94 JUN - 6 Pii 4: 48

42501 Albrae Street Fremont, California 94538 Phone: (510) 440-3300 FAX: (510) 651-2233

TRANSMITTAL

TO: Ms. Susan Hugo

Alameda County Health Care Services Agency

Department of Environmental Health

80 Swan Way, Room 200 Oakland, California 94621 DATE: June 2, 1994

PROJECT NUMBER: 62028.11 SUBJECT: ARCO Station 6113

785 East Stanley Boulevard, Livermore

California

FROM: David Peterson TITLE: Staff Engineer

WE ARE SENDING YOU:

COPIES	DATED	NO.		DESCRIPTION				
1	05/25/94	69028.11	Results of subject site.	f Vapor Well Installation for the above.				
THESE ARE	TRANSMITTEL	as checked be	elow:					
[] For revie	w and comment	[] Approv	ed as submitted	[] Resubmit copies for approval				
[X] As requ	ested	[] Approv	ed as noted	[] Submit copies for distribution				
[] For appr	oval	[] Return	for corrections	[] Return corrected prints				
[X] For you	r files							

REMARKS:

Copies:

Mr. Mike Whelan, ARCO Products Company

Mr. Eddy So, CRWQCB, SF Bay Region

Ms. Danielle Stefani, City of Livermore Fire Department

1 to RESNA project file no. 69028.11

David Peterson, Staff Engineer

HAZMAT SIJUN-6 PH 4: 48

42501 Albrae Street, Suite 100 Fremont, California 94538 Phone: (510) 440-3300 FAX: (510) 651-2233

May 25, 1994

Mr. Mike Whelan ARCO Products Company P.O. Box 5811 San Mateo, California 94402

Subject:

Results of Vapor Well Installation

ARCO Station 6113

785 East Stanley Boulevard in Livermore, California

Mr. Whelan:

At the request of ARCO Products Company (ARCO), RESNA Industries Inc. (RESNA) installed two additional vapor extraction wells at ARCO Station 6113, located at 785 East Stanley Boulevard in Livermore, California. The additional vapor extraction wells were installed for use with the interim soil remediation system as agreed upon in the May 19, 1993, meeting with Ms. Susan Hugo, and Ms. Eva Chu of the Alameda County Health Care Services Agency (ACHCSA), Ms. Valli Voruganti, Mr. John Young, and Mr. Greg Barclay of RESNA, and Mr. Michael Whelan of ARCO.

The work performed for this investigation included drilling three soil borings (B-13 through B-15); collecting and describing soil samples from the borings; installing vapor extraction wells (VW-3 and VW-4) in borings B-13 and B-14, respectively; submitting selected soil samples for laboratory analyses; and preparing this letter report presenting results.

ARCO Service Station 6113 is an operating retail gasoline service station and AM/PM minimart located at the southwestern corner of the intersection of East Stanley Boulevard and Murrieta Boulevard in Livermore, California, as shown on Plate 1, Site Vicinity Map. The site is located in an area of commercial and residential development, and is a predominantly asphalt- and concrete-covered lot at an elevation of approximately 457 feet above mean sea level. The site is bounded by East Stanley Boulevard to the north, Murrieta Boulevard to

the east, and the Arroyo Mocho Creek to the south and west. An operating Shell Service Station is located on the southeastern corner of East Stanley Boulevard and Murrieta Boulevard. Results of previous environmental investigations at the site are summarized in the reports listed in the References section.

Field Work

On June 16, 1993, three soil borings (B-13 through B-15) were drilled at the subject site to depths between 24 and 31½ feet. Boring B-13 was drilled in the northern-central portion of the site near existing monitoring well MW-5, and boring B-14 was drilled in the northeastern portion of the site near existing monitoring well MW-7 (Plate 2). Borings B-13 and B-14 were completed as vapor extraction wells to be used with the interim vapor extraction system currently under construction at the site. Boring B-15 was drilled in the east-central portion of the site near existing monitoring well MW-4, but was not completed as a vapor extraction well since no hydrocarbon-impacted soil was encountered to the bottom of the boring at a depth of approximately 30 feet below grade.

Seventeen soil samples were collected from borings B-13 through B-15 for description using the Unified Soil Classification System (Plate 3) and possible laboratory analyses. Complete descriptions of the soil encountered in the borings is presented on the Logs of Borings, Plates 4 through 6. Field monitoring of organic vapor concentrations in soil samples was performed during drilling using an organic vapor meter (OVM). Field OVM readings are considered order of magnitude readings only.

Following completion of drilling on June 16, 1994, four soil samples were collected from the soil stockpile and submitted to the laboratory for compositing and analyses.

Laboratory Methods

Soil samples collected from borings B-13 through B-15 were analyzed by Sequoia Analytical Laboratories, Inc., of Redwood City, California (California Hazardous Waste Testing Laboratory Certification #1210) for the gasoline constituents benzene, toluene, ethylbenzene, and total xylenes (BTEX), and total petroleum hydrocarbons as gasoline (TPHg) using Environmental Protection Agency (EPA) Methods 5030/8020/8015. The soil samples collected from the soil stockpile were composited in the laboratory and analyzed for BTEX and TPHg using EPA Method 5030/8020/8015.

69028/VWINSTALL

Results of Soil Samples

The analytical results of soil samples are summarized in Table 1, Cumulative Results of Laboratory Analyses of Soil Samples. Certified Laboratory Analytical Reports and Chain of Custody Records for soil samples are included in Appendix A.

Laboratory analytical results of soil samples collected from borings B-13 and B-14 indicated concentrations of TPHg ranged from 2.9 parts per million (ppm) to 1,100 ppm, and benzene ranged from not detected at the laboratory method detection limit (MDL) of 0.0050 ppm to 14 ppm.

Laboratory analytical results of soil samples collected from boring B-15 indicated TPHg and benzene were not detected at the laboratory MDLs of 1.0 ppm and 0.0050 ppm, respectively.

