ExxonMobil Refining & Supply Company

Global Remediation – US Retail 4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 510.547.8706 Fax jennifer.c.sedlachek@exxonmobil.com

RECEIVED

2:41 pm, Oct 16, 2007

Alameda County
Environmental Health

Jennifer C. Sedlachek Project Manager

September 26, 2007

Mr. Steven Plunkett Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #7-0238/2200 East 12th Street, Oakland California.

Dear Mr. Plunkett:

Attached for your review and comment is a copy of the letter report entitled *Soil and Groundwater Assessment Report*, dated September 26, 2007, for the above-referenced site. The report was prepared by Environmental Resolutions, Inc. (ERI) of Petaluma, California, and details assessment activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

ERI's Soil and Groundwater Assessment Report, dated September 26, 2007

cc:

w/ attachment

Mr. Chuck Headlee, California Regional Water Quality Control Board, San Francisco Bay Region Mr. Robert C. Ehlers, M.S., P.E., The Valero Companies, Environmental Liability Management

w/o attachment

Ms. Paula Sime, Environmental Resolutions, Inc.

Southern California Northern California Pacific Northwest Southwest Texas Montana

September 26, 2007 ERI 229303.R24

Ms. Jennifer C. Sedlachek ExxonMobil Refining & Supply - Global Remediation 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT

Soil and Groundwater Assessment Report Former Exxon Service Station 7-0238 2200 East 12th Street, Oakland, California

Ms. Sedlachek:

At the request of Exxon Mobil Corporation (Exxon Mobil), Environmental Resolutions, Inc. (ERI) prepared this report documenting assessment activities at the subject site. ERI observed the advancement of six direct-push (DP) soil borings (DP1 through DP6) for collection of soil and groundwater samples. Assessment activities were performed in response to directives from the Alameda County Health Care Services Agency (the ACEH) dated January 17, 2007, and May 24, 2007. The work was performed in accordance with ERI's *Work Plan for Additional Soil and Groundwater Investigation*, dated April 10, 2007, and subsequent Addendum to Work Plan for Additional Soil and Groundwater Investigation, dated June 4, 2007, and subsequent discussions and correspondence with the ACEH. ERI requested and was granted an extension on the due date for the submittal of this report due to encroachment permitting delays. Regulatory correspondence is provided in Attachment A. The purpose of this investigation was to further delineate the extent of petroleum hydrocarbons, in particular methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA), in soil and groundwater beneath and downgradient of the site.

BACKGROUND

The site is located on the eastern corner of 22nd Avenue and East 12th Street in Oakland, California (Plate 1). Land use in the vicinity of the site is mixed-use commercial/industrial and residential (Plate 2). The site is currently owned and operated by Mr. Stanley Wong and Mr. Aaron Wong as a Valero-branded service station. The locations of the former and current underground storage tanks (USTs), dispenser islands, groundwater monitoring wells, and select site features are shown on Plate 3. Groundwater monitoring has been conducted at the site since June 1988.

SOIL BORINGS ADVANCEMENT

Scope of Work

The work was performed in accordance with ERI's standard field protocol (Attachment B) and a site-specific health and safety plan. ERI obtained permits from the Alameda County Public Works Department (the County) and encroachment permits from the City of Oakland (the City) prior to performing the field work. Copies of the permits are provided in Attachment C.

Proposed boring DP7 is located on private property located at 2121 East 12th Street. ERI submitted an access agreement to the owner of the property on June 20, 2007, and the ACEH followed up with a second request letter dated August 22, 2007. ERI has not received a response from the property owner.

Boring DP8 was proposed in the southeast-bound lane of East 12th Street and can not be advanced due to the presence of multiple underground utility lines in the vicinity of the proposed location.

Soil Boring Advancement

From August 21 through 24, 2007, ERI observed Woodward Drilling (Woodward), of Rio Vista, California, use a hand auger to clear the upper 8 feet of 12 soil borings (DP1 through DP6 and separate adjacent holes for possible use of a Hydropunch® tool for groundwater sample collection). Soil samples from the 5 feet below ground surface (fbgs) interval were collected directly from the hand auger. Woodward was unable to clear borings DP1 and DP4 through DP6, and their adjacent holes, exclusively with the hand auger; subsurface conditions necessitated the use of the air knife to clear these borings.

From August 27 through September 6, 2007, ERI observed Woodward advance borings DP1 through DP6 to approximately 30 fbgs using dual-wall direct-push equipment. Soil boring locations are shown on Plate 3.

ERI collected continuous core soil samples from the soil borings during drilling from 5 to 30 fbgs for stratigraphic evaluation and possible laboratory analysis. Soil samples were retained for analysis at 5-foot intervals and where photo-ionization detector (PID) readings indicated the possible presence of hydrocarbons. ERI identified the samples using visual and manual methods and classified the samples according to the Unified Soil Classification System (USCS). Boring logs showing the descriptions of soil encountered and the USCS symbol key are presented in Attachment D.

Upon completion of soil and groundwater sampling from the borings, ERI observed Woodward backfill the borings by tremie-grouting with neat cement grout from total depth to ground surface.

<u>Laboratory Analytical Methods – Soil Samples</u>

ERI submitted select soil samples for analysis to Calscience Environmental Laboratories, Inc. (Calscience), of Garden Grove, California, a California state-certified laboratory, under Chain-of-Custody protocol. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) using Environmental Protection Agency (EPA) Method 8015B and benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tertiary butyl ether (MTBE), oxygenated compounds (ethyl tertiary butyl ether [ETBE], tertiary amyl methyl ether [TAME], tertiary butyl alcohol [TBA], and di-isopropyl ether [DIPE]), and lead scavengers (1,2-dibromoethane and 1,2-dichloroethane) using EPA Method 8260B. The laboratory analytical reports and Chain-of-Custody records are provided in Attachment E. Cumulative analytical laboratory results of soil samples are presented in Tables 1A and 1B. Select analytical results of soil samples collected during this assessment are shown on Plate 4.

Grab Groundwater Sample Collection

Groundwater sample collection was attempted in borings DP1 through DP6 from intervals where sediments indicated the presence of groundwater. Groundwater sampling was attempted at shallow and deeper depth intervals as summarized in the following table.

Boring	Shallow Interval (fbgs)	Duration Boring Open	Sample Collected?
SHALLOW INTERV	ALS		rinake interes
DP1	13	30 minutes	Yes
DP1	15-17	35 minutes	No
DP2/HP2	13-17	30 minutes	Yes
DP3	10	20 minutes	Yes
DP3	15	15 minutes	Yes
DP4	13-17	15 minutes	No
DP4/adjacent hole	13-17	3.25 hours	No
DP5/adjacent hole	15-18	18 hours	No
DP6/adjacent hole	16-19	18.5 hours	3 vials
DEEPER INTERVAL	S		2.5
DP1	26-30	30 minutes	No
DP4	22-24	15 minutes	No
DP5	24-30	2 hours	No
DP6	20-30	2 hours	No

ERI made multiple attempts to collect groundwater from the shallow sampling interval since groundwater did not immediately enter borings DP4, DP5, and DP6. An adjacent boring at each location was advanced and temporary casing was installed. Due to encroachment permit restrictions and inability to secure the boring location overnight, the borehole adjacent to boring DP4 could not be left open to allow additional time for groundwater to enter the hole. Soil conditions suggest that groundwater may not have entered the boring even if it could have been left open for an extended period of time. Borings adjacent to borings DP5 and DP6 were advanced to 18 and 19 fbgs, respectively, and temporary casing was installed. The borings were secured and left overnight to allow groundwater to enter the casings. Groundwater did not enter boring HP5, and very little groundwater entered boring HP6; only three vials could be filled with groundwater.

Laboratory Analytical Methods - Grab Groundwater Samples

ERI submitted grab groundwater samples collected from the borings for laboratory analysis to Calscience, under Chain-of-Custody protocol. The samples were analyzed for TPHg using EPA Method 8015B and BTEX, MTBE, oxygenated compounds, and lead scavengers using EPA Method 8260B. The laboratory analytical reports and Chain-of-Custody records are provided in Attachment E. Cumulative grab groundwater sample data are presented in Table 2. Cumulative groundwater monitoring and sampling data are presented on Tables 3A and 3B.

Soil Boring Surveying

On September 7, 2007, Morrow Surveying (Morrow), of West Sacramento, California, surveyed the soil boring locations according to AB 2886 standards. A site map depicting the survey data is provided in Attachment F.

Waste Disposal

Soil generated during soil boring activities were temporarily stored in 55-gallon drums on site pending characterization and disposal. ERI collected one composite soil sample (4 brass sleeves) for analysis for TPHg using EPA Method 8015B; BTEX, oxygenated compounds, and lead scavengers using EPA Method 8260B; and total lead using EPA Method 6010B for evaluation of disposal options. Dillard Environmental Services (Dillard), of Byron, California, transported five drums of soil and two empty drums

to the Republic Services Vasco Road landfill in Livermore, California, on October 5, 2007. Waste disposal documentation will be provided under separate cover.

Water generated during soil boring activities was stored on site in two 55-gallon metal drums pending characterization and disposal. ERI transferred approximately 110 gallons of rinsate water through the on-site groundwater remediation system on September 14, 2007.

RESULTS OF ASSESSMENT

Site Geology and Hydrogeology

Sediments encountered in the borings during this investigation were predominantly very stiff, damp gravelly clay and clayey gravel with varying amounts of fine sand, interspersed with lenses of clayey sand and sandy clay. A layer of clayey gravel is consistently present in the off-site borings at approximately 15 to 19 fbgs and varies in thickness from 1 to 5 feet. Moisture is present along clast boundaries throughout much of the clayey gravel sediments, but free groundwater (saturated sediment or groundwater readily available for sampling) was only present in boring DP3 at 10 and 15 fbgs. First groundwater was encountered in the borings at depths of 9 to 16 fbgs. Sediments are described on the boring logs provided in Attachment D. Cross sections are provided on Plates 6 through 13.

Soil Conditions

Soil samples were collected continuously from the soil borings. Select samples from approximately 5 to 30 fbgs in each soil boring were preserved and submitted for laboratory analysis. A summary of current and historical soil analytical results is provided in Tables 2A and 2B. Laboratory analytical reports and Chain-of-Custody records are presented in Attachment E. A plan view of select analytical results of soil samples collected during this assessment is shown on Plate 4.

Residual MTBE was reported in soil samples collected from soil borings DP2 through DP6 at a maximum concentration of 0.990 milligrams per kilogram (mg/kg) (DP6, 19.5 fbgs). Concentrations of TPHg and BTEX were not reported in the soil samples.

Concentrations of TBA were reported in soil samples collected from soil borings DP3, DP4, and DP6. The maximum reported concentration of TBA was 1.300 mg/kg (DP4, 14.5 fbgs). Other oxygenated compounds and lead scavengers were not reported at or above the laboratory reporting limits in the soil samples.

Groundwater Conditions

A summary of current and historical grab groundwater analytical results is presented in Table 1. Laboratory analytical reports and Chain-of-Custody records are presented in Attachment E. A plan view of select analytical results of grab groundwater samples collected during this assessment is shown on Plate 5.

Concentrations of MTBE were reported in the samples collected from borings DP1 through DP3 and DP6, and concentrations of TPHg and TBA were reported in the samples collected from boring DP3 and DP6. The maximum reported concentrations of TPHg, MTBE, and TBA were reported in the grab groundwater samples collected from soil boring DP6 at 1,300 micrograms per liter (μ g/L), 4,800 μ g/L, and 2,900 μ g/L, respectively. Other dissolved hydrocarbons, oxygenated compounds, and lead scavengers were not reported in the grab groundwater samples collected from the soil borings.

DISCUSSION

Hydrocarbon Concentrations in Soil

The maximum concentrations of petroleum hydrocarbons in soil occur along the southwest portion of the site, in the vicinity of soil borings DP2 through DP4, at a depth between 14.5 and 20 fbgs. Concentrations of MTBE and TBA in soil occur off site, along East 12th Street, in the vicinity of borings DP5 and DP6, at a depth between 5 and 25 fbgs. Soil samples collected from 10 fbgs are below first-encountered groundwater and thus may not be representative of soil conditions. Analytical results of soil samples collected along the northern perimeter of the site from boring DP1 are below or close to the laboratory reporting limits.

Hydrocarbon Concentrations in Groundwater

The maximum concentrations of dissolved-phase TPHg and MTBE in groundwater occur off site along East 12th Street, in the vicinity of soil borings DP2, DP3, and DP6. Residual concentrations of MTBE are present in groundwater samples collected from soil boring DP1 in the northern portion of the site. Dissolved-phase TPHg and benzene were not present in the sample collected from boring DP1.

SUMMARY AND CONCLUSIONS

Residual hydrocarbons are present in soil downgradient of the site in samples collected at depths of less than 25 fbgs. Maximum residual hydrocarbon concentrations in soil occur in the intervals at or below the groundwater table (approximately 15 fbgs). Petroleum hydrocarbon concentrations in soil samples collected at depths between 25 and 30 fbgs (maximum depth explored) were not reported above laboratory reporting limits.

Although the highest dissolved hydrocarbons were reported in groundwater samples collected from the boring adjacent to DP6, the boring yielded very little water (three 40-milliliter vials). Boring DP5, located approximately 80 feet southeast, remained open overnight and did not yield groundwater. This minimal flow of groundwater in the downgradient borings is the result of the finer grained and more clay-rich sediments found off site. Due to the absence of groundwater, these are not appropriate downgradient locations for installing a groundwater monitoring well.

RECOMMENDATIONS

Based on the results of this investigation, ERI recommends:

- Continuation of quarterly monitoring and sampling of groundwater monitoring wells MW9A through MW9D and MW9I to evaluate the groundwater flow direction, hydraulic gradient, and dissolved-phase hydrocarbon concentrations.
- Gaining access to the three existing wells (MW9F, MW9G, and MW9H) in the City right-of-way for
 continual evaluation of off-site groundwater conditions. These wells have been inaccessible due
 to encroachment permit restrictions. ERI and Exxon Mobil are currently working with the City of
 Oakland to obtain access to the wells.
- Gaining access to the private property located at 2121 East 12th Street for installation of off-site boring DP7 and updating the Site Conceptual Model for the site upon evaluating the results of the investigation. ERI, with the assistance of the ACEH, has attempted to gain access to the property but has received no response from the property owner.

LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental practice in California at the time this investigation was performed. This report has been prepared for Exxon Mobil, and any reliance on this report by third parties shall be at such party's sole risk.

DOCUMENT DISTRIBUTION

ERI recommends forwarding copies of this report to:

Mr. Steven Plunkett Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Mr. Chuck Headlee California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

Mr. Robert C. Ehlers, M.S., P.E. The Valero Companies Environmental Liability Management 685 West Third Street Hanford, California 93230

Please contact Ms. Paula Sime, ERI's project manager for this site, at (707) 766-2000 with any questions regarding this report.

Sincerely,

Environmental Resolutions, Inc.

Heidi Dieffenbach-Carle P.G. 6793 Attachments: Table 1A: Cumulative Analytical Results of Soil Samples

Table 1B: Additional Cumulative Analytical Results of Soil Samples
Table 2: Laboratory Analytical Results of Grab Groundwater Samples
Cumulative Groundwater Monitoring and Sampling Data

Table 3B: Additional Cumulative Groundwater Monitoring and Sampling Data

Plate 1: Site Vicinity Map
Plate 2: Local Area Map
Plate 3: Generalized Site Plan

Plate 4: Select Soil Analytical Results

Plate 5: Select Groundwater Analytical Results

Plate 6: Cross Section A-A' Select Soil Analytical Results

Plate 7: Cross Section A-A' Select Groundwater Analytical Results

Plate 8: Cross Section B-B' Select Soil Analytical Results

Plate 9: Cross Section B-B' Select Groundwater Analytical Results

Plate 10: Cross Section C-C' Select Soil Analytical Results

Plate 11: Cross Section C-C' Select Groundwater Analytical Results

Plate 12: Cross Section D-D' Select Soil Analytical Results

Plate 13: Cross Section D-D' Select Groundwater Analytical Results

Attachment A: Regulatory Correspondence

Attachment B: Field Protocol

Attachment C: Permits

Attachment D: Unified Soil Classification System, Symbol Key, and Boring Logs Attachment E: Laboratory Analytical Reports and Chain-of-Custody Records

Attachment F: Morrow Survey Map

TABLE 1A CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 1 of 5)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	Ť	E	X
ID	Date	(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
oil Boring Sa	ımnles								
/IW-9D	10/05/88	6.0	***	<10		<0.05	<0.1	<0.2	<0.1
MW-9D	10/05/88	10.5		<10		<0.05	<0.1	<0.2	<0.1
				.,,		10,00	10,1	10,2	~0.1
MW-9E	10/05/88	5.5	5751	1,900		< 0.05	<0.1	18	<0.1
MW-9E	10/05/88	9.0	207	<10		< 0.05	<0.1	<0.2	<0.1
√W-9G	11/22/88	4.0	I North	<10	***	< 0.05	0.2	<0.2	< 0.1
SB-1	44/00/00	4.0		.40					
3D-1	11/22/88	4.8	XXXX	<10	1222	0.30	0.2	<0.2	<0.1
39-1	10/06/88	5.0		<10		<0.05	<0.1	<0.2	<0.1
39-1	10/06/88	9.0		<10		<0.05	<0.1	<0.2	<0.1
39-1	10/06/88	12.0	***	<10	-	<0.05	<0.1	<0.2	<0.1
						7,00		-0,2	
9-2	10/06/88	5.0	-	<10		<0.05	<0.1	<0.2	<0.1
9-2	10/06/88	9.0	***	<10	Service Co.	<0.05	<0.1	<0.2	<0.1
39-2	10/06/88	10.5	***	<10	Here:	< 0.05	<0.1	<0.2	<0.1
39-2	10/06/88	13.0		<10	777	<0.05	<0.1	<0.2	<0.1
B-4	01/12/89	4.0		400					
6B-4	01/12/89	4.0 9.0		160 <10	****	1.0	0.9	2.3	5.8
D-4	01/12/09	9.0		<10		<0.05	<0.1	<0.2	<0.1
B-5	01/12/89	4.0		<10		0.33	<0.1	<0.2	<0.1
B-5	01/12/89	9.0		<10		<0.05	<0.1	<0.2	<0.1
							•	V.2	30.1
B-6	01/12/89	5.0	THE:	<10		< 0.05	<0.1	<0.2	<0.1
B-6	01/12/89	5.5		<10		<0.05	<0.1	< 0.2	< 0.1
B-7	01/12/89	4.0	Here)	<10		<0.05	<0.1	<0.2	<0.1
B-7	01/12/89	8,5	***	<10		<0.05	<0.1	<0.2	<0.1
B-8	01/12/89	5.5	***	<10		0.42	-0.4	40 C	-0.4
B-8	01/12/89	9.0	***	<10		0.43 <0.05	<0.1 <0.1	<0.2	<0.1
	01/12/00	5.0	20-20 C	-10		<0.05	V 0.1	<0.2	<0.1
B-9	01/12/89	4.0	444	39		<0.05	<0.1	0.4	1.1
B-9	01/12/89	9.0	*****	<10		<0.05	<0.1	<0.2	<0.1
						220 -	0.	- 0,7	
3-10-1	03/02/89	5.0		<10		< 0.05	<0.1	<0.2	<0.1
B-10-2	03/02/89	10.0	***	<10		< 0.05	<0.1	<0.2	<0.1

TABLE 1A CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 2 of 5)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	Т	E	×
D	Date	(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-11-1	03/02/89	5.0		<10		<0.05	0.1	<0.2	<0.1
SB-11-2	03/02/89	10.0	1000	<10		<0.05	<0.1	<0.2	<0.1
SB-12	09/19/89	3.5	***	11	***	0.09	0.2	0.07	0.09
SB-13	09/19/89	4.0	www.	1.7	7 <u>482</u>	<0.05	0.1	<0.2	<0.1
SB-14	09/19/89	4.5		3.5		<0.05	<0.1	<0.2	<0.1
SB-15	09/19/89	3.5	(*************************************	6.3	-	0.07	<0.1	<0.2	<0.1
SB-16	09/19/89	4.5	W.C.	9,0		0.21	<0.1	0.08	<0.1
6B-17	09/19/89	5.0	77.77	42	(100	0.093	0.043	0.139	<0.01
B-18	09/19/89	5.0	() () ()	5	***	<0.01	0.245	0,021	0.015
B-19	09/19/89	5.0	<u>-100</u>	6		<0.01	0.078	0.022	<0.01
B-20	09/19/89	5.0	1 775	7	***	0.035	0.038	0.017	<0.01
-20-DPE1	06/05/03	20		<5	2.03/2,36c	0.0011	<0.001	<0.001	<0.001
-20-DPE2	06/04/03	20	1222	<5	0,165/0.102c	<0.001	<0.001	<0.001	<0.001
-20-DPE3	06/04/03	20	(200)	<5	0.089/0.0317c	<0.001	<0.001	<0.001	0.0033
-20-DPE4	06/05/03	20	***	<5	0.047/0.0356c	<0.001	<0.001	<0.001	<0.001
-5-DP1	08/21/07	5		<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
-10-DP1	08/31/07	10		< 0.50	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0100
-20-DP1	08/31/07	20		< 0.50	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0100
-25-DP1	08/31/07	25		< 0.50	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0100
-30-DP1	08/31/07	30	where the same of	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
5-DP2	08/20/07	5	ann3	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
10.5-DP2	08/27/07	10.5		< 0.50	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0100
15-DP2	08/27/07	15	### C	<0.50	0.0058	<0.0050	<0.0050	< 0.0050	< 0.0100
20-DP2	08/27/07	20	nen).	<0.50	0.0068	<0.0050	<0.0050	< 0.0050	< 0.0100
25-DP2	08/27/07	25	***	<0.50	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0100
29.5-DP2	08/27/07	29,5	222	< 0.50	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0100

TABLE 1A CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 3 of 5)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	T	Ε	Х
ID	Date	(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-5-DP3	08/20/07	5		<0.50	<0,0050	<0.0050	<0.0050	<0.0050	<0.0100
S-10-DP3	08/28/07	10		<0.50	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0100
S-15-DP3	08/28/07	15		<0.50	0,016	<0.0050	<0.0050	<0.0050	< 0.0100
S-20-DP3	08/28/07	20		<0.50	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0100
S-25-DP3	08/28/07	25		<0.50	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0100
S-29.9-DP3	08/28/07	29.5		<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
S-5-DP4	08/20/07	5		<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
S-10-DP4	08/29/07	10		< 0.50	< 0.0050	< 0.0050	<0,0050	<0.0050	<0.0100
S-14.5-DP4	08/29/07	14.5		<0.50	0.660	< 0.0050	< 0.0050	< 0.0050	<0.0100
S-19,5-DP4	08/29/07	19.5	-	<0.50	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0100
S-25,5-DP4	08/29/07	25.5		<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
S-29.5-DP4	08/29/07	29.5		<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
S-5-DP5	08/22/07	5		<0.50	0.0066	<0.0050	<0.0050	<0.0050	<0.0100
S-10-DP5	09/05/07	10	***	<0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0100
\$-14.5-DP5	09/05/07	14.5	***	<0.50	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0100
S-20-DP5	09/05/07	20		<0.50	0.0078	<0.0050	< 0.0050	<0.0050	<0.0100
S-25-DP5	09/05/07	25	***	<0.50	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0100
S-29.5-DP5	09/05/07	29.5	8375.11	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
S-5-DP6	08/22/07	5	***	<0.50	0.0081	<0.0050	<0.0050	<0.0050	<0.0100
S-10-DP6	08/30/07	10	1112)	<0.50	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0100
S-14.5-DP6	08/30/07	14.5		<0.50	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0100
S-19.5-DP6	08/30/07	19.5		<0.50	0.990	< 0.0050	< 0.0050	< 0.0050	< 0.0100
S-25-DP6	08/30/07	25	400	<0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0100
S-29.5-DP6	08/30/07	29.5	===	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0100
Excavation Bou	ındaries Şamples								
S1	Oct-90	5	1. 4	9.5		0.66	0.038	0.77	0.076
S2	Oct-90	5	6.1	40		0.32	0.15	1.5	0.17
S3	Oct-90	6	<1.0	2.3	***	0.49	0.028	0.15	0.16
S4	Oct-90	5	1.3	16	-	1.2	0.056	1.7	0.052
35	Oct-90	5	22	290		2.8	1.5	12	< 0.0050
36	Oct-90	6	10	7.7		0.28	0.028	0.52	0.21
67	Oct-90	7	1.4	17	minima.	0.30	0.070	0.68	0.36
S8	Oct-90	7	2.2	52		0.068	0.19	0.20	0.27

TABLE 1A CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 4 of 5)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	T	E	X
ID	Date	(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Γank Hole Sa									
TP1	09/04/91	11.0		190		0.22	0,26	0.32	0.65
TP2	09/04/91	11.0	340	1,100		0.88	1.6	14	7.7
ГР3	09/04/91	11.0		<0.2		< 0.001	< 0.001	< 0.001	< 0.001
TP4	09/04/91	11.0		<0.2		< 0.001	< 0.001	<0.001	< 0.001
TP5	09/04/91	11.0		0.78	G	0.0014	<0.001	0.0092	0.025
TP6	09/04/91	11.0	***	0.47	19	0.0033	<0.001	0.0012	0.0017
ank Hole Ov	verexcavation Confi	rmation Samples							
TC1	09/05/91	12.0	0988	2.5	2000	0.005	0.012	0.078	0.12
C2	09/05/91	5.0	(1 <u>22.0</u>	2.0		0.078	0.022	0.009	0.013
TC2	09/05/91	11.0	(Final)	<0.2	CHAR	<0.001	<0.001	<0.001	<0.001
C3	09/05/91	5.0	-	1.6	777	0.026	0.017	0.0043	0.011
C3	09/05/91	12.0	Paper	<0.2	10.00	<0.001	<0.001	<0.001	<0.001
ΓC4	09/05/91	11.0		<0.2	***	<0.001	<0.001	<0.001	0.0018
	Trench Samples								
21	09/04/91	3.0		27		0.44	0.13	0.89	0.29
2	09/04/91	6.0		1,200		10	55	16	88
3	09/04/91	3.0		190		0.41	2.2	0,93	5.4
4	09/04/91	4.0		1.9		0.007	0.013	0.024	0.034
5	09/04/91	3.0		35		0.41	0.26	0.34	1.4
6	09/04/91	3.0		240		0.18	0.67	1.7	2.7
roduct Line	Trench Overexcava	tion Confirmation	n Samples						
2	09/11/91	13.0		0.25		0.014	0.0077	0.007	0.023
3	09/11/91	12.0		1.5		0.68	< 0.005	< 0.005	0.009
6	09/11/91	11.0		1.3		0.005	<0.005	0.081	0.37
	Removal Sample								
VO-10'	09/17/97	10.0	440	11	***	0.024	0.011	0.064	0.11

TABLE 1A CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 5 of 5)

Notes:		
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015/8015B
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8020.
Metals	=	Metals analyzed using method Title 22.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary butyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Other VOCs	=	Other volatile organic compounds analyzed using EPA Method 8260B.
fbgs	=	Feet below ground surface.
mg/kg	=	Milligrams per kilogram.
	=	Not analyzed/Not sampled/Not measured.
а	=	Also analyzed for volatile organic compounds using EPA Method 8240 and semi-volatile organic compounds using EPA Method 8270.
		Results were not detected at or above the method reporting limit.
b	=	Analyzed using CA DHS Method #338
С	=	Analyzed using EPA Method 8260B.
d	=	Analyzed using EPA Method 6010/200.7.
е	=	Results not detected at or above the laboratory reporting limit except: Acetone: 0.0501 mg/kg; carbon disulfide: 0.00368 mg/kg;
		isopropylbenzene: 0.00219 mg/kg; naphthalene: 0.0105 mg/kg; n-propylbenzene: 0.00805 mg/kg; 1,2,4-trimethylbenzene:
		0.0061 mg/kg; and 1,3,5-rrimethylbenzene: 0,00249 mg/kg.

TABLE 1B ADDITIONAL CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES-VOLATILE ORGANIC COMPOUNDS

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 1 of 3)

Sample 'D	Sample	Depth	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Other VOCs
D	Date	(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Boring									
Borings MW-	9D, MW-9E, MW-9	G, and SB-1 throug	gh SB-20 not analy	zed for these ana	lytes.				
S-20-DPE1	06/05/03	20	<0.002	<0.002	0.644	<0.00201	<0.002	<0.01	
200121	00,00,00	20	10.002	~0.002	0,044	<0.00201	<0.002	<0.01	
S-20-DPE2	06/04/03	20	<0.002	<0.002	0.41	<0.00201	<0.002	<0.01	
S-20-DPE3	06/04/03	20	<0.002	<0.002	<0.0496	<0.00198	<0.002	<0.0099	
S-20-DPE4	06/05/03	20	<0,002	<0,002	<0.0503	<0.00201	<0.002	<0.0101	***
S-5-DP1	08/21/07	5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	5-13-1-1-1 (第 -1 2 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
5-10-DP1	08/31/07	10	< 0.010	< 0.010	< 0.050	< 0.0050	<0.0050	<0.010	
S-20-DP1	08/31/07	20	< 0.010	<0.010	< 0.050	< 0.0050	<0.0050	<0.010	
S-25-DP1	08/31/07	25	< 0.010	< 0.010	< 0.050	< 0.0050	<0.0050	<0.010	9243 9243
S-30-DP1	08/31/07	30	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
5-5-DP2	08/20/07	5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
-10.5 - DP2	08/27/07	10.5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
-15-DP2	08/27/07	15	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	***
-20-DP2	08/27/07	20	<0.010	<0.010	<0.050	<0.0050	<0.0050		######################################
-25-DP2	08/27/07	25	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	-
-29.5-DP2	08/27/07	29.5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010 <0.010	
5 DD0	22/22/27	_							
-5-DP3	08/20/07	5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	HHH
-10-DP3	08/28/07	10	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	****
-15-DP3	08/28/07	15	<0.010	<0.010	0.940	<0.0050	<0.0050	<0.010	***
-20-DP3	08/28/07	20	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	202
-25-DP3	08/28/07	25	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	577
-29.9-DP3	08/28/07	29.5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	-
-5-DP4	08/20/07	5	<0.010	<0.010	<0.050	< 0.0050	<0.0050	<0.010	S ees
-10-DP4	08/29/07	10	< 0.010	<0.010	0.180	< 0.0050	<0.0050	<0.010	0.555
-14.5-DP4	08/29/07	14.5	< 0.010	< 0.010	1.300	< 0.0050	< 0.0050	< 0.010	2112
-19.5-DP4	08/29/07	19.5	< 0.010	< 0.010	< 0.050	< 0.0050	<0.0050	< 0.010	
25.5-DP4	08/29/07	25.5	<0.010	<0.010	<0.050	<0.0050	< 0.0050	<0.010	
29.5-DP4	08/29/07	29.5	<0,010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
5-DP5	08/22/07	5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
-10-DP5	09/05/07	10	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
-14.5-DP5	09/05/07	14.5	<0.010	<0.010	<0.050				2 77
20-DP5	09/05/07	20				<0.0050	<0.0050	<0.010	-W-
25-DP5	09/05/07	20 25	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
20-DF0	09/00/07	∠5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	

TABLE 1B ADDITIONAL CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES-VOLATILE ORGANIC COMPOUNDS

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 2 of 3)

Sample	Sample	Depth	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Other VOCs
ID	Date	(fbgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-29.5-DP5	09/05/07	29.5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
S-5-DP6	08/22/07	5	<0.010	<0.010	<0.050	<0.0050	<0.0050	<0.010	
S-10-DP6	08/30/07	10	< 0.010	<0.010	0.540	< 0.0050	< 0.0050	< 0.010	
S-14.5-DP6	08/30/07	14.5	<0.010	< 0.010	< 0.050	< 0.0050	< 0.0050	< 0.010	
S-19.5-DP6	08/30/07	19.5	<0.010	<0.010	0.055	< 0.0050	< 0.0050	< 0.010	
S-25-DP6	08/30/07	25	< 0.010	< 0.010	< 0.050	<0.0050	< 0.0050	< 0.010	
S-29.5-DP6	08/30/07	29.5	< 0.010	< 0.010	< 0.050	< 0.0050	< 0.0050	< 0.010	

Excavation Boundaries Samples

Not analyzed for these analytes.

Tank Hole Samples

Not analyzed for these analytes.

Tank Hole Overexcavation Confirmation Samples

Not analyzed for these analytes.

Product Line Trench Samples

Not analyzed for these analytes.

Product Line Trench Overexcavation Confirmation Samples

Not analyzed for these analytes.

Used-Oil Tank Removal Sample

Not analyzed for these analytes.

TABLE 1B ADDITIONAL CUMULATIVE ANALYTICAL RESULTS OF SOIL SAMPLES-VOLATILE ORGANIC COMPOUNDS

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 3 of 3)

Notes:		
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015/8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8020.
Metals	=	Metals analyzed using method Title 22.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary butyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Other VOCs	=	Other volatile organic compounds analyzed using EPA Method 8260B.
fbgs	=	Feet below ground surface.
mg/kg	=	Milligrams per kilogram.
	=	Not analyzed/Not sampled/Not measured.
а	=	Also analyzed for volatile organic compounds using EPA Method 8240 and semi-volatile organic compounds using EPA Method 8270.
		Results were not detected at or above the method reporting limit.
b	=	Analyzed using CA DHS Method #338
C	=	Analyzed using EPA Method 8260B.
d	=	Analyzed using EPA Method 6010/200.7.
е	=	Results not detected at or above the laboratory reporting limit except: Acetone: 0.0501 mg/kg; carbon disulfide: 0.00368 mg/kg;
		isopropylbenzene: 0.00219 mg/kg; naphthalene: 0.0105 mg/kg; n-propylbenzene: 0.00805 mg/kg; 1,2,4-trimethylbenzene:
		0.0061 mg/kg; and 1,3,5-rrimethylbenzene: 0.00249 mg/kg

TABLE 2 LABORATORY ANALYTICAL RESULTS OF GRAB GROUNDWATER SAMPLES

Former Exxon Service Station 7-0235 2225 Telegraph Avenue Oakland, California (Page 1 of 1)

Sample ID	Sample Date	Depth (fbgs)	TPHg (µg/L)	MTBE (µg/L)	Β (μg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	TBA (µg/L)	Other Oxygenates (µg/L)
WS-02	09/20/88	5	25,000b		12,000a	<73a	<80a	<80a		
MW-9A	09/20/88	6	<76b		<76a	<73a	<80a	<80a		
WS-10	09/20/88	6	<76b		<76a	<73a	<80a	<80a	-44	
V-13-DP1	08/31/07	13	<50	9.5	<0.50	<0.50	<0.50	<0.50	<10	ND
V-15-DP2	08/27/07	15	<50	7.0	<0.50	<0.50	<0.50	<0.50	<10	ND
V-10-DP3 V-15 - DP3	08/28/07 08/28/07	10 15	<50 160	16 270	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<10 67	ND ND
V-19-DP6	08/31/07	19	1,300	4,800	<50	<50	<50	<50	2,900	ND

Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
Other		Di-isopropyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, 1,2-dibromoethane,
Oxygenates	=	1,2-dichloroethane analyzed using EPA Method 8260B.
Metals	=	Metals analyzed using EPA Method 200.7.
fbgs	=	Feet below ground surface.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above the stated laboratory detection limit.
	=	Not applicable/Not samples/Not analyzed.
а	=	Analyzed using EPA Method 602.
b	=	Analyzed using DHS Method-LUFT Field Manual.

