Rc 382

SITE CLOSURE REPORT

744 EAST 12th STREET OAKLAND, CALIFORNIA

December 2003

Prepared for: J.W. Silveira Company 499 Embarcadero Street Oakland, California 94606

CONTENTS

<u>Sectio</u>	<u>Page</u>
1.0	APPROVAL PAGE1
2.0	INTRODUCTION2
3.0	SITE BACKGROUND2
4.0	QUARTERLY GROUNDWATER MONITORING ACTIVITIES
5.0	CONCLUSIONS AND RECOMMENDATIONS
Figure	FIGURES
<u>i iguio</u>	
1	SITE LOCATION MAP
2	MONITORING WELL AND SOIL BORING LOCATIONS
3	POTENTIOMETRIC MAP
4	SOIL CONCENTRATION MAP
5	GROUNDWATER CONCENTRATION MAP
	TABLES
<u>Table</u>	IABLES
1	YEAR 2000 GROUNDWATER ELEVATIONS
2	MONITORING WELL MW-1 VOC AND TPH COMPOUNDS IN GROUNDWATER, 2000 GROUNDWATER RESULTS
3	MONITORING WELL MW-2 VOC AND TPH COMPOUNDS IN GROUNDWATER, 2000 GROUNDWATER RESULTS
4	MONITORING WELL MW-3 VOC AND TPH COMPOUNDS IN GROUNDWATER, 2000 GROUNDWATER RESULTS

APPENDICES

Appendix

- A GROUNDWATER SAMPLING SHEETS
- B LABORATORY DATA AND CHAINS-OF-CUSTODY

1.0 APPROVAL PAGE

This Site Closure Report for the underground storage tank (UST) site located at 744 East 12th Street, in Oakland, California, was prepared for J.W. Silveira Company, the owner of the site. Should you have any questions regarding this report, please feel free to contact me at (775) 333-8466.

HAROLD W. DAWSON

No. 7072

Sincerely,

Harold W. Dawson

TtEMI Project Manager

California Registered Geologist #7072

2.0 INTRODUCTION

The purpose of this report is to recommend closure for the J. W. Silveira Company underground storage tank (UST) site at 744 East 12th Street in Oakland, California. Tetra Tech EM Inc. (TtEMI) conducted quarterly groundwater monitoring at the site in the year 2000. The sampling dates each quarter of the year 2000 were February 9, May 23, September 27, and December 18, 2000, respectively. The analytical data for the year 2000 quarterly groundwater monitoring, and all other associated environmental sampling conducted at the site are summarized in this closure report.

3.0 SITE BACKGROUND

The location of the UST site is shown on Figure 1. One 500-gallon underground storage tank (UST) was previously located at the site. The UST reportedly contained gasoline and was removed in April 1996. Based on drawings provided in the Tank Closure Report, the approximate size of the former tank was 5 feet long by 4 feet in diameter. The UST had not been in use for 10 years prior to being removed and was reportedly empty at the time of the removal. During removal of the UST, it was noted that the single-walled steel tank had rusted through and had leaked. The approximate surface area of the removal excavation was 11 feet by 6 feet and the UST was located in the southwestern portion of the excavation. Approximately 20 cubic yards of soil were over-excavated and transported off site for disposal as the removal excavation showed visible signs of contamination. The bottom of the excavation was approximately 8 to 12 feet below the ground surface (bgs). The exact depth to the bottom of the UST was not recorded during the removal activities; the estimated depth to the bottom of the former UST is 6 feet bgs.

During the UST removal activities, five soil samples were collected from the sidewalls and bottom of the removal excavation. The soil samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), total petroleum hydrocarbons (TPH) as gasoline (TPH-g), and total lead. The highest concentrations of BTEX and TPH-g were detected in the southwestern end of the excavation. Lead concentrations in soil samples from the removal excavation were not elevated. Groundwater was not encountered during removal of the UST.

During additional site characterization field activities in 1999, three monitoring wells, identified on Figure 2 as monitoring well numbers 1, 2, and 3 (MW-1, MW-2, and MW-3), respectively, were installed at the site. Additionally, two soil borings (denoted as SB-1 and SB-2) were completed at the site. Grab groundwater and soil samples were collected from the monitoring well and soil borings for additional site characterization purposes. The analytical results for the

soil and groundwater samples collected during the additional site characterization are described below. TPH-g and BTEX compounds were not detected in any of the soil samples collected from the monitoring well borings or the soil borings. Methyl tertiary butyl ether (MTBE) is the only compound that was detected in soil at the site; this compound was detected in two soil samples. The soil sample collected from SB-2 at 9.5 to 10 feet bgs contained MTBE at a concentration of 32 milligrams per kilogram (mg/kg). The soil sample collected from 10.5 to 11 feet bgs in the boring for MW-3 contained MTBE at a concentration of 950 mg/kg. MTBE was not detected in the soil samples collected from the borings for MW-1, MW-2, or in the soil samples collected from SB-1. Figure 4 provides soil concentration data for the site. Toluene, ethylbenzene, xylenes, and TPH-g were not detected in any of the grab groundwater samples collected from the monitoring well and soil borings at the site. Benzene was detected in one grab groundwater sample; the grab groundwater sample collected from the boring for MW-3 contained benzene at a concentration of 14 micrograms per liter (ug/L). MTBE was detected in the three grab groundwater samples from the borings for MW-1, MW-2, and MW-3; these samples contained MTBE at 3, 3.4, and 250 ug/L respectively. MTBE was not detected in the two grab groundwater samples collected from SB-1 and SB-2.

The additional site characterization report recommended that four quarters of groundwater sampling be conducted at the site. Although no mobile or potentially mobile free product was discovered during the additional site characterization drilling activities, both the analytical sampling results and visual observation of soil staining during the drilling activities indicated that minimal contamination was present at the site. In general, the limited soil and groundwater contamination was found to be present around MW-3, with the exception of one soil sample at MW-2, which contained MTBE. Presently, groundwater at the site is not used for any domestic or industrial purposes. For this reason, groundwater is assumed to be nonpotable.

4.0 QUARTERLY GROUNDWATER MONITORING ACTIVITIES

For the quarterly groundwater monitoring at the site, the three monitoring wells were sampled on February 9, May 23, September 27, and December 18, 2000. The following text describes the quarterly groundwater monitoring activities. Each quarter, the depth to groundwater was measured at each well with an electronic depth probe. The monitoring well cap was removed from the top of each well, and the groundwater table was allowed to equilibrate before the depth to groundwater was measured. Each well was purged and sampled with a dedicated disposable bailer. During the purging of each monitoring well, a Horiba U10 water quality meter was used to measure the following physical parameters of the groundwater: pH, temperature, electrical conductivity, dissolved oxygen, and turbidity. These physical parameters were monitored to determine when the groundwater within the well casing of each well was

representative of the groundwater surrounding the monitoring well. Copies of the groundwater field sampling sheets are provided in Appendix A. After the physical parameters of the groundwater had stabilized, groundwater samples were collected from each well. The samples were placed in appropriate sample containers provided by the laboratory. After each sample was labeled, the sample was stored in a cooler of ice under chain-of-custody control. The groundwater samples were analyzed by Curtis & Tompkins Analytical Laboratories (C&T), in Berkeley, California. C&T is a California state-certified laboratory. The quarterly samples from each of the three wells were analyzed for BTEX, MTBE, and TPH-g.

4.1 GROUNDWATER GRADIENT

Groundwater elevations were calculated quarterly for each of the three monitoring wells at the site using the measured depth to groundwater and the top of casing elevation of each well. The depth to groundwater was measured from the top of casing of each monitoring well. The quarterly groundwater elevation measurements at the site are presented in Table 1. The groundwater flow direction and gradient at the site were calculated quarterly using these data. The flow direction at the site was consistently southwest, ranging from south 40 degrees west (S40W) in September 2000 to south 70 degrees west (S70W) in February 2000. The calculated groundwater gradient at the site was found to range from the lowest (0.0041 feet/foot [ft/ft]) in September 2000 to the highest (0.0067 ft/ft) in May 2000.

Figure 3 is a potentiometric map and graphically presents the December 2000 groundwater flow direction (south 56 degrees west [S56W]) and gradient (0.0053 ft/ft) at the site. These are the latest collected data from the site and show the typical average groundwater flow direction and gradient. The direction of groundwater flow and the groundwater gradient for the year 2000 are consistent with those calculated using 1999 water-level measurements from the three wells at the site.

4.2 QUARTERTLY GROUNDWATER MONITORING ANALYTICAL RESULTS

For the four quarters of groundwater sampling at the site during the year 2000, only the samples from MW-3 contained detectable concentrations of benzene and MTBE. Tables 2, 3, and 4 show the groundwater results for MW-1, MW-2, and MW-3, respectively, for the four quarters of the year 2000. Benzene and MTBE were detected in groundwater samples collected from MW-3 at concentrations ranging from 0.59 to 2.4 ug/L (for benzene), and 1.8 to 29 ug/L (for MTBE). During the year 2000 quarterly monitoring, toluene, ethylbenzene, xylenes, and TPH–g were not detected in any of the groundwater samples collected from the three monitoring wells, and benzene and MTBE were not detected in the groundwater samples

Tetra Tech EM Inc.

collected from MW-1 and MW-2. Figure 4 provides groundwater concentration data for the site. The complete laboratory data packages and chains-of-custody for the year 2000 quarterly sampling events are provided in Appendix B.

5.0 CONCLUSIONS AND RECOMMENDATIONS

This closure report presents the analytical data for the year 2000 quarterly groundwater monitoring, and all other associated environmental sampling conducted at the UST site located at 744 East 12th Street in Oakland, California. Although low levels of soil contamination were discovered at the site during the UST removal and installation of the monitoring wells for the additional site characterization, no mobile or potentially mobile free product has been observed at the site. During the quarterly groundwater monitoring events at the site, no groundwater contaminants were detected in the samples collected from wells MW-1 and MW-2. Monitoring well MW-3 contained MTBE at low levels, and benzene was detected in the samples from this well in February and May 2000, but not in September or December 2000. Toluene, ethylbenzene, xylenes, and TPH-g were not detected in the groundwater at the site. The soil and grab groundwater sample data from the additional site characterization show similar low-level contamination.

Based on the analytical data accumulated for the site (from the UST removal excavation, the additional site characterization, and the year 2000 quarterly sampling), TtEMI recommends that the site be closed. The low-level concentrations of MTBE in soil and groundwater samples collected from MW-2 and MW-3 appear to have diminished to non-detectable ranges and do not pose a risk to human health or the environment. It appears that the overexcavation of soil during the UST removal eliminated any future source of groundwater contamination, and there is no evidence of a contamination plume at the site. Groundwater is assumed to be nonpotable at the site. The three monitoring wells should be abandoned after approval of site closure.

FIGURES

TABLES

TABLE 1
YEAR 2000 GROUNDWATER ELEVATIONS
744 EAST 12TH STREET, OAKLAND

Date	Grou	ndwater Elevations (r	ns)
11. EPA 2-723 11. EPA 2-723 12. 12. 12. 12. 12. 12. 12. 12. 12. 12.	MW-1	MW-2	MW-3
2/9/00	9.13	9.07	8.90
5/23/00	8,98	8.90	8.74
9/27/00	8.48	8.44	8.32
12/18/00	8.80	8.72	8.61

Notes:

MW-1 TOC Elevation: 18.17 ft MW-2 TOC Elevation: 16.71 ft MW-3 TOC Elevation: 16.35 ft

TOC top of casing msl mean sea level

TABLE 2 MONITORING WELL MW-1 VOC AND TPH COMPOUNDS IN GROUNDWATER 2000 GROUNDWATER RESULTS 744 EAST 12TH STREET, OAKLAND

	TPH (ug/L)			VOC (ug/L)		Tanan Carlo Carlo II Balan ana
Date	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
Feb-00	ND	ND	ND	ND	ND	ND
May-00	ND .	ΝĎ	ND	ND	ND	
Sep-00	ND	ND	ND	ND	ND	ND
Dec-00	ND	ND	ND	ND	ND	סא

Notes:

ug/L micrograms per Liter

ND not detected

TPH total petroleum hydrocarbons VOC volitile organic compound

TABLE 3 MONITORING WELL MW-2 VOC AND TPH COMPOUNDS IN GROUNDWATER 2000 GROUNDWATER RESULTS 744 EAST 12TH STREET, OAKLAND

Grand Colors	TPH (ug/L)	= 1991 150 152 150 1		MOC (na/l)		
Date	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Feb-00	ND	ND	ND	ND	ND	ND
May-00	ND	ND	סא	ND	סא	ND
Sep-00	ND	ND	ND	ND	ND	
Dec-00	ND	ND	ND	ND	ND	ND