It is recommended that copies of this report be forwarded to:

Ms. Susan Hugo Alameda County Health Care Services Agency Department of Environmental Health 80 Swan Way, Room 200 Oakland, California 94621

Mr. Eddy So California Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, California 94612

Ms. Danielle Stefani City of Livermore Fire Department 4550 East Avenue Livermore, California 94550

If you have any questions or comments, please call us at (408) 264-7723.

Sincerely,

RESNA Industries Inc.

rin Kruen

Erin D. Krueger Staff Geologist

John B. Bobbitt, R.G. 4313

Senior Geologist

No. 4313

John C. Young Project Manager

Enclosures: References

Plate 1, Site Vicinity Map

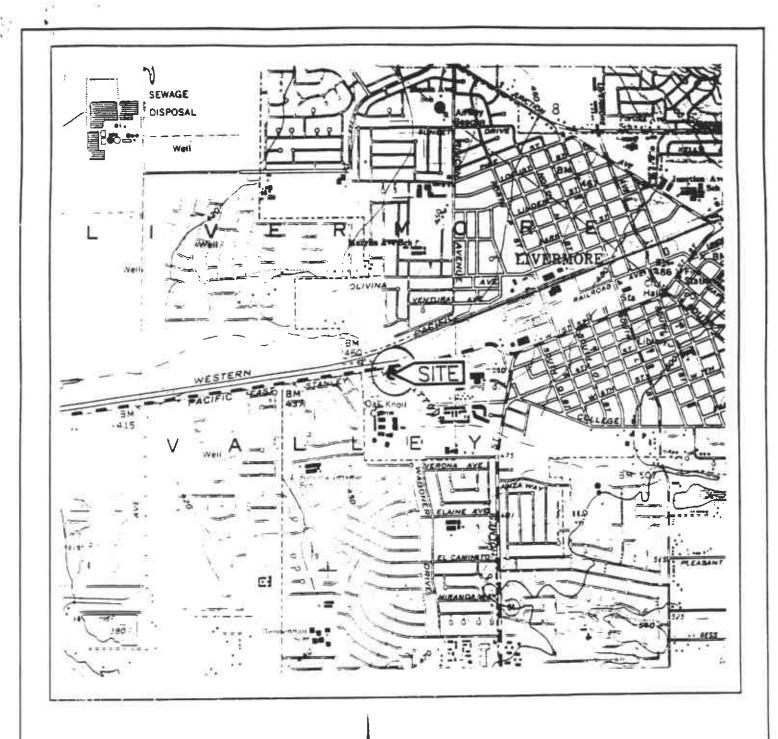
Plate 2, Generalized Site Plan

Plate 3, Unified Soil Classification System and Symbol Key

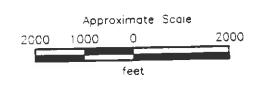
Plates 4 through 6, Logs of Borings

Table 1, Cumulative Results of Laboratory Analyses of Soil Samples

Appendix A: Certified Laboratory Analytical Reports and Chain of Custody Records



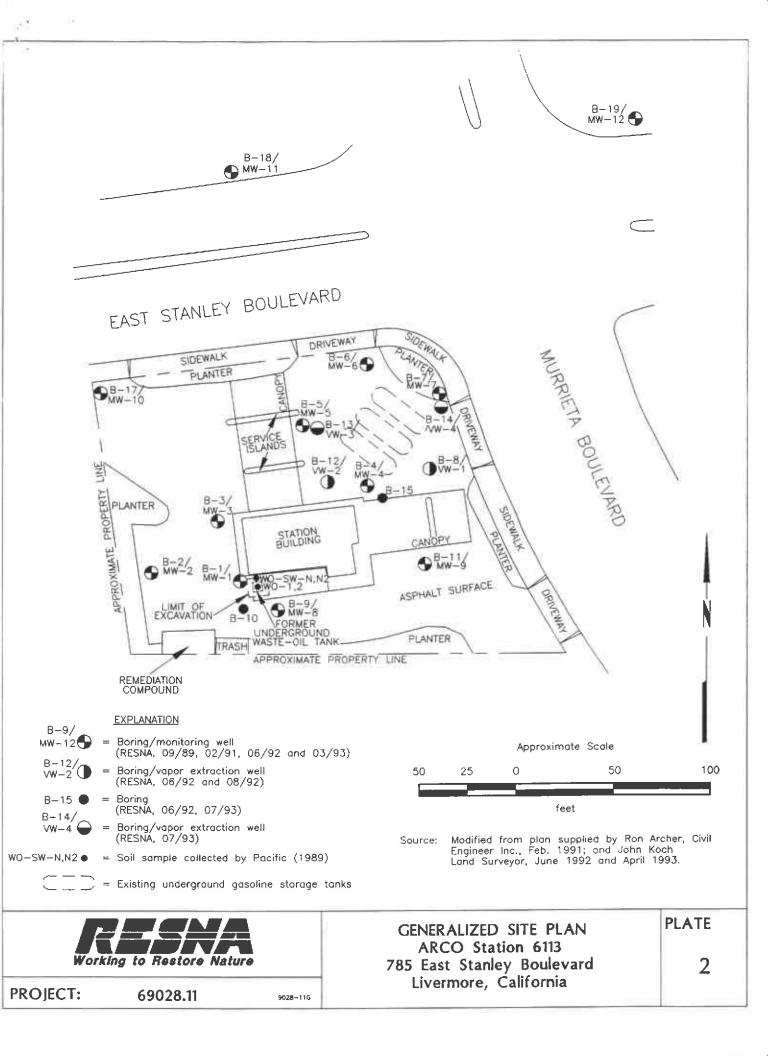
REFERENCES


RESNA. December 21, 1992. Report on Additional Subsurface Investigation and Vapor Extraction Test at ARCO Station 6113, 785 East Stanley Boulevard, Livermore, California. 69028.07

RESNA. June 7, 1993. <u>Minutes of Meeting held at Alameda County Health Care Services</u> Agency on May 19, 1993. Various

