Apr	-08 12:15					
Fotal Petroleum Hydrocarbons	@ 4400	500	ug/L	10		10-Apr-08	EPA	
Gasoline							8015M/8021B	
Benzene	. 410		25003	3.005				
Гoluene	15	5.0		"		**		
Xylenes (total)	71	10	"	**		н		
Ethylbenzene	460	5.0				316		
Methyl-t-butyl ether	ND	50		26		S#0		
Surr. Rec.:		113 %				a)	"	
MW-305 (1804027-05) Water	Sampled: 08-Apr-08 13:10	Received: 09-Ap	r-08 12:15					
Fotal Petroleum Hydrocarbons	s @ 290	50	ug/L	1	NV.	10-Apr-08	EPA 8015M/8021B	
Gasoline	42	0.5				001	"	
Benzene	14							
Foluene	28	CO (CO)	100					
Xylenes (total)							W.	
Ethylbenzene	8.1 NE					160	,,	
Methyl-t-butyl ether	ND					"	,,	
Surr. Rec.:		110 %				50	177	
MW-108 (I804027-06) Water	Sampled: 08-Apr-08 09:50	Received: 09-Ap	r-08 12:15					
Total Petroleum Hydrocarbon	s @ 2200	250	ug/L	5		10-Apr-08	EPA	
Gasoline		1230		207			8015M/8021B	
Benzene	1100			"		2		
Toluene	24		"	"		11.		
Xylenes (total)	140		"			- "		
Ethylbenzene	26		"					
	NE	25	**			**	**	

argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-206 (1804027-07) Water	Sampled: 08-Apr-08 09:07	Received: 09-Apr	r-08 12:15				
Total Petroleum Hydrocarboi	ns @ 60	50	ug/L	. 1	10-Apr-08	EPA 8015M/8021B	
Gasoline Benzene	1.8	0.5	500	(90)			
Toluene	ND			1.00			
Xylenes (total)	ND						
Ethylbenzene	ND					**	
Methyl-t-butyl ether	ND		506		3.00		
Surr. Rec.:	IND	99 %			n	и	
MW-205 (1804027-08) Water	Sampled: 08-Apr-08 13:20	Received: 09-Ap	r-08 12:15				
Total Petroleum Hydrocarbo Gasoline	ns @ 31000	2500	ug/L	50	10-Apr-08	EPA 8015M/8021B	
Benzene	20000	25	**		(30.)	ж	
Toluene	640	25		(4)			
Xylenes (total)	1400	50		(100)	**	*	
Ethylbenzene	510	25				W .	
Methyl-t-butyl ether	ND		•		200	98	
Surr. Rec.:		99 %			"	"	
MW-208 (I804027-09) Water	Sampled: 08-Apr-08 09:00	Received: 09-Ap	r-08 12:15				
Total Petroleum Hydrocarbo	ns @ 19000	2000	ug/L	40	10-Apr-08	EPA 8015M/8021B	
Gasoline	3900	20					
Benzene	230				**		
Toluene	1200			w	м.		
Xylenes (total)			u	"			
Ethylbenzene	550		*				
Methyl-t-butyl ether	NE			775	"	"	
Surr. Rec.:		97 %				0.50	

angon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Note
W-1 s (1804027-10) Water Sampled: 08-A	pr-08 13:35 Receiv	ed: 09-Apr-08	3 12:15				
Fotal Petroleum Hydrocarbons @	30000	1200	ug/L	25	10-Apr-08	EPA	
Gasoline						8015M/8021B	
Benzene	2600	12	3.00)#\$			
Coluene	340	12		**			
(ylenes (total)	1700	25			11		
Ethylbenzene	1800	12	. 11				
Methyl-t-butyl ether	ND	120	100		. 9.	*	
Surr. Rec.:		109 %			#	"	
MW-204 (I804027-11) Water Sampled: 08	8-Apr-08 11:30 Rec	ceived: 09-Ap	r-08 12:15				
Cotal Petroleum Hydrocarbons @	9800	500	ug/L	10	10-Apr-08	EPA 8015M/8021B	
Gasoline Benzene	1800	5.0	n		3000		
Coluene	340	5.0	100			¥	
	560	10					
Kylenes (total)	520	5.0				*	
E thylbenzene Methyl-t-butyl ether	ND	50		ú.			
Surr. Rec.:	, , ,	102 %	1	1	"	"	
Surf. Rec.: W-E s (1804027-12) Water Sampled: 07-A	Apr-08 10:45 Receiv	ved: 09-Apr-0	8 12:15				
Total Petroleum Hydrocarbons @	ND	50	ug/L	1	10-Apr-08	EPA	
Gasoline						8015M/8021B	
Benzene	ND	0.5					
Toluene	ND	0.5	**	**			77
Xylenes (total)	ND	1.0	"				
Ethylbenzene	ND	0.5			**		
Methyl-t-butyl ether	ND	5.0	"				
Surr. Rec.:		97 %			, "	"	

align laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

Project Number: 1262.2

Work Order No.:

1101 7th Street

Project Name: Sullins

Modesto, CA 95354

Project Manager: Ray Kablanow

1804027

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-306 (I804027-13) Water	Sampled: 07-Apr-08 14:47	Received: 09-Apr	r-08 12:15				
Fotal Petroleum Hydrocarbons (a) ND	50	ug/L	1	10-Apr-08	EPA	
Gasoline						8015M/8021B	
Benzene	ND		9			**	
Toluene	ND	0.5		*			
Xylenes (total)	ND	1.0		•			
Ethylbenzene	ND	0.5		**			
Methyl-t-butyl ether	ND	5.0	0.0	.99			
Surr. Rec.:		90 %			"	"	24
MW-308 (1804027-14) Water	Sampled: 07-Apr-08 14:20	Received: 09-Ap	r-08 12:15				
Total Petroleum Hydrocarbon	s @ 770	50	ug/L	1	10-Apr-08	EPA 8015M/8021B	
Gasoline Benzene	150	0.5				1885	
Toluene	10		3003	.0			
Xylenes (total)	45						
Ethylbenzene	48			16			
Methyl-t-butyl ether	ND			0	30.7		
Surr. Rec.:		108 %			"	"	
MW-207 (1804027-15) Water	Sampled: 07-Apr-08 15:15	Received: 09-Ap	r-08 12:15	T.			
Total Petroleum Hydrocarbon	32000 32000	2500	ug/L	50	10-Apr-08	EPA	_
Gasoline	Section 1					8015M/8021B	
Benzene	12000		*		и.	**	
Toluene	350	25	CWC.	60		9 .	
Xylenes (total)	790	50	11.	5.00		**	
Ethylbenzene	580	25					
Methyl-t-butyl ether	ND	250			J 985	"	
Surr. Rec.:		86 %			,,	"	

argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

TPH-gas/BTEX/MTBE EPA Method 8015M / 8021B

A. Corperator	Dli	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
Analyte	Result	Limit	Omts	Dilution	- Indiyees		
MW-307 (1804027-16) Water	Sampled: 07-Apr-08 15:00	Received: 09-Ap	r-08 12:15				
Total Petroleum Hydrocarbon	s @ 2500	250	ug/L	5	10-Apr-08	EPA 8015M/8021B	
Gasoline Benzene	720	2.5	ē.	*			
Foluene	110	2.5		*	70	(m)	
Xylenes (total)	160	5.0		**	3003	1900	
Ethylbenzene	69	2.5	- 0				
Methyl-t-butyl ether	ND	25	107		"		
		104 %			1.00.	n.	