Notes:

ug/L micrograms per Liter

ND not detected

TPH total petroleum hydrocarbons VOC volitile organic compound

TABLE 4 MONITORING WELL MW-3 VOC AND TPH COMPOUNDS IN GROUNDWATER 2000 GROUNDWATER RESULTS 744 EAST 12TH STREET, OAKLAND

5-7-	TPH (ug/L)	TO SECURE AND ADDRESS OF THE SECURE AND ADDR		The state of the s	Lawre Billians	
Date	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Feb-00	ND	2.4	ND	ND	ND	29
May-00	ND	0.59	ND	R ACTS	The state of the s	4.7
Sep-00	ND	ND	ND	ND	ND	1.8
Dec-00	ND	ND	ND	ND	ND	7.8

Notes:

ug/L micrograms per Liter

ND not detected

TPH total petroleum hydrocarbons VOC volitile organic compound

APPENDIX A GROUNDWATER SAMPLING SHEETS

DATE <u>2-9-00</u> PAGE 1 0F	2

MONITORING WELL NO. MW (10 -1
PROJECT JW SILVERA	TOTAL GALLONS TO BE PURGED
PROJECT <u>JW SILVEIRA</u> SITE # 3, 744 E 12 ¹¹ 51,	PURGING METHOD Bouler U
PROJECT NO. PILOLO	SAMPLING METHOD Bailer

<u> </u>					Fie	ld Paramet	ers Measu	red			
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	pH 9 .28	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)			Water Level (feet)	Comments
1610	Initial		6,53	0.545	343	1,38	18.7				
1614	4	-2.5	6,54	\$,55\$	999	Ф.8Ф	18.90				
1616	-	-5 gal	6,52	Ø. 553	999	1.09	18.9°			:	
1619	-	7.5gh	6,52	ϕ .552	999	1.9	18,9°				
1622	1/Pgal	7	6.52	φ. 553	999	1.43	18.90				
1626	12,540		6.53	Φ. 540	999	1,95	18.9°				
1,628	15grd		6,53	Ø.549	999	1,10	18.90	·			
1632	17.50al		6,52	Φ.553	999	1.13	19.00				
1635	20 gd		6.53	ϕ_{\bullet} 553	999	1, 16	19.0°				
	<u> </u>								-		
									 		
					-	<u> </u>	· -		+		
									 		
	-		<u> </u>				<u> </u>		-		
	<u> </u>		<u> </u>			<u> </u>	<u> </u>			<u> </u>	

FIELD EQUIPMENT	SERIAL NUMBER	RENTAL COMPANY	SAMPLE ID: JW3-097	SAMPLING PERSONNEL:
HORBA U14		EQUIP CO.	ANALYSIS: TPH-q, MTBE, BTEX	
		·		
			COC NUMBER:	

DATE <u>2-9-00</u>

PAGE 2 0F 2

gallons gallons

MONITORING WELL NO. MW I	5.112 <u>1 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 </u>
PROJECT JW SILVETRA	·
SITE #3, 744 E 12th 57.	STANDING WATER COLUMN
PROJECT NO. $PU\phi\phi$	WELL VOLUMES TO BE PURGED
CASING DIAMETER inches	MINUMUM PURGE VOLUME
BOREHOLE DIAMETER 8.25 inches	ACTUAL VOLUME PURGED
TOP OF CASING ELEVATION feet	VOLUME CALCULATED B
WATER LEVEL 9.04 feet btoc@	
WATER LEVEL ELEVATION 9.13 feet msl	

Table 1 Pipe Volume of Schedule 40 PVC Pipe									
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)		
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66		
2	2.375	2,067	0.17	6	6.625	6.065	1.50		
3	3.500	3.068	0.38	8	8.625	7.981	2.60		

		,	able 2 of Borehole		
Diameter (inches)	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

	DATE <u>2-9-00</u>	PAGE 1 0F 2
TOTAL GALLONS TO BE PURGED		
PURGING METHOD		

	MONITOR	RING WELL NO.	MWZ							
	PROJEC	JW SIL	JEIRA			OTAL GAI	LLONS TO E	BE PURGE	D	
	SITE #		E 12t	<u> 1 57.</u>	F	PURGING N	метнор _			
	PROJEC'	TNO. PHO	(e			SAMPLING	METHOD_			
1		1				Fie	eld Paramete	егѕ Меаѕи	red	
	Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	рН	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (ma/L)	Temp: (°C)		l l

Time	Volume of Water Removed (gallons) น่ว	Discharge Rate (gal/min)	pH 1-45	Specific Conductivity (mg/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)		Water Level (feet)	,	Comments	
1415			6.43	φ.521	868	φ.1\$	18.ذ					
1420	2.5gal	~ God/10min	6.56 6.56	φ.529 φ.53φ	999 999	Ø. 22.	18.1°					
1423 1428 1432	7.5° al	~ /J	6.6¢ 6.57	ϕ .529	999	φ. 25	18.1°					
1436	12.5 gal 15 gal	% // % //	6.58		999	Ø.27 Ø.31	18.0°					
1436 1439 143 146	17. D gal	N //	6.58	ϕ , 526	999	Ø. 40 Ø.35	18.1° 18.0°	·	·			

FIELD EQUIPMENT	SERIAL NUMBER	RENTAL COMPANY	. SAMPLE ID: <u>JW3-48</u>	SAMPLING PERSONNEL:
HORIBA UID		EQUIP Co.	ANALYSIS: TPH-9, MTBE, BTEX	
,		,	J	,
	i			
			COC NUMBER:	

GROUNDWATER SAMPLING RECORD DATE Z-9-60 PAGE 2 OF 2

MONITORING WELL NO. MWZ	DATE TOOL TAGE 2012
PROJECT JW SILVEIRA	
SITE #3 744 E 121 57.	STANDING WATER COLUMN
PROJECT NO. PUOL	WELL VOLUMES TO BE PURGED 2-3 Volumes
CASING DIAMETER inches	MINUMUM PURGE VOLUME ~16.5 gallons
BOREHOLE DIAMETER 8.25 inches	ACTUAL VOLUME PURGED gallons
TOP OF CASING ELEVATION 16-71 feet	VOLUME CALCULATED BY:
WATER LEVEL 7.04 feet bloc @	
WATER LEVEL ELEVATION feet msl	
	•

PURGE VOLUME CALCULATION	·	
One Well Volume = Casing Volume + Annulus Volume One Well Volume =gal +gal One Well Volume =gallons	STANDING WATER COLUMN	7.64
Casing Volume = Standing Water Column (ft) x Pipe Volume (gal/linear ft) a Casing Volume = 10.31 ft x 0.17 gal/linear ft Casing Volume = 1.75 gallons	b Refer to	17, 95 Table 1 Table 2 ng Sand Pack Porosity of 30%
Annulus Volume = [(Standing Water Column (ft) x Borehole Volume (gal/line Annulus Volume = $[(10.31 \text{ ft}) \times 2.78 \text{ gal/linear ft}) - 1.7 \text{ Annulus Volume} = 8.1 \text{ gallons}$		•

Table 1 Pipe Volume of Schedule 40 PVC Pipe									
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)		
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66		
2	2.375	2.067	0.17	6	6.625	6.065	1.50		
3	3.500	3.068	0.38	8	8.625	7.981	2.60		

		•	able 2 of Borehole		
Diameter (inches)	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

DATE 2-9-00 PAGE 1 0F 2

MONITORING WELL NO. MW3	
PROJECT JW SILVERA	TOTAL GALLONS TO BE PURGED
SITE #3, 744 E 121 ST.	PURGING METHOD
PROJECT NO. PUOG	SAMPLING METHOD

				Field Parameters Measured							
Time	Volume of Water Removed (gallons) بہا	Discharge Rate (gal/min)	pH 7.52	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)			Water Level (feet)	Comments
1511	0		6.55	.564	999	1.62	19.0				
1515	2.5		4.53	-563	· (t	1.73	19.2				
1520	5.0		0.53	.5lef	и	1.86	19.2				
1526	5.0 7.5		6,53	P. 558	999	1.62	19.3				
1529	10gal		6.54	Ø,557	999	1.76	19.3°				
15 33	12-5gal		6,55	φ.557 φ.555	999	1.91	19,2				
1536	15gat		6,55	ϕ ,555	999	1.81	19.16				
1540	17,5990		6.56	Ø.564	999	1.65	19.3°				
15	20 g &		6,55	Ø.557	999	1.87	19.3°		,		
	10			,		·					
					:						
						<u> </u>			<u>]</u>		

FIELD EQUIPMENT	SERIAL NUMBER	RENTAL COMPANY	SAMPLE ID: JW3-09	SAMPLING PERSONNEL:
HORIBA UIQ		EQUIP Co.	ANALYSIS: BTEX, TPH-9, MTBE	
			COC NUMBER:	

MONITORING WELL NO. MW3	DATE <u>2-9-00</u> PAGE 2 0F 2
PROJECT JW SILVEIRA	
SITE #3, 744 E 121 51	STANDING WATER COLUMNfeet
PROJECT NO. PILOG	WELL VOLUMES TO BE PURGED 2-3
CASING DIAMETER inches	MINUMUM PURGE VOLUME gallons
BOREHOLE DIAMETER 8.25 inches	ACTUAL VOLUME PURGED gallons
TOP OF CASING ELEVATION 10.35 feet	VOLUME CALCULATED BY:
WATER LEVEL 7.45 feet bloc @	
WATER LEVEL ELEVATION feet msl	
PURGE VOLUME CALCULATION	
One Well Volume = 9.32 gal Casing Volume = Standing Water Column (ft) x Pipe Casing Volume = 9.75 ft x 0.17 gal/line Casing Volume = gallons	7.62 gal Ions STANDING WATER COLUMN Volume (gal/linear ft) ^a Well Depth 17.2
Annulus Volume = [(9.75 ft x 2.78	gal/linear ft) - 1.7 gal] x 0.3
Annulus Volume = 7.62 gallons	

Table 1 Pipe Volume of Schedule 40 PVC Pipe									
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)		
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66		
2	2.375	2.067	0.17	6	6.625	6.065	1.50		
3	3.500	3.068	0.38	8	8.625	7.981	2.60		

Table 2 Volume of Borehole									
Diameter Volume Diameter Volume Diameter (inches) (gal/linear ft) (inches) (gal/linear ft) (inches)									
7.25	2.14	8.25	2.78	9.25	3.52				
7.75	2.45	8.75	3.12	10.25	4.29				

MONITORING WELL NO. PROJECT JW Silveira TOTAL GALLONS TO BE PURGED _____ SITE 3-744 E. 12th St. PURGING METHOD _____ PROJECT NO. P119604 SAMPLING METHOD _____

			T		Fie	eld Paramet	ers Measu	ired			
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	рH	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)			Water Level (feet)	Comments
1015	Initial		6,5	0.580	१९१	1.33	19.1°				
1024	3gal		6.48	φ . 583	999	1.16	18.8°				
1028	6901		6.50	Ø.582	999	1.70	18.8				
1036	9901		6.48	4.582	ष्व्व	1.47	18.S°				
1044	12°0		6,50		999	1.86	18.60	<u> </u>			0 1 3 1)
1047	15 90		6.49	0.582	999	1.96	18.B°				Varameters Stuble
	0										
											Smpk @ 1100
	·										
								<u> </u>			
FIELD	EQUIPMENT	SERIAL N	UMBER	RENTAL CO	MPANY	SAMPLE I	D:	W3-	17 c	MD	SAMPLING PERSONNEL:
						ANALYSIS	S:				

COC NUMBER:

TETRA TECH EM INC.
 SAN FRANCISCO •

MONITORING WELL NO	DATE 5/7/3/90 PAGE 2 0F 2
PROJECT <u>TW Sitveira</u>	
SITE 3- 744 € 12 th St.	STANDING WATER COLUMN 7.92 feet
PROJECT NO. <u>P110604</u>	WELL VOLUMES TO BE PURGED
CASING DIAMETER 2 inches	MINUMUM PURGE VOLUME gallons
BOREHOLE DIAMETER 8.25 inches	ACTUAL VOLUME PURGED gallons
TOP OF CASING ELEVATION 8 1 feet WATER LEVEL 9.21 feet bgs @ WATER LEVEL ELEVATION 8 96 feet msl	VOLUME CALCULATED BY:

Table 1 Pipe Volume of Schedule 40 PVC Casing									
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear:ft)		
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66		
2	2.375	2.067	0.17	6	6.625	6.065	1.50		
3	3.500	3.068	0.38	8	8.625	7.981	2.60		