RESNA. March 8, 1994. <u>Letter Report, Quarterly Groundwater Monitoring, Fourth Quarter 1993, at ARCO Station 6113, 785 East Stanley Boulevard, Livermore, California.</u> 69028.08

Source: U.S. Geological Survey 7.5—Minute Quadrangle Elvermore, California Photorevised 1980



Working to Restore Nature

SITE VICINITY MAP ARCO Station 6113 785 East Stanley Boulevard Livermore, California PLATE

PROJECT

69028.11

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR [DIVISION	LTR	DESCRIPTION	MAJOR D	MAJOR DIVISION		DESCRIPTION
		GW	Well-graded gravels or gravel-sand mixtures, little or no fines.			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight
	GRAVEL	GP	Poorly-graded gravels or gravel-sond mixtures,		SILTS		plasticity
	AND GRAVELLY	0.	fittle or no fines.		AND CLAYS LL<50	CL	Inorganic clays of low to medium plasticity, gravelly
	SOILS	GM	Silty gravels, gravel-sand- silt mixtures.				clays, sandy clays, silty clays, lean clays.
COARSE-		GC	Clayey gravel, gravel—sand —clay mixtures	FINE-		OL	Organic silts and organic silt—clays of low plasticity
GRAINED SOILS	SAND	SW	Well—graded sand or gravelly sands, little or no fines	GRAINED SOILS	SILTS	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
	AND SANDY SOILS	SP	Poorly—graded sands or gravelly sands, little or no fines.		AND CLAYS LL>50	СН	Inorganic clays of high plasticity, fat clays.
	SOILS	SM	Silty sands, sand—silt mixtures			ОН	Organic clays of medium to high plasticity, organic silts.
		SC	Clayey sands, sand-clay mixtures.	HIGHLY ORG	ANIC SOILS	PΤ	Peat and other highly organic soils

T	Depth through which		Sand pack	
T	sampler is driven Relatively undisturbed		Bentonite	Stratigraphic contact
±	sample	∇ ∇	Neat cement	
X	No sample recovered		Caved native soil	Gradational contact
<u>▼</u>	Static water level observed in well/boring			
$\frac{\nabla}{\overline{\underline{z}}}$	Initial water level observed in boring		Blank PVC	
S-10	Sample number		Machine—slotted PVC	
P.I.D.	Photoionization detector		Pea grovel	Inferred contact

BLOWS REPRESENT THE NUMBER OF BLOWS OF A 140-POUND HAMMER FALLING 30 INCHES TO DRIVE THE SAMPLER THROUGH EACH 6 INCHES OF AN 18-INCH PENETRATION

GRADATIONAL AND INFERRED CONTACT LINES SEPARATING UNITS ON THE LOG REPRESENT APPROXIMATE BOUNDARIES ONLY. ACTUAL BOUNDARIES MAY BE GRADUAL. LOGS REPRESENT SUBSURFACE CONDITIONS AT THE BORING LOCATION AT THE TIME OF DRILLING ONLY.

PROJECT 69028.11 UNIFIED SOIL CLASSIFICATION SYSTEM PLATE AND SYMBOL KEY ARCO Station 6113

785 East Stanley Boulevard Livermore, California

Total depth of boring:	24 feet	Casing diameter:	4 inches
Diameter of boring:	12 inches	Casing material:	Sch 40 PVC
Date drilled:	6-16-93	Slot size:	0.10-inch
Drilling Company:	Exploration Geoservices	Sand size:	3/8" pea gravel
Driller:	John	Screen Interval:	15-1/2 feet to 24 feet
Drilling method:	Hollow-Stem Auger	field Geologist:	Zbigniew Ignatowicz
· -	ture of Registered Profes	71 30 4 11(1)	
	Registration No.:	RG 431 State: CA	_

Depth	Sample No.	0	SWOD	P.I.D.	USCS Code	Description	Well Const.
Depth - 2 - - 4 - - 6 - - 8 - - 10 - - 12 - - 14 - - 16 - - 18 - - 20 - - 24 - - 26 - - 30 - - 32 - - 34 - - 3	No.	55	6888 7908882666 6888 79088826666 6888 79088826666	10.5 14.3 21.8 26.2 373 1096 2800	ML GW CL	Description Pea gravel backfill. Gravelly silt, dark olive-gray, damp, low plasticity, very stiff to hard; fine gravel ~10%. Fine gravel, color change to dark greenish-gray; rootlets. Sandy gravel, coarse-grained sand, fine gravel, greenish-gray, damp, very dense. Silty clay, ~10% fine-grained sand, olive-brown, moist, low to medium plasticity, hard. Total Depth = 14 feet.	
- 36 - - 38 -	-						
- 40	-	Н			1		

PROJECT: 69028.11

LOG OF BORING B-13/VW-3

ARCO Station 6113

785 East Stanley Boulevard

Livermore, California

PLATE

4

fotal depth of bor	ing: 31 feet	Casing diameter:	4 inches
Diameter of boring		Casing material:	Sch 40 PVC
Date drilled:	6-16-93	Slot size:	0.10-inch
Drilling Company:	Exploration Geoservices	Sand size:	3/8" pea gravel
Driller:	John	Screen Interval:	17 feet to 30 feet
Drilling method:	Hollow-Stem Auger	Field Geologist:	Zbigniew Ignatowicz
	ignature of Registered Professi	ional: John Kilay 14	with
	Registration No.:	1 /	

