

108 Cutting Boulevard Richmond CA 94804

91 JUL -3 MIH: 30

Mr. Paul Smith Alameda County Environmental Health Department 80 Swan Way, Room 200 Oakland, CA 94621

Dear Mr. Smith:

Enclosed is a copy of our Quarterly Technical Report dated June 4, 1991 for our former Texaco Service Station located at 500 Grand Avenue in Oakland, California. This report covers the period from January through March, 1991.

Please call me at (415) 236-1770 if you have any questions.

Best Regards,

R.R. Zielinski Area Supervisor

RRZ/pap

Enclosure

cc: Mr. Tom Callaghan
California Regional Water
Quality Control Board
San Francisco Bay Area Region
2101 Webster Street, Ste. 500
Oakland, CA 94612

pr: 685

KEG

500GA.PS

A Report Prepared for

Texaco Refining and Marketing Inc. 10 Universal City Plaza Universal City, California 91608

QUARTERLY TECHNICAL REPORT FIRST QUARTER OF 1991 ? FORMER TEXACO STATION NO. 6248800235 500 GRAND AVENUE OAKLAND, CALIFORNIA

HLA Job No. 2251,169.03 June 4, 1991 1991 Report No. 1

by

Jeanna S. Hudson

Registered Geologist

Stephen J. Osborne Geotechnical Engineer JEANNA S. HUDSON
NO. 4492

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660

INTRODUCTION

This Quarterly Technical Report (QTR) presents the results of investigation activities by Harding Lawson Associates (HLA) during the first quarter of 1991 at the former site of Texaco service station No. 6248800235, 500 Grand Avenue, Oakland, California (Plate 1). This site is currently operated by Exxon Company U.S.A. (Exxon). This report summarizes previous work at the site, presents first quarter activities, and describes planned activities for the second quarter of 1991.

SUMMARY OF PREVIOUS WORK

Texaco Refining and Marketing Inc. retained HLA to conduct a sensitive receptor survey at the subject location in May 1988. In June 1988, Texaco Refining and Marketing Inc. requested that HLA proceed with a subsurface investigation to evaluate whether hydrocarbons had affected shallow soil or groundwater. By the end of the fourth quarter of 1990, HLA had completed the following tasks in the site investigation:

- Conducted a soil-gas survey consisting of 18 soil-gas probe locations on or near the site (survey performed by Tracer Research Corporation).
- Installed and developed four 2-inch-diameter groundwater monitoring wells (MW-8A, MW-8B, MW-8C, and MW-8D) and six 4-inch-diameter monitoring wells (MW-8E, MW-8F and MW-8G MW-8H, MW-8I, and MW-8J). Locations are shown on Plate 2.
- Obtained groundwater samples from each well on a quarterly basis and analyzed them for benzene, toluene, ethylbenzene, and total xylenes (BTEX), and total

petroleum hydrocarbons (TPH) as gasoline and as diesel fuel.

- Gauged water levels and estimated the direction of groundwater flow.
- Performed slug tests in MW-8C and MW-8E to estimate hydraulic conductivity.
- Drilled and sampled 15 soil borings to identify and delineate the extent of hydrocarbons in the vadose zone (Plate 2).
- Analyzed soil samples for BTEX and TPH as gasoline.
- Analyzed soil samples from B-6, B-7, B-8, B-9, B-10, B-11, B-12, B-13, B-14 and B-8K for TPH as diesel fuel.
- Analyzed soil sample from B-13 for halogenated volatile organics, semivolatile organics, oil and grease, and selected metals.
- Pumped and disposed of 5,000 gallons of water from the tank backfill as an interim remedial measure.
- Submitted an Environmental Assessment Report, dated September 22, 1989, to Texaco.
- Issued an Interim Remedial Plan, dated December 7, 1990, in lieu of a Third Quarter Technical Report.

RESULTS OF PREVIOUS WORK

The results of the soil-gas survey indicated petroleum hydrocarbon vapors in the unsaturated zone near the underground storage tanks and dispenser islands. Analyses of water samples from the four observation wells in the storage tank backfill showed the presence of dissolved petroleum hydrocarbons in groundwater adjacent to the underground tanks.

Soil samples and drill cuttings indicate that the subsurface materials at the site consist of clay and minor amounts of

interbedded clayey sand. Analysis of slug test data obtained from MW-3C and MW-3E indicate a hydraulic conductivity of 0.02 to 0.03 foot/day. Groundwater would be expected to move through the soils relatively slowly.

Local groundwater flow is to the south and southeast, toward Lake Merritt (Plate 3). Water-level data from monitoring wells across the site show that, in most wells, the water table has fluctuated 2.5 to 3.0 feet since early 1988. Water levels in MW-8A fluctuated as much as 8 feet; those data are suspect and were not used in contouring the potentiometric groundwater surface.

Results of Soil Analyses

Samples from 15 soil borings were chemically analyzed to evaluate the horizontal and vertical extent of petroleum hydrocarbons in the subsurface. The analytical data are summarized in Tables 1 and 2. A contour map showing concentrations of TPH as gasoline in the vadose-zone soil is presented on Plate 4. For this map, the vadose zone was defined by comparing sample depths to static water levels at the time of sampling.

Plate 4 depicts a vadose-zone hydrocarbon plume that apparently originates near the underground tanks and extends off site to MW-8J. Significant concentrations of TPH as gasoline are also found in the area of the dispenser islands. The highest concentration, 2900 parts per million (ppm), was found in a soil sample collected at a depth of 1.5 foot in B-11. In general,

BTEX concentrations in the soil are either below detection limits or very low.

The results of soil analyses for TPH as diesel fuel indicate concentrations ranging from nondetectable to 460 ppm (B-9); most of the soil samples with detectable concentrations contained less than 100 ppm TPH as diesel fuel.

Results of Groundwater Analyses

Table 3 presents the results of groundwater analyses obtained since 1988. Groundwater from monitoring wells MW-8E, MW-8H, MW-8I, and MW-8J, and observation wells OB-3 and OB-4 contained benzene in concentrations that exceed the Department of Health Services Drinking Water Action Levels (DWALs). In groundwater samples from wells MW-8A, MW-8B, and MW-8C, BTEX concentrations were either nondetectable or below the DWALs.

A contour map showing benzene concentrations in groundwater is presented on Plate 5; Plate 6 is a contour map showing concentrations of TPH as gasoline. These maps suggest that hydrocarbons in groundwater may have originated near the dispenser islands. Water from monitoring well MW-8E, crossgradient and down-gradient of the dispenser islands, has the highest concentrations of BTEX, TPH as gasoline, and TPH as diesel fuel.

TPH as gasoline was detected in groundwater downgradient of MW-8E in samples from MW-8H, MW-8I, and MW-8J. Samples from MW-8F and MW-8G contained nondetectable concentrations of BTEX and

TPH as gasoline and as diesel fuel. However, "heavy" hydrocarbons, above the range of diesel fuel, were detected in groundwater from these downgradient locations during the second quarter 1990 analyses.

In the third quarter 1990, workers installing overfill containment devices on the underground storage tanks discovered floating hydrocarbons around the waste oil tank. Exxon removed this tank in September 1990. Waste oil and water were pumped from the tank backfill and disposed of by Exxon. Tank backfill material and affected soil were also excavated and disposed of by Exxon. Two clay sewer lines, apparently containing petroleum hydrocarbon products, were discovered adjacent to the tank pit during the excavation process. In a letter dated October 25, 1990, Mr. Gil Wistar, of the Alameda County Department of Environmental Health, requested that Texaco excavate the clay lines and contaminated soil from the surrounding utility trench.

ACCOMPLISHMENTS DURING FIRST QUARTER OF 1991

During the first quarter of 1991, HLA accomplished the following tasks at the 500 Grand Avenue site:

- Purged and sampled four on-site monitoring wells, and five off-site monitoring wells. Water samples were analyzed for BTEX, TPH as gasoline, TPH as diesel fuel, and TPH as motor oil.
- Measured water levels monthly in nine monitoring wells (Table 4).

- Excavated the clay sewer pipes and contaminated soil from an abandoned utility trench near the former waste oil tank location.
- Analyzed soil and water samples from the trench for BTEX, TPH as gasoline, TPH as diesel fuel, and TPH as motor oil. Soil samples were also analyzed for total oil and grease and chlorinated hydrocarbons.

Groundwater Sampling

HLA continued to monitor water levels and groundwater quality at the subject location during the first quarter of 1991. Each well was purged while monitoring temperature, conductivity, and pH of the water. The water samples were collected and transported, under chain-of-custody, to Sequoia Analytical, in Concord, California. The water samples were analyzed for BTEX, TPH as gasoline, TPH as diesel fuel, and TPH as motor oil.

Results of Analyses

Table 3 and Plates 5 and 6 summarize results of the first quarter groundwater analyses. Benzene concentrations exceeded the DWAL (1.0 parts per billion [ppb]) in groundwater from MW-8E, MW-8H, and MW-8I.

High boiling point hydrocarbons were detected in all groundwater samples analyzed this quarter. The laboratory analyst indicated that the chromatograms were not characteristic of either diesel fuel or motor oil, although the results were quantified in terms of those compounds. Concentrations of high boiling point hydrocarbons in groundwater ranged from 69 ppb TPH as motor oil (MW-8J) to 17,000 ppb TPH as diesel fuel (MW-8E).

Plate 3 is the most recent contour map of the potentiometric groundwater surface, based on water levels measured on March 29, 1991. No significant changes in groundwater flow direction are apparent.

Clay Pipe Excavation

On behalf of Texaco, HLA arranged to have the clay sewer pipes removed and the utility trench overexcavated on January 8, 1990. These clay pipes were discovered approximately 1.5 foot below grade in the northwest and northeast corners of the waste oil tank excavation. A trench approximately 15 feet long, 2.5 feet wide, and 4.5 feet deep was excavated on the west side of the former tank location (Plate 7). Two water samples and four soil samples were obtained. A small excavation was made on the east side of the former tank location and one additional soil sample was collected. Plate 7 shows sample locations.

The clay pipe on the west side of the former waste oil tank was intact for approximately 10 feet. However, in the area where the pipe crossed under a utility trench, the pipe was crushed. Pieces of clay pipe were found around the utility cluster, suggesting that the clay line may have been broken during installation of the utilities. It appears that the clay pipe extends further eastward toward Euclid Avenue.

Water in the clay pipe and surrounding trench backfill was analyzed for BTEX and TPH as gasoline, as diesel fuel, and as motor oil. The water sample collected nearest the former waste

oil tank (EP-01) contained the highest concentrations of TPH, as shown in Table 5. Results of laboratory analyses indicate 100,000 ppb TPH as motor oil in water sample EP-01 and 17,000 ppb TPH as motor oil in water sample WP-01, which was collected from the backfill in the western end of the excavation.

Results of soil analyses are shown in Table 6. In general, soil samples contained less than 100 ppm TPH as gasoline, less than 200 ppm TPH as diesel fuel, and less than 800 ppm total oil and grease. Three soil samples from the excavation were analyzed for chlorinated hydrocarbons, and all three contained non-detectable concentrations of the 28 compounds analyzed.

On January 8, 1991, Mr. Wistar was present at the site and requested that the excavation be continued up to the door of the first service bay. That task was completed on January 9.

Additional excavation of contaminated soil to the north and west was not attempted due to the proximity of the service building.

On January 9 and 10, HLA removed water from the trench, completed sampling, and backfilled the excavation. Soil from the excavation was disposed of at Liquid Waste in McKittrick,

California, a Class II disposal facility. Water from the excavation was hauled to a recycler by Decon Environmental

Services, Inc.

ANTICIPATED ACTIVITIES FOR SECOND QUARTER, 1991

Quarterly groundwater samples will be collected and analyzed for BTEX and TPH as gasoline, as diesel fuel, and as motor oil. Water levels will be measured on a monthly basis.