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 1 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	T	Ε	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9A	06/13/88								<0.5	<1.0	<2.0	<1.0
MW9A	10/24/88			***	***		1200		< 0.5	<1.0	<2.0	<1.0
MW9A	10/13/89	100.071	Contract Con	***	***				< 0.5	<0.5	<0.5	<3.0
MW9A	10/19/90	100.071		757		<50			<0.5	<0.5	<0.5	<0.5
MW9A	02/05/92	100.07 I	6.93	93.14	200	<50			1.1	1.8	0.6	1.3
MW9A	05/05/92	100.07 l	6.95	93.12	***	<50			<0.5	<0.5	<0.5	<0.5
MW9A	09/14/92	100.07 [7.65	92.42	***	<50			<0.5	<0.5	<0.5	<0.5
MW9A	11/16/92	100.07 I	7.35	92.72		<50			1.1	<0.5	<0.5	<0.5
MW9A	02/03/93	100.071	7.85	92.22	2000 2000 2000 2000	140			17	19	1.6	20
MW9A	05/18/93	100.071	6.95	93.12	***	<50			0.8	<0.5	1.3	7
MW9A	08/26/93	100.07 I	7.14	92.93		<50			<0.5	<0.5	<0.5	<0.5
MW9A	11/04/93	100.07 I	7.23	92.84	222	<50			<0.5	<0.5	<0.5	<0.5
MW9A	02/04/94	100.07 I	6.70	93.37		<50			<0.5	<0.5	<0.5	<0.5
MW9A	05/31/94	100.071	6.74	93.33		<50			<0.5	<0.5	<0.5	<0.5
MW9A	10/26/94	11.46	7.06	4.40	222	<50			<0.5	<0.5	<0.5	<0.5
MW9A	05/15/95	11.46	6.32	5.14	***	<50			0.52	0.67	<0.5	<0.5
MW9A	11/02/95	11.46	7.16	4.30	NLPH	<50	<10		<0.5	<0.5	<0.5	<0.5
MW9A	04/26/96	11.46	6.33	5.13	NLPH	222		***	70.0	-0.5	-0.5	
MW9A	08/22/96	11.46	7.02	4.44	NLPH				62154		1777	1000
MW9A	02/24/97	11.46							m hate	***		***
MW9A	03/16/98	11.46	6.14	5.32	NLPH	<200	40,000		7.9	<2.0	<2.0	<2.0
MW9A	04/21/98	11.46	6.29	5.17	NLPH	<50	53,000		3.8	<0.5	<0.5	<0.5
MW9A	07/22/98	14.53	6.58	7.95	NLPH	<250	18,000		<2.5	<2.5	<2.5	<2.5
MW9A	12/22/98	14.53	6.47	8.06	NLPH	<50	5,200		< 0.5	<0.5	<0.5	<0.5
MW9A	02/26/99	14.53	6.38	8.15	NLPH	<100	10,000		<1.0	<1.0	<1.0	<1.0
MW9A	05/27/99 a	14.53	6.56	7.97	NLPH	<5,000	15,300		<50	<50	<50	<50
MW9A	08/03/99	14.53	9.39	5.14	NLPH	<50	<2.5		<0.5	<0.5	<0.5	<0.5
MW9A	12/03/99	14.53	6.52	8.01	NLPH	<50	1,400		<0.5	<0.5	<0.5	0.67 b
MW9A	02/29/00	14.53	5.31	9.22	NLPH	<50	20,000		1.2	<0.5	<0.5	<0.5
MW9A	05/18/00	14.53	6.31	8.22	NLPH	<50	14,000	11,000	<0.5	<0.5	<0.5	<0.5
MW9A	07/24/00	14.53	6.54	7.99	NLPH	<50	7,400		<0.5	<0.5	<0.5	<0.5
MW9A	10/09/00	14.53	6.00	8.53	NLPH	<50	2,300		<0.5	<0.5	<0.5	<0.5
MW9A	01/10/01	14.53	6.34	8.19	NLPH	<50	3,700		<0.5	<0.5	<0.5	<0.5
MW9A	04/10/01	14.53	9.31	5.22	NLPH	<50	11,000		<0.5	<0.5	<0.5	<0.5
MW9A	07/12/01	14.53			NLPH	<50	3,600		<0.5	<0.5	<0.5	
MW9A	08/17/01 c	14.53	6.61	7.92	iene		0,000			~0.5	~U.5	<0.5
MW9A	10/11/01	14.53	7.03	7.50	NLPH	<50	1,700		<0.5	<0.5		
MW9A	10/11/01	14.51	Well surveyed in				1,700		\0. 0	~0.5	<0.5	<0.5
MW9A	01/11/02	14.51	5.93	8.58	NLPH	2,090e	31,000e		19.66	~0 F0	-0.F0	40.50
MW9A	04/12/02	14.51	6.41	8.10	NLPH	34,300	32,200		18.6e	<0.50	< 0.50	< 0.50
MW9A	07/12/02	14.51	6.64	7.87	NLPH	6,760	32,200 8,070		<5.00	<5.00	<5.00	<5.00
MW9A	10/11/02	14.51	6.76	7.75	NLPH		·	2.040	< 0.5	< 0.5	<0.5	<0.5
IVIVV	10/11/02	14.51	0.70	1.10	NLPH	2,420	2,860	3,040	<0.5	<0.5	<0.5	<0.5

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 2 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9	A 01/10/03	14.51	5.90	8.61	NLPH	38,800	51,900		103	15.0	<5.0	13.0
MW9	A 04/09/03	14.51	6.38	8.13	NLPH	34,200	38,600		14.0	< 5.0	< 5.0	< 5.0
MW9	A 07/22/03	14.51	6.56	7.95	NLPH	20,200	19,500		0.50	< 0.5	< 0.5	< 0.5
MW9/	A 10/01/03	14.51	6.72	7.79	NLPH	9,460		7,620	0.70	<0.5	< 0.5	< 0.5
MW9/	A 01/06/04	14.51	5.89	8.62	NLPH	8,540	11,600		<0.50	<0.5	<0.5	<0.5
MW9A	A 06/07/04	14,51	6.80	7.71	NLPH	3,470		5,600	<0.50	<0.5	<0.5	<0.5
MW9A		14.51										
MW9A		14.51	5.99	8.52	NLPH	1,130		1,360	<0.50	<0.5	<0.5	<0.5
MW9A		14.51	6.03	8.48	NLPH	2,150		2,560	0.80	<0.5	<0.5	<0.5
MW9A		14.51	14.33	0.18	NLPH	1,610		2,040	<0.50	<0.5	<0.5	<0.5
MW9A		14.51	6.50	8.01	NLPH	1,020		1,320	<0.50	<0.50	<0.50	<0.50
MW9A		14.51	16.50	-1.99	NLPH	1,140		801	1.16	<0.50	<0.50	< 0.50
MW9A		14.51	5,21	9.30	NLPH	777			5550	***	575	777
MW9A		14.51	16.01	-1.50	NLPH	400		560	<2.5	<2.5	<2.5	<2.5
MW9A		14.51	6.10	8.41	NLPH	390		430	<2.5	<2.5	<2.5	<2.5
MW9A		14.51	6.54	7.97	NLPH	150		172	<0.50	< 0.50	< 0.50	<0.50
MW9A	12/15/06	14.51	16.21	-1.70	NLPH	250k		190	<2.5	<2.5	<2.5	<2.5
MW9A		14.51	7.95	6.56	NLPH	173	***	144	<0.50	< 0.50	<0.50	0.54
MW9A		14.51	6.49	8.02	NLPH	69k		77	<0.50	< 0.50	<0.50	<0.50
MW9E	3 06/13/88	***				9440	***	2444	350	7.8	66	160
MW9E	3 10/24/88							Cores	84	<1.0	3.1	3.2
MW9B	3 10/13/89	98.41 I	2227		202	200			4.1	< 0.5	<0.5	<3.0
MW9B	10/19/90	98.41 I	***	***		62		2442	27	< 0.5	2.3	<0.5
MW9B	02/05/92	98.41 I	5.95	92.46		60		(100)	14	< 0.5	2.9	2.5
MW9B	05/05/92	98.41 I	5.92	92.49		620	300		180	2.4	8.4	2.2
MW9B	09/14/92	98.41	6.60	91.81		110		182223	9.6	< 0.5	< 0.5	< 0.5
MW9B	11/16/92	98.411	6.35	92.06		200	(* ((*)		33	<0.5	4.2	1.4
MW9B	02/03/93	98.41 I	6.50	91.91		12,000	***		320	13	35	110
MW9B	05/18/93	98.41 i	6.42	91.99		180		222	1.1	< 0.5	2.6	5.9
MW9B	08/26/93	98.41	6.28	92.13		180	HHE N		36	< 0.5	3	1.7
MW9B	11/04/93	98.41 I	6.23	92.18		98			13	<0.5	1.4	<0.5
MW9B	02/04/94	98.41 I	5.92	92.49		790			170	1.3	12	0.8
MW9B		98.41 I	9.22	89.19		1,000			150	2.5	8.0	2.1
MW9B	10/26/94	9.80	6.04	3.76		84			2.8	0.72	<0.5	<0.5
MW9B		9.80	5.34	4.46		2,800			420	25	27	6.7
MW9B		9.80	6.14	3.66	NLPH	130	<10	F-0	3.3	<0.5	<0.5	<0.5
MW9B		9.80	5.66	4.14	NLPH	270	70		130	2.8	6.7	<3
MW9B		9.80	6.16	3.64	NLPH	210	31		5.7	6.8	1.1	9.2
MW9B		9.80	5.58	4.22	NLPH	1,400	1,300		76	1.4	4.1	1.2
MW9B		12.83	5.32	7.51	NLPH	860	1,500		140	2.0	1.1	<2.0
MW9B		12.83	5.49	7.34	NLPH	1,800	18,000		300	<5.0	7.9	<5.0
MW9B		12.83	5.79	7.04	NLPH	<500	26,000		13	<5.0	<5.0	<5.0
1111100	5,,,		0., 0	1.07	145111	-000	20,000		13	-0.0	~0.0	~5.0

TABLE 3A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 3 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9B	12/22/98	12.83	5.69	7.14	NLPH	700	21,000		110	3.1	9.1	14
MW9B	02/26/99	12.83	5.10	7.73	NLPH	8,800	8,000		2,000	<25	52	38
MW9B	05/18/99	12.83	5.65	7.18	NLPH	<10,000	42,100	5444	158	<100	<100	<100
MW9B	08/03/99	12.83	6.24	6.59	NLPH	960	24,900		< 5.0	<5.0	< 5.0	< 5.0
MW9B	12/03/99	12.83	5.66	7.17	NLPH	<50	1,000		< 0.5	< 0.5	< 0.5	< 0.5
MW9B	02/29/00	12.83	4.61	8.22	NLPH	3,100	25,000		900	7	23	7.1
MW9B	05/18/00	12.83	5.54	7.29	NLPH	780	34,000	26,000	150	<2.5	4.5	<2.5
MW9B	07/24/00	12.83	8.75	4.08	NLPH	<250	39,000		8	<2.5	<2.5	<2.5
MW9B	10/09/00	12.83	4.84	7.99	NLPH	<1,200	30,000		1.7	< 0.5	< 0.5	< 0.5
MW9B	01/10/01	12.83	5.56	7.27	NLPH	<250	32,000		5.3	< 0.5	< 0.5	< 0.5
MW9B	04/10/01	12.83	5.40	7.43	NLPH	360	27,000	.ara.i	69.0	<2.5	22.0	29.8
MW9B	07/12/01	12.83	***	S	NLPH	<250	41,000		<2.5	<2.5	<2.5	<2.5
MW9B	08/17/01 c	12.83	5.83	7.00	***				***	***		222
MW9B	10/11/01	12.83	8.70	4.13	NLPH	<250	24,000	. 	<2.5	<2.5	<2.5	<2.5
MW9B	11/01/01	12.84	Well surveyed in	compliance with	AB2886 requi	rements.						
MW9B	01/11/02	12.84	5.16	7.68	NLPH	9,170e	14,600e		66.0e	<10.0	54.0	<10.0
MW9B	04/12/02	12.84	5.57	7.27	NLPH	29,600	28,600	nor e	12.0	<5.00	<5.00	<5.00
MW9B	07/12/02	12.84	5.81	7.03	NLPH	20,200	27,700		<10.0	14.0	<10.0	16.0
MW9B	10/11/02 f	12.84	5.91	6.93	NLPH	18,900	24,300	28,200	2.3	<0.5	< 0.5	<0.5
MW9B	01/10/03	12.84	5.09	7.75	NLPH	14,900	18,600	acc o.	118	1.0	6.5	3.6
MW9B	04/09/03	12.84	5.51	7.33	NLPH	21,800	24,900	***	51.0	<5.0	<5.0	<5.0
MW9B	07/22/03	12.84	6.09	6.75	NLPH	33,500	36,900	989 31	< 0.50	<0.5	< 0.5	<0.5
MW9B	10/01/03	12.84	6.16	6.68	NLPH	25,500	2010 6	19,100	1.10	< 0.5	< 0.5	< 0.5
MW9B	01/06/04	12.84	5.14	7.70	NLPH	10,400		15,700	16.9	1.8	18.6	1.7
MW9B	06/07/04	12.84	9.47	3.37	NLPH	3,910		1,960	< 0.50	< 0.5	< 0.5	< 0.5
MW9B	08/30/04	12.84	h	h	h	954h		925h	<0.50h	<0.5h	< 0.5	<0.5h
MW9B	12/13/04	12.84	4.96	7.88	NLPH	233	700 C	140	0.90	< 0.5	< 0.5	< 0.5
MW9B	03/14/05	12.84	5.52	7.32	NLPH	523	***	504	< 0.50	<0.5	< 0.5	< 0.5
MW9B	06/08/05	12.84	6.70	6.14	NLPH	114	***	130	< 0.50	<0.5	<0.5	< 0.5
MW9B	09/01/05	12.84	5.92	6.92	NLPH	90.5	***	82.6	0.55	< 0.50	< 0.50	< 0.50
MW9B	12/09/05	12.84	8.46	4.38	NLPH	207		149	< 0.50	< 0.50	< 0.50	< 0.50
MW9B	12/30/05	12.84	4.59	8.25	NLPH		444	1440	1000		2450	2 4 4 4
MW9B	03/07/06	12.84	6.41	6.43	NLPH	98	THE	64	< 0.50	< 0.50	< 0.50	< 0.50
MW9B	06/26/06	12.84	5.71	7.13	NLPH	130	****	39	0.63	< 0.50	0.53	0.53
MW9B	09/25/06	12.84	6.35	6.49	NLPH	<50.0	702	7.40	< 0.50	< 0.50	< 0.50	< 0.50
MW9B	12/15/06	12.84	6.77	6.07	NLPH	<50	H-12 H	11	< 0.50	< 0.50	< 0.50	< 0.50
MW9B	03/29/07	12.84	6.40	6.44	NLPH	197	777	225	< 0.50	< 0.50	< 0.50	0.59
MW9B	06/12/07	12.84	6.05	6.79	NLPH	53k	51444	52	<0.50	<0.50	<0.50	<0.50
MW9C	06/13/88			4.555			11. 2.5.5.	≲ ₹₹₹₹	<0.5	<1.0	<2.0	<1.0
MW9C	10/24/88	***		nine in	***		0.557.	201	<0.5	<1.0	<2.0	<1.0
MW9C	10/13/89	99.73	***		***		(1 444		< 0.5	< 0.5	<0.5	<3.0
MW9C	10/19/90	99.73				<50	***	STATE OF THE STATE	<0.5	<0.5	<0.5	<0.5

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 4 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9C	02/05/92	99.73	6.44	93.29		<50			<0.5	<0.5	<0.5	<0.5
MW9C	05/05/92	99.73 (6.50	93.23	***	<50	242		< 0.5	< 0.5	< 0.5	< 0.5
MW9C	09/14/92	99.73 I	7.00	92.73	***	<50	***		< 0.5	< 0.5	< 0.5	< 0.5
MW9C	11/16/92	99.73 I	6.72	93.01	HH.T.	<50	2575		< 0.5	< 0.5	< 0.5	< 0.5
MW9C	02/03/93	99.73 i	5.75	93.98	200	<50	0.0000		< 0.5	< 0.5	< 0.5	< 0.5
MW9C	05/18/93	99.73	6.72	93.01	***	<50	10 1010		< 0.5	< 0.5	< 0.5	< 0.5
MW9C	08/26/93	99.73 (6.84	92.89	1.777	<50	(****		< 0.5	< 0.5	< 0.5	< 0.5
MW9C	11/04/93	99.73	6.90	92.83	5-44	<50			< 0.5	< 0.5	<0.5	< 0.5
MW9C	02/04/94	99.73	6.28	93.45	SHH	<50	1962		<0.5	< 0.5	< 0.5	< 0.5
MW9C	05/31/94	99.73	6.42	93.31	8555	###C			< 0.5	< 0.5	< 0.5	< 0.5
MW9C	10/26/94	11.14	6.80	4.34					< 0.5	< 0.5	< 0.5	< 0.5
MW9C	05/15/95	11.14	5.72	5.42	3444	(Marie 10)			< 0.5	<0.5	< 0.5	< 0.5
MW9C	11/02/95	11.14	6.88	4.26	S 488	nee.	1444		<0.5	< 0.5	< 0.5	< 0.5
MW9C	04/26/96	11.14	6.28	4.86	***	***			<0.5	<0.5	<0.5	< 0.5
MW9C	08/22/96	11.14	6.65	4.49	***	200	***		< 0.5	<0.5	< 0.5	<0.5
MW9C	03/16/98	11.14	5.51	5.63	NLPH	<500	150,000	***	24	< 5.0	<5.0	<5.0
MW9C	04/21/98	11.14	5.83	5.31	NLPH	150	130,000	150,000	<0.5	< 0.5	< 0.5	< 0.5
MW9C	07/22/98	14.19	6.43	7.76	NLPH	<500	95,000	4170	<5.0	< 5.0	<5.0	<5.0
MW9C	12/22/98	14.19	6.16	8.03	NLPH	<500	84,000	440	<5.0	<5.0	<5.0	< 5.0
MW9C	02/26/99	14.19	5.46	8.73	NLPH	<250	55,000	C ons	<2.5	<2.5	<2.5	<2.5
MW9C	05/18/99	14.19	6.27	7.92	NLPH	<25,000	68,900	S-1-1	<250	<250	<250	<250
MW9C	08/03/99	14.19	7.13	7.06	NLPH	210	69,200	(accid	<1.0	1.3	<1.0	<1.0
MW9C	12/03/99	14.19	6.17	8.02	NLPH	290	50,000	0	<2.5	<2.5	<2.5	<2.5
MW9C	02/29/00	14.19	4.49	9.70	NLPH	<250	40,000	(**	<2.5	<2.5	<2.5	<2.5
MW9C	05/18/00	14.19	5.96	8.23	NLPH	<250	46,000	33,000	<2.5	<2.5	<2.5	<2.5
MW9C	07/24/00	14.19	6.47	7.72	NLPH	<250	44,000	***	<2.5	<2.5	<2.5	<2.5
MW9C	10/09/00	14.19	6.57	7.62	NLPH	<250	39,000		<2.5	<2.5	<2.5	<2.5
MW9C	01/10/01	14.19	6.09	8.10	NLPH	<250	42,000	***	<2.5	<2.5	<2.5	<2.5
MW9C	04/10/01	14.19	7.88	6.31	NLPH	<250	35,000	***	<2.5	<2.5	<2.5	<2.5
MW9C	07/12/01	14.19			NLPH	<250	32,000	2752	<2.5	<2.5	<2.5	<2.5
MW9C	08/17/01 c	14.19	6.60	7.59	444	***				***	****	
MW9C	10/11/01	14.19	6.67	7.52	NLPH	<250	53,000	***	<2.5	<2.5	<2.5	<2.5
MW9C	11/01/01	14.16	Well surveyed in	•								
MW9C	01/11/02	14.16	5.29	8.87	NLPH	2,470e	90,000e	***	0.90e	< 0.50	< 0.50	< 0.50
MW9C	04/12/02	14.16	6.14	8.02	NLPH	70,400	66,800	A	<5.00	<5.00	<5.00	<5.00
MW9C	07/12/02	14.16	6.54	7.62	NLPH	50,900	58,300	(-11-)	<500	<500	<500	< 500
MW9C	10/11/02	14.16	6.73	7.43	NLPH	52,100	58,800	76,000	<10.0	<10.0	<10.0	<10.0
MW9C	01/10/03	14.16	5.21	8.95	NLPH	40,600	55,500	444	<0.5	<0.5	<0.5	<0.5
MW9C	04/09/03	14.16	6.08	8.08	NLPH	24,700	29,600	***	<5.00	<5.0	<5.0	<5.0
MW9C	07/22/03	14.16	6.47	7.69	NLPH	13,800	13,100	***	1.40	<0.5	<0.5	< 0.5
MW9C	10/01/03	14.16	6.62	7.54	NLPH	9,100		38,400	0.70	<0.5	< 0.5	<0.5
MW9C	01/06/04	14.16	4.86	9.30	NLPH	4,160	(PAL	5,020	0.70	< 0.5	< 0.5	< 0.5

TABLE 3A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 5 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9C	06/07/04	14.16	7.35	6.81	NLPH	4,480		3,420	<0.50	<0.5	<0.5	<0.5
MW9C	08/30/04	14.16	h	h	h	1,950h	-	1,950h	<0.50h	<0.5h	<0.5h	<0.5h
MW9C	12/13/04	14.16	5.03	9.13	NLPH	610	***	705	<0.50	<0.5	<0.5	<0.5
MW9C	03/14/05	14.16	5.63	8.53	NLPH	906		1,110	<0.50	<0.5	<0.5	<0.5
MW9C	06/08/05	14.16	12.75	1.41	NLPH	854	72.2	1,100	<0.50	<0.5	<0.5	<0.5
MW9C	09/01/05	14.16	6.95	7.21	NLPH	361	***	409	<0.50	<0.50	<0.50	<0.50
MW9C	12/09/05	14.16	7.54	6.62	NLPH	217	(***)	171	<0.50	<0.50	<0.50	<0.50
MW9C	12/30/05	14.16	4.21	9.95	NLPH			***			777	0.00
MW9C	03/07/06	14.16	12.48	1.68	NLPH	320		480	<2.0	<2.0	<2.0	<2.0
MW9C	06/26/06	14.16	6.36	7.80	NLPH	350	***	300	<2.0	<2.0	<2.0	<2.0
MW9C	09/25/06	14.16	6.71	7.45	NLPH	136		234	< 0.50	< 0.50	<0.50	< 0.50
MW9C	12/15/06	14.16	12.21	1.95	NLPH	190k	5-14-5	260	<1.0	<1.0	<1.0	<1.0
MW9C	03/29/07	14.16	12.30	1.86	NLPH	483	9 98 2	396	< 0.50	<0.50	<0.50	<0.50
MW9C	06/12/07	14.16	6.97	7.19	NLPH	200k	•	250	<1.0	<1.0	<1.0	<1.0
MW9D	10/24/88			######################################		****		: ***	<0.5	<1.0	<2.0	<1.0
MW9D	10/13/89	101.46 I	1202	222	***	7.77	***		<0.5	<0.5	<0.5	<3.0
MW9D	10/19/90	101.46	***			<50		4	<0.5	<0.5	<0.5	<0.5
MW9D	02/05/92	101.46	7.78	93.68		<50	***		<0.5	<0.5	<0.5	<0.5
MW9D	05/05/92	101.46	7.90	93.56		<50	777		<0.5	<0.5	<0.5	<0.5
MW9D	09/14/92	101.46	8.45	93.01		<50	***		<0.5	<0.5	<0.5	<0.5
MW9D	11/16/92	101.46	8.10	93.36		<50	***		<0.5	<0.5	<0.5	<0.5
MW9D	02/03/93	101.46 I	7.07	94.39		<50	***		<0.5	<0.5	<0.5	<0.5
MW9D	05/18/93	101.46 I	7.85	93.61		<50	202		<0.5	<0.5	<0.5	<0.5
MW9D	08/26/93	101.46 I	8.30	93.16		<50	###	***	<0.5	<0.5	<0.5	<0.5
MW9D	11/04/93	101.46	8.33	93.13		<50	500		<0.5	<0.5	<0.5	<0.5
MW9D	02/04/94	101.46 I	7.66	93.80		<50			<0.5	<0.5	<0.5	<0.5
MW9D	05/31/94	101.46 I	6.80	94.66		1944	3 4444	(444)	<0.5	<0.5	<0.5	<0.5
MW9D	10/26/94	12.90	8.34	4.56		***	***	***	< 0.5	<0.5	<0.5	<0.5
MW9D	05/15/95	12.90	7.22	5.68			1.775		< 0.5	< 0.5	< 0.5	<0.5
MW9D	11/02/95	12.90	8.31	4.59			and .	E	< 0.5	<0.5	< 0.5	< 0.5
MW9D	04/26/96	12.90	7.58	5.32	Coope		3 888	***	< 0.5	< 0.5	< 0.5	< 0.5
MW9D	08/22/96	12.90	8.12	4.78	***		N 77.3		< 0.5	< 0.5	< 0.5	< 0.5
MW9D	03/16/98	12.90	6.94	5.96	NLPH	<50	10	222	< 0.5	<0.5	< 0.5	< 0.5
MW9D	04/21/98	12.90	7.22	5.68	NLPH	<50	12	***	< 0.5	< 0.5	< 0.5	< 0.5
MW9D	07/22/98	15.98	7.85	8.13	NLPH	<50	13	5515	< 0.5	<0.5	<0.5	<0.5
MW9D	12/22/98	15.98	7.58	8.40	NLPH	<50	12		< 0.5	< 0.5	< 0.5	<0.5
MW9D	02/26/99	15.98	6.42	9.56	NLPH	<50	310		< 0.5	< 0.5	<0.5	<0.5
MW9D	05/18/99	15.98	6.55	9.43	NLPH	<2,500	13,500	ere.	<25	<25	<25	<25
MW9D	08/03/99	15.98	8.34	7.64	NLPH	<50	<2.5		< 0.5	<0.5	<0.5	<0.5
MW9D	12/03/99	15.98	7.56	8.42	NLPH	<50	<2		< 0.5	<0.5	<0.5	<0.5
MW9D	02/29/00	15.98	4.82	11.16	NLPH	<50	2.5	***	<0.5	<0.5	<0.5	<0.5
MW9D	05/18/00	15.98	7.40	8.58	NLPH	<50	6.2	Comm.	< 0.5	< 0.5	<0.5	<0.5

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 6 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW9D	07/24/00	15.98	7.91	8.07	NLPH	<50	14	4-5-7	<0.5	<0.5	0.85	0.74
MW9D	10/09/00	15.98	8.02	7.96	NLPH	<50	14		< 0.5	<0.5	<0.5	<0.5
MW9D	01/10/01	15.98	7.26	8.72	NLPH	<50	18	5 444	<0.5	<0.5	<0.5	<0.5
MW9D	04/10/01	15.98	7.32	8.66	NLPH	<50	14		< 0.5	<0.5	<0.5	<0.5
MW9D	07/12/01	15.98			NLPH	<50	22		<0.5	<0.5	<0.5	<0.5
MW9D	08/17/01 d	15.98					200	444				
MW9D	10/11/01	15.98	8.16	7.82	NLPH	<50	24		< 0.5	<0.5	<0.5	<0.5
MW9D	11/01/01	15.97	Well surveyed in	compliance with					.0.0	-0.0	-0.0	-0.0
MW9D	01/11/02	15.97	6.64	9.33	NLPH	352e	2.0e		< 0.50	< 0.50	< 0.50	< 0.50
MW9D	04/12/02	15.97	7.58	8.39	NLPH	191	192		< 0.50	< 0.50	<0.50	<0.50
MW9D	07/12/02	15.97	8.01	7.96	NLPH	108	124		<0.5	<0.5	<0.5	<0.5
MW9D	10/11/02	15.97	8.13	7.84	NLPH	187	243		<0.5	<0.5	<0.5	<0.5
MW9D	01/10/03	15.97	5.98	9.99	NLPH	386	132		4.1	<0.5	<0.5	<0.5
MW9D	04/09/03	15.97	7.53	8.44	NLPH	468	292		3.80	<0.5	<0.5	<0.5
MW9D	07/22/03	15.97	7.87	8.10	NLPH	446	339		0.70	<0.5	<0.5	<0.5
MW9D	10/01/03	15.97	8.04	7.93	NLPH	402		362	<0.50	<0.5	<0.5	<0.5
MW9D	01/06/04	15.97	6.31	9.66	NLPH	72.2		80.9	<0.50	<0.5	<0.5	<0.5
MW9D	06/07/04	15.97	8.17	7.80	NLPH	237	***	353	<0.50	<0.5	<0.5	<0.5
MW9D	08/30/04 d	15.97			***				-0.50		~0.5 	
MW9D	12/13/04	15.97	5.39	10.58	NLPH	379		353	4.80	0.7	<0.5	0.9
MW9D	03/14/05	15.97	6.93	9.04	NLPH	<50.0		13.8	< 0.50	<0.5	<0.5	<0.5
MW9D	06/08/05	15.97	8.83	7.14	NLPH	<50.0		57.2	<0.50	<0.5 <0.5	<0.5	<0.5
MW9D	09/01/05	15.97	7.99	7.98	NLPH	64.3		51.8	<0.50	<0.50	<0.50	<0.50
MW9D	12/09/05	15.97	7.96	8.01	NLPH	56.3		33.0	<0.50	<0.50	<0.50	<0.50
MW9D	12/30/05 d	15.97	***		244	50.5	Name :	33.0	~0.50	<0.50		
MW9D	03/07/06	15.97	6.19	9.78	NLPH	<50		9.3	<0.50	<0.50	<0.50	<0.50
MW9D	06/26/06	15.97	7.68	8.29	NLPH	<50		9.7	<0.50	<0.50	<0.50	<0.50
MW9D	09/25/06	15.97	8.00	7.97	NLPH	<50.0		13.8	<0.50	< 0.50		
MW9D	12/15/06	15.97	6.91	9.06	NLPH	<50		11	<0.50	<0.50	<0.50	<0.50
MW9D	03/29/07	15.97	8.53	7.44	NLPH	<50		6.91	<0.50	<0.50	<0.50	<0.50
MW9D	06/12/07	15.97	8.21	7.76	NLPH	<50		9.8			<0.50	<0.50
		10101	0.21	7.70	HAFLII	430	400	9.0	<0.50	<0.50	<0.50	<0.50
MW9E	10/24/88							***	1.3	<1.0	<2.0	44.0
MW9E	10/13/89								1.5			<1.0
MW9E	10/19/90					<50		0.725 1.626		< 0.5	2.1	<3.0
MW9E	10/01/90	Well destroyed				450			4.0	<0.5	0.9	<0.5
		rron dood dyou	•									
MW9F	12/06/88			202					-0 F	-10	-0.0	-4.0
MW9F	10/13/89							0000	<0.5	<1.0	<2.0	<1.0
MW9F	10/19/90	7220				<50		1242	<0.5	< 0.5	<0.5	<3.0
MW9F	02/05/92	96.96 1	5.81	91.15		<50 <50	Politica .		< 0.5	<0.5	<0.5	<0.5
MW9F	05/05/92	96.96 I	5.86	91.10				Hana I	< 0.5	< 0.5	<0.5	<0.5
MW9F	09/14/92	96.96 I	0.00			<50			<0.5	<0.5	<0.5	<0.5
14148 21	03/14/34	30.301	2000 i	Sent			~	***	1242		-111	202

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 7 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9F	11/16/92	96.96 1	5.82	91.14		<50			< 0.5	<0.5	<0.5	<0.5
MW9F	02/03/93	96.96 (5.55	91.41		<50			< 0.5	< 0.5	< 0.5	< 0.5
MW9F	05/18/93	96.96 I	5.86	91.10				***		and the second		***
MW9F	05/19/93	96.96 I				<50		***	<0.5	(300)	1.2	6.8
MW9F	08/26/93	96.96 I	5.86	91.10		<50	//		< 0.5	< 0.5	< 0.5	< 0.5
MW9F	11/04/93	96.96 I	5.96	91.00		<50			< 0.5	< 0.5	< 0.5	< 0.5
MW9F	02/04/94	96.96 I	5.68	91.28		<50		277	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	05/31/94	96.96 I	5.76	91.20					< 0.5	< 0.5	< 0.5	< 0.5
MW9F	10/26/94	8.37	5.96	2.41				***	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	05/15/95	8.37	5.52	2.85					< 0.5	< 0.5	< 0.5	< 0.5
MW9F	11/02/95	8.37	6.60	1.77		222	-		(555)		2 555 2	
MW9F	04/26/96	8.37	6.50	1.87	NLPH	<50	57	-	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	08/22/96	8.37	5.74	2.63	NLPH	<50	5.8	***	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	02/24/97	8.37			NLPH	<50	<30		< 0.5	< 0.5	< 0.5	<0.5
MW9F	03/16/98	8.37	=		NLPH			***		1202		***
MW9F	04/21/98	8.37					***	(manus)	***	***	HAR	***
MW9F	07/22/98	11.38				***			23152		***	500
MW9F	12/22/98	11.38	5.47	5.91	NLPH	<50	81	1921/	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	02/26/99	11.38	5.35	6.03	NLPH	<50	<2.5	***	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	05/18/99	11.38	5.62	5.76	NLPH	<50	61.6	777	< 0.5	< 0.5	< 0.5	< 0.5
MW9F	08/03/99	11.38	6.32	5.06	NLPH	<50	3.10		< 0.5	< 0.5	<0.5	<0.5
MW9F	12/03/99	11.38	5.59	5.79	NLPH	<50	<2	***	< 0.5	<0.5	0.71	<0.5
MW9F	02/29/00	11.38	4.70	6.68	NLPH	<50	52	***	<0.5	<0.5	<0.5	<0.5
MW9F	05/18/00	11.38	5.37	6.01	NLPH	<50	65		< 0.5	< 0.5	<0.5	<0.5
MW9F	07/24/00	11.38	5.65	5.73	NLPH	<50	170	1242	<0.5	<0.5	<0.5	<0.5
MW9F	10/09/00	11.38	5.71	5.67	NLPH	<50	170	· man	<0.5	<0.5	<0.5	<0.5
MW9F	01/10/01	11.38	4.30	7.08	NLPH	<50	140	***	<0.5	<0.5	<0.5	<0.5
MW9F	04/10/01	11.38	5.20	6.18	NLPH	<50	50	2 444	<0.5	<0.5	<0.5	<0.5
MW9F	07/12/01	11.38		***	NLPH	<50	190	Common Co	<0.5	<0.5	<0.5	<0.5
MW9F	08/17/01 d	11.38	0.27	124	-242		-	***	77.		- TT	***
MW9F	10/11/01	11.38	5.82	5.56	NLPH	<50	260	245	<0.5	<0.5	<0.5	<0.5
MW9F	11/01/01	11.38	Well surveyed in						5.0	0.0	0.0	.0.0
MW9F	01/11/02	11.38	5.12	6.26	NLPH	<100	67.0e		<1.00	<1.00	<1.00	<1.00
MW9F	04/12/02	11.38	5.50	5.88	NLPH	55.9	58.6		<0.50	<0.50	<0.50	<0.50
MW9F	07/12/02	11.38	5.65	5.73	NLPH	102	121		<0.5	<0.5	<0.5	<0.5
MW9F	10/11/02	11.38	5.67	5.71	NLPH	99.9	128	138	<0.5	<0.5	<0.5	<0.5
MW9F	01/10/03	11.38	5.09	6.29	NLPH	<50.0	45.5		<0.5	<0.5	<0.5	<0.5
MW9F	04/09/03	11.38	5.39	5.99	NLPH	<50.0	50.8	3444 3444	<0.50	<0.5	<0.5	<0.5
MW9F	07/22/03	11.38	5.52	5.86	NLPH	82.3	64.0	***	<0.50	<0.5	<0.5	<0.5
MW9F	10/01/03	11.38	5.59	5.79	NLPH	67.0		56.4	<0.50	<0.5	<0.5	<0.5 <0.5
MW9F	01/06/04	11.38	5.21	6.17	NLPH	<50.0	155	36.7	<0.50			
MW9F	06/07/04	11.38	6.03	5.35	NLPH	<50.0 <50.0		20.5	<0.50	< 0.5	<0.5	<0.5
MW9F	08/30/04	11.38	0.03 h	0.35 h						<0.5	<0.5	< 0.5
MINARIA	30/30/04	11.30	Ш	11	h	<50.0h	75	14.0h	<0.50h	<0.5h	<0.5h	<0.5h

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 8 of 13)

The second secon												
Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9F	12/13/04	11.38	4.80	6.58	NLPH	<50.0		13.4	<0.50	<0.5	<0.5	<0.5
MW9F	03/14/05	11.38	5.10	6.28	NLPH	<50.0		4.20	<0.50	<0.5	<0.5	<0.5
MW9F	06/08/05	11.38	5.38	6.00	NLPH	<50.0		8.70	<0.50	<0.5	<0.5	<0.5
MW9F	09/01/05	11.38	5.53	5.85	NLPH	<50.0		19.6	<0.50	<0.50	<0.50	<0.50
MW9F	12/09/05 j	11.38	***				222					
MW9F	12/30/05	11.38	4.81	6.57	NLPH	<50.0		7.01	< 0.50	< 0.50	<0.50	< 0.50
MW9F	03/07/06 j	11.38					***	777			***	+
MW9F	06/26/06 j	11.38	***			12/202	***	-			***	577 3
MW9F	09/25/06	11.38	5.56	5.82	NLPH	<50.0	***	6.52	<0.50	< 0.50	<0.50	< 0.50
MW9F	12/15/06	11.38	5.10	6.28	NLPH	<50		7.2	<0.50	<0.50	<0.50	<0.50
MW9F	03/29/07 j	11.38		2027								
MW9F	06/12/07 j	11.38							2400 e-c			
MW9G	12/06/88	222	222	(inc.)	***				0.8	<1.0	<2.0	<1.0
MW9G	10/13/89	***	100	***		######################################		1500 15 <u>000</u>	<0.5	<0.5	<0.5	<3.0
MW9G	10/19/90		***	ment);	***	<50		3 <u>2 2 2 2</u>	<0.5	<0.5	<0.5	<0.5
MW9G	02/05/92	98.51 [5.59	92.92		<50			<0.5	<0.5	<0.5	<0.5
MW9G	05/05/92	98.51	5.60	92.91	72447	<50		Control Control	1.5	3.8	1	4.7
MW9G	09/14/92	98.51 I	***		00 pt 10			0.0000 0.0000	1.0	19000	0222	4.7
MW9G	11/16/92	98.51 I	5.78	92.73		<50			<0.5	<0.5	<0.5	<0.5
MW9G	02/03/93	98.51 I	5.05	93.46		64		-	<0.5	<0.5	<0.5	<0.5
MW9G	05/18/93	98.51 I	5.62	92.89		<50		50555 9 444	<0.5	<0.5	<0.5	<0.5
MW9G	08/26/93	98.51 I	5.86	92.65		<50			<0.5	<0.5	<0.5	<0.5
MW9G	11/04/93	98.51	5.96	92.55	***	<50	700		<0.5	<0.5	<0.5	<0.5
MW9G	02/04/94	98.51 I	5.48	93.03	***	<50		***	<0.5	<0.5	<0.5	<0.5
MW9G	05/31/94	98.51	5.50	93.01	777	777		***		-0.0		
MW9G	10/26/94	9.95	5.76	4.19	***	VERM				1575		***
MW9G	05/15/95	9.95	4.88	5.07		-			2500 2000	1975	F2004	
MW9G	11/02/95	9.95	5.92	4.03	NLPH	<50	<10		<0.5	<0.5	<0.5	<0.5
MW9G	04/26/96	9.95	5.28	4.67	NLPH	<50	18		<0.5	<0.5	<0.5	<0.5
MW9G	08/22/96	9.95	5.57	4.38	NLPH	<50	18		<0.5	<0.5	<0.5	<0.5
MW9G	02/24/97	9.95	5.30	4.65	NLPH	<50	240		<0.5	0.57	<0.5	0.62
MW9G	03/16/98	9.95	1222							0.07	~0.5	
MW9G	04/21/98	9.95	***	***					***			
MW9G	07/22/98	12.99				***	174544		(50%)			5 555 2
MW9G	12/22/98	12.99	5.28	7.71	NLPH	<50	1,100	***	<0.5			
MW9G	02/26/99	12.99	5.31	7.68	NLPH	<50	50			<0.5	<0.5	<0.5
MW9G	05/18/99	12.99	5.18	7.81	NLPH	<1,000	3,990	###EX	<0.5	< 0.5	< 0.5	<0.5
MW9G	08/03/99	12.99	6.00	6.99	NLPH	<50	3,990 1,340		<10	<10	<10	<10
MW9G	12/03/99	12.99	5.27	7.72	NLPH	<50	1,340 <2	200 0	<0.5	<0.5	<0.5	<0.5
MW9G	02/29/00	12.99	4.60	8.39	NLPH			200 8	< 0.5	<0.5	< 0.5	0.55 b
MW9G	05/18/00	12.99	5.16			<50	7,900	(100)	<0.5	<0.5	<0.5	<0.5
MW9G				7.83	NLPH	<50	2,400	No.	<0.5	<0.5	<0.5	<0.5
MMAAG	07/24/00	12.99	5.20	7.79	NLPH	<50	1,000	New Y	< 0.5	< 0.5	< 0.5	< 0.5