Depth	Somple No.	Blows	P.I.D.	USCS Code	Description	Well Const.
					Pea gravel backfill.	V 7
2 -				GW	Sandy gravel, coarse—grained sand, fine to coarse gravel, dark brown, damp, very dense.	∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇
6 - 8 -	S-5.5 -	30 50				∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇
10 -	S-11	15		CL/CH	Silty clay, very dark grayish—brown, damp, medium to high	7 7 7 .
12 -	S-11	26	129	CL/CH	plasticity, hard.	V V 7 V V V V V V V V V V V V V V V V V
14 -	S14.5	8 9 9	49.8		Moist, yellow-orange oxidation stains.	U
18 -	S−17 ■	50/6	45.6	GW	Sandy gravel, dark gray, moist, very dense.	
20 -						
24	S-23	50/3			Wet.	
26	S-28	23 25				
30			2570	SC	Clayey sand, fine—grained, dark olive—gray, wet, dense. Silty clay, olive, moist, medium plasticity, stiff.	
32	S-30.5	18	230		Total Depth = 31 feet.	
34	-					
- 36	-					
- 38	+					
- 40	-					150

Working to Restore Nature

PROJECT: 69028.11

LOG OF BORING B-14/VW-4
ARCO Station 6113

ARCO Station 6113 785 East Stanley Boulevard Livermore, California PLATE

5

Total depth of boring:	31-1/2 feet	Casing diameter:	NA
Diameter of boring:	12 inches	Casing material:	NA
Date drilled:	6-16-93	Slot size:	NA
Drilling Company:	Exploration Geoservices	Sand size:	NA.
Driller:	John	Screen Interval:	NA
Drilling method:	Hollow-Stem Auger	Mald Geologist:	Zbigniew Ignatowicz
	ature of Registered Profes	ssional: John Kelly Pelle	ud
	Registration No.:	RG 4313 / State: CA	- , **
		V	

Depth	Sample No.	Blows	P.I.D.	USCS Code	Description	Well Const.
		-			Steel box.	A A A
2 -				GW	Sandy gravel, grayish—brown, slightly damp, dense.	2
6 -	S-6	15 21 29	6.1			
10 -	S-10.5	25 50/6	7.0			2
12 -						7 V V
- 14 -	S-15.5	27	17.8	ML	Sandy silt, with some gravel, dark grayish—brown, damp, low plasticity, hard.	2 A A
16 -	3-10.0	30/3	17.0	CL	Gravelly clay, olive, damp, medium plasticity, hard.	7
20	S-20.5	35 50/2	21.4			2 0 0
22 -				CL	Sandy clay, dark greenish—gray, very moist, medium plasticity, hard.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
- 26	S-26	11 18 25	34.2			A A 4
- 28						2 Q Q
- 30	S-31	13 31 18	28.6			A A 4
- 32					Total Depth = 31-1/2 feet	
- 34						
- 36 - 38						
- 40						

		V
Working	to Restore	Nature

PROJECT:

69028.11

LOG OF BORING B-15
ARCO Station 6113
785 East Stanley Boulevard
Livermore, California

PLATE

6

TABLE 1
CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES
ARCO Station 6113
Livermore, California
(Page 1 of 3)

Sample	В	T	E	x	TPHg	TPHd	TOG
September 1989							
S-141/2-B1	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<10	<30
S-341/2-B1	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<10	<30
S-441/2-B1	< 0.005	< 0.00\$	< 0.005	< 0.005	<1.0	<10	<30
S-19-B2	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<10	<50
S-34-B2	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<10	<50
S-41-B2	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<10	<50
S-14-B3	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<10	<50
S-34-B3	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<10	<50
S-371/2-B3	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<10	<50
February 1991							
S-141/2-B4	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	< 10	<50
S-191/2-B4	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	< 10	<50
S-29-B4	0.008	< 0.005	< 0.005	< 0.005	<1.0	<10	<50
S-0221-SP(A-D)	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<10	NA
June 1992							
S-101/2-B5	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	NA	NA
S-201/2-B5	1.4	2.0	13	67	1,200	NA	NA.
S-30½-B5	1.1	0.30	1.1	6.0	150	NA	NA
S-4014-B5	17	32	14	150	230	NA	NA
S-501/2-B5	0.012	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-101/2-B6	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-2014-B6	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	NA.	NA.
S-301/2-B6	0.45	0.079	0.035	0.15	23	NA	NA.
S-451/2-B6	0.70	0.021	< 0.005	< 0.005	1.9	NA	NA.
S-501/2-B6	0.056	< 0.005	< 0.005	0.006	<1.0	NA	NA.
S-101/2-B7	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-201/4-B7	0.43	1.3	0.35	2.5	21	NA	NA
S-301/-B7	0.094	0.20	< 0.005	0.023	1.6	NA.	NA
S-401/1-B7	0.009	< 0.005	< 0.005	< 0.005	< 1.0	NA.	NA.
S-50½-B7	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA.
S-101/-B8	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-201/2-B8	< 0.005	0.22	0.42	2.1	68	NA	NA
S-301/2-B8	0.043	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-451/4-B8	0.022	< 0.005	< 0.005	< 0.005	1.1	NA	NA

See notes on Page 3 of 3.

TABLE 1
CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES
ARCO Station 6113
Livermore, California
(Page 2 of 3)

Sample	В	T	E	x	TPHg	TPHd	TOG
June 1992 (cont.)							* **
S-81/2-B9	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<1.0	<30
S-201/2-B9	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<1.0	74
S-301/2-B9	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<1.0	<30
S-401/2-B9	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<1.0	<30
S-50½-B9	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<1.0	<30
S-10- B 10	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<1.0	<30
S-20-B10	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	<1.0	<30
S-30-B10	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<1.0	< 30
S-45-B10	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<1.0	77
S-55-B10	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	<1.0	<30
S-101/-B11	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-2014-B11	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-301/2-B11	< 0.005	< 0.005	< 0.005	< 0.005	5.7	NA	NA
5-4015-B11	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-501/2-B11	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-551/2-B11	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-0615-SP1(A-D)	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-0615-SP2(A-D)	0.014	0.037	0.054	0.45	24	NA	NA
3 3023 -012(112)	0.027	0.007	0.004	Ų. 12		141	
August 1992						274	274
S-10-B12	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA
S-20-B12	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA	NA.
S-30-B12	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	NA	NA
S-40-B12	0.59	0.60	1.3	2.0	110	NA	NA
S-50-B12	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	NA	NA
S-0804-SP(A-D)	< 0.005	0.011	0.030	0.066	2.6	NA	NA.
June 1993							
B13-2-16	< 0.0050	< 0.0050	0.011	0.046	15	NA	NA.
B13-4-23.5	14	54	18	110	1,100	NA	NA
B14-5-23	3.0	13	5.1	34	340	NA	NA
B14-7-30.5	0.69	0.085	0.021	0.054	2.9	NA	NA
B15-2-10.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	NA	NA
B15-4-20.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 1.0	NA	NA
B15-6-31	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	NA	NA
SP1 (A-D)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	NA	NA

See notes on Page 3 of 3.