Table 2 Volume of Borehole								
Diameter Volume Diameter Volume Diameter (inches) (gal/linear ft) (inches) (gal/linear ft) (inches) (
7.25	2.14	8.25	. 2.78	• 9.25	3.52			
7.75	2.45	8.75	3.12	10.25	4.29			

MONITORING WELL NO	GR	ROUNDWATER S DATE	SAMPLING <i>5/23/00</i>	PAGE 1 0F 2
PROJECT JW Silveira	TOTAL GALLONS TO BE PURGED			
SITE	PURGING METHOD			
PROJECT NO	SAMPLING METHOD			

	Volume of	Diaghasas			Fi€	eld Paramet	ers Measu	red			·
Time	Water Removed (gallons)	Discharge Rate (gal/min)	pН	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)			Water Level (feet)	Comments
Ø835	Initial		6,34	9.549	646	Ø.42	19.1°				
Ø84Ø	3 gal		6,51	ø.554	999	Ø.52	18,5°				
0844	6 gal		6,55	4. 559	999	Ø.64	18,4°				
9849	9 901		6,54		983	Ø.66	18,3°				
Ø854	12 gal		6.5	Ø.564	999	Ø.86	18,3°				
Ø859	15901		6,55	Ø.563	999	Ø.95	18.2°				
<i>0</i> 9ø3	15gal 18gal		6.57	Ø,566	999	Ø.99	18.2°				parameters Stable.
	U										Sample @ 0910 a.m.
											5/23/00
											<u>, , , , , , , , , , , , , , , , , , , </u>
										·	
								·			
FIELD	EQUIPMENT	SERIAL N	JMBER	RENTAL CO	MPANY	SAMPLE II	D:	<u> N3-</u>	15 ea	910	SAMPLING PERSONNEL:
						ANALYSIS	:				
						•					

COC NUMBER:

TETRA TECH EM INC.
• SAN FRANCISCO •

DATE 5/23/00 PAGE 2 OF 2

STANDING WATER COLUMN 10.14 feet

WELL VOLUMES TO BE PURGED

MINUMUM PURGE VOLUME _____ gallons

ACTUAL VOLUME PURGED _____ gallons

VOLUME CALCULATED BY:

PURGE VOLUME CALCULATION	
One Well Volume = Casing Volume + Annulus Volume One Well Volume = 1.72 gal + 7.94 gal One Well Volume = 9.66 gallons	STANDING WATER COLUMN WELL DEPTH
Casing Volume = Standing Water Column (ft) x Pipe Volume (gal/linear ft) ^a Casing Volume = 10.11 ft x 0.17 gal/linear ft Casing Volume = 1.72 gallons	NOTE: a Refer to Table 1 b Refer to Table 2 c Assuming Sand Pack Porosity of 30%
Annulus Volume = [(Standing Water Column (ft) x Borehole Volume (gal/line Annulus Volume = [(10.14 ft x 2.78 gal/linear ft) - 1.7 Annulus Volume = 7.94 gallons	ear ft) ^b) - Casing Volume] x 0.3° 2 gal] x 0.3

Table 1 Pipe Volume of Schedule 40 PVC Casing										
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)			
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66			
2	2.375	2.067	0.17	6	6.625	6.065	1.50			
3	3.500	3.068	0.38	8	8.625	7.981	2.60			

Table 2 Volume of Borehole								
Diameter Volume Diameter Volume Diameter Volume (inches) (gal/linear ft) (inches) (gal/linear ft) (inches) (gal/linear ft)								
7.25	2.14	8.25	2.78	9,25	3.52			
7.75	2.45	8.75	3.12	10.25	4.29			

MONITORING WELL NO3	DATE 5/23/00 PAGE 1 OF	
PROJECT <u>JW Silveira</u> SITE <u>3-744 E. 12th St.</u> PROJECT NO. <u>P110604</u>	TOTAL GALLONS TO BE PURGED PURGING METHOD SAMPLING METHOD	

	Values of	Diaghana			Fie	eld Paramet		ıred			
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	Нq	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)			Water Level (feet)	Comments
0939	Initial		6.54	Ø.594	999	2.01	19.5°				
0934	3901		6,54	Ø.596	999	2.35	19.50				
9939	Gad		6,49	φ.596	999	1.84	19.5°			,	
0942	9 Jay		6.50		१५५	1.89	19.5°				
0947	17 00		6.49	Ø.595	999	2.03	19.5°				\bigcap
0951	15gal		6.49	Ø.596	777	1,94	19.5°				Parameters Stable
	0					7			·		Sample @ 10000 on 5/23/00
											XWell needs new expandable well cap
			,								System of war cap.
FIELD	EQUIPMENT	SERIAL NI	IMRER	RENTAL CO	MPANY	SAMPLE	D: Te	13-1	(a e.u	(አምር)	SAMPLING PERSONNEL:

FIELD EQUIPMENT	SERIAL NUMBER	RENTAL COMPANY	SAMPLE ID: JU3-10 CM00 SAMPLING PERSONNEL:	
			ANALYSIS:	
			COC NUMBER:	

TETRA TECH EM INC. • SAN FRANCISCO •

MONITORING WELL NO	DATE
PROJECT JW Silveira	•
SITE 3 - 744 E 1275t.	STANDING WATER COLUMNfeet
PROJECT NO	WELL VOLUMES TO BE PURGED
CASING DIAMETER 2 inches	MINUMUM PURGE VOLUME gallons
BOREHOLE DIAMETER 8.25 inches	ACTUAL VOLUME PURGED gallons
TOP OF CASING ELEVATION 16.35 feet WATER LEVEL 7.61 feet bgs @	VOLUME CALCULATED BY:

	Table 1 Pipe Volume of Schedule 40 PVC Casing										
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)				
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66				
2	2.375	2.067	0.17	6	6.625	6.065	1.50				
3	3.500	3.068	0.38	8	8.625	7.981	2.60				

-			ible 2 of Borehole		
Diameter (inches)	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

GROUNDWATER SAMPLING RECORD

DATE 9-18-07) PAGE 10E 2

MONITOR	RING WELL NO	MWI									DATE	9-28-00	PAGE 1 0F 2
PROJECT	r JW SIL	UEIRA		1	OTAL GA	LLONS TO	BE PURG	ED					
SITE 7	, 744 E	1255	57.	F	PURGING I	METHOD _	BALL	~					
PROJECT	TNO. PILO		SAMPLING METHOD SAILUR										
					Fie	eld Paramet	ters Meas	yred					
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	рΗ	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (∘C)			Water Level (feet)		Comments	
0951	Ø		6.14	6.624	999	1.62	19.2	ŧ.					
\$955	2		6.25	0.622	995	1.60	19.4°	•					
0958	4			0,622	999	1.53	19.5°						
1002	6	,	6.21	O. 623	999	1.61	19.5	<u>'</u>					
1006			6.16	0.622	802	1.62	19.5						
1008	4		6.14	0,622	661	1.70	19.5	1					
							ļ						
			<u> </u>				ļ	ļ <u>.</u>					
		·	1										***
													····
							ļ		ļ		<u> </u>		
					ļ <u></u>				ļ				
						·	ļ						
				_		<u> </u>	<u> </u>		<u> </u>				
निर्देश	DEQUIPMENT	SERIALIN	UMBER	RENTAL CO	OMPANY:	SAMPLE ANALYSI	ID: S:	υ3- ex, n	18 <u>e</u> 17BE, "	103D TPH-P	SAMPLING PI	ersonnel:	
						COC NUI	MBFR:	0/05	5				

TETRA TECH EM INC.
• SAN FRANCISCO •

GROUNDWATER SAMPLING RECORD DATE 9-28-00 PAGE 2 0F 2

MONITORING WELL NO. MW-
PROJECT JW SILVEIRA
SITE 3, 744 E 121 ST.
PROJECT NO. PIIOLO4
CASING DIAMETER 2 inches
BOREHOLE DIAMETER 8.25 inches
TOP OF CASING ELEVATION 18.17 feet
WATER LEVEL 9.69 feet bloc 0950 @
WATER LEVEL ELEVATION 8.48 feet msl

STANDING WATER COLUMN 7.44 feet

WELL VOLUMES TO BE PURGED _____ gallons

ACTUAL VOLUME PURGED _____ gallons

VOLUME CALCULATED BY:

		Pip	Tab e Volume of Sci	le 1 nedule 40 PVC			
Diameter (inches)	OD (Inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear:ft)
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66
2	2.375	2.067	0.17	6	6.625	6.065	1.50
3	3.500	3.068	0.38	8	8.625	7.981	2.60

			<u> </u>		
			able 2		
mala maji 161 a dibi 1711 1711 1719	Service and order or street and the control of the service of the control of the		And the Control of the second		
			of Borehole		
Diameter	Volume	Diameter	Volume	Diameter	Volume
(inches)	(gal/linear ft)	(inches)	(gal/linearft)	(inches)	(gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

	Field Decemptors Magazired	Trigrouphy proprietation and the control of the con
PROJECT NO. PUGGOY	SAMPLING METHOD TAILER	
SITE		
3 744 E 12th 57.	PURGING METHOD BAILER	
PROJECT JW SIWEIRA	TOTAL GALLONS TO BE PURGED	
MONITORING WELL NO		DATE TATE PAGE 1012
MONITORING MAKELLING MWZ		DATE 9-27-00 PAGE 1 0F 2
		GROUNDWATER SAMPLING RECOR

	eras a ser e cominación di Persoli de la Los comos de la Carlo de l				Fie	ld Paramet	arameters Measured				
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	рН	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)			Water Level (feet)	Comments
1035	0		5.92	.586	40	.79	20.0				
1042	3		5.25	.599	619	,49	19.7				
1049	· le		5.08	.605	575	.99	19.6				
1055	9		5.02	.605	Ca10	.71	19.8				
1/03	12		5.13		466	.85	19.8				
1109	15	·	5,15	.602	305	.91	19.7				
,	•										
].		

FIELD EQUIPMENT SERIAL NUMBER	RENTAL COMPANY	SAMPLE ID: JW3-19 @1/13 ANALYSIS: BTEX, MTBE, TPH-P	SAMPLING PERSONNEL:
		coc number: 3w3-19-6-1113-	
TETRA TECH EM INC.		\$105	

. SAN FRANCISCO .

GROUNDWATER SAMPLING RECORD DATE 9-27-00 PAGE 2 0F 2

MONITORING WELL NO. MWZ	
PROJECT JW SILVEIRA	
SITE 3, 744 E 12th 57.	STANDING
PROJECT NO. PILOLOGY	WELL VOLU
CASING DIAMETER inches	MINUMUM F
BOREHOLE DIAMETER 8-25 inches	ACTUAL VO
TOP OF CASING ELEVATION 18-17/6-17	
WATER LEVEL <u>8-27</u> feet btoc <u>//35</u> @	
WATER LEVEL ELEVATION 9-90 8-44 feet msl	

		Pip	Tab e Volume of ScI	le 1 nedule 40 PV() Pipe		
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear.ft)	Diameter (inches)	OD (Inches)	(inches)	Volume (gal/linear.ft)
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66
2	2.375	2.067	0.17	6	6.625	6.065	1.50
3	3.500	3.068	0.38	8	8.625	7.981	2.60

			avic.c.		
		Volume	of Borehole		
	Volume (gal/linear ft)	Diameter	Volume (gal/linear.ft)	Diameter (Inches)	volume (gal/linear-ft)
ATTEMPT AND THE PROPERTY OF TH			W. B. J. J. J. J. J. J. J. P. Historia High P. J.	CORP. STREET, MERSEL MERSEL AND THE CORP.	The state of the s
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

MONITORING WELL NO. MW-3		DATE 9-27-00 PAGE 1 0F 2
PROJECT JW SILVEIRA	TOTAL GALLONS TO BE PURGED	
SITE 3, 744 E. 121 57.	PURGING METHOD BALLEY	
PROJECT NO. PIIO604	SAMPLING METHOD BALLAC	
	Field Parameters Measured	
Volume of Discharge Specification Time Water Removed Rate pH Conduct	6.5.3 (4) (T 	Water Comments

					Fi∈	eld Paramet	<u>ers Measu</u>	red		
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	pΗ	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)		Water Level (feet)	Comments
1132	0		5.43	.628	490	2.10	21.2			
1137	3		5.45	.635	641	2.29	21.0		 	
i145	Q		5.48	.636	458	2.32				
1151	9		5.50	. 6360		2.41	20.9		 	
1157	12		5.55	.63Ce	425	2.35	20.9			
1205	15		<i>5</i> .57	.634	291	2.62	21.0			
						:				
									•	
			<u></u>					•		
									 !	