TABLE 3A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 9 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	Е	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9G	10/09/00	12.99	5.26	7.73	NLPH	<50	180		<0.5	<0.5	<0.5	<0.5
MW9G	01/10/01	12.99	5.18	7.81	NLPH	<50	1,200	(MAN)	< 0.5	< 0.5	< 0.5	< 0.5
MW9G	04/10/01	12.99	5.08	7.91	NLPH	<50	9,100		< 0.5	< 0.5	< 0.5	<0.5
MW9G	07/12/01	12.99		<u>116</u> -7	NLPH	<50	3,000	44 PM	< 0.5	< 0.5	<0.5	< 0.5
MW9G	08/17/01 d	12.99		CHAR	***	***	***	mi 44 Am	***	***	***	***
MW9G	10/11/01	12.99	5.48	7.51	NLPH	<50	1,600	inter-	< 0.5	< 0.5	< 0.5	< 0.5
MW9G	11/01/01	12.98	Well surveyed in	n compliance with	AB2886 requi	rements.						
MW9G	01/11/02	12.98	4.97	8.01	NLPH	419e	945e		< 0.50	< 0.50	< 0.50	< 0.50
MW9G	04/12/02	12.98	5.12	7.86	NLPH	10,700	11,000		< 0.50	< 0.50	< 0.50	< 0.50
MW9G	07/12/02	12.98	5.31	7.67	NLPH	2,310	3,140		< 0.5	< 0.5	< 0.5	< 0.5
MW9G	10/11/02	12.98	5.39	7.59	NLPH	1,630	2,040	2,090	< 0.5	< 0.5	< 0.5	< 0.5
MW9G	01/10/03	12.98	4.90	8.08	NLPH	367	566		< 0.5	< 0.5	< 0.5	< 0.5
MW9G	04/09/03	12.98	5.15	7.83	NLPH	3,730	3,990		< 0.50	< 0.5	< 0.5	< 0.5
MW9G	07/22/03	12.98	5.30	7.68	NLPH	1,070	968	221	< 0.50	< 0.5	< 0.5	< 0.5
MW9G	10/01/03	12.98	5.41	7.57	NLPH	1,300		1,570	< 0.50	<0.5	< 0.5	< 0.5
MW9G	01/06/04	12.98	4.92	8.06	NLPH	568		918	< 0.50	<0.5	< 0.5	< 0.5
MW9G	06/07/04	12.98	5.49	7.49	NLPH	457		324	< 0.50	<0.5	< 0.5	<0.5
MW9G	08/30/04	12.98	h	h	h	428h		369h	<0.50h	<0.5h	<0.5h	<0.5h
MW9G	12/13/04	12.98	5.01	7.97	NLPH	1,030	ene.	1,030	< 0.50	< 0.5	< 0.5	< 0.5
MW9G	03/14/05	12.98	4.98	8.00	NLPH	395		451	< 0.50	< 0.5	< 0.5	< 0.5
MW9G	06/08/05	12.98	5.54	7.44	NLPH	333	***	404	< 0.50	< 0.5	<0.5	< 0.5
MW9G	09/01/05	12.98	6.35	6.63	NLPH	218	-	308	< 0.50	<0.50	< 0.50	0.63
MW9G	12/09/05 j	12.98	1000	***				1242		***	***	***
MW9G	12/30/05	12.98	4.83	8.15	NLPH	75.3		69.9	< 0.50	< 0.50	< 0.50	< 0.50
MW9G	03/07/06 j	12.98		:5W24	1900		7770	1.070	(777	877	***	****
MW9G	06/26/06 j	12.98				2007		(1000)		222	222	6220
MW9G	09/25/06	12.98	8.41	4.57	NLPH	94.5	***	180	< 0.50	< 0.50	< 0.50	< 0.50
MW9G	12/15/06	12.98	5.30	7.68	NLPH	50k	777	52	< 0.50	< 0.50	< 0.50	< 0.50
MW9G	03/29/07 j	12.98							***	***	****	•••
MW9G	06/12/07 j	12.98			***		Hem."					
MW9H	12/06/88						ana a		<0.5	<1.0	<2.0	<1.0
MW9H	10/13/89	2201		****		***	***	***	< 0.5	< 0.5	< 0.5	<3.0
MW9H	10/19/90	***		***		<50			< 0.5	< 0.5	< 0.5	< 0.5
MW9H	02/05/92	97.14	7.70	89.44	eri eris	<50	***		< 0.5	< 0.5	< 0.5	< 0.5
MW9H	05/05/92	97.14	8.12	89.02		<50	444		< 0.5	< 0.5	< 0.5	< 0.5
MW9H	09/14/92	97.141		****	HARES	Company Company	200		(202)	344	***	***
MW9H	11/16/92	97.14 [interior	HERE:	HHE:	C oloro	35/17		***	ene.	-	***
MW9H	02/03/93	97.141	7.72	89.42		280	707		<0.5	< 0.5	< 0.5	< 0.5
MW9H	05/18/93	97.14	8.12	89.02		<50			< 0.5	< 0.5	1.1	6.4
MW9H	08/26/93	97.14	8.14	89.00		<50	***		0.8	<0.5	< 0.5	< 0.5
MW9H	11/04/93	97.14	8.15	88.99		<50			< 0.5	<0.5	<0.5	< 0.5
MW9H	02/04/94	97.14	7.98	89.16		<50	444		< 0.5	<0.5	< 0.5	<0.5

TABLE 3A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 10 of 13)

TAX TV		100 C	150000	22 A FARMAN								
Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	Х
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9H	05/31/94	97.14	8.80	88.34		<50			0.92	1.1	<0.5	0.86
MW9H	10/26/94	8.58	8.12	0.46		<50			< 0.5	< 0.5	< 0.5	<0.5
MW9H	05/15/95	8.58	7.88	0.70		<50			< 0.5	< 0.5	< 0.5	< 0.5
MW9H	11/02/95	8.58	8.40	0.18	NLPH	<50	<10		< 0.5	< 0.5	< 0.5	< 0.5
MW9H	04/26/96	8.58	8.05	0.53	NLPH							***
MW9H	08/22/96	8.58	8.17	0.41	NLPH				***			<u> </u>
MW9H	02/24/97	8.58			***				***			222
MW9H	03/16/98	8.58							***			
MW9H	04/21/98	8.58	n			-			2000	4.22		1-1111
MW9H	07/22/98	11.61		: :		***			***		***	200
MW9H	12/22/98	11.61	7.81	3.80	NLPH	<50	<2.5		< 0.5	< 0.5	<0.5	<0.5
MW9H	02/26/99	11.61	7.61	4.00	NLPH	<50	<2.5		<0.5	<0.5	<0.5	<0.5
MW9H	05/18/99	11.61	8.00	3.61	NLPH	<50	3.98		<0.5	<0.5	<0.5	<0.5
MW9H	08/03/99	11.61	6.05	5.56	NLPH	<50	<2.5		<0.5	<0.5	<0.5	<0.5
MW9H	12/03/99	11.61	5.32	6.29	NLPH	<50	<2		<0.5	<0.5	<0.5	0.57 b
MW9H	02/29/00	11.61	7.10	4.51	NLPH	<50	<2		<0.5	<0.5	<0.5	<0.5
MW9H	05/18/00	11.61	7.84	3.77	NLPH	<50	9.7		<0.5	<0.5	<0.5	<0.5
MW9H	07/24/00	11.61	7.94	3.67	NLPH	<50	17		<0.5	<0.5	<0.5	<0.5
MW9H	10/09/00	11.61	8.09	3.52	NLPH	<50	13		<0.5	<0.5	<0.5	1.1
MW9H	01/10/01	11.61	7.89	3.72	NLPH	<50	11		<0.5	<0.5	<0.5	0.5
MW9H	04/10/01	11.61	8.71	2.90	NLPH	<50	44		<0.5	0.78	0.52	2.36
MW9H	07/12/01	11.61			NLPH	<50	28		<0.5	<0.5	<0.5	<0.5
MW9H	08/17/01 d	11.61				1,000					***	
MW9H	10/11/01	11.61	8.15	3.46	NLPH	<50	30		<0.5	<0.5	<0.5	<0.5
MW9H	11/01/01	11.59	Well surveyed in	compliance with					0.0	0.10	0.0	.0.0
MW9H	01/11/02	11.59	7.48	4.11	NLPH	<50.0	20.5e		< 0.50	< 0.50	<0.50	< 0.50
MW9H	04/12/02	11.59	7.68	3.91	NLPH	<50.0	32.8		< 0.50	<0.50	<0.50	<0.50
MW9H	07/12/02	11.59	8.06	3.53	NLPH	<50.0	34.6		<0.5	<0.5	<0.5	<0.5
MW9H	10/11/02	11.59	7.83	3.76	NLPH	<50.0	33.1	28.7	<0.5	<0.5	<0.5	<0.5
MW9H	01/10/03	11.59	7.39	4.20	NLPH	<50.0	16.0		0.5	0.8	0.6	1.8
MW9H	04/09/03	11.59	7.69	3.90	NLPH	<50.0	26.8		<0.50	<0.5	<0.5	<0.5
MW9H	07/22/03	11.59	7.94	3.65	NLPH	55.3	34.7	***	<0.50	<0.5	<0.5	<0.5
MW9H	10/01/03	11.59	7.93	3.66	NLPH	<50.0	UMAN .	32.3	<0.50	<0.5	<0.5	0.9
MW9H	01/06/04	11.59	7.27	4.32	NLPH	<50.0		10	<0.50	<0.5	<0.5	<0.5
MW9H	06/07/04	11.59	7.99	3.60	NLPH	50.6		71.7	<0.50	<0.5	<0.5	<0.5
MW9H	08/30/04	11.59	h	h	h	64.2h		51.0h	<0.50h	<0.5h	<0.50h	
MW9H	12/13/04	11.59	7.22	4.37	NLPH	<50.0		14.0	< 0.5011	<0.5		<0.5h
MW9H	03/14/05	11.59	6.96	4.63	NLPH	<50.0		27.4	<0.50	<0.5	0.5	1.2
MW9H	06/08/05	11.59	7.53	4.06	NLPH	52.6		68.8	<0.50	<0.5	<0.5 <0.5	<0.5
MW9H	09/01/05	11.59	7.82	3.77	NLPH	140		71.6	< 0.50			<0.5
MW9H	12/09/05 j		7.02	3.77	INCE II			71.0	<0.50	<0.50	<0.50	<0.50
MW9H	12/30/05	11.59	7.27	4.32	NLPH	<50.0		13.7				555/S
ININACII	.2/00/00	11.00	1.21	4.52	IAFLI	~50.0		13.7	< 0.50	< 0.50	< 0.50	< 0.50

TABLE 3A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 11 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	T	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9H	03/07/06 j	11.59	1775	****		-	AAA.	10000				222
MW9H	06/26/06 j	11.59		1000),	555		MARK 2				-	5-4-6
MW9H	09/25/06	11.59	7.96	3.63	NLPH	59.5	****	71.0	< 0.50	< 0.50	< 0.50	< 0.50
MW9H	12/15/06	11.59	7.42	4.17	NLPH	57		21	< 0.50	< 0.50	< 0.50	< 0.50
MW9H	03/29/07 j	11.59		1000	तमस्य	(221)	1010	300 m			(2102)	
MW9H	06/12/07 j	11.59					. ****	N-4				
MW9I	11/15/90		200	3,555	nen	55		***	4.0	1.1	1.2	2.2
MW9I	02/05/92	98.661	5.56	93.10	****	< 50	-	men.	<0.5	< 0.5	<0.5	<0.5
MW9I	05/05/92	98.66 I	5.60	93.06	222	<50	5202	222	0.9	< 0.5	<0.5	0.7
MW9I	09/14/92	98.661	6.12	92.54		<50		***	<0.5	<0.5	<0.5	<0.5
MW9I	11/16/92	98.661	5.82	92.84		<50		***	<0.5	<0.5	<0.5	<0.5
MW9I	02/03/93	98.661	4.92	93.74	2444	240		22.20	46	1.1	2.3	2.1
MW9i	05/18/93	98.661	5.60	93.06	-	79		### S	<0.5	<0.5	<0.5	<0.5
MW9I	08/26/93	98.66 I	5.91	92.75	***	<50		***	<0.5	<0.5	<0.5	<0.5
MW9I	11/04/93	98.66	6.03	92.63	***	<50	222		<0.5	<0.5	<0.5	<0.5
MW9I	02/04/94	98.661	5.37	93.29	1.000	<50		500	<0.5	<0.5	<0.5	<0.5
MW9I	05/31/94	98.661	5.46	93.20	1,777	240	:===)	***	0.66	0.63	<0.5	1.4
MW9I	10/26/94	10.11	5.88	4.23	1202	150			<0.5	<0.5	<0.5	<0.5
MW9I	05/15/95	10.11	4.94	5.17		56		1222	<0.5	0.82	<0.5	<0.5
MW9I	11/02/95	10.11	6.04	4.07	NLPH	<50	<10		<0.5	<0.5	<0.5	<0.5
MW9I	04/26/96	10.11	5.27	4.84	NLPH	<50	99		<0.5	<0.5	<0.5	<0.5
MW9I	08/22/96	10.11	5.66	4.45	NLPH	<50	170		<0.5	<0.5	<0.5	<0.5
MW9I	02/24/97	10.11	5.24	4.87	NLPH	120	9,100	***	<0.5	<0.5	<0.5	<0.5
MW9I	03/16/98	10.11	4.91	5.20	NLPH	<200	59,000		13	<2.0	<2.0	<2.0
MW9I	04/21/98	10.11	5.08	5.03	NLPH	<500	59,000	244	<5.0	<5.0	<5.0	<5.0
MW9I	07/22/98	13.14	5.44	7.70	NLPH	<500	62,000		<5.0	<5.0	<5.0	<5.0
MW9I	12/22/98	13.14	5.32	7.82	NLPH	200	51,000		1.7	<0.5	<0.5	<0.5
MW9I	02/26/99	13.14	4.71	8.43	NLPH	<500	9,700	1944	<5.0	<5.0	<5.0	<5.0
MW9I	05/18/99	13.14	5.30	7.84	NLPH	<1,000	3,730		<10	<10	<10	<10
MW9I	08/03/99	13.14	5.98	7.16	NLPH	<50	21,900		<0.5	0.650	<0.5	<0.5
MW9I	12/03/99	13.14	5.31	7.83	NLPH	<250	2,000		3.9	2.9	<2.5	14
MW9I	02/29/00	13.14	4.20	8.94	NLPH	50	16,000	19270. 1922	0.74	<0.5	<0.5	<0.5
MW9I	05/18/00	13.14	5.12	8.02	NLPH	<50	2,900		<0.5	<0.5	<0.5	<0.5
MW9I	07/24/00	13.14	5.41	7.73	NLPH	<250	43,000		<2.5	<2.5	<2.5	<2.5
MW9I	10/09/00	13.14	5.41	7.73	NLPH	<2,500	54,000	2000 2000	1.6	<0.5	<0.5	<0.5
MW9I	01/10/01	13.14	5.24	7.90	NLPH	<250	36,000	***	<2.5	<2.5	<2.5	<2.5
MW9I	04/10/01	13.14	4.84	8.30	NLPH	<50	4,800	***	<0.5	<0.5	<0.5	<0.5
MW9I	07/12/01	13.14	***		NLPH	<50	8,400		<0.5	<0.5	<0.5	<0.5
MW9I	08/17/01	13.14	6.49	6.65			0,400			<0.5	<0.5 	
MW9l	10/11/01	13.14	5.64	7.50	NLPH	<250	38,000		<2.5	<2.5		 -2.5
MW9I	11/01/01	13.13	Well surveyed in				30,000	:05E6	~2.0	~2.5	<2.5	<2.5
MW9I	01/11/02	13.13	4.80	8.33	NLPH	1,330e	5,400e	***	4.80e	<0.50	<0.50	<0.50

TABLE 3A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 12 of 13)

Well	Sampling	TOC	DTW	GW Elev.	SUBJ	TPHg	MTBE 8021B	MTBE 8260B	В	Т	E	X
ID	Date	(feet)	(feet)	(feet)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9I	04/12/02	13.13	5.22	7.91	NLPH	1,460	1,480		<0.50	<0.50	<0.50	<0.50
MW9I	07/12/02	13.13	5.50	7.63	NLPH	4,460	6,490		<0.5	<0.5	< 0.5	< 0.5
MW9I	10/11/02	13.13	5.35	7.78	NLPH	31,300	37,700	51,000	<5.0	< 5.0	<5.0	< 5.0
MW9I	01/10/03	13.13	4.75	8.38	NLPH	4,820	6,180	.em.	9.4	0.7	1.1	1.3
MW9I	04/09/03	13.13	5.15	7.98	NLPH	2,130	1,510		22.3	1.9	1.5	1.5
MW9I	07/22/03	13.13	5.50	7.63	NLPH	2,330	2,540	***	1.60	< 0.5	< 0.5	< 0.5
MW9I	10/01/03	13.13	5.65	7.48	NLPH	6,080	H-H 1961	4,610	1.00	< 0.5	< 0.5	< 0.5
MW9I	01/06/04	13.13	4.50	8.63	NLPH	175	920	61.3	0.90	< 0.5	0.5	< 0.5
MW9I	06/07/04	13.13	6.87	6.26	NLPH	4,620	***	3,410	< 0.50	< 0.5	< 0.5	< 0.5
MW9I	08/30/04	13.13	h	h	h	817h	***	847h	<0.50h	<0.5h	<0.5h	<0.5h
MW9I	12/13/04	13.13	4.47	8.66	NLPH	<50.0		14.4	< 0.50	< 0.5	< 0.5	< 0.5
MW9I	03/14/05	13.13	5.05	8.08	NLPH	96.7		44.9	< 0.50	< 0.5	< 0.5	< 0.5
MW9I	06/08/05	13.13	6.47	6.66	NLPH	1,230		321	< 0.50	< 0.5	< 0.5	0.8
MW9I	09/01/05	13.13	5.60	7.53	NLPH	170		62.3	1.22	0.77	< 0.50	< 0.50
MW9I	12/09/05	13.13	6.82	6.31	NLPH	78.3		81.0	< 0.50	0.58	< 0.50	< 0.50
MW9I	12/30/05	13.13	4.23	8.90	NLPH	***		***	wa.			***
MW9I	03/07/06	13.13	5.08	8.05	NLPH	<50		0.96	< 0.50	< 0.50	< 0.50	< 0.50
MW9I	06/26/06	13.13	5.30	7.83	NLPH	<50		3.7	< 0.50	< 0.50	<0.50	< 0.50
MW9I	09/25/06	13.13	6.17	6.96	NLPH	50.9		24.0	< 0.50	< 0.50	< 0.50	< 0.50
MW9I	12/15/06	13.13	5.45	7.68	NLPH	<50		0.59	< 0.50	< 0.50	< 0.50	< 0.50
MW9I	03/29/07	13.13	6.35	6.78	NLPH	<50		1.15	<0.50	< 0.50	<0.50	0.62
MW9I	06/12/07	13.13	5.87	7.26	NLPH	<50		0.53	<0.50	< 0.50	< 0.50	< 0.50

TABLE 3A

CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 13 of 13)

Proposition of the Control of the Co		
Notes:		
SUBJ	=	Results of subjective evaluation.
NLPH	=	No liquid-phase hydrocarbons present in well.
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B.
MTBE 8260B	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dichloroethane analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
μg/L	=	Micrograms per liter.
<	=	Less than the indicated reporting limit shown by the laboratory.
	=	Not measured/Not sampled/Not analyzed.
а	=	Miscalculation in field. Field technician may have inadvertently monitored and sampled the wrong well. Resampled 05/27/99.
b	=	Analyte detected in the trip blank and/or bailer blank.
С	=	Due to measurement error during initial sampling event, DTW was re-measured on 08/17/01. Samples were not taken.
d	=	Well inaccessible.
е	=	Samples collected after fourth quarter 2001 analyzed by TestAmerica, Incorporated. Reported concentrations may be affected by differing laboratory quantitation methods.
f	=	Sample erroneously labeled MA9B on Chain-of-Custody form and laboratory report.
g	=	Insufficient sample volume to perform analyses.
h	=	Groundwater elevation data invalidated; analytical results suspect.
i	=	Well sampled using no-purge method.
j	=	Well not gauged and/or sampled due to encroachment permit restrictions.
k	=	Hydrocarbon result partly due to individual peak(s) in quantitation range.
I	=	Elevation relative to temporary benchmark with an arbitrary elevation of 100.0 feet.

TABLE 3B

ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 1 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethano
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	20/40/00 07/40	/00 N I						
MW9A		/02 Not analyzed for	9 23					
MW9A	10/11/02	<0.50	<0.50	<10.0	< 0.50	< 0.50	< 0.50	***
MW9A	01/10/03		****	777		177	277	707
MW9A	04/09/03			***			244	
MW9A	07/22/03	***	***	***	***	/ ***	***	***
MW9A	10/01/03	< 0.50	2.80	1,100	< 0.50	<0.50	<0.50	7000
MW9A	01/06/04	< 0.50	4.90	11,900	< 0.50	< 0.50	<0.50	777
MW9A	06/07/04	pro-	-	1942			<u>121</u> 8	<2,500
MW9A	08/30/04 d	***	***	: mex	***		***	***
MW9A	12/13/04		I STA	4,755	8 907 8		***	757
MW9A	03/14/05	< 0.50	1.00	14,400	< 0.50	< 0.50	< 0.50	<50.0
MW9A	06/08/05	< 0.50	< 0.50	22,400	< 0.50	< 0.50	<0.50	<100
MW9A	09/01/05			Officer.	(***	***	SHC Y	***
MW9A	12/09/05		Contract Con	****	***		777 7.	7.0.7
MW9A	12/30/05		***	200	***	***	222	
MW9A	03/07/06	<5.0	<5.0	5,600	<5.0	<5.0	<5.0	<1,000
MW9A	06/26/06			3.00		1777	***	<1,000
MW9A	09/25/06	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	<50.0
MW9A	12/15/06	<5.0	<5.0	1,200	<5.0	<5.0	<5.0	<1,000
MW9A	03/29/07	< 0.500	< 0.500	297	< 0.500	< 0.500	<0.500	<50.0
MW9A	06/12/07	<0.50	<0.50	160	<0.50	<0.50	<0.50	<100
MW9B	06/13/88 - 07/12/	02 Not analyzed for	these analytes.					
MW9B	10/11/02 f	<0.50	<0.50	<10.0	<0.50	< 0.50	<0.50	
MW9B	01/10/03		222		***	<u> 222</u> 1	0.000	422
MW9B	04/09/03		***	***		***	7444	
MW9B	07/22/03	***		(exe	***	***	- nee	
MW9B	10/01/03	< 0.50	9.70	2,430	< 0.50	< 0.50	< 0.50	
MW9B	01/06/04	0.80	9.00	11,500	<0.50	<0.50	< 0.50	444
MW9B	06/07/04	***	***		***	***	***	<50.0
MW9B	08/30/04	MMM :			***	555	: man	<50.0j
MW9B	12/13/04	-	5277.5	202		500		***
MW9B	03/14/05	< 0.50	< 0.50	4,800	< 0.50	<0.50	< 0.50	<50.0
MW9B	06/08/05	<0.50	<0.50	2,320	<0.50	<0.50	<0.50	<100
MW9B	09/01/05	10.00		2,020	-0.50	10.00	-0.00	-100
MW9B	12/09/05	***			****	***		
MW9B	12/30/05	222		202	2000)	222) <u>1111</u>	0222
MW9B	03/07/06	<0.50	<0.50	1,200	<0.50	<0.50	<0.50	
MW9B	06/26/06	~0.50 	~0.50	1,200	<0.50	~0.50	~0.50	
				70.1				
MW9B	09/25/06	<0.500	<0.500		<0.500	< 0.500	<0.500	1555
MW9B	12/15/06	<0.50	< 0.50	56	< 0.50	< 0.50	< 0.50	

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 2 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9B	03/29/07	<0.500	<0.500	734	<0.500	<0.500	<0.500	
MW9B	06/12/07	<0.50	<0.50	270	<0.50	<0.50	<0.50	
MW9C	06/13/88 - 07/12	/02 Not analyzed for	r these analytes.					
MW9C	10/11/02	< 0.50	34.3	<10.0	< 0.50	<0.50	< 0.50	
MW9C	01/10/03			###)	222			-
MW9C	04/09/03			***	***	***	***	ment)
MW9C	07/22/03			***	***	***		
MW9C	10/01/03	< 0.50	2.70	38,400	< 0.50	< 0.50	<0.50	222
MW9C	01/06/04	0.80	2.50	90,700	<0.50	<0.50	<0.50	
MW9C	06/07/04	***	577		***			<50.0
MW9C	08/30/04			200			-	<50.0j
MW9C	12/13/04	2425	202	2-2	7/2422 7/2422	1222 1222	-	-00.0
MW9C	03/14/05	< 0.50	< 0.50	674	< 0.50	<0.50	< 0.50	<50.0
MW9C	06/08/05	<0.50	<0.50	817	<0.50	<0.50	<0.50	<100
MW9C	09/01/05		222					
MW9C	12/09/05	***	24.00	222)	1222		***	1000
MW9C	12/30/05		(***		***		***	
MW9C	03/07/06	<2.5	<2.5	160	<2.5	<2.5	<2.5	LEAR
MW9C	06/26/06			100	2.0		2.0	N3422
MW9C	09/25/06	<0.500	< 0.500	<10.0	<0.500	<0.500	< 0.500	
MW9C	12/15/06	<2.5	<2.5	<60	<2.5	<2.5	<2.5	(market
MW9C	03/29/07	<0.500	<0.500	<10.0	<0.500	<0.500	<0.500	-
MW9C	06/12/07	<2.5	<2.5	<100	<2.5	<2.5	<2.5	
MW9D	10/24/88 - 07/12/	02 Not analyzed for	these analytes					
MW9D	10/11/02 g			***	***			
MW9D	01/10/03		***	***		***		
MW9D	04/09/03	707				***	***	
MW9D	07/22/03		12021	7.400		<u>201</u> 5	222	(200)
MW9D	10/01/03	< 0.50	< 0.50	235	< 0.50	<0.50	< 0.50	***
MW9D	01/06/04	<0.50	<0.50	51.8	<0.50	<0.50	<0.50	9 99 8
MW9D	06/07/04					777	5.55	<50.0
MW9D	08/30/04 h				2.2	2000 C	<u> </u>	
MW9D	12/13/04		***		***	444	WW.)	***
	03/14/05	< 0.50	<0.50	<10.0	< 0.50	< 0.50	<0.50	<50.0
MMAD			-0.00	110.0	-0.00			
MW9D MW9D		< 0.50	< 0.50	57.8	<0.50	< 0.50	<0.50	<100
MW9D	06/08/05	<0.50	<0.50	57.8 	<0.50	<0.50	<0.50	<100
MW9D MW9D	06/08/05 09/01/05			***		202	<u> </u>	
MW9D MW9D MW9D	06/08/05 09/01/05 12/09/05					222V	444	
MW9D MW9D MW9D MW9D	06/08/05 09/01/05 12/09/05 12/30/05 d	***	***				222 222	
MW9D	06/08/05 09/01/05 12/09/05					222V	444	

TABLE 3B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 3 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9D	12/15/06	<0.50	<0.50	<12	<0.50	<0.50	<0.50	\F-5'-/
MW9D	03/29/07	< 0.500	<0.500	<10.0	< 0.500	<0.500	<0.500	
MW9D	06/12/07	<0.50	<0.50	<20	<0.50	<0.50	<0.50	2-17
MW9E	10/24/88 - 10/1	9/90 Not analyzed for	these analytes.					
MW9E	10/01/90	Well destroyed.						
MW9F	12/06/88 - 07/1	2/02 Not analyzed for	these analytes.					
MW9F	10/11/02	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	Dave
MW9F	01/10/03		-202	****			***	
MW9F	04/09/03			242	***	244	222	
MW9F	07/22/03	-	***	CHEH		200 0	222	
MW9F	10/01/03	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	See.
MW9F	01/06/04	< 0.50	< 0.50	13.7	< 0.50	<0.50	<0.50	
MW9F	06/07/04		***	HAM	5###5	W-2	1310	<50.0
MW9F	08/30/04	777	***	***	(****)	75 T		<50.0j
MW9F	12/13/04	222		***	***			
MW9F	03/14/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<50.0
MW9F	06/08/05	< 0.50	< 0.50	<10.0	< 0.50	<0.50	<0.50	<100
MW9F	09/01/05		***					
MW9F	12/09/05 j		10 C C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	1444		
MW9F	12/30/05			***			7252 7252	1000
MW9F	03/07/06 j			***		CHAR		
MW9F	06/26/06 j	1000 H	4446	202		1.5500		
MW9F	09/25/06	< 0.500	<0.500	<10.0	<0.500	<0.500	<0.500	1222
MW9F	12/15/06	<0.50	<0.50	<20	<0.50	<0.50	<0.50	
MW9F	03/29/07 j				-0.00	-0.00	10.00	
MW9F	06/12/07 j		Man.		9470			
MW9G	12/06/88 - 07/12	2/02 Not analyzed for	these analytes.					
MW9G	10/11/02	<0.50	< 0.50	<10.0	< 0.50	<0.50	<0.50	
MW9G	01/10/03							***
MW9G	04/09/03	***		***	0446	***		
MW9G	07/22/03				1000	***		
MW9G	10/01/03	<0.50	<0.50	17.1	<0.50	<0.50	<0.50	755
MW9G	01/06/04	<0.50	<0.50	367	<0.50	<0.50	<0.50	
MW9G	06/07/04			307	~0.50		~0.50	<50.0
MW9G	08/30/04	1000000	Trans	***				<50.0j
MW9G	12/13/04	***	9.500 9.500	2000 2000	- 5575 (- 4 -			
MW9G	03/14/05	<0.50	<0.50	569	<0.50	<0.50	< 0.50	5777 / -EO O
MW9G	06/08/05	<0.50	<0.50	150	<0.50			<50.0
	00/00/00	~0.00	~0.00	130	~0.50	< 0.50	< 0.50	<100
MW9G	09/01/05	244	***	***		: ***** **	***	***

TABLE 3B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 4 of 5)

Well	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol
ID	Date	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9G	12/30/05					(1-37	(1-3:-)	(F3/-/
MW9G	03/07/06 j		###)			5202	(222	242
MW9G	06/26/06 j		***		***	***	-	
MW9G	09/25/06	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	<0.500	***
MW9G	12/15/06	< 0.50	<0.50	<12	<0.50	<0.50	<0.50	
MW9G	03/29/07 j			***	HONLING MARKET			
MW9G	06/12/07 j				***			
MW9H	12/06/88 - 10/19	9/90 Not analyzed for	these analytes.					
MW9H	11/02/95		***		<50	<10	< 0.5	< 0.5
MW9H	04/26/96 - 07/12	02 Not analyzed for	these analytes.					
MW9H	10/11/02	< 0.50	< 0.50	<10.0	< 0.50	<0.50	< 0.50	
MW9H	01/10/03			444		200		-
MW9H	04/09/03		***	***	CHARLES .			10 224
MW9H	07/22/03		- 	****	S total			S ee
MW9H	10/01/03	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	
MW9H	01/06/04	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	<0.50	7.450
MW9H	06/07/04		2775	74 555	S tati	200		<50.0
MW9H	08/30/04			9 444		***		<50.0j
MW9H	12/13/04		***	11 440			202	***
MW9H	03/14/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	<0.50	<50.0
MW9H	06/08/05	< 0.50	< 0.50	<10.0	< 0.50	< 0.50	< 0.50	<100
MW9H	09/01/05			14.00		***		
MW9H	12/09/05 j					3450 3450	5250 5250	
MW9H	12/30/05		***		(=11=)	510 0.)		2444
MW9H	03/07/06 j						***	
MW9H	06/26/06 j	-00	242	***		<u>200</u>		
MW9H	09/25/06	< 0.500	< 0.500	<10.0	< 0.500	< 0.500	< 0.500	
MW9H	12/15/06	< 0.50	< 0.50	<12	<0.50	<0.50	<0.50	
MW9H	03/29/07 j			212				
MW9H	06/12/07 j	***	Sec. 1				-11	
MW9I		02 Not analyzed for	these analytes.					
MW9I	10/11/02	< 0.50	24.1	<10.0	< 0.50	< 0.50	< 0.50	
MW9I	01/10/03			***	***	S-44		
MW9I	04/09/03		#350		***	***	***	3464
MW9I	07/22/03			***	5770		5117	i n the s
MW9I	10/01/03	< 0.50	1.50	30,300	< 0.50	< 0.50	< 0.50	777
MW9I	01/06/04	< 0.50	< 0.50	377	< 0.50	<0.50	<0.50	200
MW9I	06/07/04		MET.	HHE S	H1990)	(MAN)	-	<50.0
MW9I	08/30/04				777.)			<50.0j
MW9I	12/13/04		222	-	212	-14	2 	
MW9I	03/14/05	< 0.50	<0.50	1,640	< 0.50	<0.50	<0.50	<50.0

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0238 2200 East 12th Street Oakland, California (Page 5 of 5)

Well	0 1:							
	Sampling	ETBE	TAME	TBA	EDB	1,2-DCA	DIPE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW9I	06/08/05	<0.50	< 0.50	47,000	<0.50	<0.50	<0.50	<100
MW9I	09/01/05	//						
MW9I	12/09/05		3 700		***	***	-	-
MW9I	12/30/05					Cana		PART:
MW9I	03/07/06	< 0.50	<0.50	<5.0	< 0.50	<0.50	< 0.50	<100
MW9I	06/26/06		***			10,00	40.50	<100
MW9I	09/25/06	< 0.500	< 0.500	10,300	<0.500	< 0.500	<0.500	<50.0
MW9I	12/15/06	<0.50	<0.50	730	<0.50	<0.50	<0.50	<100
MW9I	03/29/07	<0.500	<0.500	632	< 0.500	<0.500		
MW9I	06/12/07	<0.50	<0.50	140	<0.50		< 0.500	<50.0
	00/12/07	40.00	40.50	140	\0.50	<0.50	<0.50	
Notes:								
SUBJ	=	Results of subjective	e evaluation					
NLPH	=		rocarbons present in	well				
TOC	=		levation; datum is me					
DTW	=	Depth to water.	,					
GW Elev.	=		on; datum is mean se	ea level				
TPHg	=		rocarbons as gasoline		Method 8015B			
MTBE 8021B	=		ether analyzed using					
MTBE 8260B	=	Methyl tertiary butyl	ether analyzed using	EPA Method 8260B.				
BTEX	=	Benzene, toluene, et	thylbenzene, and tota	l vylenos analyzod u	: EDA 44 VI 100	0.45		
				II AYIGIIGO AHAIYZEU U	sina EPA Method 80	J21B.		
ETBE	=	Ethyl tertiary butyl et	her analyzed using E	PA Method 8260B.	SING EPA Method 80	J21B.		
ETBE TAME	=	Ethyl tertiary butyl et	her analyzed using E ether analyzed using	PA Method 8260B.		J21B.		
TAME TBA		Ethyl tertiary butyl etl Tertiary amyl methyl	her analyzed using E	PA Method 8260B. EPA Method 8260B)21B.		
TAME TBA EDB	=	Ethyl tertiary butyl eth Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a	her analyzed using E ether analyzed using I analyzed using EPA analyzed using EPA N	PA Method 8260B. EPA Method 8260B. Method 8260B. Method 8260B.)21B.		
TAME TBA EDB 1,2-DCA	= =	Ethyl tertiary butyl eth Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a	her analyzed using E ether analyzed using I analyzed using EPA	PA Method 8260B. EPA Method 8260B. Method 8260B. Method 8260B.		21B.		
TAME TBA EDB 1,2-DCA DIPE	=	Ethyl tertiary butyl eth Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a	her analyzed using E ether analyzed using I analyzed using EPA analyzed using EPA N	PA Method 8260B. EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B.		21B.		
TAME TBA EDB 1,2-DCA DIPE Ethanol	= = =	Ethyl tertiary butyl ett Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether an Ethanol analyzed usi	her analyzed using E ether analyzed using I analyzed using EPA analyzed using EPA analyzed using EPA analyzed using EPA alyzed using EPA analyzed using EPA analyzed using EPA analyzed using EPA analyzed using EPA	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Jethod 8260B. ethod 8260B.)21B.		
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L	H H H H	Ethyl tertiary butyl ett Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether an Ethanol analyzed usi Micrograms per liter.	her analyzed using E ether analyzed using I analyzed using EPA analyzed using EPA Manalyzed using EPA Manalyzed using EPA Manag EPA	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. Ethod 8260B. DB.)21B.		
TAME TBA EDB 1,2-DCA DIPE Ethanol		Ethyl tertiary butyl ett Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether an Ethanol analyzed usi Micrograms per liter. Less than the indicat	her analyzed using E ether analyzed using I analyzed using EPA I analyzed using EPA II analyzed using EPA III alyzed using EPA III analyzed using EPA III analyzed using EPA III alyzed using EPA III and EPA III and EPA III and III	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. ethod 8260B. DB. I EN Method 8260B. I Ethod 8260B.		J218.		
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L		Ethyl tertiary butyl ett Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether an Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA II analyzed using EPA II analyzed using EPA II analyzed using EPA II analyzed II analyzed II analyzed II analyzed II analyzed.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. Dethod 8260B. DB. Dwn by the laboratory.				
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether an Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA I analyzed using EPA Method 8260 and reporting limit shound in Field technician methor analyzed.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. ethod 8260B. DB. I Win by the laboratory. ay have inadvertently			Resampled 05/27/9	9.
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether an Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA I analyzed using EPA Method 8260 are porting limit should be trip blank and/or be trip blank and/or be	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Ethod 8260B. DB. I Wan by the laboratory. I ay have inadvertently ailer blank.	v monitored and sam	npled the wrong well.		9.
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usin Micrograms per liter. Less than the indicate Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement.	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA I analyzed using EPA Method 8260 and reporting limit shound in Field technician methor analyzed.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Ethod 8260B. DB. I Wan by the laboratory. I ay have inadvertently ailer blank.	v monitored and sam	npled the wrong well.		9.
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible.	her analyzed using E ether analyzed using EPA analyzed using EPA Manalyzed using EPA Manalyzed using EPA Manalyzed using EPA Manalyzed using EPA Mathod 8260 and reporting limit should be trip blank and/or but error during initial saterians.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. I Ethod 8260B. I	v monitored and samwas re-measured or	npled the wrong well. n 08/17/01. Samples	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA I analyzed using EPA Method 8260 and EPA Method 8260 and EPA I analyzed using EPA Method 8260 and EPA I analyzed i Field technician metrip blank and/or but error during initial safter fourth quarter 2000 at the end of th	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. I Ethod 8260B. I	v monitored and samwas re-measured or	npled the wrong well. n 08/17/01. Samples	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af laboratory quantitation.	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA I analyzed using EPA Method 8260 and EPA Method 8260 and EPA I analyzed using EPA Method 8260 are trip blank analyzed at error during initial safter fourth quarter 2000 an methods.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. I Ethod 8260B. I	monitored and samwas re-measured or	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af laboratory quantitatio Sample erroneously	her analyzed using E ether analyzed using EPA I analyzed is Field technician material terror during initial safter fourth quarter 200 an methods.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. DB. I Was by the laboratory. I was pave inadvertently ailer blank. I ampling event, DTW was allowed by TestA	monitored and samwas re-measured or	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af laboratory quantitatio Sample erroneously Insufficient sample vo	her analyzed using E ether analyzed using EPA I analyzed is Field technician material between the trip blank and/or but error during initial safter fourth quarter 200 an methods. I abeled MA9B on Chablume to perform analyzed in the trip blank and/or but analyzed.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. DB. DB. DWn by the laboratory. An analyzed by TestA anin-of-Custody form analyses.	monitored and samwas re-measured or merica, Incorporated and laboratory repor	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usi Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af laboratory quantitatio Sample erroneously Insufficient sample vo Groundwater elevatic	her analyzed using E ether analyzed using EPA analyzed using EPA Manalyzed and reporting limit show the trip blank and/or but error during initial safter fourth quarter 200 an methods. It is a methods. It is a labeled MA9B on Chabolume to perform analytical and attain validated; a labeled invalidated; a labeled invalidated; a labeled using EPA Manalyzed.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. DB. DB. DWn by the laboratory. An analyzed by TestA anin-of-Custody form analyses.	monitored and samwas re-measured or merica, Incorporated and laboratory repor	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usin Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af laboratory quantitation Sample erroneously linsufficient sample vor Groundwater elevatic Well sampled using results.	her analyzed using E ether analyzed using EPA I analyzed is reporting limit shown and the trip blank and/or but error during initial safter fourth quarter 200 an methods. I abeled MA9B on Chablume to perform analy and ata invalidated; and opurge method.	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. DB. I Wan by the laboratory. I wan by the laboratory. I analyzed by TestA I analyzed by TestA I analyzed form a slyses. I nalytical results susp	monitored and samwas re-measured or merica, Incorporated and laboratory reporect.	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e f g h		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane and 1,2-Dichloroethane an	her analyzed using E ether analyzed using EPA I analyzed using EPA I analyzed using EPA I analyzed using EPA II analyzed and III analyzed and III analyzed and III analyzed analyzed analyzed analyzed analyzed III analyzed III analyzed analyzed III analyze	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. DB. I was by the laboratory. I analyzed by TestA Main-of-Custody form a silyses. Inalytical results susp	monitored and samwas re-measured or merica, Incorporated and laboratory reporect.	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	
TAME TBA EDB 1,2-DCA DIPE Ethanol µg/L < a b c d e		Ethyl tertiary butyl ether Tertiary amyl methyl Tertiary butyl alcohol 1,2-Dibromoethane a 1,2-Dichloroethane a Di-isopropyl ether and Ethanol analyzed usin Micrograms per liter. Less than the indicat Not measured/Not sa Miscalculation in field Analyte detected in the Due to measurement Well inaccessible. Samples collected af laboratory quantitation Sample erroneously linsufficient sample vor Groundwater elevatic Well sampled using results.	her analyzed using E ether analyzed using EPA I analyzed using EPA Method 8260 and I analyzed. I are terporting limit shows that the trip blank and/or but arror during initial satisfier fourth quarter 200 and methods. I abeled MA9B on Chable I analyzed I analy	PA Method 8260B. I EPA Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. Method 8260B. DB. I wan by the laboratory. I analyzed by TestA Main-of-Custody form a sulyses. I analytical results suspencroachment permit results in quantitation.	monitored and same was re-measured or merica, Incorporated and laboratory reporect.	npled the wrong well. n 08/17/01. Samples d. Reported concentr	were not taken.	

