May 7, 1991

Mr. Rafat Shahid Alameda County Environmental Health Department 80 Swan Way, Room 200 Oakland, CA 94621

Dear Mr. Shahid:

Enclosed is a copy of our Quarterly Technical Report dated March 6, 1991 for our former Texaco Service Station located at 500 Grand Avenue in Oakland, California. This report covers the period from October through December, 1990.

Please call me at (415) 236-1770 if you have any questions.

Very truly yours,

R.R. Zielinski

Environmental Supervisor

Enclosure

cc: Mr. Tom Callaghan
California Regional Water
Quality Control Board
San Francisco Bay Area Region
2101 Webster Street, Ste. 500
Oakland, CA 94612

pr: \ \ \(\mathbb{D} \)

KEG

500GA.RS

A Report Prepared for

Texaco Refining and Marketing Inc. 10 Universal City Plaza Universal City, California 91608

QUARTERLY TECHNICAL REPORT FOURTH QUARTER OF 1990 FORMER TEXACO STATION NO. 6248800235 500 GRAND AVENUE OAKLAND, CALIFORNIA

HLA Job No. 2251,114.03

1990 Report No. 4

by

Jeanna S. Hudson Registered Geologist

Stephen J. Osborne Geotechnical Engineer No. 656
Exp. 03/31/91

JEANNA S. HUDSON No. 4492

OF CALIFO

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660

INTRODUCTION

This Quarterly Technical Report (QTR) presents the results of investigation activities by Harding Lawson Associates (HLA) during the fourth quarter of 1990 at the former site of Texaco service station No. 6248800235, 500 Grand Avenue, Oakland, California (Plate 1). This site is currently operated by Exxon Company U.S.A. (Exxon). This report presents fourth quarter activities, summarizes previous work at the site, and describes planned activities for the first quarter of 1991.

SUMMARY OF PREVIOUS WORK

Texaco Refining and Marketing Inc. retained HLA to conduct a sensitive receptor survey at the subject location in May 1988. In June 1988, Texaco Refining and Marketing Inc. requested that HLA proceed with a subsurface investigation to evaluate whether hydrocarbons had affected shallow soil or groundwater. By the end of the third quarter of 1990, HLA had completed the following tasks in the site investigation:

- Conducted a soil-gas survey at 18 locations on or near the site (survey performed by Tracer Research Corporation)
- Drilled and developed four 2-inch-diameter groundwater monitoring wells (MW-8A, MW-8B, MW-8C, and MW-8D) and six 4-inch-diameter monitoring wells (MW-8E, MW-8F and MW-8G MW-8H, MW-8I, and MW-8J). Locations are shown on Plate 2.
- Obtained groundwater samples from each well on a quarterly basis and analyzed them for benzene, toluene, ethylbenzene, and total xylenes (BTEX), and total

petroleum hydrocarbons (TPH) as gasoline and as diesel fuel.

- Gauged water levels and estimated the direction of groundwater flow
- Performed slug tests in MW-8C and MW-8E to estimate hydraulic conductivity
- Drilled and sampled 15 soil borings to identify and delineate the extent of hydrocarbons in the vadose zone (Plate 2)
- Analyzed all soil samples for BTEX and TPH as gasoline
- Analyzed soil samples from B-6, B-7, B-8, B-9, B-10, B-11, B-12, B-13, B-14 and B-8K for TPH as diesel fuel
- Analyzed soil sample from B-13 for halogenated volatile organics, semivolatile organics, oil and grease, and selected metals.
- Submitted an Environmental Assessment Report to Texaco during the third quarter of 1989
- Pumped and disposed of 5,000 gallons of water from the tank backfill as an interim remedial measure.

RESULTS OF PREVIOUS WORK

The results of the soil-gas survey indicated petroleum hydrocarbons in the soil gas near the underground storage tanks and dispenser islands. Analyses of water samples from the four observation wells in the storage tank backfill showed the presence of dissolved petroleum hydrocarbons in groundwater adjacent to the underground tanks.

Soil samples and drill cuttings indicate that the subsurface materials at the site consist of clay and minor amounts of interbedded clayey sand. Analysis of slug test data obtained

from MW-3C and MW-3E indicate a hydraulic conductivity of 0.02 to 0.03 foot/day. Groundwater would be expected to move through the soils relatively slowly.

Local groundwater flow is to the south and southeast, toward Lake Merritt (Plate 3). Water-level data from monitoring wells across the site show that, in most wells, the water table has fluctuated 2.5 to 3.0 feet since early 1988. Water levels in MW-8A fluctuated as much as 8 feet; those data are suspect and were not used in contouring the phreatic surface.

Samples from 15 soil borings have been chemically analyzed to evaluate the horizontal and vertical extent of petroleum hydrocarbons in the subsurface. The analytical data are summarized in Tables 1 and 2. A contour map of TPH as gasoline in the vadose zone soil is presented on Plate 4. For this map, the vadose zone was defined by comparing sample depths to static water levels at the time of sampling.

Plate 4 depicts a vadose zone hydrocarbon plume that apparently originates at the underground tanks and extends off-site to MW-8J. Significant concentrations of TPH as gasoline are also found in the area of the dispenser islands. The highest concentration, 2900 parts per million (ppm), was found in a soil sample collected at a depth of 1.5 foot in B-11. In general, BTEX concentrations in the soil are either below detection limits or very low.

The results of analyses for TPH as diesel fuel indicate concentrations ranging from nondetectable to 460 ppm (B-9); most

of the soil samples with detectable concentrations contained less than 100 ppm TPH as diesel fuel.

Table 3 presents the results of groundwater analyses obtained since 1988. Groundwater from monitoring wells MW-8E, MW-8H, MW-8I, and MW-8J, and observation wells OB-3 and OB-4 contained benzene in concentrations that exceed the Department of Health Services Drinking Water Action Levels (DWALs). In groundwater samples from wells MW-8A, MW-8B, and MW-8C, BTEX concentrations were either nondetectable or below the DWALs.

A contour map of benzene concentrations in groundwater is presented on Plate 5; Plate 6 is a contour map of concentrations of TPH as gasoline. These maps suggest that hydrocarbons in groundwater may have originated near the dispenser islands, as well as near the underground tanks. Water from monitoring well MW-8E, cross-gradient and down-gradient of the dispenser islands, has the highest concentrations of BTEX, TPH as gasoline, and TPH as diesel fuel.

downgradient from MW-8E in water samples from MW-8H, MW-8I, and MW-8J. Samples from MW-8F and MW-8G contained nondetectable concentrations of BTEX and TPH as gasoline and as diesel fuel. However, "heavy" hydrocarbons, beyond the range of diesel fuel, were detected in groundwater from these downgradient locations during the second quarter 1990 analyses.

In the third quarter 1990, workers installing overfilt containment devices on the underground storage tanks discovered

floating waste oil around the waste oil tank. Exxon excavated this tank in September 1990. Waste oil and water from the tank backfill were pumped and disposed of by Exxon. Soil around the tank backfill was excavated and disposed of also.

lines were discovered adjacent to the tank pit during the excavation process. Gil Wistar, of the Alameda County Department of Environmental Health, requested that Texaco excavate the clay lines and contaminated soil from the surrounding utility trench.

ACCOMPLISHMENTS DURING FOURTH QUARTER OF 1990

During the fourth quarter of 1990, HLA accomplished the following tasks at the 500 Grand Avenue site:

- Purged and sampled four on-site monitoring wells, five off-site monitoring wells, and two observation wells.
 Water samples were analyzed for BTEX, TPH as gasoline, and TPH as diesel fuel.
- Measured water levels in nine monitoring wells in October and November (Table 4).
- Issued an interim remedial plan (December 7, 1990) in lieu of a Third Quarter Technical Report
- Finalized subcontractor's agreement for removal of clay sewer lines adjacent to former waste oil tank location.