LIST OF TABLES

Table	1	Results of Soil Sample Analyses
Table	2	Summary of Chemical Analyses, Soil Sample B-13
Table	3	Results of Groundwater Analyses
Table	4	Historical Record of Depth to Groundwater
Table	5	Results of Analyses of Excavation Water
Table	6	Results of Soil Analyses from Pipe Excavation

LIST OF ILLUSTRATIONS

Plate	1	Regional Map
Plate	2	Site Plan
Plate	3	Potentiometric Surface - March 29, 1991
Plate	4	TPH as gasoline Concentrations in Vadose Zone
Plate	5	Benzene Concentrations in Groundwater
Plate	6	TPH as gasoline Concentrations in Groundwater
Plate	7	Site Plan Showing Area of Trench Excavation and Sample Locations

LIST OF APPENDICES

Table 1. Results of Soil Sample Analyses (concentrations in mg/kg [ppm])

			-	•	• • •			
Boring/ Well <u>Number</u>	Sample Depth <u>(feet)</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xylenes	TPH as <u>Gasoline</u>	TPH as Diesel	TPH Other**
B-1	6.5	ND	ND	ND	ND	12	NA	
B-3	4.0	NO	ND	ND	5	520	NA	
B-4	3.5	NO	1	3.5	13	510	NA	
B-5	5.5	ND	ND	ND	ND	<10	NA	
B-5	10.5	ND	ND	ND	ND	ND	NA	
8-5	16.0	ND	ND	ND	ND	ND	NA	
8-6	2.0	ND	0.08	ND	ND	1.0	<100*	<100*
B-6	4.5	ND	0.09	ND	ND	ND	<10	<10
B-7	3.0	ND	6.7	5.1	50	580	<100*	<100*
B-8	2.0	0.05	ND	ND	0.34	3.4	<10	<10
8-9	2.5	0.05	0.32	0.81	6.4	100	460	<100*
8-8K	1.5	ND	ND	ND	ND	2.1		ND
<i>5</i> 5 6	3.0	ND	0.05	ND	ND	6.6		ND
	5.5	ND	ND	0.08	0.05	84		20
B-10	1.5	0.28	ND	0.20	0.18	8.4		ND
5 10	2.5	0.09	ND	ND	ND	ND		ND
	5.5	ND	ND	ND	ND	ND		ND
	8.5	ND	ND	ND	ND	ND		ND
8-11	1.5	ND	ND	5.4	1.6	2,900		30
D-11	2.5	ND	ND	0.31	0.12	62		11
	5.5	ND	ND ND	0.06	ND	17		ND
	8.5	ND	ND	ND	ND	ND		ND
B-12	1.0	0.22	0.11	0.18	0.42	13		ND
8-12	2.5		ND	0.19	0.42	49		ND
	4.5	ND	ND	1.27	0.67	1,200		94
		ND ND	0.06	ND	ND	ND		ND
2 17	6.0					ND	ND	ND
B-13	1.5	ND	ND	ND	ND .	130		1,000
	2.5	ND	ND 0.04	1.7	5.4		ND	250
5.47	3.5	ND	0.06	0.06	0.30	26	ND ND	250 85
B-14	1.5	ND	ND	ND	ND	4.8 2.3		62
00	3.5	ND	ND O (O	ND	ND . FO		ND	62
MW-80	1.3	ND	0.40	ND E E	0.50	10 750	NA NA	
MW-8E	5.5	0.82	6.5	5.5	26	750	NA NA	
MW-8F	11.0	ND	ND	ND	ND	ND		
MW-8G	6.0	ND	ND 0.07	ND	ND	ND	NA	MD
MM-8H	1.5	ND	0.07	ND	ND	ND		ND
	3.0	ND	0.24	ND	ND	2.6		ND
	5.5	ND	ND	0.30	0.83	550		66
	10.5	ND	ND	ND	ND	ND		ND
MM-8I	1.5	0.10	ND	ND	ND	3.0		ND
	3.5	0.06	ND	ND	0.02	ND 200		ND
	5.5	ND	ND	2.7	9.2	280		NO
= :	10.5	ND	ND	ND	ND	ND		ND
MM-81	1.5	0.18	0.09	0.06	0.05	24		ND
	3.0	0.08	0.14	0.04	ND 2	13		33
	5.5	ND	ND	25	9.2	2,100		83
	10.5	ND	0.02	ND	ND	8		ND

ND NA * =

Not detected Not analyzed Laboratory increased reporting limits because of matrix interference. "Heavy" petroleum hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil.

0.06 ppm

Table 2. Summary of Chemical Analyses Soil Sample B-13 (2.5 feet deep)

Semivolatile Organics; EPA Test Method 8270

- Analyses for 55 semivolatile organic compounds
- Results were below reporting limit on all except:

Naphthalene	0.90 ppm
2 Methylnapthalene	1.40 ppm
Bis (2-ethylhexyl) phthalate	0.26 рря

Halogenated Volatile Organics; EPA Test Method 8010

Trichloroethane

Total Oil and Grease (IR); EPA Test Method 413.2

- Analyses for 29 compounds
- Results were below reporting limits on all except:

Total (Oil and Grea	se (IR); EP/	4 Test	Kethod	413.2		5600 j	ppm

Selected heavy metals - EPA Test Method 6010

Cadmium	Below reporting limit
Chromium	36 ppm
Lead	Below reporting limit
Zinc	41 ppm

Table 3. Results of Groundwater Analyses Concentrations in µg/l (ppb)

	Date			Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	<u>Sampled</u>	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	Gasoline	Diesel	Other**
AS-UM	06/14/88	<0.5*	1.5	<2	6.6			
	10/28/88	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	<3	<58		
	11/29/89	<0.5	1_0	<0.5	<0.5	<50	1,200	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		2,800
	04/26/90	<0.5	<0.5	<0.5	<0.5	<2,500	<50	890
	07/26/90	6.0	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	<50	130***
MW-88	06/14/88	<0.5	<1	<2	<1			
	10/21/88	<0.5	<1	<2	3.1			
	09/28/89	<0.5	<0.5	<0.5	∢3	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	380
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		350
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	<50	180***
MW-8C	06/14/88	5.3	3.5	2.6	13.6			
	10/21/88	<0.5	<1	<2	< 1			
	09/28/89	<0.5	<0.5	<0.5	<3.0	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	190
	01/24/90	0.9	<0.5	<0.5	<0.5	<100		480
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	160
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	76	110***
MW-8E	10/25/88	1,400	510	2.9	420			**
	09/28/89	5,600	3,100	<500	<3,000	22,000	~-	
	11/29/89	4,900	2,600	<250	1,490	15,000	6,800	<50
	01/24/90	10,100	3,340	540	1,790	36,000		4,900
	04/26/90	11,000	5,700	840	2,900	48,000	1,400	<50
	07/26/90	15,000	6,200	520	4,700	56,000	<50	<50
	10/18/90	1,500	1,300	170	1,800	15,000	620	<50
	01/08/91	14,000	5,400	860	1,700	51,000	17,000	520***
		•						

Table 3 (continued)

Date				Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	Sampled_	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	<u>Gasoline</u>	<u>Diesel</u>	Other**
MW-8F	04/14/89	<0.5	<1	<2	<1			••
	09/28/89	<0.5	<0.5	<0.5	ব	<50		-
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		<300
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	360	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	380	620***
MW-8G	04/14/89	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	<3	<50		••
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		650
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	120
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	460	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	220	260***
MW-8H	01/24/90	14.8	14.8	10.8	38.8	460		<300
	04/26/90	67	19	43	64	830	<50	820
	07/26/90	45	1.3	12	8.2	190	<50	<50
	10/18/90	17	2.5	14	8.5	300	<50	<50
	01/08/91	12	2.2	6.4	4.0	320	180	89***
MW-81	01/24/90	116	2.9	13	30.5	580		440
	04/26/90	2,400	100	230	350	4,400	<50	1,400
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	92	4.1	37	21	530	<50	<50
	01/08/91	500	4.3	36	26	1,300	710	210***
MW-8J	01/24/90	2.7	<0.5	1	2.6	<100		<300
	04/26/90	28	7.7	19	24	160	<50	320
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	8.3	<0.5	2.6	1.5	<50	<50	<50
	01/08/91	0.41	<0.3	<0.3	0.52	71	<50	69***

Table 3 (continued)

	Date			Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	Sampled_	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	<u>Gasoline</u>	<u>Diesel</u>	Other**
08-3	11/06/89	420	8	6	64	4,000		
	04/26/90	160	19	5	8.6	1,000	3,200	<50
	07/26/90	<0.5	<0.5	<0.5	0.9	68	1,200	<50
	10/18/90	260	69	35	490	3,200	2,100	<50
	01/08/91							
08-4	11/06/89	500	11	10	24	4,000		
	04/26/90	360	10	10	18	460	3,900	<50
	07/26/90	23	3.7	1.6	5.9	200	1,600	<50
	10/18/90	600	540	83	840	4,300	330	<50
	01/08/91							
DWAL			1.0	680	100	1,750		

DWAL = Drinking water action levels, State of California Department of Health Services (April, 1989).

(07/26/90) Sample not

Sample not analyzed for BTEX and TPH as gasoline within 14-day holding time

-- = Samples not collected/not analyzed for compound

^{* &}lt;0.5 indicates that concentrations are below the reporting limit of 0.5 μg/l.

[&]quot;Heavy" petroleum hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil.

TPH as motor oil analyses; analyst did not feel that motor oil was indicted on the chromatogram.

Table 4. Historical Record of Depth to Groundwater

Well Top of	MW-8A	<u>MW-8B</u>	MW-8C	<u>MW-8E</u>	<u>MW-8F</u>	<u>MW-8G</u>	<u>MW-8H</u>	MW-81	MW-8J
Casing Elev.	99.72	101.11	98.41	99.38	97.94	97.24	98.57	97.94	97.38
Date									
MAR 27, 90 GW ELEV	95.64	100.66	91.24	96.09	88.69	87.45	95.03	92.02	91.58
APR 24, 90 GW ELEV	96.10	100.69	91.51	96.07	88.95	87.59	95.02	91.98	91.39
MAY 29, 90 GW ELEV	97.37	100.84	87.88	96.36	89.67	86.61	PAVED	PAVED	PAVED
JUNE 28, 90 GW ELEV	97.37	100.71	89.79	96.24	88.95	87.45	PAVED	PAVED	PAVED
Well Top of	MW-8A	<u>MW-8B</u>	<u>MM-8C</u>	MW-8E	<u>MW-8F</u>	<u>MW-8G</u>	<u>H8-WM</u>	<u>MW-81</u>	<u> L8-WM</u>
Casing Elev.	99.72	101.11	98.41	99.38	97.94	97.24	98.90	98.27	97.69
Date									
JUL 24, 90 GW ELEV	97.31	100.62	90.98	96.06	88.74	87.54	95.14	92.05	91.21
AUG 24, 90 GW ELEV	94.74	100.60	90.30	95.90	87.13	86.08	92.14	91.93	93.89
SEPT 25, 90 GW ELEV	95.24	100.56	91.05	95.94	87.25	BLOCKED	95.10	91.90	91.01
OCT 18, 90 GW ELEV	96.11	100.55	90.92	95.86	86.89	85.62	95.07	91.85	90.96
NOV 28, 90 GW ELEV	89.69	100.54	88.60	96.00	87.02	85.57	94.94	92.16	91.01
JAN 08, 91 GW ELEV	93.63	100.57	90.81	95.90	87.98	86.44	94.91	92.10	91.30
	,,,,,								
FEB 02, 91 GW ELEV		100.58	91.56	95.93	87.93	86.56	94.89	91.96	91.67

All measurement are in feet

TOC = Top of casing elevation relative to arbitrary datum of 100 feet GW Elev = Groundwater elevation relative to arbitrary datum

Table 5. Results of Analyses of Excavation Water (concentrations in parts per billion [ppb])

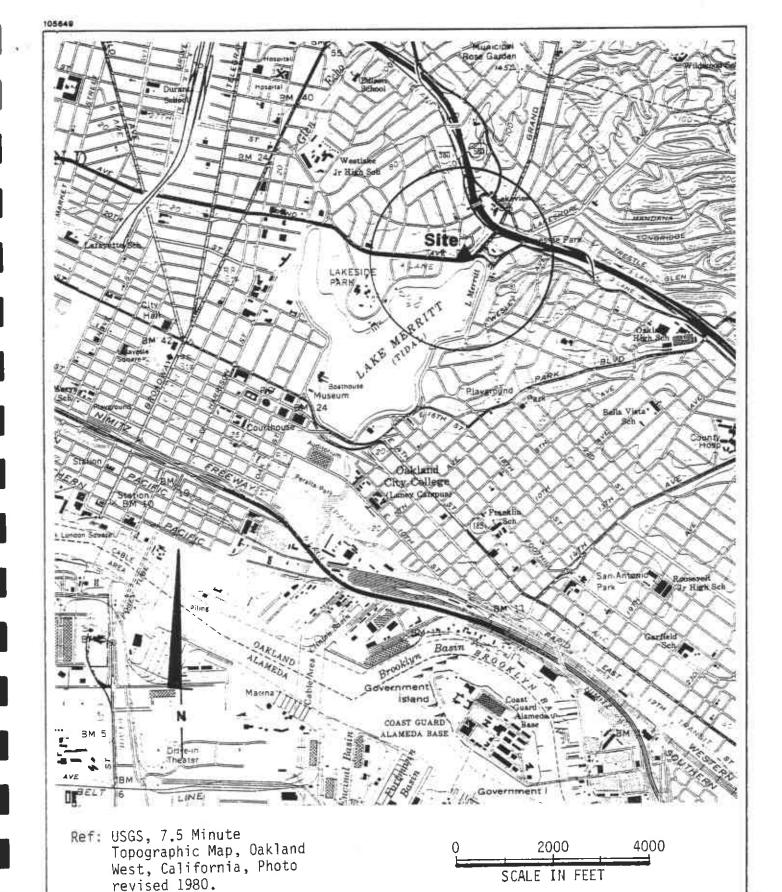

Sample	Location	<u>Benzene</u>	<u>Toluene</u>	Ethyl - <u>benzene</u>	<u>Xylenes</u>	TPH as <u>Gasoline</u>	TPH as <u>Diesel</u>	TPH as To	otal oil nd Grease	Chlorinated Hydrocarbons
EP-01	west trench, east end	280	300	120	860	5,200	31,000	100,000	NA	NA
WP-01	west trench,	320	73	95	48	3,900	13,000	17,000	NA	NA