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 6113

Livermore, California (Page 3 of 3)

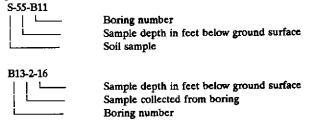
Results	in	parts	per	million	(ppm).
---------	----	-------	-----	---------	--------

<: Results reported as less than the detection limit.

NA: Not Analyzed

TPHg: Total petroleum hydrocarbons as gasoline by EPA method 5030/8015/8020.

TPHd: Total petroleum hydrocarbons as diesel by EPA method 3550/8015.


B: Benzene, T: Toluene, E: Ethylbenzene, T: Total Xylene isomers

BTEX: Analyzed by EPA method 5030/8015/8020.

TOG: Total Oil and Grease by Standard Method 5520 E&F.
VOCs = Halogenated volatile organics. NA =Compound not analyzed for.

ND =Compound not detected.

Sample designation:

APPENDIX A

CERTIFIED LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY RECORDS

3315 Almaden Expwy., Suite 34

San Jose, CA 95118 Attention: John Young

Project: 69028.11, Arco 6113

Enclosed are the results from 7 soil samples received at Sequoia Analytical on June 21,1993. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
3FA4501	Soil, B13-2-16	6/16/93	EPA 5030/8015/8020
3FA4502	Soil, B13-4-23.5	6/16/93	EPA 5030/8015/8020
3 FA4503	Soil, B14-5-23	6/16/93	EPA 5030/8015/8020
3 FA4504	Soil, B14-7-30.5	6/16/93	EPA 5030/8015/8020
3 FA4505	Soil, B15-2-10.5	6/16/9 3	EPA 5030/8015/8020
3 FA4506	Soil, B15-4-20.5	6/16/93	EPA 5030/8015/8020
3 FA4507	Soil, B15-6-31	6/16/93	EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours.

SEQUOIA ANALYTICAL

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: John Young

Client Project ID: Sample Matrix:

69028.11, Arco 6113

Soil

Analysis Method: EPA 5030/8015/8020 First Sample #:

3FA4501

Sampled:

Jun 16, 1993

Received: Reported:

Jun 21, 1993 Jul 2, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3FA4501 B13-2-16	Sample 1.D. 3FA4502 B13-4-23.5	Sample I.D. 3FA4503 B14-5-23	Sample I.D. 3FA4504 B14-7-30.5	Sample I.D. 3FA4505 B15-2-10.5	Sample I.D. 3FA4506 B15-4-20.5
Purgeable Hydrocarbons	1.0	15	1,100	340	2.9	N.D.	N.D.
Benzene	0.0050	N.D.	14	3.0	0.69	N.D.	N.D.
Toluene	0.0050	N.D.	54	13	0.085	N.D.	N.D.
Ethyl Benzene	0.0050	0.011	18	5.1 .·	0.021	N.D.	N.D.
Total Xylenes	0.0050	0.046	110	34	0.054	N.D.	N.D.
Chromatogram Pat	tern:	Non-Gas Mix > C6	Gas	Gas	Gas		

Quality Control Data

Quality Control Data						
Report Limit Multiplication Factor:	1.0	50	50	1.0	1.0	1.0
Date Analyzed:	6/27/93	6/28/93	6/28/93	6/27/93	6/27/93	6/27/93
Instrument Identification:	GCHP-18	GCHP-1	GCHP-18	GCHP-18	GCHP-17	GCHP-17
Surrogate Recovery, %: (QC Limits = 70-130%)	96	83	116	112	112	119

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Vickie Taque **Project Manager**

3FA4501 RES < 1>

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: John Young

Client Project ID:

69028.11, Arco 6113

Sampled:

Jun 16, 1993

Sample Matrix:

Soil

Received:

Jun 21, 1993

Analysis Method:

EPA 5030/8015/8020

Reported:

First Sample #:

3FA4507

Jul 2, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3FA4507 B15-6-31	
Purgeable Hydrocarbons	1.0	N.D.	
Benzene	0.0 050	N.D.	
Toluene	0.0050	N.D.	
Ethyl Benzene	0.0050	N.D.	
Total Xylenes	0.0050	N.D.	
Chromatogram Pa	ttern:	•-	

Quality Control Data

Report Limit

Multiplication Factor:

1.0

Date Analyzed:

6/27/93

Instrument Identification:

GCHP-17

Surrogate Recovery, %:

(QC Limits = 70-130%)

108

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Vickie Taque Project Manager

3FA4501.RES

Client Project ID:

69028.11, Arco 6113

3315 Almaden Expwy., Suite 34

Matrix:

Sail

San Jose, CA 95118

Attention: John Young

QC Sample Group: 3FA4501-07

Reported: Jul 2, 1993

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-	 	· · · · · · · · · · · · · · · · · · ·	 -
	Benzene	Toluene	Benzene	Xylenes		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020		
Analyst:	A. Maralit	A. Maraiit	A. Maralit	A. Maralit		
Conc. Spiked:	0.20	0.20	0.20	0.60		
Units:	mg/Kg	mg/Kg	mg/Kg	mg/Kg		
LCS Batch#:	BLK062593	BLK062593	BLK062593	BLK062593		
Date Prepared:	6/25/93	6/25/93	6/25/93	6/25/93		
Date Analyzed:	6/27/93	6/27/93	6/27/93	6/27/93		
Instrument I.D.#:	GCHP-18	GCHP-18	GCHP-18	GCHP-18		
LCS %						
Recovery:	90	90	90	90		
Control Limits:	60-140	60-140	60-140	60-140		
			santini grapi eta Territari santini			
MS/MSD						
Batch #:	3FA4008	3FA4008	3FA4008	3FA4008		
Date Prepared:	6/25/93	6/25/93	6/25/93	6/25/93		
Date Analyzed:	6/27/93	6/27/93	6/27/93	6/27/93		
Instrument I.D.#:	GCHP-18	GCHP-18	GCHP-18	GCHP-18		
Matrix Spike						
% Recovery:	75	80	80	82		
Matrix Spike						
Duplicate %						
Recovery:	80	85	85	85		
Relative %						
Difference:	6.5	6.1	6.1	3.6	iromonto ho	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

Vickie Tague
Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

Client Project ID:

69028.11, Arco 6113

3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Matrix:

Soil

Attention: John Young

QC Sample Group: 3FA4501-07

Reported: Jul 2, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	<u> </u>		Ethyl-			
	Benzene	Toluene	Benzene	Xylenes		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	~	
Analyst:	R. Geckler	R. Geckler	R. Geckler	R. Geckler		
Conc. Spiked:	0.20	0.20	0.20	0.60		
Units:	mg/Kg	mg/Kg	mg/Kg	rng/Kg		
LCS Batch#:	BLK062593	BLK062593	BLK062593	BLK062593		
Date Prepared:	6/25/93	6/25/93	6/25/93	6/25/93		
Date Analyzed:	6/25/93	6/25/93	6/25/93	6/25/93		
Instrument I.D.#:	GCHP-17	GCHP-17	GCHP-17	GCHP-17		
LCS %						
Recovery:	110	100	100	100		
Control Limits:	60-140	60-140	60-140	60-140		
MS/MSD						
Batch #:	3FA4 004	3FA4004	3FA4004	3FA4004		
Date Prepared:	6/25/93	6/25/93	6/25/93	6/25/93		
Date Analyzed:	6/25/93	6/25/93	6/25/93	6/25/93		
Instrument l.D.#:	GCHP-18	GCHP-18	GCHP-18	GCHP-18		
Matrix Spike						
% Recovery:	95	95	95	97		
Matrix Spike						
Duplicate %						
Recovery:	100	100	100	98		
Relative %						
Difference:	5.1	5.1	5.1	1.0		
Quality Assurance S	tatement: All sta	andard operating	procedures an	d quality control	requirements have been met.	

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

AHCO F	IDO1' noisivi0	JC15 (Anchheid Pichheid	any Company	₩.			Task	Ord	ler No.	13-	43	- 人	É	- 4	72	17-	11	~-				C	Chain of Custody	
ARCO Facility	no.	e11	3	Cit (Fii	icitily)	111	Tulophon (AHCO)	(M)	RE		Project (Consul	manay tant)	ei 	Ju	M	J	40	UN	G	2				SEQUOLA	
ARCO engine	ei	Micl	rael	ازرا	ıcla		Tutophon (AHCO)	III 110			Tolopha (Consul	ine mol	108)	26	4-71	123	Fax	no. nsultar	6108	126	7-2	43	5	Contract number	. .
Consultant na	ıme (JES	SNY	9			17	Addr (Con	oss sultant	ler No.	15	A	1/	1A	DEL	<u> </u>	EX	PRE	-55	11/	1			07-075	
		i		Matrix		Prese													ĘŚ.	2007/0				Method of shipment	
<u>o</u>		5						g date		g tine	3020	2/8520/80	thed 8015 Diese.	rease 413.2	1/SMS03	9010	05240	B27C	1 11	STLC	Org./DHS	그		69028.11	
Sample I.D	Lab 70.	Container	Soil	Water	Other	C o	Acid	Sampling		Ѕатонпр ите	BTEX 602/EPA 8020	BTEXTP- EPA M602/8020/8015	TPH Modified 8015 Gas — Diese.	On and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Meters \(\text{VOA} \)	CAM Metais TTLC =	Lead Org Lead EP/ 7:20/742	书中			
B134-11		1	X			X.		6-16	43						93		141	3=2	1	D		X		Special detection Limit/reporting	
B13-2-16		1	X		·	X						\times						.0	/						
B13-3-20:5			X		<u> </u>	X		<u> </u>							ļ			Z	2	(4)		\times			
B13-4-23.5	_	-	X			X_{\sim}		}				\times						0	200					Special QA/QC	
B14-1-55			X,	ļ		X		}			ļ		··		-			_6	3 C	3		$\langle \rangle$			
B14-2-11			X	-		X.				.								~		5		$\langle \rangle$			
B14-3/45			\Diamond			X.]						[ļ ;	ð		9		\Diamond		- Hemarks	
B14-4-17						\Diamond	:											X				\triangle	. .		
B14-5-23 B14-6-28		1 -	$ \langle \cdot \rangle $												ļ			0	16						
1010 -58		.1				$ \langle \rangle $		W					1			₩								[
BH-7-30:			A					W										<u>, , , , , , , , , , , , , , , , , , , </u>	7						
		-											-		ļ		-		<u> </u>						
																								9306145	
											l		ļ		<u> </u>	<u></u>				<u> </u>				Turnaround time	
												<u> </u>			<u> </u>	L,			<u> </u>			<u> </u>		Priority Rush 1 Business Day	11
Condition of		o: o	1000	<u> </u> _A-			Date			Timu	. .	oraliru 		vd.	G	00	(<u> </u>	.141		·				Rush 2 Business Days	O)
Relinquish	14/1	Her J	(m	Xo	in		61	17-1	3/		1 1	ان خسر الاط boo	CQ.	de			(P	3.15	<u>የ -</u>					Expedited	
Relinquishe	1/4 a) b					Date 6 2	/47		Time ({!O\	1								-	1				1	()
Helingoishe	J by		, ·• — •-				Daid	1		Limo	Haco	shirt Shirt	laborat V G	lory)ato (4 -	21-	43	Time	ال	01	Standard 10 Business Days	¥