Groundwater Sampling

HLA continued to monitor water levels and groundwater quality at the subject location during the fourth quarter of 1990. Each well was purged while monitoring temperature, conductivity, and pH of the water. The water samples were collected and transported, under chain-of-custody, to ChemWest Analytical Laborato-

ries, Inc., in Sacramento, California. The water samples were analyzed for BTEX, TPH as gasoline, and TPH as diesel fuel.

Results of Analyses

Table 3 and Plates 5 and 6 summarize results of the fourth quarter groundwater analyses. Benzene concentrations exceeded the DWAL (1.0 parts per billion [ppb]) in groundwater from MW-8E, MW-8H, MW-8I, MW-8J, and the two observation wells, OB-3 and OB-4.

Heavier hydrocarbons were detected in groundwater samples from MW-8E, MW-8F, MW-8G, and the observation wells. The laboratory describes the compound as an "unknown hydrocarbon mixture beyond the range of diesel fuel #2", possibly a heavier fuel oil or waste oil.

Plate 3 s the most recent contour map of the potentiometric surface, based on water levels measured on October 18, 1990. No significant changes in groundwater flow direction are apparent.

ANTICIPATED ACTIVITIES FOR FIRST QUARTER, 1991

HLA personnel will supervise the removal of the clay sewer lines during the first quarter of 1991. Soil samples and water samples (if available) will be collected from the excavation and utility trench backfill. Quarterly groundwater samples will be collected and analyzed for BTEX and TPH as gasoline, as diesel fuel, and as motor oil. Water levels will be measured monthly.

LIST OF TABLES

Table	1	Results of Soil Sample Analyses
Table	2	Summary of Chemical Analyses, Soil Sample B-13 (2.5 feet deep)
Table	3	Results of Groundwater Analyses
Table	4	Historical Record of Depth to Groundwater

LIST OF ILLUSTRATIONS

Plate	1	Regional Map
Plate	2	Site Plan
Plate	3	Potentiometric Surface - October 18, 1990
Plate	4	TPH as gasoline Concentrations in Vadose Zone
Plate	5	Benzene Concentrations in Groundwater
Plate	6	TPH as gasoline Concentrations in Groundwater

APPENDICES

Appendix LABORATORY RESULTS OF GROUNDWATER ANALYSES

Table 1. Results of Soil Sample Analyses (concentrations in mg/kg [ppm])

			(0011001110	t de (de (a richina's			
Boring/ Well <u>Number</u>	Sample Depth <u>(feet)</u>	<u>Benzene</u>	Toluene	Ethyl- <u>benzene</u>	Xylenes	TPH as <u>Gasoline</u>	TPH as <u>Diesel</u>	TPH Other**
B-1	6.5	ND	ND	ND	ND	12	NA	
B-3	4.0	ND	ND	ND	5	520	NA	
8-4	3.5	ND	1	3.5	13	510	NA	
8-5	5.5	ND	ND	ND	ND	<10	NA	
8-5	10.5	ND	ND	ND	ND	ND	NA	
B-5	16.0	ND	ND	ND	ND	ND	NA	
8-6	2.0	ND	80.0	ND	ND	1.0	<100*	<100*
B-6	4.5	ND	0.09	ND	ND	ND _{at}	<10	<10
B-7	3.0	ND	6.7	5.1	50	580	<100*	<100*
B-8	2.0	0.05	ND	ND	0.34	3.4	<10	<10
B-9	2.5	0.05	0.32	0.81	6.4	100	460	<100*
B-8K	1.5	ND	ND	ND	ND	2.1		ND
	3.0	ND	0.05	ND	ND	6.6		ND
	5.5	ND	ND	0.08	0.05	84		20
B-10	1.5	0.28	ND	0.20	0.18	8.4		ND
	2.5	0.09	ND	ND	ND	ND		ND
	5.5	ND	ND	ND	ND	ND		ND
	8.5	ND	ND	ND	ND	ND		ND
B-11	1.5 2.5	ND	NĐ	5.4	1.6	2,900		30
	2.5 ²⁹	ND	ND	0.31	0.12	62		11
	5.5	ND	ND	0.06	ND	17		ND
	8.5	ND	ND	ND	ND	ND		ND
B-12	1.0	0.22	0.11	0.18	0.42	13		ND
	2.5	ND	ND	0.19	0.83	49		ND
	4.54	ND	ND	1.27	0.67	1,200		94
	6.0	ND	0.06	ND	ND	ND		ND
B-13	1.5	ND	ND	ND	ND	ND	ND	ND
	2.5	ND	ND	1.7	5.4	130	ND	1,000
	3.5	ND	0.06	0.06	0.30	26	ND	250
B-14	1.5	ND	ND	ND	ND	4.8	ND	85
	3.5	ND	ND	ND	ND	2.3	ND	62
MW-8D	1.3	ND	0.40	ND	0.50	10	NA	
MW-8E	5.5	0.82	6.5	5.5	26	<i>7</i> 50	NA	
MW-8F	11.0	ND	ND	ND	ND	ND	NA	
MW-8G	6.0	ND	ND	ND	ND	ND	NA	
MW-8H	1.5	ND	0.07	ND	ND	ND		ND
	3.0	МD	0.24	ND	ND	2.6		ND
	5.5	ND	ND	0.30	0.83	550		66
	10.5	ND	ND	ND	ND	ND		ND
18-WM	1.5	0.10	ND	ND	ND	3.0		ND
	3.5	0.06	ND	ND	0.02	ND		ND
	5.5	ND	ND	2.7	9.2	280		ND
_	10.5	ND	ND	ND	ND	ND		ND
MM-81	1.5	0.18	0.09	0.06	0.05	24		ND
	3.0	0.08	0.14	0.04	ND	13		33
	5.5	ND	ND	25	9.2	2,100 🔻		83
	10.5	ND	0.02	ND	ND	8		ND

ND = NA = * Lal ** "He

Not detected
 Not analyzed
 Laboratory increased reporting limits because of matrix interference.
 "Heavy" petroleum hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil.

Harding Lawson Associates

Table 2. Summary of Chemical Analyses Soil Sample B-13 (2.5 feet deep)

Semivolatile Organics; EPA Test Method 8270

- Analyses for 55 semivolatile organic compounds
- Results were below reporting limit on all except:

Naphthalene	900 ppb
2 Methylnapthalene	1400 ppb
Bis (2-ethylhexyl) phthalate	260 ppb

Halogenated Volatile Organics; EPA Method 8010

- Analyses for 29 compounds
- Results were below reporting limits on all except:

Trichloroethane 0.06 ppm

Total Oil and Grease (IR)

Cd, Cr, Pb, Zn - EPA Method 503E

Cd - Below reporting limit

Cr - 36 ppm

Pb - Below reporting limit

Zn - 41 ppm

Table 3. Results of Groundwater Analyses Concentrations in $\mu g/l$ (ppb)