Surr. Rec.:

angen laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

TPH-gas/BTEX/MTBE EPA Method 8015M / 8021B - Quality Control

Argon Laboratories

		Reporting		Spike	Source		%REC		RPD	0.0
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1800827 - EPA 5030B										
Blank (I800827-BLK1)				Prepared &	Analyzed:	04/10/08				
Surrogate: a,a,a-Trifluorotoluene	46.0		ug/L	50.00		92	80-120			
Total Petroleum Hydrocarbons @ Gasoline	ND	50								
Benzene	ND	0.5								
Toluene	ND	0.5								
Xylenes (total)	ND	1.0								
Ethylbenzene	ND	0.5								
Methyl-t-butyl ether	ND	5.0	**							
LCS (1800827-BS1)				Prepared &	Analyzed	: 04/10/08				
Total Petroleum Hydrocarbons @ Gasoline	1002		ug/L	1000		100	80-120			
LCS Dup (1800827-BSD1)				Prepared &	Analyzed	: 04/10/08				
Total Petroleum Hydrocarbons @ Gasoline	1006		ug/L	1000		101	80-120	0.4	20	
Matrix Spike (I800827-MS1)	Sou	rce: 1804027-	07	Prepared &	Analyzed	: 04/10/08				
Toluene	22.10		ug/L	25.00	ND	88	70-130			
Matrix Spike Dup (I800827-MSD1)	Sou	rce: I804027-	07	Prepared &	k Analyzed	: 04/10/08				
Toluene	20.70		ug/L	25.00	ND	83	70-130	7	20	

argon laboratories 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Geological Technics, Inc.

1101 7th Street

Modesto, CA 95354

Project Number: 1262.2

Project Name: Sullins

Project Manager: Ray Kablanow

Work Order No.:

1804027

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

RECEIVED MAR 1 3 2008

EXCELCHEM Environmental Labs

1135 W Sunset Boulevard Suite A Rocklin, CA 95765 Phone# 916-543-4445 Fax# 916-543-4449

ELAP Certificate No.: 2119

03 March 2008

Geological Technics

Geological Technics

1101 7th Street

Modesto, CA 95354

RE: Sullins

Workorder number:0802084

Enclosed are the results of analyses for samples received by the laboratory on 02/14/08 08:37. All Quality Control results are within acceptable limits except where noted as a case narrative. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

John Somers, Lab Director

Geological Technics

Project:

Sullins

1101 7th Street Modesto, CA 95354 Project Number: 1

Project Manager:

1262.2 Geological Technics Date Reported: 03/03/08 11:15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
W-1	0802084-01	Water	02/13/08 11:10	02/14/08 08:37
W-1	0802084-02	Water	02/13/08 11:10	02/14/08 08:37

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Done

Geological Technics 1101 7th Street Modesto, CA 95354 Project:

Sullins

Project Number: Project Manager: 1262.2 Geological Technics Date Reported: 03/03/08 11:15

W-1 0802084-01 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Metals by 200 series							2	
Arsenic	35.0	10.0	ug/l	ARB0098	02/14/08	02/19/08	EPA 200.7	
Cadmium	ND	10.0	III	: nc	1111	02/19/08	"	
Chromium	36.2	10.0		**	· w	11	'H.	
Copper	29.4	20.0	"	"	11	"		
Lead	22.9	10.0	11	.00	100	и		
Mercury	ND	0.000200	mg/L	ARB0109	"	02/19/08	Mercury by EPA 245.1	
Nickel	115	10.0	ug/l	ARB0098		02/19/08	EPA 200.7	
Silver	ND	20.0	"	"		W		
Zinc	46.0	20.0				"		
Wet Chemistry								
pH	6.57	0.100	pH Units	ARB0106	02/14/08	02/14/08	SM4500-H+	Field
SM 4500-CN-F								
Cyanide	ND	20	ug/L	0148242	02/27/08	02/28/08	SM 4500-CN-F	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Dun

Geological Technics

Project:

Sullins

1101 7th Street

Modesto, CA 95354

Project Number:

Project Manager:

1262.2 Geological Technics Date Reported: 03/03/08 11:15

W-1 0802084-02 (Water)

Analyte	Result	eporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
/ L / L O . L O	L. COME							
Volatile Organic Compounds Methyl tert-Butyl Ether	ND	0.5	ug/l	ARB0085	02/15/08	02/15/08	EPA 624	
Dichlorodifluoromethane	ND	0.5	_	"	"	"	11	
Chloromethane	ND	0.5			310	16		
Vinyl chloride	ND	0.5				11	n	
Bromomethane	ND	0.5				11	"	
Chloroethane	ND	0.5						
richlorofluoromethane	ND	0.5				"		
Acrolein	ND	15.0				"		
Crichlorotrifluoroethane	ND	1.0			iii		30	
.1-Dichloroethene	ND	0.5				"	90	
Acrylonitrile	ND	1.5				ii.	31	
Methylene chloride	ND	5.0					н	
rans-1,2-Dichloroethene	ND	0.5		: 70:	ii ii	"	и	
1,1-Dichloroethane	ND	0.5		190	T T		U	
cis-1,2-Dichloroethene	ND	0.5		310	300	"	и	
Bromochloromethane	ND	0.5		2.00	<300	,,	n	
Chloroform	ND	0.5		500				
1,1,1-Trichloroethane	ND	0.5		SW)	700		"	
Carbon tetrachloride	ND	0.5		n i	.000	"		
Benzene	22100	0.5			W.	н		
	ND	0.5					3.003	
1,2-Dichloroethane	ND	0.5		11			n n	
Frichloroethene	ND	0.5		н	u.		300	
,2-Dichloropropane Dibromomethane	ND	0.5		n n	iii		100	
	ND	0.5			ii.			
Bromodichloromethane	ND ND	0.5	,		H.			
cis-1,3-Dichloropropene	20800	0.5		10		10.0		
Foluene			,	ii.	ü	300	u	
rans-1,3-Dichloropropene	ND	0.5	,			п	u	
1,1,2-Trichloroethane	ND	0.5	,		W	11	n	
Tetrachloroethene	ND	0.5					.0	
Dibromochloromethane	ND	0.5				,,		
,2-Dibromoethane (EDB)	ND	0.5					1.00	
Chlorobenzene	ND	0.5	1000		ï		010	
1,1,2,2-Tetrachloroethane	ND	0.:	,			(**)	n n	
Ethylbenzene	3000	0.3	,					
Xylenes, total	16000	1.0		"				
Styrene	ND	0.:			,,		"	
Bromoform	ND	0.:	5 "	"	**	"	11	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donne

Geological Technics 1101 7th Street

Project: Project Number: Project Manager: Modesto, CA 95354

Sullins 1262.2

Geological Technics

Date Reported: 03/03/08 11:15

W-1 0802084-02 (Water)

