SEMI-ANNUAL GROUNDWATER MONITORING REPORT FOR ARROW RENTALS LIVERMORE, CALIFORNIA

APRIL 1999

Prepared for: Don-Sul Inc. 187 North L Street Livermore, California 94607

Date Prepared: June 2, 1999

By: Environmental Sampling Services and Aquifer Sciences, Inc.

May 25, 1999

971275

ENVIRONMENTAL PROTECTION

99 AUG 26 PM 1:51

Ms. Rita Sullins Don-Sul, Inc. 187 North L Street Livermore, CA 94550

Subject: Semi-Annual Groundwater Monitoring, April 1999

187 North L Street, Livermore, California

Dear Ms. Sullins:

Groundwater monitoring was conducted in April 1999 at the Arrow Rentals site, located at 187 North L Street in Livermore, California. This report presents the groundwater measurement and sampling procedures, evaluation of hydrogeologic data, and the results of laboratory analyses.

MEASUREMENT AND SAMPLING PROCEDURES

On April 9, 1999, groundwater monitoring was performed at the site by Environmental Sampling Services of Martinez, California. The locations of the groundwater monitoring wells are illustrated on Figure 1. The field activity report describing sampling activities is included in Appendix A.

Prior to sampling, the depth of static groundwater was measured in all four wells (W-1s, W-3s, W-Bs, and W-Es) to the nearest 0.01 foot using an electrical water level recorder. The interface probe was washed using a Liqui-Nox® detergent solution, rinsed with potable water, and rinsed with distilled water. Groundwater elevation data for each well are listed in Table 1. The potentiometric surface map, corresponding to groundwater elevations measured on April 9, 1999, is shown on Figure 2.

Three of the wells (W-1s, W-3s, and W-Bs) were purged and sampled after the static water level measurements were recorded. A minimum of three casing volumes of groundwater was removed from each well prior to sampling. Each well was purged using a submersible pump. Purge water from the monitoring wells was stored in labeled 55-gallon drums pending the analytical results.

Water quality parameters (pH, specific conductance, temperature, turbidity, color, and odor) were recorded at regular intervals during well purging. Water quality parameters for the three

AQUIFER SCIENCES, INC.

wells were recorded in the sampling logs. Copies of the well sampling logs are included in Appendix A.

Groundwater samples were collected from each well using new disposable bailers. Groundwater samples were collected in clean bottles supplied by the analytical laboratory, labeled, stored on ice in a cooler, and transported under chain-of-custody protocol within 24 hours of collection to Columbia Analytical Services, a California-certified laboratory located in Santa Clara, California. A travel blank was prepared by the laboratory and accompanied the groundwater samples for quality assurance purposes.

The three groundwater samples were analyzed for total petroleum hydrocarbons quantified as gasoline (TPH-gasoline) by EPA Method 8015 Modified; total petroleum hydrocarbons quantified as diesel (TPH-diesel) by EPA Method 8015 Modified with a silica gel cleanup; benzene, toluene, ethylbenzene, xylenes (BTEX) by EPA Method 8020; and methyl tertiary butyl ether (MTBE) by EPA Method 8020 Modified. The travel blank was analyzed for gasoline by EPA Method 8015 Modified, BTEX by EPA Method 8020, and MTBE by EPA Method 8020 Modified. The sample collected from well W-1s was also analyzed for polynuclear aromatic hydrocarbons (PNAs) by EPA Method 8270.

HYDROGEOLOGIC DATA EVALUATION

Groundwater elevations in the four monitoring wells ranged from 447.25 feet in well W-Es to 453.14 feet in well W-1s. The groundwater levels measured in April 1999 were approximately 7 feet higher than those measured in October 1998. Based upon measurements recorded on April 9, 1999, groundwater generally flows to the west-southwest under a hydraulic gradient of approximately 0.023 ft/ft (Figure 2).

RESULTS OF LABORATORY ANALYSES

Results of laboratory analyses for groundwater samples collected from the three wells in April 1999 are summarized in Table 2. The laboratory report and chain-of-custody documentation are included in Appendix B.

Gasoline was detected in the groundwater samples collected from all three wells at concentrations ranging from 980 to $70,000~\mu g/L$. TPH-diesel was detected in the groundwater samples collected from all three wells at 430 to $24,000~\mu g/L$. Benzene was detected in the samples collected from all three wells at 240 to $6,500~\mu g/L$. These concentrations exceeded the Maximum Contaminant Level (MCL) of $1~\mu g/L$, established for benzene in drinking water. Toluene was detected in the samples collected from all three wells at concentrations ranging from 4 to $7,000~\mu g/L$. The concentrations of toluene in wells W-1s and W-Bs exceeded the MCL of $150~\mu g/L$. Ethylbenzene was detected in the samples collected from all three wells at 37 to $1,800~\mu g/L$. The levels of

AQUIFER SCIENCES, INC.

ethylbenzene in wells W-1s and W-Bs exceeded the MCL of 700 µg/L. Xylenes were detected in all three wells at concentrations ranging from 3 to 8,900 µg/L. The levels of xylenes in wells W-1s and W-Bs exceeded the MCL of 1,750 µg/L. MTBE was detected in the sample collected from well W-1s at 360 µg/L. This concentration exceeded the Action Level of 35 µg/L established for MTBE in drinking water. Although MTBE was not detected in the samples collected from well W-Bs, the laboratory detection limits were elevated due to high concentrations of gasoline and BTEX. Gasoline, BTEX, and MTBE were not detected in the travel blank.