	Depth	Date			Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	(feet)	Sampled_	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	Gasoline	<u>Diesel</u>	Other**
MW-8A	32	06/14/88	<0.5*	1.5	<2	6.6			
		10/28/88	<0.5	<1	<2	<1			
		09/28/89	<0.5	<0.5	<0.5	<3	<50		
		11/29/89	<0.5	1.0	<0.5	<0.5	<50	1,200	<50
		01/24/90	<0.5	<0.5	<0.5	<0.5	<100		2,800
		04/26/90	<0.5	<0.5	<0.5	<0.5	<2,500	<50	890
		07/26/90	6.0	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
MW-8B	20	06/14/88	<0.5	<1	<2	<1			
		10/21/88	<0.5	<1	<2	3.1			
		09/28/89	<0.5	<0.5	<0.5	<3	<50		
		11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	380
		01/24/90	<0.5	<0.5	<0.5	<0.5	<100		350
		04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
		07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
MW-8C	24.5	06/14/88	5.3	3. 5	2.6	13.0			
		10/21/88	<0.5	<1	<2	<1			
		09/28/89	<0.5	<0.5	<0.5	<3.0	<50		
		11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	190
		01/24/90	0.9	<0.5	<0.5	<0.5	<100		480
		04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	160
		07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	< 50
MW-8E	20	10/25/88	1,400	510	2.9	420			
		09/28/89	5,600	3,100	<500	<3,000	22,000		
		11/29/89	4,900	2,600	<250	1,490	15,000	6,800	<50
		01/24/90	10,100	3,340	540	1,790	36,000	·	4,900
		04/26/90	11,000	5,700	840	2,900	48,000	1,400	<50
		07/26/90	15,000	6,200	520	4,700	56,000	· <50	<50
		10/18/90	1,500	1,300	170	1,800	15,000	620	< 50

Table 3 (continued)

	Depth	Date			Ethyl-		TPH as	TPH as	ТРН
Well	(feet)	<u>Sampled</u>	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	<u>Gasoline</u>	<u>Diesel</u>	Other**
MW-8F	16.5	04/14/89	<0.5	<1	<2	<1			
	1015	09/28/89	<0.5	<0.5	<0.5	<3	<50		
		11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		01/24/90	<0.5	<0.5	<0.5	<0.5	<100		<300
		04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
		07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	<0.5	<0.5	<0.5	<0.5	<50	360	<50
		,							
MW-8G	16.5	04/14/89	<0.5	<1	<2	<1			
		09/28/89	<0.5	<0.5	<0.5	<3	<50		
		11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		01/24/90	<0.5	<0.5	<0.5	<0.5	<100		650
		04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	120
		07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	<0.5	<0.5	<0.5	<0.5	<50	g/460	[′] <50
MW-8H	16.5	01/24/90	14.8	14.8	10.8	38.8	460		<300
		04/26/90	67	19	43	64	830	<50	820
		07/26/90	45	1.3	12	8.2	190	<50	<50
		10/18/90	17	2.5	14	8.5	300	<50	<50
MW-8I	16.5	01/24/90	116	2.9	13	30.5	580		440
		04/26/90	2,400	100	230	350	4,400	<50	1,400
		07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	92	4.1	37	21	530	<50	<50
MW-8J	16.5	01/24/90	2.7	<0.5	1	2.6	<100		<300
		04/26/90	28	7.7	19	24	160	<50	320
		07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
		10/18/90	(B. 3)	<0.5	2.6	1.5	<50	< 50	<50

Table 3 (continued)

<u>Well</u>	Depth (feet)	Date Sampled	Benzene	<u>Toluene</u>	Ethyl- benzene	<u>Xylenes</u>	TPH as <u>Gasoline</u>	TPH as <u>Diesel</u>	TPH <u>Other**</u>
OB-3	11.5	11/06/89	420	8	6 5	64	4,000	7 200	 -E0
		04/26/90 07/26/90	160 <0.5	19 <0.5	<0.5	8.6 0.9	1,000 68	3,200 1,200	<50 <50
		10/18/90	260	69	35	490	3,200	2,100	<50
OB-4	10.0	11/06/89 04/26/90 07/26/90 10/18/90	500 360 23 600	11 10 3.7 540	10 10 1.6 83	24 18 5.9 840	4,000 460 200 4,300	3,900 1,600 330	<50 <50 <50
DWAL			1.0	680	100	1,750			

DWAL = Drinking water action levels, State of California Department of Health Services (April, 1989).

(07/26/90) Sample not analyzed for BTEX and TPH (g) within 14-day holding time

-- = Compounds not analyzed

<0.5 indicates that concentrations are below the reporting limit of 0.5 μ g/l.

^{** &}quot;Heavy" petroleum hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil.

Table 4. Historical Record of Depth to Groundwater

<u>Well</u> Top of	MW-8A	MW-8B	<u>MW-8C</u>	MW-BE	<u>MW-8F</u>	<u>MW-8G</u>	<u>MW-8H</u>	<u>MW-81</u>	<u>MW-8J</u>
Casing Elev.	99.72	101.11	98.41	99.38	97.94	97.24	98.57	97.94	97.38
Date									
JAN 24, 90 GW ELEV	91.47	100.60	90.87	96.07	88.06	86.57	94.97	91.94	91.44
FEB 27, 90 GW ELEV	95.21	100.73	91.15	96.13	87.95	86.68	95.06	92.03	91.60
MAR 27,90 GW ELEV	95.64	100.66	91.24	96.09	88.69	87.45	95.03	92.02	91.58
APR 24,90 GW ELEV	96.10	100.69	91.51	96.07	88.95	87.59	95.02	91.98	91.39
MAY 29, 90 GW ELEV	97.37	100.84	87.88	96.36	89.67	86.61	PAVED	PAVED	PAVED
JUNE 28, 90 GW ELEV	97.37	100.71	89.79	96.24	88.95	87.45	PAVED	PAVED	PAVED
<u>Well</u> Top of	<u>MW-8A</u>	<u>MW-8B</u>	<u>MW-8C</u>	MW-8E	MW-8F	<u>MW-8G</u>	<u>₩₩-8H</u>	MW-8I	<u>L8-WM</u>
Casing Elev.	99.72	101.11	98.41	99.38	97.94	97.24	98.90	98.27	97.69
Date									
JUL 24, 90 GW ELEV	97.31	100.62	90.98	96.06	88.74	87.54	95.14	92.05	91.21
AUG 24, 90 GW ELEV	94.74	100.60	90.30	95.90	87.13	86.08	92.14	91.93	93.89
SEPT 25, 90 GW ELEV	95.24	100.56	91.05	95.94	87.25	BLOCKED	95.10	91.90	91.01
OCT 18, 90 GW ELEV	96.11	100.55	90.92	95.86	86.89	85.62	95.07	91.85	90.96

All measurement are in feet

TOC = Top of casing elevation relative to arbitrary datum of 100 feet GW Elev = Groundwater elevation relative to arbitrary datum

Harding Lawson Associates

Engineers and Geoscientists

Regional Map

Former Texaco Service Station 500 Grand Avenue Oakland, California

PLATE

 CHAWN
 JOB NUMBER
 APPROVED
 DATE
 AEVISED
 DATE

 Y C
 2251,114.03
 5/89

APPENDIX

LABORATORY RESULTS OF GROUNDWATER ANALYSES

November 9, 1990

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA. 94520

Attention: Ms. J. Hudson

Subject: Report of Data - Case Number 6950

Dear Ms. Hudson:

The technical staff at CHEMWEST is pleased to provide our report for the analyses you requested: BTEX - EPA Method 602; and Total Petroleum Hydrocarbons (gasoline) - DHS Method. LUFT Field Manual.

Eleven water samples for Project Texaco #8 500 Grand, Project Number 2251,081.03 were received October 22, 1990 in good condition. Results of the analyses, along with the analytical methodology and appropriate reporting limits, are presented on the following page(s).

Thank you for choosing CHEMWEST Laboratories. Should you have questions concerning this data report or the analytical methods employed, please do not hesitate to contact Debbie Pearce your Customer/Technical Service Representative. We hope that you will consider CHEMWEST Laboratories for your future analytical support and service requirements.

