

### **Epigene International**

CONSULTING GEOLOGISTS

October 16, 1996

Mr. J.W. Silveira
J.W. Silveira Company
499 Embarcadero
Oakland, CA 94606

Subject:

Quarterly Monitoring Report for Site Located at 2301 East 12th Street, Oakland

The purpose of this report is to provide the results of the site investigations carried out in the third quarter of 1996 at the subject site. The site is located at the southwest corner of the intersection of East 12th Street and 23rd Avenue in Oakland. The site location is shown on Figure 1. A site plan is presented on Figure 2. The site is presently occupied by Discount Brakes and Tires.

There are six monitoring wells and one extraction well located on or adjacent to the site. The well locations are shown on Figure 2. Gauging of the depth to groundwater was carried out for each project well on September 17, 1996 prior to any purging of the wells. An electronic probe was used to measure the depth to groundwater from the survey mark on the top of the casing. The probe is calibrated to hundredths of a foot. Several of the wells had significant vapor pressure and up to 2 hours were required for the water levels in the wells to stabilize. The groundwater elevations were calculated and are presented on Figure 3. Groundwater elevation contours are also plotted on Figure 3.

In addition to the contouring, a direction and slope of the gradient was also calculated by a graphical

Quarterly Monitoring Report 2301 East 12th Street, Oakland October 16, 1996 Page 2

solution to a three-point problem based on the groundwater elevations of MW-1, MW-5, AND MW-6. The results of this calculation are plotted on Figure 3. The direction of the gradient is generally consistent with the groundwater elevation contouring and most of the more recent previous calculations.

Groundwater samples were collected on September 17 from all of the project wells. The wells were purged of approximately five casing volumes prior to sampling by bailing or pumping with a purge pump. Purge water was placed in new 55 gallon drums and left on the site. The samples were collected using a dedicated bailer for each well. The samples were placed in appropriate sample containers provided by the laboratory. After labeling each sample, it was stored in a cooled ice chest and transferred to a State certified laboratory under chain-of-custody control.

The requested analysis for each sample was based on the original Workplan, amendment, and the results of the past quarter sampling and analysis. The results of the water samples are summarized on tables 1 through 7 for each well. The tables also include the results of previous data for each well. In addition, LUFT metals were run for the samples from MW-2, MW-3, AND EW-1. These results are included in Appendix A.

The certified Laboratory Report and chain-of-custody documentation are included in Appendix A. Significant levels of contamination continue to be present in all of the project wells. Graphs showing concentrations of contamination for each well are presented on Figure 4.

Quarterly Monitoring Report 2301 East 12th Street, Oakland October 16, 1996 Page 3

We appreciate the opportunity to of service to you on this project. Should you have any questions, please contact the undersigned

Sincerely,

John N. Alt, CEG No. 1136

JOHN N. ALT

Nº 1136

CERTIFIED
ENGINEERING
GEOLOGIST

OF CAUFORNIA

Attachments

cc: Mr. Barney Chan, Alameda County Department of Environmental Health Mr. Robert Shapiro, Esquire

Table 1A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-1

| Sampling<br>Date | TPH<br>Diesel | TPH<br>Gasoline | Всилене | Toluene | Ethyl-<br>benzene | Xvienes | TRPH* |
|------------------|---------------|-----------------|---------|---------|-------------------|---------|-------|
| 7/27/92          | 360           | 1800            | 600     | 5.1     | 13                | 18      | ND    |
| 11/6/92          | 670           | 8000            | 2400    | 6.1     | 41                | ND      | NA    |
| 3/2/93           | 1100          | 5600            | 3800    | ND      | 120               | ND      | NA    |
| 5/26/93          | 1700          | 4800            | 3400    | 44      | 140               | 150     | NA    |
| 8/27/93          | 1200          | 8400            | 2300    | 35      | 180               | 57      | ND    |
| 12/23/93         | ND            | 7800            | 29      | 16      | 5,8               | 26      | NA    |
| 3/27/94          | 2600          | 10,000          | 2400    | 84      | 310               | 280     | NA    |
| 6/24/94          | 1500          | 9000            | 2300    | 44      | 260               | 170     | NA    |
| 10/16/94         | 2000          | 10,000          | 2100    | 35      | 250               | 140     | NA    |
| 2/13/95          | 2500          | 16,000          | 3200    | 110     | 460               | 260     | NA    |
| 6/20/95          | 3500          | 18,000          | 2600    | 87      | 450               | 220     | NA    |
| 10/16/95         | 2700          | 13,000          | 2200    | 63      | 220               | 110     | NA    |
| 2/15/96          | 16,000        | 11,000          | 1400    | 25      | 130               | 81      | NA    |
| 6/18/96          | 8000          | 12,000          | 2500    | 72      | 190               | 130     | NA    |
| 9/17/96          | 3100          | 7000            | 1200    | 29      | 86                | 55      | NA    |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         | /       |                   |         |       |
| **               |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |

MW-1 is a 2 inch PVC well installed 12/23/91 to a total depth of 28 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Judsoil=
.01 mg/kg
.00 ppb)

Table 1B-Summary of Volatile Halocarbon Concentrations (in PPB) Detected in MW-1

.02 55 1,6 61 0.12 710 39 KE (36 ).2 Trans 1,2 Dichloro-ettene Vievi PCE 1,2-134 Sampling Date Chlore-Chloro-Chloride Chloro. Exichtere benzene ethone ethene ethane NA NA NA NA NA NA NA NA 7/27/92 NA NA NA NA NA NA 11/6/92 NA NA ND 5.8 ND ND ND ND ND 3/2/93 ND ND 6.8 ND ND 5/26/93 ND ND ND ND ND ND 5.4 ND 8/27/93 ND ND ND 1.1 NA NA NA NA NA NA. NA NA 12/23/94 NA NA NA NA NA NA NA NA 3/27/94 NA NA NA NA NA 6/24/94 NA 10/16/94 NA ND ND ND ND 2/13/95 ND ND ND 1.3 6.5 ND ND 6/20/95 ND 1.1 ND ND 1.1 ND 2.5 ND 0.84 ND ND 10/16/95 ND ND ND 24 ND ND ND ND ND 0.82 2/15/96 ND<5 ND<5 ND<5 ND<5 ND<5 6/18/96 ND<5 ND<5 ND<5 ND<3 ND<3 11 9/19/96 ND<3 ND<3 ND < 3ND < 3ND < 3

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 2A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-2

| TPH<br>Diesel | TPH<br>Gasoline                                                              | Benzone                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ethyl-<br>benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRPH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1500          | 20,000                                                                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17,000        | 19,000                                                                       | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37,000        | 14,000                                                                       | 3800                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6000          | 11,000                                                                       | 5200                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5400          | 16,000                                                                       | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 720           | 18,000                                                                       | 87                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6100          | 17,000                                                                       | 2100                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3000          | 15,000                                                                       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5300          | 15,000                                                                       | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4900          | 18,000                                                                       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6600          | 30,000                                                                       | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31,000        | 19,000                                                                       | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11,000        | 25,000                                                                       | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5500          | 13,000                                                                       | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13,000        | 15,000                                                                       | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | ,                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 1500 17,000 37,000 6000 5400 720 6100 3000 5300 4900 6600 31,000 11,000 5500 | Diesel         Gasoline           1500         20,000           17,000         19,000           37,000         14,000           6000         11,000           5400         16,000           720         18,000           6100         17,000           3000         15,000           4900         18,000           6600         30,000           31,000         19,000           11,000         25,000           5500         13,000 | Diesel         Gasoline           1500         20,000         110           17,000         19,000         2800           37,000         14,000         3800           6000         11,000         5200           5400         16,000         1700           720         18,000         87           6100         17,000         2100           3000         15,000         2000           5300         15,000         1500           4900         18,000         2000           6600         30,000         1300           31,000         19,000         1500           11,000         25,000         1700           5500         13,000         1400 | Diesel         Gasoline           1500         20,000         110         6           17,000         19,000         2800         120           37,000         14,000         3800         110           6000         11,000         5200         140           5400         16,000         1700         120           720         18,000         87         79           6100         17,000         2100         100           3000         15,000         2000         72           5300         15,000         1500         81           4900         18,000         2000         120           6600         30,000         1300         85           31,000         19,000         1500         92           11,000         25,000         1700         93           5500         13,000         1400         75 | Diesel         Gasoline         benzene           1500         20,000         110         6         37           17,000         19,000         2800         120         790           37,000         14,000         3800         110         950           6000         11,000         5200         140         1000           5400         16,000         1700         120         640           720         18,000         87         79         42           6100         17,000         2100         100         630           3000         15,000         2000         72         550           5300         15,000         1500         81         410           4900         18,000         2000         120         660           6600         30,000         1300         85         510           31,000         19,000         1500         92         400           11,000         25,000         1700         93         490           5500         13,000         1400         75         460 | Diesel         Gasoline         benzene           1500         20,000         110         6         37         39           17,000         19,000         2800         120         790         1100           37,000         14,000         3800         110         950         1100           6000         11,000         5200         140         1000         990           5400         16,000         1700         120         640         710           720         18,000         87         79         42         400           6100         17,000         2100         100         630         750           3000         15,000         2000         72         550         520           5300         15,000         1500         81         410         520           4900         18,000         2000         120         660         900           6600         30,000         1300         85         510         520           31,000         19,000         1500         92         400         330           11,000         25,000         1700         93         490         440 |