The groundwater sample collected from well W-1s contained the highest levels of gasoline, diesel, BTEX, and MTBE. At the request of Alameda County, the sample from well W-1s was also analyzed for PNAs. Naphthalene was detected in the sample at 330 μ g/L. Naphthalene was the only PNA detected. No MCL or AL has been established for naphthalene.

SUMMARY AND CONCLUSIONS

Table 3 presents a summary of the results of laboratory analyses performed on groundwater samples collected from wells at the site since March 1996. High levels of gasoline, diesel, BTEX, and MTBE have been consistently detected in groundwater samples collected from wells W-1s and W-Bs. Low levels of gasoline, diesel, BTEX, and MTBE have also been detected in samples collected from well W-Es. Fluctuations in the concentrations of gasoline, diesel, and BTEX in groundwater samples collected from these wells may be related to the seasonal variations in groundwater elevations and the groundwater flow direction. The direction of groundwater flow beneath the site has varied over time from southwest to west-northwest.

RISK ASSESSMENT

At Alameda County's request, we prepared a work plan to conduct a risk assessment for the site. Eva Chu of Alameda County approved the work plan in her letter dated April 26, 1999. The State Leaking Underground Storage Tank fund must also approve of the work plan. We will begin the tasks outlined in the risk assessment with your authorization, and concurrence from the State fund.

Please call us if you have any questions concerning this report.

Respectfully yours,

Thomas E. Neely, REA

Hydrogeologist

Rebecca A. Sterbentz, RG, CHG, RI

President

AQUIFER SCIENCES, INC. North L Street former pump island vapor well underground storage tank **6** W-1s Arrow former Rentals underground storage tanks railroad tracks three former underground storage tanks W-Bs 9 W-3s 50 feet scale **EXPLANATION** W-Es 0 Approximate well location

Figure 1. SITE MAP
187 North L Street, Livermore, California

AQUIFER SCIENCES, INC.

Figure 2. POTENTIOMETRIC SURFACE MAP (4/9/99) 187 North L Street, Livermore, California

Table 1. GROUNDWATER ELEVATION DATA 187 North L Street, Livermore, California April 9, 1999

Well Number	Top of Casing Elevation (feet above MSL)	Depth to Water (feet below TOC)	Water Elevation (feet above MSL)
W-1s	479.09	25.95	453.14
W-3s	476.98	25.96	451.02
W-Bs	478.82	26.04	452.78
W-Es	474.66	27.41	447,25

MSL = mean sea level (elevations based on City of Livermore datum)
TOC = top of PVC casing

Table 2. GROUNDWATER ANALYTICAL RESULTS 187 North L Street, Livermore, California April 9, 1999

Well Number	TPH- gasoline (µg/L)	TPH- diesel (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Naphthalene (µg/L)
W-1s	70,000	24,000	6,500	7,000	1,800	8,900	360	330
W-3s	980	430	240	4	. 37	3	<12	NA
W-Bs	39,000	12,000	4,100	1,900	1,400	5,600	< 300	NA
Travel Blank	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA
MDL	50-10,000	50-200	0.5-100	0.5-100	0.5-100	0.5-100	3-600	5
MCL	NE	NE	1	150	700	1,750	NE	NE
AL	NE	NE	NE	NE	NE	NE	35	NE

μg/L = micrograms per liter [parts per billion (ppb)]

NA = not analyzed

NE = none established

NS = not sampled

MTBE = methyl tertiary butyl ether

TPH-gasoline = total petroleum hydrocarbons quantified as gasoline

TPH-diesel = total petroleum hydrocarbons quantified as diesel

MDL = method detection limit

MCL = Maximum Contaminant Level, November 1996

AL = Action Level, November 1996

Well Number	Date Sampled	TPH- gasoline (µg/L)	TPH- diesel (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Lead (µg/L)	Naphthalene (µg/L)
W-1s	3/22/96	6,400	NA ·	580	470	85	1,100	< 500	NA	NA
W-1s	11/22/96	170,000	NA	13,000	18,000	3,500	18,000	< 10,000	NA	NA
W-1s	7/15/97	140,000	38,000*†	12,000	12,000	2,600	16,000	< 800	NA	NA.
W-1s	10/29/97	650,000	180,000‡	14,000	19,000	7,800	35,000	< 3,000	NA	NA
W-1s	4/27/98	6,700	2,200§	410	250	. 77	870	< 30	< 5	NA
W-1s	10/23/98	99,000	18,000§	9,800	9,400	1.800	11,000	< 600	NA	NA
W-1s	4/9/99	70,000	24,000	6,500	7,000	1,800	8,900	360	NA	330
W-3s	3/22/96	100	NA	13	6.9	5.3	14	< 5	NA	NA
W-3s	11/22/96	3,200	NA	270	29.0	63.0	100	< 100	NA	NA
W-3s	7/15/97	2,100	340**†	230	7	33	51	< 20	NA	NA NA
W-3s	10/29/97	2,800	750††	630	31	71	69	< 30	NA	NA NA
W-3s	4/27/98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA	NA
W-3s	10/23/98	3,800	1,000§	500	28	90	37	35	NA	NA NA
W-3s	4/9/99	980	430	240	4	37	3	<12	NA	NA
W-Bs	3/22/96	61,000	NA	9,800	8,000	2,200	11,000	< 5,000	NA	NA
W-Bs	11/22/96	47,000	NA	5,100	3,100	1,400	7,800	< 2,500	NA	NA
W-Bs	7/15/97	66,000	17,000‡‡†	7,800	4,900	1,900	10,000	< 600	NA	NA
W-Bs	10/29/97	44,000	27,000§§	6,000	500	1,500	6,400	380	NA	NA
W-Bs	4/27/98	63,000	17,000§	6,100	5,400	1,900	9,100	< 600	NA	NA NA
W-Bs	10/23/98	48,000	9,600§	6,700	1,200	1,500	6,200	< 300	NA	NA.
W-Bs	4/9/99	39,000	12,000	4,100	1,900	1,400	5,600	< 300	NA	NA.
W-Es	3/22/96	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 5	NA	NA
W-Es	11/22/96	280	NA	24	0.6	1.8	2.2	< 5	NA NA	NA