Sincerely,

Robert T. Hart

Data Control Manager

RTH: rp

cc: File

QUALITY ASSURANCE NARRATIVE

Subject: Sample Dilution

When any target analyte is detected in a sample at a concentration above the calibrated range of the instrumentation, a dilution of the sample or extract is required to bring the analyte concentration into that range (as addressed in references 1, 2, and others). Elevated reporting limits are also needed for sample results in which a dilution is required.

For this reason, samples flagged as "Diluted into range." have been reported with a dilution factor greater than 1 and elevated reporting limits.

References

- 1 USEPA, "Test Methods for Evaluating Solid Waste", SW-846, 3rd. Edition, 1986, pages 6010-11, 7000-9, 8000-5, 8240-21, 8270-17, et al.
- 2 CFR 40, Appendix A to Part 136, "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", Section 10.11, Methods 601, 602, Section 12.6, Method 608, Section 11.10, method 624, Section 13.5, Method 625, et al.

S. C. Madden

Quality Assurance Manager

ANALYTICAL METHODOLOGY

Total Petroleum Hydrocarbons by Purge & Trap and GC-FID

WATER - DHS Method - Luft Field Manual

A 5 ml sample volume, or 5 ml of a suitable dilution, is purged on a suitable purge and trap system with helium. The purged sample is analyzed on a Gas Chromatograph equipped with a Flame Ionization Detector (FID). A packed column is used to separate the compounds.

SOIL - DHS Method - Luft Field Manual

A 10 gram, or other appropriate aliquot of soil, is weighed into a clean VOA vial. Soils received in brass core tubes are sampled by discarding 2-5 centimeters of soil from each end of the tubes (this is done to reduce the possibility of analyzing a portion of soil that has been exposed to sampling technique contamination). Equal aliquots of soil are then removed from each end of the tube and combined in the VOA vial. Soil in jars or bags is aliquoted using a similar technique, which discards exposed sample surfaces. A 10 ml, or other appropriate volume of methanol, is added to the soil and the soil is shaken with the solvent. 100 ul of the extract, or a reduced aliquot or volume of a suitable dilution, is injected into 5 ml of laboratory blank water and analyzed by the same technique used for water samples.

ANALYTICAL METHODOLOGY

BTEX (Benzene, Toluene, Ethyl Benzene, and Xylenes) by Purge & Trap and GC-PID

WATER - Method 602 or 8020

A 5 ml sample volume, or 5 ml of a suitable dilution, is purged on a suitable purge and trap system with helium. The purged sample is analyzed on a Gas Chromatograph equipped with a Photoionization Detector (PID). A packed column is used to separate the compounds.

SOIL - Method 8020

A 10 gram, or other appropriate aliquot of soil, is weighed into a clean VOA vial. Soils received in brass core tubes are sampled by discarding 2-5 centimeters of soil from each end of the tubes (this is done to reduce the possibility of analyzing a portion of soil that has been exposed to sampling technique contamination). Equal aliquots of soil are then removed from each end of the tube and combined in the VOA vial. Soil in jars or bags is aliquoted using a similar technique, which discards exposed sample surfaces. A 10 ml, or other appropriate volume of methanol, is added to the soil and the soil is shaken with the solvent. 100 ul of the extract, or a reduced aliquot or volume of a suitable dilution, is injected into 5 ml of laboratory blank water and analyzed by the same technique used for water samples.

ANALYTICAL METHODOLOGY

Total Petroleum Hydrocarbons (TPH) Extractables by GC-FID

Extraction Procedure:

WATER -

A 1 liter sample is poured into a 2 liter separatory funnel. 3x100 ml extractions with methylene chloride (2 minute shake outs) are completed. The methylene chloride is decanted off and concentrated to a 5 ml final volume.

SOIL -

A 30 gram, or other appropriate aliquot of soil, is mixed with 30 grams of washed sodium sulfate. 100 mls of 2+1 methylene chloride/Acetone is added to the soil and placed on a mechanical shaker for 1 hour. The solvent is decanted off and the process is repeated with an additional 50 ml of methylene chloride/Acetone. The combined solvent extracts are filtered through sodium sulfate and the extract is concentrated to a 3 ml final volume.

GC ANALYSIS -

An appropriate volume of the sample extract is injected into a Gas Chromatograph equipped with a Flame Ionization Detector (FID), a split/splitless capillary injector (operated in the splitless mode), and a fused silica capillary column. The TPH fraction is quantitated as gasoline and/or #2 diesel fuel (and/or different petroleum hydrocarbon fuel types if requested, such as JP-4 jet fuel) based on relative retention times and examination of the elution profile. The TPH fraction quantitation is based on chromatographic peak areas against a multipoint standard curve.

Client I.D.: Method Blank
Date/Time Analyzed: 10/29/90 0914
Date/Time Sampled: NA

CHEMWEST I.D.: MB

Matrix : Water Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	104%	50-150%

BRL: Below Reporting Limit. RL: Reporting Limit. NA: Not Applicable

(1): Total of P-, M-, and O- Xylenes.

Approved by: __)\$^

Date Reported: 11/09/90

Client I.D.: Method Blank
Date/Time Analyzed: 10/30/90 1140
Date/Time Sampled: NA

CHEMWEST I.D.: MB
Matrix : Water
Dilution Factor: 1:1

	Amount etected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon	BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50
(Purgeable)		

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	82%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit. NA: Not Applicable

(1): Total of P-, M-, and O- Xylenes.

Approved by: \mathcal{Y}

Date Reported: 11/09/90

Client I.D.: Method Blank Date/Time Analyzed: 10/31/90 0904 Date/Time Sampled: NA

CHEMWEST I.D.: MB Matrix : Water

Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbo (Purgeable)	BRL BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	70%	50-150%

BRL: Below Reporting Limit. RL: Reporting Limit. NA: Not Applicable

(1): Total of P-, M-, and O- Xylenes.

Approved by: \(\frac{\gamma}{\circ} \)

Date Reported: 11/09/90

Client I.D.: Method Blank
Date/Time Analyzed: 11/06/90 1839
Date/Time Sampled: NA

CHEMWEST I.D.: MB
Matrix : Water

Dilution Factor: 1:1

3 m a s m

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	BRL BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	124%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit. NA: Not Applicable

(1): Total of P-, M-, and O- Xylenes.

Approved by: _\mathbb{Y}

Date Reported: 11/09/90

Client I.D.: MW-8A
Date/Time Analyzed: 10/26/90 2307
Date/Time Sampled: 10/19/90

CHEMWEST I.D.: 6950-1A Matrix : Water

Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon	BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50
(Purgeable)		

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	76%	50-150%

BRL: Below Reporting Limit. RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: y

Date Reported: 11/09/90

Client I.D.: MW-8B
Date/Time Analyzed: 10/29/90 1918
Date/Time Sampled: 10/18/90

CHEMWEST I.D.: 6950-2A Matrix : Water

Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	108%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: ________

Date Reported: 11/09/90

Client I.D.: MW-8C Date/Time Analyzed: 10/30/90 1749 Date/Time Sampled: 10/19/90 CHEMWEST I.D.: 6950-3B Matrix : Water

Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene	BRL	0.5
Toluene	BRL	0.5
Ethyl Benzene	BRL	0.5
Para-Xylene	BRL	0.5
Meta-Xylene	BRL	0.5
Ortho-Xylene	BRL	0.5
Total-Xylenes (1)	BRL	NA
Total Petroleum Hydrocarbon (Purgeable)	n BRL	50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	79%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: \(\frac{\frac{1}{2}}{2} \)