MW-2 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 2B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-2

| Sampling<br>Date | Chioro-<br>benzene | Chloru-<br>ethme | 1.2-Di<br>Chineo<br>ethnie | Clk 1,2<br>Dichlere<br>elliene | Trans L3<br>Dichloro<br>ethnic | PCE  | ICE  | Vinyl<br>Chloride |
|------------------|--------------------|------------------|----------------------------|--------------------------------|--------------------------------|------|------|-------------------|
| 7/27/92          | NA                 | NA               | NA                         | NA                             | NA                             | NA   | NA   | NA                |
| 11/6/92          | NA                 | NA               | NA                         | NA                             | NA                             | NA   | NA   | NA                |
| 3/2/93           | ND                 | ND               | ND                         | ND                             | ND                             | ND   | ND   | ND                |
| 5/26/93          | 9.8                | ND               | ND                         | 2.7                            | 2.7                            | ND   | ND   | ND                |
| 8/27/93          | 10                 | 1.3              | 0,66                       | 3.2                            | ND                             | ND   | ND   | 2.2               |
| 12/23/93         | 4.3                | ND               | ND                         | 1.0                            | ND                             | ND   | ND   | 1.5               |
| 3/27/94          | ND                 | ND               | ND                         | ND                             | ND                             | ND   | ND   | ND                |
| 6/24/94          | 6.5                | ND               | ND                         | ND                             | ND                             | ND   | ND   | ND                |
| 10/16/94         | 5.7                | 1,1              | ND                         | 0.73                           | ND                             | ND   | ND   | 1.0               |
| 2/13/95          | 12                 | ND               | ND                         | ND                             | ND                             | ND   | ND   | ND                |
| 6/20/95          | 7.9                | 1.5              | 1.4                        | 1.0                            | ND                             | ND   | ND   | 2.1               |
| 10/16/95         | 5.1                | ND               | ND                         | ND                             | ND                             | ND   | ND   | ND                |
| 2/15/96          | 4.8                | ND               | ND                         | ND                             | ND                             | ND   | ND   | ND                |
| 6/13/96          | 5.6                | ND<5             | ND<5                       | ND<5                           | ND<5                           | ND<5 | ND<5 | ND<5              |
| 9/17/96          | 8.2                | ND<4             | ND<4                       | ND<4                           | ND<4                           | ND<4 | ND<4 | ND<4              |
|                  |                    | ·                |                            |                                | :                              |      |      |                   |
| `                |                    |                  |                            |                                |                                |      |      |                   |
|                  |                    |                  | <u></u>                    |                                |                                |      |      |                   |

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.5 PPB for this well.