Table 3 (continued). SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER 187 North L Street, Livermore, California

Well Number	Date Sampled	TPH- gasoline (µg/L)	TPH- diesel (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	Lead (µg/L)	Naphthalene (µg/L)
W-Es	10/23/98	82	69§	< 0.5	0.8	< 0.5	0.8	4	NA	. NA
Travel Blank	7/15/97	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA	NA
Travel Blank	10/29/97	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA	NA
Travel Blank	4/27/98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA	NA
Travel Blank	10/23/98	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA	NA
Travel Blank	4/9/99	< 50	NA	< 0.5	< 0.5	< 0.5	< 0.5	< 3	NA	NA
MCL		NE	NE	1	150	700	1,750	NE	50	?
AL	٠	NE	NE	NE	NE	NE	NE	35	15	?

µg/L = micrograms per liter [parts per billion (ppb)]

NA = not analyzed

NE = none established

MTBE = methyl tertiary butyl ether

TPH-gasoline = total petroleum hydrocarbons quantified as gasoline

TPH-diesel = total petroleum hydrocarbons quantified as diesel

MCL = Maximum Contaminant Level, November 1996

AL = Action Level, November 1996

- * Sample contained heavy oil at 3,000 µg/L
- † The method blank contained heavy oil at 120 µg/L
- ‡ Sample contained heavy oil at 1,600 µg/L
- § The chromatogram does not match the typical diesel pattern
- ** Sample contained heavy oil at 740 µg/L
- †† Sample contained heavy oil at 88 μ g/L
- ‡‡ Sample contained heavy oil at 490 μg/L
- §§ Sample contained heavy oil at 4,000 µg/L

APPENDIX A

FIELD ACTIVITY REPORT

FIELD ACTIVITY REPORT FOR SEMI-ANNUAL GROUNDWATER MONITORING EVENT ARROW RENTALS, LIVERMORE, CALIFORNIA

ESS Personnel: Jacki Lee and Steve Penman Duration of Activities: April 9, 1999

Decontamination Procedures

All downhole equipment was cleaned with a solution of Liqui-Nox® laboratory-grade detergent and potable water, rinsed with potable water, followed by a final rinse with distilled water.

Water Level Measurements

A total of four (4) monitoring wells were measured for static water level. All readings were performed with Solinst® electrical water level indicator (Table 1). Water level measurements were referenced to the surveyor's mark (a black mark on the top of well casing).

Field Equipment Calibration

All field measurements were performed in accordance with the instruments' calibration and operating procedures. Field measurements included: pH, specific conductance, turbidity, and temperature.

Field Activities

Friday, April 9, 1998: Well evacuation and monitoring of groundwater quality parameters for three (3) monitoring wells were performed. A minimum removal of three casing volumes and stabilization of water quality parameters were required prior to sampling. All wells were sampled for the following analyses: EPA Method 8015M (TPH (Gasoline)/BTEX, and MTBE) and TPH (Diesel). Monitoring well, W-1s, which reported the highest amount of diesel, was sampled for PNAs.

All wells were sampled with disposable bailers. Columbia Analytical Laboratories supplied all sample containers and packing material and performed all required analyses. All samples were properly preserved according to analysis.

QA/QC

Trip blanks for EPA Method 8015M were supplied and remained in the cooler containing all sample containers. No other QA/QC samples were required nor requested.

All work was performed under satisfactory workmanship and according to the Alameda County Health and Care Services' directive, dated October 8, 1997 and March 15, 1999.

Jacqueline Dee President

Attachment
Table 1
Water Sample Log Sheets
Chain of Custody

TABLE 1: SUMMARY OF WATER LEVEL MEASUREMENTS ARROW RENTAL LIVERMORE, CALIFORNIA

DEPTH TO GROUNDWATER (ft., TOC) (Measured April 9, 1999)	WELL DEPTH (ft., TOC)	
25.95	44.64	
26.04	44.47	
25.96	44.76	
27.41	44.32	
	GROUNDWATER (ft., TOC) (Measured April 9, 1999) 25.95 26.04 25.96	GROUNDWATER (ft., TOC) (Measured April 9, 1999) (ft., TOC) 25.95 44.64 26.04 44.47 25.96 44.76