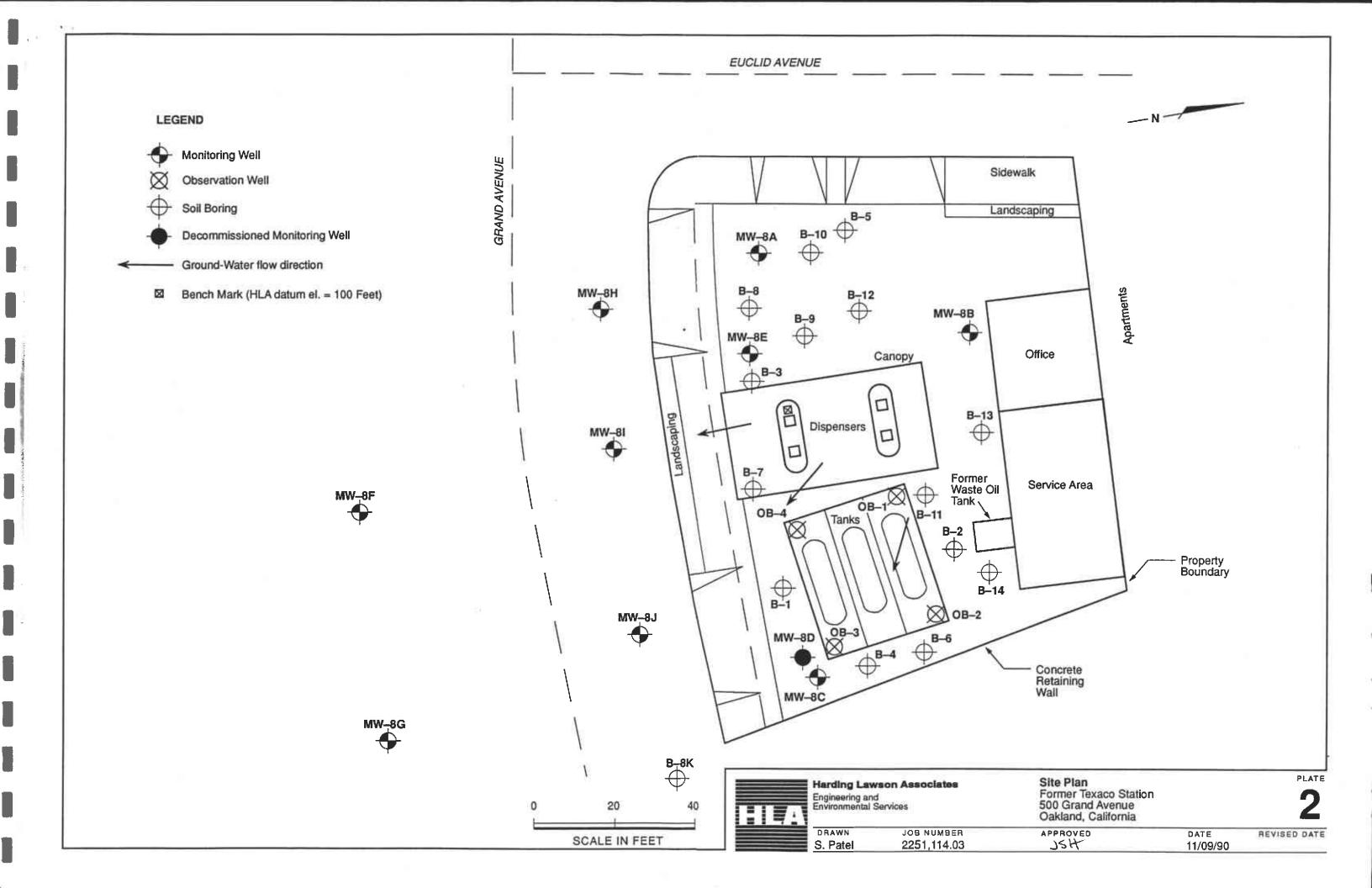
Table 6. Results of Soil Analyses from Pipe Excavation (concentrations in parts per million [ppm])

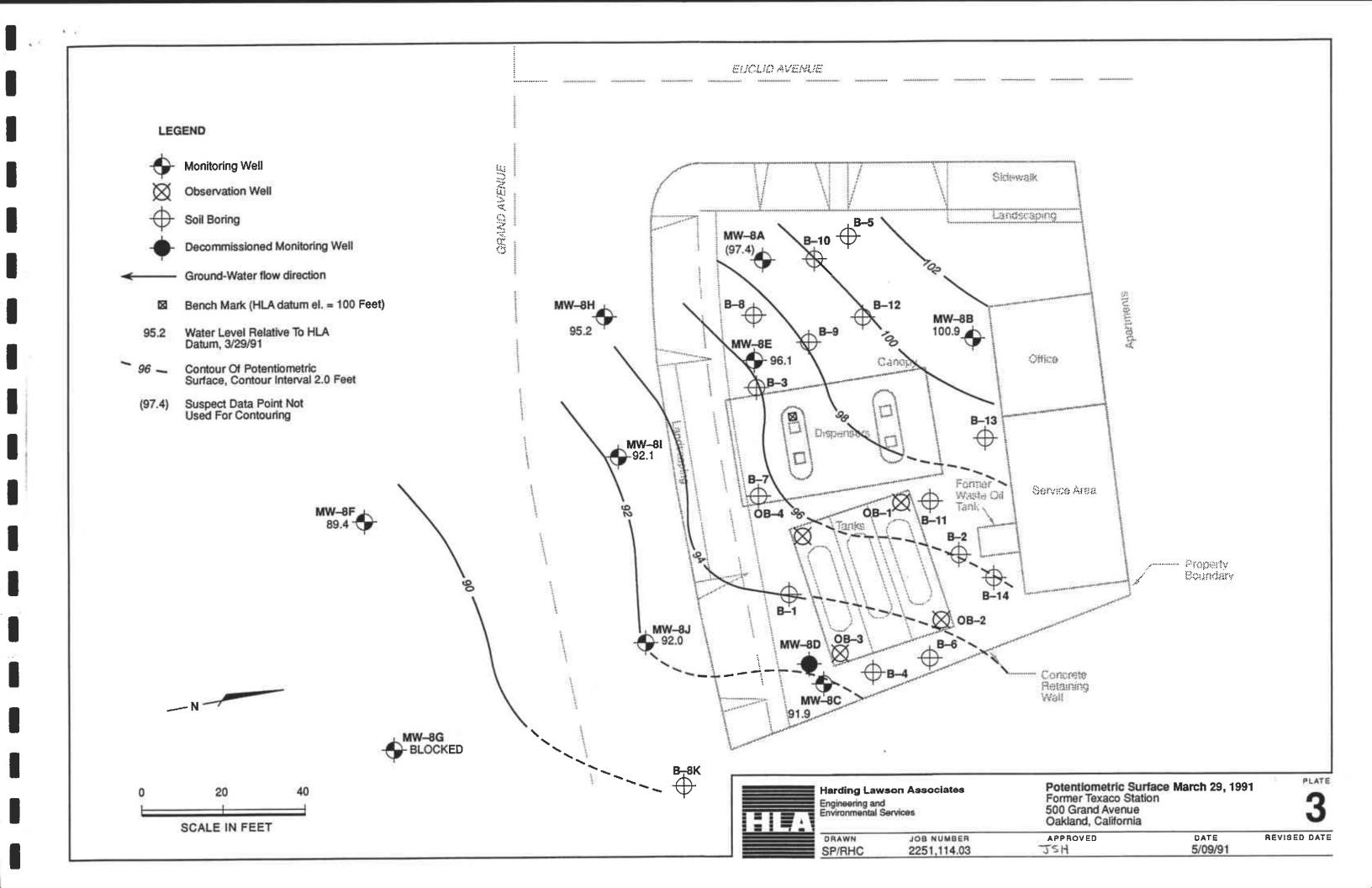
Sample	Depth (feet)	Benzene	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xylenes	TPH as Gasoline	TPH as Diesel	TPH as Motor Oil	Total oil and Grease	Chlorinated Hydrocarbons
PT-NS-7.5	2.5	0.020	<0.005	0.055	0.13	22	28	330	110	ND on all
PT-8-7.5	4.5	<0.005	<0.005	<0.005	<0.005	5.7	8.1	93	150	ND on all
PT-SS-7.5	2.5	0.071	0.071	0.30	0.63	100	17	160	630	ND on all
PT-E-1.5	1.5	<0.005	<0.005	<0.005	<0.005	1.1	110	NA	780	NA
PT-W-1.5	1.5	<0.005	0.014	<0.005	0.024	3.8	190	NA	370	NA