Analyte	Result	Reporting Limit	Units	Batch	Date Prepared	Date Analyzed	Method	Notes
Volatile Organic Compounds b			5/l	ARB0085	02/15/08	02/15/08	EPA 624	
1,3-Dichlorobenzene	ND			AKB0083	02/13/08	02/13/06		
1,4-Dichlorobenzene	ND	0						
1,2-Dichlorobenzene	NE	0	5 "		10			
1,2,4-Trichlorobenzene	NE	0	5 "	: U		10		
Surrogate: Dibromofluoromethane		105	% Reco	very Limits	70-	130	"	
Surrogate: Toluene-d8		109	% Reco	very Limits	70-	130	"	
Surrogate: 4-Bromofluorobenzene		98.0	% Reco	very Limits	70-	130	"	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354

Project:
Project Number:
Project Manager:

Sullins 1262.2

Geological Technics

Date Reported: 03/03/08 11:15

Metals by 200 series - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARB0098 - EPA 200.7										
Blank (ARB0098-BLK1)				Prepared:	02/14/08	Analyzed	1: 02/18/08			
Arsenic	ND	10.0	ug/l							
Cadmium	ND	10.0								
Chromium	ND	10.0	"							
Copper	ND	20.0								
Lead	ND	10.0	"							
Nickel	ND	10.0								
Silver	ND	20.0	"							
Zinc	ND	20.0								
LCS (ARB0098-BS1)				Prepared:	02/14/08	Analyzed	1: 02/18/08			
Arsenic	1120	10.0	ug/l	1000		112	75-125			
Cadmium	1090	10.0	n	1000		109	75-125			
Chromium	1080	10.0	0.03	1000		108	75-125			
Copper	1000	20.0		1000		100	75-125			
Lead	1050	10.0		1000		105	75-125			
Nickel	1080	10.0	11	1000		108	75-125			
Silver	987	20.0		1000		98.7	75-125			
Zinc	1150	20.0	•	1000		115	75-125			
LCS Dup (ARB0098-BSD1)				Prepared	02/14/08	Analyze	d: 02/18/08			
Arsenic	1120	10.0	ug/l	1000		112	75-125	0.716	25	
Cadmium	1100	10.0	"	1000		110	75-125	0.815	25	
Chromium	1080	10.0	**	1000		108	75-125	0.190	25	
Copper	1000	20.0	11	1000		100	75-125	0.0283	25	
Lead	1050	10.0	25	1000		105	75-125	0.213	25	
Nickel	1080	10.0		1000		108	75-125	0.438	25	
Silver	981	20.0	11	1000		98.1	75-125	0.547	25	
Zinc	1150	20.0	"	1000		115	75-125	0.100	25	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354

Project: Project Number:

Project Manager:

Sullins 1262.2

Geological Technics

Date Reported: 03/03/08 11:15

Metals by 200 series - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARB0098 - EPA 200.7							1			
Matrix Spike (ARB0098-MS1)	So	urce: 080207	5-01	Prepared:	02/14/08	Analyzed	: 02/18/08			
Arsenic	1090	10.0	ug/l	1000	23.2	107	75-125			
Cadmium	983	10.0	"	1000	120	86.3	75-125			
Chromium	1390	10.0	"	1000	494	89.6	75-125			
Copper	6270	20.0	u	1000	5230	105	75-125			
Lead	1220	10.0	100	1000	394	82.8	75-125			
Nickel	1090	10.0	n:	1000	264	83.0	75-125			
Silver	4300	20.0	110	1000	3160	114	75-125			
Zinc	22300	20.0	10	1000	21200	112	75-125			
Matrix Spike Dup (ARB0098-MSD1)	So	urce: 080207	5-01	Prepared:	02/14/08	Analyzed	1: 02/18/08			
Arsenic	1060	10.0	ug/l	1000	23.2	104	75-125	2.83	25	
Cadmium	986	10.0		1000	120	86.6	75-125	0.259	25	
Chromium	1370	10.0		1000	494	87.8	75-125	1.34	25	
Copper	6320	20.0	**	1000	5230	109	75-125	0.712	25	
Lead	1260	10.0	"	1000	394	86.4	75-125	2.85	25	
Nickel	1120	10.0	**	1000	264	85.4	75-125	2.20	25	
Silver	4170	20.0	"	1000	3160	101	75-125	2.92	25	
Zinc	22600	20.0	n	1000	21200	138	75-125	1.17	25	
Batch ARB0109 - Mercury by EPA 2	45.1									
Blank (ARB0109-BLK1)				Prepared:	02/14/08	Analyzed	d: 02/19/08			
Mercury	ND	0.000200	mg/L							
LCS (ARB0109-BS1)				Prepared:	02/14/08	Analyzed	1: 02/19/08	i.		
Mercury	0.00738	0.000200	mg/L	0.00667		111	85-115			

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Dun

Geological Technics 1101 7th Street Project: Project Number: Sullins

1262.2

Date Reported: 03/03/08 11:15

Modesto, CA 95354

Project Manager: Geological Technics

Metals by 200 series - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARB0109 - Mercury by EPA 2	45.1					. 9				
LCS Dup (ARB0109-BSD1)				Prepared:	02/14/08	Analyzed	1: 02/19/08			
Mercury	0.00729	0.000200	mg/L	0.00667		109	85-115	1.27	20	
Matrix Spike (ARB0109-MS1)	So	urce: 080208	4-01	Prepared:	02/14/08	Analyzed	1: 02/19/08			
Mercury	0.00748	0.000200	mg/L	0.00667	ND	112	75-125			
Matrix Spike Dup (ARB0109-MSD1)	So	urce: 080208	4-01	Prepared:	02/14/08	Analyzed	1: 02/19/08			
Mercury	0.00751	0.000200	mg/L	0.00667	ND	113	75-125	0.427	20	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donn

Geological Technics

Project:

Sullins

1101 7th Street Modesto, CA 95354 Project Number: Project Manager:

1262.2

Geological Technics

Date Reported: 03/03/08 11:15

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARB0085 - EPA 624										
Blank (ARB0085-BLK1)				Prepared	& Analyzo	ed: 02/14/0	08			
Surrogate: Dibromofluoromethane	12.7		ug/l	12.5		102	70-130			-
Surrogate: Toluene-d8	13.5		"	12.5		108	70-130			
Surrogate: 4-Bromofluorobenzene	12.8		"	12.5		103	70-130			
Methyl tert-Butyl Ether	ND	0.5								
Dichlorodifluoromethane	ND	0.5								
Chloromethane	ND	0.5								
Vinyl chloride	ND	0.5	ui.							
Bromomethane	ND	0.5	00							
Chloroethane	ND	0.5	0.5							
Frichlorofluoromethane	ND	0.5	110							
Acrolein	ND	15.0								
Crichlorotrifluoroethane	ND	1.0	w							
.1-Dichloroethene	ND	0.5	n							
Acrylonitrile	ND	1.5	"							
Methylene chloride	ND	5.0	"							
rans-1,2-Dichloroethene	ND	0.5	"							
,1-Dichloroethane	ND	0.5	"							
sis-1,2-Dichloroethene	ND	0.5	"							
Bromochloromethane	ND	0.5	n.							
Chloroform	ND	0.5	11							
1,1,1-Trichloroethane	ND	0.5	ж							
Carbon tetrachloride	ND	0.5	311							
Benzene	ND	0.5	:0							
1,2-Dichloroethane	ND	0.5								
Frichloroethene	ND	0.5	,							
1,2-Dichloropropane	ND	0.5								
Dibromomethane	ND	0.5								
Bromodichloromethane	ND	0.5								
cis-1,3-Dichloropropene	ND	0.5								
Foluene	ND	0.5								
trans-1,3-Dichloropropene	ND	0.5								
1,1,2-Trichloroethane	ND	0.5								
	ND	0.5	10							
Tetrachloroethene	ND	0.5	3163							
Dibromochloromethane	ND ND	0.5								
1,2-Dibromoethane (EDB)	ND ND	0.5								
Chlorobenzene	ND	0.5								
1,1,2,2-Tetrachloroethane		0.5								
Ethylbenzene	ND		"							
Xylenes, total	ND	1.0	5700							