TOC = Top of well casing

		-							
WATER	QUALIT	Y SAMPLE L	OG SH	EET	WELL IDEN	TIFICATI	ON: W-1:	s DATE: 4/9/99	
Project N	ame: <u>An</u>	row Rentals Liv	emore,	·CA	Client Project	Number:	<u>NA</u>		
Well Des	cription:	.75" 2" 3" 4	!" 5" <u>(</u> 6	<u>)</u>	Well Type: (F	VC) Sta	inless Steel	Other:	
is Well S	ecured? `	Yes / No Bolt	Size 15	5/16"	Type of lock	Lock nur	اعه <i>M _</i> nber	ev	
Observat	ions / Co	mments:							
Purge Me	ethod: Te	fion / PVC Dis	posable	Bailer Per	ristaltic Pump	GrundFos	Redi-flow)	Other:	
Pump Lir	ies: NA	New / Cleaned	/(Dedica	ated	Bailer Line: N	IA (New)	Cleaned / E	Dedicated	
Method a	f Cleanin	g Pump: NA A	Alconox	(Liqui-Nox	Tap Water D	I Rinse O	ther:		
								Water Rinses	
Sampling	Method:	Disp. Teflon B	Bailer D	isp. PVC I	Bailer GrundF	os Redi-f	low Pump	Other:	
pH Meter	Serial No	o.: 217254 /	\$30089	(Spec, Cond. N	/leter Seri	al No.: (96H	10203AB) AE	
	Date/Time Calibrated: 49€ 12:30 € 7 10 @ 25°C Spec.Cond. Meter Calibration: Self Test Other:								
Method to Measure Water Level: Solinst Serial No.: <u>ESS 2</u> P.I.D. Reading: <u>NA_ppm</u> @ Well Head									
		art (DTW): <u>25</u>							
								= <u>(G</u> als.)	
								" = 1.46(6" well)	
			FIELD \	NATER Q	UALITY PARA	METERS			
Date	Time	Discharge			Specific	-			
Pate	inne	(Gallons)	рH	Temp. (°C)	Conductance mS (uS)	i urbiany	Color	Comments	
4/9/99	1445	10	6.84	20.4	1159	5.0	it yell	strone Ad Odor	
	1447	১০	6.86	20.3	1158	3.6	42 6		
	1448	30	6.87	<u>ي</u> ٥٠.۱	1153	4. 4	že *q		
	1450	40	6.87	20-2	1156	13.1	ej 4		
	1453	50	6.88	20.0	1151	230	aray	BIK foil droplets	
	1459	60	6.89	20.2	1088	300	Lt gray		
	15:11	70	6.94	20.3	1070	92	4 yell.		
	15:23	# 82 Before Sampling	6.97	20.1	1083	71.4	17		
J	15:31	After Sampling		20.2	1096	129	Very Lt. Grand		
Total Dis	,	^-	llons	20.2	Casing Volum	· · · · · · · · · · · · · · · · · · ·	hed.	3. \	
		of discharged		55 Gallon				··	
Date/Tim	ne Sample	ed: 4/9/99 @	15:25	Analysis	/No. of Bottles	: EPA 801	5M-TPHa/E	BTEX, MTBE (2-40ml-	
VOCs w/	HCI), TPI	-Id (2, 1 Liter G	lass Am	bers, Non-	Preserved). P	NA (2 I	L a mber	non preserved)	
QA/QC:	NONE							Field Blank	
Commer	its: <u>wEs</u>	षु = 27.41 [°]							
									
Sampled	By: <u>Jacl</u>	<u>ki Lee / Stephe</u>	n Penma	<u>an</u> Signat	ure(s): 🞢 /	7_	······································		

						 				
			Y SAMPLE L			WELL IDEN	TIFICATI	ON: W-B	s DAT	E: 4/9/99
			row Rentals Liv			Client Project				
		-	.75" 2" 3" 4	-		Well Type: 🤄	Sta	inless Steel	Other:_	
			eg / No Bolt	Size <u>l</u>	5/16"	Type of lock	/ Lock nur	nber: Mast	<u>ec </u>	
Obse	ervati	ons / Co	mments:							·
			eflon / PVC Dis							
Pum	p Lin	es: NA	New / Cleaned	Dedica	ated	Bailer Line: N	IA(New)	Cleaned / D	Dedicated	
			g Pump: NA A							
Meth	Method of Cleaning Bailer: NA Alconox Liqui-Nox Tap Water DI Rinse Other: INELL Water Rinse									
Sampling Method: Disp. Teflon Bailer Disp. PVC Bailer GrundFos Redi-flow Pump Other:										
pH Meter Serial No.: 217254 / 330089 Spec. Cond. Meter Serial No.: 96H0203AB / AE										
Date	/Time	e Calibra	ted: <u>4/9 @ /2:80</u>	a 00 a	© 25°C	Spec.Cond. M	leter Calib	ration: Sel	f Test Oth	er:
			e Water Level:							
1			art (DTW):2							
			(DTW) = <u>(8.43</u>						= 80.7 (G	als.)
			well) "K"= 0.16							
				FIELD \	WATER Q	UALITY PARA	METERS			
		T-1 C	Dischause	1	_	Specific				
Da		Time	Discharge (Gallons)	рH	Temp. (°C)	Conductance mS (µS)	Turbidity	Color	Cor	nments
4/9/	/99	13:56		6.94	19.3	989	84.4	it yell.	Oat Odac	Dry @ 249.
		14:02	30	6.88	20.4	974	57.1	ci qen.	**	D- 6 790
		14:12	40	6.81	20.3	975	25.0	и ,	· ય	Dive 279
		14:23						٤ ،	41	Dry@ 45g.
			50	6.80	20.4	951	20.1	и	E _d	
 	, -	14:27	60	677	20.1	944	15.0	- 4		
\vdash		14:31	70	6.78	20.L	942	9.0		и	
-		14:35	81	6.82	20.3	919	8.9	а	44	
4/9	99	14:41	After Sampling	6.87	20.4	93g	9.0	£,	41	
Tota	l Disc	charge: _	*85 % 5 gal	llons		Casing Volum		بود 4 ved: و	51 3.15	**************************************
Meth	od o	f disposa	l of discharged	water: (55 Gallon	Drum(s) Poly	Tank Tre	atment Sys	tem Othe	r:
Date	Лim	e Sample	ed: <u>4/9/19 @</u>	14:37	Analysis	/No. of Bottles	: <u>EPA 801</u>	5M-TPHg/E	BTEX, MT	3E (3-40ml-
voc	s w/l	ICI), TPI	d (2, 1 Liter G	lass Am	bers, Non-	Preserved)				
QA/0	QC: _	None	_@	as an	Equipmen	t Blank Blind	Duplicate	MS/MSD	Field Bla	ank
Com	men	ts:			·					·
 -										
_								1		·
Sam	pled	By: <u>Jack</u>	<u>ki Lee / Stepher</u>	<u>n Penmi</u>	an Signat	ure(s):				