ARCO F	rodi	ICTS	Comp	any (\$			Tasi	k Or	der No.		67	Od	2 y .	#1	- (0113	3-9	3-	2	64 -		C	Chain of Custody
ARCO Facility	na. (211	3	Cit (Fa	y icdity)	LIVE	RM				Project (Consul	manag tant)	er	V.	OH,	N	40	un	16	^			- 	Laboratory name
ARCO engine			cha	ell	Jhe	lan	Telephor (ARCO)	na no.		! - -	Telepho (Consul	one fid	108)	264.	-177	23	Fax	no. nsultar	140	8)2	64-	243	5	SEQUOIA
Consultant na	ıme	F	ES	W.	Jhe 12			Add	iress nsulta	22	75	7	N	W.	EN	1 E	χP.	5	790	\underline{v}_{c}	709	SE.	-	67-073
	,			Mairix		Prese	rvation					, 16	.0()						Ū Ēģ	000000			,	Method of shipment
oj		ė	ļ	<u> </u>	· · ·			Gate		E E	, R	8020/80	ed 8035 rese!	13.2	418.1/SM503E	910	9	£	ďí đ	EPA 69 STLC	EHS □	Z		69028.11
Sample I.D.	6	Container no	Soil	Water	Other	lce	Acid	Sampling		Sampling time	BTEX 602/EPA BC2C	BTEX/TP- EPA M6C2/8020/8015	TPH Modified 8015 Gas Desel	Oil and Grease 413.1 413.2	TPH EPA 418.1	EPA 601/8010	EPA 6248240	EPA 625/8270	TCLP Semi	201E	Leed Org./DHS Leed EPA	Pi on		
R15-1-6		1	X			X		6-16							306		ら		de			X		Special detection Limit/reporting
B15-2-P			X	 		X			•			X						06	5					
B15-3-155		-	X			X					ļ	[-0	ge			X		
B15-4-20.5		1	X			X_{\perp}						X						00	2					Special QA/QC
B15-5-26		1	X			X			1								*-	1	Rul			X		
BK-6-31		İ	X			X			/			X		 		1		0	7					
																		ļ <u>.</u>	 				ļ	Remarks
						M 40.01									ļ				ļ 	ļ	ļ 			
			.										· · · · ·		ļ			ļ	 		ļ		ļ	
	<u>-</u>												}										ļ 	
·	·		-		<u> </u>					ļ		ļ		<u> </u>	-		ļ	ļ	<u> </u>	ļ	<u> </u>			
		-					· -											ļ						Lab number 9306A45
		- 	-	-				<u> </u>	•						1									Turnaround time
			-																					Priority Rush 1 Business Day
Condition o			900	d			, · · - ·				.	oraliire		ed: 	CO	01			13 1 1/	74.				Rush
Pelinguidhe		mpler VV	Tono	ton	n.		Dalo][]-Ý	3 5	Timo	\perp \sim	ived by		لاتول	سائنسپ	2-3	···	6 7	7:15	٦٦ <u>(</u> ك				2 Business Days ()
Reliceulshi			la			·	Date	1/0	ין	L(;O)	Hace	ived by	'							•				5 Business Days
	od by	CIXA		<u> </u>			Date	η: 	1	Tunu	Hoco	Thu	Парки	lory				Date /	211	93	Time	601		Standard 10 Business Days ()

RESNA 3315 Almaden Expwy., Suite 34 San Jose, CA 95118 Attention: John Young

Project: 69028.11 Arco 6113

Enclosed are the results from 1 soil sample received at Sequoia Analytical on June 21,1993. The requested analyses are listed below:

 SAMPLE #
 SAMPLE DESCRIPTION
 DATE OF COLLECTION
 TEST METHOD

 3F93101
 Soil, SP1 (A-D)
 6/16/93
 EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

3315 Aimaden Expwy., Suite 34

San Jose, CA 95118

Attention: John Young

Client Project ID:

Sample Matrix:

Analysis Method: First Sample #:

69028.11 Arco 6113

Soll

EPA 5030/8015/8020

3F93101

Sampled:

Jun 16, 1993

Received:

Jun 21, 1993

Reported: Jun 23, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 3F93101 SP1 (A-D)	
Purgeable Hydrocarbons	1.0	N.D.	
Benzene	0.0050	N.D.	
Toluene	0.0050	N.D.	
Ethyl Benzene	0.0050	N.D.	
Total Xylenes	0.0050	N.D.	
Chromatogram Pat	ttern:	••	

Quality Control Data

Report Limit

Multiplication Factor:

1.0

Date Analyzed:

6/22/93

Instrument Identification:

GCHP-18

Surrogate Recovery, %:

(QC Limits = 70-130%)