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street

Modesto, CA 95354

Project: Project Number: Sullins 1262.2

Project Manager:

Geological Technics

Date Reported: 03/03/08 11:15

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARB0085 - EPA 624				8						
Blank (ARB0085-BLK1)		74		Prepared	& Analyz	ed: 02/14/0	08			
Styrene	ND	0.5	ug/l							
Bromoform	ND	0.5								
1,3-Dichlorobenzene	ND	0.5								
1,4-Dichlorobenzene	ND	0.5								
,2-Dichlorobenzene	ND	0.5								
,2,4-Trichlorobenzene	ND	0.5	"							
LCS (ARB0085-BS1)				Prepared	& Analyz	ed: 02/14/	08			
Surrogate: Dibromofluoromethane	12.6		ug/l	12.5	V	101	70-130			
Surrogate: Toluene-d8	13.6		"	12.5		109	70-130			
Surrogate: 4-Bromofluorobenzene	12.7		"	12.5		102	70-130			
1,1-Dichloroethene	9.6	0.5	"	10.0		96.5	80-120			
Benzene	9.0	0.5	31	10.0		89.6	80-120			
Trichloroethene	9.7	0.5	**	10.0		96.9	80-120			
Toluene	9.5	0.5	31	10.0		95.2	80-120			
Chlorobenzene	9.8	0.5	30	10.0		98.1	80-120			
Matrix Spike (ARB0085-MS1)	So	urce: 080205	8-01	Prepared	: 02/14/08	Analyze	d: 02/15/08		<u> </u>	
Surrogate: Dibromofluoromethane	12.4	- I Silvery-	ug/l	12.5		99.5	70-130			
Surrogate: Toluene-d8	13.3		"	12.5		107	70-130			
Surrogate: 4-Bromofluorobenzene	12.6		"	12.5		101	70-130			
1,1-Dichloroethene	10.0	0.5		10.0	ND	100	80-120			
Benzene	8.9	0.5	"	10.0	ND	88.7	80-120			
Trichloroethene	10.2	0.5	(11)	10.0	ND	102	80-120			
Toluene	9.8	0.5		10.0	ND	98.2	80-120			
Chlorobenzene	9.6	0.5	800	10.0	ND	95.9	80-120			
Matrix Spike Dup (ARB0085-MSD1)	Sc	ource: 08020	58-01	Prepared	: 02/14/08	Analyze	d: 02/15/08	3		
Surrogate: Dibromofluoromethane	12.7		ug/l	12.5		102	70-130			
Surrogate: Toluene-d8	13.3		"	12.5		107	70-130			
Surrogate: 4-Bromofluorobenzene	12.3		"	12.5		98.1	70-130			
1,1-Dichloroethene	10.0	0.5	111	10.0	ND	99.9	80-120	0.499	15	
Benzene	8.8	0.5	"	10.0	ND	87.6	80-120	1.25	15	
Trichloroethene	9.5	0.5		10.0	ND	95.3	80-120	6.99	15	
Toluene	9.5	0.5	11:	10.0	ND	94.6	80-120	3.73	15	
Chlorobenzene	9.7	0.5	20:	10.0	ND	96.6	80-120	0.727	15	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street

Duplicate (ARB0106-DUP1)

pH

Project:
Project Number:

Sullins 1262.2

Date Reported:

Modesto, CA 95354

Project Manager:

Source: 0802084-01

6.64

Geological Technics

Prepared & Analyzed: 02/14/08

6.57

03/03/08 11:15

200

1.06

Wet Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch ARB0106 - SM4500-H+										

0.100 pH Units

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dr Down

Geological Technics 1101 7th Street Modesto, CA 95354

Project: Project Number:

Project Manager:

Sullins 1262.2

Geological Technics

Date Reported: 03/03/08 11:15

SM 4500-CN-F - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0148242 - SM 4500-CN-F										
BLK1 (0148242-BLK1)				Prepared:	02/27/08	Analyzed	d: 02/28/08			
Cyanide	ND	0.020	ug/L				(.)			
BS1 (0148242-BS1)				Prepared:	02/27/08	Analyze	d: 02/28/08			
Cyanide	0.20	0.020	ug/L	0.2		99	80-120		20	
BSD1 (0148242-BSD1)				Prepared:	02/27/08	Analyze	d: 02/28/08			
Cyanide	0.19	0.020	ug/L	0.2		97	80-120	2.6	20	
MS1 (0148242-MS1)	So	urce: 951852		Prepared:	02/27/08	Analyze	d: 02/28/08			
Cyanide	0.17	0.020	ug/L	0.2	ND	87	80-120		20	
MSD1 (0148242-MSD1)	So	urce: 951852		Prepared:	02/27/08	Analyze	d: 02/28/08			
Cyanide	0.18	0.020	ug/L	0.2	ND	89	80-120	2.9	20	

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Geological Technics 1101 7th Street Modesto, CA 95354

Project:
Project Number:

Project Manager:

Sullins 1262.2

Geological Technics

Date Reported: 03/03/08 11:15

Notes and Definitions

Field

This analyte was analyzed outside of the EPA recommended hold time of 15 minutes and should be analyzed in the field.

ND - Analyte not detected at reporting limit

NR - Not reported

Excelchem Environmental Lab.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

De Donne

Geological Technics Inc.

1101 7th Street Modesto, CA 522-4119 Fax 522-4227 RECEIVED MARS 3 2008 2/

Chain of Custody

(209) 522-4119 Fax 522-4227 E-mail: gti@geologicaltechnics.com	(J		0	(1.481	Analysis Requested					ed	1		Laboratory:
Project #: Client/Project Name: 12622	No. of Containers	Matrix (Soil, Water, Gas, Other)	Preservation Type	ARSUNIC (AL O.OLMI	W N 0:14	10	copied "	LEAD " DIL	ay "	pq	Silwest " Oiz	21NC " 3	CYANIDE " 0.04	4 CON 150.1	Temp. @ Shipping: C° Temp. @ Lab Receipt: C° Purchase Order # 1262 - 658077 EDF Report: Yes Properties Paragraphic Paragra
Date Time Sample I.D.	No.	Matri	Pres	RE	S)	S C	3	گ	BANE	3	Š	2	5	DIA	Remarks
	2 (ω		X	X	×	\times	X	X	X	X	X	X.		080208401
Relinquished by: (signature) Relinquished by: (signature) Date: Relinquished by: (signature) Date: Please Return Ice Chests to Geological	109	b	Time:	3~	7		Rec	eivec	dby:	Sign	ature	27			Date: Time: 1455 Date: 2/14/08 Time: 2/14/08 Time: Time: Prev. 07/2007

RECEIVED MAR 1 3,2008

42908

Chain of Custody

-	4
4	
3-1	Heretel
6	
-	

1101 7th Street Modesto, CA

Geological Technics Inc.