	ER	QUALIT	Y SAMPLE L	OG SH	EET	WELL IDEN	TIFICATI	ON: W-3:	s DATE:	4/9/99		
			ow Rentals Liv			Client Project	Number:	<u>NA</u>				
1			.75" 2" 3" (4	_	1	Well Type: 🤄						
		_	es/No Bolt		116"	Type of lock	/ Lock nun	nber: <u>Masi</u> e	<i>s</i> *			
Obse	rvati	ions / Cor	nments:									
Purge	е Ме	thod: Te	fion PVC Dis	posable	Bailer) Per	istaltic Pump	GrundFos	Redi-flow	Other:			
			New / Cleaned							,		
Meth	od o	f Cleanin	g Pump: (NA).	Alconox	Liqui-Nox	Tap Water D	I Rinse O	ther:				
Meth	od o	f Cleanin	g Bailer: (NA)	Alconox	Liqui-Nox	Tap Water D	I Rinse O	ther:				
Sampling Method: Disp. Teflon Bailer (Disp. PVC Bailer) GrundFos Redi-flow Pump Other:												
рН М	pH Meter Serial No.: 217254 / 330089 Spec. Cond. Meter Serial No.: 96H0203AB/ AE											
	Date/Time Calibrated: 4/9 c/2:3040 10 @ 25°C Spec.Cond. Meter Calibration: Self Test) Other:											
									_	Well Head		
			irt <u>(</u> DTW):							,		
			8.8L = (WTD)									
"	k" = .	.023(.75" v	vell) "K"= 0.1						" = 1.46(6" we	ell)		
·				FIELD \	WATER Q	UALITY PARA	AMETERS					
Da	te	Time	Discharge (Gallons)	рН	Temp. (°C)	Specific Conductance mS (uS)	Turbidity	Color	Comr	nents		
Mishen on water												
4/9/	99	12:56	4/9/99 12.36 10 F.W 18.3 1009 300 Brown /									
4/9/	99	13:00	15	7.02	18.3 18.6	1013	38 0 692	Brown	1_			
4/9/	99					l	-	D FOUNT				
4/9/	99	13:00	15	7:02	18.6	1013	692	11				
4/9/	/99	13:00 13:03	15 20	7.02 7.03	18.6 19.1	1013	692 681	31				
4/9/	/99	13:00 13:03 13:07	1 <u>5</u> 20 25	7.03 7.05	18.6 19.1 18.9	1013 1015	692 681 785	11				
4/9/		13:00 13:03 13:07 13:10	15 20 25 30	7.03 7.05 7.04	18.6 19.1 18.9 19.2	1013 1015 1022 1018	692 681 785 674	11				
4/9/		13:03 13:07 13:10 13:14	15 20 25 30 35	7.03 7.05 7.04 7.03	18.6 19.1 16.9 19.2	1013 1015 1023 1018	692 681 785 674 648	11 11 11 11 11 11 11 11 11 11 11 11 11				
4/9/		13:00 13:07 13:10 13:14 13:17	15 20 25 30 35	7.03 7.05 7.04 7.03 7.01	18.6 19.1 16.9 19.2	1013 1015 1023 1018	692 681 785 674 648	11 11 11 11 11 11 11 11 11 11 11 11 11				
Tota	Dis	13:03 13:07 13:10 13:14 13:17 13:23 charge:	15 20 25 30 35 40 After Sampling	7.03 7.05 7.04 7.03 7.01	18.6 19.1 18.9 19.2 19.3 19.3	1013 1015 1023 1018 1020 1016 1028	692 681 785 674 648 486 188	11 11 11 Light Brown	oily shows	• \(\cdot \		
Tota	Dis nod c	13:03 13:07 13:10 13:14 13:17 13:23 charge:	15 20 25 30 35 40 After Sampling	7.03 7.05 7.04 7.03 7.01	18.6 19.1 18.9 19.2 19.3 19.3	1013 1015 1023 1018 1020 1016 1028	692 681 785 674 648 486 188	11 11 11 Light Brown	oily shows	• \(\cdot \		
Tota Meth Date	Dismod co	13:03 13:07 13:10 13:14 13:17 13:23 charge: of disposa	15 20 25 30 35 40 After Sampling 41 gall of dischargeded: 419 99	7.03 7.05 7.04 7.03 7.01	18.6 19.1 18.9 19.3 19.3 19.3 19.3	1013 1015 1020 1016 1020 1016 1020 Casing Volum Drum(s) Poly	692 681 785 674 648 486 188 nes Remov	Light System ved:	erly swen 3.3 stem Other:	• \(\tag{\delta} \)		
Tota Meth Date	Dis nod co	13:03 13:07 13:10 13:14 13:17 13:23 charge: _of disposa ie Sample HCI), TPI	15 20 25 30 35 40 After Sampling 41 ga of discharged ed: 4/9/99 @	7.03 7.05 7.04 7.03 7.01	18.6 19.1 18.9 19.3 19.3 19.3 19.3	1013 1015 1020 1016 1020 1016 1020 Casing Volum Drum(s) Poly	692 681 785 674 648 486 188 nes Remov	Light System ved:	erly swen 3.3 stem Other:	• \(\tag{\delta} \)		
Tota Metr Date VOC QA/0	I Dissinod of	13:03 13:07 13:10 13:14 13:17 13:23 charge: of disposa the Sample	15 20 25 30 35 40 After Sampling 41 ga of discharged ed: 1999 @	7.03 7.05 7.04 7.03 7.01 allons d water: (13:20 Glass Am	18.6 19.1 18.9 19.3 19.3 19.3 19.3 55 Gallon Analysis	1013 1015 1020 1016 1020 1016 1020 Casing Volum Drum(s) Poly	692 681 785 674 648 486 188 nes Remov Tank Tre	Light System Sys	3.3 stem Other:	•^ • * • • • • • • • • • • • • • • • • • • •		
Tota Metr Date VOC QA/0	I Dissinod of	13:03 13:07 13:10 13:14 13:17 13:23 charge: _of disposa ie Sample HCI), TPI	15 20 25 30 35 40 After Sampling 41 ga of discharged ed: 1999 @	7.03 7.05 7.04 7.03 7.01 allons d water: (13:20 Glass Am	18.6 19.1 18.9 19.3 19.3 19.3 19.3 55 Gallon Analysis	IDI3 IDI3 IDI3 IDI3 IDI3 IDI3 IDI3 IDI3	692 681 785 674 648 486 188 nes Remov Tank Tre	Light System Sys	3.3 stem Other:	•^ • * • • • • • • • • • • • • • • • • • • •		
Tota Metr Date VOC QA/0	I Dissinod of	13:03 13:07 13:10 13:14 13:17 13:23 charge: of disposa the Sample	15 20 25 30 35 40 After Sampling 41 ga of discharged ed: 1999 @	7.03 7.05 7.04 7.03 7.01 allons d water: (13:20 Glass Am	18.6 19.1 18.9 19.3 19.3 19.3 19.3 55 Gallon Analysis	IDI3 IDI3 IDI3 IDI3 IDI3 IDI3 IDI3 IDI3	692 681 785 674 648 486 188 nes Remov Tank Tre	Light System Sys	3.3 stem Other:	•^ • * • • • • • • • • • • • • • • • • • • •		
Tota Meth Date VOC QA/0	I Disserved of Control	13:03 13:07 13:10 13:14 13:17 13:23 charge: of disposa the Sample HCI), TPI	15 20 25 30 35 40 After Sampling 41 ga of discharged ed: 1999 @	7.03 7.05 7.04 7.03 7.01 allons d water: (13:20 Glass Amas an	18.6 19.1 18.9 19.3 19.3 19.3 19.3 SS Gallon Analysis	IDI3 IDIS IDIS IDIS IDIS IDIS IDIS IDIS	692 681 785 674 648 486 188 nes Remov Tank Tre	Light System Sys	3.3 stem Other:	•^ • * • • • • • • • • • • • • • • • • • • •		