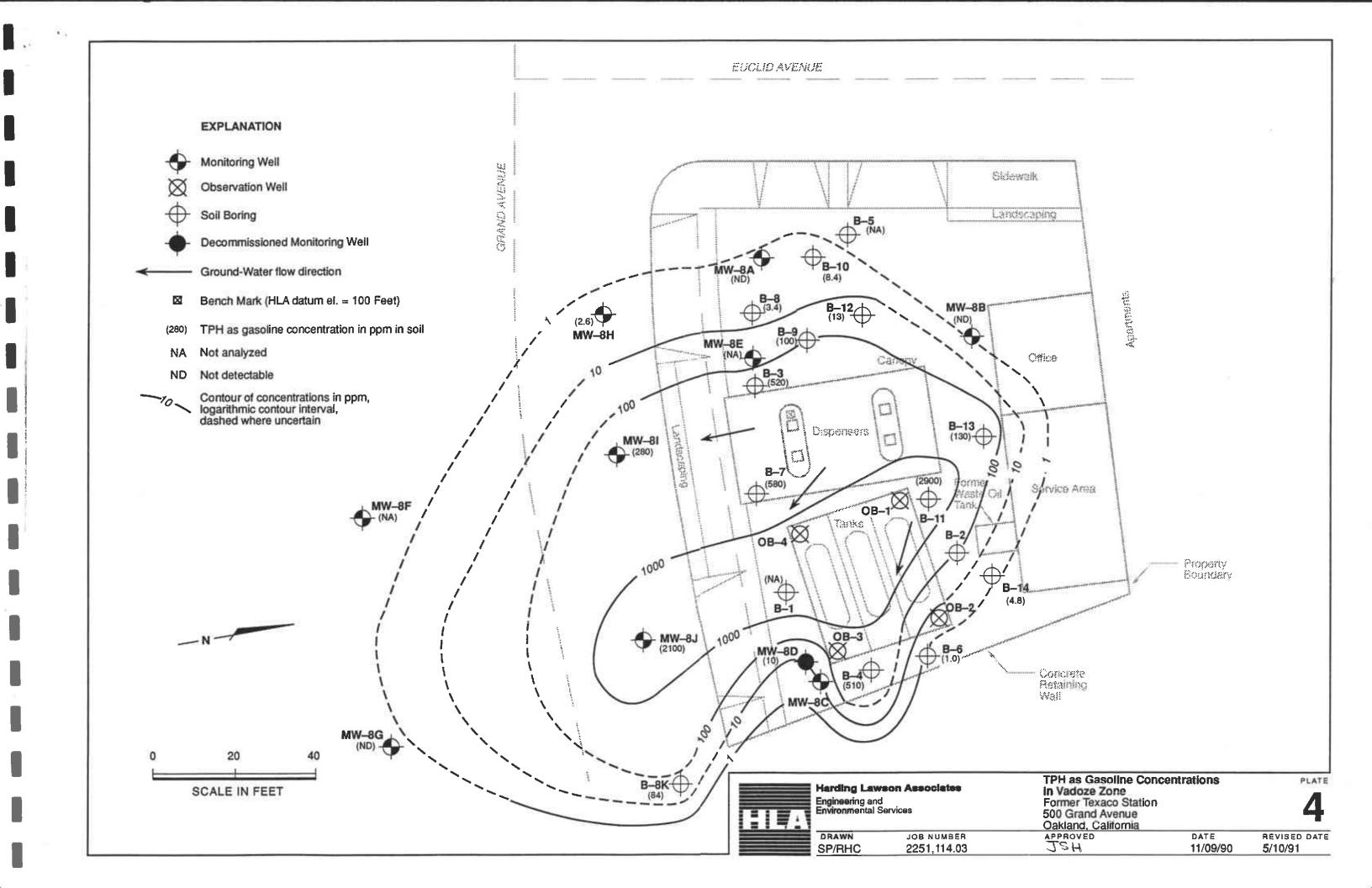
NA = Compounds not analyzed

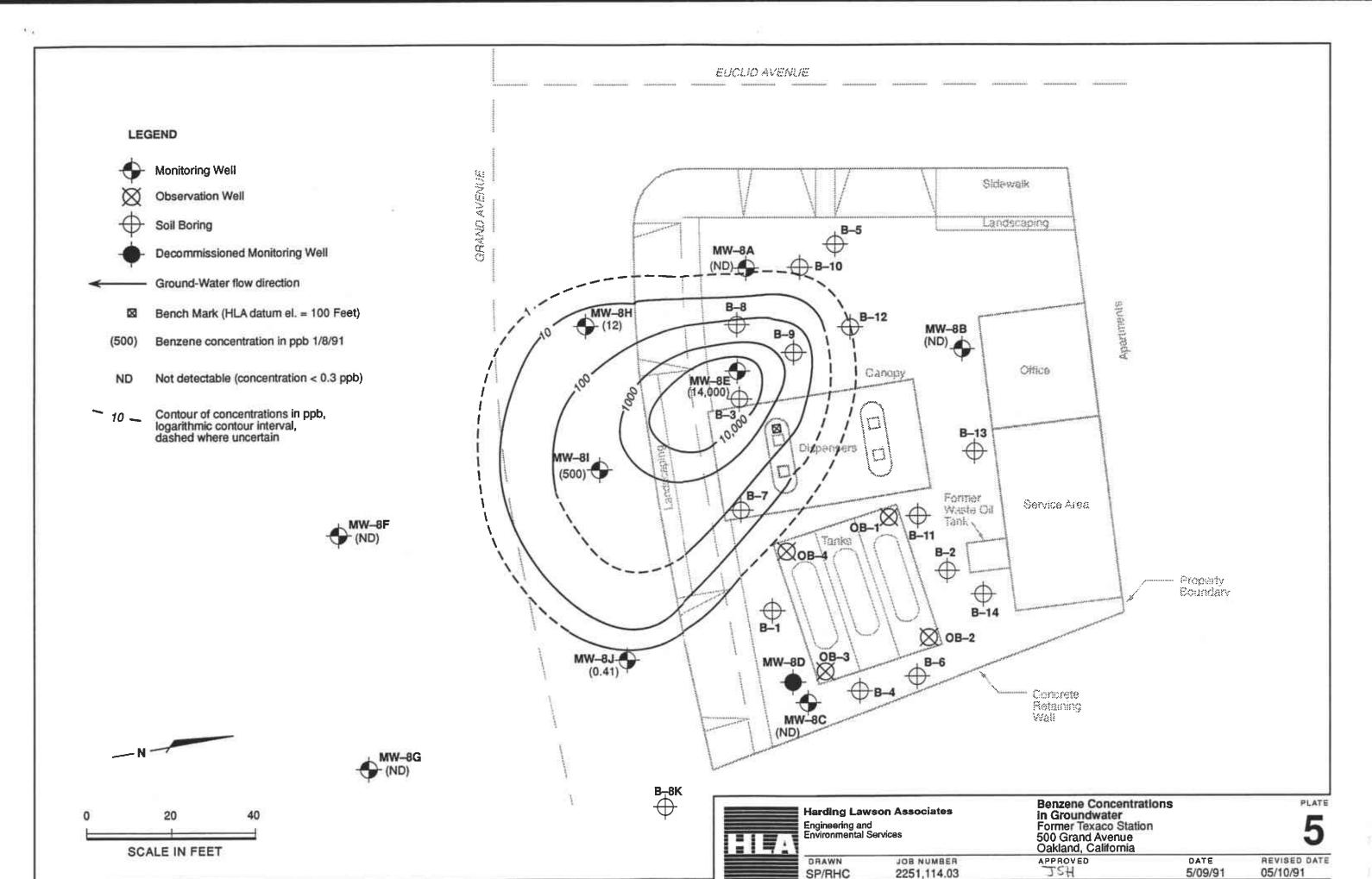
ND = Concentrations were below the detectable limit

Harding Lawson Associates


Engineers and Geoscientists


Regional Map


Former Texaco Service Station 500 Grand Avenue Oakland, California 1

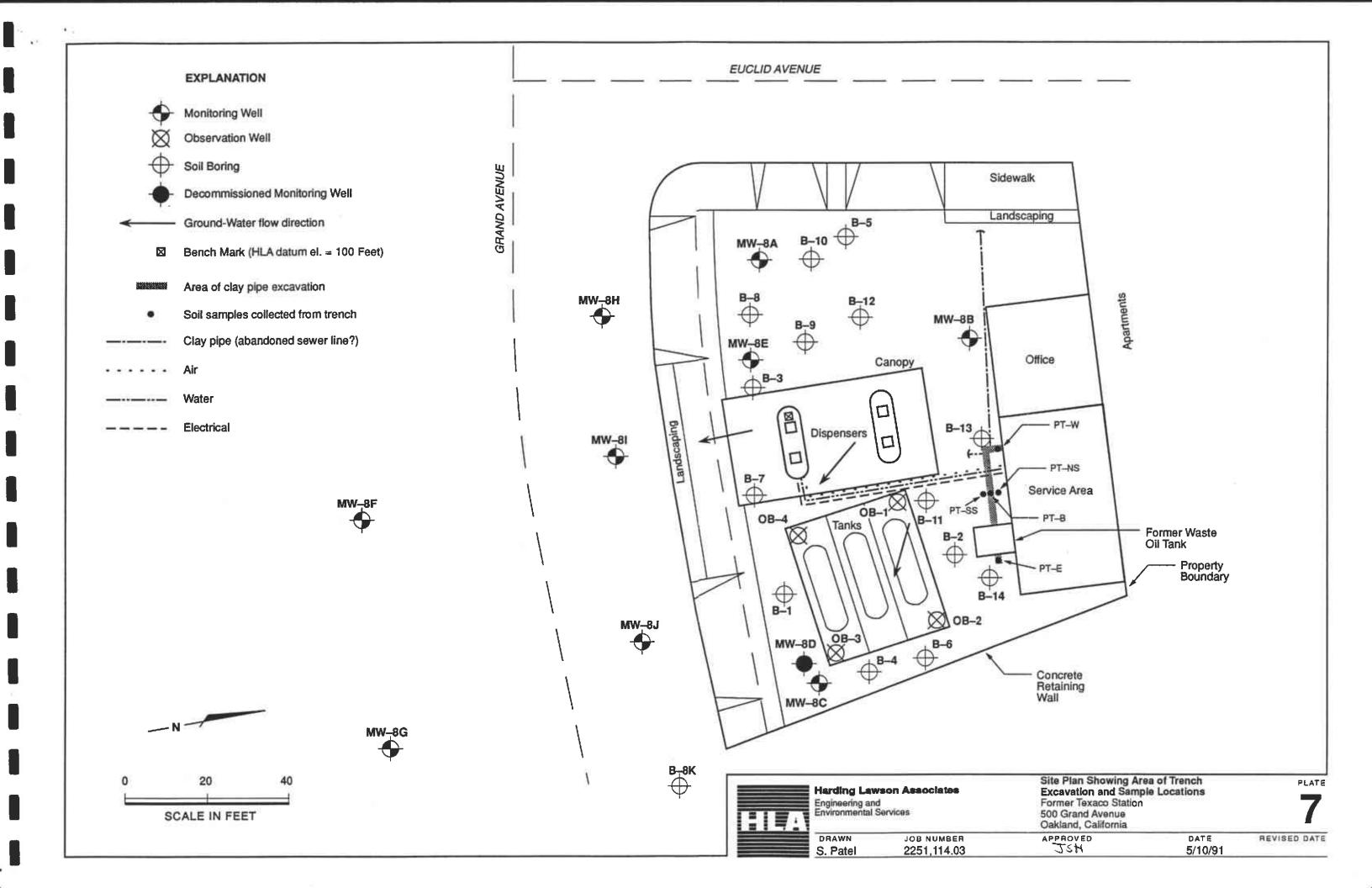

PLATE

YC 2251,114.03 2 5/89

SCALE IN FEET

ND

Harding Lawson Associates Engineering and Environmental Services


TPH as Gasoline Concentrations In Groundwater Former Texaco Station 500 Grand Avenue Oakland, California

H3T

JOB NUMBER DRAWN SP/RHC 2251,114.03

APPROVED

DATE REVISED DATE 5/09/91 05/10/91

APPENDIX

LABORATORY RESULTS OF GROUNDWATER ANALYSES

HARDING ASSOC. JSH JAN 25 1991

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson

Client Project ID: Matrix Descript:

Analysis Method:

First Sample #:

#2251,081.03/Texaco - Oakland

Water

EPA 5030/8015/8020 101-0093 A-B Sampled: Received: Jan 8, 1991

Received: Analyzed:

Jan 9, 1991 Jan 9, 1991

Reported:

Jan 18, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons µg/L (ppb)	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene µg/L (ppb)	Xylenes μg/L (ppb)
101-0093 A-B	MW-8A	N.D.	N.D.	N.D.	N.D.	N.D.
101-0094 A-B	MW-8B	N.D.	N.D.	N.D.	N.D.	N.D.
101-0095 A-B	MW-8C	N.D.	N.D.	N.D.	N.D.	N.D.
101-0097 A-B	MW-8F	N.D.	N.D.	N.D.	N.D.	N.D.
101-0098 A-B	MW-8G	N.D.	N.D.	N.D.	N.D.	N.D.
101-0099 A-B	MW-8H	320	12	2.2	6.4	4.0
101-0100 A-B	MW-8I	1,300	500	4.3	36	26
101-0101 A-B	MW-8J	71	0.41	N.D.	N.D.	0.52

30 0.30 0.30 0.30 0.30

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Analys

#2251,081.03/Texaco - Oakland

Sampled:

Jan 8, 1991

Client Project ID: Matrix Descript: Analysis Method:

Water EPA 5030/8015/8020 Received: Analyzed: Jan 9, 1991 Jan 9, 1991

Attention: Jeanna Hudson

First Sample #:

101-0096 A-B

Reported:

Jan 18, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample	Sample	Low/Medium B.P.			Ethyl	
Number	Description	Hydrocarbons μg/L (ppb)	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Benzene μg/L (ppb)	Xyienes μg/L (ppb)
101-0096 A-B	MW-8E	51,000	14,000	5,400	860	1,700

Detection Limits:

300

3.0

3.0

3.0

3.0

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

© Arthur G. Burton
Laboratory Director

1010093.HAO <8>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson Client Project ID: #2251,081.03/Texaco - Oakland

QC Sample Group: 1010093-101

Reported: Jan 18, 1991

QUALITY CONTROL DATA REPORT

ANALYTE		···	Ethyl	
CITAL! L	Benzene	Toluene	Benzene	Xylenes
L				
Method:	EPA8015/8020	EPA8015/8020	•	EPA8015/8020
Analyst:	E. Hamilton	E. Hamilton	E. Hamilton	E. Hamilton
Reporting Units:	μg/L	μg/L	μg/L	μg/L
Date Analyzed:	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991
QC Sample #:	012-0630	012-0630	012-0630	012-0630
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Sample Collon	14.15.	14.5.	14.5.	14.5.
Spike Conc.				
Added:	20	20	20	60
•				
Conc. Matrix	40	40	40	50
Spike:	18	19	18	56
Matrix Spike	•			
% Recovery:	91	93	91	94
70 He00 Vol y.	J,	50	0,	•
Conc. Matrix				
Spike Dup.:	18	18	18	54
Matrix Spike				
Duplicate				
% Recovery:	88	89	88	91
Relative				
% Difference:	3.4	3.7	2.8	3.3
/o Diliciciice.	J.4	0.7	2.0	0.0

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
_	Spike Conc. Added		
Relative % Difference:	Cone, of M.S Cone, of M.S.D.	x 100	
-	Conn of M.C Conn of M.C.D.) /2		

1010093.HAO <2>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520 Attention: Jeanna Hudson

Client Project ID: #2251,081.03/Texaco - Oakland

Matrix Descript: Water

Analysis Method: EPA 3510/8015 First Sample #: 101-0093

Sampled: Jan 8, 1991 Received: Jan 9, 1991

Extracted: Jan 10, 1991 Analyzed: 1/15-16/91

Reported: Jan 18, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons μg/L (ppb)
101-0093 C	A8-WM	N.D.
101-0094 C	MW-88	N.D.
101-0095 C	MW-8C	76
101-0097 C	MW-8F	380
101-0098 C	MW-8G	220
101-0099 C	MW-8H	180
101-0100 C	MW-81	710
101-0101 C	MW-8J	N.D.

Detection Limits:

50

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Vega **Laboratory Director**

The above samples do not appear to contain diesel.

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Client Project ID: Matrix Descript:

#2251,081.03/Texaco - Oakland

Sampled: Received: Jan 8, 1991

Concord, CA 94520

Analysis Method:

Water EPA 3510/8015

Extracted:

Jan 9, 1991 Jan 10, 1991

Attention: Jeanna Hudson

First Sample #:

101-0096

Analyzed: Reported:

1/15-16/91 Jan 18, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number

Sample Description

High B.P. **Hydrocarbons**

μg/L (ppb)

101-0096 C

MW-BE

17,000

Detection Limits:

500

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director Please Note:

The above sample does not appear to contain diesel.