FN 2293T0P0

J:\2293\2293topo dwg, mkjones

EXPLANATION

1/2-mile radius circle

SITE VICINITY MAP

FORMER EXXON SERVICE STATION 7-0238 2200 East 12th Street Oakland, California PROJECT NO. 2293

PLATE 1

LEGEND

Commericial / Industrial

Vacant Lot

Parking Lot

Additional Residential

WELLS

1

There are no public or private wells within a 300-Meter radius. See the Regional Area Map.

WELLS (SPECIAL USE OR MUNICIPAL)

RESIDENCES

None

PUBLIC USE AREAS

1 Life Academy High School

SURFACE WATER

None

100-Meter and 300-Meter Radius

LOCAL AREA MAP

FORMER EXXON SERVICE STATION 7-0238 2200 East 12th Street Oakland, California

2293

PLATE

2

FN 2293 07 WO2 AERIAL_SP

CROSS SECTION B-B' SELECT GROUNDWATER ANALYTICAL RESULTS

2200 East 12th Street

10

0

VALUE, QUALITY, RESPONSE

J:\2293\SPECIALITY MAPS\R24\2293 07 R24 XS B-B'_GW.dwg, mkjones

FN 2293 07 R23 XSB-B'-GW

EXPLANATION (Including SP, SW, SM, SC, and GC)

Fine-grained sediments (Including, CL, CH, and ML) PROJECT NO. 2293

k Hydrocarbon result partly due to individual peak(s) in quantitation

Static Groundwater TD = Total Depth

PLATE 9

FORMER EXXON SERVICE STATION 7-0238 Oakland, California

Fill

Vertical Exaggeration x2 J:\2293\SPECIALITY MAPS\R24\2293 07 R24 XS C-C' GW.dwg, mkjones FN 2293 07 R24 XSC-C'-GW

8.02 FT. Sample Depth

69k Total Petroleum Hydrocarbons as gasoline <0.50 Benzene 77 Methyl Tertiary Butyl Ether 160 Tertiary Butly Alcohol

Analyte Concentrations in ug/L

Less Than the Stated Laboratory Reporting Limit
 Micrograms per liter

Hydrocarbon result partly due to individual peak(s) in quantitation

CROSS SECTION C-C' SELECT GROUNDWATER ANALYTICAL RESULTS

FORMER EXXON SERVICE STATION 7-0238 2200 East 12th Street Oakland, California

EBMUD Water Utility

Fine-grained sediments (Including, CL, CH, and ML)

MW9A

06/12/07 Sample Date

2293

PROJECT NO.

Static Groundwater = Total Depth Inferred Depth

PLATE

11

Analyte Concentrations in ug/L

DP3 08/28/07 Sample Date 15 FT. Sample Depth

160 Total Petroleum Hydrocarbons as gasoline

<0.50 Benzene
270 Methyl Tertiary Butyl Ether
67 Tertiary Butyl Alcohol

 $\begin{array}{c} < & \text{Less Than the Stated Laboratory} \\ \text{Reporting Limit} \\ \text{ug/L} & \text{Micrograms per liter} \end{array}$

CROSS SECTION D-D' SELECT GROUNDWATER ANALYTICAL RESULTS

FORMER EXXON SERVICE STATION 7-0238 2200 East 12th Street Oakland, California

Fill

Fine-grained sediments (Including, CL, CH, and ML)

First Encountered Groundwater Static Groundwater

PROJECT NO. 2293

TD = Total Depth

PLATE 13

ATTACHMENT A REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 24, 2007

Ms. Jennifer Sedlachek
ExxonMobil Refining & Supply – Global Remediation
4096 Piedmont Avenue #194
Oakland, CA 94611

Mr. Robert Ehlers Valero Refining Company PO Box 696000 San Antonio, TX 78269

Mr. Satya Sinha Chevron Environmental Management Company 6001 Bollinger Canyon Rd. K2256 San Ramon, CA 94583-2324

Subject: Fuel Leak Case No. RO0000390, Exxon #7-0238, 2200 E 12th Street, Oakland CA

Dear Ms. Sedlachek and Messrs. Ehlers and Sinha

Alameda County Environmental Health (ACEH) staff have reviewed the fuel leak case file and the reports entitled, "Work Plan for Soil and Groundwater Investigation," dated April 10, 2007 and "Site Conceptual Model," dated March 14, 2007 prepared by Environmental Resolutions Inc (ERI). The scope of work as proposed in the Work Plan recommends the Installation of seven soil boring down gradient of the former USTs and fuel dispenser island. ACEH generally concurs with the scope of work as recommended in the Work Plan provided the technical comments discussed below are implemented prior to the start of field work.

We request that you perform the proposed work, and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to steven.plunkett@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- 1. Soil Boring Locations and Sampling. Review of Plate 16 (Proposed Soil Boring Locations) from the Work Plan indicate the proposed soil borings have the same ID numbers as soil borings installed in a previous soil and groundwater investigation. Please rename the soil borings with unique identification numbers to distinguish them from soil borings installed during previous investigations. In addition, ACEH requests that one additional soil boring be located between SB17 and MW9H and soil boring SB19 should be moved from the current location to approximately 30 northwest of MW9H. In addition, ACEH generally agrees with the soil sample analysis recommended in the Work Plan.
- Site Conceptual Model. ACEH appreciates the submission of the Site Conceptual Model (SCM) for your site. After completion of the soil and groundwater investigation, please update the SCM with the results from the soil and groundwater investigation and prepare additional

Jennifer Sedlachek May 22, 2007 Page 2

cross sections that include the new soil boring locations and soil and groundwater analytical results.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Steven Plunkett), according to the following schedule:

August 1, 2007 - Soil and Groundwater Investigation Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail. Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of Information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

Jennifer Sedlachek May 22, 2007 Page 3

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Should you have any questions, please call me at (510) 383-1767.

Sincerely,

Steven Plunkett

Hazardous Materials Specialist

cc: Ms. Paula Sime

Environmental Resolutions Inc. 601 North McDowell Boulevard

Petaluma, CA 94954

Donna Drogos, ACEH, Steven Plunkett, ACEH, File

Paula M. Sime

From:

Plunkett, Steven, Env. Health [steven.plunkett@acgov.org]

Sent:

Wednesday, July 25, 2007 5:11 PM

To:

Paula M. Sime

Subject: RE: RO#390 and RO#2515 Drilling Status Update

Paula,

RO390: ACEH has reviewed your request for a time extension to October 15, 2007. The request for a time extension is granted, the SWI is now due October 15, 2007.

RO2515: ACEH has reviewed your request for a time extension to October 31, 2007. The request for a time extension is granted, the SWI is now due October 31, 2007.

Regards, Steven Plunkett Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 510-383-1767 510-337-9355 Fax steven.plunkett@acgov.org

From: Paula M. Sime [mailto:psime@ERI-US.com]

Sent: Wednesday, July 25, 2007 4:41 PM

To: Plunkett, Steven, Env. Health

Subject: FW: RO#390 and RO#2515 Drilling Status Update

Hi Steven,

Quick status update, we heard back from the Traffic Control Plan division at the City of Oakland today. They approved our revised Traffic Control Plan so we can move forward with obtaining the encroachment and obstruction permits for the drilling in East 12th Street. We will obtain those permits next week, so we are on track to begin drilling in August.

What are your thoughts on the proposed due dates? Would you mind responding to my email so I can place the documentation in the file?

Thanks again, Paula

From: Paula M. Sime

Sent: Thursday, July 19, 2007 3:49 PM **To:** 'Plunkett, Steven, Env. Health'

Subject: RO#390 and RO#2515 Drilling Status Update

Hi Steven,

I thought you would appreciate a status update on the site we discussed yesterday (RO#2515, 3450 35th Avenue,

Oakland) and also RO#390 (2200 East 12th Street, Oakland) since we have drilling coming up at both sites.

RO#390 (2200 East 12th Street, Oakland):

The first few steps of the encroachment permitting process are complete, and USA marking and utility locating were completed last week. We did have to move some of the borings and adjust some lane closures, so have submitted new traffic plans for approval by the city (back to Step 1 for those locations). With this in mind, and assuming the city will turn around the approved traffic plans and subsequent permits in a timely manner, we went ahead and scheduled hole clearance for August 20-22 and drilling August 27 through September 4 (Monday Sept. 3 is a holiday). Due to City restrictions, these dates are not flexible because if we switch days, we have to go all the way back to the beginning of the encroachment permitting process (our traffic plan is approved only for the dates we specify on the application). With this in mind, I propose submittal of the results report for this site by October 15th.

RO#2515 (3450 35th Avenue, Oakland):

Received your letter yesterday and spoke with you on the phone about getting an extension on the due date since we didn't receive the letter until 3 weeks after the requested report due date. This morning we contacted the 4 drillers in the area that we have a service agreement with, and all four said they were booked up through-september. So, to accomodate the Oakland work, we have arranged for some field work at another site to be pushed back and opened up the following dates: hole clearance September 4-7, drilling September 10-14. I know we had talked about getting an extension to September 15th; however, this will require an extension further out. I have put my staff and the drillers on notice that if anything opens up sooner we will grab it (other than the dates reserved for 2200 East 12th Street), but at this time it's the soonest we can book the work. I propose submittal of the results report by October 31st.

For both these sites, I will be in contact as we approach the drilling dates and will notify you so you can be present for field work if your schedule allows. Let me know if you have any questions, and if you wouldn't mind, email me with your response to my proposed due dates. Thank you.

Paula

Paula Sime

Project Manager
Environmental Resolutions, Inc.
601 North McDowell Blvd.
Petaluma, California 94954
(707) 766-2026 (office)
(707) 338-8012 (mobile)
(707) 789-0414 (fax)
psime@eri-us.com

Paula M. Sime

From: Plunkett, Steven, Env. Health [steven.plunkett@acgov.org]

Sent: Wednesday, August 22, 2007 10:47 AM

To: Paula M. Sime

Subject: RE: RO#390 Status Update

Paula,

ACEH has received your request to change the analytical suite associated with the proposed WP for the site at 2200 E12th. Considering that TPHd has never been a COC at the site, we agree that it is not necessary to submit soil and groundwater samples for TPHd analysis. ACEH also agrees with analyte list suggested by ERI. Lastly, I will send out a access request today to the property owner at 2121 E 12th St.

Thanks for all your effort in moving this project forward.

Best Regards, Steven Plunkett Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 510-383-1767 510-337-9355 Fax steven.plunkett@acgov.org

From: Paula M. Sime [mailto:psime@ERI-US.com] Sent: Wednesday, August 22, 2007 9:51 AM

To: Plunkett, Steven, Env. Health Subject: RO#390 Status Update

Hi Steven.

I understand you spoke with Heidi Dieffenbach-Carle of ERI yesterday regarding our work at 2200 East 12th Street, Oakland (RO#390). ERI inadvertently included TPHd in the analyte list in *Work Plan for Additional Soil and Groundwater Investigation*, dated April 10, 2007, detailing the work we're doing this and next week at the site. Diesel has not historically been a constituent of concern at this site and therefore ERI is requesting to amend the analyte list to exclude TPHd. Soil and groundwater samples will be analyzed for TPHg using EPA Method 8015B, BTEX using EPA Method 8021B, and oxygenates (including MTBE, ETBE, DIPE, TBA, and TAME) and lead scavengers (including 1,2-DCA and EDB) using EPA Method 8260B.

We have not received a response from the private property owners at the location of proposed boring DP7/HP7. We sent them an access agreement on June 20, 2007. Per your request, the owners name and contact information is below. I do not have a phone number for them, only an address. Thank you in advance for assisting us in obtaining access. I am back in the office for the rest of the week so please contact me with any questions.

Thanks!

Paula

Location for DP7/HP7: 2121 East 12th Street, Oakland

Property Owner Name: Nhi M. Letruong

Property Owner Address: 2251Charter Way, San Leandro, California 94579-2781

APN: 19-47-1-7

Paula Sime

Project Manager
Environmental Resolutions, Inc.
601 North McDowell Blvd.
Petaluma, California 94954
(707) 766-2026 (office)
(707) 338-8012 (mobile)
(707) 789-0414 (fax)
psime@eri-us.com

ATTACHMENT B FIELD PROTOCOL

FIELD PROTOCOL

Site Safety Plan

Field work will be performed by ERI personnel in accordance with a Site Safety Plan developed for the site. This plan describes the basic safety requirements for the subsurface investigation and the drilling of soil borings at the work site. The Site Safety Plan is applicable to personnel and subcontractors of ERI. Personnel at the site are informed of the contents of the Site Safety Plan before work begins. A copy of the Site Safety Plan is kept at the work site and is available for reference by appropriate parties during the work. The ERI geologist will act as the Site Safety Officer.

Drilling of Soil Borings

Prior to the drilling of soil borings, ERI will acquire necessary permits from the appropriate agency(ies). ERI will also contact Underground Service Alert (USA) and a private underground utility locator (per ExxonMobil protocol) before drilling to help locate public utility lines at the site. ERI will clear the proposed locations to a depth of approximately 4 or 8 feet (depending on the location), before drilling to reduce the risk of damaging underground structures.

The soil borings will be advanced using dual-tube or direct-push technology. A dual tube system consists of a large diameter (up to 3.5 inches) outer rod which serves as a temporary drive casing nested with an inner sample rods and sample barrel (up to 2.6 inches) used to obtain and retrieve the soil cores. The dual tubes are simultaneously pushed, pounded, or vibrated into the ground.

As the rods are advanced, soil is forced up inside of a three-foot sample barrel that is attached to the end of the inner rods. Soil samples are collected in stainless steel or clear plastic sample liners inside the sample barrel as both rods are advanced. After being driven three feet, the inner rods and sample barrel are retrieved, and the sample liners are removed from the sample barrel and are either package for chemical analysis or visually inspected for lithologic identification. Clean empty liners are placed into a new three foot sample barrel and attached to the rods and lowered to the bottom of the hole and the process is repeated until the total depth of the borehole is reached.

The larger outer diameter rods are left in place while the inner rod and sample barrel is retrieved. This prevents the borehole from collapsing and ensures that the soil samples are collected from the targeted depth rather than potentially be contaminated with slough from higher up in the borehole.

The drive casing, sampling rods, sample barrels, and tools will be steam-cleaned before use and between boreholes to minimize the possibility of cross-hole contamination. The rinsate will be contained in drums and stored on site. ERI will coordinate with Exxon Mobil for appropriate disposal of the rinsate.

Drilling will be performed under the observation of a field geologist, and the earth materials in the borings will be identified using visual and manual methods, and classified as drilling progresses using the Unified Soil Classification System.

Soil samples will be monitored with a photo-ionization detector (PID), which measures hydrocarbon concentrations in the ambient air or headspace above the soil sample. Field instruments such as the PID are useful for indicating relative levels of hydrocarbon vapors, but do not detect concentrations of hydrocarbons with the same precision as laboratory analyses. Soil samples selected for possible chemical analysis will be sealed promptly with Teflon® tape and plastic caps. The samples will be labeled and placed in iced storage for transport to the laboratory. Chain-of-Custody records will be initiated by the geologist in the field, updated throughout handling of the samples, and sent with the samples to the laboratory. Copies of these records will be in the final report. Cuttings generated during

drilling will be placed on plastic sheeting and covered and left at the site. ERI will coordinate with Exxon Mobil for the soil to be removed to an appropriate disposal facility.

Grab Groundwater Sample Collection through Direct Push Rods

At first encountered groundwater, the sample barrel and inner rods will be removed from the borehole. Small diameter well casing with 0.010" slotted well screen may be installed to facilitate the collection of groundwater samples. The temporary well is lowered through the drive casing and then the drive casing is pulled up approximately 0.5 feet to 2 feet to expose the slotted interval and allow groundwater to flow into the borehole. Groundwater samples may then be collected from within the drive casing with a new disposable bailer or peristaltic pump. When using dual-wall direct-push technology, the outer rods seal off upper portions of the aquifer while coring to the lower depths. Groundwater samples from lower depths can be collected by removing the inner coring rods while the outer rods remain in place, and attaching drive rods to a groundwater sampling probe such as the HydroPunch II[®] (HP II), which is then inserted inside the outer rods of the dual-wall equipment. A 5-foot long disposable screen and tip is inserted into the HP-II, the HP-II is pushed to the desired depth and the outer body of the HP-II is retracted. The disposable screen is exposed to the ground water and a ¾-inch inner-diameter bailer is lowered through the rods and into the screened zone for sample collection.

Grab Groundwater Sampling

The Hydropunch® sampler (or similar) provides a method for collecting groundwater samples at multiple depths in the same borehole. To sample groundwater, the sample tool is pushed to the selected depth beneath the water table, then withdrawn to expose an inlet screen. Alternatively, a temporary casing is placed within the casing. A water sample is then collected and promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain of Custody Record, to a California-certified laboratory.

Borehole Grouting

After soil and grab groundwater sampling have been completed, all boreholes will be backfilled with cement grout containing less that 5 percent pure sodium bentonite. The grout will be pumped through a tremie pipe positioned at the bottom of the boreholes.

ATTACHMENT C PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/20/2007 By jamesy

Permit Numbers: W2007-0723 Permits Valid from 08/20/2007 to 09/30/2007

City of Project Site: Oakland

Completion Date: 07/31/2007 Extension End Date: 09/30/2007

Extended By: vickyh1

Phone: 707-766-2000

Phone: 510-535-1672

Site Location: 2200 E 12th St, Oakland, CA **Project Start Date:** Extension Start Date:

07/10/2007 08/20/2007

1181857721316

Extension Count: Applicant:

Application Id:

Environmental Resolutions - P. Sime

601 N McDowell Blvd., Petaluma, CA 94954

Property Owner:

Stanley & Aaron Wong

220 E 12th St, Oakland, CA 94606

Client:

** same as Property Owner **

Total Due:

\$200.00 \$200.00

Receipt Number: WR2007-0279 Total Amount Paid: Payer Name: Environmental Resolutions Inc. Paid By: CHECK

PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Geotechnical Study/CPT's - 16 Boreholes

Driller: Woodward Drilling - Lic #: 710079 - Method: DP

Work Total: \$200.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		-
W2007-	06/20/2007	10/08/2007	16	2.00 in.	30.00 ft
0723					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Cuttings may also be left on site or spread out as long as the applicants has approval from the property owner and the cuttings will not violate the State and County Clean Water laws (NPDES).
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit

Alameda County Public Works Agency - Water Resources Well Permit

application on site shall result in a fine of \$500.00.

- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

CITY OF OAKLAND

100.00

PUBLIC WORKS AGENCY • 250 FRANK H. OGAWA PLAZA • SUITE 4344 • OAKLAND, CALIFORNIA 94612-2033

Transportation Services Division

July 25, 2007

Date:

Office (510) 238-3466 FAX (510) 238-7415 TDD (510) 839-6451

TSD Invoice # : __07-0141_

Total Fee

Traffic Engineering Services Analysis Fee Invoice

To:	Rebekah Ann Westru	dr		
Company:	Environmental Resol		·	
Address:		vd, Petaluma, California		
Phone:	707-338-8555	-		
Created/Re	eceived By:	Joe Watson		
	Location	Description of Work	Project Name / Permit #	# of Hours *
	Street between 23rd e and 21st Avenue	Lane Closure		1
			Total Hours	1
			TSD Service Rate	\$ 100.00

* - minimum	1	hour	service
-------------	---	------	---------

FOR CITY	USE ONLY
Cost Center No.	W659
Organization No.	30262
Account No.	45119
Fund No.	1750

Cc: Rosalie

#2622

APPLICATION FOR TRAFFIC CONTROL PLAN

Public Works Agency Transportation Services Division

Transportation Services Fee: \$100/hou
(Check or Money Order Only)

Check the box that apply:

New Application (Utility, Excavation)
Renewal Application
New Development w/ Mgmt Plan

City of Oakland Project

Please read the following:

- 1. Processing time for a Traffic Control Application is a minimum of 10 working days.
- 2. Traffic Control review is scheduled only on Tuesdays and Thursdays from 8:30am thru 11:30am by appointment only.
- 3. A scheduled appointment by phone or email with a TSD staff member is necessary to discuss any and all traffic control application and plans.
- 4. Please call ahead to confirm that the traffic control application is ready for pickup @ 510-238-3467.
- 5. Businesses and residences adjacent to the work area must be provided 72 hour advance notice.
- 6. A completed traffic control application may be faxed to (510) 238-7415.
- 7. Incomplete traffic control applications will not be processed and will be returned to applicant.
- 8. The initial approval for a traffic control plan is 1 month, the renewal submittal may be approved up to 3 months.
- 9. The traffic control provision dates cannot be changed or extended if work has already commenced.
- Upon receiving TSD approval of the traffic control plan, the applicant (or contractor) shall proceed to the Building Services Division of CEDA to obtain an "Obstruction Permit." CEDA is located at 250 Frank Ogawa Plaza, 2nd Floor, Oakland, CA 94612.

Contact Person:	Rebekah Ann Westrup			Phone	e:	707-338-8555	5	
Name of Company:	Environmental Resolutions Inc.			Fa	c	707-789-0414	4	
Address of Company:	601 N. McDowell Boulevard, Petaluma, (California 94	4954					
Describe type of work t	to be performed: Advance s	oil borings	to collect groundwater a	nd soil sam	ples			
Location of wo <u>rk:</u>	E 12th Street	Betwee			And*	23rd Ave		
* Name the streets that a	re the boundaries of your work area.	Detwee	#II		And*			
Work date (s):	August 1 to September 1 Mon-Fri	Sat-Sun Sat-Sun	Work Hours:	7:00am		to_	4:00pm	
Please Follow	these Steps to Comp	lete a	Traffic Cont	rol Pla	an	7		
A. Drawing Area:	The full width of all streets adjacer block in which your work is located	nt to the s	ite MUST be include	ed in the	drawing	_		
	Names, Direction of Traffic							
	Number of Lanes in all Dire							
	(s) that Apply: All checked ite				wing			
☑ Lane Closu			Use of Median	<u>uie uia</u> □	Sidewalk	Clonum		
☐ Street Clos	eures (must provide detour plan)	✓	Use Parking Lane	_			trian walk way)	
E. Show All Dime (Note: Traffic C	nsions of street widths (curb to co	urb), lane nissing	widths, sidewalk w	idths, and mation	d work ar will no	ea dimensi t be acce	ion. epted or processed.)	
F. Show the Name	e and Locations of all advance	d warning	devices, flaggers,	delineato	rs. wami	na and con	istruction signs to be used	

RENEWAL PROCESS: Resubmit a completed Traffic Control Application with the old approved plan (with the necessary modifications / changes to the plans).

FOR HELP in constructing a traffic control plan please refer to the "WATCH" hand book or chapter 5 of the MUTCD manual available online at: http://www.dot.ca.gov/hq/traffops/signtech/signdel/chp5/chap5.htm

For our Website: http://www.oaklandpw.com/transportation/traffic_control_plan.htm

SPECIAL PROVISION 7-10.1 TRAFFIC REQUIREMENTS

Pro	ject Name:
Pro	pject Number: TSD-07-0141/
Rev	viewed By: JWatson
Dat	te: _7/25/2007
Per	mit good from 8/01/2007
to	9/01/2007

ADD NEW SUBSECTION TO READ: SP 7-10.1.4 Vehicular Traffic

Attention is directed to Section 7-10. Public Convenience and Safety, of the City of Oakland Standard Specification for Public Works Construction, 2000 Edition (Include this paragraph for p-jobs, excavation permits).

The Contractor shall conduct its work in such a manner as to provide public convenience and safety and according to the provisions in this subsection. The provisions shall not be modified or altered without written approval from the Engineer.

Standard traffic control devices shall be placed at the construction zone according to the latest edition of the <u>Work Area Traffic Control Handbook</u> or <u>Caltrans Traffic Manual, Chapter 5 – "Traffic Controls for Construction and Maintenance Work Zone," or as directed by the Engineer.</u>

All trenches and excavations in any public street or roadway shall be back filled and opened to traffic, or covered with suitable steel plates securely placed and opened to traffic at all times except during actual construction operations unless otherwise permitted by the Engineer.

Each section of work shall be completed or temporarily paved and open to traffic in not more than 5 days after commencing work unless otherwise permitted in writing by the Engineer.

Where construction encroaches into the sidewalk area, a minimum of $5 \frac{1}{2}$ feet of unobstructed sidewalk shall be maintained at all times for pedestrian use. Pedestrian barricades, shelter, and detour signs per Caltrans standards may be required.

The contractor shall conduct its operation in such a manner as to leave the following traffic lanes unobstructed and in a andition satisfactory for vehicular travel during the Obstruction Period. At all times traffic lanes will be restricted and opened to travel. Emergency access shall be provided at all times.

Street Name Limits	Obstruction Period	North Bound	South Bound	East Bound	West Bound
E.12 th Street between 23 rd Avenue and 21 st Avenue	Mon-Fri 9am – 4 pm	N/A	N/A	2-12' lane open minimum	2-12' lane open minimum
22 nd Avenue between Solano Way and E.12 th Street	Mon – Fri 7am – 4pm	N/A	1-12' lane open minimum	N/A	N/A

The Contractor Shall Also include all check item:

- 1. Design a construction traffic control plan and submit (2) copies to the Engineer for approval prior to starting any work.
- 2. Replace all signs, pavement markings, and traffic detector loops damaged or removed due to construction within 3 days of completion of work or the final pavement lift.
- 3. Provide advance notice to Oakland Police at (510) 777-3333 (24-hrs) and Oakland Fire at (510) 238-3331 (2-rhs) when a single lane of traffic or less is provided on any street.
- 4. Provide 72-hour advance notice to AC Transit at (510) 891-4909 when affecting a bus stop.
- 5. For Caltrans roadways, ramps, or maintained facilities, the Contractor shall obtain appropriate permits and notify the Traffic Management Center 24 hours in advance of any work.
- Flagger control is required. Certified Flagger is required.
- 7. Pedestrian walkway by K-rail, Canopy or Plywood is required. (See detour plan)
- 8. Pedestrian traffic shall be maintained and guided through the project at all times.
- 9. Provide advance notice to Business and Residence within 72-hours.
- 10. Allow all traffic movement at intersection.

nothing specified herein shall prohibit emergency work and/or repair necessary to ensure public health and safety.

TRAFFIC CONTROL PLAN - E. 12TH STREET & 22ND AVE (DP-2 & DP-3)

TABLE 1 - Typical Application Taper - Cones

Approach Speed (MPH)	taper length (feet)	# of cones for taper (feet)	spacing cones along laper (ff)
0 - 25	125	6	25
26 - 40	320	9	40
41 - 60	600	13	50

Approach Speed (MPH)	between signs (feet) A tirst sign	belween signs (feet) B second sign	between signs (feet) C C third sign
Urban low / moderate speeds	100	100	100
labon high spends	350	350	350
Rural	600	600	500
тта way	1000	1500	2640

PREPARED BY: ROBERT SCULLY UNITED RENTALS HWY, TECH. 1277 OLD BAYSHORE HWY, SAN JOSE CA, 95112 (408) 295-8210 (408) 998-5939 FAX C-31 C-32 CONTRACTORS LIC, 796782

CITY OF OAKLAND

PUBLIC WORKS AGENCY • 250 FRANK H. OGAWA PLAZA • SUITE 4344 • OAKLAND, CALIFORNIA 94612-2033

Transportation Services Division

Office (510) 238-3466 FAX (510) 238-7415 TDD (510) 839-6451

TSD Service Rate

Total Fee

100.00

100.00

Traffic Engineering Services Analysis Fee Invoice

Date:	June 27, 2007	TSD Invoice #:	07-0116
To:	Rebekah Ann Westrup		
Сотрапу:	Environmental Resolutions Inc.		
Address:	601 N. Mc Mowell Blvd, Petaluma, California		
Phone:	707-338-8555		
Created/Re	ceived By: Joe Watson		

Location	Description of Work	Project Name / Permit #	# of Hours *
E.12th Street between 23rd Avenue and 21st Avenue	Lane Closure	è	1
	è		
		Total Hours	1

* - minimum 1 hour service

FOR CITY USE ONLY					
Cost Center No.	W659				
Organization No.	30262				
Account No.	45119				
Fund No.	1750				

Cc: Rosalie

SPECIAL PROVISION 7-10.1 TRAFFIC REQUIREMENTS

Revised Dates

Project Name:

Project Number: TSD-07-0 Reviewed By: JWatson

Date: 7/31/2007

Permit good from 8/01/2007 to 11/01/2007

ADD NEW SUBSECTION TO READ: SP 7-10.1.4 Vehicular Traffic

Attention is directed to Section 7-10. Public Convenience and Safety, of the City of Oakland Standard Specification for Public Works Construction, 2000 Edition (Include this paragraph for p-jobs, excavation permits or obstruction permits).

The Contractor shall conduct its work in such a manner as to provide public convenience and safety and according to the provisions in this subsection. The provisions shall not be modified or altered without written approval from the Engineer.

Standard traffic control devices shall be placed at the construction zone according to the latest edition of the <u>Work Area Traffic Control Handbook</u> or <u>Caltrans Traffic Manual, Chapter 5 – "Traffic Controls for Construction and Maintenance Work Zone," or as directed by the Engineer.</u>

All trenches and excavations in any public street or roadway shall be back filled and opened to traffic, or covered with suitable steel plates securely placed and opened to traffic at all times except during actual construction operations unless otherwise permitted by the Engineer.

Each section of work shall be completed or temporarily paved and open to traffic in not more than 5 days after commencing work unless otherwise permitted in writing by the Engineer.

Where construction encroaches into the sidewalk area, a minimum of 5 ½ feet of unobstructed sidewalk shall be maintained at all times for pedestrian use. Pedestrian barricades, shelter, and detour signs per Caltrans standards may be required.

The contractor shall conduct its operation in such a manner as to leave the following traffic lanes unobstructed and in a condition satisfactory for vehicular travel during the Obstruction Period. At all times traffic lanes will be restricted and pened to travel. Emergency access shall be provided at all times.

Street Name Limits	Obstruction Period	North Bound	South Bound	East Bound	West Bound	
E.12 th Street between 23 rd Avenue and 21 st Avenue	Mon-Fri 9am – 4 pm	N/A	N/A	2-12' lane open minimum	2-12' lane open minimum	

The Contractor Shall Also include all check item:

- 1. Design a construction traffic control plan and submit (2) copies to the Engineer for approval prior to starting any work.
- 2. Replace all signs, pavement markings, and traffic detector loops damaged or removed due to construction within 3 days of completion of work or the final pavement lift.
- 3. Provide advance notice to Oakland Police at (510) 777-3333 (24-hrs) and Oakland Fire at (510) 238-3331 (2-rhs) when a single lane of traffic or less is provided on any street.
- 4. Provide 72-hour advance notice to AC Transit at (510) 891-4909 when affecting a bus stop.
- 5. For Caltrans roadways, ramps, or maintained facilities, the Contractor shall obtain appropriate permits and notify the Traffic Management Center 24 hours in advance of any work.
- Flagger control is required. Certified Flagger is required.
- 7. Pedestrian walkway by K-rail, Canopy or Plywood is required. (See detour plan)
- 8. Redestrian traffic shall be maintained and guided through the project at all times.
- Provide advance notice to Business and Residence within 72-hours.
- 10. Allow all traffic movement at intersection.

routhing specified herein shall prohibit emergency work and/or repair necessary to ensure public health and safety.

TRAFFIC CONTROL PLAN - E. 12TH STREET & 22ND AVE (DP-5 & DP-6)

TABLE 1 - Typical Application Taper - Cones

Approach Speed (MPH)	tuper length (feet)	# of cones for taper (feet)	specing cones along taper (ff)
0 - 25	125	6	25
26 - 40	320	9	40
41 - 50	400	13	50

TABLE 2 - Typical Application Signs

Approach Speed (MPH)	between signs (feet) A first sign	between signa (feet) b second sign	between signs (feet) C third sign	
Urban low / moderate speeds	100	100	V	
Mithan High speeds	160		100 150	
4 1	100	350		
Riscol				
Rural	500	500	500	

APPROVED: with 6/27/07
Transportation Services Division
CITY OF OAKLAND

PREPARED BY: ROBERT SCULLY UNITED RENTALS HWY. TECH. 1277 OLD BAYSHORE HWY. SAN JOSE CA. 95112 (408) 295-8210 (408) 998-5939 FAX C-31 C-32 CONTRACTORS LIC. 796782

ATTACHMENT D

UNIFIED SOIL CLASSIFICATION SYSTEM, SYMBOL KEY, AND BORING LOGS

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR DIVISIONS		LTR	DESCRIPTION	MAJOR DIVISIONS		LTR	DESCRIPTION	
COARSE GRAINED SOILS	GRAVEL AND GRAVELLY SOILS	GW	ell-graded gravels or gravel sand		ML	Inorganic silts and very fine- grained sands, rock flour, silty		
		GP	Poorly-graded gravels or gravel sand mixture, little or no fines		SILTS AND CLAYS LL<50		or clayey fine sands or clayey silts with slight plasticity	
		GM	Silty gravels, gravel-sand-clay mixtures			CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	
		GC	Clayey gravels, gravel-sand-clay mixtures	FINE		OL	Organic silts and organic silt- clays of low plasticity	
	SAND AND SANDY SOILS	SW	Well-graded sands or gravelly sands, little or no fines	GRAINED SOILS	SILTS AND CLAYS	MH	Inorganic silts, micaceous or diatomaceous fine-grained sandy or silty soils, elastic silts	
		SP	Poorly-graded sands or gravelly sands, little or no fines			СН	Inorganic clays of high plast- icity, fat clays	
		POIL S	Silty sands, sand-silt mixtures		LL>50	ОН	Organic clays of medium to high plasticity	
		SC	Clayey sands, sand-clay mixtures		ORGANIC ILS	Pt	Peat and other highly organic soils	

SAMPLE CONDITION WELL DESIGN NO RECOVERY SAND PACK SAMPLED INTERVAL BENTONITE ANNULAR SEAL DESCRIBED SAMPLE NEAT CEMENT ANNULAR SEAL PRESERVED SAMPLE BLANK CASING GROUNDWATER LEVEL OBSERVED FROM FIRST WET SLOTTED CASING SOIL SAMPLE IN BORING STATIC GROUNDWATER LEVEL NR NOT RECORDED NA NOT ANALYZED OVM ORGANIC VAPOR METER READING IN PARTS PER MILLION BY VOLUME PHOTO-IONIZATION DETECTOR READING PID IN PARTS PER MILLION BY VOLUME

BLOW/FT. REPRESENTS THE NUMBER OF BLOWS OF A 140-POUND HAMMER FALLING 30 INCHES TO DRIVE THE SAMPLER THROUGH THE LAST 12 INCHES OF AN 18-INCH OR 24-INCH PENETRATION.

DASHED LINES SEPARATING UNITS ON THE LOG REPRESENT APPROXIMATE BOUNDARIES ONLY. ACTUAL BOUNDARIES MAY BE GRADUAL. LOGS REPRESENT SUBSURFACE CONDITIONS AT THE BORING LOCATION AT THE TIME OF DRILLING ONLY

UNIFIED SOIL CLASSIFICATION SYSTEM AND LOG OF BORINGS SYMBOL KEY

FORMER EXXON SERVICE STATION 7-0238 2200 East 12th Street Oakland, California **ATTACHMENT**

D

10-12-2007 J:\2293\BORING LOGS\2293 DP1.bor

BORING LOG DP1

(Page 1 of 2)

Date Drilled:

: 08/21/2007, 08/31/2007

Drilling Co.: Drilling Method: : Woodward Drilling : Direct Push

Sampling Method: Borehole Diameter: : Continuous Core

Borehole Diameter Casing Diameter:

: N/A

Location N-S Location E-W Total Depth:

: 30 fbgs : 12 fbgs

Logged By: : Rebekah A. Westrup / Paula Sime
Reviewed By: : Heidi L. Dieffenbach-Carle P.G. #6793
Signature: : H2 Current P.G. #6793

Signature: : He du Depth:

Sample Condition

No Recovery

Sampled Interval

Described Sample

Described Sample

Preserved Sample

Preserved Sample

Described Sample

Described Sample

Œ	onnt	۵		_		Described Sample		Boring: DP1
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	nscs	Preserved Sample		
	8	δĒ	ŝ	ပိ	ı	DESCRIPTION		
0-					CL	6-inches of Asphalt. Cleared to 8.0 fbgs using hand auger. Road Base CLAY: dark brown, dry, high plasticity.		Concrete
5-		0.0	**		CL	SANDY CLAY: brown, moist, high plasticity, very fine grained SILTY CLAY: pale yellowish brown, moist, high plasticity, oc subangular, fine grained gravel.		
10-		0.0	333		sw	CLAYEY SAND: fine grained, light grayish brown, orange browtling with black streaks throughout, moist, poorly graded, gravel. SAND: fine to coarse grained, yellowish brown, wet, subanging graded, with fine grained gravel, trace clay. NO RECOVERY: Gravel collapsed sampling liner.		■ Neat Cement
20					sw	AS ABOVE; Gravel decreasing; clay increasing. BILTY CLAY: yellowish brown, mottled with black flecks, moi blasticity, stiff, with fine grained sand and trace coarse graine	ist, high ed sand.	