	Mode	sto, CA 9 Fax 522-4227											280		14	C	hain of C		
		logicaltechnics.com					8			Ana	alysis	Rec	uest	ed			Laboratory:	*:	
Site Address 187 Remarks.:	MONTH	L STALET		of Containers	Matrix (Soil, Water, Gas, Other)	Preservation Type	CAN 1500	191	LU.									ab Receipt: order #	
Sampled By:	(print and sign	Mather Yell	/	of Cor	trix (So	servati	1	TOHA	T.T.0								1 day		dard
Date	Time	Sample I.D.		No.	Ma	Pre	1	- 1	-			_	_			_		Remarks	
2113 08	11:10	w-1		45	w	1400		×	X					ひ			Cill	1664 Hem C4 GEL C 10 mg/L 1(64462) 12 1664 + 623	-)
				9													TTO	RL 0.009	
Relinquished	by (signature	a))	Date: Date: Date: Date:	,	•	Time: YSS Time: Time:	13	2		Rece	eived	by: (si	gnatur gnatur gnatur	e) \		Place		Date: 2/13/08 Date: 2/14/09 Date: Date:	Time: 155 Time: 537 Time:

Appendix C

Groundwater Monitoring Field Notes

CAN	ogical	Tool	aui	re	luc
geou	ozuai	1 ecr	vii	w,	mu.

Project Name: Sullins- Arrow Rentals (L Street)

Well I.D.: W-1s

Project No.: 1262.2

Date: 4/8/2008

Project Location: 187 North L Street

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Samples sent to: Argon

Livermore, CA

Purged (gal)	C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
0.0	24.3	543	6.64	-93.2		Clear, petroleum odor, no sediments
14.5	24.6	533	6.71	-104.7		Clear, petroleum odor, no sediments
	24.8	514	6.76	-95.5		Clear, petroleum odor, no sediments
	-	-	-	-		Well went dry
						Collected samples
		14.5 24.6 29.0 24.8	14.5 24.6 533 29.0 24.8 514	14.5 24.6 533 6.71 29.0 24.8 514 6.76	14.5 24.6 533 6.71 -104.7 29.0 24.8 514 6.76 -95.5	14.5 24.6 533 6.71 -104.7 29.0 24.8 514 6.76 -95.5

						1				
Purge Method: Pumping Rate:	☑ Dedicate		☐Centrifug	al pump with d	edicated tub	ing 🗖 Othe	er			
Well Constructed TD (ft):	45.00		Sample Co	ntainers used:	4	_# VOAs		_X preserved _	non-preserv	ed
* Well TD (ft):	44.05			19		_# amber lite	ers	preserved _	non-preserv	ed
Silt Thickness (ft):	0.95			9		# polys	size	preserved _	non-preserv	ed
Initial DTW (ft):	34.22					# polys	size	preserved _	non-preserv	ed
** Final DTW (ft):	38.14			Notes:						
Casing diameter (in):	6"				v-			-59-1	211	
Water column height (ft):	9.83]		Sampled By:	D. Villanue	eva / R. Estio	ko 🔽	Friehard	(stade)	
One casing volume (gal):	14.55]								
Sample Method: V		Bailer □	1" dia = 0.65	* = measured	** = @ samplir	ng	I	Develop Water Drumn No. of Dru		□ No

				100000000000000000000000000000000000000
GeAL	ogical	Tech	INICS.	Inc.
4000	al agua	1 001	0,0000	P1 000

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: W-Bs
Project No.: 1262.2	Date: 4/8/2008
Project Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
8:29	0.0	22.4	430	7.08	-33.6		Clear, petroleum odor, no sediments
9:20	15.0	23.6	423	6.61	-52.5		Clear, petroleum odor, no sediments
10:15	25.0	<u></u>	12	-	-		Well went dry
12:30						0.28	Collected samples

Purge Method:	□ Dedicate	ed Waterra	☐ Centrifug	al pump with d	edicated tubir	ng 🗖 Othe	er				
Pumping Rate: _	0.49	gal/min									
Well Constructed TD (ft):	45.00		Sample Co	ntainers used:	4	_# VOAs		<u>X</u>	_ preserved	non-presei	ved
* Well TD (ft): _	44.12			9		_# amber lite	ers		preserved	_ non-preser	ved
Silt Thickness (ft):	0.88					_# polys	size		preserved	_ non-preser	ved
Initial DTW (ft): _	34.16					# polys	size	-	_ preserved	_ non-preser	ved
** Final DTW (ft): _	38.12			Notes:							
Casing diameter (in): _	4"								net	nost	
Water column height (ft):_	9.96			Sampled By:	D. Villanuev	/a / R. Estio	ko	D	Kuchan	a Gatollo	
One casing volume (gal):	1.59										
Sample Method: \	Waterra ⊠	Bailer 🗆		* = measured	** = @ sampling			Develop	Water Drumme		☐ No
Gallons per foot of casing 2	2" dia = 0.17	3" dia = 0.38 4	" dia. = 0.65.	5" dia. = 1.02. 6"	dia. = 1.48				No. of Drum	ns:	

Cast	aninal	Tool	lauina	140
Geou	'ogical	recr	mus,	mu.

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: W-Es
Project No.: 1262.2	Date: 4/8/2008
Project Location: 187 North L Street	

Livermore, CA Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
10:13	0.0	24.1	510	6.82	123.5		Clear, no odor, few sediments
10:19	2.0	25.2	506	6.86	119.7		Clear, no odor, no sediments
10:27	4.0	25.1	513	6.94	123.1		Clear, no odor, no sediments
10:35	6.0	25.1	503	7.07	121.4		Clear, no odor, no sediments
10:45						6.85	Collected samples

Purge Method: Pumping Rate:		d Waterra	☐Centrifugal pump wit	h dedicated tu	bing 🗖 Othe	er		
Well Constructed TD (ft):	45.00		Sample Containers use	ed: 4	# VOAs		_X preserved	non-preserved
* Well TD (ft):	43.97			1	# amber lite	ers	preserved	non-preserved
Silt Thickness (ft):	1.03				# polys	size	preserved	non-preserved
Initial DTW (ft):	34.44				# polys	size	preserved	non-preserved
** Final DTW (ft):	39.99		Not	es:				
Casing diameter (in):	2"						nd.	173.1.1.
Water column height (ft):	9.53		Sampled	By: D. Villanu	eva / R. Estic	oko G	2 fliche	and estates
One casing volume (gal):	1.62							
Sample Method:			* = measured		ling		Develop Water Drumme No. of Drum	

- 1	, , ,	- 1	1	1
Geol	ogical	1 ech	ınıcs,	inc.