FIELD EQUIPMENT SERIAL NUMBER RENTAL COMPANY	SAMPLE ID: JW3-20 @ 1210 ANALYSIS: BTEX, MTBE, TPH-P	SAMPLING PERSONNEL: HALT Poy	
	COC NUMBER: 4/65 4/05		

TETRA TECH EM INC. SAN FRANCISCO •

GROUNDWATER SAMPLING RECORD DATE 9-27-00 PAGE 2 0F 2

MONITORING WELL NOMW-3	5/1/2
PROJECT JW SIWEIM	_
SITE 3, 744 E 124 57.	STANDING WATER COLUMN 9.17 feet
PROJECT NO. PILOGO 4	WELL VOLUMES TO BE PURGED
CASING DIAMETER 2" inches	MINUMUM PURGE VOLUME gallons
BOREHOLE DIAMETER 8-25 inches	ACTUAL VOLUME PURGED gallons
TOP OF CASING ELEVATION 16-35 feet WATER LEVEL 8-03 feet btoc @	VOLUME CALCULATED BY:
WATER LEVEL ELEVATION 5 Teet msi	

**************************************		Pip	Tab e Volume of Sch	le 1 nedule 40 PVC	Pipe		
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66
2	2.375	2.067	0,17	6	6.625	6.065	1.50
3	3.500	3.068	0.38	8	8.625	7.981	2.60

		Volume	able 2 of Borehole	11.5.711.	
Diameter (inches)			Volume (gal/linear ft)	Diameter	Volume (gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

GROUNDWATER SAMPLING RECORD DATE 12-18-00 PAGE 1 0F 2

MONITORING WELL NO. MWI

PROJECT JW SILVETRA

SITE 3. 744 EAST 1212 ST.

PROJECT NO. PILOG. OH

SAMPLING METHOD BAILER

SAMPLING METHOD BAILER

		ana ar endy a fila de Indian in Systema de ce			Fie	ld Paramet	ers Meast	ıred	,				
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	рН	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (∘C)			Water Level (feet)		Comments	
1/30			6.48	.636	420	4.80	19.5						
1138	3		6.36	.6260	231	4-02	19.7						
1146	Ce		4.36	.le2le	150	4.30	19.60					- (4- 18- 1	
1153	9		6.35	-625	132	396	19.6						
1158	11		6.34	le 2Ce	125	3.85	19.Ce						<u></u>
									<u> </u>				
													<u> </u>
				, seek			<u> </u>				-		
]					
<u></u>													
	-												
												·	

FIELD EQUIPMENT	SERIAL NUMBER	RENTAL COMPANY	SAMPLE ID: 105-21 @ 1205	SAMPLING PERSONNEL:	
HORIBA U-10		Equipus	ANALYSIS: BTEX, MTBE, TPH-P	H. VAWSON	
SOLINIST WATER	412	i		R. GLENN	
			COC NUMBER: _5004		

TETRA TECH EM INC. SAN FRANCISCO .

GROUNDWATER SAMPLING RECORD DATE 12-18-00 PAGE 2 0F 2

MONITORING WELL NO. MW 1	
PROJECT JW SILVETRA	
SITE 3, 744 EAST 12th 5	7
PROJECT NO. 71106.04	
CASING DIAMETER 2	inches
BOREHOLE DIAMETER 8-25	inches
TOP OF CASING ELEVATION 18.17	feet
WATER LEVEL 9.37 feet bloc 1125	
WATER LEVEL ELEVATION 8-80	_

STANDING WATER COLUMN 9.74 feet

WELL VOLUMES TO BE PURGED ______ gallons

ACTUAL VOLUME PURGED _____ gallons

VOLUME CALCULATED BY:

	100 miles (100 miles (Pip	Tab e Volume of Scl	le 1 iedule 40 PV0) Pipe		
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gai/linear ft)
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66
2	2,375	2.067	0.17	6	6.625	6.065	1.50
3	3.500	3.068	0.38	8	8.625	7.981	2.60

		T Volume	able 2 of Borehole		
Diameter (inches)	Volume (gal/linear ft)	Didilioto.	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear.ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

GROUNDWATER SAMPLING RECORD DATE 12-18-00 PAGE 1 0F 2

MONITORING WELL NO. MW2	
PROJECT JW SILVERA	TOTAL GALLONS TO BE PURGED
SITE 3, 744 EAST 121 ST.	PURGING METHOD BAILER
PROJECT NO. PIOG. 04	SAMPLING METHOD BAILER

	er i de la company de la compa	AND LEVEL BY AND AND		Field Parameters Measured								
Time	Volume of Water Removed (gallons)	Discharge Rate (gal/min)	рН	Specific Conductivity (ms/cm)	Turbidity (ntu)	Dissolved Oxygen (mg/L)	Temp. (°C)		Water Level (feet)		Comments	
1257	Ø		6.37	Ø,596	284	3.22	19.50					
13.01	3 gal		6.37	$\phi.592$	309	3.41	19.3°		 			
13p5	6901		6,37	Ø.594	226	3.32	19.2°					
1308	9 adl		6.37		182	3,37	19,1°				ABC	
1312	12 gal		6.37	P.595	118	3.48	19.1°				 -	
					·							
					•							
	<u></u>							<u> </u>				
								<u> </u>				
	. <u>.</u>											
					<u>-</u>							
									r - 2 m		·	

FIELD EQUIPMENT SERIAL NUMBER RENTAL COMPANY	SAMPLE ID: JW3-22 @ 1315	SAMPLING PERSONNEL:
HORBA U-10	ANALYSIS: BTEX, MTBE, TPH-P	H. DAWSON
		R. GLENN
	COC NUMBER: 5004	

TETRA TECH EM INC. SAN FRANCISCO •

GROUNDWATER SAMPLING RECORD

DATE 12-18-00 PAGE 2 0F 2

MONITORING WELL NO. MWZ	
PROJECT JW SILVETRA	
SITE 3, 744 EAST 12 5	r <u>. </u>
PROJECT NO. PILOG-04	
CASING DIAMETER	inches
BOREHOLE DIAMETER 8-25	inches
TOP OF CASING ELEVATION 16.71	feet
WATER LEVEL 7,99 feet bloc	
WATER LEVEL ELEVATION 8.72	_

STANDING WATER COLUMN 9,96 feet

WELL VOLUMES TO BE PURGED _____ gallons

ACTUAL VOLUME PURGED _____ gallons

VOLUME CALCULATED BY:

12 T.		Pip	Tab e Volume of Sch	le 1 nedule 40 PV() Pipe		
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66
2	2.375	2.067	0.17	6	6.625	6.065	1.50
3	3.500	3.068	0.38	8	8.625	7.981	2.60

		T Volume	able 2 of Borehole		
Diameter (Inches)	Volume (gal/linear ft)	Diameter	Volume	Diameter (inches)	Volume (gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

GROUNDWATER SAMPLING RECORD DATE 12-18-50 PAGE 1 0F 2

MONITORING WELL NO. MW 3	
PROJECT JW SIWERA	TOTAL GALLO
SITE 3, 744 EAST 12457.	PURGING ME
PROJECT NO. 7166.04	SAMPLING M

TOTAL GALLONS TO BE PURGED
PURGING METHOD BAILER
SAMPLING METHOD BAILER

nments	

FIELD EQUIPMENT SERIAL NUMBER RENTAL COMPANY	SAMPLE ID: JW3-23 @ 1240	SAMPLING PERSONNEL:
	ANALYSIS: BTEX, MTBE, TPH-P.	H. DAWSON
		R. GLENN
	COC NUMBER: 5004	

TETRA TECH EM INC. SAN FRANCISCO .

GROUNDWATER SAMPLING RECORD

DATE 12-18-00 PAGE 2 0F 2

MONITORING WELL NO. MW3	
PROJECT JW SIWEIRA	
SITE 3, 744 EAST 12th 57	<u>. </u>
PROJECT NO. 71106-04	
CASING DIAMETER	inches
BOREHOLE DIAMETER 8.25	inches
TOP OF CASING ELEVATION	
WATER LEVEL 7.74 feet bloc 1215	@
WATER LEVEL ELEVATION 8.61	eet msl

STANDING WATER COLUMN 9.46 feet

WELL VOLUMES TO BE PURGED ______ gallons

ACTUAL VOLUME PURGED _____ gallons

VOLUME CALCULATED BY:
H. DAWSON

		Pip	Tab e Volume of Sch	le 1 redule 40 PV0	Pipe		
Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)	Diameter (inches)	OD (inches)	ID (inches)	Volume (gal/linear ft)
1.25	1.660	1.380	0.08	4	4.500	4.026	0.66
2	2.375	2.067	0.17	6	6.625	6.065	1.50
3	3.500	3.068	0.38	8	8.625	7.981	2.60

		T Volume	able 2 of Borehole		
Diameter (inches)	Volume (gal/linear ft)	N 1 - T. T. 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	Volume (gal/linear ft)	Diameter (inches)	Volume (gal/linear ft)
7.25	2.14	8.25	2.78	9.25	3.52
7.75	2.45	8.75	3.12	10.25	4.29

APPENDIX B

LABORATORY DATA AND CHAIN-OF-CUSTODY

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

PECEIVED

Laboratory Number 143868

Aromatic Volatile Organics by GC/MS EPA 8260

. TETRA TECH EM INC.

Tetra Tech EMI 135 Main Street

Suite 1800

San Francisco, CA 94105

Project#: P110604

Location: JW Silveira Props

Sample ID	Lab ID
JW3-07 12	143868-001
JW3-08-13	143868-002
JW3-29-14	143868-003
TRIP BLANK	143868-004

2/5/100 Jus

I certify that this data package has been reviewed for technical correctness and completeness. Please see attached narrative for a discussion of any analytical problems related to this sample set. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.

The case narrative is an integral and inseparable part of this report.

Signature: Just K Morriss Jor JC,
Title: Operations Manager,

signature: Owl Watham

Title: Project Manager

Date: 3 17/00

Date: 3/17/50 0

-0001

Chain of Custody Record

Page	of	

135 Main St. Suite 1800						-				Γ			D			oti	vo A	dde			
San Francisco, CA 94105	PO#		Lab:			1					П		1		7	ALIV	T			П	\dashv
415-543-4880				-									1		X.			Ш		1:	
Fax 415-543-5480			CST			No	./Co	nta	iner Types				Αı	ıal	ysi	is I	Req	uire	:d		
Project name: 744 E 12557.	TtEMI technic		Field samplers	1 : 1 : 1							Π		Τ.,	s	П	П		\prod			
JW SILUEIRA # 3 Project number:	JACK	E LUTA	Field samplers HAT DAY Roy G	(GN4)			- E					ا څ	ables	tabl	1.)	7					
Project number:	TtEMI projec	t manager:	Field samplers	' signatures:		VOA	Poly Mar	j ag	<u> </u>	1	5	St/I	1 2	Ě	Ŏ						
P106.04	HAL	HAR DAWSON		6DOL		40 ml VOA 1 Liter Amber 1 Liter Poly Brass Tube Glass Jar		ass Ja	P VC	.P.SV	CLP Pest/PCBs	I d H	HE	7	7						
Sample ID		le Description/Notes	Date	Time	Matrix	8	= =	툪	<u></u> 5	ű	5	5 5	3 5	F	5	1	\perp	Ш			
JW3-47	mw1	744 E 125 57	2-9-00	1430	WATER	Lo				T			X	П	X	Х					7
JW3-48	MWZ	Ч	<i>‡</i> 1	15 PU	. 44	6							×	П	X	X				Τ,	
JW3-48 JW3-49	MW3	4	ŧ,	1530	fy	6				Ī			×	\prod	X	X					
				y																	
																			\perp		
																\perp			$oldsymbol{\perp}$		
																:					
																-					
																\prod					
									-	B .T				· 			D .			Tr.	

	Name (print)	Company Name	Date	Time
Relinquished by: Lou D. Lile	Roy GLEWN	TTONI	2-10-00	
Received by:				
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				ق.
Relinquished by: /				
Received by:				
T				

Turnaround time/remarks:

Laboratory Number: 143868

Client: Tetra Tech EMI Location: Silveira Site 2

Project#: P110604

Receipt Date: 02/10/00

PURGEABLE AROMATICS CASE NARRATIVE

This hardcopy data package contains sample and QC results for four water samples that were received on February 10, 2000.

There was insufficient sample provided to perform a matrix spike and spike duplicate analysis on the samples from this site.

The trip blank was received in the cooler but not documented on the chain of custody. The client was contacted on February 11, 2000 and requested analyses to be performed.

No analytical problems were encountered.