Table 3A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-3

| Sampling<br>Date | TPH<br>Diesel | TPH<br>Gasoline | Benzens | Toluene | Ethyl-<br>benzene | Xylenes | TRPH* |
|------------------|---------------|-----------------|---------|---------|-------------------|---------|-------|
| 7/27/92          | 4000          | 8800            | 150     | 8.6     | 88                | 13      | ND    |
| 11/6/92          | 21,000        | 10,000          | 78      | 3.1     | 830               | 13      | NA    |
| 3/2/93           | 9300          | 3900            | 120     | ND      | 240               | 37      | NA    |
| 5/26/93          | 4400          | 7400            | 570     | 4.1     | 640               | 8.4     | ND    |
| 8/27/93          | 8200          | 7100            | 180     | 15      | 110               | 9.4     | ND    |
| 12/23/93         | 230           | 7900            | 30      | 14      | 12                | 62      | NA    |
| 3/27/94          | 4300          | 5700            | 180     | 10      | 100               | 24      | ND    |
| 6/24/94          | 1500          | 8400            | 230     | 13      | 93                | 7.6     | NA    |
| 10/16/94         | 2700          | 6300            | 140     | 8.7     | 68                | 25      | 7.3   |
| 2/13/95          | 1600          | 7500            | 220     | 17      | 110               | 22      | 8.3   |
| 6/20/95          | 13,000        | 11,000          | 310     | 23      | 160               | 63      | 8.5   |
| 10/16/95         | 1900          | 4700            | 120     | 6.7     | 32                | 16      | 8.3   |
| 2/15/96          | 9400          | 8100            | 62      | 13      | 50                | 33      | 12    |
| 6/13/96          | 5000          | 30,000          | 110     | 65      | 130               | 160     | 51    |
| 9/17/96          | 15,000        | 10,000          | 68      | 20      | 61                | 42      | NA    |
|                  |               | -               |         |         |                   |         |       |
| •                |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |

MW-3 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 3B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-3

| Sampling<br>Date | Chloro-<br>benzene | Chioro-<br>ethane | 1,2.14<br>Chiero<br>effisine | Cis 1.2<br>Dichloros<br>efficie | Trans 1,2<br>Dichloro-<br>ethene | PCE  | ICE  | Vinyi<br>Chlaride |
|------------------|--------------------|-------------------|------------------------------|---------------------------------|----------------------------------|------|------|-------------------|
| 7/27/92          | NA                 | NA                | NA                           | NA                              | NA                               | NA   | NA   | NA                |
| 11/6/92          | NA                 | NA                | NA                           | NA                              | NA                               | NA   | NA   | NA                |
| 3/2/93           | ND                 | ND                | ND                           | ND                              | ND                               | ND   | ND   | ND                |
| 5/26/93          | NA                 | NA                | NA                           | NA                              | NA                               | NA   | NA   | NA                |
| 8/27/93          | ND                 | ND                | ND                           | ND                              | ND                               | ND   | 16   | ND                |
| 12/23/93         | NA                 | NA                | NA                           | NA                              | NA                               | NA   | NA   | NA                |
| 3/27/94          | ND                 | ND                | ND                           | ND                              | ND                               | ND   | 6    | ND                |
| 6/24/94          | ND                 | ND                | ND                           | 6,0                             | 1,5                              | ND   | ND   | ND                |
| 10/16/94         | ND                 | ND                | ND                           | 8.4                             | 2.1                              | ND   | 12   | ND                |
| 2/13/95          | ND                 | ND                | ND                           | 4.3                             | 1.3                              | ND   | 5.1  | ND                |
| 6/20/95          | ND                 | 0.5               | ND                           | 4.9                             | 1.7                              | ND   | 5.7  | ND                |
| 10/16/95         | ND                 | ND                | ND                           | 7.1                             | 2.0                              | ND   | 7.8  | ND                |
| 2/15/96          | ND                 | ND                | ND                           | 7.3                             | 2.6                              | ND   | 9.3  | ND                |
| 6/13/96          | ND<1               | ND<1              | ND<1                         | 6.9                             | 2.5                              | ND<1 | ND<1 | ND<1              |
| 9/17/96          | ND<5               | ND<5              | ND<5                         | 11                              | ND<5                             | ND<5 | 13   | ND<5              |
|                  |                    | -                 |                              |                                 |                                  |      |      |                   |
|                  |                    |                   |                              |                                 |                                  |      |      |                   |
|                  |                    |                   |                              |                                 |                                  |      |      |                   |
|                  |                    |                   |                              |                                 |                                  |      |      |                   |