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520

HARDING ASSOC. JSH MAY 7 1991

Harding Lawson Associates

1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson

(415) 686-9600 * FAX (415) 686-9689 Client Project ID: Matrix Descript:

#2251,081.03/Texaco - Oakland

Water

Analysis Method: EPA 3510/8015 First Sample #: 101-0093

Sampled: Jan 8, 1991 Received: Jan 9, 1991

Extracted: Jan 10, 1991 Analyzed: 1/15-1/16/91

Reported: Jan 18, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015) AS MOTOR OIL

Sample Number	Sample Description	High B.P. Hydrocarbons µg/L (ppb)
101-0093 C	MW-8A	130
101-0094 C	MW-8B	180
101-0095 C	MW-8C	110
101-0097 C	MW-8F	620
101-0098 C	MW-8G	260
101-0099 C	MW-8H	89
101-0100 C	MW-8I	210
101-0101 C	MW-8J	69

Detection Limits:

50

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

The above samples do not appear to contain motor oil.

Ammended report dated: 5-3-91.

1010093.HAO <5>

1900 Bates Avenue . Suite LM . Concord, California 94520

(415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Cancord, CA 94520

Attention: Jeanna Hudson

Client Project ID: Matrix Descript:

#2251,081.03/Texaco - Oakland

Water

Analysis Method: EPA 3510/8015 101-0096

First Sample #:

Sampled:

Jan 8, 1991

Received:

Jan 9, 1991 Jan 10, 1991

Extracted: Analyzed:

1/15-16/91

Reported:

Jan 18, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015) AS MOTOR OIL

Sample Number

Sample Description High B.P.

Hydrocarbons

μg/L (ppb)

101-0096 C

MW-8E

520

Detection Limits:

500

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

nda C. Vega aboratory Director Please Note:

The above sample does not appear to contain motor oil. Ammended report dated: 5-3-91.

1010093.HAO <6>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Client Project ID: #2251,081.03/Texaco - Oakland

Attention: Jeanna Hudson

QC Sample Group: 1010093-101

Reported: Jan 18, 1991

QUALITY CONTROL DATA REPORT

ANALYTE

Diesel

Method:

EPA 8015

Analyst:

K. Lee

Reporting Units: Date Analyzed: μg/L Jan 16, 1991

QC Sample #: Matrix BLK011091

Sample Conc.:

N.D.

Spike Conc.

Added:

300

Conc. Matrix

Spike:

230

Matrix Spike

% Recovery:

77

Conc. Matrix

Spike Dup.:

270

Matrix Spike Duplicate

% Recovery:

90

Relative

% Difference:

16

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010093.HAO <7>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660 Telecopy: 415/687-9673

CHAIN OF CUSTODY FORM

Lab: SEDUOTA

15-15-15/15/15/15/15/15/15/15/15/15/15/15/15/1	•	310 11
Job Number: 2251,081.03	Samplers: JOHN DYE	ANALYSIS REQUESTED
No. 11 - 201,001.03		
Name/Location: TEXACO-SOGRAND DAKLAN	JD \	-
Project Manager: VEANNA HUDSON		_
- TO MANAGET. VERNOA HUUSON	Recorder: AND R	AST
MATRIX #CONTAINERS SAMPLE	(Signature Required)	
NUMBER		
UU OR OR	DATE STATION DESCRIPTION/	
SOURCE CODE NAMEER Sediment ALNO Oil HNO OIL H	NOTES	A 601/8010 A 602/8020 A 625/8270 METALS B015M/TPH X TPH -///ESEL
SO NE SO SO SO THE YE WE SEE YE		
213 X / / Z Yr Wk Seq Yr	Mo Dy Time	EPA EPA EPA EPA EPA EPA EPA EPA
() MU-8A91	0/08 10009316	
MW8B1	1-1-1-1010093 D-C	
▗▊▕░▏▐▎▝▎▎▎▕▎▐▏▊Ĭ▎▐▕▕▕▍▍░ [▗] ▊▔▜▔▀▜▀▀▜▀▀▜▀▞▙▀▟▃▞▞▃▊▃▋▋ _{▀▀} ▊	094	
$\mu = \mu =$	095	┇┇╌┇╌┇╌╏╌┇┈┆╏┆┆╏ ╾╁╌┼╌┼ ╸╏╸╏╸╏╸╏
MW-8E	096	┨┠ ╌┞╌┞╌┞╌┞╼╏╏╅╏╏╴┆ ╶ <u>╏╌╏╌╏╶╏╶╏╶╏</u>
1 MW8 F		┫ <u>╸╃╍┇╴╃╼┇╶┇╌┇╏</u> ╸╏╶╏╶╏
MW89		
▋ 	1 098	
<u> </u>	099	
1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	3	┨┡╌┼╌┼╌┼╌┼╌┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
W W W W W W W W W W W W W W W W W W W	100	
	101	
		<u>╽</u> ┋ ╶╎╶╎╶╎╶╎┈╎┈╎┈╎┈ ┼┈┼┈┼┈┼┈┼┈┼┈┼
LAB DEPTH COL QA		
NUMBER III MATE SOFT	LANGOUR	
FEET CD MISCELL	LANEOUS CHAIN OF O	CUSTODY RECORD
	C11215-110	

	NŲA NŲA	AB MBEF	t			PTI IN		CO MT	D		IA DDE		MISCELLANEOUS				· · · · · · · · · · · · · · · · · · ·																					
<u> </u>	Wk	S	eq		FEET (FEET		FEET		FEET		FEET		FEET		FEET		FEET		FEET		FEET		FEET C		T CD		<u>'</u>				_	CHAIN OF CUSTODY RECORD				
					-			-					DONOTMISSHOUDTINE Rossine TAT (101)		R	WED BY: (Signature) Wally VED BY: (Signature)	1/9/9	E/TIME B35AL																				
									1					RELINQUISHED BY: (Signature) REC		VED BY: (Signature)		/TIME																				
1					-			+	_						ΈI	VED BY: (Signature)	DATE	/TIME																				
	+			1			+	+	1					DISPATCHED BY: (Signature) DATE/TIME		RECEIVED FOR LAB I	· F	/TIME																				
	* .	١_	Ш		L	Ш	_[Ц	bor			METHOD OF SHIPMENT		The verices	4 1/4	8:5Dan																				
		. =										Whit	Yellow Pir	fide k				6533																				

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520 Attention: Jeanna Hudson Client Project ID:

#2251,081.03

Sampled:

Jan 8, 1991

Matrix Descript: Analysis Method: Water EPA 5030/8015/8020 Received: Analyzed: Jan 9, 1991 Jan 9, 1991

First Sample #:

101-0068

Reported:

Jan 14, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons µg/L (ppb)	Benzene μg/L (ppb)	Toluene μg/L (ppb)	Ethyl Benzene μg/L (ppb)	Xylenes μg/L (ppb)
101-0068 A-B	WP-01	3,900	320	73	95	48
101-0069 A-B	EP-01	5,200	280	300	120	860

Detection Limits:

30

0.30

0.30

0.30

0.30

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Julia R. Malerstein

Project Manager

The above samples appear to contain gasoline.

1010068.HAO <1>

1900 Bates Avenue ◆ Suite LM ◆ Concord, California 94520 (415) 686-9600 ◆ FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Client Project ID: #2251,081.03

Attention: Jeanna Hudson

QC Sample Group: 1010068-69

Reported: Jan 14, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	*		Ethyl		
	Benzene	Toluene	Benzene	Xylenes	
Method:	EPA8015/8020	EPA8015/8020	EPAR015/8020	EPA8015/8020	
Analyst:	E. Hamilton	E. Hamilton	E. Hamilton	E. Hamilton	
Reporting Units:	μg/L	μg/L	μg/L	μg/L	
Date Analyzed:	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	
QC Sample #:	012-0630	012-0630	012-0630	012-0630	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
	11.5.	14.0.	11.5.	14.5.	
Sailes Cana					
Spike Conc. Added:	20	20	20	60	
Added.	20	20	20	ου	
Conc. Matrix					
Spike:	18	19	18	56	
Matrix Spike					
% Recovery:	90	95	90	93	
Conc. Matrix					
Spike Dup.:	18	18	18	54	
opino bup	10	10	10	J -1	
Matrix Spike					
Duplicate					
% Recovery:	90	90	90	90	
Relative					
% Difference:	0	5.4	0	3.6	

SEQUOIA ANALYTICAL

Belie P. Moloratoin

Froject Manager

% Recovery:

Conc. of M.S. - Conc. of Sample x 100

Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2

x 100

1010068.HAO <2>

1900 Bates Avenue ● Suite LM ● Concord, California 94520 (415) 686-9600 ● FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord. CA 94520

Concord, CA 94520 Attention: Jeanna Hudson Client Project ID: Matrix Descript: #2251,081.03

Water

Analysis Method: First Sample #:

EPA 3510/8015 101-0068 C Sampled: Received: Jan 8, 1991 Jan 9, 1991

Extracted: Jan 9, 1991 Analyzed: Jan 11, 1991

Analyzed: Jan 11, 1991 Reported: Jan 14, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015) AS DIESEL

Sample Number	Sample Description	High B.P. Hydrocarbons μg/L (ppb)
101-0068 c	WP-01	13,000
101-0069 C	EP-01	31,000

Detection Limits:

1,000

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Bott C. V

Project Manager

Please Note

The above samples appear to contain a small amount of diesel.

1010068.HAO <3>

1900 Bates Avenue . Suite LM . Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Client Project ID: Matrix Descript:

#2251,081.03 Water

Sampled: Jan 8, 1991 Received: Jan 9, 1991

Concord, CA 94520 Attention: Jeanna Hudson

Analysis Method: EPA 3510/8015 First Sample #: 101-0069

Jan 9, 1991 Analyzed: Jan 11, 1991 Jan 14, 1991

Reported:

Extracted:

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number

Sample Description

High B.P. Hydrocarbons

> μg/L (ppb)

101-0069 C

EP-01

100,000

Detection Limits:

5,000

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Please Note:

The above sample appears to contain oil.

For Julia R. Malerstein Project Manager

1010068.HAO <5>

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520

Attention: Jeanna Hudson

Client Project ID: #2251,081.03

QC Sample Group: 1010068-69

Reported: Jan 14, 1991

QUALITY CONTROL DATA REPORT

ANALYTE
Diesel

Method:

EPA 8015

Analyst: Reporting Units: Κ. Lee μg/L Jan 11, 1991

Date Analyzed: QC Sample #:

BLK010991

Sample Conc.:

N.D.

Spike Conc.

Added:

300

Conc. Matrix

Spike:

200

Matrix Spike

% Recovery:

65

Conc. Matrix

Spike Dup.:

200

Matrix Spike Duplicate

% Recovery:

65

Relative

% Difference:

0

SEQUOIA ANALYTICAL

Bunc. V

Julia R. Malerstein Project Manager % Recovery: Conc. of M.S. - Conc. of Sample
Spike Conc. Added

apine conc. radio

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010068.HAO <6>

CHAIN OF CUSTODY FORM

Lab: SEQUOIA

RECEIVED FOR LAB BY:

DATE/TIME

DATE/TIME

Job Number: <u>ZZS1, D81.03</u>	Samplers: M. CHAMBERLAIN	ANALYSIS REQUESTED
Name/Location: TEXACO 500 GRAND AVE		_
Project Manager: TEANNA HUDSON	Recorder: (Signature Required)	
MATRIX #CONTAINERS SAMPLE NUMBER OR LAB NUMBER OR LAB NUMBER Yr Wk Seq Yr	DATE STATION DESCRIPTION/ NOTES Mo Dy Time	EPA 601/8010 EPA 602/8020 EPA 624/8240 EPA 625/8270 ICP METALS EPA 8015M/TPH TPN AS 6AS STEL
X	1010068 AC	
LAB DEPTH COL QA NUMBER IN MTD CODE MISCEL		F CUSTODY RECORD
STANDARD	TUMAROUND RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) Of - - -
	RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME

DISPATCHED BY: (Signature)

METHOD OF SHIPMENT

White

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520 Attention: Jeanna Hudson Client Project ID:

#2251, 081.03/Texaco-Oakland

Soil

Matrix Descript: Analysis Method: EPA 5030/8015/8020

First Sample #: 101-0065 Sampled:

Jan 8, 1991 Jan 9, 1991

Received: Analyzed:

Jan 9, 1991

Reported: Jan 10, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
101-0065	PT-8-7.5	5.7	N.D.	N.D.	N.D.	N.D.
101-0066	PT-SS-7.5	100	0.071	0.071	0.30	0.63

0.0050 0.0050 0.0050 0.0050 **Detection Limits:** 1.0

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Julia R. Malerstein **Project Manager**

1010065.HAO <1>

Harding Lawson Associates 1355 Willow Way, Suite 109

1355 Willow Way, Suite 109 Concord, CA 94520

Attention: Jeanna Hudson

Client Project ID: #2251, 081.03/Texaco-Oakland

QC Sample Group: 101-0065

Reported: Jan 10, 1991

QUALITY CONTROL DATA REPORT

ANALYTE		——————————————————————————————————————	Ethyl		
	Benzene	Toluene	Benzene	Xylenes	
Method:	EPA 8015/8020	EPA 8015/8020	PA 8015/802	PA 8015/8020	
Analyst:	J. Fontecha	J. Fontecha	J. Fontecha	J. Fontecha	
Reporting Units:	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Date Analyzed:	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	
QC Sample #:	101-0051	101-0051	101-0051	101-0051	
Carrela Carre	N.D.	ND	ND	ND	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Spike Conc.					
Added:	0.40	0.40	0.40	1.2	
Conc. Matrix					
Spike:	0.36	0.38	0.37	1.1	
Matrix Spike					
% Recovery:	90	95	93	92	
Conc. Matrix					
Spike Dup.:	0.36	0.38	0.37	1.1	
Matrix Spike					
Duplicate					
% Recovery:	90	95	93	92	
Dalation					
Relative % Difference:	0	0	0	0	
A PHICICING.	U	0	U	J	
•					

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010065.HAO <2>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson

Client Project ID: Matrix Descript:

#2251, 081.03/Texaco-Oakland

Soil

Analysis Method: EPA 3550/8015 First Sample #: 101-0065

Sampled: Jan 8, 1991 Received:

Extracted:

Jan 9, 1991 Jan 9, 1991

Analyzed: Jan 9, 1991 Reported: Jan 10, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
101-0065	DT-B-7.5	8.1
101-0066	PT-SS-7.5	17
101-0067	PT-NS-7.5	28

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Please Note:

The above samples do not appear to contain diesel.