	Purgeable	Aromatics by G	C/MS
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604 .	Analysis:	EPA 8260B
Field ID:	JW3-DT12	Batch#:	53818
Lab ID:	143868-001	Sampled:	02/09/00
Matrix:	Water management	Received:	02/10/00
Units:	ug/L	Analyzed:	02/16/00
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	•
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	<u>-</u>
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	103	78-123
Toluene-d8	100	80-110
Bromofluorobenzene	98	80-115

	P	urgeable	Aromatics by GO	2/MS
Lab #:	143868		Location:	JW Silveira Props
Client	Tetra Tech EMI	•	Prep:	EPA 5030
Project	#: P110604		Analysis:	EPA 8260B
Field I	D: JW3-9813		Batch#:	53818
Lab ID:	143868-002		. Sampled:	02/09/00
Matrix:	Water	3 2 1 2 1 E	Received:	02/10/00
Units:	ug/L	P) with	Analyzed:	02/16/00
Diln Fa	c: 1.000			

Analyte	Result	RL	
MTBE	ND	0.5	•
Benzene	ND	0.5	
Toluene	ND	0.5	•
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	

	E	
1,2-Dichloroethane-d4 103	8 78-123	
Toluene-d8 99	80-110	•
Bromofluorobenzene 98	80-115	

		Purgeable A	Aromatics by GC	!/MS
Lab #:	143868		Location:	JW Silveira Props
Client:	Tetra Tech EN	4 I	Prep:	EPA 5030
Project#:	P110604		Analysis:	EPA 8260B
Field ID:	JW3-D814		Batch#:	53818
Lab ID:	143868-003	7/24/02	Sampled:	02/09/00
Matrix:	Water	1111100	Received:	02/10/00
Units:	ug/L		Analyzed:	02/16/00
Diln Fac:	1.000		<u> </u>	

Analyte	Result	RL	
MTBE	29	0.5	
Benzene	2.4	0.5	
Toluene	ND	0.5	
	ND	0.5	
m,p-Xylenes	ND	Q.5	•
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	%REC	Limits		
1,2-Dichloroethane-d4	103	78-123		
Toluene-d8	100	80-110		
Bromofluorobenzene	98	80-115		

	Purgeab	le Aromatics by GO	C/MS
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	Pl10604	Analysis:	EPA 8260B
Field ID:	TRIP BLANK	Batch#:	53792
Lab ID:	143868-004	Sampled:	02/09/00
Matrix:	Water	Received:	02/10/00
Units:	ug/L	Analyzed:	02/15/00
Diln Fac:	1.000	. -	

midiyle	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	•
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

1,2-Dichloroethane-d4 100 78-123 Toluene-d8 100 80-110 Brownofluorobenzene 113 80-115	Surrogate	%REC	Limits	
,	1,2-Dichloroethane-d4	100	78-123	
Bromofluorobenzene 113 80-115	Toluene-d8	100	80-110	
DIOMOZIACIACIAC III OC III	Bromofluorobenzene	113	80-115	

	Purgeab	le Aromatics by GO	:/MS
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Field ID:	222222222	Batch#:	53792
MSS Lab ID:	143869-001	Sampled:	02/09/00
Matrix:	Water	Received:	02/09/00-
Units:	ug/L	Analyzed:	02/15/00
Diln Fac:	1.000	-	

Type:

MS

Lab ID:

QC107987

1	Ana.	Lyte	MS	S Result	Spiked	J	Result	%REC	C Limits
	Benzene			<5.000	50.00		45.50	91	80-114
	Toluene		•	<5.000	50.00		46.05	92	79-121

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	98	78-123	
Toluene-d8	97	80-110	
Bromofluorobenzene	101	80-115	

Type:

MSD

Lab ID:

QC107988

Benzene 50.00 45.05 90 80-114 1 Toluene 50.00 45.61 91 79-121 1	Analyte	Spiked	Result	%RE(Limits	RPI	Lim
50 00 45.61 91 79-121 1		50.00	45.05	90	80-114	1	20
Totache	Toluene	50.00	45.61	91	79-121	1	20

	,			
	≉REC	Limits		
1,2-Dichloroethane-d4	100	78-123	,	
Toluene-d8	98	80-110		
Bromofluorobenzene	102	80-115		

	Purgeab	le Aromatics by GO	?/MS
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	53818
Units:	ug/L	Analyzed:	02/16/00
Diln Fac:	1.000		4.5

Type:

BS

Lab ID:

QC108062

	Analyte		Result	%RE(Limits	
Benzene		50.00	46.09	92	80-116	
Toluene		50.00	47.22	94	80-120	· '

Surrogate	%REC	: Limits		
1,2-Dichloroethane-d4	98	78-123		
Toluene-d8	99	80-110	•	
Bromofluorobenzene	99	80-115	 	·

Type:

BSD

Lab ID:

QC108063

Analyte	Spiked	Result	%RE(Limits	RPI	Liin
Benzene	50.00	44.46	89	80-116	4	20
Toluene	50.00	45.58	91	80-120	4	20

Surrogate	\$REC	Limits	
1,2-Dichloroethane-d4	95	78-123	
Toluene-d8	97	80-110	
Bromofluorobenzene	· 99	80-115	

		le Aromatics by GG	e/Ms
Lab #:	143868	Location;	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC107972	Batch#:	53792
Matrix:	Water	Analyzed:	02/15/00
Units:	ug/L		

Analyte Benzene	Spiked 50.00	Result 44.92	90	80-116	
Toluene	50.00	47.16	94	80-120	•
			•		
Surrogate	%REC Limits				

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	97	78-123	
Toluene-d8	100	80-110	·
Bromofluorobenzene	102	80-115	

																							Ċ												

Lab #: 143868 Location: JW Silveira Props Client: Tetra Tech EMI Prep: EPA 5030

 Client:
 Tetra Tech EMI
 Prep:
 EPA 5030

 Project#:
 P110604
 Analysis:
 EPA 8260B

 Type:
 BLANK
 Diln Fac:
 1.000

 Lab ID:
 QC107973
 Batch#:
 53792

 Matrix:
 Water
 Analyzed:
 02/15/00°

Units: ug/L

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	•
Ethylbenzene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

•	Surrogate	%REC	Limits	
	1,2-Dichloroethane-d4	100	78-123	
L	Toluene-d8	99	80-110	
	Bromofluorobenzene	112	80-115	
	Bromotinoroneusene	112	80-115	

					100		1			96	10	×	٠.				٠.				10	œ	٧.	0	ю	٠,	×	۰	30	٠.	o.	ж	٠,	ж	×	00	10	00				90	1,0	100				1.5	20	×	00	200	2.5	. 44	2		ж.		12	9	•				- ()	
	٠.		٠.				. :	٠.		3		х,	9	21	т	×	10	•	۰				ĸ.	٠.	÷			۰		10		×	4	20	8	٠.				1		1	-	90			٠.			•					23	4	-		÷	ü			٠.	-		
	 	- 4		- 1		•	×,	_	•	e	٠.	-	-	٠.	н	۰.	٠.	ı		,	-	٠.				٠.		٠		٠.				'n					-		-	1	7	-	100	_	٠.					•						٠,			 ۲.	v	1		٠.	٠.
40	0.0		Ξ.	·I				•	к	٠	-	4		Ľ	ч	٠.	١.	÷	×	٠		٠,	er.			٠.		1	0	π	6		1	Ľ	u		٠.		×		а	٠,	Ľ	-3				10	0.0			: 1			0	4				2		м.		ŝ		

Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC108064	Batch#:	53818
Matrix:	Water	Analyzed:	02/16/00
Units:	ug/L	-	

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	N D	0.5	•
Toluene	ND	0.5	
Ethylbenzene ·	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND .	0.5	
o-Xylene	ND	0.5	<u> </u>

	Surrogate	%REC	Limits	
	1,2-Dichloroethane-d4	103	78-123	
	Toluene-d8	100	80-110	
	Bromofluorobenzene	98	80-115	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

BECEIVED

Laboratory Number 143868

Total Volatile Hydrocarbons EPA 8015 (Mod)

TETRA TECH EM INC.

Tetra Tech EMI 135 Main Street Suite 1800

Can Prancisco

San Francisco, CA 94105

Project#: P110604

Location: JW Silveira Props

Sample ID

JW3-9712 JW3-9813

JW3-D97 Y

Lab ID

143868-001 143868-002

143868-003

(3/2//00

I certify that this data package has been reviewed for technical correctness and completeness. Please see attached narrative for a discussion of any analytical problems related to this sample set. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.

The case narrative is an integral and inseparable part of this report.

Signature: Tues & Morrison for Ja

Title: Operations Manager

Signature: (And Watter Title: Project Manager Date: 8/17/10

Date: 3/17/00

-9001

Laboratory Number: 143868

Client: Tetra Tech EMI Location: Silveira Site 2

Project#: P110604

Receipt Date: 02/10/00

TPH-PURGEABLES CASE NARRATIVE

This hardcopy data package contains sample and QC results for three water samples that were received on February 10, 2000.

No analytical problems were encountered.

l.	Gasoline l	oy GC/FID CA LU	PT
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Field ID:	JW3-0712	Batch#:	53760
Lab ID:	143868-001	Sampled:	02/09/00
Matrix:	Water Sma	Received:	02/10/00**
Units:	ug/L / slalo	Prepared:	02/14/00
Diln Fac:	1.000	Analyzed:	02/15/00

Analyte		Result	RL	
Gasoline C7-C12	N	D	50	
		·		
Surrogate	%REC	Limits		
Trifluorotoluene (FID)	103	59-135		
Bromofluorobenzene (FID)	108	60-140		

		Gasoline ł	oy GC/FID CA LU	JPT		
Lab #:	143868		Location:	JW Silveira Props		
Client:	Tetra Tech EM	Ι	Prep:	EPA 5030		
Project#:	P110604		Analysis:	EPA 8015M		
Field ID:	JW3-98 13		Batch#:	53760		
Lab ID:	143868-002		Sampled:	02/09/00		
Matrix:	Water	•	Received:	02/10/00		
Units:	ug/L	ma 3/21/00	Prepared:	02/14/00		
Diln Fac:	1.000		Analyzed:	02/15/00		

Analyte		Result	RL		
Gasoline C7-C12	NE)	50		
Surrogate	%REC	Limits			
Trifluorotoluene (FID)	102	59-135		 	•
Bromofluorobenzene (FID)	108	60-140			

		Gasoline	by GC/FID CA LU	IFT	
Lab #:	143868		Location:	JW Silveira Props	
Client:	Tetra Ted	ch EMI	Prep:	EPA 5030	
Project#:	P110604		Analysis:	EPA 8015M	·
Field ID:	JW3-09-14		Batch#:	53760	
Lab ID:	143868-00)3	Sampled:	02/09/00	
Matrix:	Water	bres	Received:	02/10/0ზ	
Units:	ug/L	3/2/00	Prepared:	02/14/00	
Diln Fac:	1.000		Analyzed:	02/15/00	

Analyte	Result	RL	
Gasoline C7-C12	ND	50	
Surrogate	%REC Limits		
Trifluorotoluene (FID)	101 59-135		· · · · · · · · · · · · · · · · · · ·
Bromofluorobenzene (FID)	109 60-140		

	Gasoli	ne by GC/FID CA LU	JFT
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Field ID:	ZZZZZZZZZZ	Batch#:	53760
MSS Lab ID:	143892-005	Sampled:	02/10/00
Matrix:	Water	Received:	02/10/00
Units:	ug/L	Analyzed:	02/14/00
Diln Fac:	1.000		

Type:

MS

Lab ID:

QC107854

١.	Gasoline C7-C12	<50.00	2.000	2.158	108	65-131
-	Analyte	MSS Result	Spike	d Result	%RE	C Limits

Surrogate	%rec	Limits	
Trifluorotoluene (FID)	116	59-135	
Bromofluorobenzene (FID)	113	60-140	

Type:

MSD

Lab ID:

QC107855

Analyte	Spiked	Result	%REC	Limits	RPD	Lin
Gasoline C7-C12	2,000	1,975	99	65-131	9	20
						
Surrogate	enpa timita					******
- Juntoyace	ZKAC BIMIUS					*********

	Bromofluorobenzene	(FID)	112	60-140		•	92	
ŀ	Trifluorotoluene (F	FID)	113	59-135	 			
	Surrogate	3	%REC	Limits				

	Gasoli	ne by GC/FID CA LU	J FT
Lab #:	143868	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC107851	Batch#:	53760
Matrix:	Water	Analyzed:	02/14/00
Units:	ug/L	· · · · · · · · · · · · · · · · · · ·	

Analyte	Spiked	Result	%REC	Limits	
Gasoline C7-C12	2,000	2,097	105	73-121	
				•	
Surrogate	SDPC Timite				***********

	Surroga	te	%REC	Limits			
	Trifluorotoluene	(FID)	111	59-135			
-	Bromofluorobenzen	e (FID)	103	60-140		-	

Gasoline by GC/FID CA LUFT

Lab #: Client:

Project#:

Type:

Lab ID:

143868

Tetra Tech EMI

P110604

BLANK QC107853

Matrix: Water Units: ug/L

Location:

JW Silveira Props

EPA 5030

Prep: Analysis: EPA 8015M

Diln Fac:

Analyzed:

Batch#:

1.000 53760

02/14/00

Analyte	Result		
Gasoline C7-C12	ND	50	

	Surrogat	.e	%RE	EC Limits
	Trifluorotoluene ((FID)	97	59-135
	Bromofluorobenzene		99	60-140
1				

Laboratory Number: 145791 Client: Tetra Tech EMI

Location: JW Silveria UST, Oak.