No. of Drums:

	Project Name:	Sullins- Arro	w Rentals (L	Street)			Well I.D.: <u>MW-104</u>
	Project No.:						Date: <u>4/8/2008</u>
Р	roject Location:	187 North L	Street				
		Livermore, (CA				Samples sent to: Argon
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
11:40	0.00	-	J	-	-		Started purging
11:55	0.35	2	-		-		Finished purging
12:00							Collected samples
				-			
	Purge Method: Pumping Rate:				gal pump with d		
Well Cor	nstructed TD (ft):		1	Sample Co	ontainers used:	4	# VOAs preserved non-preserved
	* Well TD (ft):	49.99					# amber liters preserved non-preserved
S	ilt Thickness (ft):		4				
	Initial DTW (ft):	37.74	4				# polys size preserved non-preserved
	* Final DTW (ft):	THE RESTRICTED AND	4		Notes:		967
	ng diameter (in): olumn height (ft):		-		Sampled By:	D. Villanue	eva / R. Estioko Ruchard (Stidlo)
	ing volume (gal):	1056001343669]		- Vi		•
	Sample Method:	Waterra ⊠	Bailer □		* = measured	** = @ sampli	Develop Water Drummed: Yes No

GOAL	noical	Tock	hnics,	Inc
dent	uzucai	i i eci	ums,	11000

Groundwater Monitoring Field Log

	Project Name:	Sullins- Arro	w Rentals (L	Street)			Well I.D	D.: MW-105
	Project No.:	1262.2					Date	e: <u>4/8/2008</u>
Р	roject Location:	187 North L	Street					
		Livermore, (CA				Samples sent to	o: Argon
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)		Remarks
							Well Dry	
	Purge Method:	□ Dedicate	ed Waterra	☐Centrifu	gal pump with o	ledicated tubir	ng 🗖 Other _	
	Pumping Rate:							
			1				" 110 4	V assessed non-precented
Well Cor	structed TD (ft):		-	Sample Co	ontainers used:			preserved non-preserved non-preserved
1960	* Well TD (ft):		-				_# amber liters	preserved non-preserved
S	ilt Thickness (ft):		1				- B - 45.0c	preserved non-preserved
	Initial DTW (ft):		-		Notoc			
1	* Final DTW (ft):		1		Notes.			,
	ng diameter (in):		1		Compled By	D. Villanuev	/a / R. Estioko	D Richard Psticko
1	lumn height (ft):		1		Sampled by.	D. Villariue	7a / 11. LStioro	The way found
One cas	ing volume (gal):	}	J				7	
	Sample Method:					** = @ sampling		Develop Water Drummed: Yes No
Gallons	per foot of casing.	2" dia. = 0.17,	3" dia. = 0.38 4"	dia. = 0.65,	5" dia. = 1.02, 6"	dia. = 1.48		No. of Drums:

GOAL	'ogical	Tock	uice	Inc
dent	uguai	1 CCI	ucus,	p/66+

No. of Drums:

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-106
Project No.: 1262.2	Date: 4/7, 8/2008
Project Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
14:51	0.00	-	-	-	-		Started purging
	0.45	-	-	-	-		Finished purging
8:40							Well not producing water second time on 4/8/08
			4				

Purge Meth		ated Waterra	☐Centrifugal pump w	ith dedicated tub	ing 🗖 Oth	er _				
Well Constructed TD	(ft):]	Sample Containers us	sed:	_# VOAs		<u>X</u>	_ preserved		
* Well TD	(ft): 50.98				_# amber lit	ers		_ preserved	non-preser	vea
Silt Thickness	(ft):				# polys	size		_ preserved	non-preser	ved
Initial DTW	(ft): 35.61				# polys	size		_ preserved	non-preser	ved
** Final DTW	(ft):		No	tes:						
Casing diameter	(in): CMT						_		1201	2361
Water column height	(ft): 15.37		Sampled	By: D. Villanue	eva / R. Esti	oko	D	- 7	Fucharg	OTORE
One casing volume	(gal): 0.00									
Sample Met	nod: Waterra ⊠	Bailer □	* = measure	d ** = @ samplii	ng		Develop	Water Drumm	ed: 🛚 Yes	□ No

Gallons per foot of casing. 2° dia. = 0.17, 3° dia. = 0.38 4° dia. = 0.65, 5° dia. = 1.02, 6° dia. = 1.48

- 1 -	1-1		
Geologica	ıl Techi	nics. I	nc.

Well I.D.: MW-107
Date: 4/8/2008
Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
9:30	0.00	-		-	-		Started purging
10:05	0.15		-	-	-		Finished purging
10:05							Collected samples

Purge Method: Pumping Rate:	☑ Dedicated Waterra	□Centrifugal pump with dedicated tubing □ Other
Well Constructed TD (ft): * Well TD (ft):		Sample Containers used: 2 # VOAs X preserved non-preserved preserved non-preserved non-preserved non-preserved
Silt Thickness (ft):	(= .(# polys size preserved non-preserved
Initial DTW (ft):	35.05	# polys size preserved non-preserved
** Final DTW (ft):	14 9	Notes:
Casing diameter (in):	CMT	
Water column height (ft):	4.47	Sampled By: D. Villanueva / R. Estioko
One casing volume (gal):	0.04	

* = measured ** = @ sampling

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Sample Method: Waterra ☑ Bailer □

Develop Water Drummed: ☐ Yes ☐ No

Cast	aciant	Tack	Luine	luc
Geou	'ogical	recr	viiis,	mu.

w	gical recrui	us, m.	-			Groundwater Monitoring Field Ed	5			
	Project Name:	Sullins- Arro	w Rentals (L	Street)			Well I.D.: MW-108			
Project No.: 1262.2							Date: 4/8/2008			
Р	roject Location:	187 North L	Street							
Livermore, CA							Samples sent to: Argon			
ie	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks			
0	0.00	<u>n∈</u>	-	-			Started purging	_		
12.2	765 NO.						Finished nurging			

Time	ruigeu (gai)	•	(μο, σ,	Pin		10.	
9:40	0.00	n=	-	-	•		Started purging
9:47	0.15	-	-	-	-		Finished purging
9:50							Collected samples
0.00							
Wall Con	Pumping Rate:		1	Sample Co	ontainers used	4	_# VOAsX preserved non-preserved
Well Con	structed TD (ft):_		-	Sample Co	ontainers used:	4	# amber liters preserved non-preserved
	* Well TD (ft): _		-				
Si	It Thickness (ft): _		-				
	Initial DTW (ft):	•	-				# polys size preserved non-preserved
*	* Final DTW (ft):	20			Notes		
Casir	ng diameter (in):	CMT					The sale
Water co	lumn height (ft):				Sampled By:	D. Villanue	eva / R. Estioko Fuchard Oto K
One cas	ing volume (gal):	-					
	Sample Method:			dia - 0.65	* = measured		Develop Water Drummed: Yes No. of Drums:

12 N				-
GONI	ogical	Tock	MICE	INC.
yeur	ugua	1001	er every	P1 000

No. of Drums:

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-204
Project No.: 1262.2	Date: 4/8/2008
Project Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
11:10	0.0	- T	-	-	-		Started purging
11:26	1.0	36	-	-	-	-	Finished purging
11:30							Collected samples
, ,,,,,							

Purge Method: Pumping Rate:	☑ Dedicate	ed Waterra	☐Centrifug	al pump with de	edicated tul	bing 🗖 Othe	er			
Well Constructed TD (ft):	2		Sample Co	ntainers used:	4	# VOAs		<u>X</u>	_ preserved	non-preserved
* Well TD (ft): _	66.00					# amber lite	ers		preserved	non-preserved
Silt Thickness (ft):						# polys	size		preserved	non-preserved
Initial DTW (ft):	34.42	_				# polys	size		preserved	non-preserved
** Final DTW (ft): _				Notes:						
Casing diameter (in):	CMT									B4 10.6.6
Water column height (ft):_	31.58			Sampled By:	D. Villanu	eva / R. Estic	ko 1)_	2	Prehand attalio
One casing volume (gal):	0.32									
Sample Method: V	Vaterra ⊠	Bailer 🗆		* = measured	** = @ sampl	ling	D	evelop '	Water Drumme	ed: 🗆 Yes 🗅 No

GOAL	ogical	Tork	huice	Inc
geou	oguai	1 ecr	ums,	B166.