BORING LOG DP2

(Page 1 of 2)

Date Drilled: : 08/20/2007, 08/27/2007

Drilling Co.: Drilling Method: : Woodward Drilling : Direct Push

Sampling Method: Borehole Diameter:

: Continuous Core : 2"

Project No.: : Former Exxon Service Station 7-0238 Casing Diameter: : N/A Site: : 2200 E. 12th Street, Oakland, California Location N-S Logged By: : Rebekah A. Westrup / Paula Sime Location E-W Reviewed By: : Heidi L. Dieffenbach-Carle, P.O. #6793 Total Depth: : 30 fbgs Signature: First GW Depth: : 15 fbgs Sample Condition Water Levels No Recovery First Encountered Water: 15' Sampled Interval ▼ Second Encountered Water: 29' Described Sample **Blow Count** Boring: DP2 OVM/PID (ppmv) Depth (ft) Sample Preserved Sample Column DESCRIPTION wet, 10-inches of Asphalt. Cleared to 8.0 fbgs using hand auger. Concrete Road Base CLAY: dark brown, dry, high plasticity. CL CLAYEY SAND: fine grained, brown, moist. 5 SC 0.0 SANDY CLAY: dark brown, moist, high plasticity. CL CLAYEY GRAVEL: fine grained, dark brown, moist to wet, angular. GC 10-0.0 SANDY CLAY: medium olive gray, moist, medium plasticity, soft, fine Neat Cement grained sand, trace coarse grained sand. SW @ 13' to 13.5' gradational contact. GRAVEL WITH SAND: fine to coarse grained, orange brown, wet, subangular, well graded, orange brown, black and red mottling, trace 10-12-2007 J:\2293\BORING LOGS\2293 DP2.bor clay, clay content increases with depth. 15-0.0 @ 16.5' dry. GW

@ 20' dry to damp.

20

	2	ERI ENVIRONMENTAL RESOLUTIONS, INC.					IC.	BORING L		DP2 Page 2 of 2)	Date Drilled: Drilling Co.: Drilling Method: Sampling Method: Borehole Diameter:	: 08/20/2007, 08/27/2007 : Woodward Drilling : Direct Push : Continuous Core
	Site:	wed B		: 226 : Re : He	bekah A. W	Street /estru nbact	Oakland p / Paula	d, California i Sime P∕⊊.#6793 ∩	: : 2" : N/A : : : 30 fbgs : 15 fbgs			
	Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	nscs		ple Condition No Recovery Sampled Interval Described Sample Preserved Sample	CR	Water Levels ▼ First Encoun ✓ Second Encoun	tered Water: 15' buntered Water: 29'	Boring: DP2
	20-		0.0			GW	orange diamet		st ov ttling	erall, subangular, , clasts up to 2-in	well graded, ches in	
	25-		0.0	33 2		СН	SANDY	light brown, damp, high plack flecks, very stiff. Y CLAY WITH GRAVEL: lictorarse grained, subangularses	 ght l ar an	orown, damp, med d well graded grav	lium plasticity, el.	- Neat Cement
	30		0.0	88		SP	@ 29' v	fine grained, light brown, race coarse grained sand. wet and loose.	oas o	on 08/20/2007	aded, with	▼
							Ground with use	epth @ 30.0 fbgs on 08/27 water was sampled from a e of hydropunch sampler; s water sampled @ 15 fbgs	djac scred	ent borehole HP2 en from 13-17 fbgs	3.	
10-12-2007 J:\Z293\BORING LOGS\2293 DP2.bor	35-											
10-12-2007	40-											

10-12-2007 J:\2293\BORING LOGS\2293 DP4,bor

BORING LOG DP4

(Page 1 of 2)

Date Drilled: : 08/20/2007, 08/29/2007
Drilling Co.: : Woodward Drilling
Drilling Method: : Direct Push

Sampling Method: : Continuous Core
Borehole Diameter: : 2"

Site: Logge Reviev Signati	d By: ved By	<i>y</i> :	: 220 : Rel	00 E. 12th : bekah A. W	Street /estru	ice Station 7-0238 , Oakland, California p / Heidi L. Dieffenbach-Carle h-Carle P.G. #6793	: N/A : : : 30 fbgs : NA		
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	uscs	Sample Condition No Recovery Sampled Interval Described Sample Preserved Sample	Boring: DP4		
5—		0.0	æ		CL SC CL CL	Road Base CLAY: dark brown, dry, high plasticity CLAYEY SAND: fine grained, dark brown, dry, high plasticity, subangular gravel. CLAYEY GRAVEL: fine grained, dark angular. SILTY CLAY: dark olive brown, faint o gray, damp. @9.5' SANDY CLAY, gradational contimottling, damp, fine grained sand.	brown, moist, subtrange mottling, st	d and angular to ringers of dark	- Concrete Neat Cement
15-		1.0	*		SC GC CL SC CL	CLAYEY SAND: fine grained, light olive coarse grained sand, trace fine grained iron oxide staining, black iron oxide, grained sand. CLAYEY SANDY GRAVEL: fine grained (wet along angular gravel faces), iron or grained sand. SANDY CLAY: light olive brown, orang sand. GRAVELLY CLAY WITH SAND: light odamp, fine grained sand. CLAYEY GRAVELLY SAND: coarse grained grained grained sand, fine grained grained grained sand, fine grained grained sand, iron oxide nodules.	d gravel, subanguadational contact. ed, olive brown, deposide staining, fine produce the mottling, damp, and produce the mottling, damp, orangerained, light olive vel, moist to wet	lar to angular, amp to moist to coarse fine grained le mottling, brown, with (at gravel	

: Former Exxon Service Station 7-0238

Project No.:

BORING LOG DP5

(Page 1 of 2)

Date Drilled: : 08/23/2007, 09/05/2007 Drilling Co.: : Woodward Drilling Drilling Method: : Direct Push

: Continuous Core Sampling Method: Borehole Diameter: : 2"

Casing Diameter: : N/A Location N-S

Site: : 2200 E. 12th Street, Oakland, California Logged By: : Heidi L. Dieffenbach-Carle					Street	, Oakland, California		Casing Diameter: Location N-S Location E-W	: N/A				
Reviev	ved B	<i>/</i> :	: He		enbaci	n-Carle, P.G. #6793		Total Depth: First GW Depth:	: 30 fbgs : NA				
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	uscs	Sample Condition No Recovery Sampled Interval Described Sample Preserved Sample	Boring: DP5						
0-					SM	SILTY GRAVELLY SAND, fine to coarse, fine grained gravel (pea gravel).	brown, dry, lo	ose (topsoil),	Concrete				
:=				0 0 0	GW	GRAVEL WITH SAND: fine gravel (Fill), g grained sand.	RAVEL WITH SAND: fine gravel (Fill), gray, dry, fine to coarse ained sand.						
9-					GM	GRAVEL WITH SAND: fine to coarse grav 5-inches) (Fill), brown, dry, fine grained sa	rel and cobble and.	s (up to					
5-		0.0	*		CL	SILTY CLAY: dark gray, damp, high plastic sand.	city, trace fine	to medium					
					CL	SANDY CLAY: dark greenish gray, damp to grained sand. CLAY WITH SILT: dark greenish gray, dam							
10-		0.0	*		CL	g. e.j., c.a	.p,g., p.dou		-Neat Cement				
-					CL	SANDY CLAY: brown, damp, medium plass subangular sand.	ticity, coarse (grained					
-					CL	SILTY CLAY: brown, damp, high plasticity, sand and fine grained gravel, sand and gravel	occassional ovel subangula	coarse grain ir to angular.					
15-		0.0	88	 		SANDY CLAY: brown, damp, medium plast							
-				20.20.2	GC	CLAYEY GRAVEL: fine grained, dark brown SILTY SAND: fine grained, pale yellowish b							
					SP	matrix. SAND: fine to medium grained, light brown, graded.	moist, subrou	unded, poorly					
]					CL	SANDY CLAY: yellowish brown, damp, high grained sand.							
20					SM	SILTY SAND WITH CLAY: very fine grained moist, high plasticity.	d, yellowish br	rown, damp to					

10-12-2007 J:\2293\BORING LOGS\2293 DP5 bor

10-12-2007 J:\2293\BORING LOGS\2293 DP6.bor

BORING LOG DP6

(Page 1 of 2)

Date Drilled: : 08/23/2007, 08/30/2007

: Woodward Drilling Drilling Co.: Drilling Method: : Direct Push

Sampling Method: : Continuous Core Borehole Diameter; : 2"

Projec Site:	t No.:	: Former Exxon Service Station 7-0238 Casing Diameter: 2200 E, 12th Street, Oakland, California Location N-S						: N/A	
Logge			: Hei	di L. Dieffe	nbach	n-Carle		Location E-W	1
Review Signat	wed By ure:	/:	: Heid	di L. Dieffe FOUCL	nbach	-Carle, P.G. #6793		Total Depth: First GW Depth:	: 30 fbgs : NA
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	nscs	Sample Condition No Recovery Sampled Interval Described Sample Preserved Sample DESCR	Boring: DP6		
0-				V/1///	SM	SILTY GRAVELLY SAND, fine to coa	area brown dry la	oso (topsoil)	Congrete
5-		0.0	æ		GM	GRAVEL WITH SAND: fine to coarse angular to subangular, sand fine grain class of the grai	e gravel (Fill), light ned.		Concrete
					CL				
-		0.0			SC	CLAYEY SAND, fine to medium grain CLAY: gray, damp, high plasticity, wit @9' color change to very dark gray w medium grained sand.	h silt.		
10-		0.0	88	===					Nest Coment
-		0.0	•		CL	SILTY CLAY: dark gray to olive gray, fine grained sand. SANDY CLAY: dark gray to olive gray fine grained sand.	, iron oxide mottlir	ng, damp, trace	- Neat Cement
F					CL	SANDY CLAY WITH GRAVEL: dark of mottling, damp, trace fine grained sar rounded gravel.	gray to olive gray, and, fine grained, su	iron oxide ibrounded to	
15— - -		0.0	**		GC SP	CLAYEY GRAVEL WITH SAND: fine fine to coarse grained sand. GRAVELLY SAND: coarse grained, b gravel, with fine grained sand and clay	rown, moist to wet	/	
		0.0			CL	SILTY CLAY WITH GRAVEL: dark ye		=	
1			**	0 0 0	GP	SANDY GRAVEL: fine grained, brown subangular, coarse grained sand, gradownward.	n, wet, subrounded dational contact fir	ning	
20-						SAND: fine grained, light olive brown	with orange mottlir	ng, damp.) 🖂

ATTACHMENT E

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

August 23, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-08-1542

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/22/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/22/07 07-08-1542 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

								<u> </u>
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-5-DP2		07-08-1542-1	08/20/07	Solid	GC 22	08/22/07	08/22/07	070822B01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	83	42-126						
S-5-DP3		07-08-1542-2	08/20/07	Solid	GC 22	08/22/07	08/22/07	070822B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
ГРН as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	85	42-126						
S-5-DP4		07-08-1542-3	08/20/07	Solid	GC 22	08/22/07	08/22/07	070822B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
ГРН as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	84	42-126						
S-5-DP1		07-08-1542-4	08/21/07	Solid	GC 22	08/22/07	08/22/07	070822B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
PH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	- •			
,4-Bromofiuorobenzene - FID	84	42-126						

RL - Reporting Limit

DF - Dilution Factor .

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 08/22/07 07-08-1542 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 2

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-279-1,013	N/A	Solid	GC 22	08/22/07	08/22/07	070822B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	86	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/22/07 07-08-1542 EPA 5030B EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date d Analyz		QC Batch ID
S-5-DP2			07-08-	1542-1	08/20/07	Solid	GC/MS S	08/22/0	7 08/22	07 (070822L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL		01
Benzene	ND	5.0	1	<u> </u>	o-Xvlene					DF	<u>Qual</u>
1,2-Dibromoethane	ND	5.0				nene nyl-t-Butyl Ether (MTBE)		ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco) 	ND	5.0	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50	1	
Toluene	ND	5.0	1			٠,		ND	10	1	
o/m-Xylene	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1	
Surrogates:	REC (%)	Control	1	Ougl	Tert-Amyl-Meth	nyi Ether (i	AME)	ND	10	1	
	1KEQ (78)	Limits		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
Dibromofluoromethane	107	73-139			1.0 Diablessati	14			<u>Limits</u>		
Foluene-d8	101	90-108						107	73-145		
S-5-DP3								102	71-113		
3-3-0F3			07-08-	1542-2	08/20/07	Solid	GC/MS S	08/22/07	08/22/	07 (70822L02
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xylene			ND	0.00		Qual
2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	ther (MTR	E)	ND	5.0	1	
,2-Dichloroethane	ND	5.0	i i		Tert-Butyl Alco		L)	ND	5.0	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Et	,			10	1	
n/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			ND ND	10	1	
Surrogates:	REC (%)	Control	'	Qual	Surrogates:	iyi Lulei (I.	•		10	1	
		Limits		<u>Quai</u>	ourrogates.			REC (%)	Control		<u>Qual</u>
Dibromofluoromethane	108	73-139			1,2-Dichloroeth	ane_d4		109	<u>Limits</u> 73-145		
「oluene-d8	101	90-108			1,4-Bromofluor			109	73-145		
S-5-DP4			07.00	1542-3							
			07-00-	1342-3	08/20/07	Solid	GC/MS S	08/22/07	08/22/	07 0	70822L02
<u>Parameter</u>	Result	<u>RL</u>	<u>D</u> F	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	1	<u>Gradi</u>
,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	ther (MTR	F)	ND			
,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alcol		-,	ND	5.0	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50	1	
oluene	ND	5.0	1			, ,		ND ND	10	1	
/m-Xylene	ND	5.0	1		Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME) Surrogates:				10	1	
Surrogates:	REC (%)	Control	'	Qual			,	ND REC (%)	10 Control	1	Qual
Nih	109	Limits		-				Limits		उरववा	
					4 D D!						
Dibromofluoromethane Toluene-d8	109	73-139 90-108			1,2-Dichloroeth 1,4-Bromofluore			107	73-145		

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifier

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units:

08/22/07 07-08-1542 EPA 5030B

EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 2

Client Sample Number				ib Sample Number	Date Collected	Matrix	Instrumen	Date Prepared	Date Analyzed	QC Batch ID
S-5-DP1			07-08-1542-4		08/21/07	Solid	GC/MS S	08/22/07	08/22/07	070822L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	RL D)F Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTB	E)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		_,	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	, , , ,		ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		1	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Metl			ND	10	1
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	·,· =(.	· ····=,	REC (%)	Control	Qual
Dibromofluoromethane	111	73-139			1.2-Dichloroeth	one d4		400	<u>Limits</u>	
Toluene-d8	101	90-108			1,4-Bromofluor			109 100	73-145	
Method Blank		00 100	000.40	005 44 0			12/2/2/2010		71-113	
mediod Diatik			099-10	-005-14,63	31 N/A	Solid	GC/MS S	08/22/07	08/22/07	070822L02
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL D	F Qual
Benzene	ND	5.0	1		o-Xviene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	Ether (MTB	E)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	,	_,	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		١	ND	10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Metl			ND	10	1
Surrogates:	<u>REC (%)</u>	Control Limits		Quai	Surrogates:	, (v	,,	REC (%)	Control	Qual
Dibromofluoromethane	108	73-139			1.2-Dichloroeth	ane-d4		107	<u>Limits</u> 73-145	
Toluene-d8	100	90-108			1,4-Bromofluor			103	73-145 71-113	

Whan_

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 08/22/07 07-08-1542 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-08-0741-3	Solid	GC 22	08/22/07		08/22/07	070822801
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	101	96	48-114	6	0.23	

Mhhn

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 08/22/07 07-08-1542 EPA 5030B EPA 8260B

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	
07-08-1506-1	Solid	GC/MS S	08/21/07	08/22/07	070822501	

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	99	101	79-115	2	0-13	
Carbon Tetrachloride	90	93	55-139	3	0-15	
Chlorobenzene	99	101	79-115	2	0-17	
1,2-Dibromoethane	98	100	70-130	2	0-30	
1,2-Dichlorobenzene	96	100	63-123	3	0-23	
1,1-Dichloroethene	98	99	69-123	2	0-16	
Ethylbenzene	102	104	70-130	2	0-30	
Toluene	104	108	79-115	4	0-15	
Trichloroethene	98	100	66-144	1	0-14	
Vinyl Chloride	90	92	60-126	2	0-14	
Methyl-t-Butyl Ether (MTBE)	109	111	68-128	1	0-14	
Tert-Butyl Alcohol (TBA)	123	127	44-134	4	0-37	
Diisopropyl Ether (DIPE)	99	102	75-123	3	0-12	
Ethyl-t-Butyl Ether (ETBE)	101	104	75-117	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	102	105	79-115	3	0-12	
Ethanol	93	95	42-138	1	0-28	

RPD - Relative Percent Difference ,

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1542 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Matrix Instrument		Date Prepared		Date Analyzed		LCS/LCSD Batch	1
099-12-279-1,013	Solid	GC 22 %REC LCSD		08/22/07 <u>%REC</u> <u>%R</u>		08/22/07		070822B01	
<u>Parameter</u>	LCS					C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	113	3	114		70	-124	1	0-18	

Mulhan_

Quality Control - LCS/LCS Duplicate

Date Received: Work Order No: Preparation:

Method:

N/A 07-08-1542 EPA 5030B EPA 8260B

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bate Number	ch .
099-10-005-14,631	Solid	GC/MS S	08/22/07	08/2	2/07	070822L02	
<u>Parameter</u>	LCS %	REC LCSD S	%REC <u>%</u>	REC CL	RPD	RPD CL	Qualifiers
Benzene	98	102		84-114	4	0-7	
Carbon Tetrachloride	95	101		66-132	6	0-12	
Chlorobenzene	96	99		87-111	3	0-7	
1,2-Dibromoethane	97	98		80-120	1	0-20	
1,2-Dichlorobenzene	98	101		79-115	3	0-8	
1,1-Dichloroethene	94	101		73-121	7	0-12	
Ethylbenzene	98	102		80-120	4	0-20	
Toluene	96	102		78-114	6	0-7	
Trichloroethene	99	100		84-114	1	0-8	
Vinyl Chloride	93	98		63-129	6	0-15	
Methyl-t-Butyl Ether (MTBE)	84	93		77-125	10	0-11	
Tert-Butyl Alcohol (TBA)	77	100		47-137	26	0-27	
Diisopropyl Ether (DIPE)	103	102		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	100	100		76-124	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	100	101		82-118	1	0-11	
Ethanol	87	102		59-131	17	0-21	

Glossary of Terms and Qualifiers

Inc.

Work Order Number: 07-08-1542

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

CHAIN OF CUSTODY RECORD

DATE:

	aboratones, inc.	TEL: (714) 895-5494 . FA	X: (714) 89	4-7501												P	AGE:			1		_OF	_		1
ADDR	RESS:	Supply - Global Reme	diation							/ 7-0		MBER		1916		Cumus	The T	-	-	Ρ,	O. NO.:				
601 I	Environmental Reso North McDowell Blv	d.					PR	OJECT	CON		-		,							Q	UOTE	NO.:			
TEL: (707)	luma, California 949) 766-2000	954 (707) 789-0414		E-MAIL norcalla	bs@eri-	us.com	1		vch	IGNAT	1-1	Lut	D	Ü								E ONL		5	4 2
	AROUND TIME SAME DAY X 24 HR AL REQUIREMENTS (ADDITIONAL	48HR 72 HF	₹ <u></u> 5 E	DAYS [ם 10 <u>[</u>	AYS		7.00	, ,,,	21_7		- / 0	7/	REG	UES	TE	D AI	NAL	YS		adlac	oodiili	nond	00000	nondana
Send	EDF report / Global ID:	·								6		809													
Use Set Oxy Lea	e Silica Gel Cleanup f TBA reporting limit a	BE, TAME, DIPE, TBA DCA, EDB					TPHd by 8015B	TPHg by 8015B	Methanol by 8015B	BTEX by 3024B \$260(5)	Oxygenates by 8260B	Lead Scavengers by 8260B	Ethanol by 8260B	Lead by 6010B											
USE ONLY	SAMPLE ID	FIELD POINT NAME (separate from sample ID on EDF)	SAM DATE	PLING TIME	Madrit.	*Cons		гРНg b	Methan	этех ь	Dxygen	ead So	thano	Total Le											
	5-5- DPZ	DP2	8 20 07	11:11	SAL	1		1	Ī	<u>-</u>	7	Ī				-			1	_	_	\vdash	\vdash		\dashv
2.	S-5- DP3	bp3		11:55		I		~		1	1	V					\dashv								
3	S-5-DP4	DP4	1	13:20		1		V		V	V						T						\exists		\dashv
	5-5-DPI	DPI	8/21/67	12:30	V	1		V		V	7		,												
							\vdash					\dashv	\dashv		\dashv	\dashv	+	-	-			\dashv	4	\dashv	+
		***																					\dashv	7	+
									_	_			4		_	4	_					\Box	\exists	\Box	\perp
								-	\dashv	\dashv	-	-	\dashv	\dashv	+	+	+	+	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+
Mula	shed by: (Signature)				Receive		ignatu	re)/					- 1					\dagger	Date:	20	7	\dashv	Time:	10	 .l
	shed by: (Slore)	06 (58))		Receive			re)			_	//	W.	2	n F	, -		_1	Date:	- /	67	+	Time:		
elInqui	shed by (Signature)				Receive	d by: (\$	ignatur	re)				111	1		~ ~ /			+	<i>X/ ≤</i> Date:	-2/			Time:		_

Time:

WORK ORDER #: 07 - 0 8- 1 5 4 2

Cooler _____ of ____

SAMPLE RECEIPT FORM

CLIENT: ERT		DATE:	8/2	2/07
TEMPERATURE - SAMPLES RECEIVED BY:				
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABOR	RATORY (Other t _ ° C Temperature I _ ° C IR thermomete _ Ambient temperat	blank. er.	ience Courier):
O Temperature blank.			Initial:	\mathcal{Q}
CUSTODY SEAL INTACT:				v
Sample(s): Cooler: No (Not leading)	ntact) :	N	ot Present: _ Initial: _	V G
SAMPLE CONDITION:				
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.		V		
COMMENTS:				

September 05, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-09-0009

Client Reference: ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/1/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Pecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

Work Order No: Preparation:

Method:

09/01/07

07-09-0009 EPA 5030B

EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

								age i oi
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-DP1		07-09-0009-1	08/31/07	Solid	GC 22	09/01/07	09/01/07	070901B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	79	42-126						
S-20-DP1		07-09-0009-2	08/31/07	Solid	GC 22	09/01/07	09/01/07	070901B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	80	42-126						
S-25-DP1		07-09-0009-3	08/31/07	Solid	GC 22	09/01/07	09/01/07	070901B01
Parameter Parameter	Result	RL	DF	Qual	<u>U</u> nits			
FPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
I,4-Bromofluorobenzene - FID	79	42-126						
Method Blank		099-12-279-1,051	N/A	Solid	GC 22	09/01/07	09/01/07	070901B01
Parameter	Result	RL	DF	Qual	Units			
PH as Gasoline	ND	0.50	<u></u>		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
,4-Bromofluorobenzene - FID	83	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

Work Order No: Preparation:

Method: Units:

09/01/07

07-09-0009 **EPA 5030B**

EPA 8260B ug/kg

Project: EveralAskil	7 0000 1000	20001			ormo.					ug/kg
Project: ExxonMobil	7-0238 / 229	3303X							Pa	age 1 of 2
Client Sample Number				Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-DP1			07-09-0	009-1	08/31/07	Solid	GC/MS W	09/01/07	09/01/07	070901L01
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	Parameter			Result	RL [DF Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	=ther/MTRI	ΕV	ND	5.0 5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	hol (TRA)	L)	ND		1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50 10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		1	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Arnyi-Meth			ND	10	1
Surrogates:	REC (%)	Control	•	Qual	Surrogates:	iyi Edici (1)		REC (%)		1
		Limits			Surrogutoo.			KEC (76)	Control Limits	<u>Qual</u>
Dibromofluoromethane	111	73-139			1,2-Dichloroeth	ane-d4		117	73-145	
Toluene-d8	100	90-108			1,4-Bromofluor			95	73-145	
S-20-DP1			07-09-00	009-2	08/31/07	Solid	GC/MS W	09/01/07		070901L01
Parameter	Doouth	DI	DE.		_					
Benzene	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>)F Qual
1,2-Dibromoethane	ND	5.0	1		o-Xylene			ND	5.0	1
	ND	5.0	1		Methyl-t-Butyl E		Ε)	ND	5.0	1
1,2-Dichloroethane Ethylbenzene	ND	5.0	1		Tert-Butyl Alco	٠,		ND	50	1
•	ND	5.0	1		Diisopropyl Eth			ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et	her (ETBE)		ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	nyl Ether (T/	AME)	ND	10	1
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control	<u>Qual</u>
Dibromofluoromethane	113	73-139			1.2 Diablassath			400	<u>Limits</u>	
Toluene-d8	100	90-108			1,2-Dichloroeth 1,4-Bromofluor			123 90	73-145 71-113	
S-25-DP1			07-09-00	009-3	08/31/07	Solid	GC/MS W	09/01/07		070901L01
Parameter	Popult	Di	DE		-				00/01/07	07 030 ILU1
Benzene	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	F Qual
1,2-Dibromoethane	ND	5.0	1		o-Xylene			ND	5.0	1
	ND	5.0	1		Methyl-t-Butyl E	ther (MTBE	≣)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alcol	,		ND	50	1
Ethylbenzene Feluene	ND	5.0	1		Diisopropyl Eth	er (DIPE)		ND	10	1
Foluene	ND	5.0	1		Ethyl-t-Butyl Eti			ND	10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	yl Ether (TA	AME)	ND	10	1
Surrogates:	<u>REC (%)</u>	Control	!	Qual	Surrogates:	•		REC (%)	Control	Qual
Dibromofluoromethane	440	<u>Limits</u>							Limits	
Foluene-d8	113	73-139			1,2-Dichloroeth			120	73-145	
10100110-00	100	90-108			1,4-Bromofluor	obenzene		94	71-113	

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

09/01/07 07-09-0009 EPA 5030B

Method: Units: EPA 5030B EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 2

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank			099-10	-005-14,68	5 N/A	Solid	GC/MS W	09/01/07	09/01/07	070901L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	RL I	DF Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		/	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	. ,		ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E	ther (ETBE	.)	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met	hyl Ether (1	AME)	ND	10	1
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:		•	REC (%)	Control	Qual
Dibromofluoromethane Toluene-d8	111 101	<u>Limits</u> 73-139 90-108			1,2-Dichloroett 1,4-Bromofluo			112 92	<u>Limits</u> 73-145 71-113	<u> </u>

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

09/01/07 07-09-0009 **EPA 5030B**

Method:

EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-2217-7	Solid	GC 22	09/01/07	09/01/07	070901S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	47	69	48-114	37	0-23	3,4

601 North McDowell Blvd.

Petaluma, CA 94954-2312

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc.

Date Received: Work Order No: Preparation:

09/01/07 07-09-0009 EPA 5030B

Method:

od: EPA 8260B

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-2043-21	Solid	GC/MS W	09/01/07	09/01/07	070901S01

Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	106	103	79-115	3	0-13	
Carbon Tetrachloride	102	102	55-139	0	0-13 0-15	
Chlorobenzene	100	95	79-115	5		
1,2-Dibromoethane	107	103	70-130		0-17	
1,2-Dichlorobenzene	103	98		4	0-30	
1,1-Dichloroethene	106		63-123	5	0-23	
Ethylbenzene		98	69-123	7	0-16	
Toluene	106	103	70-130	3	0-30	
	104	103	79-115	1	0-15	
Trichloroethene	99	98	66-144	1	0-14	
Vinyl Chloride	93	85	60-126	9	0-14	
Methyl-t-Butyl Ether (MTBE)	96	93	68-128	3	0-14	
Tert-Butyl Alcohol (TBA)	111	108	44-134	3	0-37	
Diisopropyl Ether (DIPE)	122	123	75-123	1	0-12	
Ethyl-t-Butyl Ether (ETBE)	109	108	75-117	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	105	105	79-115	0	0-12	
Ethanol	144	142	42-138	1	0-12	3

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-09-0009 **EPA 5030B** EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

099-12-279-1,051	Solid	GC 22	09/01/07	09/01/07	070901B01
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number

Parameter	LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	104	103	70-124	1	0-18	

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-09-0009 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bate Number	ch
099-10-005-14,685	Solid	GC/MS W	09/01/07	09/0	1/07	070901L01	
Parameter	LCS %F	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	107	104		84-114	3	0-7	
Carbon Tetrachloride	106	98		66-132	8	0-12	
Chlorobenzene	106	102		87-111	3	0-7	
1,2-Dibromoethane	109	104		80-120	5	0-20	
1,2-Dichlorobenzene	107	103		79-115	3	0-8	
1,1-Dichloroethene	104	99		73-121	5	0-12	
Ethylbenzene	109	105		80-120	4	0-20	
Toluene	107	106		78-114	1	0-20	
Trichloroethene	103	99		84-114	3	0-8	
Vinyl Chloride	92	91		63-129	1	0-15	
Methyl-t-Butyl Ether (MTBE)	93	90		77-125	4	0-13	
Tert-Butyl Alcohol (TBA)	109	100		47-137	8	0-27	
Diisopropyl Ether (DIPE)	125	123		76-130	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	112	111		76-124	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	108	109		82-118	1	0-12	
Ethanol	116	101		59-131	14	0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0009

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
l	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN	OF	CUS	TOD	Y RE	CO	RD
	VI,	603				ZD

DATE: 8-31-07

PAGE:	1	OF	1

LABO	DRATORY CLIENT:		-					B (7)	DENT E	ROJE	TNAK	E / NIC	111111111		-		_				-	-				_																	
Exx	on Mobil Refining & S	Supply - Global Reme	dia	tion				CLIENT PROJECT NAME / NUMBER:										P.O. NO.:																									
ADDRESS: c/o Environmental Resolutions, Inc.							229303X / 7-0238 PROJECT CONTACT:											OUOTE NO.																									
601 North McDowell Blvd.										RI		,						QUOTE NO.;																									
Petaluma, California 94954						Paula Sime/ERI SAMPLER(S): (SIGNATIONE)											LABIUSE ONLY																										
TEL:) 766-2000	FAX: (707) 789-0414			E-MAIL			1 // //// Rebella Westout										09-0009																									
	IAROUND TIME	1(101) 103-0414	-		norcallal	os(wen-	is.com	╀	/	uw	my s	XI.V	74/	3\\m_						A TOTAL			and la	ALIENDAR	4184.F07.F	040																	
	SAME DAY 🗶 24 HR	☐ 48HR ☐ 72 HF	2	5 D	AYS [] 10 D/	AYS	REQUESTED ANALYSIS																																			
SPEC	IAL REQUIREMENTS (ADDITIONAL	L COSTS MAY APPLY)	•			J 10 D,		1	T	T a	Ť-	Ţ-	ſ			T	7	T	7		_	T			-																		
Send	EDF report / Global ID:	T0600101343							1	1	0		8260B					1	1																								
SPEC	IAL INSTRUCTIONS							1		١.	व्र	9	82		_			1	1				1 1	. 1																			
	e Silica Gel Cleanup fo							L		串	Ø	8260B	s by	a	6010B			1		1			1																				
	t TBA reporting limit at							#	83	\$	#	<u>چ</u>	8	3	8																												
LA	ygenates: MTBE, ETB ad Scavengers: 1,2-D	CA EDB						1 2 3	8	1	8	te se	Scavengers	7	<u>ā</u>		1	1																									
HAS	d Scaveligers. 1,2-D	FIELD POINT NAME	7	CAM	PLING																				4 1	3	100	9	Oxygenates by	Sca	1	Lead by								1			
USE	SAMPLE ID	(separate from sample ID or EDF)		DATE	TIME	Malini,	*Con	Iŧ	TPHg by 8015B	Mathenal by 3015B	BTEX by 8824 B \$260	PX.	Lead	Ethanol by 8266B	Total																												
		EDF		d = 1440	TIME	<u> </u>	1	1	F	3	-	0		-	-	_	_	╁	-	-	_	_	-	-	_	_																	
							-	-	-	-		_	-	_	_	_	+	\vdash		_			_	_	_	Щ																	
	5-10-DP1	DPI	8-2	1-07	8:00	SOL	STERN	ī	X	_	X	K	X				_	_						\perp																			
4	5-20-DP1	DPI			10:25		1		X		X	X	X																														
3	S-ZS-DP1	DPI			11:00		1		X		X	X	X				T					П																					
	(4)													\neg	\neg	\neg	1						\dashv	\dashv	\dashv	\neg																	
			\vdash				-	_	_	-		-	-		-		+	\vdash	-		\dashv	\dashv	\rightarrow	\dashv	\dashv	\dashv																	
			\vdash				-	_	_		_	-		-	_	-	+	-	_		\dashv	_	_	\dashv	-	_																	
			_												_																												
																	\top					\neg	\neg	\neg																			
								_			\dashv		\dashv	\dashv	\neg	_	1	\vdash	Н	\neg	\dashv	\dashv	+	\dashv	\dashv	\dashv																	
Relinqu	ished by/(Signatyre)			((-)(-)		Receive	ed /by: \{\$	lapeti	Za)					ᆛ					Date			-	Time:			_																	
	Whicher Ally						(),"	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\nearrow	/	_			C	E (1/07	,		// 🔏																				
Relindu	lisiped by (Signature)	Ja (5)				Receive	ed by: (5	ignati	пе) 7	11)					_			Date	7	7	_	Time:			\dashv																	
Received by: (S							1	15					0				91	11	07	2	_((2:	3	اد																			
Relinquisned by: (Signature) Received by: (Signature)						d by: (S	ignati	T/e/										Date				Time:																					
								Minimum													-																						

WORK ORDER #: 07 - 0 9 - 0 0 9

Cooler ___/_ of __/_

SAMPLE RECEIPT FORM

CLIENT:ERI	DATE: 09/01/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): O C Temperature blank. O C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): No (Not In	Not Present:
SAMPLE CONDITION:	1
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

September 06, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-09-0107

> Client Reference: ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/5/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/05/07 07-09-0107 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

05/07 070905B01
05/07 070905B01
0

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/05/07 07-09-0107 EPA 5030B EPA 8260B ug/kg

Page 1 of 1

Duniant	England Mark 1, 1	7 0000	100000001
Project.	ExxonMobil	7-0238	/ 220303X

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrumen	Date Prepared	Date Analyzed	QC Batch ID
S-30-DP1			07-09-	0107-1	08/31/07	Solid	GC/MS C	09/05/07	09/05/07	070905L01
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	<u>Parameter</u>			Result	RL [OF Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	<u> </u>
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTR	:F)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		_,	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	,		ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E)	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met			ND	10	1
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:	,	, . ,	REC (%)	Control Limits	<u>Qual</u>
Dibromofluoromethane	120	73-139			1,2-Dichloroeth	nane-d4		116	73-145	
Toluene-d8	96	90-108			1,4-Bromofluoi			91	71-113	
Method Blank			099-10	-005-14,7	02 N/A	Solid	GC/MS Q	09/05/07		070905L01
Parameter	Result	RI	DE	Ougl	Doromotor					

Method Blank			099-10	-005-14,70	02 N/A	Solid	GC/MS Q	09/05/07	09/05/07	7 0	70905L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	4	Gradi
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alc		,	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl E	, ,		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl E	` '		ND	10	1	
p/m-Xylene	ND	5.0	1			thyl Ether (TA	ME)	ND	10	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:	,(,	REC (%)	Control Limits	,	Qual
Dibromofluoromethane	121	73-139			1,2-Dichloroe	thane-d4		123	73-145		
Toluene-d8	98	90-108			1,4-Bromofluo	orobenzene		92	71-113		

DF - Dilution Factor , Qual - Qualifier

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

TPH as Gasoline

Date Received: Work Order No: Preparation: Method:

09/05/07 07-09-0107 **EPA 5030B** EPA 8015B (M)

0-23

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-30-DP1	Solid	GC 22	09/05/07		09/05/07	070905801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers

93

48-114

95

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/05/07 07-09-0107 **EPA 5030B EPA 8260B**

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-2046-2	Solid	GC/MS Q	09/05/07	09/05/07	070905801

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	113	109	79-115	4	0-13	
Carbon Tetrachloride	131	126	55-139	4	0-15	
Chlorobenzene	119	114	79-115	4	0-17	3
1,2-Dibromoethane	127	125	70-130	2	0-30	3
1,2-Dichlorobenzene	116	117	63-123	1	0-23	
1,1-Dichloroethene	146	151	69-123	3	0-16	3
Ethylbenzene	120	115	70-130	4	0-30	
Toluene	119	114	79-115	4	0-15	3
Trichloroethene	207	200	66-144	3	0-14	3
Vinyl Chloride	115	110	60-126	4	0-14	J
Methyl-t-Butyl Ether (MTBE)	130	128	68-128	2	0-14	3
Tert-Butyl Alcohol (TBA)	110	116	44-134	6	0-37	J
Diisopropyl Ether (DIPE)	93	91	75-123	2	0-12	
Ethyl-t-Butyl Ether (ETBE)	129	128	75-117	0	0-12	3
Tert-Amyl-Methyl Ether (TAME)	135	134	79-115	1	0-12	3
Ethanol	90	96	42-138	6	0-28	

RPD - Relative Percent Difference,

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-09-0107 **EPA 5030B** EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrur	ment	Date Prepared		Da Anal		LCS/LCSD Batci Number	1
099-12-279-1,056	Solid	GC 2	GC 22		/07	09/05	5/07	070905B01	
Parameter	LCS	%R <u>EC</u>	LCSD 9	%REC	%RE	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	98		99		70	-124	1	0-18	

RPD - Relative Percent Difference .

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-09-0107 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	modulion.		Date Prepared		ate yzed	LCS/LCSD Bat Number	ch
099-10-005-14,702	Solid	GC/MS Q	09/05/07	09/05/07		070905L01	
<u>Parameter</u>	LCS %	REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
Benzene	95	95		84-114	1	0-7	
Carbon Tetrachloride	116	115		66-132	1	0-12	
Chlorobenzene	102	101		87-111	1	0-7	
1,2-Dibromoethane	113	115		80-120	2	0-20	
1,2-Dichlorobenzene	109	111		79-115	2	0-8	
1,1-Dichloroethene	103	102		73-121	1	0-12	
Ethylbenzene	103	100		80-120	3	0-20	
Toluene	100	100		78-114	1	0-7	
Trichloroethene	96	99		84-114	3	0-8	
Vinyl Chloride	104	102		63-129	2	0-15	
Methyl-t-Butyl Ether (MTBE)	117	121		77-125	4	0-11	
Tert-Butyl Alcohol (TBA)	109	112		47-137	3	0-27	
Diisopropyl Ether (DIPE)	85	89		76-130	5	0-8	
Ethyl-t-Butyl Ether (ETBE)	117	124		76-124	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	119	122		82-118	2	0-11	X
Ethanol	106	113		59-131	6	0-21	

Note "X": The percent recovery is above acceptable control limits. The samples and method blank associated with this batch are non-detect, and therefore, the results have been reported without further clarification.