Project#: P1106.05

•

Receipt Date: 05/23/00

This hardcopy data package contains sample and QC results for three water samples that were received on May 23, 2000.

TPH-PURGEABLE HYDROCARBONS AND BTXE CASE NARRATIVE

The surrogate recoveries in the gasoline continuing calibration verifications were flagged but the recoveries were within the laboratory's statistically derived limits.

No other analytical problems were encountered.

135 Main St. Suite 1800

Chain of Custody Record

		i
Page	of ([

San Francisco, CA 94105					_									Pr	eser	vati	ve A	\dde	d		
415-543-4880	PO#	Lab:												五	1	33					
Fax 415-543-5480		CURTIS	& Tom	Prims	No	o./(Con	tain	er Ty	pes								quire	ed .		ш.,
	TtEMI technical contact:							1]		П	1	_		<u> </u>				$\overline{\top}$	П	\top
Project name: 744 East 1255. JW SILVEIRA#3	JACKIE LUTA	HAT DA	Jon #4	or Exem		ᅵᆲ						ę	<u> </u>	ples	aple						
Project number:	TtEM project manager:	Field samplers	'signatures:	o conco		Ē	o S				$\ _{ullet}\ $	¥	기 를	68	lract /	M		-			
PIIOLE	HAR DAWSON				40 mi VOA	1 Liter Amber	1 Liter Poly	Glass Jar			P VO	P SV	P Res	TPH Purgeables	HEX	7					. .
Sample ID	Sample Description/Notes	Date	Time	Matrix	9	1	7 2	ਹੈ		- 1.	CI	ij	<u> </u>	\$ E	EK	75					
JW3-15	MW-Z	5-23-60	0910	WATER	0			\top			П			X	_		\sqcap	\Box	\top	\top	7
JW3-16	Mw-3	1.	1000		4						П			X	χ	(X	П			Τ.	Ī
JW 3-17	MW-1	V	1100	V	Ce									X	λ	X.					
																\prod		\prod	\top		
																	T	Π	\top		\top
																			\top		
													\top	П	T	П			T	\prod	
														П	T	П			T	\prod	
														\prod	T	1	T		\top	\prod	
															1	\prod		\prod	\top	П	
													1			\prod		11	\top	\prod	
		-											\top	П			1				T
				•	,		•														
	1.		ame (pri	nt)				Co	mpa	ny]	Na	me	ž				Da	ıte		Tim	ıe
Relinquished by:	Jl	ForG	a LEW		_	7	on	17		•	•					5	-22	3-00	;	_	_
Received by:						•															
Relinquished by:						-										T			T		
Received by:												-									
Relinquished by:																\top			1		
Received by:											•					_			1		

Turnaround time/remarks:

Relinquished by: Received by:

	Gasolir	ne by GC/FID CA LU	TFT.
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8015M
Field ID:	JW3-15	Batch#:	56307
Lab ID:	145791-001 '	Sampled:	05/23/00
Matrix:	Water	Received:	05/23/00
Units:	ug/L	Analyzed:	06/05/00
Diln Fac:	1.000	•	

Analyte	Result	RLi	
Gasoline C7-C12	ND	50	

Surrogat	e	%REC	Limits
Trifluorotoluene (FID)	106	59-135
Bromofluorobenzene	(FID)	104	60-140

	Benzene, Tolu	ene, Ethylbenzene,	Xylenes
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8021B
Field ID:	JW3-15	Batch#:	56307
Lab ID:	145791-001	Sampled:	05/23/00
Matrix:	Water	Received:	05/23/00
Units:	ug/L	Analyzed:	06/05/00
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	

Surroga	ce .	%REC	Limits
Trifluorotoluene	(PID)	95	56-142
Bromofluorobenzen	e (PID)	93	55-149

ĺ	Gasolii	ne by GC/FID CA LU	JFT.
Lab #:	145791	Location:	JW Silveria UST,Oak.
L Client:	Tetra Tech EMI	Prep:	EPA 5030
Client: Project#:	P1106.05	Analysis:	EPA 8015M
Field ID:	JW3-16	Batch#:	56307
Lab ID:	145791-002	Sampled:	05/23/00
Matrix:	Water	Received:	05/23/00
Units:	uq/L	Analyzed:	06/05/00
Diln Fac:	1.000		

Analyte	Result	RL	
Gasoline C7-C12	ND	50	,
	· .		
	0.552		

Surrogate	%REC	Limits
Trifluorotoluene (FID)	109	59-135
Bromofluorobenzene (FID)	106	60-140

		Benzene, Toluene, E	thylbenzene, X	γlenes
	Lab #:	145791	Location:	JW Silveria UST,Oak.
ì	Client:	Tetra Tech EMI	Prep:	EPA 5030
	Project#:	P1106.05	Analysis:	EPA 8021B
	Field ID:	JW3-16	Batch#:	56307
	Lab ID:	145791-002	Sampled:	05/23/00
	Matrix:	Water	Received:	05/23/00
	Units:	ug/L	Analyzed:	06/05/00
L	Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	4.7	2.0	
Benzene	0.59	0.50	
Toluene	ND	0.50	•
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	

_	#1.000.000.000.000.000.000.000.000.000.0		
Surrogate	%REC	Limits	
Trifluorotoluene (PID)	98	56-142	
Bromofluorobenzene (PID)	94	55-149	

<u>L</u>	Gasoliı	ne by GC/FID CA LU	JFT
-) !!			
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8015M
Field ID:	JW3-17	Batch#:	56307
Lab ID:	145791-003	Sampled:	05/23/00
Matrix:	Water	Received:	05/23/00
Units:	ug/L	Analyzed:	06/06/00
Diln Fac:	1.000		

Analyte	Result	RL,	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	109	59-135
Bromofluorobenzene (FID)	110	60-140

	Benzene, Tolu	ene, Ethylbenzene,	Xylenes
Lab #:	145791	Location:	JW Silvería UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8021B
Field ID:	JW3-17	Batch#:	56307
Lab ID:	145791-003	Sampled:	05/23/00
Matrix:	Water	Received:	05/23/00
Units:	ug/L	Analyzed:	06/06/00
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	NID	0.50	
m,p-Xylenes	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	2 Limits
Trifluorotoluene (PID)	98	56-142
Bromofluorobenzene (PID)	97	55-149

	Gasoline by	GC/FID CA LUFT	
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8015M
Field ID:	ZZZZZZZZZZ	Batch#:	56307
MSS Lab ID:	145802-003	Sampled:	05/24/00
Matrix:	Water	Received:	05/24/00
Units:	ug/L	Analyzed:	06/06/00
Diln Fac:	1.000		

Type:

MS

Lab ID:

QC117469

Analyt	е	MSS Res	ult	Spiked	Result	%REC L	imits
Gasoline C7-C12		43	. 89	2,000	2,006	98 6	5-131
AND THE PROPERTY OF A PROPERTY		iantana markamaninin			electrical contraction and the second contraction of the second contra		
Surrog	ate	%REC	Limits				

60-140

121

Type:

MSD

Bromofluorobenzene (FID)

Lab ID:

QC117470

Analyte		Spiked	Result	%REC	: Limits	RPD	Lin
Gasoline C7-C12		2,000	1,977	97	65-131	1	. 20
	%REC	Limits					
Trifluorotoluene (FID)	122	59-135		,			
Bromofluorobenzene (FID)	123	60-140					

	Gasoline by	GC/FID CA LUFT	
Lab #:	1457 91	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8015M
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC117466	Batch#:	56307
Matrix:	Water	Analyzed:	06/05/00
Units:	ug/L		

Gasoline C7-C12	2,000	1,951	98	73-121	
Surrogate	%REC Limits				

Surrogate	%RE	C Limits	
Trifluorotoluene (FID)	124	59-135	
Bromofluorobenzene (FI	D) 123	60-140	

	Benzene, Tolu	ene, Ethylbenzene,	Xγlenes
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8021B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC117467	. Batch#:	56307
Matrix:	Water	Analyzed:	06/05/00
Units:	ug/L		

Analyte	Spiked	Result	%REC	' Limits
MTBE	20.00	18.94	95	66-126
Benzene	20.00	18.09	90	67-117
Toluene	20.00	18.89	94	69-117
Ethylbenzene	20.00	19.47	97	68-124
m,p-Xylenes	40.00	40.22	101	70-125
o-Xylene	20.00	19.21	96	65-129

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	95	56-142	
Bromofluorobenzene (PID)	92	55-149	

	Gasoli	me by GC/FID CA IA	IFT
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030 .
Project#:	P1106.05	Analysis:	EPA 8015M
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC117468	Batch#:	56307
Matrix:	Water	Analyzed:	06/05/00
Units:	ug/L	-	

Gasoline C7-C12	ND	50	
			•
Surrogate	%REC Limits		
m 'Cl	100 50 105		

Trifluorotoluene (FID) 109 59-135 Bromofluorobenzene (FID) 109 60-140	Surrogate	%REG	Limits		
Bromofluorobenzene (FID) 109 60-140		. 109	59-135		
	Bromofluorobenzene (FID)	109	60-140	·	

	Benzene, Tolu	ene, Ethylbenzene,	Xylenes
Lab #:	145791	Location:	JW Silveria UST,Oak.
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P1106.05	Analysis:	EPA 8021B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC117468	Batch#:	56307
Matrix:	Water	Analyzed:	06/05/00
Units:	ug/L		

		RL	
MTBE	ND ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	•
	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	. ND	0.50	

Surrogate	%RI	RC Limits		
Trifluorotoluene (PID)	97	56-142	*	, · ·
Bromofluorobenzene (PID)	93	55-149		

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) $486_{\rm p}$ 0532 $_{\rm color}$ = 1 $_{\rm color}$ $_{\rm color}$

Laboratory Number 147763

TETRA TECH EM INC.

Tetra Tech EMI 135 Main Street

Suite 1800

San Francisco, CA 94105

Project#: P110604

Location: JW Silveira Props

 Sample ID
 Lab ID

 JW3-18
 147763-001

 JW3-19
 147763-002

 JW3-20
 147763-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature:

Operations Manager

Date: 10/19/00

Signature:

Char War

Date: |0|19/00

Project Manager

Page 1 of

(d)

CA ELAP # 1459

000001

Laboratory Number: 147763

Client: Tetra Tech EMI Location: JW Silveira Props

Project#: P110604

Receipt Date: 09/28/00

CASE NARRATIVE

This hardcopy data package contains sample and QC results for three water samples that were received on September 28, 2000. The samples were received intact at 6.5 degrees Celsius.

TPH-Purgeable Hydrocarbons: High surrogate recoveries were observed for trifluorotoluene in the matrix spike and spike duplicate of JW2-18 (CT#147754-001) and the continuing calibration verifications due to coelution with a hydrocarbon peak. The surrogate recoveries for bromofluorobenzene were within criteria. High percent differences were observed in the continuing calibration verifications that were analyzed on September 29 and 30, 2000 causing the spike recoveries in the laboratory control sample and matrix spikes to be flagged. The responses were high, the spike recoveries were within criteria, and gasoline was not detected in any of the samples. No other analytical problems were encountered.

BTXE by EPA8260: Due to an oversight by the project manager, the samples were analyzed by GC/MS instead of by GC as requested. There was insufficient sample provided to perform a matrix spike and spike duplicate analysis on a water sample from this site. No analytical problems were encountered.