Date Reported: 11/15/90

Client I.D.: MW-8E
Date/Time Analyzed: 11/06/90 1726
Date/Time Sampled: 10/19/90

CHEMWEST I.D.: 6950-4A
Matrix : Water
Dilution Factor: 1:20

Amount Detected (ug/L)	RL (ug/L)
1500	10
1300	10
170	10
560	10
560	10
680	10
1800	NA
15000	1000
	(ug/L) 1500 1300 170 560 560 680 1800

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	74%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: y

-Date Reported: 11/09/90

Client I.D.: MW-8H
Date/Time Analyzed: 10/29/90 2259
Date/Time Sampled: 10/18/90

CHEMWEST I.D.: 6950-5A

Matrix : Water Dilution Factor: 1:1

Benzene 17 0.5 Toluene 2.5 0.5 Ethyl Benzene 14 0.5 Para-Xylene 4.0 0.5 Meta-Xylene 2.7 0.5 Ortho-Xylene 1.8 0.5 Total-Xylenes (1) 8.5 NA Total Petroleum Hydrocarbon (Purgeable) 300 50	Compound	Amount Detected (ug/L)	RL (ug/L)
	Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon	2.5 14 4.0 2.7 1.8 8.5	0.5 0.5 0.5 0.5 0.5 NA

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	116%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: y

Date Reported:

Client I.D.: MW-8I
Date/Time Analyzed: 10/29/90 2333
Date/Time Sampled: 10/18/90

CHEMWEST I.D.: 6950-6A
Matrix : Water
Dilution Factor: 1:1

	Amount etected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	92 4.1 37 19 BRL 1.8 21 530	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	110%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: _\mathbb{W}_

Date Reported:

REV5:9.90

Client I.D.: MW-8J Date/Time Analyzed: 10/30/90 2207 Date/Time Sampled: 10/18/90 CHEMWEST I.D.: 6950-7A

Matrix : Water

Dilution Factor: 1:1

	Amount etected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	8.3 BRL 2.6 1.5 BRL BRL 1.5 BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	128%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: _\mathscr{Y}

Date Reported: 11/09/90

REV5:9.90

Client I.D.: OB-3
Date/Time Analyzed: 10/30/90 2241

CHEMWEST I.D.: 6950-8A Matrix : Water

Matrix : water Dilution Factor: 1:5

Date/Time Sampled: 10/18/90

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene	260	2.5
Toluene	69	2.5
Ethyl Benzene	35	2.5
Para-Xylene	130	2.5
Meta-Xylene	240	2.5
Ortho-Xylene	120	2.5
Total-Xylenes (1)	490	NA
Total Petroleum Hydrocarbor	n 3200	250
(Purgeable)		·

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	86%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Approved by: __________

Date Reported: 11/09/90

REV5:9.90

Client I.D.: OB-4
Date/Time Analyzed: 10/30/90 2316
Date/Time Sampled: 10/18/90

CHEMWEST I.D.: 6950-9B Matrix : Water

	Dilution	Factor:	1:10
_			

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene	600 540	5.0 5.0 5.0
Ethyl Benzene Para-Xylene Meta-Xylene	83 140 290	5.0 5.0
Ortho-Xylene Total-Xylenes (1)	410 840	5.0 NA
Total Petroleum Hydrod (Purgeable)	carbon 4300	500

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	83%	50-150%

BRL: Below Reporting Limit. RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Date Reported: REV5:9.90 Approved by: _ 11/09/90

Client I.D.: MW-8F

CHEMWEST I.D.: 6950-10B

Matrix : Water

Date/Time Analyzed: 10/30/90 1715 Date/Time Sampled: 10/18/90

Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	85%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

Date Reported: Approved by: _\frac{\(y^2 \)}{} REV5:9.90 11/09/90

Client I.D.: MW-8G

CHEMWEST I.D.: 6950-11A Matrix : Water

Date/Time Analyzed: 10/30/90 1424

Date/Time Sampled: 10/18/90

Dilution Factor: 1:1

Compound	Amount Detected (ug/L)	RL (ug/L)
Benzene Toluene Ethyl Benzene Para-Xylene Meta-Xylene Ortho-Xylene Total-Xylenes (1) Total Petroleum Hydrocarbon (Purgeable)	BRL BRL BRL BRL BRL BRL BRL BRL BRL	0.5 0.5 0.5 0.5 0.5 0.5 NA 50

Surrogate	% Recovery	Acceptance Window
Bromofluorobenzene	103%	50-150%

BRL: Below Reporting Limit.

RL: Reporting Limit.

(1): Total of P-, M-, and O- Xylenes.

- Date Reported: REV5:9.90 11/09/90 Approved by: _

CHEMWEST ANALYTICAL LABORATORIES TOTAL PETROLEUM HYDROCARBONS - EXTRACTABLE

Date Extracted : 10/24/90 Dilution Factor: 1:1

Case : 6950 Matrix: Water

Reporting Units: ug/L

Client ID	CHEMWEST ID	Diesel Result	RL	Other Hydr Mixtu Result	
Method Bl	ank MB	BRL	50	BRL	50
MW-8A	6950-1C	BRL	50	\mathtt{BRL}	50
MW-8B	6950-2C	BRL	50	\mathtt{BRL}	50
MW-8C	6950-3C	BRL	50	BRL	50
MW-8E	6950-4C	620	50	BRL	50
MW-8H	- 6950-5C	\mathtt{BRL}	50	BRL	50
I8-WM	6950-6C	\mathtt{BRL}	50	\mathtt{BRL}	50
MW-8J	6950-7C	\mathtt{BRL}	50	BRL	50
OB-3	6950-8C	2100	50	BRL	50
OB-4	6950-9C	330	50	BRL	50
MW-8F	6950-10C	360	50	BRL	50

Method Blank MB NA 11/03/90 1717 MW-8A 6950-1C 10/19/90 11/03/90 1808 MW-8B 6950-2C 10/18/90 11/03/90 1951 MW-8C 6950-3C 10/19/90 11/03/90 2043 MW-8E 6950-4C 10/19/90 11/03/90 2134 MW-8H 6950-5C 10/18/90 11/03/90 2226 MW-8I 6950-6C 10/18/90 11/03/90 2317 MW-8J 6950-7C 10/18/90 11/04/90 0009 OB-3 6950-8C 10/18/90 11/04/90 0100 OB-4 6950-9C 10/18/90 11/04/90 0243	Client ID	CHEMWEST ID	Date Sampled	Date/Time Analyzed
	MW-8A	6950-1C	10/19/90	11/03/90 1808
	MW-8B	6950-2C	10/18/90	11/03/90 1951
	MW-8C	6950-3C	10/19/90	11/03/90 2043
	MW-8E	6950-4C	10/19/90	11/03/90 2134
	MW-8H	6950-5C	10/18/90	11/03/90 2226
	MW-8I	6950-6C	10/18/90	11/03/90 2317
	MW-8J	6950-7C	10/18/90	11/04/90 0009
	OB-3	6950-8C	10/18/90	11/04/90 0100
	OB-4	6950-9C	10/18/90	11/04/90 1352

BRL: Below Reporting Limit. RL: Reporting Limit.