Julia R. Malerstein Frøject Manager

1010065.HAO <3>

1900 Bates Avenue • Suite LM • Concord, California 94520

(415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Client Project ID: Matrix Descript:

#2251, 081.03/Texaco-Oakland Soil

Jan 8, 1991 Jan 9, 1991

Analysis Method:

EPA 3550/8015

Received: Extracted: Analyzed:

Sampled:

Jan 9, 1991

Attention: Jeanna Hudson

First Sample #:

101-0065

Reported:

Jan 9, 1991 Jan 10, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015) AS MOTOR OIL

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
101-0065	PT-B-7.5	93
101-0066	PT-SS-7.5	160
101-0067	PT-NS-7.5	330

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Julia R. Maierstein Project Manager

1010065.HAO <4>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

•

Client Project ID: #2251, 081.03/Texaco-Oakland

Attention: Jeanna Hudson

QC Sample Group: 1010065-67

Reported: Jan 10, 1991

QUALITY CONTROL DATA REPORT

NALYTE	
	Diesel
Method:	EPA 8015
Analyst:	K, Lee
Reporting Units:	mg/kg
Date Analyzed:	Jan 9, 1991
QC Sample #:	BLK010991
·	
Sample Conc.:	N.D.
Spike Conc.	
Added:	10
Conc. Matrix	
Spike:	7.2
ahive:	1.5

Matrix Spike Duplicate

Conc. Matrix Spike Dup.:

Matrix Spike % Recovery:

% Recovery: 74

72

7.4

Relative

% Difference: 2.7

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager

% Recovery:	Conc. of M.S Conc. of Sample	x 100	
	Spike Conc. Added		
Relative % Difference:	Conc. of M.S Canc. of M.S.D.	x 100	
•	(Conc. of M.S. + Conc. of M.S.D.) / 2	· 	

1010065.HAO <5>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Client Project ID: Matrix Descript:

#2251, 081.03/Texaco-Oakland Soil

Jan 8, 1991 Jan 9, 1991

Attention: Jeanna Hudson

Analysis Method:

SM 503 D&E (Gravimetric)

Extracted: Analyzed: Jan 9, 1991

First Sample #:

101-0065

Reported:

Sampled:

Received:

Jan 9, 1991 Jan 10, 1991

TOTAL RECOVERABLE PETROLEUM OIL

Sample Number	Sample Description	Oil & Grease mg/kg (ppm)
101-0065	PT-B-7.5	150
101-0066	PT-SS-7.5	630
101-0067	PT-NS-7.5	110

Detection Limits:

30

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Jula R. Malerstein Project Manager

1010065.HAO <6>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Client Project ID: #2251, 081.03/Texaco-Oakland

Concord, CA 94520 Attention: Jeanna Hudson

QC Sample Group: 1010065-67

Reported: Jan 10, 1991

QUALITY CONTROL DATA REPORT

ANALYTE

Oil & Grease

Method:

Analyst:

503 D & E

Reporting Units:

R. Halsne mg/kg

Date Analyzed:

QC Sample #: Matrix BLK010991

Jan 9, 1991

Sample Conc.:

N.D.

Spike Conc.

Added:

5,000

Conc. Matrix

Spike:

4,500

Matrix Spike

% Recovery:

91

Conc. Matrix

Spike Dup.:

4,200

Matrix Spike

Duplicate

% Recovery:

84

Relative

% Difference:

7.4

SEQUOIA ANALYTICAL

% Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added

x 100

Conc. of M.S. - Conc. of M.S.D.

x 100

Relative % Difference:

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010065.HAO <7>

Julia R. Malerstein Project Manager

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson Client Project ID: Sample Descript: #2251, 081.03/Texaco-Oakland

Soil, PT-B-7.5 EPA 5030/8010

Analysis Method: EPA 5030 Lab Number: 101-0065 Sampled:

Jan 8, 1991

Received:

Jan 9, 1991 Jan 9, 1991

Analyzed: Jan 9, 1991 Reported: Jan 10, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	5.0		N.D.
Bromomethane	5.0		N.D.
Carbon tetrachloride	5.0	***************************************	N.D.
Chlorobenzene	5.0	***************************************	N.D.
Chloroethane	25		N.D.
2-Chloroethylvinyl ether	5.0		N.D.
Chloroform	5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chloromethane	5.0	***************************************	N.D.
Dibromochloromethane	5.0	•••••••	N.D.
1,2-Dichlorobenzene	10		N.D.
1,3-Dichlorobenzene	10		N.D.
1,4-Dichlorobenzene	10		N.D.
1,1-Dichloroethane	5.0		N.D.
1,2-Dichloroethane	5.0	***************************************	N.D.
1,1-Dichloroethene	5.0	***************************************	N.D.
Total 1,2-Dichloroethene	5.0	************	N.D.
1,2-Dichloropropane	5.0	***************************************	N.D.
cis-1,3-Dichloropropene	5.0	***************************************	N.D.
trans-1,3-Dichloropropene	5.0	***************************************	N.D.
Methylene chloride	10	***************************************	N.D.
1,1,2,2-Tetrachloroethane	5.0		N.D.
Tetrachloroethene	5.0	*************************************	N.D.
1,1,1-Trichloroethane	5.0	***************************************	N.D.
1,1,2-Trichloroethane	5.0	1	N.D.
Trichloroethene	5.0	***************************************	N.D.
Trichlorofluoromethane	5.0		N.D.
Vinyi chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager

1010065.HAO <8>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson Client Project ID: Sample Descript: Analysis Method:

Lab Number:

#2251, 081.03/Texaco-Oakland

Soil, PT-SS-7.5 EPA 5030/8010 101-0066 Sampled: Received: Jan 8, 1991 Jan 9, 1991

Analyzed: Jan 9, 1991 Reported: Jan 10, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	50		N.D.
Bromoform	50	27727-427-444-444-444-444-444-444-444-44	N.D.
Bromomethane	50	450550000000000000000000000000000000000	N.D.
Carbon tetrachloride	50	***************************************	N.D.
Chlorobenzene	50		N.D.
Chloroethane	250	*************************	N.D.
2-Chloroethylvinyl ether	50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chloroform	50		N.D.
Chloromethane	50	***************************************	N.D.
Dibromochloromethane	50		N.D.
1,2-Dichlorobenzene	100	***************************************	N.D.
1,3-Dichlorobenzene	100		N.D.
1,4-Dichlorobenzene	100		N.D.
1,1-Dichloroethane	50		N.D.
1,2-Dichloroethane	50	***************************************	N.D.
1,1-Dichloroethene	50	***************************************	N.D.
Total 1,2-Dichloroethene	50	***************************************	N.D.
1,2-Dichloropropane	50		N.D.
cis-1,3-Dichloropropene	50		N.D.
trans-1,3-Dichloropropene	50	***************************************	N.D.
Methylene chloride	100		N.D.
1,1,2,2-Tetrachloroethane	50		N.D.
Tetrachloroethene	50	***************************************	N.D.
1,1,1-Trichloroethane	50		N.D.
1,1,2-Trichloroethane	50		N.D.
Trichloroethene	50	***************************************	N.D.
Trichlorofluoromethane	50	***************************************	N.D.
Vinyl chloride	100	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager

1010065.HAO <9>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson Client Project ID: Sample Descript: Analysis Method:

Lab Number:

#2251, 081.03/Texaco-Oakland

Soil, PT-NS-7.5 EPA 5030/8010 101-0067 Sampled: Received: Analyzed: Jan 8, 1991 Jan 9, 1991 Jan 9, 1991

Reported: Jan 10, 1991

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/kg		Sample Results µg/kg
Bromodichloromethane	5.0		N.D.
Bromoform	5.0		N.D.
Bromomethane	5.0		N.D.
Carbon tetrachloride	5.0	***************************************	N.D.
Chlorobenzene	5.0		N.D.
Chloroethane	25		N.D.
2-Chloroethylvinyl ether	5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
Chloroform	5.0		N.D.
Chloromethane	5.0		N.D.
Dibromochloromethane	5.0		N.D.
1,2-Dichlorobenzene	10	***************************************	N.D.
1,3-Dichlorobenzene	10		N.D.
1,4-Dichlorobenzene	10	····	N.D.
1,1-Dichloroethane	5.0	,.,.,	N.D.
1,2-Dichloroethane	5.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N.D.
1,1-Dichloroethene	5.0		N.D.
Total 1,2-Dichloroethene	5.0		N.D.
1,2-Dichloropropane	5.0		N.D.
cis-1,3-Dichloropropene	5.0		N.D.
trans-1,3-Dichloropropene	5.0		N.D.
Methylene chloride	10	***************************************	N.D.
1,1,2,2-Tetrachloroethane	5.0	****	N.D.
Tetrachloroethene	5.0		N.D.
1,1,1-Trichloroethane	5.0	***************************************	N.D.
1,1,2-Trichioroethane	5.0	***************************************	N.D.
Trichloroethene	5.0	***************************************	N.D.
Trichlorofluoromethane	5.0	4414144141414141414414414414414	N.D.
Vinyl chloride	10		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager

1010065.HAO <10>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Attention: Jeanna Hudson Client Project ID: #2251, 081.03/Texaco-Oakland

QC Sample Group: 1010065-67

Reported: Jan 10, 1991

QUALITY CONTROL DATA REPORT

ANALYTE		Trichloro-	Chloro-			Chloro-	· · · · · · · · · · · · · · · · · · ·
ANALITE	1,1-Dichloroethene	ethene	benzene	Benzene	Toluene	benzene (PID)	
	1,1-Dichlordeniene	Culeile	Delizerie	Delizerie	Totaleste	Delizaria (1 ID)	
Method:	EPA 8010	EPA 8010	EPA 8010	EPA 8020	EPA 8020	EPA 8020	
Analyst:	E. Hamilton	E. Hamilton	E. Hamilton	E. Hamilton	E. Hamilton	E. Hamilton	
Reporting Units:	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	
Date Analyzed:	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	Jan 9, 1991	
QC Sample #:	101-0624	101-0624	101-0624	101-0624	101-0624	101-0624	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
	1 1121						
Spike Conc.						4.0	
Added:	10	10	10	10	- 10	10	
Conc. Matrix							
Spike:	9.8	9.3	11	9.4	8.7	9.5	
op	0.0	0.0	• •	•			
Matrix Spike							
% Recovery:	98	93	110	94	87	95	
Conc. Matrix							
Spike Dup.:	8.9	9.8	12	9.7	9.1	9.8	
Shive nah	0.9	5.0	12	3.7	3.1	3.0	
Matrix Spike							
Duplicate							
% Recovery:	89	98	120	97	91	98	
· · · · · · · · · · · · · · · ·			. — -	-			
						*	
Relative							
% Difference:	9.5	5.2	6.8	3.1	4.5	3.1	

SEQUOIA ANALYTICAL

Vulia R. Malerstein Project Manager % Recovery: Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

100

1010065.HAO <11>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Client Project ID: Matrix Descript:

#2251, 081.03/Texaco-Oakland

Sampled: Received: Jan 8, 1991

Concord, CA 94520

Analysis Method:

Soil EPA 5030/8015/8020

Analyzed:

Jan 9, 1991 Jan 9, 1991

Attention: Jeanna Hudson

First Sample #:

101-0067

Jan 10, 1991 Reported:

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
101-0067	PT-NS-7.5	22	0.020	N.D.	0.055	0.13

0.010 0.010 **Detection Limits:** 2.0 0.010 0.010

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection. Because matrix effects and/or other factors required additional sample dilution, detection limits for this sample have been raised.