94

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

3315 Almaden Expwy., Suite 34

San Jose, CA 95118

Attention: John Young

Client Project ID: 69028.11 Arco 6113

Matrix: Soil

QC Sample Group: 3F93101

Reported: Jun 23, 1993

QUALITY CONTROL DATA REPORT

		Ethyl-	· · · · · · · · · · · · · · · · · · ·	
Benzene	Toluene	Benzene	Xylenes	
EPA 8020	EPA 8020	EPA 8020	EPA 8020	*
R. Geckler	R. Geckler	R. Geckler	R. Geckier	
0.20	0.20	0.20	0. 60	
mg/Kg	mg/Kg	mg/Kg	mg/Kg	
8LK062293	BLK062293	BLK062293	BLK062293	
6/22/93	6/22/93	6/22/93	6/22/93	
6/22/93	6/22/93	6/22/93	6/22/93	e e
GCHP-18	GCHP-18	GCHP-18	GCHP-18	
100	105	105	103	
60-140	60-140	60-140	60-140	
3F79211	3F79211	3F79211	3F79211	
6/22/93	6/22/93	6/22/93	6/22/93	
6/22/93	6/22/93	6/22/93	6/22/93	
GCHP-18	GCHP-18	GCHP-18	GCHP-18	
100	100	100	100	
			98	
100	100	100	36	
100	100	100	36	
	EPA 8020 R. Geckler 0.20 mg/Kg BLK062293 6/22/93 6/22/93 GCHP-18 100 60-140 3F79211 6/22/93 6/22/93 GCHP-18	EPA 8020 EPA 8020 R. Geckler R. Geckler 0.20 0.20 mg/Kg mg/Kg BLK062293 BLK062293 6/22/93 6/22/93 6/22/93 6/22/93 GCHP-18 GCHP-18 100 105 60-140 60-140 3F79211 3F79211 6/22/93 6/22/93 GCHP-18 GCHP-18	Benzene Toluene Benzene EPA 8020 EPA 8020 EPA 8020 R. Geckler R. Geckler R. Geckler 0.20 0.20 0.20 mg/Kg mg/Kg mg/Kg BLK062293 BLK062293 BLK062293 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 GCHP-18 GCHP-18 GCHP-18 100 105 105 60-140 60-140 60-140 3F79211 3F79211 3F79211 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 GCHP-18 GCHP-18 GCHP-18	Benzene Toluene Benzene Xylenes EPA 8020 EPA 8020 EPA 8020 EPA 8020 R. Geckler R. Geckler R. Geckler R. Geckler 0.20 0.20 0.60 mg/Kg mg/Kg BLK062293 BLK062293 BLK062293 BLK062293 BLK062293 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 GCHP-18 GCHP-18 GCHP-18 GCHP-18 100 105 105 103 60-140 60-140 60-140 60-140 3F79211 3F79211 3F79211 3F79211 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6/22/93 6

SEQUOIA ANALYTICAL

Vickie Tague
Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSC's are advisory only and are not used to accept or reject batch results.

ARCO	Prodi	ucts	i Co	mp	any (()			Task O	rder No.				6	10.	88	- 1	1					C	Chain of Custod	y 🤄
ARCO Facili	y no.	61	73)	City (Fai	cility)	LIV	ERM	MORE	CA	Project (Consu	manaç tant)	ger +	OHI	$\sqrt{}$	400	UNO	<u> </u>						Laboratory name	
ARCO engin	991	Vic	hai	01	1.) 6.	o la		Tulephon	ii)	Telepho	ne ne	(<u>LG</u>	164	<u> </u>	223	Fax	NO.	(40.	(12	64-0	243	5	SEQUOLA Contract number	
Consultant n	ame Z	KI.	5/	ĪĀ	1/	VDU	57 RI	ES	Address (Consult)	rder No.	15	AL /	Mn	070	ΓĖ	$\widetilde{\overline{XP}}$	ESS	SUMA,	47,	SA	N Ta)8E)	Contract number	
			Ť		Malrix		Proson				1		I						Ēδ	800	Lond Org./DHS			Method of shipment	
		2							date	e E		20/801	8 3 1 3 1 3 1 3 1 3	32.	M503E				35	100 M	8 ~				
Sample 1.D.	ė	Container	s	Soil	Water	Other	lcə	Acid	Sampling	Samping time	BTEX 602/EPA 8020	BTEXTPH EPA M602/8020/8015	TPH Modified 8015 Gas Dese	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA BOT/801D	EPA 824/8240	EPA 625/8270	TCLP Semi Drov D VOA D VOA	H A	OTATO				
L	00 987	Con							Sam	San	BTEX	BTEX	145	Q 4	TPH EPA (EPA (EPA E	EPA (43.	OTLL S	75.C.C.				
SP1-A		1	$\exists >$	\leq			X		6-16-93		M		X			93	06	93			A			Special detection Limit/reporting	
SPI-B SPI-C SPI-D		1	7	<			X				M		X			•	ĺ		_	٥t	B				
SP1-C		1	75	7			X		,		X		X					,	_	110	٤				
SPI-D		i	1	Ž			X				X		Ź				V		_	01	n	-		Special QA/QC	
		1 1	- -4				. <u>L2</u>		¥											<u>~1</u>	12				
		1											1			- /************************************									
<u></u>			\top																						
<u> </u>		ļ										· ··								<u>-</u>	ļ			Remarks /	
	 		- -		 												:		<u></u>		-			48Hair	5
		ļ																i ——						48HAIR TURN AROUND	İ
		ļ			<u> </u>			ļ	·		ļ	ļ	ļ		r	ļ								ADOUND.	
	ļ	ļ	_				·					ļ	 	<u> </u>										xxculvi	
	ļ	\perp	\perp								ļ	ļ	ļ	ļ		ļ		<u></u> -						Lab number	
		_	_ _		ļ <u>.</u>				·			ļ	ļ	ļ									 .	9306931	
	<u> </u>					ļ							,. 					·· -· -· ··					. —	Turnaround time	
					<u> </u>		<u> </u>									L,				<u>.</u>				Priority Rush 1 Business Day	۵
Condition of			900	o o/	<u>'</u>			Data		Time	<u> L'</u>		receiv	- -	عت	> 0 }	<u>-</u>		511	747				Rush	J
Retipfluish	UND		no	ito	nth			6-1	7-93	// Jino		ved by		ald	<u>en</u>)	o,	71/	ዓን 3:	12 p	m		2 Business Days	곅
Relinquish		3	d.					Date	197	Time インへ	Rece	ved by												Expedited 5 Business Days	
Rubisquish	id by	LAC			,			Date	<i>t</i> — !	Time	Rece	vo by	aporál U G	ory			C	ate /	1/9	,	Time	1600	7	Standard 10 Business Days	۵
·								<u> </u>			1		- () - 1							L		- /		L	<u> </u>