Approved by: y

Date Reported: 11/13/90

REV4:9.90

CHEMWEST ANALYTICAI ABORATORIES, INC. 600W North Market Blvd. Sacramento, California 95834 (916) 923-0840 FAX (916) 923-1938 CLIENT: Harding Lawson Associates 1355 Willow Way, Suite 109 Concord CA	Order No. 06950 Date Rec'd.10-22-90 15:10 Compl. Date Section JOEL C BIRD Project Name: Texaco \$500 Grand Project No. 2251,081.03 P.O. NO. Contact Hudson / Randy Stone
vials (22) to be analyzed for Diesel C of C does not agree	HIES (20), 40 ml voa BTEX, TPH Gas &
	PHEAD water 4-containers
- 8A-0 0B-3 10-18-90 - 9A-0 0B-4 10-18-90 - 10A-0 MW-8F 10-18-90 .V - 11A,B MW-8G 10-18-90 TPH-6	BIEK 2-40 mi voavials
B2. GC 5. G. SUSAN GILBERT 101 - 91 06 130 72	CHEM WEST COURIER

-	_	_		_	
- 5	=	-	-	-	Ę
Ŧ	=	Ţ	_	=	₹
ŀ	:	i		٠.	7
ì	╧.	÷		-	₹
Ē	-	=	_		₹
		-		==	=

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660 Telecopy: 415/687-9673

CHAIN OF CUSTODY FORM

Lab: Chemwest

				5/687 ecop			87-9	673													9	Q s	a FY	ınl	er	۰.		5	te	ove Hani	ren	Г			 /	AN	AL	YS	is i	REC	JUE	STE	D			٦
,	Job Nam	N	um	be	r:	_	2	2	<u></u>	/ (<u>28</u>	1.	<u> </u>	<u>.</u> د	3						•					٠.											T	1	0						\prod	
	Nam Proj	ec	La t	ca Ma	iti m	or ag	1:_ e	-/- r:_	er I	(ac	<u>o</u> F	fu	d	<u>\</u>	1	, (21	246	4_		ļ	 Re	 €C	or	de	er:	-15i	Liona		Esas B. (re Required)	Han							191.50	ナンジャ							
		L		TR			#(COM & P	NT/ RE:	AIN SEF	ERS			S	AN UN O	R	E R				,		D.	ΑT	E			֓֟֟֟֟֟	ſ	STATION D	ESCRIPTION/	501/8010	2/8020	1/8240	1 625/8270	ALS	SM/TPH	164	dicie							
	SOURCE CODE		Water	lio			Inpres.	H, SO4	NO.	124		Ļ	/r		UM	۱B	R Sec		 	 Үг	Γĸ	 Ло	T -	 Σγ	Γ-	T:	ne	_		NO	OTES ·	FPA 60'	EPA 602	PA 624	EPA 62	CP MET	PA 801	37EX	PHai							
		H	$\frac{\mathbf{x}}{\mathbf{x}}$	75	T	+	f	+	H	귌	╅	╫	ا	┝	_	8	A	T	19	<u>, </u>			 	·				\dashv	H			╬			団	7	Ħ	Ť	7	+	十	H	\dagger	+	++	H
•	23	П	Ϋ́	1	T	1	2		П		1	1	W	-	_	_	Ā		ľ	ľ	Ė	オ	Ť																X	1	I	П				
•	23	П	X,		L					2		М	W		E	જ	В	I					\prod									\prod			П		Ц	X					_	<u> </u>		L
• •	Z 3	Ц	XI.	1	-	↓	12	<u> </u>		4	\downarrow	М	W	Ŀ		-	B	1	╀	丄	Ļ	L	$oldsymbol{\downarrow}$	L	Ц		Ц	4				1]_		_	Ш		\sqcup	7	才	_	\downarrow	$\bot \downarrow$	4	-	$\downarrow \downarrow$	L
•		Ц	Χ	_	1	_	1	L		깈	_	-	W	Ľ	L	8	잌	4	1	1	1(1_	╀	<u> </u>	Ц		4	4	L			↓ L	L	L	Ш	┙	\sqcup	K	.,	4	4	$\downarrow \downarrow$	4	\bot	╄	L
••	23		Χ	1	1_	_	12	L	L			_	W	-	<u> </u>	8	깈	╁	╀	L	Ľ	1	<u> </u>	_	Щ		\Box	_	L	•		↓ _	_	L	1		Ш		14.	4	4	Ш	4.		┦	L
••	23	Ц	X	\perp	\perp		L	L	Ш	싀	\perp	M	W	<u> </u> -	<u>L</u>	8			L	L	\coprod	1	L	_					L			Ⅱ		L				丛		\perp		$\perp \downarrow$	\bot	⊥	Ш	L
6 •	23		X		L		2	_				М	W	_	L	8	ε		L		Ц		L					╝	L			IL			Ш	Ш	Ш		X	\perp	┸	Ш			'	L
• •	23		X		L		L			2		Μ	W	Ŀ	Ł	8	H	\perp				V	L					╛	L			IL					Ц	X			┸	Ш				
44	23		X		\perp		2			Ц	\perp	Μ	l٨	L	Ł	8	Н		7	0	1	0	业/	8	Ш			╝	L			JL			Ш		Ш		N	\perp	\bot	\bigsqcup				L

LA NUM				EP1 IN EE	N	OL ITD CD	Ŋ	-	A DDE	MISCELLANEOUS	CHAIN OF CUSTODY RECORD
		4			-						RELINQUISHED BY: (Signature) RESINQUISHED BY: (Signature) RESINQUISHED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME
											DISPATCHED BY: (Signature) DATE/TIME DISPATCHED BY: (Signature) DATE/TIME RECEIVED FOR LAB BY: DATE/TIME (Signature) SUSAN GILBERT CHEMWEST LAB

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660 Talecopy: 415/687-9673

CHAIN OF CUSTODY FORM

Lab: Chrawest

	Telecos	7-9660 by: 415/68	37-9673							Sa	mn	der	rs:	.5	57	tere Hanry				¥N.⊁	ALY:	SIS R	EQUE	ESTE	D		
Job	Numbe	:r: <u></u>	2251	08	1.0.	3												T	П	T	\mathbf{I}		\prod	П			Γ
Nam	Numbe ne/Loca	tion	1: <u>Té</u> z	(ac	, #8	50	060	an d	_						-#			1		١	967	ع				ll	
Proj	ject Ma	ınag	er:_ <u></u>	· /	tud	(* A				Re	co	rde	er:	1Sigi	nat	ture B. Harrison					j	10.7	11				
	MATR	ıx	#CONT/ & PRE	AINER SERV.	s	SAM NUM	PLE BER		-		DA1			-]	STATION DESCRIPTION/	8010	8020	EPA 625/8270	S	£ 7	F					
SOURCE CODE	Water Sediment) o .	75		OI LA NUM	R \B BER			•						NOTES	. 601/80	/ 802/	625/	META	2008 ×	9					
Sou	Water Sedim	ō	Unpres. H ₂ SO ₄ HNO ₃	*	Yr	Wk	Seq	\	/r	Мо	Dy		Tim	ne]		EPA	EP.	EP/	ညီ				$oxed{oxed}$		Ш	
·[I X I			2	MW	+	8 I	14	0/	0	18		\prod				\Box			\perp	X		\coprod				
23			2		MW	+	8 I			λĪ											\perp	X					
23	IX			2	MN		マブ			\prod			П		11		П	Ţ	П	\top	Ty	4	Π				
23	IX	П	2		MW	+	8 J	П	П	Л			П	Τ			П	П	\prod	T		X					
23				2	OB	4	3		11	\prod		T	П	\top	1		П	Т	П	П	T	\prod	TT	П	$T_{\cdot \cdot}$		Ι
23			2		OB	7	3		П	\prod		1			1		П					X	TI				Τ
23				2	OB	1	4	П	П	П			П		1		П	T		T	TX	\prod	\prod	\Box		\prod	T
23	l ý		2		OB	17	4		\prod^{ℓ}	Π		\top	\prod	╁	1		П	T	11	T	T	又	77	\Box	T		T
23		Π		2	42		8 F	П	П	1		T	\sqcap	\top			П			T	X	\prod			\top	П	T
23	X		2		11/4	1	8 F	7	01	10	18		П	1]		П			T	T	KI				П	T
														•	· ·												
			1				I							T													