Analytical

CHAIN OF CUSTODY/LABORATORY ANALYSIS REPORT FORM

Services **C 3334 Victor Court • Santa Clara, CA 95054 (408) 748-9700 • EAV (408) 748 0000 SERVICE REQUEST NO. **ANALYSIS REQUESTED** PROJECT NAME ArrOW Rentals HCI /HNO₃/ HSO, NaOH /## PRESERVATIVE / HCI PROJECT MGR. Stephen Penny / Tacki Lee COMPANY Emilian Succession Sucs ADDRESS 6680 Albambia Ave #103 PHONE (735)3738108 Martinez Ch NUMBER OF SAMPLER'S SIGNATURE. SAMPLE SAMPLE LAB REMARKS MATRIX DATE TIME . I.D. I.D. Tria Blank 1200 MATTE W-35 13:20 VITE W-RE MIR 14.33 W- 15 4775 Gel Clean-Vo 7 PM on water Samole RECEIVED BY: RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: TURNAROUND REQUIREMENTS REPORT REQUIREMENTS I. Routine Report 1 day _____ 2 day ____ 3 day Signature Signature Signature II. Report (includes MS. Signature, MSD, as required, may be charged as samples) Florentine le 5 day ____ Other Printed Name Printed Name Printed Name Printed Name X Standard (10 working days) III. Data Validation Report (includes All Raw Data) Firm Firm 15 41 Resulis Due MDLs/PQLs/Trace # Date/Time Date/Time Date/Time Date/Time Electronic Data Deliverables Custody Seals SAMPLE RECEIPT: Condition RELINQUISHED BY: RECEIVED BY: SPECIAL INSTRUCTIONS/COMMENTS: Signature Signature Circle which metals are to be analyzed: B Cd Ca Cr Co Cu Fe Mg Mn Mo Metals: Printed Name Printed Name As Pb Se TI Hg Firm Date/Time Date/Time Storage: Shipped Via/Tracking #

APPENDIX B

LABORATORY REPORT

AND

CHAIN-OF-CUSTODY DOCUMENTATION

April 22, 1999

Service Request No.: S9901175

Ms. Jackie Lee Environmental Sampling Services 6680 Alhambra Ave., #22 Martinez, CA 94553

RE: Arrow Rentals

Dear Ms. Lee:

The following pages contain analytical results for sample(s) received by the laboratory on April 9, 1999. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 15, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

ernadette I. Cix

Sincerely,

Bernadette T. Cox

Project Chemist

Acronyms

ASTM American Association for Laboratory Accreditation
American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFU Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Laboratory Control Sample
Luft Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI
National Council of the paper industry for Air and Stream Improvement
ND
Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s)