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 4A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-4

| Sampling<br>Date | TPH<br>Diesel | TPH<br>Gasoline | Benzene | Toluene | Ethyl-<br>benzene | Xylenes | TRPH* |
|------------------|---------------|-----------------|---------|---------|-------------------|---------|-------|
| 3/27/94          | 1800          | 2200            | 19      | 1.2     | 2.9               | 12      | NA    |
| 6/24/94          | 420           | 2300            | 2.9     | 1.6     | 2.8               | 4.6     | NA    |
| 10/16/94         | 900           | 3500            | 3.8     | 2       | 5.2               | 24      | NA    |
| 2/13/95          | 630           | 2600            | 100     | 100     | 3.8               | 7.1     | NA    |
| 6/20/95          | 1100          | 3000            | 31      | 3.4     | 6.1               | 12      | NA    |
| 10/16/95         | 1100          | 2000            | 43      | 2.3     | 8.4               | 6.9     | NA    |
| 2/15/96          | 940           | 3400            | ND      | ND      | ND                | ND      | NA.   |
| 6/13/96          | 1100          | 1900            | 12      | 5.7     | 3.4               | 9.6     | NA    |
| 9/17/96          | 2500          | 3100            | ND<.5   | 15      | 78                | 12      | NA    |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   | / raum  |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |

MW-4 is a 2 inch PVC well installed 3/18/94 to a total depth of 20 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 4B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-4

| Sampling<br>Date | Chloro-<br>benzene | Chlorn-<br>ethane | 1,2-Di<br>Chloro<br>ethane | Cls 1.2<br>Dicidoro<br>ethene | Trans 1.2<br>Dichloro<br>ethene | PCE    | TCE                                   | Vinst<br>Chloride |
|------------------|--------------------|-------------------|----------------------------|-------------------------------|---------------------------------|--------|---------------------------------------|-------------------|
| 3/27/94          | NA                 | NA                | NA                         | NA                            | NA                              | NA     | NA                                    | NA                |
| 6/24/94          | NA                 | NA                | NA                         | NA                            | NA                              | NA     | NA                                    | NA                |
| 10/16/94         | ND                 | ND                | 0.67                       | 0.71                          | ND                              | ND     | ND                                    | ND                |
| 2/13/95          | ND                 | ND                | ND                         | ND                            | ND                              | ND     | ND                                    | ND                |
| 6/20/95          | ND                 | ND                | ND                         | 2.2                           | 1.0                             | ND     | ND                                    | ND                |
| 10/16/95         | ND                 | ND                | ND                         | 1.3                           | ND                              | ND     | ND                                    | ND                |
| 2/15/96          | ND                 | ND                | ND                         | 1.8                           | 0.79                            | ND     | ND                                    | ND                |
| 6/13/96          | ND<0.5             | ND<0.5            | ND<0.5                     | ND<0.5                        | ND<0.5                          | ND<0.5 | ND                                    | ND                |
| 9/17/96          | ND<5               | ND<5              | ND<5                       | ND<5                          | ND<5                            | ND<5   | ND                                    | ND<5              |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        |                                       | 1                 |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        | · · · · · · · · · · · · · · · · · · · |                   |
|                  |                    | -                 |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |
|                  |                    |                   |                            |                               |                                 |        |                                       |                   |