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager

Harding Lawson Associates

1355 Willow Way, Suite 109 Concord, California 94520

CHAIN OF CUSTODY FORM

Lab: SEQUOIA

	415/687-9660 Telecopy: 415/68					Ormalore: F	M C MANDETLA IN		ΑN	ALYSIS	REQUES	T S D	
Job			08	11.03		ANE OAKLAN	n camperlain	-			ا اد	2797	
Nam	e/Location	· TEXAC	<u>.o</u>	500 G	RAND	WAR OHLICAN	<u> </u>	- { } }	11	~	° 3	العُ	1 1 1
Proj	ect Manag	er: Je/	シュル	A HADS	50N	Recorder:	gnature Required)	-		1 2 S	ASTE	나	
OURCE CODE	Water Sediment Soil Oil	CONTAIN & PRESEF	ERS RV.	SAMP NUMB OR LAI NUMB	В	DATE	STATION DESCRIPTION/ NOTES	EPA 601/8010 EPA 602/8020	PA 624/824 PA 625/827 PP METALS	TPH AS 6AS	JOH AS N STEX TOTAL OIL	121	
19.8	Soil Soil	Unpres. H ₂ SO ₄ HNO ₃		Yr Wk	Seq	Yr Mo Dy Time		_ W W	<u> </u>		} 	$\frac{ \mathcal{C} }{ \mathcal{C} }$	
1.0		X		PT-B PT-5	- 7.59 5-7,5	80101							
40		Ž II		PT-N	5 - 75	910108	24 HR TURNAROND	-{}-					
											111	++-	$\frac{1}{1}$
									 				
	$\blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$	+++-									111	+	
								┈ ┨┠╼ ╎		╅┪		+	+++
][<u> </u>				
	LAB NUMBER	DEPTH IN FEET	COL MTD CD	QA CODE	MI	ISCELLANEOUS	CHAIN O	F CUSTO	DDY RE	CORD			
Yr	Wk Seq	PEE!	"				RELINQUISHED BY: TS gnature)	RECEIV	/ED BY:	(Bignature,	1	DA	TE/TIME

DATE/TIME RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) RELINQUISHED BY: (Signature) RECEIVED, FUR LAB BY: **DATE/TIME** DATE/TIME DISPATCHED BY: (Signature) 8:00W METHOD OF SHIPMENT

Pink

653

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520

Attention: Jeanna Hudson QC Sample Group: 1010124-25

Reported: Jan 17, 1991

QUALITY CONTROL DATA REPORT

Client Project ID: #2251,114.03/Exxon - Oakland

ANALYTE			Ethyl	
	Benzene	Toluene	Benzene	Xyienes
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA8015/8020 E. Hamilton mg/kg Jan 15, 1991 101-0124	EPA8015/8020 E. Hamilton mg/kg Jan 15, 1991 101-0124	E. Hamilton mg/kg	EPA8015/8020 E. Hamilton mg/kg Jan 15, 1991 101-0124
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc. Added:	0.40	0.40	0.40	1.2
Conc. Matrix Spike:	0.30	0.33	0.33	1.0
Matrix Spike % Recovery:	75	83	83	83
Conc. Matrix Spike Dup.:	0.30	0.32	0.32	1.0
Matrix Spike Duplicate % Recovery:	75	80	80	83
Relative % Difference:	0	3.1	3.1	0

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

Spike Conc. Added Relative % Difference: Conc. of M.S Conc. of M.S.D. x 100	6 Recovery:	Conc. of M.S Conc. of Sample	x 100	
		Spike Conc. Added	•	
(ConstMC + Cons. etMCD) / 2	Velative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
(Conc. of M.S. + Conc. of M.S.D.) / 2		(Conc. of M.S. + Conc. of M.S.D.) / 2		

1010124.HAO <2>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Client Project ID:

#2251,114.03/Exxon - Oakland

Sampled:

Jan 9, 1991

Matrix Descript: Analysis Method:

EPA 5030/8015/8020

Received: Analyzed:

Jan 9, 1991 Jan 15, 1991

Attention: Jeanna Hudson

First Sample #:

101-0124

Soil

Reported:

Jan 17, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
101-0124	PT-E-1.5	1.1	N.D.	N.D.	N.D.	N.D.
101-0125	PT-W-1.5	3.8	N.D.	0.014	N.D.	0.024

0.0050 0.0050 0.0050 **Detection Limits:** 1.0 0.0050

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Vegá **Laboratory Director**

The above samples do not appear to contain gasoline.

1010124.HAO <1>

1900 Bates Avenue . Suite LM . Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520 Attention: Jeanna Hudson

Client Project ID: Matrix Descript:

#2251,114.03/Exxon - Oakland

Analysis Method: EPA 3550/8015 First Sample #: 101-0124

Sampled: Received:

Jan 9, 1991 Jan 9, 1991

Extracted: Jan 14, 1991

Jan 16, 1991

Analyzed: Reported: Jan 17, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number	Sample Description	High B.P. Hydrocarbons mg/kg (ppm)
101-0124	PT-E-1.5	110
101-0125	PT-W-1.5	190

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

1010124.HAO <3>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Attention: Jeanna Hudson

Client Project ID: #2251,114.03/Exxon - Oakland

QC Sample Group: 1010124-25

Reported: Jan 17, 1991

QUALITY CONTROL DATA REPORT

ANALYTE Diesel

Method:

EPA 8015

Analyst: Reporting Units:

K, Lee mg/kg

Date Analyzed: QC Sample #: Matrix BLK011491

Jan 16, 1991

Sample Conc.:

N.D.

Spike Conc.

Added:

10

Conc. Matrix

Spike:

6.4

Matrix Spike

% Recovery:

64

Conc. Matrix

Spike Dup.:

7.1

Matrix Spike

Duplicate

% Recovery:

71

Relative

% Difference:

10

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

Conc. of M.S. - Conc. of Sample % Recovery:

Spike Conc. Added

x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010124.HAO <4>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Attention: Jeanna Hudson

Client Project ID: Matrix Descript:

First Sample #:

#2251,114.03/Exxon - Oakland

SM 503 D&E (Gravimetric) Analysis Method: 101-0124

Sampled: Received: Jan 9, 1991 Jan 9, 1991

Extracted: Jan 14, 1991 Analyzed: Jan 14, 1991

Jan 17, 1991 Reported:

TOTAL RECOVERABLE PETROLEUM OIL

Sample Number	Sample Description	Oil & Grease mg/kg (ppm)
101-0124	PT-E-1.5	780
101-0125	PT-W-1.5	370

Detection Limits:

30

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director

1010124.HAO <5>

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520 Client Project ID: #2251,114.03/Exxon - Oakland

Attention: Jeanna Hudson

QC Sample Group: 1010124-25

Reported: Jan 17, 1991

QUALITY CONTROL DATA REPORT

ANALYTE

Oil & Grease

Method:

Analyst:

503 D & E R. Halsne

Reporting Units:

mg/kg

Date Analyzed: QC Sample #:

Jan 14, 1991 101-0046

Sample Conc.:

100

Spike Conc.

Added:

5,300

Conc. Matrix

Spike:

5,500

Matrix Spike

% Recovery:

100

Conc. Matrix

Spike Dup.:

5,500

Matrix Spike

Duplicate

% Recovery: 100

Relative

% Difference:

0.40

SEQUOIA ANALYTICAL

Belinda C. Vega Laboratory Director % Recovery:

Conc. of M.S. - Conc. of Sample Spike Conc. Added x 100

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010124.HAO <6>

ž	÷	٠.		2	=
-	Ŧ	4			₹
Ī	E	Ŧ	\equiv	F .	Ŧ
Ł	3	J.	=	-	4
1	H		3	=	a
- 5		_			4

Harding Lawson Associates 1355 Willow Way, Sulte 109 Concord, California 94520 415/687-9660 Telecopy: 415/687-9673

CHAIN OF CUSTODY FORM

Lab: SEQUOIA

		茎	Telec	copy:	415/6	87-96	73	2251, 114.03												Samplers: DAWBERBES							ANALYSIS REQUESTED															
Jo Na	b i	Nui e/L	mb	er cat	ioi	<u>4</u>	HE)	か	3	51 5(<u>}</u> 00	<u>_</u>	C.	> e,	m	D	R	_			···		 -	_	_			!								1 3					}
Pr	oje	ct	M	lar	naç	jer		Of T	rk Na	LM IN	ラク	PA	{	5.	t	D.	Se	~)	Re	эс	ог	de	er:	4	gna	ature Required)	I					_				1,600	,				, '
	-			RI;		#0	O! LP	RES	ER	HS V.			S/ NI	MP JME	LE	:					D,	ATI	E			ı	STATION DESCRIPTION/		601/8010	3208	27.60	2 2				Ţ	1					
SOURCE	ODE	/ater	ediment	Soil		Inpres.	H, SO.	NO ₃			Ļ	/r [LAI JME	OR ,AB MBER				·					r:			NOTES		EPA 601/	PA 502/	PA DZ4	ICP METALS	EPA 8015M/TPH	73.EV	12/6	TPHO	1.0					
1/2		5	S	N N	+	卡	Ė		╬	╁╴	þ		-	_	_	eq <u>₹</u>		$\frac{1}{1}$	+	Mo	╁	γ Γ	\vdash	1111	ie T	┨	1010124	F	+		<u> </u>	+	+	X	Ü	V		-	+	┝	╁	-
444	8			X		1			1	1	F		-		-1	_			1	T	1	-		┪	1	1	1010825WK TURNAROWN	ď		\dagger	- -	╁	\dagger	\	ŵ	×	众		†	┪	H	_ , ,
_		1_	_		_	1_							П	\neg					\perp		Ţ.																					
\vdash		╁	+-	$\left \cdot \right $	+	-	\vdash	H	- -	╁	┨—	$\left \cdot \right $	┟┼	+	+	+	Н	\dashv	+		+	┝		\dashv	4	-		-	- -	+	+	+	\downarrow	\vdash	igert	┡	\sqcup	$\vdash \vdash$	+	-		
\vdash		\dagger	╁╴	H	+	1-			- -	\dagger	┢		H	1		╁	H	\forall	╁	- -	1-	╁╌		\dashv	_	-		-	+	+	+	+	╁	十	H	┝	H	\vdash	+	\vdash		
																																							\perp			
Ŀ	H	-	 	-	_	- _	_		\perp	-	1	\sqcup	H		-	╂_	\sqcup		_		\downarrow	<u> </u>		4	4	4			\downarrow	\downarrow	1	_	-	<u> </u>						_		
\vdash	╌╂╴	╁	╁┈	-	- -	╁	-		+	╁	╁╴	H	H		╁	╁	\vdash	+	+	╁	╀	┢	Н	\dashv	\dashv	\dashv		$\ \mathbf{f} \ $	+	-	╁	+	╁	╁╴	-	-	H	\vdash	+	┞	H	H
	<u>. </u>	-1					L	L1			1	لبل	щ			_	اا	I			-L		ш	_		Ľ		L			۰	_1_	<u> </u>	1	لــــا	<u></u>	لسذ	<u>L</u>		ــــــــــــــــــــــــــــــــــــــ	<u>i i</u>	
		L NUI Wk				1	B	PTH N ET	h	CD		CO O					M	ISC	ELI	LAN	JEC	ous	;				CHAIN OF C	ะบ	STO	OD	ΥF	REC	Ю	RD.								
Ė		I			1	1			1																1	RP	PLINQUISHED BY: (Signature) RI	EC	EIV	/ED	В	(: (S	ign	atur	e)				DA1	re/1	ГІМІ	E
\vdash	H	+	+	$\left \cdot \right $	+	╁	_	H		+			H		 -									·		le (ELINOUSHED BY: (Signature) RI	EC	CEIV	VED	B	Y: /5	Sign	atur	e)				DAT	 [E/1	IMI	E
		-	-			_		H	1	1	-															RE	ELINQUISHED BY: (Signature) R	iE(CEI	VEC) B'	Y : /:	Sign	ətur	re)				DA	 	FIMI	E
-	$\dagger \dagger$	+	†	\parallel		1			+	\dagger	1	 - 		\vdash			-		 -						+	RE	ELINQUISHED BY: (Signature) R	E	CEIV	VE) B'	Y : /3	Sign	atu	re)	—	—		DA	<u> </u> TE/	TIM	E

DISPATCHED BY: (Signature)

METHOD OF SHIPMENT

DATE/TIME

Laboratory Copy Project Office Copy Field or Office Copy Yellow Pink

6533

DATE/TIME

HECEIVED FOR LAB BY:

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Sample Descript.: Soil, SP-1

#2251,081.03/Texaco - Oakland

Sampled: Received:

Jan 10, 1991 Jan 10, 1991

Concord, CA 94520

Analysis Method:

Client Project ID:

EPA 5030/8015/8020

Analyzed:

Jan 11, 1991

Attention: Jeanna Hudson

Lab Number:

101-0126

Reported:

Jan 14, 1991

TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION (EPA 8015/8020)

Anaiyte

Detection Limit mg/kg (ppm) Sample Results mg/kg (ppm)

Low to Medium Bailing Po	nt Hydrocarbons 1.0	
		0.064
		0,15
Ethyl Benzene		0.53
Xylenes	0.0050	3.7

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. --Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Iulia R. Malerstein Ptoject Manager

Please Note:

The above samples appear to contain gasoline.