800	MO 1 00101	0000, 7,000	-	_			
Pro	oject Name:	Sullins- Arro	w Rentals (L	Street)			Well I.D.: <u>MW-205</u>
Project No.: 1262.2							Date: <u>4/8/2008</u>
Project Location: 187 North L Street							
		Livermore, C	CA				Samples sent to: Argon
_							1
	umulative Volume urged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
							Started purging

Time	Purged (gal)	C°	(μS/cm)	pН	(millivolts)	(mg/L)		R	Remarks	
13:10	0.00	-	-	2	-		Started purging			
13:15	0.15	1.0	-	=	2		Finished purging	3		
13:20	0.1.0						Collected sample	es		
	Purge Method: Pumping Rate:				gal pump with d			v	neconned	non prosonred
Well Cor	nstructed TD (ft):		-	Sample Co	ontainers used:	4	_# VOAs			non-preserved
	* Well TD (ft):	67.00	-		9.		_# amber liters			non-preserved
s	ilt Thickness (ft):	TO THE SERVICE OF THE	-		74		_# polys size			
	Initial DTW (ft):	36.28	-		220		# polys size		_ preserved	non-preserved
	** Final DTW (ft):		-		Notes:					7
Casi	ng diameter (in):	CMT	4					3		Di Shandlet ik
Water co	olumn height (ft):	30.72	1		Sampled By:	D. Villanue	va / R. Estioko	W.	-2	
One cas	sing volume (gal):	0.30								
	Sample Method:	Waterra ⊠	Bailer 🗆		* = measured	** = @ samplir	ng	Develop	Water Drumme	ed: 🗆 Yes 🗅 No

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Geol	ARÍ	ral	7	Tock	hu	ice	luc
dent	uzi	car	,	CLI	w	w,	B/66+

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-206
Project No.: 1262.2	Date: 4/8/2008
Project Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
9:00	0.0	-	-		_		Started purging
9:05	1.0	12	*	-	-		Finished purging
9:07							Collected samples

Purge Method: Pumping Rate:	Dedicated	Waterra gal/min	☐Centrifugal pump with ded	licated tubi	ng 🗵 Othe	er	Grab			
Well Constructed TD (ft): * Well TD (ft): Silt Thickness (ft): Initial DTW (ft):	66.60		Sample Containers used:	4	_# VOAs _# amber lite _# polys # polys	ers size size	_x	preserved preserved preserved preserved	non-preser non-preser non-preser non-preser	ved ved
** Final DTW (ft):	-		Notes: G	irab sampl		to shortne	ess of tub	oing, removed &	k needs to be	replacec
Casing diameter (in): _ Water column height (ft):	V. VIA.A.S. N. N. S.		Sampled By: D). Villanue	va / R. Estic	ko	D_	~	Tuckend Go	tako
One casing volume (gal):	0.32				_					
Sample Method:	Waterra 🗆 B	ailer 🗵	* = measured **	= @ samplir	ng		Develop	Water Drumme	ed: 🗖 Yes	□ No

- 1		- 1		
Geol	ogical	Tech	rics.	Inc.
7,000	2000,0	,	,	

No. of Drums:

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-207
Project No.: 1262.2	Date: 4/7/2008
roject Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
14:52	0.0	 3	-	-	15		Started purging
15:08	1.0		-	(-)	-		Finished purging
15:15							Collected samples

Purge Method: Pumping Rate:	☑ Dedicated V	Vaterra gal/min	☐ Centrifug	al pump with de	edicated tul	bing 🗖 Othe	r _			
Vell Constructed TD (ft):	-		Sample Co	ntainers used: _	4	# VOAs		<u>X</u>	_ preserved	non-preserved
* Well TD (ft):	67.00					# amber lite	rs		_ preserved	non-preserved
Silt Thickness (ft):	•			_		# polys	_ size	,	_ preserved	non-preserved
Initial DTW (ft):	36.07					# polys	_ size		_ preserved	non-preserved
** Final DTW (ft):				Notes: _						
Casing diameter (in):	CMT			_						-1301 110
/ater column height (ft):	30.93			Sampled By: [D. Villanu	eva / R. Estiol	(0	D.	- >-	- Fuchard (1)
One casing volume (gal):	0.30									

GOAL	ogical	Toch	nice	Inc.
geou	zuai	1 ECT	ruco,	mu.

Well I.D.: MW-208
Date: 4/8/2008
Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
8:45	0.0		-	-			Started purging
8:55	1.0				-		Finished purging
9:00							Collected samples

Purge Method:	☑ Dedicated Water	a Centrifugal pump with d	edicated tubing	
Pumping Rate: _	gal/n	nin		
Well Constructed TD (ft):	: .	Sample Containers used:	4 # VOAs	X preserved non-preserved
* Well TD (ft):			# amber liters	preserved non-preserved
Silt Thickness (ft):			# polys size	preserved non-preserved
Initial DTW (ft):	36.98		# polys size	preserved non-preserved
** Final DTW (ft):	:(=)	Notes:		
Casing diameter (in):	CMT			75/ 17/2
Water column height (ft):	30.02	Sampled By:	D. Villanueva / R. Estioko	2- Thichand Utilor
	0.30			

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Goal	ogical	Toch	inics.	Inc.
dent	uzucac	1 CCI	vicus,	B166+

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-304
Project No.: 1262.2	Date: 4/8/2008
roject Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
11:00	0.0	*	H 0	-	-		Started purging
11:06	1.0	-	2	100	-		Finished purging
11:10							Collected samples

Purge Method: Pumping Rate:_	☑ Dedicated	Waterra gal/min	☐ Centrifug	al pump with de	edicated tul	oing 🗖 Othe	er			
Well Constructed TD (ft):	2		Sample Co	ntainers used:	4	# VOAs		<u>X</u>	_ preserved _	non-preserved
* Well TD (ft):	67.00			<u>_</u>		# amber lite	ers	15	_ preserved	non-preserved
Silt Thickness (ft):	-			_		# polys	size		_ preserved	non-preserved
Initial DTW (ft):	39.42					# polys	size	9-	_ preserved	non-preserved
** Final DTW (ft): _	12			Notes:						
Casing diameter (in):	CMT			-						774
Vater column height (ft):_	27.58			Sampled By:	D. Villanu	eva / R. Estic	oko	D-	_ 7	- Anchangy
One casing volume (gal):	0.27									

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Geological	Tock	uice	Inc.
dennaman	ICCI	uius,	11000

No. of Drums:

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-305
Project No.: 1262.2	Date: 4/8/2008
roject Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
13:00	0.0	140	-	-	-		Started purging
13:07	1.0	-	-	-			Finished purging
13:10							Collected samples