RPD - Relative Percent Difference , CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0107

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Ε	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432**

CHAIN OF CUSTODY RECORD

DATE:

		IEL; (/14) 895-5494 . FA	X: (714) 894	1-7501												PAG	ε:		1_		_OF		1	
	RATORY CLIENT:	Supply - Global Reme	diation				CL	JENTP	ROJE	ST NAM	ME / NU	MBER:					-		T P.	O. NO.:			-	- 1/2/18
ADDR	RESS:		diation					2293			238								14	150	821	24	כס	
	Environmental Resol North McDowell Blyd							oject Paula			:BI								Q	UOTE	NO.:			
Peta	luma, California 949	954						MPLE											110	AB US	E ONLY	6		
	766-2000 AROUND TIME	(707) 789-0414		E-MAIL norcalla	bs@eri-u	s.com		Adehat Athereso							08-010									
	SAME DAY X 24 HR	☐ 48HR ☐ 72 HR	5 D	AYS [] 10 DA	YS							F	REQ	UES'	ΓED .	ANA	LYS	is					
	EDF report / Global ID:	·								-		9				İ	T			Π	П			
SPECI	AL INSTRUCTIONS						1			3		826							1		Н			
Set Oxy Lea	TBA reporting limit a	BE, TAME, DIPE, TBA CA, EDB					TPHd by 8015B	TPHg by 8015B	Methanol by 8015B	BTEX by 8021B 82¿O.β	Oxygenates by 8260B	Lead Scavengers by 8260B	Ethanol by 8260B	Lead by 6010B										
LAB USE ONLY	SAMPLE ID	FIELD POINT NAME (separate from sample ID on EDF)	SAMI DATE	PLING TIME	Alani,	#COM	TPH4 b	TPHg b	Methan	втех ь	Охудел	Lead So	Ethano	Total Le										
	5-30-DPI	DPI	8/31/07	11:40	Soil			X		X	X	X					I							
							_	_						_	_		_	\perp				\perp		
					-		_	_			_			_	_	4	1					\perp	4	
			= 10000				_				_			_	\perp	\bot	1_	┖						
										_			\perp	_	_	\perp	_			Ш				
							_	Щ					_	_	4	_	_	_	_	Ш		_	_	
												\perp	\dashv	_		_	_		_	Ш				
											\Box													
1h	lished by agnature)				Receive	by is	Matu	ıre)										Date 9	14/0	7		Time:	z	
	ished by: (Signature)	(to 6,50°			Receive								1	16	Las	4		Date):	107		Time:	000	 -)
Relinqu	ished by: (Signature)				Receive	d by: (Si	ignatu	re)				,	///	W.	60			Date	: 7			Time:		

WORK ORDER #: **07** - 0 8 - 0 1 0 7

Cooler _____ of ___

SAMPLE RECEIPT FORM

CLIENT: ERT	DATE:	915107
TEMPERATURE - SAMPLES RECEIVED BY:		
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	C Temperature blar C IR thermometer. Ambient temperature	ık.
C Temperature blank.		Initial:
CUSTODY SEAL INTACT:	*	
Sample(s): Cooler: No (Not In	ntact) : Not F	Present:
SAMPLE CONDITION:		
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	× × × × × × × × × × × × × × × × × × ×	
COMMENTS:		
	130 200 200	
	1.44	
	***************************************	. "

August 30, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-08-1992

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/29/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/29/07 07-08-1992 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 4

2 1000								age I of
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10.5-DP2		07-08-1992-1	08/27/07	Solid	GC 22	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	85	42-126						
S-15-DP2		07-08-1992-2	08/27/07	Solid	GC 22	08/29/07	08/29/07	070829B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene - FID	85	42-126						
S-20-DP2		07-08-1992-3	08/27/07	Solid	GC 22	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
FPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene - FID	85	42-126						
S-25-DP2		07-08-1992-4	08/27/07	Solid	GC 22	08/29/07	08/29/07	070829B01
Parameter .	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
PH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene - FID	85	42-126						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifier:

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 08/29/07 07-08-1992 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 4

Project. Exxonwobil 7-023	8 / 229303X						P	age 2 of 4
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-29.5-DP2		07-08-1992-5	08/27/07	Solid	GC 22	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	0,50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	83	42-126						
S-10-DP3		07-08-1992-6	08/28/07	Solid	GC 18	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						
S-15-DP3		07-08-1992-7	08/28/07	Solid	GC 18	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	87	42-126						
S-20-DP3		07-08-1992-8	08/28/07	Solid	GC 18	08/30/07	08/30/07	070830B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	90	42-126						

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifier

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/29/07 07-08-1992 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 3 of 4

Troject. Externivioni 7 0200	J 1 ZZ3303X						۲	age 3 of 4
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-25-DP3		07-08-1992-9	08/28/07	Solid	GC 18	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						
S-29.5-DP3		07-08-1992-10	08/28/07	Solid	GC 18	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	90	42-126						
Method Blank		099-12-279-1,037	N/A	Solid	GC 22	08/29/07	08/29/07	070829B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	86	42-126						
Method Blank		099-12-279-1,039	N/A	Solid	GC 18	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1	·	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	90	42-126						

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 08/29/07 07-08-1992 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 4 of 4

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Instrument Prepared	Date Analyzed QC Batch ID
Method Blank	4	099-12-279-1,040	N/A	Solid	GC 18 08/30/07	7 08/30/07 070830B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	
TPH as Gasoline	ND	0.50	1		mg/kg	
Surrogates:	REC (%)	Control Limits		Qual		
1,4-Bromofluorobenzene - FID	90	42-126				

RL - Reporting Limit , 7440

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units:

08/29/07 07-08-1992 EPA 5030B EPA 8260B

ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page	1	of	4
, ago	•	01	-

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10.5-DP2			07-08-	1992-1	08/27/07	Solid	GC/MS S	08/29/07	08/29/07	070829L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL D	F Qual
Benzene	ND	5.0	1		o-Xylene			ND		1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	Ether (MTF	RE)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		<i>,</i>	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	/		ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et)	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			ND	_	1
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	· · · · · · · · · · · · · · · · · · ·	,	REC (%)	Control	Qual
Dibromofluoromethane	116	73-139			1,2-Dichloroeth	ane d4		110	Limits	
Toluene-d8	103	90-108			1,4-Bromofluor				73-145 71-113	
S-15-DP2			07-08-	1992-2	08/27/07	Solid	GC/MS S	08/29/07	08/29/07	070829L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL D	F Qual
Benzene	ND	5.0	1		o-Xvlene					
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	Ethor (MTD)E)	ND 5.8		1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		, _ ,			1
Ethylbenzene	ND	5.0	1		Diisopropyi Eth				50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		`		10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth				10	1
Surrogates:	REC (%)	Control	'	Qual	Surrogates:	iyi Luiei (i				1
		Limits		<u>Qual</u>	Ourrogates.			REC (%)	Control	<u>Quai</u>
Dibromofluoromethane	117	73-139			1,2-Dichloroeth	ane-d4		112	<u>Limits</u> 73-145	
Toluene-d8	103	90-108			1,4-Bromofluor				73-145 71-113	
S-20-DP2			07-08-	1992-3	08/27/07	Solid	GC/MS S	08/29/07	08/29/07	070829L01
Parameter	Decul	DI	DE	0 1		2002-02-02-02-02-02-02-02-02-02-02-02-02			1000000-000000	V. 10
Benzene	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u> <u>D</u>	F Qual
1,2-Dibromoethane	ND	5.0	1		o-Xylene			ND	5.0	1
	ND	5.0	1		Methyl-t-Butyl E	ther (MTB	E)	6.8	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco			ND	50	1
Ethylbenzene Foluene	ND	5.0	1		Diisopropyl Eth				10	1
	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	yl Ether (T	AME)	ND	10	1
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits	Qual
Dibromofluoromethane	120	73-139			1,2-Dichloroeth	ano_d/l		113	<u>Limits</u>	
Foluene-d8	106	90-108			1,4-Bromofluor				73-145	
		20 100			.,biomondon	ODENZENE		104	71-113	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units:

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

ND

ND

ND

ND

ND

102

5.0

50

10

10

10

73-145

71-113

08/29/07 07-08-1992 **EPA 5030B EPA 8260B**

ug/kg

Page 2 of 4

Project: ExxonMobil 7-0238 / 229303X

										-g
Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrumen	Date Prepared	Date Analyzed	QC Batch ID
S-25-DP2			07-08-	1992-4	08/27/07	Solid	GC/MS S			070829L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF Qual
Benzene	ND	5.0	1		o-Xylene			ND		Dr Quai
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	-ther (MTE	SE/	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	hol (TRA)) 	ND	5.0	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		1	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			ND	10	1
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:	iyi Ediler (1	AIVIL)	REC (%)	10 Control	1 <u>Qual</u>
Dibromofluoromethane	119	73-139			1,2-Dichloroeth	ane_d4		112	<u>Limits</u>	
Toluene-d8	104	90-108			1,4-Bromofluor			105	73-145 71-113	
S-29.5-DP2			07-08-	1992-5	08/27/07	Solid	GC/MS S	08/29/07	-	070829L01
Parameter	Result	RL	DF	Qual	Parameter			Result	DI	DE O
Benzene	ND	5.0	1							DF Qual
1.2-Dibromoethane	ND	5.0			o-Xylene			ND	5.0	1

Surrogates:	<u>REC (%)</u>	Control Limits	1	<u>Qual</u>	Surrogates:	nyi ⊑tner (I	AME)	REC (%)	10 Control	1	<u>Qual</u>
Dibromofluoromethane Toluene-d8	118 104	73-139 90-108			1,2-Dichloroetl			111 104	<u>Limits</u> 73-145 71-113		
S-10-DP3			07-08-	1992-6	08/28/07	Solid	GC/MS JJ	08/29/07	08/29	107 (070829L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	U	Qual
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTR	E)	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		·-)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	, ,		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Et)	ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met	nyi Ether (T	AME)	ND	10	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		,	REC (%)	Control Limits		Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroeth	nane-d4		104	73-145		

RL - Reporting Limit .

1,2-Dibromoethane

1,2-Dichloroethane

Ethylbenzene

Toluene

p/m-Xylene

Toluene-d8

100

ND

ND

ND

ND

ND

5.0

5.0

5.0

5.0

5.0

90-108

1

1,4-Bromofluorobenzene

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/29/07 07-08-1992 EPA 5030B EPA 8260B

ug/kg Page 3 of 4

Project: ExxonMobil 7-0238 / 229303X

Benzene										P	age 3 01 4
S-15-DP3	Client Sample Number						Matrix	Instrument			QC Batch ID
Benzene ND 5.0 1	S-15-DP3			07-08-	1992-7	08/28/07	Solid	GC/MS JJ			070829L01
Denzene ND 5.0 1	Parameter	Result	RL	DF	Qual	Parameter			Popult	Di I	DE 01
1,2-Dibromorethane	Benzene	To the second se									
1,2-Dichloroethane	1,2-Dibromoethane						C15 /84TD				1
Ethybenzene ND 5.0 1 Diisopropyl Ether (DIPE) ND 10 1 Tert-Amy-Methyl Ether (TAME) ND 5.0 1 Tert-Amy-Methyl Ether (TAME) ND 5.0 1 Tert-Amy-Methyl Ether (TAME) ND 5.0 1 Tert-Amy-Methyl Ether (TAME) ND 71-113 S-20-DP3 1,2-Dichloroethane			1				3E)			1	
Toluene ND 5.0 1 EthylButyl Ether (TBE) ND 10 1 1 properties (TBE) ND 10				1							1
ND 5.0 1 Tert-Amyf-Methyl Ether (TAME) ND 10 1 1 1 1 1 1 1 1	Toluene			- 1		Disopropyi Etr	ner (DIPE)				1
Surrogates: REC (% Control Limits Lim	p/m-Xvlene					Ethyl-t-Butyl E	ther (ETBE)			1
				1	01		hyi Ether (I				
1,2-Dichloroethane	<u></u>	INEC (70)			<u>Quai</u>	Surrogates:			<u>REC (%)</u>		<u>Qual</u>
Toluene-d8	Dibromofluoromethane	106				1.2 Diablasses			400		
	Toluene-d8									-	
Parameter Result RL DF Qual Parameter Result RL Qual Parameter Resul		100	30-100			1,4-Bromonuol	robenzene		100	71-113	
Senzene ND 5.0 1 O-Xylene ND 10 1 O-Xylene ND 10 1 O-Xylene ND 5.0 1 O-Xylene ND 10 O-Xylene ND 10 O-Xylene ND 10 O-Xylene ND 10 O-Xylene ND 5.0 1 O-Xylene ND 5.0	S-20-DP3			07-08-	1992-8	08/28/07	Solid	GC/MS JJ	08/29/07	08/29/07	070829L01
Senzene	<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	DI I	DE Ougl
1,2-Dibromoethane	Benzene	ND	5.0	1					_		
1,2-Dichloroethane	1,2-Dibromoethane	ND		1			Ether /MTD)E)			1
Ethylbenzene	1,2-Dichloroethane			1) <u> </u>			1
Toluene	Ethylbenzene			1					_		1
ND 5.0 1 Tert-Amyl-Methyl Ether (TAME) ND 10 1 1 1 1 1 1 1 1	Toluene			1			,				1
Surrogates: REC (%) Control Limits Lim	p/m-Xvlene			1							1
Limits L					O1		hyi Ether (I				1
107 73-139 1,2-Dichloroethane-d4 104 73-145 7	SUNTOGEROO.	NEC (76)			Qual	Surrogates:		ļ	REC (%)		<u>Qual</u>
S-25-DP3	Dibromofluoromethane	107				400:11					
S-25-DP3											
Result RL DF Qual Parameter Result Result Parameter Result Parameter Result Parameter Result Parameter Result Parameter Parameter Result Parameter Parameter Parameter Parameter Parameter Parameter Paramet		101	90-108			1,4-Bromofluor	obenzene		102	71-113	
Senzene ND 5.0 1 O-Xylene ND 10 1 O-Xylene ND 10 1 O-Xylene ND 10 1 O-Xylene O-Xylene ND 10 1 O-Xylene	S-25-DP3			07-08-	1992-9	08/28/07	Solid	GC/MS JJ	08/29/07	08/29/07	070829L01
Senzene	Parameter	Result	RL	DF	Qual	Parameter			Pacult	DI F	Outl
,2-Dibromoethane	Benzene	ND									
7.2-Dichloroethane	1,2-Dibromoethane			-			Ethor (MTD	E/			1
Strong	1,2-Dichloroethane							()			1
Toluene				•			, ,				1
o/m-Xylene ND 5.0 1 Tert-Amyl-Methyl Ether (ETBE) ND 10 1 Surrogates: REC (%) Control Qual Surrogates: REC (%) Control Qual Limits Dibromofluoromethane 105 73-139 1,2-Dichloroethane-d4 104 73-145	Toluene			•							1
Surrogates: REC (%) Control Limits Dibromofluoromethane 105 73-139 1,2-Dichloroethane-d4 104 73-145											1
Dibromofluoromethane 105 73-139 1,2-Dichloroethane-d4 104 73-145	,			1			nyi Ether (T.			10	1
Dibromofluoromethane 105 73-139 1,2-Dichloroethane-d4 104 73-145	ourrogates.	<u>KEC (%)</u>			Qual	Surrogates:		Ī	REC (%)	<u>Control</u>	<u>Qual</u>
Foluene-d8 104 73-145	Dibromofluoromothogo	405								<u>Limits</u>	
101 90-108 1,4-Bromofluorobenzene 102 71-113									104	73-145	
	i oluene-do	101	90-108			1,4-Bromofluor	obenzene		102	71-113	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/29/07 07-08-1992 EPA 5030B EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 4 of 4

			l:	ab Sample	Date			Date	Date	<u> </u>
Client Sample Number				Number	Collected	Matrix	Instrument	Prepared		QC Batch ID
S-29.5-DP3			07-08-	1992-10	08/28/07	Solid	GC/MS JJ	08/29/07	08/29/07	070829L01
Parameter	Result	RL	DF	Qual	Parameter			Popult	DI F)F 0 1
Benzene	ND	5.0	1		o-Xvlene			Result		<u>)F</u> <u>Qual</u>
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTDE	`	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		.)	ND	5.0	1
Ethylbenzene	ND	5.0	1		Diisopropyl Etl			ND	50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E			ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met	· -/	Mar \	ND	10	1
Surrogates:	REC (%)	Control	'	Qual	•	nyı ⊏ıner (TA	,	ND	10	1
	1100 (70)	Limits		<u>Quai</u>	Surrogates:			REC (%)	Control	<u>Qual</u>
Dibromofluoromethane	106	73-139			1,2-Dichloroet	hano d4		404	Limits	
Toluene-d8	99	90-108			1,4-Bromofluo			104 101	73-145 71-113	
Method Blank			099-10	-005-14,6	67 N/A	Solid	GC/MS S	08/29/07		070829L01
Parameter	Deside		D.F.							0.0020201
Benzene	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	F Qual
	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTBE)	ND	5.0	1
1,2-Dichloroethane Ethylbenzene	ND	5.0	1		Tert-Butyl Alco	ohol (TBA)		ND	50	1
,	ND	5.0	1		Diisopropyl Eth			ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E	ther (ETBE)		ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met	hyl Ether (TA	ME)	ND	10	i
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:		•	REC (%)	Control	Qual
Dibromofluoromethane	118	<u>Limits</u>			400:11				<u>Limits</u>	
Toluene-d8	104	73-139			1,2-Dichloroeth				73-145	
NAME OF THE OWNER OWNER OF THE OWNER	104	90-108			1,4-Bromofluoi	robenzene		104	71-113	
Method Blank			099-10	-005-14,6	68 N/A	Solid	GC/MS JJ	08/29/07	08/29/07	070829L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL D	F Qual
Benzene	ND	5.0	1		o-Xylene			ND		7.7
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTDE	١		5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco)	ND	5.0	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth				50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1
p/m-Xylene	ND	5.0	1				M=\			1
Surrogates:	REC (%)	Control	1	Qual	Tert-Amyl-Met	nyı ⊏tner (TA	,		10	1
	1120 (70)	Limits		Qual	Surrogates:		•	REC (%)	Control	Qual
Dibromofluoromethane	105	73-139			1.2-Dichloroeth	none d4		400	<u>Limits</u>	
Toluene-d8	98	90-108			1,4-Bromofluor				73-145	
		50-100			1,+-bioinoliuoi	operizerie		98	71-113	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

08/29/07 07-08-1992 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-25-DP3	Solid	GC 18	08/29/07	08/29/07	070829\$01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	73	70	48-114	3	0-23	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

08/29/07 07-08-1992 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-1903-3	Solid	GC 22	08/29/07	08/29/07	070829801

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	94	92	48-114	2	0-23	

RPD - Relative Percent Difference,

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/29/07 07-08-1992 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-20-DP3	Solid	GC 18	08/30/07	08/30/07	070830S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	84	85	48-114	1	0-23	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: 08/29/07 07-08-1992 EPA 5030B EPA 8260B

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-10.5-DP2	Solid	GC/MS S	08/29/07	08/29/07	070829801

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	102	105	79-115	2	0-13	
Carbon Tetrachloride	117	120	55-139	3	0-15	
Chlorobenzene	86	88	79-115	3	0-17	
1,2-Dibromoethane	86	90	70-130	4	0-30	
1,2-Dichlorobenzene	81	84	63-123	3	0-23	
1,1-Dichloroethene	113	115	69-123	2	0-16	
Ethylbenzene	87	89	70-130	3	0-30	
Toluene	104	107	79-115	3	0-15	
Trichloroethene	105	100	66-144	4	0-14	
Vinyl Chloride	105	104	60-126	1	0-14	
Methyl-t-Butyl Ether (MTBE)	101	120	68-128	17	0-14	4
Tert-Butyl Alcohol (TBA)	80	110	44-134	32	0-37	
Diisopropyl Ether (DIPE)	123	125	75-123	2	0-12	3
Ethyl-t-Butyl Ether (ETBE)	119	125	75-117	4	0-12	3
Tert-Amyl-Methyl Ether (TAME)	105	111	79-115	5	0-12	Ŭ
Ethanol	111	112	42-138	1	0-28	

Alluma_

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/29/07 07-08-1992 EPA 5030B EPA 8260B

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-29.5-DP3	Solid	GC/MS JJ	08/29/07	08/29/07	070829S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	80	89	79-115	12	0-13	
Carbon Tetrachloride	88	102	55-139	15	0-15	
Chlorobenzene	79	89	79-115	12	0-17	
1,2-Dibromoethane	81	93	70-130	14	0-30	
1,2-Dichlorobenzene	75	86	63-123	13	0-23	
1,1-Dichloroethene	78	87	69-123	11	0-16	
Ethylbenzene	81	91	70-130	12	0-30	
Toluene	82	93	79-115	13	0-15	
Trichloroethene	80	94	66-144	15	0-14	4
Vinyl Chloride	106	81	60-126	26	0-14	4
Methyl-t-Butyl Ether (MTBE)	81	90	68-128	11	0-14	
Tert-Butyl Alcohol (TBA)	96	95	44-134	0	0-37	
Diisopropyl Ether (DIPE)	85	99	75-123	15	0-12	4
Ethyl-t-Butyl Ether (ETBE)	89	99	75-117	11	0-12	7
Tert-Amyl-Methyl Ether (TAME)	83	93	79-115	11	0-12	
Ethanol	100	100	42-138	0	0-12	

Mulhan

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1992 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instru			Date Da repared Anal			LCS/LCSD Batcl Number	1
099-12-279-1,039	Solid	GC			/07	08/29/07		070829B01	
Parameter	<u>LCS %</u>		C LCSD %REC %I		<u>%RE</u>	EC CL RPD		RPD CL	Qualifiers
TPH as Gasoline	94	1	100		70	-124	7	0-18	

Mulum_

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1992 **EPA 5030B** EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instru	iment	Dat Prepa	3.5	Da Anal	57.70	LCS/LCSD Batch Number	1
099-12-279-1,037	Solid	GC	22	08/29	/07	08/29	0/07	070829B01	
<u>Parameter</u>	LCS	%REC	LÇSD 9	%REC	<u>%RE</u>	C CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	111	I	111		70	-124	0	0-18	

RPD - Relative Percent Difference,

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1992 **EPA 5030B** EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instr	Instrument		Date Prepared		te /zed	LCS/LCSD Batch Number	1
099-12-279-1,040	Solid	GC	18	08/30	/07	08/30	107	070830B01	
<u>Parameter</u>	<u>LCS </u>	%REC	LCSD	%REC	<u>%RE</u>	EC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	92		101		70	-124	9	0-18	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1992 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Bate Number	ch
099-10-005-14,667	Solid	GC/MS S	08/29/07	08/29/07		070829L01	
Parameter	LCS %	REC LCSD %	<u> «REC %F</u>	REC CL	RPD	RPD CL	Qualifiers
Benzene	106	106 106		34-114	0	0-7	
Carbon Tetrachloride	125	117	6	66-132	7	0-12	
Chlorobenzene	90	90		37-111	0	0-7	
1,2-Dibromoethane	89	89		30-120	0	0-20	
1,2-Dichlorobenzene	89	87		79-115	2	0-8	
1,1-Dichloroethene	116	114		73-121	2	0-12	
Ethylbenzene	91	90	8	30-120	1	0-20	
Toluene	108	108	7	78-114	0	0-7	
Trichloroethene	108	107	8	34-114	1	0-8	
Vinyl Chloride	105	101	6	3-129	4	0-15	
Methyl-t-Butyl Ether (MTBE)	104	108	7	77-125	4	0-11	
Tert-Butyl Alcohol (TBA)	84	95	4	17-137	12	0-27	
Diisopropyl Ether (DIPE)	127	124	7	76-130	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	124	123	7	76-124	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	112	114	8	32-118	1	0-11	
Ethanol	104	113	5	59-131	9	0-21	

RPD - Relative Percent Difference .

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1992 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Bate Number	ch
099-10-005-14,668	Solid	GC/MS JJ	08/29/07	08/2	9/07	070829L01	
<u>Parameter</u>	LCS %	REC LCSD 9	<u>6REC</u> 9	6REC CL	RPD	RPD CL	Qualifiers
Benzene	101	103		84-114	2	0-7	
Carbon Tetrachloride	119	118		66-132	1	0-12	
Chlorobenzene	101	102		87-111	1	0-7	
1,2-Dibromoethane	100	101		80-120	1	0-20	
1,2-Dichlorobenzene	98	98		79-115	0	0-8	
1,1-Dichloroethene	103	103		73-121	0	0-12	
Ethylbenzene	106	107		80-120	1	0-12	
Toluene	106	107		78-114	1	0-7	
Trichloroethene	106	110		84-114	3	0-7	
Vinyl Chloride	101	100		63-129	1	0-5 0-15	
Methyl-t-Butyl Ether (MTBE)	99	101		77-125	2		
Tert-Butyl Alcohol (TBA)	121	133		47-123		0-11	
Diisopropyl Ether (DIPE)	106	108			9	0-27	
Ethyl-t-Butyl Ether (ETBE)	107	110		76-130	1	0-8	
Tert-Amyl-Methyl Ether (TAME)	100	102		76-124	3	0-12	
Ethanol	129			82-118	2	0-11	
	129	127		59-131	1	0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-08-1992

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

CHAIN OF CUSTODY RECORD

DATE:

			PAGE:								1OF		1		-2									
	RATORY CLIENT:	Supply - Global Reme	diation				C	CLIENT PROJECT NAME / NUMBER:							T	P.O. N	.O.:	_	-		_			
ADDRI	ESS:		ulation					229303X / 7-0238							_									
C/O E RN1 N	Environmental Resolution North McDowell Blvd	utions, Inc.						PROJECT CONTACT:								QUOTE NO,:								
	luma, California 949							Paula Sime/ERI SAMPLER(S): (SIGNATURE)								_	LAB USE ONLY							
TEL: (707)	766-2000	FAX: (707) 789-0414		E-MAIL norcalla	bs@e	ri-us.co	_		1	let !	//	M	(1)	,					08-11				9	2
	AROUND TIME						7	***	_//	nn su		IN	v	-	LIEGT					enaudi	house	aniania	min in	enn:
S	SAME DAY X 24 HR AL REQUIREMENTS (ADDITIONAL	48HR 72 HR	5 🔲 5	DAYS [10 r	DAYS							1	(FQ	UESI	ED A	NAL.	YSIS	3					
		,								1		m									T			
	EDF report / Global ID:	T0600101343					-			82606	_	8260B												
	e Silica Gel Cleanup fo								ı de	8	8260B	 		6010B					- 1					
Set TBA reporting limit at or below 12 ug/L. Oxygenates: MTBE, ETBE, TAME, DIPE, TBA							4	88	\$		60	gers	260E							-1				
Lea	/genates: MTBE, ETB id Scavengers: 1,2-D	CA FOR					\$	8	1	8	tes	Scavengers	3y 8	d by										
LAB	**	FIELD POINT NAME	SAN	SAMPLING & In						ž Š	Je J	Sca	nol k	Lead										
ijse Only	SAMPLE ID	(separate from sample ID on EDF)	DATE	TIME	Mann	* **CON	TPHd by 8015B	TPHg by 8015B	Methanol by 88458	BTEX by 80215	Oxygenates by	Lead	Ethanol by 8260B	Total										
	5-10.5-DP2		8/27/0	10.30	Soil	-	-	X		X	X	X					\dashv	\dashv	7			\Box	7	
2	S-15-DP2		8/27	10:40	1			X		χ	X	\propto				\top		\dashv	\top	\top	\Box	一	\neg	
3 .	5-20-DP2		8/27	11:05	\prod			X		Х	X	X			\neg			\top	\top	\top	\vdash		7	
	5-25-DP2		8/27	11:30		\top		X			X	X		\neg	7	11	\neg	1	+	+	\forall	\neg	\dashv	
۶ .	5-29.5-DP2		8/27	11:45	\sqcap			X		<u>\(\)</u>	×	X		\neg			\neg	\forall	十	\top	H	\dashv	\dashv	
6	S-10-DP3		x128107	10:00	\Box		T	X		X	X	X				\top		7	\top	+	H	寸	\dashv	
	S-15-DP3		8/28	10:40	1			X		X	X	X	\neg			\top	\dashv	十	+	1	H	\dashv	_	
	s-20-D93		8/28	11:45	\sqcap		Т	X		X	X	X	\neg	T	\top	\top	\neg	\top	\top	\top	H	\dashv	\dashv	_
1 .	5-25-DP3		8/28	12:15	\Box	\Box		X			X	X		\dashv	\top	11	\forall	+	+	+	H	\dashv	+	-
0	S-29.5,-0.P3				\Box	1		X		-	X	X	\dashv	_		+-+	+	+	+	+	\vdash	十	+	\dashv
Relinqui	ished/by: (Signature)	i e			Rece	ved by:	(Signati	ure)	s .			1.					7	Date:	7	—	Time:	بات ا		-
Relinqui	Inquished by (Signature) Received by: (Si						(Signati	uro)					4				_ 2	Date: Time: 1434				_		
	1991	to (7500			1,000		Olgriate	JI 0 /				1/1	11	20	to			S	29/	02	Time:	930	5	
tellnqui	íshed by: (Signature)				Recei	ived by: (Signatu	ire)					1				1	Date:	-1/0	- 1	Time:			-
				7																- 7	2			

WORK ORDER #: 07 - 0 8 - 1 9 9 2

Cooler ______ of ____

SAMPLE RECEIPT FORM

CLIENT: ERD	DATE:	8/29/07						
TEMPERATURE - SAMPLES RECEIVED BY:								
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	°C Temperature	ORATORY (Other than Calscience Courier): °C Temperature blank °C IR thermometer Ambient temperature.						
°C Temperature blank.		Initial:						
CUSTODY SEAL INTACT:								
Sample(s): Cooler: No (Not In	ntact) :	Not Present:						
SAMPLE CONDITION:								
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.								
COMMENTS:								

August 31, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calsci

Calscience Work Order No.: 07-08-2076

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/30/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/30/07 07-08-2076 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

							ı	age 1 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-DP4		07-08-2076-1	08/29/07	Solid	GC 24	08/30/07	08/30/07	070830B01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	77	42-126						
S-14.5-DP4		07-08-2076-2	08/29/07	Solid	GC 24	08/30/07	08/30/07	070830B01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	76	42-126						
S-19.5-DP4		07-08-2076-3	08/29/07	Solid	GC 24	08/30/07	08/30/07	070830B01
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	77	42-126						
S-25.5-DP4		07-08-2076-4	08/29/07	Solid	GC 24	08/30/07	08/30/07	070830B01
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	77	42-126						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/30/07 07-08-2076 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 2

Client Sample Number		Lab Sample	Date	Matrix	Instrument	Date	Date	OC Datablin
S-29.5-DP4		Number 07-08-2076-5	08/29/07	Solid	GC 24	Prepared 08/30/07	08/30/07	QC Batch ID 070830B01
Parameter	Result	RL	<u>DF</u>	Qual	Units			
TPH as Gasoline	ND	0.50	1	Godi	mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	74	42-126						
Method Blank		099-12-279-1,042	N/A	Solid	GC 24	08/30/07	08/30/07	070830B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	78	42-126						

Whan_

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units:

08/30/07 07-08-2076 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

ug/kg

S-10-DP4 Parameter				Number	Collected	Matrix	Instrument	Prepared	Analyzed	4	C Batch ID
Parameter			07-08-2	2076-1	08/29/07	Solid	GC/MS W	08/30/07	08/30/07	0	70830L01
<u>r arameter</u>	Result	RL	DF	Qual	Parameter			Result	RL	DF	Ovel
Benzene	ND	5.0	1		o-Xvlene						Qual
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	ther (MTD)	-\	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alcoh		=)	ND 180	5.0	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	. ,			50 10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth	\ - · · · /		ND		1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth		ZME)	ND	10 10	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	yı Eulei (17	,			1	01
		Limits		<u>Quai</u>	ourrogates.			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	119	73-139			1,2-Dichloroeth	ane-d4		121	73-145		
Toluene-d8	99	90-108			1,4-Bromofluoro				71-113		
S-14.5-DP4			07-08-2	2076-2	08/29/07	Solid	GC/MS W	08/30/07	08/30/07	0.	70830L01
							COMIC II	00,00,01	00/00/01	_	0030101
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1	
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	ther (MTBI	≣)	660	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alcoh	nol (TBA)	•	1300	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	er (DIPE)		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth	ner (ETBE)		ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	yl Ether (TA	AME)		10	1	
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			REC (%)	Control		Qual
Dilama B		Limits							Limits		
Dibromofluoromethane	115	73-139			1,2-Dichloroetha			121	73-145		
Toluene-d8	101	90-108			1,4-Bromofluoro	benzene		91	71-113		
S-19.5-DP4			07-08-2	2076-3	08/29/07	Solid	GC/MS W	08/30/07	08/30/07	0	70830L01
Parameter	Result	RL	DF	Qual	Parameter			Danielt	Di.		0 1
Benzene	ND	5.0	1	<u>wuai</u>				Result		DF	Qual
1,2-Dibromoethane	ND	5.0	1		o-Xylene	the CLATER		ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Methyl-t-Butyl E		=)	ND	5.0	1	
Ethylbenzene	ND	5.0	1		Tert-Butyl Alcoh	` ,			50	1	
Toluene	ND	5.0	31		Diisopropyl Ethe				10	1	
p/m-Xvlene	ND	5.0	1		Ethyl-t-Butyl Eth				10	1	
<u>'</u>	REC (%)	5.0 Control	1	Ouel	Tert-Amyl-Meth	yı ∟tner (TA			10	1	
<u>Sanogaros.</u>	INEC (70)	Limits		Qual	Surrogates:		3	REC (%)	Control		<u>Qual</u>
Dibromofluoromethane	117	73-139			1,2-Dichloroetha	opo d4		101	<u>Limits</u>		
Toluene-d8	100	90-108			1,4-Bromofluoro				73-145		
	100	30-100			1,4-DIOIIIOIIUOFC	ppenzeně		92	71-113		

RL - Reporting Limit ,

DF - Dilution Factor

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/30/07 07-08-2076 EPA 5030B EPA 8260B

Page 2 of 2

ug/kg

Project.	ExxonMobil	7 0220	/ 220202V
riolect.		7-07.38	/ 229303X

Troject. Exxeminobil	7-02307 223	303X							P	age 2 of 2
Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-25.5-DP4			07-08-	2076-4	08/29/07	Solid	GC/MS W	08/30/07	08/30/07	070830L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL D	OF Qual
Benzene	ND	5.0	1		o-Xvlene			ND	_	
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether /MTE	RE/	ND	5.0 5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		,			1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth				50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E		1		10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met				10	1
Surrogates:	REC (%)	Control	'	Qual	Surrogates:	nyı ⊏üler(ı	,		10	1
	1120 (70)	Limits		Qual	Surrogates:			<u>REC (%)</u>	Control	Qual
Dibromofluoromethane	119	73-139			1,2-Dichloroetl	nano d4		122	<u>Limits</u>	
Toluene-d8	103	90-108			1,4-Bromofluo				73-145	
S-29.5-DP4		00-100	07.00	2070 5		Olec 19c e u	232942500	- All-Whileson	71-113	
0 20.0 01 7			07-08-	2076-5	08/29/07	Solid	GC/MS W	08/30/07	08/30/07	070830L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL D	OF Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTP	RE)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	bol (TBA)	,_,		5.0	1
Ethylbenzene	ND	5.0	1		Diisopropyl Ett				10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E	,	Y		10	1
p/m-Xylene	ND	5.0	<u>i</u>		Tert-Amyl-Met				-	1
Surrogates:	REC (%)	Control		Qual	Surrogates:	nyi Edici (i			10 Control	1 Qual
Dibromofficeroneth		<u>Limits</u>							Limits	QUAL
Dibromofluoromethane	115	73-139			1,2-Dichloroetl	nane-d4		121	73-145	
Toluene-d8	101	90-108			1,4-Bromofluo	robenzene		91	71-113	
Method Blank			099-10	-005-14,67	73 N/A	Solid	GC/MS W	08/30/07	08/30/07	070830L01
Doromator	5 "									470000201
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u> <u>C</u>	OF Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTB	E)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	hol (TBA)	•		50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth				10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E)		10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Met				10	1
Surrogates:	REC (%)	Control	,	Qual	Surrogates:	,. = (1	,		<u>Control</u>	Qual
Dibromofluoromethane	116	<u>Limits</u> 73-139			1.2 Diablesset			447	Limits	
Toluene-d8	101				1,2-Dichloroeth				73-145	
. 5.55110 40	101	90-108			1,4-Bromofluoi	ropenzene		93	71-113	

RL - Reporting Limit , 7440

DF - Dilution Factor

Qual - Qualifier

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/30/07 07-08-2076 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
S-10-DP4	Solid	GC 24	08/30/07	08/30/07	070830801

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	92	67	48-114	32	0-23	4

RPD - Relative Percent Difference .