1010126.HAO <1>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Attention: Jeanna Hudson QC Sample Group: 101-0126

Reported: Jan 14, 1991

QUALITY CONTROL DATA REPORT

Client Project ID: #2251,081.03/Texaco - Oakland

ANALYTE			Ethyl	
	Benzene	Toluene	Benzene	Xylenes
Method:	EPA8015/8020	EPA8015/8020	EPA8015/8020	EPA8015/8020
Analyst:	E. Hamilton	E. Hamilton	E. Hamilton	E. Hamilton
Reporting Units:	μg/kg	μg/kg	μg/kg	μg/kg
Date Analyzed:	Jan 11, 1991	Jan 11, 1991	Jan 11, 1991	Jan 11, 1991
QC Sample #:	101-0131	101-0131	101-0131	101-0131
Sample Conc.:	N.D.	N.D.	N.D.	N.D.
Spike Conc.				
Added:	40	40	40	120
Conc. Matrix				
Spike:	32	33	33	100
Matrix Spike	50	00	83	83
% Recovery:	80	83	83	83
Conc. Matrix				
Spike Dup.:	33	34	34	100
-b ab			· ·	
Matrix Spike				
Duplicate	**	~=	~~	00
% Recovery:	83	85	85	83
.				
Relative % Difference:	3.1	3.0	3.0	0
% Difference:	3. I	3.0	3.0	U

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager % Recovery: Conc. of M.S. - Conc. of Sample x 100
Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

1010126.HAO <2>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109

Concord, CA 94520 Attention: Jeanna Hudson

#2251,081.03/Texaco - Oakland Client Project ID: Matrix Descript:

Soil

EPA 3550/8015

Analysis Method: First Sample #:

101-0126

Sampled:

Jar Received: Jar

Extracted: Jan Analyzed: Jar

Reported:

Jai

TOTAL PETROLEUM FUEL HYDROCARBONS (EPA 8015)

Sample Number

Sample Description

High B.P. Hydrocarbons

mg/kg (ppm)

101-0126

SP-1

360

Detection Limits:

1.0

High Boiling Point Hydrocarbons are quantitated against a diesel fuel standard. Analytes reported as N.D. were not present above the stated limit of detection.

Please Note:

The above sample appears to contain a small amount of diesel.

ilia R. Malerstein Project Manager

1010126.

1900 Bates Avenue ◆ Suite LM ◆ Concord, California 94520 (415) 686-9600 ◆ FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Client Project ID: #2251,081.03/Texaco - Oakland

Concord, CA 94520

Attention: Jeanna Hudson

QC Sample Group: 101-0126

Reported: Jan 14, 1991

QUALITY CONTROL DATA REPORT

ANALYTE		
	Diesel	

Method:

EPA 8015

Analyst:

K. Lee mg/kg

Reporting Units: Date Analyzed:

Jan 11, 1991

QC Sample #:

BLK011191

Sample Conc.:

N.D.

Spike Conc.

Added:

10

Conc. Matrix

Spike:

6.6

Matrix Spike

% Recovery:

66

Conc. Matrix

Spike Dup.:

6.8

Matrix Spike Duplicate

% Recovery:

68

Relative

% Difference:

3.0

SEQUOIA ANALYTICAL

Julia R. Malerstein Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

(Canc. of M.S. + Conc. of M.S.D.) / 2

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D.

x 100

1010126.HAO <4>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Client Project ID: Sample Descript: #2251,081.03/Texaco - Oakland

Sampled: Received: Jan 10, 1991

Jan 10, 1991

Soil, SP-1

Extracted: Analyzed: Jan 11, 1991 Jan 11, 1991

Attention: Jeanna Hudson

Lab Number:

101-0126

Reported:

Jan 14, 1991

LABORATORY ANALYSIS

Analyte

Detection Limit mg/kg

Sample Results mg/kg

0.25

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Prøject Manager

1010126.HAO <5>

1900 Bates Avenue • Suite LM • Concord, California 94520 (415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Client Project ID: #2251,081.03/Texaco - Oakland

Concord, CA 94520

Attention: Jeanna Hudson QC

QC Sample Group: 101-0126

Reported: Jan 14, 1991

QUALITY CONTROL DATA REPORT

ANALYTE

Lead

Method:

EPA 7420

Analyst: Reporting Units:

N. Herrera mg/kg

Date Analyzed:

Jan 11, 1991

QC Sample #:

101-0130

Sample Conc.:

N.D.

Spike Conc.

Added:

0.50

Conc. Matrix

Spike:

0.43

Matrix Spike

% Recovery:

86

Conc. Matrix

Spike Dup.:

0.43

Matrix Spike Duplicate

% Recovery:

86

Relative

% Difference:

Project Manager

0

SEQUOIA ANALYTICAL/

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100


Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

ulia R. Malerstein

1010126.HAO <6>

CHAIN OF CUSTODY FORM

Lab: SEQUOIA

RECEIVED BY: (Signature)

RECEIVED BY: (Signature)

DATE/TIME

	-	Telec	сору:	415/6	87-96	73												S	ar	mplers: J DYE							ANALYSIS REQUESTED														
Job I	Vu	mb	er	:_	2	29	-1,	<u>, c</u>	8	1.	0	3						_																						Ì	
Name	i/L	.00	cat	ior	ı:_	टि	<u>< A</u>	حي		5	O	ا ج	<u>61</u>	40.	<u>ء د</u>		Δ.	√ હ	_		OA	KL											-			-				-	1
Proje	ct	M	1ar	naç	jer	: _=	JE	AN	N	Δ	H	200	0 1	<u>s</u>				R	le	co	rd	er						. [1		ام			.		
MATRIX #CONTAINERS SAMPLE & PRESERV. NUMBER								 DA1	ΓE		· .	Sign	STATION DESCRIPTION/) 5 6	/8020	/8240	/8270	ILS	EPA 8015M/TPH	186 E		43																		
SOURCE		ment	Soil		res.	ماي					N	Ľ. JUN	AB	R												NOTES		[6	180	624	1 625		8015 A AS	50 4	ш						
SOU	Wat	Sed	Soil	ā	U.	H, 50				Yr	٦	۷k		Se		1	<u>'</u> r	М	0	Dγ	,	Ti	me		11			du		EP.	ΕP	힐	집	100	四	ध					
4			X		1					SF	-	E	IJ			9	1	0	1	1 ()					1010126][X	区	X	X					I
	\perp		Ш	╧		\perp	\perp	Ш	_		ļ	_	Ш	\perp	_		L		\perp		┸	\perp	_		∐_			\prod						_				_			
	- -	ļ!		_ _	.	_	_	1_	_		- -	<u> </u> _		\dashv	- -	ļ	_	$ \downarrow $	4	_ _	_	╀	<u> </u>	_	_			∐ _		_		\dashv	_ _	- -		4	_	_			\downarrow
1-1-1	+	┼		+	╀	\perp	+	╂╌╽	-			 	-	-	+	╁-	 	$\left \cdot \right $	\dashv	-	- -	-		-	╢┈			┨┠╌	+	_				╂	-			╁┈		-	- -
	+	\vdash	Н	+	+	+	+	+	\dashv	+	+	╁	$\left \cdot \right $	\dashv	+	╁╴	╢	╌╢	-	+	+	+-		\vdash	╂┠╌			╢╌	+		H		\dashv	╁╴	-		-	+		-	+
	\dagger	十	Н	+		+	+	H	\dashv		+	╁	Н	\dashv	+	╁	H	Н	\dashv	+	+	\dagger	\vdash	H	╂			╂	T		H	1	+	\dagger	Н	\dashv	+	\dagger	Н	+	+
	\dagger	\vdash		\dagger	╁	\dashv	\top	$\dagger \dagger$	1		+	╁	Н	\forall		t	H	H	+	\dagger	\dagger	十	╁	Н	╁		· • · · · · · ·	╁	T		Н		\dagger	t	П	\dashv	\dagger	\dagger	Н	\dagger	+
											T								1									11					1	T							Ī
												L				L									JL			JL													$oxed{oxed}$
	L NUI	AB MBI				EP1		CC MT	rD		QA QD				N	1150	CEI	LLA	NE	ou	s	÷				(CHAIN OF	CUS	то	DY	RE	cc	RD								
Tr. i	Wk	T	Se	q		FEE	T	CI	וי															<u> </u>	E 1 12	IQUIEUED DV. /e:		RECI	E 14.75	-		IC:						DA T	E/T	IME	
											T		=	ηu	N)	de (, 	fol	. .	مو.	9-J P4	0],"		IQUISHED BY: (Signature)		REUI	CIVE	יט	D T :	ioi	pracu	18)				DW I	[INTE	
							L							4	/g	HP.	5,	Tv	RN	Ą٤	91	4D		R					RECEIVED BY: (Signature) DATE/TIME											_	
		<u> </u>											1_											J															-		

RELINQUISHED BY: (Signature)

RELINQUISHED BY: (Signature)

DISPATCHED BY: (Signature)

METHOD OF SHIPMENT

DATE/TIME

DATE/TIME

DATE/TIME

1/10 2:05

1900 Bates Avenue . Suite LM . Concord, California 94520

(415) 686-9600 • FAX (415) 686-9689

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA 94520

Attention: Jeanna Hudson

Client Project ID:

Sample Descript: Soil

Analysis Method: First Sample #:

#2251,081.03

California LUFT Manual, 12/87 101-0126

Sampled: Jan 10, 1991 Relogged:

Jan 16, 1991 Jan 17, 1991

Extracted: Jan 18, 1991 Analyzed:

Reported: Jan 18, 1991

ORGANIC LEAD

Sample Number

Sample Description Sample Results

mg/kg (ppm)

101-0126

SP-1

N.D.

Detection Limits:

0.050

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Belinda C. Veda Laboratory Director

1010126.AIR <1>

Harding Lawson Associates 1355 Willow Way, Suito 109 Concord, California 94520 415/687-9660 Tolecopy: 415/687-9673

CHAIN OF CUSTODY FORM

Lab: SEQUOIA

• •			Samplers: 2 D16	ANALYSIS REQU	ESTED
Job Number:_	2251,0	81.03			
Name/Locatio	n: TEXACO	500 GRAND	AVE OAKLAND		
Project Mana	ger: TEAN	NA HUDSON	Recorder:		
SOURCE CODE Water Sediment Soil	#CONTAINER & PRESERV.	S SAMPLE NUMBER OR LAB NUMBER	DATE STATION	SET EN 601/8010 EPA 601/8010 EPA 602/8020 EPA 622/8240 EPA 622/8270 ICP METALS EPA 8015MTPH TPH AS 6AS TOH AS DIGS TOTAL LEAS TOTAL LEAS	
So. Sed Wat	Unpres. H ₂ SO ₄	Yr Wk Seq	Yr Mo Dy Time	Saton EPA 602 EPA 625 EPA 625 COT A L	
45 X		SP 1	910110 1010	126	
	-{				
┠╂╂╁┼		╂╂╂╂╂			
		- - - - - - -			
	$\blacksquare \blacksquare \blacksquare \blacksquare$				
	$\{-\}, \{-\}, \{-\}, \{-\}, \{-\}, \{-\}, \{-\}, \{-\}, $	┇╫╫╀┼┼	┠┼┼┼┼┼┼┼┼┼	II - - - - - - -	
LAB NUMBER	DEPTH COL IN MTI	CODE W	ISCELLANEOUS	CHAIN OF CUSTODY RECORD	
Yr Wk Seq		 	RELINQUISHED BY:	(Signature) RECEIVED BY: (Signature)	DATE/TIME
╒┋┋	╂╂┼┼┼		IRS, TURNAROUND	·)
	 	1111111111111	RELINQUISHED BY	: (Signature) RECEIVED BY: (Signature)	DATE/TIME
`\			RELINQUISHED BY	: (Signature) RECEIVED BY: (Signature)	DATE/TIME
4-1-1-1	 	 	RELINQUISHED BY	(Signature) RECEIVED BY: (Signature)	DATE/TIME
				\ \	
		4.1 1 1	DISPATCHED BY: (S	ignature) DATE/TIME RECEIVED FOR LABRY:	DATE/TIME

METHOD OF SHIPMENT

DISTRIBUTION

4 copies: Texaco Refining and Marketing Inc.

108 Cutting Boulevard

Richmond, California 94804 Attention: Mr. R. R. Zielinski

JSH/SJO/mlw 031341T/R46

QUALITY CONTROL REVIEWER

Glenn S. Young/

Project Geologist