Purge Method: Pumping Rate:	☑ Dedicated	d Waterra	☐ Centrifuga	al pump with de	edicated tul	oing 🚨 Othe	r				
Well Constructed TD (ft):	-		Sample Cor	ntainers used: _	4	# VOAs		_ <u>X</u> _	_ preserved _	non-preserved	ł
* Well TD (ft):	67.00			_		# amber liter	rs	-	_ preserved	non-preserved	Ē
Silt Thickness (ft): _	-					# polys	_ size	÷	_ preserved	non-preserved	
Initial DTW (ft):	34.56					# polys	size		_ preserved	non-preserved	
** Final DTW (ft): _	-			Notes: _							
Casing diameter (in):_	CMT			· ·				_		-nd ha	1/
Water column height (ft):_	32.44			Sampled By:	D. Villanu	eva / R. Estiol	ko	D_	~~	- Furnesa (3)	eled
One casing volume (gal):	0.32										
Sample Method: \	Waterra ⊠ B	Bailer 🗆	[* = measured	** = @ sampl	ing		Develop	Water Drumm	ed: 🗆 Yes 🗆	No

Cast	ariant	Techn	ice	luc
geou	uzucai	recruic	w,	<i>pre-</i>

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-306
Project No.: 1262.2	Date: 4/8/2008
roject Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
14:37	0.00			-	=		Started purging
14:43	0.75	126		-	-		Finished purging
14:47							Collected samples
				-			

Purge Method: Pumping Rate:	☑ Dedicated Waterra _ gal/min	☐Centrifugal pump with d	edicated tubing	
Well Constructed TD (ft):	¥	Sample Containers used:	4 # VOAs	X preserved non-preserved
* Well TD (ft):	67.70		# amber liters	preserved non-preserved
Silt Thickness (ft):	-		# polys siz	e preserved non-preserved
Initial DTW (ft):	38.11		# polys siz	e preserved non-preserved
** Final DTW (ft):	4	Notes:		
Casing diameter (in):	CMT			x x nl-h
Water column height (ft):	29.59	Sampled By:	D. Villanueva / R. Estioko	D- Thereing 81 100
One casing volume (gal):	0.30			•
Sample Method: \	Waterra ⊠ Bailer □	* = measured	** = @ sampling	Develop Water Drummed: ☐ Yes ☐ No

Gallons per foot of casing. 2" dia. = 0.17, 3" dia. = 0.38 4" dia. = 0.65, 5" dia. = 1.02, 6" dia. = 1.48

Geological	Tochnics	Inc
geowguai	recruius,	1100.

Project Name: Sullins- Arrow Rentals (L Street)	Well I.D.: MW-307
Project No.: 1262.2	Date: <u>4/7/2008</u>
Project Location: 187 North L Street	
Livermore, CA	Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	pН	ORP (millivolts)	DO (mg/L)	Remarks
14:42	0.0	-	-		-		Started purging
14:57	1.0	47	-	7=	-		Finished purging
15:00							Collected samples

Purge Method: Pumping Rate:	☑ Dedicate		Centrifu	gal pump with de	edicated tu	bing	r <u> </u>			
Well Constructed TD (ft):	¥		Sample C	ontainers used:	4	# VOAs		X preserved	non-preserved	
* Well TD (ft):	67.00			-		# amber liter	rs	preserved	non-preserved	
Silt Thickness (ft):	-					# polys	_ size	preserved	non-preserved	
Initial DTW (ft):	34.05					# polys	size	preserved	non-preserved	
** Final DTW (ft):	÷			Notes:						2
Casing diameter (in):	CMT								St. Wester	_
Water column height (ft):	32.95			Sampled By:	D. Villanu	eva / R. Estiol	ko	In ruf	nellari GIT 494)
One casing volume (gal):	0.33									
Sample Method:	Waterra ⊠ I	Bailer □		* = measured	** = @ samp	ling		Develop Water Drummed	: 🗆 Yes 🗅	No

_				
Geol	'ogical	Tech	ınics,	Inc.

No. of Drums:

 Project Name:
 Sullins- Arrow Rentals (L Street)
 Well I.D.:
 MW-308

 Project No.:
 1262.2
 Date:
 4/8/2008

 Project Location:
 187 North L Street

Livermore, CA Samples sent to: Argon

Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)	Remarks
14:10	0.0	-			27		Started purging
14:17	1.0	-		-	-		Finished purging
14:20							Collected samples

Purge Method: Pumping Rate:	☑ Dedicated	Waterra	☐Centrifuç	gal pump with de	edicated tul	bing 🗖 Othe	er				
Well Constructed TD (ff): * Well TD (ff): _ Silt Thickness (ft): _	67.00		Sample Co	ontainers used: _ - -	4	# VOAs # amber lite # polys	size	_ <u>X</u>	_ preserved _ preserved		erved
Initial DTW (ft):_				Notes:		# polys	size	-	_ preserved	non-prese	iveu
** Final DTW (ft): _ Casing diameter (in): _	112-2722-200-2			_						1 1.1	24.6
Water column height (ft):_	31.95			Sampled By:	D. Villanu	eva / R. Estic	oko	D	- 2-	Proving 9	gaper
One casing volume (gal):	0.32										
Sample Method: V	Vaterra ⊠ B	ailer 🗆		* = measured	** = @ sampl	ling		Develop	Water Drumm	ed: 🛚 Yes	☐ No

Gallons per foot of casing. 2° dia. = 0.17, 3° dia. = 0.38 4° dia. = 0.65, 5° dia. = 1.02, 6° dia. = 1.48

_	7 4 0	- 1	
Genl	ODICAL	Techni	ics, Inc.
4000	al again	1 0010100	oug provi

	Project Name: Sullins- Arrow Rentals (L Street)						Well I.D.: MW-404				
	Project No.: 1262.2							Date: 4/8/2008			
F	roject Location:	187 North L	Street								
	.30	Livermore, (CA				Samples se	nt to: Argon			
Time	Cumulative Volume Purged (gal)	Temp C°	EC (μS/cm)	рН	ORP (millivolts)	DO (mg/L)		Remarks			
10:13							Well Dry				
	Purge Method:			Centrifug	al pump with de	dicated tub	ing Other				
	Pumping Rate: _		gal/min								
Well Con	structed TD (ft):		S	ample Co	ntainers used:		# VOAs	X preserved non-preserved			
	* Well TD (ft): _	67.00					# amber liters	preserved non-preserved			
Sil	t Thickness (ft): _	-					_ _# polys siz	e preserved non-preserved			
	Initial DTW (ft):_	34.66					# polys siz				
**	Final DTW (ft): _	-			Notes:						
Casin	g diameter (in):_	CMT			_			/21/			
Water col	umn height (ft):_	32.34			Sampled By: D	. Villanue	/a / R. Estioko	2 Buchard foliable			
One casir	ng volume (gal):	0.32									
	ample Method: \			_	* = measured **		1	Develop Water Drummed: ☐ Yes ☐ No			
Gallons p	er foot of casing. 2	" dia. = 0.17, 3"	dia. = 0.38 4" dia	a. = 0.65, 5	" dia. = 1.02, 6" dia	a. = 1.48		No. of Drums:			