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/30/07 07-08-2076 **EPA 5030B EPA 8260B**

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-2047-5	Solid	GC/MS W	08/30/07	08/30/07	070830S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	100	104	79-115	3	0-13	
Carbon Tetrachloride	100	105	55-139	6	0-15	
Chlorobenzene	97	99	79-115	2	0-17	
1,2-Dibromoethane	101	105	70-130	4	0-30	
1,2-Dichlorobenzene	94	98	63-123	4	0-23	
1,1-Dichloroethene	98	103	69-123	5	0-25	
Ethylbenzene	99	101	70-130	2	0-10	
Toluene	101	104	79-115	3	0-30	
Trichloroethene	102	112	66-144	9		
Vinyl Chloride	87	89	60-126		0-14	
Methyl-t-Butyl Ether (MTBE)	89	96	68-128	2 7	0-14	
Tert-Butyl Alcohol (TBA)	100	109	44-134	-	0-14	
Diisopropyl Ether (DIPE)	119	126		8	0-37	
Ethyl-t-Butyl Ether (ETBE)	106	113	75-123	6	0-12	3
Tert-Amyl-Methyl Ether (TAME)	103		75-117	6	0-12	
Ethanol	105	111	79-115	8	0-12	
	105	106	42-138	1	0-28	

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-2076 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy		LCS/LCSD Bate Number	h
099-12-279-1,042	Solid	GC 24	08/30/07	08/30	/07	070830B01	
<u>Parameter</u>	LCS	%REC LCSD	%REC 9	6REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	94	93	ł	70-124	1	0-18	

Mulhan_

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-2076 **EPA 5030B EPA 8260B**

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bate Number	ch
099-10-005-14,673	Solid	GC/MS W	08/30/07	08/3	0/07	070830L01	
<u>Parameter</u>	LCS %RE	C LCSD 9	<u>6REC 9</u>	6REC CL	RPD	RPD CL	Qualifiers
Benzene	102	101		84-114	1	0-7	
Carbon Tetrachloride	101	100		66-132	1	0-12	
Chlorobenzene	98	94		87-111	4	0-12	
1,2-Dibromoethane	99	100		80-120	1	0-7	
1,2-Dichlorobenzene	98	94		79-115	5	0-20	
1,1-Dichloroethene	99	95		73-113	4		
Ethylbenzene	100	96		80-120		0-12	
Toluene	103	100		78-114	4 2	0-20	
Trichloroethene	96	95		84-114	1	0-7	
Vinyl Chloride	90	90		63-129	-	0-8	
Methyl-t-Butyl Ether (MTBE)	86	90		77-125	0	0-15	
Tert-Butyl Alcohol (TBA)	96	100		47-125	4	0-11	
Diisopropyl Ether (DIPE)	119	120			4	0-27	
Ethyl-t-Butyl Ether (ETBE)	107	108		76-130	1	0-8	
Tert-Amyl-Methyl Ether (TAME)	107			76-124	1	0-12	
Ethanol		105		82-118	1	0-11	
	98	112		59-131	13	0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-08-2076

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432**

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD DATE: 8-29-1-07

	aburatories, inc.	TEL: (714) 895-5494 . FA	X: (714) 894	4-7501												PAG	E:		1		OF .		1	
	RATORY CLIENT:				- Contract of the Contract of	all the second	CL	IENT	ROJE	INAM	E/NO	MBER	-	_			-	- Contract of the Contract of	P.0	D. NO.;	1128		-	
ADDR	ESS:	Supply - Global Reme	diation			-	1 2	2293	03X	/ 7-0	238													
	nvironmental Resol								CONT			-					_		QL	JOTE N	10.:			
	North McDowell Blvd Iuma, California 949						L	aul	a Sir	ne/E	RI													
TEL:		FAX:		T E-MAIL			- R	MPLE!	?(s): (s 2 Stv	IGNATI	URE)							^	LA	1.AB USE ONLY 60 8-2076				
	766-2000 AROUND TIME	(707) 789-0414		norcalla	bs@eri-u	s.com	H	. DI	eff	enl	190	4-(avl	ھ	iped	Bu	Wha	ع	K(9 8	1 L	겓	의년	F[6]
	SAME DAY X 24 HR	☐ 48HR ☐ 72 HR	t <u></u> 5 D	AYS [] 10 DA	YS	SAMPLER(S); (SIGNATURE) R. WESTOND H. DIEFFENLACH Carlo Becausufflach REQUESTED ANALYSI																	
	AL REQUIREMENTS (ADDITIONAL	· ·												T		T								
	EDF report / Global ID:	T0600101343]	1	1	مه ا		8260B				1			1	П				
()	e Silica Gel Cleanup fo	or all TPHd analyses.							l	13	80 80 80	by 8		<u></u>		1	1					- 1		
	TBA reporting limit at						l	_	151	8	182	20	8	6010B				1						
Oxy	/genates: MTBE, ETB	E, TAME, DIPE, TBA					15	150	2 8	₹	S b)	l g	82	ا ۾		1			1					
	d Scavengers: 1,2-D			-	*	. 11-0	by 8015B	۾	<u> </u>	8	l age	Scavengers	J b	Lead		1		1		1				
LAB USE	SAMPLE ID	FIELD POINT NAME (separate from sample ID on		PLING	Manny	*Con	FFE	TPHg by 8015B	Methanol by 8015B	BTEX by 8021B \$260 B	Oxygenates by 8260B	Lead S	Ethanol by 8260B	Total L			1			1 1	- 1		-1	
ONLY	2	EDF)	DATE	TIME	+	74	E	ĮĖ,	ž	6	Õ	٢	Ti.	٩		\perp								
	S-10-DP4	DP4	8/29/0	10950	SOIL	1		X		X	\times	X								П			T	\Box
2.	5-14.5-DP4	DPY	8/29/07	10:00	Solu	1		X		X	X	X										\top		
	S-19.5-DP4	DP4	8/29/07	1130	Soil	1		×		X	X	X		\neg		\top	\top		П	\neg	\neg	\top	1	\top
h	S-25.5-DP4	DPY	8/29/07		SOIL	1		X		\times	X	X				T	1		\Box	7	十	1	+	+
5	S-29.5 DP4	DP4	8/29/4		SOIL	1		80		_	B	×		\neg	\neg	\top	1	\vdash	\Box	\exists	\dashv	\top	+	+
		1.01	,,,					Ť						_		T				\dashv	$^{+}$	\top	+	+
	- 311													7	_	T	-	Н		\dashv	十	\dashv	+	+
	***************************************									\neg				\dashv	_	+	\vdash	\vdash	\dashv	\dashv	+	-	+	+
						_	\vdash	_		_	\neg	-	\dashv	\dashv	+	+-	-		-	\dashv	+	+	┿	+
	1111	7							\dashv	-	\neg	\dashv	-	\dashv	-	╁	-	\vdash	-	+	\dashv	+	+	+
Relingu	shed by: (Signature)//		,		Receive	N by: (S	ignatu	re)								_	_	Date			-	Time:		Щ
Pallha	WUW ∠WW/ Işhə¢ by: (Signature)	· · · · · · · · · · · · · · · · · · ·			(6			>	\supseteq	•		E	1				8/2	29/0	7		14:	40	
_/.	1	TO GSC	>		Receive	6-pàr-(2	ighatu	ire) (/				1	A.	Ja	4		Date	100	107	T	Time; 08	-51	2
Relingo	ished by: (Signature)				Receive	d by: (S	ignatu	ге)					10	10				Date				Time:		

WORK ORDER #: 07 - 0 8 - 2 0 7 6

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT:ERT	DATE:8/30/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. °C Temperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	<i>V</i> 0
Sample(s): Cooler: No (Not I	ntact): Not Present: Initial:
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

August 27, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-08-1733

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/24/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soia

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc.

601 North McDowell Blvd.

Petaluma, CA 94954-2312

Analytical Report

Date Received: Work Order No:

Preparation:

Method:

08/24/07 07-08-1733 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

							Г	age 101
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-5.0-DP6		07-08-1733-1	08/22/07	Solid	GC 22	08/24/07	08/24/07	070824B01
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1.		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FiD	79	42-126						
S-5.0-DP5		07-08-1733-2	08/23/07	Solid	GC 22	08/24/07	08/24/07	070824B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	81	42-126						
Method Blank		099-12-279-1,022	N/A	Solid	GC 22	08/24/07	08/24/07	070824B01
<u>Parameter</u>	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	85	42-126						

RL - Reporting Limit

DF - Dilution Factor .

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/24/07 07-08-1733 EPA 5030B EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	, (C Batch ID
S-5.0-DP6				1733-1	08/22/07	Solid	GC/MS Q	Tropared		_	70824L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DE	Ougl
Benzene	ND	5.0	1		o-Xvlene					<u>DF</u>	<u>Qual</u>
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	Ethan / NATE)_\	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		SE)	8.1	5.0	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50	1	
Foluene	ND	5.0	1					ND	10	1	
o/m-Xylene	ND	5.0	1		Ethyl-t-Butyl Et	ner (E i BE	.)	ND	10	1	
Surrogates:	<u>REC (%)</u>	Control		Qual	Tert-Arnyl-Meth Surrogates:	ıyı ⊑tner (ı		ND	10	1	
	1120 (70)	Limits		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
Dibromofluoromethane	107	73-139			1,2-Dichloroeth	opo d4		440	Limits		
Toluene-d8	97	90-108			1,4-Bromofluor			110 84	73-145		
S-5.0-DP5		50 100	07-08-	1733-2	08/23/07	Solid	CCIME O		71-113		
And the State of t			07-00-	1700-2	00/23/07	30110	GC/MS Q	08/24/07	08/24/07	0	70824L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1	
,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	Ether (MTE	BE)	6.6	5.0	1	
,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		,	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	er (DIPE)		ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Et	her (ETBE)	ND	10	1	
/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			ND	10	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	,		REC (%)	Control	'	Qual
50 6 0		<u>Limits</u>						1.00 (70)	Limits		GUE
Dibromofluoromethane	111	73-139			1,2-Dichloroeth	ane-d4		115	73-145		
Toluene-d8	96	90-108			1,4-Bromofluor	obenzene		85	71-113		
Method Blank			099-10	-005-14,6	55 N/A	Solid	GC/MS Q	08/24/07	08/24/07	0	70824L01
Parameter	Result	RL	DF	Qual	Parameter			D. "	ь.		
Benzene	ND	5.0	1	<u>Studi</u>	<u>Parameter</u>			Result		DF	<u>Qual</u>
.2-Dibromoethane	ND	5.0			o-Xylene	(* e	· - \	ND	5.0	1	
,2-Dichloroethane	ND	5.0 5.0	1		Methyl-t-Butyl B	•	s ∟)	ND	5.0	1	
Ethylbenzene	ND	5.0	1		Tert-Butyl Alcol			ND	50	1	
oluene	ND	5.0	1		Diisopropyl Eth				10	1	
/m-Xylene	ND	5.0	1		Ethyl-t-Butyl Et				10	1	
Surrogates:	REC (%)		1	01	Tert-Amyl-Meth	ly≀ Ether (T	,		10	1	
	KLC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	105	73-139			1,2-Dichloroeth	ane-d4		105	73-145		
oluene-d8	96	90-108			1,4-Bromofluor				73-145 71-113		
					., . = . 5 . 10 11 40 11	2201120110		34	11-113		

RL - Reporting Limit

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

TPH as Gasoline

Date Received: Work Order No: Preparation: Method:

08/24/07 07-08-1733 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	3	Date Analyzed	MS/MSD Batch Number
07-08-1651-3	Solid	GC 22	08/24/07		08/24/07	070824S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers

56

48-114

2

0-23

57

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/24/07 07-08-1733 **EPA 5030B EPA 8260B**

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-1672-3	Solid	GC/MS Q	08/24/07	08/24/07	070824\$01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Acetone	125	126	70-130	1	0-20	
Benzene	116	100	78-114	15	0-14	3,4
Bromobenzene	121	106	70-130	13	0-20	5,4
Bromochloromethane	128	113	70-130	12	0-20	
Bromodichloromethane	136	118	70-130	14	0-20	3
Bromoform	134	117	70-130	13	0-20	3
Bromomethane	104	115	70-130	10	0-20	
2-Butanone	118	104	70-130	12	0-20	
n-Butylbenzene	103	94	70-130	10	0-20	
sec-Butylbenzene	112	99	70-130	12	0-20	
tert-Butylbenzene	122	105	70-130	14	0-20	
Carbon Disulfide	116	103	70-130	12	0-20	
Carbon Tetrachloride	123	108	48-138	13	0-20	
Chlorobenzene	120	105	77-107	14	0-17	3
Chioroethane	109	116	70-130	6	0-20	7.0
Chloroform	123	110	70-130	11	0-20	
Chloromethane	104	113	70-130	8	0-20	
2-Chlorotoluene	112	103	70-130	8	0-20	
4-Chlorotoluene	125	108	70-130	15	0-20	
Dibromochloromethane	132	117	70-130	12	0-20	3
1,2-Dibromo-3-Chloropropane	142	114	70-130	22	0-20	3,4
1,2-Dibromoethane	134	117	70-130	14	0-20	3
Dibromomethane	131	117	70-130	11	0-20	3
1,2-Dichlorobenzene	127	106	62-110	18	0-25	3
1,3-Dichlorobenzene	122	104	70-130	16	0-20	Ü
1,4-Dichlorobenzene	119	103	70-130	15	0-20	
Dichlorodifluoromethane	101	106	70-130	5	0-20	
1,1-Dichloroethane	114	101	70-130	12	0-20	
1,2-Dichloroethane	128	112	70-130	13	0-20	
1,1-Dichloroethene	117	104	73-127	12	0-20	
c-1,2-Dichloroethene	123	108	70-130	13	0-21	
t-1,2-Dichloroethene	119	105	70-130	13	0-20	
1,2-Dichloropropane	121	103	70-130	15	0-20	
		. 50	70 700	10	0-20	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/24/07 07-08-1733 **EPA 5030B EPA 8260B**

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-08-1672-3	Solid	GC/MS Q	08/24/07		08/24/07	070824S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
1,3-Dichloropropane	129	112	70-130	14	0-20	
2,2-Dichloropropane	144	128	70-130	12	0-20	3
1,1-Dichloropropene	107	96	70-130	11	0-20	M
c-1,3-Dichloropropene	134	113	70-130	17	0-20	3
t-1,3-Dichloropropene	148	129	70-130	14	0-20	3
Ethylbenzene	120	107	70-130	11	0-20	Ü
2-Hexanone	124	110	70-130	12	0-20	
Isopropylbenzene	116	105	70-130	10	0-20	
p-Isopropyltoluene	112	99	70-130	12	0-20	
Methylene Chloride	118	106	70-130	11	0-20	
4-Methyl-2-Pentanone	128	110	70-130	15	0-20	
Naphthalene	118	99	70-130	18	0-20	
n-Propylbenzene	110	101	70-130	8	0-20	
Styrene	125	114	70-130	10	0-20	
1,1,1,2-Tetrachloroethane	131	115	70-130	13	0-20	3
1,1,2,2-Tetrachloroethane	128	112	70-130	13	0-20	- 2
Tetrachloroethene	115	103	70-130	11	0-20	
Toluene	121	104	74-116	15	0-16	3
1,2,3-Trichlorobenzene	100	86	70-130	15	0-20	
1,2,4-Trichlorobenzene	100	86	70-130	15	0-20	
1,1,1-Trichloroethane	124	111	70-130	11	0-20	
1,1,2-Trichloroethane	127	114	70-130	11	0-20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	120	108	70-130	11	0-20	
Trichloroethene	113	97	74-122	14	0-17	
Trichlorofluoromethane	96	99	70-130	3	0-20	
1,2,3-Trichloropropane	131	113	70-130	15	0-20	3
1,2,4-Trimethylbenzene	125	109	70-130	13	0-20	
1,3,5-Trimethylbenzene	110	103	70-130	7	0-20	
Vinyl Chloride	102	107	67-121	4	0-23	
p/m-Xylene	121	109	70-130	10	0-20	
o-Xylene	121	110	70-130	9	0-20	
Methyl-t-Butyl Ether (MTBE)	130	115	69-123	12	0-20	3
•			00 120	12	0-10	3

RPD - Relative Percent Difference,

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1733 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Batc Number	h
099-12-279-1,022	Solid	GC 22	08/24/07	08/24	H07	070824B01	
Parameter	LCS %	4REC LCSD	%REC 9	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	117	107	7	70-124	9	0-18	

RPD - Relative Percent Difference ,

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No:

Preparation:

Method:

N/A 07-08-1733

EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	ch
099-10-005-14,655	Solid	GC/MS Q	08/24/07	08/2	4/07	070824L01	
<u>Parameter</u>	LCS %	REC LCSD	%REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	93	94		84-114	1	0-7	
Carbon Tetrachloride	97	101		66-132	4	0-12	
Chlorobenzene	97	101		87-111	4	0-7	
1,2-Dibromoethane	96	99		80-120	4	0-20	
1,2-Dichlorobenzene	100	101		79-115	1	0-8	
1,1-Dichloroethene	97	100		73-121	3	0-12	
Ethylbenzene	102	106		80-120	4	0-20	
Toluene	99	101		78-114	2	0-7	
Trichloroethene	94	95		84-114	1	0-8	
Vinyl Chloride	104	103		63-129	1	0-15	
Methyl-t-Butyl Ether (MTBE)	88	89		77-125	2	0-11	
Tert-Butyl Alcohol (TBA)	94	91		47-137	4	0-27	
Diisopropyl Ether (DIPE)	91	93		76-130	3	0-8	
Ethyl-t-Butyl Ether (ETBE)	95	99		76-124	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	100	102		82-118	2	0-11	
Ethanol	93	87		59-131	8	0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-08-1733

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

CHAIN OF CUSTODY RECORD

DATE:

•		TEL: (714) 895-5494 . FA	K: (714) 894	-7501												PA	AGE:		_	1		OF	_		1	
	RATORY CLIENT:				- May 2011		CL	IENT P	ROJEC	INAN	E/NU	MBER:	_			-			-	P.0	. NO.:	_			_	_
ADDR	ESS:	Supply - Global Reme	diation				2	293	ОЗХ	/ 7-0	238															
	nvironmental Resolu							OJECT												QU	OTE I	VO.:				
	North McDowell Blvd Iuma, California 949						SA	MPLER	(S): (S	ne/E	IRI URE)	Ч	200	bev.	اسر	No.	0	G	2	LAI	र ।।वह	ONL'	Yalli li			
TEL:	766-2000	FAX: (707) 789-0414		E-MAIL norcallat			1 1	eid	i D	ief	fel	nha	ch.	-(a	w Le	_				0	3] [5	31-1	7	7	2	3
	AROUND TIME	1(101) 109-0414		Horcanac	istaten-u	is.com	\vdash						-11-16-35	No.					400	*******	nillani	nidll.	necession		de la	
	SAME DAY X 24 HR	☐ 48HR ☐ 72 HR	. □5 D.	AYS [] 10 DA	AYS							F	REQ	UES	TEC	AN C	IAL	YSI	S						
SPECI	IAL REQUIREMENTS (ADDITIONAL	L COSTS MAY APPLY)					Г					m														
Send	EDF report / Global ID:	T0600101343								3		8260B														
	e Silica Gel Cleanup fo	or all TPHd analyses.							يو ا	82608	909 1909	P P		8												
	TBA reporting limit at						l m	l is	125	9	28	gers	909	601												
	ygenates: MTBE, ETB ad Scavengers: 1,2-D						TPHd by 8015B	TPHg by 8015B	Methanol by 8015B	BTEX by 80215	Oxygenates by 8260B	Lead Scavengers by	Ethanol by 8260B	Lead by 6010B		- 1	- I								l i	
Hasi		FIELD POINT NAME	SAME	PLING		I.e.	흏	g by	ano	ě Š)ena	<u>S</u>	20	Lea		- 1										
USE ONLY	SAMPLE ID	(separate from sample ID on EDF)	DATE	TIME	Maltit.	*Con	Ĕ	Ŧ	Met	18	ő	Lead	Etha	Total										1		
	5-5.0-096	DP6	8-97-0	F 1130	Soil	T		×		×	-	×				7	7	\neg								
	5-5.0-0P5	DP5	8-23-07	- 11ao	soil	1		X		×	×	X		\Box	一	寸	7	7	一	П						
	9,377													\neg	一	\dashv	_	\dashv	\neg							
							_				_		-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\neg		\neg	-	\dashv	\dashv	_
					-	┢──	-		_	_	_	_		\dashv	-	\dashv	-	-	\dashv	\dashv	=	\dashv	-	=		
						<u> </u>	-		_	-	_	_		-	-+	\dashv	+	-	-	_			-		\dashv	_
						_			_						_	\dashv	\dashv	4	_	\dashv	_	\dashv				
														_	_	4	4									
																									i	
							П	1										П	\Box							
Relinqu	uished by: (Signature)	i C Qe.			Receive	ed by (S	signati	ure)/										寸	Date:	73	<u>~</u>	$\overline{\mathbf{J}}$	Time	33	٣	
Reliniu	ulighed by: (Signature)				Reseive	1 66 CS	Igriati	ure)	>	-		4						_	Date	23			Time		9	
		70 (>	>O	0	3		\bigcirc	4	6	m	γ	0		\mathcal{L}	20	ر '	1	k	R	32	40	り	/		20)
Relinqu	hished by: (Signature)				Receive	ed by: (S	Signatu	ure)											Date:				Time			

work order #: 07 - 2 2 - 7 3 3

Cooler _____ of __/_

SAMPLE RECEIPT FORM

CLIENT: EVVan mabil	DATE: 08-24.07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
	ntact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

September 07, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-09-0210

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/6/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Soin

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/06/07 07-09-0210 EPA 3050B EPA 6010B

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
SP-1 (Composite)		07-09-0210-6	09/05/07	Solid	ICP 5300	09/06/07	09/06/07	070906L06
<u>Parameter</u>	<u>R</u> esult	<u>RL</u>	DF	Qual	<u>Units</u>			
_ead	33.7	0.500	1		mg/kg			
Method Blank		097-01-002-9,785	N/A	Solid	ICP 5300	09/06/07	09/06/07	070906L06
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Lead	ND	0.500	1		mg/kg			

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/06/07 07-09-0210 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

Troject. Exxoniviodii 7-023	0 / 2293037							age 1 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-DP5		07-09-0210-1	09/05/07	Solid	GC 18	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	91	42-126						
S-14.5-DP5		07-09-0210-2	09/05/07	Solid	GC 18	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	90	42-126						
S-20-DP5		07-09-0210-3	09/05/07	Solid	GC 18	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	91	42-126						
S-25-DP5		07-09-0210-4	09/05/07	Solid	GC 18	09/06/07	09/06/07	070906B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>		-	
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofiuorobenzene - FID	92	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/06/07 07-09-0210 **EPA 5030B** EPA 8015B (M)

Toject. Exxoniviodii 7-0238 / 2	293U3X						P	age 2 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-29.5-DP5		07-09-0210-5	09/05/07	Solid	GC 18	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	92	42-126						
SP-1 (Composite)		07-09-0210-6	09/05/07	Solid	GC 18	09/06/07	09/06/07	070906B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	92	42-126						
Method Blank		099-12-279-1,060	N/A	Solid	GC 18	09/06/07	09/06/07	070906B01
Parameter =	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual	- 0			
1,4-Bromofluorobenzene - FID	91	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/06/07 07-09-0210 EPA 5030B EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 3

Client Sample Number				ab Sample		Matrix	Instrument	Date	Date	QC Batch ID
S-10-DP5				Number 0210-1	O9/05/07			· · · · · · · · · · · · · · · · · · ·		
			07-09-	0210-1	09/05/07	Solid	GC/MS W	09/06/07	09/06/07	070906L01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Parameter</u>			Result	RL I	OF Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	ther (MTP	RE)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		<i></i> /	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		١	ND	10	•
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meti			ND	10	1
Surrogates:	REC (%)	Control		Qual	Surrogates:	iyi Later (1	,	REC (%)	Control	
		Limits		444	Ourrogates.			NEC (70)	Limits	<u>Qual</u>
Dibromofluoromethane	111	73-139			1,2-Dichloroeth	ane-d4		112	73-145	
Toluene-d8	100	90-108			1,4-Bromofluor			91	71-113	
S-14.5-DP5			07-09-	0210-2	09/05/07	Solid	GC/MS W	09/06/07		070906L01
Parameter	Daniel	DI	DE		_					
	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL I	<u>OF</u> Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	Ether (MTB	BE)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	hol (TBA)		ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	er (DIPE)		ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et)	ND	10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	10	1
Surrogates:	REC (%)	Control		Qual	Surrogates:	,		REC (%)	Control	<u>Qual</u>
Dibromofluoromethane	113	<u>Limits</u> 73-139			4.0 Diables at	1.4			<u>Limits</u>	
Foluene-d8	100	90-108			1,2-Dichloroeth			117	73-145	
S-20-DP5	100	90-106			1,4-Bromofluor			91	71-113	
3-20-DP5			07-09-	0210-3	09/05/07	Solid	GC/MS W	09/06/07	09/06/07	070906L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL [OF Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	
,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	ther /MTD	·E\			1
,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		'L <i>)</i>	7.8 N D	5.0	7
Ethylbenzene	ND	5.0	1		Diisopropyl Eth				50	1
Foluene	ND	5.0	1				`		10	7
/m-Xylene	ND	5.0	1		Ethyl-t-Butyl Et				10	1
Surrogates:	REC (%)		1	0	Tert-Amyl-Meth	iyi Ether (T	,		10	1
	<u>INEC (%)</u>	Control Limits		Qual	Surrogates:		<u> </u>	REC (%)	Control Limits	<u>Qual</u>
Dibromofluoromethane	120	73-139			400' 11 "					
on or nondoron et lane	120	73-139			1,2-Dichloroeth	ane_d4		121	73-145	

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/06/07 07-09-0210 EPA 5030B EPA 8260B ug/kg

Page 2 of 3

Project: ExxonMobil 7-0238 / 229303X

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date		C Batch ID
S-25-DP5				0210-4	09/05/07	Solid	GC/MS W	09/06/07		_	70906L01
Parameter	Result	RL	DE	Qual	Parameter			Danish			
Benzene	ND	5.0	1	<u>QQQI</u>	o-Xvlene			Result		<u>DF</u>	<u>Qual</u>
1,2-Dibromoethane	ND	5.0	1			E45 /84ED	-\	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Methyl-t-Butyl		L)	ND	5.0	1	
Ethylbenzene	ND	5.0			Tert-Butyl Alco			ND	50	1	
Toluene	ND		1		Diisopropyl Eth			ND	10	1	
o/m-Xvlene	ND	5.0	1		Ethyl-t-Butyl E			ND	10	1	
Surrogates:		5.0	1	<u>.</u>	Tert-Amyl-Met	hyl Ether (T	,	ND	10	1	
Surjugales.	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		Qual
Dibromofluoromethane	119	73-139			1,2-Dichloroeth	nane-d4		125	<u>Limits</u> 73-145		
Toluene-d8	101	90-108			1,4-Bromofluoi	obenzene		92	71-113		
S-29.5-DP5			07-09-	0210-5	09/05/07	Solid	GC/MS W	09/06/07	09/06/07	7 0	70906L01
Parameter	Result	RL	DF	Qual	Parameter			Doguit	Di	D.E.	0 1
Benzene	ND	5.0	1	<u>aua</u>	o-Xvlene			Result		<u>DF</u>	<u>Qual</u>
1,2-Dibromoethane	ND	5.0	1			T45 /84TD1	- \	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Methyl-t-Butyl		=)	ND	5.0	1	
Ethylbenzene	ND	5.0	1		Tert-Butyl Alco	. ,		ND	50	1	
Toluene	ND	5.0	1		Diisopropyl Eth			ND	10	1	
o/m-Xylene	ND	5.0	- 25		Ethyl-t-Butyl Et				10	1	
Surrogates:	REC (%)		1	0 1	Tert-Amyl-Met	nyl Ether (17		ND	10	1	
<u>ourrogatos.</u>	KEC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control		Qual
Dibromofluoromethane	117	73-139			1.2 Diableseath			40.4	<u>Limits</u>		
Toluene-d8	99	90-108			1,2-Dichloroeth				73-145		
		90-100	LEWIS COSTS		1,4-Bromofluor	obenzene		91	71-113		
SP-1 (Composite)			07-09-	0210-6	09/05/07	Solid	GC/MS W	09/06/07	09/06/07	0	70906L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	1	
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl I	Ether (MTRI	Ε)	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		-,	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meti				10	1	
Surrogates:	REC (%)	Control	•	Qual	Surrogates:	., (1)	,	REC (%)	Control		Qual
		Limits						1/0/	Limits		<u>wuai</u>
									CHILLIA .		
Dibromofluoromethane Foluene-d8	112	73-139			1,2-Dichloroeth	nane-d4		113	73-145		

RL - Reporting Limit ,

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 09/06/07 07-09-0210 EPA 5030B EPA 8260B

> ug/kg Page 3 of 3

											,
Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyz		QC Batch ID
Method Blank			099-10	-005-14,71	1 N/A	Solid	GC/MS W	09/06/07			070906L01
<u>Parameter</u>	<u>Result</u>	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1	<u> </u>
,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ether (MTBE	Ξ)	ND	5.0	1	
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	ohol (TBA)	,	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Etl	her (DIPE)		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl E			ND	10	4	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Met		ME	ND	10	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:	, (, ,		REC (%)	<u>Control</u>		Qual
Dibromofluoromethane	117	<u>Limits</u> 73-139			1,2-Dichloroet	hane-d4		118	<u>Limits</u> 73-145		
Toluene-d8	98	90-108			1,4-Bromofluo	robenzene		92	71-113		

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/06/07 07-09-0210 **EPA 3050B EPA 6010B**

d Number	Analyzed	Prepared	Instrument	Matrix	Quality Control Sample ID
7 070906806	09/06/07	09/06/07	ICP 5300	Solid	07-09-0195-1
,	09/06/07	09/06/07	ICP 5300	Solid	07-09-0195-1

Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Lead	82	82	75-125	0	0-20	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

09/06/07 07-09-0210 **EPA 5030B**

Method:

EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-09-0172-5	Solid	GC 18	09/06/07	09/06/07	070906S01

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	101	97	48-114	4	0-23	

RPD - Relative Percent Difference ,

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/06/07 07-09-0210 **EPA 5030B EPA 8260B**

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-14.5-DP5	Solid	GC/MS W	09/06/07		09/06/07	070906S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	84	100	79-115	18	0-13	4
Carbon Tetrachloride	83	99	55-139	17	0-15	4

						-
Benzene	84	100	79-115	18	0-13	4
Carbon Tetrachloride	83	99	55-139	17	0-15	4
Chlorobenzene	83	93	79-115	11	0-17	=75
1,2-Dibromoethane	85	95	70-130	12	0-30	
1,2-Dichlorobenzene	80	93	63-123	15	0-23	
1,1-Dichloroethene	83	97	69-123	16	0-16	
Ethylbenzene	82	96	70-130	15	0-30	
Toluene	84	101	79-115	18	0-15	4
Trichloroethene	81	96	66-144	17	0-14	4
Vinyl Chloride	91	78	60-126	15	0-14	4
Methyl-t-Butyl Ether (MTBE)	73	77	68-128	5	0-14	
Tert-Butyl Alcohol (TBA)	79	79	44-134	0	0-37	
Diisopropyl Ether (DIPE)	100	113	75-123	12	0-12	
Ethyl-t-Butyl Ether (ETBE)	90	96	75-117	7	0-12	
Tert-Amyl-Methyl Ether (TAME)	86	99	79-115	15	0-12	4
Ethanol	79	104	42-138	27	0-28	D,

C alscience

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-09-0210 EPA 3050B EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LC	CS Batch Number
097-01-002-9,785	Solid	ICP 5300	09/06/07	070906-I-06		070906L06
<u>Parameter</u> Lead		Conc Added 25.0	Conc Recovered 26.7	LCS %Rec	%Rec CL 80-120	Qualifiers

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-09-0210 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	L	CS Batch Number
099-12-279-1,060	Solid	GC 18	09/06/07	004F0401		070906B01
Parameter TPH as Gasoline		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
IPH as Gasoline		10.0	12.4	124	70-124	

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

Work Order No:

Preparation:

Method:

N/A

07-09-0210

EPA 5030B

EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bate Number	ch
099-10-005-14,711	Solid	GC/MS W	09/06/07	09/0	6/07	070906L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	6REC CL	RPD	RPD CL	Qualifiers
Benzene	107	104		84-114	3	0-7	
Carbon Tetrachloride	108	105		66-132	3	0-12	
Chlorobenzene	104	102		87-111	3	0-7	
1,2-Dibromoethane	107	107		80-120	0	0-20	
1,2-Dichlorobenzene	105	103		79-115	2	0-8	
1,1-Dichloroethene	104	104		73-121	1	0-12	
Ethylbenzene	107	105		80-120	2	0-20	
Toluene	108	105		78-114	2	0-7	
Trichloroethene	101	101		84-114	1	0-8	
Vinyl Chloride	91	84		63-129	8	0-15	
Methyl-t-Butyl Ether (MTBE)	88	94		77-125	6	0-11	
Tert-Butyl Alcohol (TBA)	103	115		47-137	11	0-27	
Diisopropyl Ether (DIPE)	118	116		76-130	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	106	103		76-124	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	103		82-118	0	0-11	
Ethanol	108	115		59-131	5	0-21	

Glossary of Terms and Qualifiers

hel c

Work Order Number: 07-09-0210

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
ı	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432**

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

1 OF 1

PAGE:

	RATORY CLIENT:						C	JENTP	ROJE	TNAN	E/NC	MBER.	-	_					P.C	D. NO.:	_	-	-		_
Exxon Mobil Refining & Supply - Global Remediation ADDRESS:								229303X / 7-0238											4568212427						
c/o Environmental Resolutions, Inc.							PR	PROJECT CONTACT:											QUOTE NO.:						
601 North McDowell Blvd. Petaluma, California 94954								Paula Sime/ERI																	
TEL: FAX: F-MAII							-1	SAMPLER(S): (SIGNATURE)												LABUSE ON IX					
(707) 766-2000 (707) 789-0414 norcallabs@eri-us						Js.com	he	Rebekah Westrup Mulichal Athlulo									09-0210								
TURNAROUND TIME								REQUESTED ANALYSIS												111111111					
SAME DAY X 24 HR 48HR 72 HR 5 DAYS 10 DAYS																									
	EDF report / Global ID:											g										П			
SPECI	AL INSTRUCTIONS	10000101343	Composi	مط			1	1		8	_	8260B				- 1	1	1				1 1			
		or all TPHd analyses.	5-5P1+		S5P4				g	13	1 20	室		6010B		4		1							
	TBA reporting limit at		5 -1 .	into	- 0.		g	1 20	80.1	2	, y	gers	808	601							1 1	1 1			
	/genates: MTBE, ETE id Scavengers: 1,2-D	BE, TAME, DIPE, TBA		59-1			8	801	8	8	tes	Scavengers	8	d by				1				1 1			
LAB		FIELD POINT NAME	SAME	PLING	T	Ι.	À	d y	ano	ğ	ena	Sca	5	Lead			ı								
USE	SAMPLE ID	(separate from sample ID on EDF)	DATE	TIME	Month.	*Cont	TPHd by 8015B	TPHg by 8015B	Methanol by 8015B	BTEX by 80218 8260 &	Oxygenates by 8260B	Lead	Ethanol by 8260B	Total	- 1			1							
	S-10-DP5	DP5	9/5/07	10:20	5	1	Т	X		X	X	X			一	1	1						7	\dashv	
l	S-14.5-DRS	DP5	1	10:50				X		X	X	Ż				+	1	\vdash			\Box		\dashv	\neg	
3	S-20-DPS	DP5		11:25				X		X	X	X				\top	T	\vdash			\Box		+	\dashv	
4	S-25-DPS	DP5		11:35		\Box		X		X	X	X						\vdash				\dashv	十	7	
\mathcal{S}_{\parallel}	5-29.5-DP5	DP5		n:55		V		X		X	\times	X				\top	T				\Box	\exists	\dashv	寸	\neg
6	S-(SPI SPI) SP-I	SP	\(13:10	سلر	4		X		X	X	X		X									\neg	7	\neg
																1								\neg	
			J.													\top	1			\neg	\neg	\dashv	十	\dashv	\neg
								\neg		\neg		\neg	\dashv	\dashv	_	+	\vdash	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv
								\dashv	\dashv	-		-	-	\dashv		+-	<u> </u>		_	-	_	_	_	4	_
Relinou	ished by: (Algnature)				2	16.60		_																	_
Recinquistred by: (Signature) Received by:						doy 2	ugnatu									Date									
Relinquished by (Signature) Received R (Si						ignatu	gnature)/								Data	-5-07 14:30									
70600							\leq	18	1	1	1	- 6	m	n	0	Co	2 1	0	96	ZeO) 1030					
Relinquishad by: (Signature)						d by: (S	ignatu	gnature) Date: Time:									┪								

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: EXYON mab, 1	DATE: 09.06.07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank ° C IR thermometer Ambient temperature.
	ilidal
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Ir	ntact) : Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

September 04, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-08-2159

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/31/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Ceill & e Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/31/07 07-08-2159 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

	22000071							age 1 of 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-10-DP6		07-08-2159-1	08/30/07	Solid	GC 4	08/31/07	08/31/07	070831B01
<u>Parameter</u>	Result	RL	<u>D</u> F	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	108	42-126						
S-14.5-DP6		07-08-2159-2	08/30/07	Solid	GC 11	08/31/07	08/31/07	070831B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	66	42-126						
S-19.5-DP6		07-08-2159-3	08/30/07	Solid	GC 11	08/31/07	08/31/07	070831B01
<u>Parameter</u>	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	68	42-126						
S-25-DP6		07-08-2159-4	08/30/07	Solid	GC 4	08/31/07	08/31/07	070831B01
Parameter_	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual	3/19			
,4-Bromofluorobenzene - FID	120	42-126		Security				

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/31/07 07-08-2159 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 2

								age 2 01 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-29.5-DP6		07-08-2159-5	08/30/07	Solid	GC 4	08/31/07	08/31/07	070831B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	127	42-126		2				
Method Blank		099-12-279-1,045	N/A	Solid	GC 4	08/31/07	08/31/07	070831B01
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	105	42-126						
Method Blank		099-12-279-1,046	N/A	Solid	GC 11	08/31/07	08/31/07	070831B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
,4-Bromofluorobenzene - FID	65	42-126						

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

08/31/07 07-08-2159

Method: Units: EPA 5030B EPA 8260B ug/kg

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

			_							ago 1 01 L
Client Sample Number			L	ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date d Analyzed	QC Batch ID
S-10-DP6			07-08-	-2159-1	08/30/07	Solid	GC/MS Z	08/31/0	7 08/31/07	070831L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Decult	DI	DE 0 1
Benzene	ND	5.0	1	4001	o-Xvlene			Result		DF Qual
1,2-Dibromoethane	ND	5.0	1			Cthes (NATO	_ \	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Methyl-t-Butyl Tert-Butyl Alco	Eurier (IVI I B	E)	ND	5.0	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			540	50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met			ND	10	1
Surrogates:	REC (%)	Control	•	Qual	Surrogates:	riyi ⊏urier (i	AME)	ND	10	1
	1420 (101	Limits		<u>Guai</u>	Surrogates.			REC (%)	Control	<u>Qual</u>
Dibromofluoromethane	98	73-139			1,2-Dichloroeth	ono da		00	<u>Limits</u>	
Toluene-d8	99	90-108			1,4-Bromofluoi			96 96	73-145	
S-14.5-DP6			07-08-	2159-2	08/30/07	Solid	GC/MS Z	08/31/07	71-113 08/31/07	070831L01
							COMICE	00/3 1/0/	00/3 1/07	0708311.01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL.	OF Qual
Benzene	ND	5.0	1		o-Xvlene			ND	5.0	
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl i	ther (MTR	E)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		_,	ND		1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met			ND ND	10	1
Surrogates:	REC (%)	Control		Qual	Surrogates:	IN LUICI (I	•		10	1
		Limits		<u>Quui</u>	ourrogates.			REC (%)	Control	<u>Qual</u>
Dibromofluoromethane	97	73-139			1,2-Dichloroeth	ane.d4		97	Limits	
Toluene-d8	100	90-108			1,4-Bromofluor			96	73-145 71-113	
S-19.5-DP6			07-08-	2159-3	08/30/07	Solid	GC/MS Z	08/31/07		070831L01
D							CONTO	00/3 //0/	00/3 1/07	070831E01
<u>Parameter</u>	<u>Result</u>	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL [OF Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	1
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl E	Ether (MTB)	Ξ)	990	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		-,	55	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	10	1
Foluene	ND	5.0	1		Ethyl-t-Butyl Et			ND	10	1
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			ND	10	•
Surrogates:	REC (%)	Control	•	Qual	Surrogates:	.,, earor (17		REC (%)	Control	1 Qual
Dibromofluoromethane	98	<u>Limits</u>			400:11				<u>Limits</u>	
Foluene-d8	99	73-139			1,2-Dichloroeth			97	73-145	
	99	90-108			1,4-Bromofluor	obenzene		95	71-113	