	_	LA IUM Vk	1BE				_	11	TH V ET		C(M1 C			CO	-		MISCELLANEOUS	CHAIN OF CUSTODY RECORD
 	Y	VK		Se	4	_	_		_		_		Н	_				RELINQUISHED BY: (Signature) RECEIVED BY: (Signate ARY BIASE DATE/TIME
1	\perp	-	_	4	_	_	_	_		_	_			L				Leve B. Fana & am Brase 10-22-90 1/:40
—	╄	┦		4	_	4	4		Ц	Ц	Щ	L	L	Ļ.	_	L		REALNOUISHED BY (Signature) DATE/TIME
	L			_	_	_	_		Ц			_	_					RELINQUISHED BY: (Signature) BATE/TIME AM D. Vas/ GARY BIASE RECEIVED BY: (Signature) DATE/TIME 10-22-90 15:10
			Ц	┙			_							L				RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME
					1		1		L									
	Π	П		T	T	7	_[П			Γ				RELINQUISHED BY: (Signature) BECEIVED BY: \(\signature\) DATE/TIME
				\exists	ヿ													
	T						7											DISPATCHED BY: (Signature) DATE/TIME RECEIVED FOR LAB BY: DATE/TIME (Signature) SUNNY GILLERI 10/15
	✝	П	П		7	7	╗					Г			_	Γ		1 Jugan 1) 1 Leve 23/15.10
廿			П	7	7								T	T				METHOD OF SHIPMENTIEM WEST COURIER CHEMWEST LAB

_
:::== =
2 = 2 2
. — . — . — . — . — .

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660

CHAIN OF CUSTODY FORM

Lab: Chemwest

					-																					S	a	m	p۱	e	ГS	:	-	۶ 7	<u> </u>	eve Hans	en						- /	٩N	ΑL	YS	SIS	RE	Qυ	ES	TEC				
Jo	b	N	um	ıb	er	:		Z	25	5/	1		<u> 2</u> S	1	. (<u></u>	3								,	_													1			١				这	ļ								1 1
N	am	e/	L	oc	aí	io	n:	_		Ż	<u>'e</u>	م ۲	C	0	*	8	>	<u>S</u>	0	٥	6	10	^	1		_									_,	/			l	ı	Į	1	1	1	Ì	ZZ		. 1	Į				1	1	11
Pi	b am oj	ec	ŧ	М	ar	۱a	ge	er	:	١	7		1	L _u	a	//	د ه	1							•	R	е	C	or	d	er	•	(Šiį	A	/	Lu B	Hans						1			5									
			_	ΑT				#C	ON	RE	SE	NE R\	RS /.	T			SA	M	PL BÉ	E R								DA	\TI					1	I	STATION DE	SCRIPTION/		0.00		0208/	8240	/8270	LS	M/TPH	2									
IRCE	CODE		Water	ment			1	res.	္ပါ	ű							NU	OF LA IMI	lΒ	R			ļ													NOT	TES				602	624	EPA 625/8270	RET	8015	140								İ	
Sol	잉	İ	چ ا	Sed	S	<u></u>	١	5	H, 50.	Ž	I			Ī	Ϋ́r	. [WI	\		Sŧ			Ţ	Ϋ́r	Τ	Mo	,	D	У		Ti	me	e	1	l						EP.	EP.	릷	힏	EP#	1									
Z	,	7	XT		٦	7	1	7	\neg		2		T	7	41	<u>J</u>	4	1	જ	G		Γ	9	0	, /	, [9	7	g.		Γ	Τ	T	1	ľ											X						Ι			\prod
		T			7	7	Ĭ						T	ľ	T	1	\top		_				Ī	T	T		T				1	1	T	٦	Γ					T															
														I											I]	L						1												_	\perp	\perp
L	Ц	\perp	\perp		┙	\perp			┙		L		\perp	L	1		\perp				L	L	L	\downarrow	1		┛			L		\perp	╧	1	L					1	_	_						\square	\Box	4	_ _	\downarrow	\perp	1	Щ
L		\downarrow	\perp			4	1			_	L	L	┸	l	1		4	_			L	L	L	╀	1	1	_			L	<u> </u>	L	1	1					IL	1	4	_				L	Ц	Ш		_	4	1	1	_	4
L		\bot	4			4	_			L	_	_	╀	1	1	4	_	_		L	L	Ļ	L	╀	1	1	_	_		_	<u> </u>	╀	1	4	-	<u> </u>				4	4	4				L	Ц	\sqcup	Ц	4	4	4	_	4	\dashv
<u> </u>	Ш		_		4	4	4	4			<u> </u>	Ļ	1	1	4	4	_	_	_	L	L	<u> </u>	L	╀	4	4	4	_			↓_	╀	4	4	_				╟	4	4	4	\dashv	_	ļ	ļ		\sqcup		4	4	_	4	4	41
L			_	4	4	4	4	4		_	ļ_	╄	4-	1	4	4	4	4		L	L	L	Ļ	╀	4	4	4	_			Ļ	Ļ,	<u>-</u>	1	ļ	DEC DECID IAL	ፖለለፕ ፖለህ	NITI/	L		4	4	-	_	-	<u> </u>	-		-	_	+	+	+	+	44
\vdash			\dashv	_	╣	-	-	_	_		┡	╀	4-		-	4	4	4		-	L	-	1	1	+	4	-	_	_	┞	╀	ľ	7			YLES REC'D IN (NO LEAKAGE O			ľ	4	4	4		-	ļ	_		\sqcup	$\vdash \vdash$	\dashv	+	+		+	
L	Ш		_				_1				L	<u> </u>	L	1.	_					L		L	L	1	1	_				L	1	L	Ţ	- 1	1	10 ELVINOR O			I L				Ш			<u> </u>	Ш	Ш	Ш				Ŀ		Щ
_							_					_		_				-	_									_					_	_		100 icacban	67																	-	 -
			LA UM		R				EP 11	N		M	OI ITE	ı		Q/ (O)) DE					N	IIS	CE	L	LA	NE	ΕΟ	US	;			I				CHAIN	OF (ะบ	ST	OD	ΣY	RE	EĊ	OR	D	:	!							
T	1	$\overline{\mathbf{w}}$	k		Se	q	7	١	FE	ET		ľ	ÇD	1																			F					_		_															
L		\Box				Ţ					L		I	1	I									•									1	RE /	y	MOUISHED BY: 15ig	gnature)	_ R	TEC	7	VEC 7aa	D E	3Y:	/5' 1	9*€ /C	3X(1/2)	RY	,BI/	4SE	0-2	DA 72	TE.	/TII	ME /a	ti
	\sqcup	_	_		_	4	_	_		_	L	ļ.	4	╀	1	_		_	L														╬	AZ= FLE	<u>, </u>	NOUISHED BY:	MASKATI OC	F	ιΕC	ŧ,	VE	Ø E	3Y:	(Si	gna	tur	e)				DA	TE			
L	Щ	4	_	_	4	4	_	4		L	1	1	\downarrow	1	4	4	_	_	L														-L	X		un Drase				l			<u> </u>	_		مسد)		10	2	<u> Z-</u>	20	Z	<u>5</u>	10
-	Н	\dashv	-	_	\dashv	+	-	-		-	1	╀	╀	╀	+	-	-		┞		٠.												-	RE	L	INOUISHED BY: (Sig	ignature)	F	REC	EI	VE	01	BY:	(S	igni	e fur	e)				DĀ	TE	/Ti	ME	,
-	H	\dashv	\dashv		\dashv	\dashv	1	\exists		H	Ť	\dagger	†	\dagger	+	1			一									_					†	RE	ĒL	INQUISHED BY: (Sig	gnaturel	7	IEC	Œľ	VE	D I	BY	(S	igna	stui	re)	Ť			P	TE	/TI	ME)
H	\vdash	-	-			+	-1	\vdash	Н	┞	┿-	╂╌	╀	4-	+	4		_	1-														4					X				-		1		_		/			1		ا	${\cal I}$	