PO#

135 Main St. Suite 1800

415-543-4880

San Francisco, CA 94105

•	1	ŋ	5	
---	---	---	---	--

Chain of Custody Record

Lab:

	1		1	
Page	ŧ	of	ŧ	

Preservative Added

Fax 415-543-5480		1 Cole	1 211	1044KIN) N	0./	Co	nta	iine	r Ty	pes	1			A	na	lys	is P	æqu	aire	d		
Project name: 744 E 1251. JW SILVEIRA - 3	SARA WOOLEY	Field samplers	Poy			ber	y							PCBs	8	ctables	BTEX						T
Project number: P110604	HAL DAWSON	Field samplers	' signatures:		40 ml VOA	1 Liter Amber	1 Liter Poly	Brass Tube	ass Jar			P VOA	P SVOA	P Pest/	P Metal	H Extra	STEX	TEC	,				
Sample ID	Sample Description/Notes	Date	Time	Matrix	\$	=	=	Br	5			5	2	5	듸	===	(3.)	Z					
JW3-18	MW-1	9-28-00	1030	WATER	4								\prod		7	*	X	X			\prod	-,4	1
JW3-19	MW-Z	9-27-00	1113	" !!	4]								X	$\langle $	X	X			Π	_	i .
JW3-Z4	MW-3	ll .	1215	11	4	•									Y	4	X	X					
											<u> </u>							Ĺ					
										\perp			Ш		Ŀ	\perp		\perp	Ш		Ш		
					 	ļ				\perp	\perp		\sqcup	\downarrow	_		1	\perp		\perp	$\perp \downarrow$		
					Ш_			Щ		\perp	1		1_	_	\perp	\perp	Ш	\perp	$\perp \downarrow$		$\perp \downarrow$	_	┷
										\perp	-		↓ ↓	4	4	\bot	Щ	\bot	$\perp \downarrow$	\perp	\coprod	4	_
			<u> </u>		 	<u> </u>			\rightarrow	+	+-	-		\dashv	\downarrow	\dotplus	\dashv	\dashv	+		\dashv	\perp	╀
					-	<u> </u>			\perp	\perp	+-		╁┼	4	4	\bot	\dashv	\dashv	44	+	\dashv	+	╀
			 		-					\perp		╟	╁┼		+	+	4-4	-+	\dashv		+	+	+
1	<u> </u>				!	<u> </u>			1			<u> </u>							1_1		$\perp \perp$		<u>. L</u>
- 10		·N	ame (pri	nt)				(Cor	npa	ny	N	am	e e				T :	Dat	te	T	Ϊjm(— е
Relinquished by:		Roy G	CENN	<u>-</u>	 		7			n7									28-			-	_
Received by:		1 -1					•			7 4			-										->-
Relinquished by:				<u> </u>								_											
Received by:											-											-	
Relinquished by:														_									
Received by:																							
Relinquished by:																							
Received by:					<u>. </u>																		
Turnaround time/remarks:	-		-																				
L																				· · ·		<u> </u>	
	W	HITE-Laboratory Cop	y YELLOW-Pro	aject Office Capy																	±.7		

135 Main St. Suite 1800

147763

Chain of Custody Record

	_	_
	į.	1
Dage	1 05	í

See Fermines CA 04105														Pre			e Add	ed		
San Francisco, CA 94105 415-543-4880	PO#	Lab:												Ξ	7	3				
Fax 415-543-5480	,	Cur	715 4	Tompkin	No	./C	ont	aine	r Tvo	oes				An			Requir	red		
Project name: 744 E 12-37.	-TtEMI technical contact:	Field samplers	•				T				П	\top	1	П	Ţ	T	T		\top	T
JW SILVEIR4-3	SARA WOOLEY	HALT	Pou			2						ع ا	ĝ	es :	TPH Extractables					
Project number:	TtEMI project manager:	Field samplers	' signatures:		┨╋║	ĝ	۾ څ				≰	S i	tals	25		3				
P110604	HAL DAWSON				40 ml VOA	1 Liter Amber	s Luter Foly Brass Tube	Glass Jar			CLP VOA	CLP SVOA	PMC			门				
Sample ID	Sample Description/Notes	Date	Time	Matrix	<u>\$</u>	1 :		Ğ			티	히	히		≓ (੯	34				
JW3-18		9-28-00	1030	WATER	4							7		X	X	X				T
JW3-19		9-27.00	1113	11	4							\top		X	X	X				
JW3-19 JW3-Z4		11	12105	u	4	1					П	\top		X	X	X				T
																				T
												I								
																П				I
							TE	MP	RE					6	4	1/				$oxed{\mathbb{L}}$
							AE	CHI	VE		Y			<u>ال</u>	4		-0			T
					1				7	19	1	7		2#	B					
				,								\top					232			
	-	T																		
70010			ame (pri	nt)			· ·		npa		Na	me	<u> </u>				Date		Tim	<u>e</u>
Relinquished by:		Koy G	كلك		ļ <u>.</u>	_/_	\mathcal{I}	<i>e</i> ?	NI	-						4-	<u> 28-0</u>	0		
Received by:		#V 1 2	- Oxer						^^=	_							 			
Relinquished by:	20n (1)	MAL	TAM	MON	ļ		Ţ	إ	<u> </u>	_						14/	25/9	19	ЦФ	<u>) </u>
Received by:	Inneta/	Be	mes	-\/>		_(<u>¥_</u>	<u> </u>							19	[29]	(d/	10.	<u> </u>
Relinquished by:			····													<u> 7</u>		1		
Received by:																<u> </u>		_		
Relinquished by:																				
Received by:																<u> </u>				
Turnafound time/remarks:	0 2 vok not on coc - on 1					,			, ()	_		/	1						
) () ()	$\sim \rho \sim 1$	11 7	M 6	l A le		(di	710	k) (1	56	cl							

TPH/Purgeable Data

	Gasoli	ne by GC/FID CA LU	FT
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Field ID:	JW3-18	Batch#:	58599
Lab ID:	147763-001	Sampled:	09/28/00
Matrix:	Water	Received:	09/28/00
Units:	ug/L	Analyzed:	09/29/00
Diln Fac:	1.000		

• •					
Analyte Gasoline C7-C12	N	Result D	RL 50	UTC	
Surrogate	%RBC	' Limits			
Trifluorotoluene (FID)	116	59-135			
Bromofluorobenzene (FID)	118	60-140			

	Gasoli	ne by GC/FID CA LU	FT .
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Field ID:	JW3-19	Batch#:	58599
Lab ID:	147763-002	Sampled:	09/27/00
Matrix:	Water	Received:	09/28/00
Units:	ug/L	Analyzed:	09/29/00
Diln Fac:	1.000		· · · · · · · · · · · · · · · · · · ·

Analyte		Result	RL		
Gasoline C7-C12	ND		50	IJC	
Surrogate	%REC				
Trifluorotoluene (FID)	117	59-135	•		i
Bromofluorobenzene (FID)	120	60-140			•

	Gasoli	ne by GC/FID CA LU	JFT
- 1 11			
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Field ID:	JW3-20	Batch#:	58599
Lab ID:	147763-003	Sampled:	09/27/00
Matrix:	Water	Received:	09/28/00
Units:	ug/L	Analyzed:	09/30/00
Diln Fac:	1.000	-	

	Analyte		Result	RL		
1	Gasoline C7-C12	N	/D	50	456	
	Surrogate	%REC	' Limits			
-	Trifluorotoluene (FID)	117	59-135			
ì	Bromofluorobenzene (FID)	118	60-140			

	Gasolir	ne by GC/FID CA LU)FT
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8015M
Field ID:	JW2-18	Batch#:	58599
MSS Lab ID:	147754-001	Sampled:	09/27/00
Matrix:	Water	Received:	09/28/00
Units:	ug/L	Analyzed:	09/29/00
Diln Fac:	1.000	-	

Type:

MS

Lab ID:

QC126339

Analyte	MSS Result	Spiked	· Result	%RE(
Gasoline C7-C12	6,154	2,000	8,109 b	98	65-131
•			,		
Surrogate	%PRC Limite				

l	Surrogate		%REC	Limits
	Trifluorotoluene (FI	D)	326 *	>LR 59-135
l	Bromofluorobenzene ((FID)	128	60-140

Type:

MSD

Lab ID:

QC126340

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	8,048 b	95	65-131	1	20
				.		
Surrogate	%REC Limits					
Twiflyonotolyono (ETD)	200 + ID 60 100					

Surrogate	%REC Limits	
Trifluorotoluene (FID)	325 * >LR 59-135	
Bromofluorobenzene (FID)	128 60-140	

⁼ Value outside of QC limits; see narrative

b = See narrative

>LR= Response exceeds instrument's linear range

RPD= Relative Percent Difference

Page 1 of 1

Gasoline by GC/FID CA LUFT Lab #: 147763 Location: JW Silveira Props Client: Tetra Tech EMI Prep: EPA 5030 Project#: P110604 Analysis: EPA 8015M Type: LCS Diln Fac: 1.000 Lab ID: 58599 QC126338 Batch#: Matrix: Water Analyzed: 09/29/00 Units: ug/L

Analyte	Spiked	Result	%REC	Limits	
Gasoline C7-C12	2,000	2,324 b	116	73-121	

Surrogate	%RB(Limits	
Trifluorotoluene (FID)	131	59-135	
Bromofluorobenzene (FID)	.112	60-140	

Gasoline by GC/FID CA LUFT JW Silveira Props Lab #: 147763 Location: Client: Tetra Tech EMI Prep: EPA 5030 EPA 8015M Project#: P110604 <u>Analysis:</u> Type: BLANK Diln Fac: 1.000 Lab ID: QC126337 Batch#: 58599 Analyzed: 09/29/00 Water

 Analyte
 Result
 RL

 Gasoline C7-C12
 ND
 50

	Surrogate	%RBC	Limits
	Trifluorotoluene (FID)	112	59-135
- 1	Bromofluorobenzene (FID)	109	60-140

Matrix: Units:

ug/L

BTXE Data

	Purgeab	le Aromatics by GC	:/MB
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Field ID:	JW3-18	Batch#:	58581
Lab ID:	147763-001	Sampled:	09/28/00
Matrix:	Water	Received:	09/28/00
Units:	ug/L	Analyzed:	09/29/00
Diln Fac:	1.000		

Analyte	Result	RL .
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND ·	0.5
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5

Surrogate	\$REC	Limits	
1,2-Dichloroethane-d4	106	78-123	
Toluene-d8	98	80-110	
Bromofluorobenzene	104	80-115	

	Purgeab	le Aromatics by GO	:/MB
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Field ID:	JW3-19	Batch#:	58581
Lab ID:	147763-002	Sampled:	09/27/00
Matrix:	Water	Received:	09/28/00
Units:	ug/L	Analyzed:	09/29/00
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	. 0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	1REC	Limits	
1,2-Dichloroethane-d4	107	78-123	•
Toluene-d8	100	80-110	
Bromofluorobenzene	105	80-115	

Purgeable Aromatics by GC/MS							
Lab #:	147763	Location:	JW Silveira Props				
Client:	Tetra Tech EMI	Prep:	EPA 5030				
Project#:	P110604	Analysis:	EPA 8260B				
Field ID:	JW3-20	Batch#:	58581				
Lab ID:	147763-003	Sampled:	09/27/00				
Matrix:	Water	Received:	09/28/00				
Units:	ug/L	Analyzed:	09/30/00				
Diln Fac:	1.000						

Analyte	Result	RL	
MTBE	1.8	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	FREC	Limits		
1,2-Dichloroethane-d4	109	78-123		
Toluene-d8	101	80-110		
Bromofluorobenzene	104	80-115	 	

	Purgeab	le Aromatics by GC	2/MB
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	58581
Units:	ug/L	Analyzed:	09/29/00
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC126262

Analyte	Spiked	Result	%REC	Limits
Benzene	50.00	48.19	96	80-116
Toluene	50.00	48.71	97	80-120

Surrogate	\$REC	Limits	
1,2-Dichloroethane-d4	99	78-123	
Toluene-d8	99	80-110	
Bromofluorobenzene	99	80-115	

Type:

BSD

Lab ID:

QC126263

Analyte	Spiked	Result	SREC	Limits		
Benzene	50.00	47.32	95	80-116	2	20
Toluene	50.00	48.07	96	80-120	1	20

Surrogate	3RE(Limits
1,2-Dichloroethane-d4	99	78-123
Toluene-d8	98	80-110
Bromofluorobenzene	99	80-115

	Purgeab	le Aromatics by GO	C/MB
Lab #:	147763	Location:	JW Silveira Props
Client:	Tetra Tech EMI	Prep:	EPA 5030
Project#:	P110604	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC126265	Batch#:	58581
Matrix:	Water	Analyzed:	09/29/00
Units:	ua/L		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	103	78-123	•
Toluene-d8	101	80-110	
Bromofluorobenzene	102	80-115	

Laboratory Number: 149311

Client: **Tetra Tech EMI** Project#: **P1106.04**

Location: JW SILVEIRA

Receipt Date: 12/19/00

CASE NARRATIVE

This hardcopy data package contains sample and QC results for six water samples that were received on December 19, 2000. The samples were received cold and intact.

Total Volatile Hydrocarbons by EPA 8015M: High Trifluorotoluene surrogate recovery was observed in sample **JW2-21** (CT#149311-004). This outlier is due to the hydrocarbon peaks coeluting with the surrogate peak.