ACRONLST.DOC 7/14/95

Page 2

Analytical Report

Client:

Environmental Sampling Services

Project: Sample Matrix:

Arrow Rentals

Water

Service Request: S9901175

Date Collected: 4/9/99
Date Received: 4/9/99

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: W-1S S9901175-004

Units: ug/L (ppb)
Basis: NA

Test Notes: C1

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor		Date Analyzed	Result	Result Notes
Naphthalene	EPA 3510	8270C	5	10	4/10/99	4/13/99	330	
Acenaphthylene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Acenaphthene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Fluorene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Phenanthrene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Anthracene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Fluoranthene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Pyrene	EPA 3510	8270C	5 -	10	4/10/99	4/13/99	<50	
Benz(a)anthracene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Chrysene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Benzo(b)fluoranthene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Benzo(k)fluoranthene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Benzo(a)pyrene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Indeno(1,2,3-cd)pyrene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<5.0	
Dibenz(a,h)anthracene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	
Benzo(g,h,i)perylene	EPA 3510	8270C	5	- 10	4/10/99	4/13/99	<50	
2-Methylnaphthalene	EPA 3510	8270C	5	10	4/10/99	4/13/99	<50	

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S2p/020597p

Analytical Report

Client:

Environmental Sampling Services

Project: Sample Matrix:

Arrow Rentals

Water

Service Request: S9901175

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name: Lab Code: Test Notes:

Method Blank S990410-WB1 Units: ug/L (ppb) Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3510	8270C	5	1	4/10/99	4/16/99	ND	
Acenaphthylene	EPA 3510	8270C	5	ī	4/10/99	4/16/99	ND	
Acenaphthene	EPA 3510	8270C	5	1	4/10/99	4/16/99	ND	
Fluorene	EPA 3510	8270C	5	Ī	4/10/99	4/16/99	ND	
Phenanthrene	EPA 3510	8270C	5	1	4/10/99	4/16/99	ND	
Anthracene	EPA 3510	8270C	5	Ī	4/10/99	4/16/99	ND	
Fluoranthene	EPA 3510	8270C	5	Ī	4/10/99	4/16/99	ND	
Pyrene	EPA 3510	8270C	· 5	ī	4/10/99	4/16/99	ND	
Benz(a)anthracene	EPA 3510	8270C	5	ī	4/10/99	4/16/99	ND	
Chrysene	EPA 3510	8270C	5	ī	4/10/99	4/16/99	ND	
Benzo(b)fluoranthene	EPA 3510	8270C	5	Ī	4/10/99	4/16/99	ND	
Benzo(k)fluoranthene	EPA 3510	8270C	. 5	1	4/10/99	4/16/99	ND	
Benzo(a)pyrene	EPA 3510	8270C	5	1	4/10/99	4/16/99	ND	
Indeno(1,2,3-cd)pyrene	EPA 3510	8270C	5	ī	4/10/99	4/16/99	ND	*
Dibenz(a,h)anthracene	EPA 3510	8270C	5	1	4/10/99	4/16/99	ND	
Benzo(g,h,i)perylene	EPA 3510	8270C	5	ĺ	4/10/99	4/16/99	ND	
2-Methylnaphthalene	EPA 3510	8270C	5	1	4/10/99	4/16/99	ND	*

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: 4/9/99 Date Received: 4/9/99

TPH as Diesel

Prep Method:

EPA 3510

Analysis Method:

CA/LUFT

Units: ug/L (ppb)

Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
W-3S	S9901175-002	50	1	4/20/99	4/21/99	430	D4
W-BS	S9901175-003	50	5	4/20/99	4/22/99	12000	D4
W-1S	S9901175-004	50	10	4/20/99	4/22/99	24000	D4 -
Method Blank	S990420-WB1	50	1	4/20/99	4/21/99	ND	•

D4

The sample contains a lower boiling point mixture of hydrocarbons and diesel quantitated as diesel.

1A/020597p

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: 4/9/99

Date Received: 4/9/99

BTEX, MTBE and TPH as Gasoline

Sample Name:

Trip Blank

Lab Code:

Test Notes:

S9901175-001

Units: ug/L (ppb) Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/18/99	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/18/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/18/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/18/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/18/99	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	4/18/99	ND	

1S22/020597p

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: 4/9/99
Date Received: 4/9/99

BTEX, MTBE and TPH as Gasoline

Sample Name:

W-3S

Lab Code:

S9901175-002

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	BPA 5030	CA/LUFT	50	4	NA	4/19/99	980	
Benzene	EPA 5030	8020	0,5	4	NA	4/19/99	240	
Toluene	EPA 5030	8020	0.5	4	NA	4/19/99	4	
Ethylbenzene	EPA 5030	8020	0.5	4	NA	4/19/99	37	
Xylenes, Total	EPA 5030	8020	0.5	4	NA	4/19/99	3	
Methyl tert -Butyl Ether	EPA 5030	8020	3	4	NA	4/19/99	<12	Cl

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S22/020597p

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: \$9901175

Date Collected: 4/9/99

Date Received: 4/9/99

BTEX, MTBE and TPH as Gasoline

Sample Name:

W-BS

Lab Code:

S9901175-003

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	100	NA	4/18/99	39000	
Benzene	EPA 5030	8020	0.5	100	ÑΑ	4/18/99	4100	
Toluene	EPA 5030	8020	0.5	100	NA	4/18/99	1900	
Ethylbenzene	EPA 5030	8020	0.5	100	NA -	4/18/99	1400	
Xylenes, Total	EPA 5030	8020	0.5	100	NA	4/18/99	5600	
Methyl tert -Butyl Ether	EPA 5030	8020	3	100	NA	4/18/99	<300	C1