Environmental Resolutions, Inc.	Date Received:	08/31/07
601 North McDowell Blvd.	Work Order No:	07-08-2159
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8260B
	Units:	ug/kg
B 1 1 E MAINTENANCE (CONTRACTOR)		

Project: ExxonMobil 7-0238 / 229303X

Page 2 of 2

			_							J = 0. I
Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
S-25-DP6			07-08-	2159-4	08/30/07	Solid	GC/MS Z	08/31/07	08/31/07	070831L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL D	NE Ovel
Benzene	ND	5.0	1		o-Xviene			ND		OF Qual
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Ethor /MTD	E)		5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		<i>⊏)</i>	ND	5.0	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	٠,		ND	50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl E		`	ND ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met				10	1
Surrogates:	REC (%)	Control	'	Qual	Surrogates:	ilyi Euler (I	AIVIE)	ND	10	1
	1120 (70)	Limits		Qual	Surrogates.			REC (%)	Control	<u>Qual</u>
Dibromofluoromethane	99	73-139			1,2-Dichloroeth	nano d/		97	<u>Limits</u>	
Toluene-d8	100	90-108			1,4-Bromofluoi			97 95	73-145	
S-29.5-DP6			07-08-	2159-5	08/30/07	Solid	CC/MC 7		71-113	
			01-00-	2133-3	00/30/07	30110	GC/MS Z	08/31/07	08/31/07	070831L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Result	RL D	F Qual
Benzene	ND	5.0	1		o-Xylene			ND	5.0	
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl	Fther (MTR	E)	ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco		_,	ND	50	1
Ethylbenzene	ND	5.0	1		Diisopropyl Eth			ND	10	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		i .	ND	10	1
p/m-Xylene	ND	5.0	1		Tert-Amyl-Met			ND	10	1
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:	,, _ a.o. (.	, «vi∟)	REC (%)	Control .	Qual
Dibromofluoromethane	99	73-139			1,2-Dichloroeth	ane d4		99	<u>Limits</u>	
Toluene-d8	98	90-108			1,4-Bromofluor				73-145	
Method Blank			000-10	-005-14,6		200000000	00010	Servicion (71-113	
Water 1999 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			000-10	-005-14,0	02 N/A	Solid	GC/MS Z	08/31/07	08/31/07	070831L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL D	F Qual
Benzene	ND	5.0	1		o-Xylene			ND		
1,2-Dibromoethane	ND	5.0	1		Methyl-t-Butyl (ther (MTD	E)	ND ND	5.0	1
1,2-Dichloroethane	ND	5.0	1		Tert-Butyl Alco	,	L)		5.0	1
Ethylbenzene	ND	5.0	i		Diisopropyl Eth				50	1
Toluene	ND	5.0	1		Ethyl-t-Butyl Et	her (ETDE)		ND	10	1
p/m-Xylene	ND	5.0	i		Tert-Amyl-Meth					1
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:	ıyı ⊏üler (T		ND REC (%)	Control	1 Qual
Dibromofluoromethane	99	73-139			4.0 Diable. "	14		T	<u>Limits</u>	
Toluene-d8	100	73-139 90-108			1,2-Dichloroeth				73-145	
	100	an-109			1,4-Bromofluor	obenzene		95	71-113	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/31/07 07-08-2159 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
Solid	GC 4	08/31/07	08/31/07	070831S01
		Section Cardening	Matrix Instrument Prepared	Matrix Instrument Prepared Analyzed

<u>Parameter</u> MS %REC MSD %REC %REC CL RPD RPD CL Qualifiers TPH as Gasoline 108 106 48-114 1 0-23

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

Work Order No: Preparation:

Method:

08/31/07

07-08-2159 **EPA 5030B**

EPA 8015B (M)

0-23

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-14.5-DP6	Solid	GC 11	08/31/07		08/31/07	070831S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	104	104	48-114	0	0-23	

104

48-114

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/31/07 07-08-2159 **EPA 5030B** EPA 8260B

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-08-2125-12	Solid	GC/MS Z	08/31/07	08/31/07	070831S01
		111111111111111111111111111111111111111	00/01/01	00/3/1/07	07003150

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	99	100	79-115	1	0-13	
Carbon Tetrachloride	83	85	55-139	2	0-15	
Chlorobenzene	103	105	79-115	2		
1,2-Dibromoethane	102	101	70-130	1	0-17	
1,2-Dichlorobenzene	100	103	63-123	3	0-30	
1,1-Dichloroethene	97	97	69-123		0-23	
Ethylbenzene	106	108	70-130	0	0-16	
Toluene	103	104	70-130 79-115	2	0-30	
Trichloroethene	100	100		1	0-15	
Vinyl Chloride	93		66-144	0	0-14	
Methyl-t-Butyl Ether (MTBE)		90	60-126	3	0-14	
Tert-Butyl Alcohol (TBA)	94	93	68-128	0	0-14	
Diisopropyl Ether (DIPE)	91	79	44-134	15	0-37	
• •	96	99	75-123	2	0-12	
Ethyl-t-Butyl Ether (ETBE)	97	99	75-117	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	100	79-115	2	0-12	
Ethanol	90	74	42-138	16	0-28	

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-2159 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-279-1,045	Solid	GC 4	08/31/07	08/31/07	070831B01

 Parameter
 LCS %REC
 LCSD %REC
 %REC CL
 RPD
 RPD CL
 Qualifiers

 TPH as Gasoline
 113
 117
 70-124
 3
 0-18

Mulum_

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

07-08-2159 EPA 5030B

N/A

Method:

EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

099-12-279-1,046	Solid	GC 11	08/31/07	08/31/07	070831B01	
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	

<u>Parameter</u> LCS %REC LCSD %REC %REC CL <u>RPD</u> RPD CL Qualifiers TPH as Gasoline 113 113 70-124 0 0-18

RPD - Relative Percent Difference , CL - Control Limit

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-2159 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrume	ent Date Analyzed	Lab File	e ID L	CS Batch Number
099-10-005-14,682 Solid		GC/MS	Z 08/31/07	31AUG00	31AUG004.rr	
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Benzene		250	264	106	84-114	
Carbon Tetrachloride		250	253	101	66-132	
Chlorobenzene		250	273	109	87-111	
1,2-Dibromoethane		250	270	108	80-120	
1,2-Dichlorobenzene		250	268	107	79-115	
1,1-Dichloroethene		250	269	108	73-113	
Ethylbenzene		250	287	115	80-120	
Toluene		250	273	109	78-114	
Trichloroethene		250	276	110	84-114	
Vinyl Chloride		250	258	103	63-129	
Methyl-t-Butyl Ether (MTBE)		250	252	101	77-125	
Tert-Butyl Alcohol (TBA)		1250	1420	114	47-125	
Diisopropyl Ether (DIPE)		250	263	105	76-130	
Ethyl-t-Butyl Ether (ETBE)		250	260	104		
Tert-Amyl-Methyl Ether (TAME)		250	260	104	76-124	
Ethanol		2500	2700	108	82-118 59-131	

Glossary of Terms and Qualifiers

Work Order Number: 07-08-2159

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
1	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432**

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

DATE:

	and of the state o	TEL: (714) 895-5494 . FA	X: (714) 89	4-7501												PA	GE:		1_		OF		1	<u> </u>
EXX	RATORY CLIENT: On Mobil Refining &	Supply - Global Reme	diation	-	-	The same of the sa	TCI	IENT	ROJE	CT NAM	ME / NO	MBER			of management				P.(). NO.:				
ADDR	ess: nvironmental Reso								03X		238									-	8212	42	1	
601 I	North McDowell Blv	d.						PROJECT CONTACT: QUOTE NO.: Paula Sime/ERI																
Peta	luma, California 94	954		T =2			SA	SAMPLER(S): (SIGNATURE)																
(707)	766-2000 AROUND TIME	(707) 789-0414		norcalia	bs@eri-u	ıs.com		Rebeliah Westrup Millia Allahor 08-2159								519								
	SAME DAY X 24 HR	☐ 48HR ☐ 72 HF	₹ □5 □	AYS [] 10 DA	AYS							I	REQ	UES	TED	ANA	LYS	IS					
Send	AL REQUIREMENTS (ADDITIONAL EDF report / Global ID:	•					Π					8				T	T		T		П			T
SPECI	AL INSTRUCTIONS						1	1	1	8 8	0	826									П			
Set	Silica Ger Cleanup i TBA reporting limit a	for all TPHd analyses.					ı		138	BTEX by-8024B 8260 R	Oxygenates by 8260B	Scavengers by 8260B	<u></u>	6010B										
Оху	genates: MTBE, ET	BE, TAME, DIPE, TBA					158	185	Methanol by 8015B	2	چ	l ge	Ethanol by 8260B	by 6								1		
	d Scavengers: 1,2-E		-				TPHd by 8015B	TPHg by 8015B	e	#	nate	Cave	ğ	Lead										1
JSB	SAMPLE ID	FIELD POINT NAME (separate from sample ID or		PLING	Marry	*COM	Ī	훈	than	<u>8</u>	96	Lead S	Jano	Total L										
ONLY	6	EDF)	DATE	TIME	74	3	岸	E	ž	<u> </u>	-	تا	Ü	ů			\bot							
	S- 10- DP6	DP6	8 30 07	10:30	SOIL	1		X		X	X	\times												
2	5-14,5-DP6	DP6	8/30/07	10:35	SOIL	1		X		X	X	X												
3	S-19.5-DP6	DP6	8/36/07	11:00	Soll	1		X		X	X	X											\neg	
4	5-25-DP6	DP6	8/20/07	N:30	SOIL	1		X		X	×	X						\Box			\Box	\dashv	\top	\dashv
5	5-29.5-DP6	DP6	8/30/07	11:5D	Sol	1		χ		X	Х	X						\Box				\top	\top	
																		П	П		\neg	\neg	十	
													\neg	T		7			\Box	\neg	\neg		十	
																		\Box		\exists	\neg	7	_	_
														7	\neg	1	1	П		\neg	_	\top	+	+
		/										\neg	_	\neg	\top	+	+	\vdash		\dashv	\dashv	+	+	+
elinqui	skild by: (Signature)	w)			Receive		anafiu	ire)										Date				Time:		
elinqu	shed by: (Signature)				Receive	00 / d by: (S	ignatu	ire)	~			Y		2 0				Date	30 0°		+	14:3 Time:	50	
elinouis	shed by: (Signature)	- to 651)		V									1	La	N		81	31/	07	- '		α	5
quk	Silve by. (Gigilatule)				Receive	d by: (S	ignatu	læ)					10	0				Date:			1	Time:		

WORK ORDER #: 07 - 0 8 - 2 1 5 9

Cooler _ | _ of _ |

SAMPLE RECEIPT FORM

CLIENT: EXI	DATE:_	8/31/07
TEMPERATURE - SAMPLES RECEIVED BY:		
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other S. °C Temperature °C IR thermome Ambient temper	eter.
CUSTODY SEAL INTACT:	1000000	// /
Sample (a)	ntact) :	Not Present:
SAMPLE CONDITION:		
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.		
COMMENTS:		

September 05, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject: Calscience Work Order No.: 07-09-0010

Client Reference: ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/1/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely.

Cecile & se Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/01/07 07-09-0010 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

							Г	age 1 of
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-19-DP6		07-09-0010-1	08/31/07	Aqueous	GC 1	09/01/07	09/01/07	070901B01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	1300	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	106	38-134						
W-13-DP1		07-09-0010-2	08/31/07	Aqueous	GC 1	09/01/07	09/01/07	070901B01
Parameter	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	105	38-134						
Method Blank		099-12-436-861	N/A	Aqueous	GC 1	09/01/07	09/01/07	070901B01
Parameter	Result	RL	DF	Qual	Units			
PH as Gasoline	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
,4-Bromofluorobenzene	92	38-134						

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No: Preparation:

Method: Units:

09/01/07

07-09-0010 **EPA 5030B**

EPA 8260B ug/L

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrumen	Date t Prepared	Date Analyzed	QC Batch ID
W-19-DP6			07-09-	0010-1	08/31/07	Aqueous	GC/MS L	09/04/07	09/04/07	070904L01
Parameter	Result	RL	DF	Qual	D					
Benzene	ND			Qual	<u>Parameter</u>			<u>Result</u>	<u>RL</u> <u>[</u>	<u>)F Qual</u>
1,2-Dibromoethane	ND	50 50	100		o-Xylene			ND	50	100
1,2-Dichloroethane	ND		100		Methyl-t-Butyl		≣)	4800	100	200
Ethylbenzene	ND	50	100		Tert-Butyl Alc			2900	1000	00
Toluene		50	100		Diisopropyl El			ND	50	00
p/m-Xylene	ND	50	100		Ethyl-t-Butyl E			ND	50	00
Surrogates:	ND	50	100		Tert-Amyl-Me	thyl Ether (TA	AME)	ND	50	00
Surrogates.	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	Qual
1,2-Dichloroethane-d4	44.5	<u>Limits</u>							Limits	
	115	73-157			Dibromofluoro	methane		110	82-142	
Toluene-d8	102	82-112			1,4-Bromofluc	probenzene		92	75-105	
W-13-DP1			07-09-0	0010-2	08/31/07	Aqueous	GC/MS L	09/04/07	09/04/07	070904L01
Parameter	Result	RL	DF	Qual	Dosometer					
Benzene	ND			Qual	<u>Parameter</u>			Result	<u>RL</u> <u>C</u>	F Qual
1,2-Dibromoethane	ND ND	0.50	1		o-Xylene			ND	0.50	1
1.2-Dichloroethane	ND	0.50	1		Methyl-t-Butyl		E)	9.5	0.50	1
Ethylbenzene		0.50	1		Tert-Butyl Alc			ND	10	1
Toluene	ND	0.50	1		Diisopropyl Et			ND	0.50	1
p/m-Xvlene	ND	0.50	1		Ethyl-t-Butyl E	, ,		ND	0.50	1
Surrogates:	ND	0.50	1		Tert-Amyl-Met	thyl Ether (TA	ME)	ND	0.50	1
<u>Surrogates.</u>	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control	Qual
1,2-Dichloroethane-d4	111	73-157			Dibromofluoro	mothana		407	<u>Limits</u>	
Toluene-d8	101	82-112			1,4-Bromofluo				82-142	
Method Blank		02-112				probenzene		95	75-105	
Method Blank			099-10	-025-379	N/A	Aqueous	GC/MS L	09/04/07	09/04/07	070904L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL D	E Ouel
Benzene	ND	0.50	1		o-Xvlene					
1,2-Dibromoethane	ND	0.50	1			Ether (NATOE	٠,	ND		1
1,2-Dichloroethane	ND	0.50	1		Methyl-t-Butyl		:)	ND		1
Ethylbenzene	ND	0.50	1		Tert-Butyl Alco				10	1
Toluene	ND	0.50			Diisopropyl Et	ner (DIPE)		ND	0.50	1
o/m-Xylene	ND		1		Ethyl-t-Butyl E			ND		1
Surrogates:	REC (%)	0.50	1		Tert-Amyl-Met	thyl Ether (TA		ND	0.50	1
	<u>NEO (%)</u>	Control Limits		Qual	TIEC (78) CONIUN				<u>Qual</u>	
1,2-Dichloroethane-d4	108	73-157			Dibromofluoro	methana		400	<u>Limits</u>	
Foluene-d8	101	82-112			1,4-Bromofluo				82-142	
		5Z-11Z			1,4-DIOMONUO	robenzene		93	75-105	

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

09/01/07 07-09-0010 **EPA 5030B** EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	
W-19-DP6	Aqueous	GC 1	09/01/07	09/01/07	070901S01	
					105 POSTERIO E E 1000	

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	67	69	68-122	1	0-18	3

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

09/01/07 07-09-0010 **EPA 5030B EPA 8260B**

Project ExxonMobil 7-0238 / 229303X

W-13-DP1	Aqueous	GC/MS L	09/04/07	09/04/07	070904S01
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	112	112	86-122	1	0-8	
Carbon Tetrachloride	118	119	78-138	1	0-8	
Chlorobenzene	106	108	90-120	2	0-9	
1,2-Dibromoethane	119	108	70-130	9	0-30	
1,2-Dichlorobenzene	106	106	89-119	0	0-30 0-10	
1,1-Dichloroethene	85	116	52-142	31		
Ethylbenzene	110	114	70-130	3	0-23	4
Toluene	114	114	85-127	1	0-30	
Trichloroethene	109	112	78-126		0-12	
Vinyl Chloride	98	102	56-140	3	0-10	
Methyl-t-Butyl Ether (MTBE)	131	95	64-136	4	0-21	
Tert-Butyl Alcohol (TBA)	138	110		17	0-28	
Diisopropyl Ether (DIPE)	115	111	27-183	22	0-60	
Ethyl-t-Butyl Ether (ETBE)	116	108	78-126	3	0-16	
Tert-Amyl-Methyl Ether (TAME)	115		67-133	7	0-21	
Ethanol	134	104	63-141	10	0-21	
	134	106	11-167	23	0-64	

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:

Work Order No:

Preparation: Method:

N/A

07-09-0010 **EPA 5030B**

EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

099-12-436-861	Aqueous	GC 1	9/01/07	Analyzed 09/02/07	Number 070901B01
Quality Control Sample ID	Matrix	Instrument	Date	Date	LCS/LCSD Batch

<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	93	91	78-120	2	0-10	

RPD - Relative Percent Difference ,

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation:

Method:

N/A 07-09-0010 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	ch
099-10-025-379	Aqueous	GC/MS L	09/04/07	09/0-	4/07	070904L01	
Parameter	LCS %R	EC LCSD 9	<u>%REC</u> %	6REC CL	RPD	RPD CL	Qualifiers
Benzene	109	106		87-117	3	0-7	
Carbon Tetrachloride	113	110		78-132	3	0-7 0-8	
Chlorobenzene	106	106		88-118	0	0-8	
1,2-Dibromoethane	114	115		80-120	1	0-20	
1,2-Dichlorobenzene	106	105		88-118	1	0-8	
1,1-Dichloroethene	106	107		71-131	1	0-8 0-14	
Ethylbenzene	110	111		80-120	1	0-14	
Toluene	112	112		85-127	0	0-20	
Trichloroethene	107	106		85-121	1	0-7 0-11	
Vinyl Chloride	93	90		64-136	3		
Methyl-t-Butyl Ether (MTBE)	120	116		67-133	3	0-10	
Tert-Butyl Alcohol (TBA)	120	119		34-154		0-16	
Diisopropyl Ether (DIPE)	115	112		80-122	1	0-19	
Ethyl-t-Butyl Ether (ETBE)	119	111			3	0-8	
Tert-Amyl-Methyl Ether (TAME)	118	113		73-127	7	0-11	
Ethanol	99	112		69-135	4	0-12	
	33	112		34-124	12	0-44	

Glossary of Terms and Qualifiers

Work Order Number: 07-09-0010

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
l	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD
DATE: 9-31-0

	aboratories, mc.	TEL: (714) 895-5494 . FA	X: (714) 89	4-7501												PA	GE:_		1		OF .		1		
	RATORY CLIENT:	•			Ministra		C	JENI P	'KOJE	CT NAM	AE/NU	MBER							[P)	O. NO.:					
ADDR	on Mobil Refining &	Supply - Global Reme	diation				┨,	2293	NZY	/ 7-0	าวรถ								1.55						
c/o E	Environmental Reso	lutions, Inc.						ROJECT			7230	-							10	UOTE I	NO.:				
	North McDowell Blv							Paula																	
TEL:	luma, California 949	954		I E-MAIL			SA	MPLER	R(S): (S	IGNAT	URE)	Kab	elah	yes	Fryp	X				P G G L C					
	766-2000	(707) 789-0414			bs@eri-ı	us.com		Pulche Stille her								20	$\Box + \Box$	0	2	IC					
100000000000000000000000000000000000000	AROUND TIME	_		-8-			T					100	21/21/2	DEC	LIEO	TED	A 51.4			100000	000000	econo	unnna	никин	
S	SAME DAY X 24 HR	48HR 72 HF	₹5 [DAYS	10 D/	AYS	L							KEG	UES	ובט	ANA	ALYS	15						
	AL REQUIREMENTS (ADDITIONA						Г	Г			Π	m		T	П		T	T	1					T	
Send	EDF report / Global ID:	T0600101343					1			00		260				1							1		
		for all TPHd analyses.					1		1	133	89	8 6	١.	g				1	1				- 1		
Set	TBA reporting limit a	it or below 12 ug/L.					14	_ m	1	%	18	20	8	ğ		- 1			1						
Oxy	/genates: MTBE, ETE	BE, TAME, DIPE, TBA					胃	TPHg by 8015B	Mothanfol by 8015B	BTEX by 8021B \$26015	Oxygenates by 8260B	Lead Scavengers by 8260B	Ethanol by 8260B	Lead by 6010B					1						
Lea	d Scavengers: 1,2-D					IPS -] 🖁	<u>۾</u>		8	l age	Ça	4	ead			-	1	1				- 1	- 1	
USE	SAMPLE ID	FIELD POINT NAME (separate from sample ID or	SAM	PLING	Martin .	*Con	#PHAD	토	E	ă	8	Sp	ane.	틸					1						
ONLY		EDF)	DATE	TIME	, A [†]	-		F	3	6	ð	Leg	畫	Total											
	W-19-DP6		8.31-07	7:30	40	VOAs		X		X	X	X										7			
2	W-13 -DP1		8.31.07	8:45	Hao	VOAs		X		X	X	X					1					7	\dashv	\top	
											-				\neg	\neg		+-				_	+	+	
			-	 	+	-	\vdash				\vdash				\dashv	+	+-	+	-	\vdash	\rightarrow	\rightarrow	\dashv		
			-			-	<u> </u>				_	_			\dashv			_	_	\square	\dashv	_	\dashv		
							_										1.								
								1 1									T			П			\neg		
															\neg	\top	\top	\top		\vdash	\dashv	\dashv	+	-	
					1	\vdash								\dashv	\dashv	\dashv	+	+-	-	-	\dashv	+	+	+-	
	(v=x=1)==)====				<u> </u>		Н				\dashv	\dashv		\dashv	-		-	+	-		-	+	+		
							-		-		-	_	\dashv	_		-	-	-		\dashv	\dashv	_	_		
Relingu	ished by: (Signature) / 7				Desert												丄								
	Muly	lul SWsR			Receive	ea by: (S	y: (Signature) Date: Time: 8/31/07 1/-29 Date: 7/-29 D							سے ج											
Relinqu	shed by: (Signature)	2 (5)	`		Receive	ed by: (Signature) Date: / Time:																			
Relinquished by (Signature) Received by:								(ro)	1/6	0			_		CC	2_		1	7/1/	107			<u> 23</u>	30	
160	elinquished by: (Signature) Received by: (Signature)																	Date	¥ /		17	Time:			

WORK ORDER #: **07** - 0 9 - 0 0 / 0

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: ERI	DATE: 09/01/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): O C Temperature blank. O C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
	Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

August 30, 2007

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:

Calscience Work Order No.: 07-08-1993

Client Reference:

ExxonMobil 7-0238 / 229303X

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/29/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & ex Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/29/07 07-08-1993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 1

	ZZ3003X						F	age 1 of 1
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-15-DP2		07-08-1993-1	08/27/07	Aqueous	GC 11	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	69	38-134						
W-10-DP3		07-08-1993-2	08/28/07	Aqueous	GC 11	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	68	38-134						
W-15-DP3		07-08-1993-3	08/28/07	Aqueous	GC 11	08/29/07	08/29/07	070829B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	160	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	71	38-134						
Method Blank		099-12-436-853	N/A	Aqueous	GC 11	08/29/07	08/29/07	070829B01
Parameter .	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual	<u> </u>			
1,4-Bromofluorobenzene	58	38-134						

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/29/07 07-08-1993 EPA 5030B EPA 8260B

Project: ExxonMobil 7-0238 / 229303X

Page 1 of 2

ug/L

Client Sample Number				ab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
W-15-DP2			07-08-	1993-1	08/27/07	Aqueous	GC/MS L	08/29/07		070829L01
<u>Parameter</u>	Result	RL	DF	Qual	Parameter			Popult	DI E	
Benzene	ND	0.50	1		o-Xylene			Result		F Qual
1,2-Dibromoethane	ND	0.50	1			Ether (NATE)	_,	ND	0.50	1
1,2-Dichloroethane	ND	0.50	1		Methyl-t-Butyl	Etner (M I B	=)	7.0	0.50	1
Ethylbenzene	ND	0.50	1		Tert-Butyl Alc			ND	10	1
Foluene	ND	0.50	1		Diisopropyl E			ND	0.50	1
o/m-Xylene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1
Surrogates:	REC (%)	Control	-	O1	Tert-Amyl-Me	thyl Ether (17		ND		1
	1120 (70)	Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	Qual
2-Dichloroethane-d4	126	73-157			Dibromofluoro	month and			<u>Limits</u>	
Foluene-d8	106	82-112							82-142	
W-10-DP3		02-112			1,4-Bromofluo	robenzene		100	75-105	
W-10-DP3			07-08-	1993-2	08/28/07	Aqueous	GC/MS L	08/29/07	08/29/07	070829L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL D	F Qual
Benzene	ND	0.50	1		o-Xvlene			ND		
,2-Dibromoethane	ND	0.50	1		Methyl-t-Butyl	Ether /MTDE	=\			1
,2-Dichloroethane	ND	0.50	1		Tert-Butyl Aic		-)	16		1
Ethylbenzene	ND	0.50	1		Diisopropyl Et					1
oluene	ND	0.50	1					ND		1
/m-Xylene	ND	0.50	1		Ethyi-t-Butyl E	itner (ETBE)		ND		1
Surrogates:	REC (%)	Control	1	Qual	Tert-Amyl-Me	inyi Ether (17		ND		1
	<u>IXLO (70)</u>	Limits		Quai	Surrogates:		<u> </u>	REC (%)	<u>Control</u>	Qual
,2-Dichloroethane-d4	130	73-157			Dibromofluoro				<u>Limits</u>	
oluene-d8	105	82-112							82-142	
M dr DDo	100	02-112	Enteres a	9. AU. 1	1,4-Bromofluo	robenzene		99	75-105	
W-15-DP3			07-08-	1993-3	08/28/07	Aqueous	GC/MS L	08/29/07	08/29/07	070829L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL D	F Qual
Benzene	ND	0.50	1		o-Xvlene			ND		
,2-Dibromoethane	ND	0.50	1		Methyl-t-Butyl	Ether (MTDE	:\			1
,2-Dichloroethane	ND	0.50	1		Tert-Butyl Alco		-)			20
thylbenzene	ND	0.50	1		Diisopropyl Et	\ /				1
oluene	ND	0.50	i					ND		1
/m-Xylene	ND	0.50	1		Ethyl-t-Butyl Ether (ETBE) Tert-Amyl-Methyl Ether (TAME)			ND		1
Surrogates:	REC (%)	Control	'	Qual				ND		1
	1120 (70)	Limits		Quai	Surrogates:		<u> </u>	REC_(%)	Control	<u>Qual</u>
,2-Dichloroethane-d4	133	73-157			Dibromofluoro	mothan-		440	Limits	
oluene-d8	103	82-112			1,4-Bromofluo				82-142 75-105	

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units: 08/29/07 07-08-1993 EPA 5030B EPA 8260B

ug/L

Page 2 of 2

Project: ExxonMobil 7-0238 / 229303X

Client Sample Number	WY JOSEPH A			b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date d Analyzed		QC Batch ID
Method Blank			099-10	-025-376	N/A	Aqueous	GC/MS L	08/29/0	7 08/29/	7	070829L01
Parameter Benzene	<u>Result</u> ND	<u>RL</u> 0.50	<u>DF</u> 1	Qual	Parameter o-Xylene			Result ND	<u>RL</u> 0.50	DF 1	Qual
1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND	0.50 0.50 0.50	0.50 1		Methyl-t-Butyl Tert-Butyl Alc Diisopropyl Et	ohol (TBA)	≣)	ND ND ND	0.50 10 0.50	1	
Toluene p/m-Xylene <u>Surrogates:</u>	ND ND <u>REC (</u> %)	0.50 0.50 <u>Control</u>	1	Qual	Ethyl-t-Butyl E Tert-Amyl-Me Surrogates:	ther (ETBE)	AME)	ND ND	0.50 0.50	1	
1,2-Dichloroethane-d4 Toluene-d8	111 103	<u>Limits</u> 73-157 82-112			Dibromofluoro		1	108 99	Control Limits 82-142 75-105		<u>Qual</u>

RL - Reporting Limit , 7440

0-18

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

TPH as Gasoline

Date Received: Work Order No: Preparation: Method: 08/29/07 07-08-1993 EPA 5030B EPA 8015B (M)

Project ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-08-1990-1	Aqueous	GC 11	08/29/07		08/29/07	070829801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers

118

68-122

0

118

RPD - Relative Percent Difference ,
7440 Lincoln

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08/29/07 07-08-1993 **EPA 5030B EPA 8260B**

Project ExxonMobil 7-0238 / 229303X

	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-08-1991-6	Aqueous	GC/MS L	08/29/07		08/29/07	070829801
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers

<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	110	111	86-122	1	0-8	
Carbon Tetrachloride	121	126	78-138	4	0-9	
Chlorobenzene	113	113	90-120	0	0-9	
1,2-Dibromoethane	119	112	70-130	7	0-30	
1,2-Dichlorobenzene	110	111	89-119	1	0-10	
1,1-Dichloroethene	115	118	52-142	3	0-23	
Ethylbenzene	117	121	70-130	3	0-30	
Toluene	115	117	85-127	2	0-12	
Trichloroethene	111	111	78-126	0	0-10	
Vinyl Chloride	102	108	56-140	6	0-21	
Methyl-t-Butyl Ether (MTBE)	122	108	64-136	12	0-28	
Tert-Butyl Alcohol (TBA)	131	115	27-183	13	0-60	
Diisopropyl Ether (DIPE)	121	116	78-126	4	0-36	
Ethyl-t-Butyl Ether (ETBE)	120	110	67-133	8	0-21	
Tert-Amyl-Methyl Ether (TAME)	120	108	63-141	11	0-21	
Ethanol	129	96	11-167	29	0-64	

RPD - Relative Percent Difference,

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1993 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrum	nent	Date Prepared	Da Analy		LCS/LCSD Batc Number	h
099-12-436-853	Aqueous	GC 1	1	08/29/07	08/29	/07	070829B01	
<u>Parameter</u>	LCS %	6REC	LCSD %RI	<u> </u>	REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	109		111	7	8-120	1	0-10	

Muhan_

Quality Control - LCS/LCS Duplicate

aboratories, Inc.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 07-08-1993 **EPA 5030B EPA 8260B**

Project: ExxonMobil 7-0238 / 229303X

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Bate Number	ch
099-10-025-376	Aqueous	GC/MS L	08/29/07	08/29/07		070829L01	
<u>Parameter</u>	LCS %F	REC LCSD 9	<u> </u>	REC CL	RPD	RPD CL	Qualifiers
Benzene	109	109	-	87-117	0	0-7	
Carbon Tetrachloride	111	112		78-132	1	0-8	
Chlorobenzene	110	109		88-118	1	0-8	
1,2-Dibromoethane	117	116		80-120	2	0-20	
1,2-Dichlorobenzene	112	110		88-118	2	0-8	
1,1-Dichloroethene	102	102		71-131	0	0-14	
Ethylbenzene	113	113		80-120	1	0-20	
Toluene	115	114		85-127	1	0-7	
Trichloroethene	109	109		85-121	1	0-11	
Vinyl Chloride	97	96	(64-136	1	0-10	
Methyl-t-Butyl Ether (MTBE)	120	119	(67-133	1	0-16	
Tert-Butyl Alcohol (TBA)	117	130	;	34-154	11	0-19	
Diisopropyl Ether (DIPE)	116	112	8	80-122	4	0-8	
Ethyl-t-Butyl Ether (ETBE)	120	114		73-127	5	0-11	
Tert-Amyl-Methyl Ether (TAME)	122	119		69-135	3	0-12	
Ethanol	122	123		34-124	1	0-44	

Glossary of Terms and Qualifiers

Work Order Number: 07-08-1993

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
L	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
Ĵ	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Cecile de Guia

From: Paula M. Sime [psime@ERI-US.com]

Sent: Thursday, August 30, 2007 3:58 PM

To: Cecile de Guia

Subject: RE: ExxonMobil 7-0238 / 229303X / CEL 07-08-1993 (Preliminary)

Hi Cecile.

All the water samples on the COC should be analyzed for TPHg, BTEX, and oxygenates and lead scavengers. The field geologist forgot to carry the 'X's down. Thanks, Paula

From: Cecile de Guia [mailto:CdeGuia@calscience.com]

Sent: Thursday, August 30, 2007 3:43 PM

To: Paula M. Sime

Subject: ExxonMobil 7-0238 / 229303X / CEL 07-08-1993 (Preliminary)

Samples collected on 08/27-28/07.

I will send the COC separate for this project for you to mark the analyses of the other two samples.

Please send back the revised COC right away so I can finalize the report.

Thank you and I apologize for not sending the COC yesterday as per our conversation.

Cecile

Cecile Rose L. de Guia Project Manager Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427 Tel.: 714-895-5494 Ext. 141 Fax: 714-894-7501

PRIVACY NOTICE:

cdeguia@calscience.com

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the return of the documents

REPORT SECURITY NOTICE:

The client or recipient of any attached analytical report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience Environmental Laboratories, Inc. is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience Environmental Laboratories, Inc. for any defense to any litigation which arises.

601 North McDowell Blvd. Petaluma, California 94954

LABORATORY CLIENT:

(707) 766-2000

TURNAROUND TIME

SPECIAL INSTRUCTIONS

LAS

USE

ONLY

ADDRESS:

7440 LINCOLN WAY

(707) 789-0414

FIELD POINT NAME

(separate from sample ID on

EDF)

Exxon Mobil Refining & Supply - Global Remediation

SAME DAY X 24 HR 48HR 72 HR
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)

Use Silica Gel Cleanup for all TPHd analyses. Set TBA reporting limit at or below 12 ug/L. Oxygenates: MTBE, ETBE, TAME, DIPE, TBA

c/o Environmental Resolutions, Inc.

Send EDF report / Global ID: T0600101343

Lead Scavengers: 1,2-DCA, EDB

SAMPLE ID

W-15-DP2

W-10-0P3

W-15-DP3

Relinquished by: (Signatu

Relinquished by: (Signature)

GARDEN GROVE, CA 92841-1432

TEL: (714) 895-5494 . FAX: (714) 894-7501

Received by: (Signature)

Received by: (Signature)

☐5 DAYS

SAMPLING

13:45

10:30

11:05

DATE

£018613

CHAIN OF CUSTODY RECORD

DATE:

7501										F	'AGE	i:		1		_OF			1	
E-MAIL norcallabs@eri-us.com YS	PRO Pa	2930 OJECT Paula	03X	/ 7-0)238 RI	JMBER:		REQ	UE:	STE			LYS	01	UOTE	NO.:	LY	q	9	3
ING May #Co	TPH4 by 8015B.	TPHg by 8015B	Methanol by 8815B-	BTEX by 8024B- 8260B	Oxygenates by 8260B	Lead Scavengers by 8260B	Ethanol by 8260B	Total Lead by 6010B												
13:45 HaO vars	Ŧ	×		X	-	X	ŭ	Tc												
1:05 Had 1045																				
Received by:	igylatur	re)											Date				Time			

Time:

WORK ORDER #: 07 - 0 8 - 1 9 9 3

Cooler ______ of ____

SAMPLE RECEIPT FORM

CLIENT: ERI	DATE: 8/29/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	0
Sample(s): Cooler: No (Not li	ntact) : Not Present: Initial:
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

ATTACHMENT F MORROW SURVEY MAP

Monitoring Well Exhibit Prepared For:

Environmental Resolutioins, Inc.

DESCRIPTION	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV (PVC)	ELEV (BOX)
MW-9A MW-9B MW-9C MW-9D MW-9F MW-9G MW-9H MW-9I DP-1 DP-2 DP-3 DP-4 DP-5 DP-6 HP-1 HP-2 HP-3 HP-4 HP-3 HP-4 HP-5 HP-6	2112454, 3 2112525, 6 2112502, 3 2112502, 3 2112576, 8 2112447, 4 2112509, 7 2112493, 4 2112545, 4 2112418, 4 2112470, 5 2112488, 6 2112394, 3 2112420, 9 2112473, 0 2112491, 1 2112396, 7 2112445, 1	6059417. 3 6059324. 0 6059392. 9 6059464. 1 6059261. 7 6059363. 2 6059176. 9 6059362. 2 6059472. 5 6059404. 3 6059337. 9 6059315. 0 6059360. 5 6059301. 4 6059476. 7 6059476. 7 6059476. 7 6059334. 8 6059312. 0 6059358. 1 6059298. 5	37. 7836053 37. 7837963 37. 7837963 37. 7837393 37. 7835835 37. 7835835 37. 7837451 37. 7837099 37. 7835059 37. 7836456 37. 7836941 37. 7835677 37. 7835677 37. 7835524 37. 7836524 37. 7837009 37. 7834441 37. 7835739	-122. 2380594 -122. 2383871 -122. 2381499 -122. 2379006 -122. 2386057 -122. 2382462 -122. 2388947 -122. 2382527 -122. 23878743 -122. 2381022 -122. 2383351 -122. 2384156 -122. 2384599 -122. 2384599 -122. 2383462 -122. 2383462 -122. 2384263 -122. 2384263 -122. 23842605 -122. 2384700	14. 51 12. 84 14. 16 15. 97 11. 38 12. 98 11. 59 13. 13	14, 71 13, 20 14, 59 16, 29 11, 86 13, 30 11, 99 13, 43 16, 3(GND) 12, 9(GND) 12, 7(GND) 14, 8(GND) 14, 8(GND) 12, 9(GND) 12, 9(GND) 12, 9(GND) 12, 9(GND) 12, 6(GND) 14, 7(GND) 15, 6(GND) 14, 7(GND)

BASIS OF COORDINATES:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING UNIVERSITY OF CALIFORNIA BAY AREA DEFORMATION CORS STATION OBSERVATION FILES AND BASED ON THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH 2000.35. COORDINATE DATUM IS NAD 83(1986) DATUM ELLIPSOID IS GRS80 REFERENCE GEOID IS NGS99 CORS STATIONS USED WERE PBL1 AND BRIB.
ELEVATIONS ARE BASED ON CITY OF OAKLAND BENCHMARK. SQUARE ON TOP
OF CURB WESTERLY END OF RETURN EAST 14TH AND 22ND AVENUE. ELEVATION= 14.64'.

Former Exxon 7-0238 2200 East 12th Street Oakland Alameda County California

1450 Harbor Blvd. Ste. D West Sacramento California 95691 (916) 372-8124 curt@morrowsurveying.com

Date: Nov., 2001 Scale: 1"= 50' Sheet 1 of 1 Revised: 9-7-07 Field Book: MW-9,36 Dwg. No. 1873-015 ct