No other analytical problems were encountered.

BTXE by EPA 8021B: No analytical problems were encountered.

Chain of Custody Record

	1	
Page _	of	

135 Main St. Suite 1800		01 0	abto a,	, 110001						_									1	+	_
San Francisco, CA 94105	120				7					_	1 1						Add	ed		,	
415-543-4880	PO#	Lab:											至		\vec{z}	<u>}</u>					
Fax 415-543-5480		1 C5	1		No.	/C	onta	iner	Types				A				qui	red		4	
Project name: 744 E 12 57	TtEMI technical contact:	Field samplers				Т						<u> </u>		95		T	\prod	\prod		П	_
JW SKUEIRA	SARA WOOLEY	HAL \$	tog			<u> </u>						B	ples	table							
Project number:	TtEM1 project manager:	Field samplers	signatures:		181;		<u>5</u>	느			8	7		trac	×	ٰ اِز					
P1146.44	HAC DAWSON				40 ml VOA	I Liter Amoer	Brass Tube	Glass Jar		CLP VOA	P SV	P P	֓֞֞֟֞֓֞֟֞֟֓֞֟֞֟֓֞֟֞֟֓֟֟֟֟ ֓֞֓֞֞֞֞֞֞֞֞֞֞	H Ex	BTEX M-RA	} -	}				
Sample ID	Sample Description/Notes	Date	Time	Matrix	₹ ;		- E	Image: Control of the		5	J	히	티	E	S)	-					
JW3-21 3 W3-22 JW3-23	MWI	12-18-00	1205	WATER	3	1				1			X		×Χ					! 	-
3W3-2Z	MWZ		1315		3	1	-					Ī	X		χX			П	\top	lí	
JW3-23	MW3	V	1240	¥	3								X		XX			П			٦
		•																П	\top		
																				П	٦
							ļ						\perp	Ш							
							ļ.,,										Ш				
															\perp						
								N		L											
										L			1		<u>.</u>						
																	Ш				
		T			1			~								<u> </u>					—1
POND			ame (pri	nt)	<u> </u>				pany	N	am						ate		Tir	po	
Relinquished by:		Koy G	KENN		1	7	E	Vi I	-· 			12	-10	7-0	0+	2-1	8-6	D -	,		_
Received by		1 1			1													- 1			- 1

0 - 0.0	Name (print)	(ame (print) Company Name					
Relinquished by:	KOY GLENN	TT EMI 12-19-00	12-18-00	,			
Received by:							
Relinquished by:							
Received by:							
Relinquished by:							
Received by:							
Relinquished by:							
Received by:							

Turnaround time/remarks:

135 Main St. Suite 1800	Cha Cha	in of C	ustody	Record	d										Pag	зе	1	of_	_	
San Francisco, CA 94105									•				Pı	resei	rvati	ive A	Added			
415-543-4880	PO#	Lab:]								Ŧ		記	\prod	k	3		
Fax 415-543-5480	00MW-P0093	C \$	T		No.	./C	ont	ainer T	ypes			1_					juir e	⇒-		
Project name: 744 E 12 57	TtEMI technical contact:	Field samplers:	<u> </u>		ΙТΤ	Т	Т				П	Т	T	S	T	П	1	7		\top
DW SILVEIRA Project number:	SARA WOOLEY	HAL &	Foy "			된							ables	table	MIRE MIRE					
Project number:	TtEMl project manager:	Field samplers'	signatures:		8		<u> </u>	اليا		×	ð		20	ž,		1				
P1106.04	HAC DAWSON				40 ml VOA	I Liter Amber	Brass Tube	Glass Jar		P VO	P SV	ع اع م	H Pu	HE					* .	
Sample ID	Sample Description/Notes	Date	Time	Matrix	용 ;	= =	: £	5		CI	CI	히	I.	4	۹₹					
JW3-21 JW3-22 JW3-23		12-18-00	1205	WATER	3								X	>	ζX					
5W3-2Z		1	1315	(3								X	ز	₹X	\prod				
JW 3-23		V	1240	y	3		1					1	X	7	(X	П		\top	\sqcap	\top
												1				П			П	
												1				\prod			П	
		1					<u> </u>			П		\top			\top				П	
	Received Andient	\														П		\prod		
	and Month	Thitact	-													Π		\prod		
	Received Ambient															\prod				
	VA Cola															П		\Box	П	
														1			\top			
/											1									
P 3000		Na	ıme (prii	nt)			_	Comp	any	Na	ım	<u> </u>				Da	ate	7	Cim	ie

2500	Name (print)	Company Name	Date	Time
Relinquished by:	KOM GLENN	77 FM-E 12-19-6) 12-18-00	-
Received by:	fet 139m	UST 12-19		10005
Relinquished by:				
Received by:				<u> </u>
Relinquished by:				
Received by:				
Relinquished by:				
Received by:				
Turnaround time/remarks:	173			

SQP Volume:

Client Services

Section

1.1.2

Page:

1 of 1

Effective Date:

10-May-99

Revision:

1 Number 3 of 3

Filename:

F:\QC\Forms\QC\Cooler.wpd

COOLER RECEIPT CHECKLIST

Curtis & Tompkins, Ltd.

Logi	in#: 149311 Date Received: 12/19100 Number of Coolers: 1 Project: JW Silveira
Che	nt: 1811 18th 18h Project: U. V. J. I. V. 174
A.	Preliminary Examination Phase Date Opened: 12/19/00 By (print): 10/10/10/10/10/10/10/10/10/10/10/10/10/1
1	Date Opened: 1711 by (print): 500 1 (sight)
1.	If VES onto comics none and circlit number
2.	If YES, enter carrier name and airbill number: Were custody seals on outside of cooler?
۷.	
3.	How many and where? Seal date: Seal name: Were custody seals unbroken and intact at the date and time of arrival? YES NO
۶. 4.	Were custody papers dry and intact when received?
4 . 5.	Were custody papers filled out properly (ink, signed, etc.)?
<i>6</i> .	Did you sign the custody papers in the appropriate place?
7.	Was project identifiable from custody papers?
7.	If YES, enter project name at the top of this form.
8.	If required, was sufficient ice used? Samples should be 2-6 degrees C
ο.	Type of ice: Wet i'ce Temperature: Chilles
	Type of ice. The femperature.
B.	Login Phase Date Logged In: 12/19 By (print): // (sign) June Brown of Brown
1.	Describe type of packing in cooler: foamies
2.	Did all bottles arrive dibroker:
3.	Were labels in good condition and complete (ID, date, time, signature, etc.)? YES NO
4.	Did bottle labels agree with custody papers?
5.	Were appropriate containers used for the tests indicated?
6.	Were correct preservatives added to samples?
7.	Was sufficient amount of sample sent for tests indicated?
8.	Were bubbles absent in VOA samples? If NO, list sample Ids below
9.	Was the client contacted concerning this sample delivery? YES NO
	If YES, give details below.
	Who was called? By whom? Date:
Addi	tional Comments:
	<u> </u>
-	
Filena	me: F:\qc\forms\cooler.wpd Rev. 1, 4/95

Results & QC Summary

	Gasoline by	GC/FID CA LUFT	
Lab #:	149311	Prep:	EPA 5030
Client:	Tetra Tech EMI	Analysis:	EPA 8015M
Project#:	STANDARD		
Field ID:	JW3-21	Batch#:	60491
Lab ID:	149311-001	Sampled:	12/18/00
Matrix:	Water	Received:	12/19/00
Units:	ug/L	Analyzed:	12/28/00
Diln Fac:	1.000		

Gasoline C7-C12	N	D	50	
				A STATE OF THE STA
Surrogate	%REC	Limits		
Trifluorotoluene (FID)	99	59-135		
D	205	CO 140		

Analyte Result

	Gasoli	ne by GC/FID CA Lt	IFT	
Lab #:	149311	Prep:	EPA 5030	
Client:	Tetra Tech EMI	Analysis:	EPA 8015M	
Project#:	STANDARD			<u></u>
Field ID:	JW3-22	Batch#:	60491	
Lab ID:	149311-002	Sampled:	12/18/00	
Matrix:	Water	Received:	12/19/00	
Units:	ug/L	Analyzed:	12/28/00	
Diln Fac:	1.000			

	Nesulu		
Gasoline C7-C12	ND	50	
Surrogate	%RRC Limits		

Surrogate	%REC	Limits
Trifluorotoluene (FID)	103	59-135
Bromofluorobenzene (FID)	104	60-140

	Gasoli	ne by GC/FID CA LU	JFT
Lab #:	149311	Prep:	EPA 5030
Client:	Tetra Tech EMI	Analysis:	EPA 8015M
Project#:	STANDARD		
Field ID:	JW3-23	Batch#:	60491
Lab ID:	149311-003	Sampled:	12/18/00
Matrix:	Water	Received:	12/19/00
Units:	ug/L	Analyzed:	12/28/00
Diln Fac:	1.000		

Gasoline C7-C12	ND	30	
Surrogate	%REC Limits		
Trifluorotoluene (FID)	100 59-135		1

Result

Surrogate	%REC	Limits
Trifluorotoluene (FID)	100	59-135
Bromofluorobenzene (FID)	104	60-140

	Benzene, Tolu	ene, Ethylbenzene,	Xylenes	
Lab #:	149311	Prep:	EPA 5030	
Client:	Tetra Tech EMI	Analysis:	EPA 8021B	
Project#:	STANDARD			
Field ID:	JW3-21	Batch#:	60491	
Lab ID:	149311-001	Sampled:	12/18/00	
Matrix:	Water	Received:	12/19/00	
Units:	ug/L	Analyzed:	12/28/00	
Diln Fac:	1.000			

Analyt	e Result	RL	
MTBE	ND	2.0]
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	j

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	112	56-142	
Bromofluorobenzene (PID)	113	55-149	

	Benzene, Toluene,	Ethylbenzene, X	(ylenes
Lab #:	149311	Prep:	EPA 5030
Client:	Tetra Tech EMI	Analysis:	EPA 8021B
Project#:	STANDARD		
Field ID:	JW3-22	Batch#:	60491
Lab ID:	149311-002	Sampled:	12/18/00
Matrix:	Water	Received:	12/19/00
Units:	ug/L	Analyzed:	12/28/00
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	113	56-142	
Bromofluorobenzene (PID)	115	55-149	

	Benzene, Toluene, E	thylbenzene, X	ylenes
Lab #:	149311	Prep:	EPA 5030
Client:	Tetra Tech EMI	Analysis:	EPA 8021B
Project#:	STANDARD		
Field ID:	JW3-23	Batch#:	60491
Lab ID:	149311-003	Sampled:	12/18/00
Matrix:	Water	Received:	12/19/00
Units:	ug/L	Analyzed:	12/28/00
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	7.8	2.0	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.50	
o-Xylene	ND	0.50	

Surrogate	%RI	C Limits	
Trifluorotoluene (PI) 111	56-142	
Bromofluorobenzene (E	PID) 114	55-149	

	Benzene, Tolu	ene, Ethylbenzene,	Xylenes
Lab #:	149311	Prep:	EPA 5030
Client:	Tetra Tech EMI	Analysis:	EPA 8021B
Project#:	STANDARD		
Field ID:	JW3-21	Batch#:	60491
MSS Lab ID:	149311-001	Sampled:	12/18/00
Matrix:	Water	Received:	12/19/00
Units:	ug/L	Analyzed:	12/28/00
Diln Fac:	1.000		

ſуре:

MS

Lab ID:

QC133747

7	•				
Analyte	MSS Result	Spiked	Result	%REC	Limits
MTBE	ND	20.00	21.35	107	33-131
Benzene	<0.1200	20.00	21.94	110	65-123
Toluene	<0.2500	20.00	22.01	110	73-122
Ethylbenzene	<0.05600	20.00	21.77	109	59-137
m,p-Xylenes	<0,1400	40.00	45.00	112	68-132
o-Xvlene	<0.1500	20.00	21.92	110	61-140

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	112	56-142	
Bromofluorobenzene (PID)	114	55-149	

Type:

MSD

Lab ID: QC133748

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	22.37	112	33-131	5	20
Benzene	20.00	22.00	110	65-123	0	20
Toluene	20.00	22.72	114	73-122	3	20
Ethylbenzene	20.00	22.03	110	59-137	1	20
m,p-Xylenes	40.00	44.94	112	68-132	0	20
o-Xylene	20.00	22.04	110	61-140	1	20

	Surroga	te	%REC	Limits
Trif	luorotoluene	(PID)	114	56-142
Brom	ofluorobenzen	e (PID)	116	55-149

000020

ND= Not Detected

:PD= Relative Percent Difference

Page 1 of 1