RECEIVED FOR LABBERT DATE/TIME
(Signature) SUSAN GILBERT (1977) 15:10

DISPATCHED BY: (Signature)

METHOD OF SHIPMENT " 4 SHEST COURIER

DATE/TIME

November 15, 1990

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, CA. 94520

Attention: Ms. Jenna Hudson

Subject: Report of Data - Case Number 6963

Dear Ms. Hudson:

The technical staff at CHEMWEST is pleased to provide our report for the analysis you requested: TPH EXTN/GC - FID - DHS Method; LUFT Field Manual.

One water sample for Project Texaco #8 500 Grand, Project Number 2251,081.03 was received October 23, 1990 in good condition. Results of the analysis, along with the analytical methodology and appropriate reporting limits, are presented on the following page(s).

Thank you for choosing CHEMWEST Laboratories. Should you have questions concerning this data report or the analytical methods employed, please do not hesitate to contact Debbie Pearce your Customer/Technical Service Representative. We hope that you will consider CHEMWEST Laboratories for your future analytical support and service requirements.

Sincerely,

Robert T. Hart

Data Control Manager

RTH:rp

cc: File

ANALYTICAL METHODOLOGY

Total Petroleum Hydrocarbons (TPH) Extractables by GC-FID

Extraction Procedure:

WATER -

A 1 liter sample is poured into a 2 liter separatory funnel. 3x100 ml extractions with methylene chloride (2 minute shake outs) are completed. The methylene chloride is decanted off and concentrated to a 5 ml final volume.

SOIL -

A 30 gram, or other appropriate aliquot of soil, is mixed with 30 grams of washed sodium sulfate. 100 mls of 2+1 methylene chloride/Acetone is added to the soil and placed on a mechanical shaker for 1 hour. The solvent is decanted off and the process is repeated with an additional 50 ml of methylene chloride/Acetone. The combined solvent extracts are filtered through sodium sulfate and the extract is concentrated to a 3 ml final volume.

GC ANALYSIS -

An appropriate volume of the sample extract is injected into a Gas Chromatograph equipped with a Flame Ionization Detector (FID), a split/ splitless capillary injector (operated in the splitless mode), and a fused silica capillary column. The TPH fraction is quantitated as gasoline and/or #2 diesel fuel (and/or different petroleum hydrocarbon fuel types if requested, such as JP-4 jet fuel) based on relative retention times and examination of the elution profile. The TPH fraction quantitation is based on chromatographic peak areas against a multipoint standard curve.

CHEMWEST ANALYTICAL LABORATORIES TOTAL PETROLEUM HYDROCARBONS - EXTRACTABLE

Date Extracted : 10/24/90 Dilution Factor: 1:1

Case : 6963 Matrix: Water

Reporting Units: ug/L

Client ID	CHEMWEST ID	Diesel Result RL	Other Hydrocarbon Mixture Result RL
Method Blan	nk MB	BRL 50	BRL 50
MW-8G	6963-1	460 50	BRL 50

Client ID	CHEMWEST ID	Date Sampled	Date/Time Analyzed
Method Blan	k MB	NA	11/04/90 1536
MW-86	6963-1	10/22/90	11/04/90 1628

BRL: Below Reporting Limit. RL: Reporting Limit. NA: Not Applicable

Approved by: 454

Date Reported: 11/17/90

REV4:9.90

CHEMWEST ANALYTICAL LA 600W North Market Blvd. Sacramento, California 95834 (916) 923-0840 FAX (916) 923-1938 CLIENT: Harding Laur 1355 Willow Concord, C. F. ANALYSIS: One wate Custody in CHEM to be analyzed Custody does not a	son Associates Project	a J. Hudson Randy Ston
SAMPLEID	DATE ANALYSIS	MATRIX CONTAINER
6963AB - MW-86	10/22/90 TPH/D, WASTE	WATER 2-19t glass bottles
		· · · · · · · · · · · · · · · · · · ·
	•	
R-I BILL MEBENGE	22 60 06 130 12	CHEM WEST COURIER

1:1=1
_

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 415/587-9660

CHAIN OF CUSTODY FORM

Lab: Chemwest

415/687-9660 Telecopy: 415/687-9673	Samplers: <u>S</u>	teve Hansen	ANALYSIS REQUESTED
Job Number: <u>2251,081,03</u> Name/Location: <u>Texaco +8 500 6aa</u> Project Manager: <u>J. Hudson</u>	1		
Project Manager: J. Hudson	Recorder:	Stre B. Harren	
MATRIX #CONTAINERS SAMPLE NUMBER OR LAB	DATE	STATION DESCRIPTION/ NOTES	801/8010 602/820 624/8240 625/8270 8015M/TPH
CODE RANGE OF THE SOIL OF THE	Yr Mo Dy Time	NOTES	EPA 60 EPA 62 EPA 62 EPA 62 EPA 80 EPA 80
2 - X			
23 1 2 4 4 4 86	9010227	2/1 lambers	
		* Chain of custody	
		does not agree - water	
		on bottle 10/18/90.	
		10/24/90 09:50 Car	
		Conversation between	
		1. Hudson & B.WM - Beng	
		correct date is on	
		Colciol22190. BM9	
		0-3-1-1-1-1-1	

		NUN					DEPTH COL QA IN MTD CODE MISCELL FEET CD				MISCE	LLANE	EOUS	CHAIN OF CUSTODY RECORD							
ľ	Yı Wk		: Seq		eq		1					•		İ		1		'		<u> </u>	DEL INDUIGUED DV. (Cinner) DECENSED DV. (Cinner) DA CHATE/TIME
		I	П		Γ				1		Ţ	Ţ	Ţ	I					- RELINDUISHED BY: (Signature) RECLIVED BY ISIGNATURE SARY BIASPATE/TIME LEW B. Hunsen Jam Drad 10-23-76 10:25		
L			Ш			Ш					L		┸	\perp					RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME		
	Ц	\bot	Ц									1.			ļ	<u> </u>			Jam Brase CARY BIASE 10-73-90 18:05		
													L		1				RECEIVED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME		
			П										Τ	I							
	П		П	Т	Т	Г		П	╗	Т	Т	Т	Т	T					RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME		
	11	1	H	1	†	T	-	\Box	1	\dagger	†	╁	十	\top	†		·····				
					1					丁	1		1						DISPATCHED BY: (Signature) DATE/TIME RECEIVED FOR LAB BY: DATE/TIME (Signature) BILL MCBENGE! 1/29 (S. 105)		
Į	1	7		ı	1				ı	1	ł	1			l				Bill 11) = Barger "481/8:05		
		1	П	十	†	T	Τ		1	1	1	1	†	+	1			+ -	METHOD OF SHIPMENT CHEST COUKIER		

DISTRIBUTION

4 copies: Texaco Refining and Marketing Inc.

108 Cutting Boulevard

Richmond, California 94804 Attention: Mr. R. R. Zielinski

JSH/SJO/pkp 031480B/R44

QUALITY CONTROL REVIEWER

Glenn S. Young

Project Geologist