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

1\$22/020597p

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: 4/9/99

Date Received: 4/9/99

BTEX, MTBE and TPH as Gasoline

Sample Name:

W-18

Lab Code: Test Notes:

S9901175-004

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	100	NA	4/20/99	70000	
Benzene	EPA 5030	8020	0.5	100	NA	4/20/99	6500	•
Toluene	EPA 5030	8020	0.5	100	NA	4/20/99	7000	
Ethylbenzene	EPA 5030	8020	0.5	100	NA	4/20/99	1800	
Xylenes, Total	EPA 5030	8020	0.5	100	NA	4/20/99	8900	
Methyl tert-Butyl Ether	EPA 5030	8020	3	100	NA	4/20/99	360	

1\$22/020597p

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code: Test Notes: S990417-WB1

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/17/99	ND	
Benzene	EPA 5030	8020	0.5	1.	NA	4/17/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/17/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/17/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/17/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/17/99	ND	

1S22/020597p

Analytical Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals .

Sample Matrix:

Water

Service Request: S9901175

Date Collected: NA
Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S990419-WB1

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/19/99	ND	
Benzene	EPA 5030	8020	0.5	. 1	NA	4/19/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/19/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/19/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/19/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/19/99	ND	

1\$22/020597p

QA/QC Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: NA
Date Received: NA

Date Extracted: NA
Date Analyzed: NA

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Prep Method:

EPA 3510

Analysis Method: 8270C

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	2FP	P e r PHL	c e n t NBZ	R e c FBP	o v e r y	TPH
W-1S	S9901175-004		NA	NA	35	68	NA	61
Method Blank	S990410-WB1		NA	NA	90	74	NA	95

CAS Acceptance Limits: 21-100 10-94 35-114 43-116 10-123 33-141

2FP 2-Fluorophenol
PHL Phenol-D6
NBZ Nitrobenzene-D5
FBP 2-Fluorobiphenyl
TBP 2,4,6-Tribromophenol
TPH Terphenyl-D14

SUR6/020597p

QA/QC Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: S9901175

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary

TPH as Diesel

Prep Method: Analysis Method:

EPA 3510 CA/LUFT

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent Recovery p-Terphenyl
W-3S	S9901175-002	٠.	64
W-BS	S9901175-003		88
W-1S	S9901175-004		80
Method Blank	S990420-WB1		64

CAS Acceptance Limits:

41-140

SUR1/020597p

QA/QC Report

Client:

Environmental Sampling Services

Project:

Arrow Rentals

Sample Matrix:

Water

Service Request: 59901175

Date Collected: NA Date Received: NA

Date Extracted: NA Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Analysis Method:

8020

CA/LUFT

Units: PERCENT

Basis: NA

		Test	Percent Recovery			
Sample Name	Lab Code	Notes	4-Bromofluorobenzene	a,a,a-Trifluorotoluene		
Trip Blank	S9901175-001	-	98	98		
W-3S	S9901175-002		100	87		
W-BS	S9901175-003		97	101		
W-1S	S9901175-004	•	97	104		
Method Blank	S990417-WB1		98	104		
Method Blank	S990419-WB1		98	96		

CAS Acceptance Limits:

69-116

69-116

SUR2/020397p

Analytical

Shipped Via/Tracking #

CHAIN OF CUSTODY/LABORATORY ANALYSIS REPO

Storage:

to the second and indicate his southing \$1340 for analysis and according

SERVICE REQUEST NO. 5990 1175 P.O.# Services 3334 Victor Court • Santa Clara, CA 95054 (408) 748-9700 • FAX (408) 748-9860 ANALYSIS REQUESTED PROJECT NAME Arrow Rentals /HNO₂/ PROJECT MGR. Stephen Penman / Jacki Lee COMPANY Environmental Sampling SVCS ADDRESS 6680 Alhambra Ave #102 PHONE (925)3728108 Martinez, CA 94553 Ď. (AX(925)372-6705 NUMBER SAMPLER'S SIGNATURE SAMPLE SAMPLE LAB REMARKS I.D. DATE TIME LD. MATRIX a 1200 WIR Trip Blank X W-35 13:20 WIR 04/09/A 14:37 W-Bs WTR by/01/20 15:25 W-15 WTR TOHal Perform Silica Gel Gean-up on water sample extracts Drier RECEIVED BY: **RELINQUISHED BY:** RECEIVED BY: RELINQUISHED BY: TURNAROUND REQUIREMENTS REPORT REQUIREMENTS I. Routine Report 1 day ____ 2 day ___ 3 day Signature Brian Fuller Printed Name Signature Signature II. Report (includes MS. MSD; as required, may be Printed Name 5 day ____ Other Printed Name charged as samples) Printed Name Standard (10 working days) III. Data Validation Report (includes All Flaw Data) 15.41 MDLs/PQLs/Trace # Date/Time Date/Time Date/Time Electronic Data Deliverables Custody Seals SAMPLE RECEIPT: Condition RECEIVED BY: **RELINQUISHED BY:** RII D3 R8D3 SPECIAL INSTRUCTIONS/COMMENTS: Signature Signature Circle which metals are to be analyzed: B Cd Ca Cr Co Cu Fe Mg Mn Mo Ni K Ag Na Sn V Zn Metals: Printed Name Printed Name As Pb Se Tl Hg Finn Firm Date/Time Date/Time