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 5A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-5

| Sampling<br>Date | TPH<br>Diesel | TPH<br>Gasoline | Benzene | Toluene | Ethyl-<br>benzene | Xylenes | TRPH* |
|------------------|---------------|-----------------|---------|---------|-------------------|---------|-------|
| 3/27/94          | 870           | 2900            | 71      | ND      | 27                | 15      | NA    |
| 6/24/94          | 950           | 6100            | 220     | 12      | 38                | 24      | NA    |
| 10/16/94         | 1100          | 4300            | 120     | 5.1     | 27                | 13      | NA    |
| 2/13/95          | 1200          | 4600            | 130     | 7.9     | 38                | 29      | NA    |
| 6/20/95          | 1000          | 6000            | 140     | 6.7     | 27                | 29      | NA    |
| 10/16/95         | 940           | 2000            | 43      | 2.3     | 8.4               | 6.9     | NA    |
| 2/15/96          | 2200          | 4400            | 61      | 5.3     | 34                | ND      | NA    |
| 6/18/96          | NA            | 7400            | 94      | 11      | 32                | 40      | NA    |
| 9/17/96          | 1600          | 5200            | 140     | 7.5     | 18                | 21      | NA    |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         | 4414  |
|                  |               |                 |         |         |                   |         |       |

MW-5 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Table 5B-Summary of Volatile Haolcarbons Concentrations (in PPB) Detected in MW-5

| Sampling<br>Date | Chloro-<br>benzene                               | Cliloro<br>ethane | 1,2-Di<br>Chloro-<br>ethane | Cis 1.2<br>Dichior<br>orthers                    | Truss 1,2<br>Dichlero<br>efficie | PCB    | TCE    | Vinti<br>Chloride |
|------------------|--------------------------------------------------|-------------------|-----------------------------|--------------------------------------------------|----------------------------------|--------|--------|-------------------|
| 3/27/94          | NA                                               | NA                | NA                          | NA                                               | NA                               | NA     | NA     | NA                |
| 6/24/94          | 0.53                                             | ND                | ND                          | 11                                               | 3.1                              | ND     | ND     | 7.5               |
| 10/16/94         | 0.66                                             | ND                | ND                          | 16                                               | 4.2                              | ND     | ND     | 9.6               |
| 2/13/95          | ND                                               | ND                | ND                          | 20                                               | 5.1                              | ND     | ND     | 8.4               |
| 6/20/95          | 0.95                                             | ND                | ND                          | 12                                               | 4.1                              | ND     | ND     | 10                |
| 10/16/95         | 0.54                                             | ND                | ND                          | 9.8                                              | 2.9                              | ND     | 2.0    | 7.6               |
| 2/15/96          | 0.57                                             | ND                | ND                          | 7.7                                              | ND                               | ND     | ND     | 5.3               |
| 6/18/96          | ND<2.5                                           | ND<2.5            | ND<2.5                      | 2.9                                              | ND<2.5                           | ND<2.5 | ND<2.5 | ND<2.5            |
| 9/17/96          | 0.83                                             | ND<0.5            | ND<0.5                      | 4.5                                              | 2.7                              | ND<0.5 | ND<0.5 | 7.3               |
|                  |                                                  |                   |                             |                                                  |                                  |        |        |                   |
|                  |                                                  |                   |                             |                                                  |                                  |        |        |                   |
|                  | -                                                |                   |                             |                                                  |                                  |        |        |                   |
|                  |                                                  |                   |                             |                                                  |                                  |        |        |                   |
|                  | <u> </u>                                         |                   |                             |                                                  |                                  |        |        |                   |
|                  | <del> </del>                                     |                   |                             |                                                  |                                  |        |        |                   |
|                  | <del> </del>                                     |                   |                             |                                                  |                                  |        |        |                   |
|                  |                                                  |                   |                             | <del>                                     </del> |                                  |        |        |                   |
|                  |                                                  |                   |                             |                                                  |                                  |        |        |                   |
|                  | <del>                                     </del> |                   |                             | <del>                                     </del> |                                  |        |        |                   |

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 6A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-6

| Sampling<br>Date | TPH<br>Diesel | TPH<br>Gasoline | Benzene | Toluene | Ethyl-<br>benzene | Xvlenes | TRPH* |
|------------------|---------------|-----------------|---------|---------|-------------------|---------|-------|
| 3/27/94          | 1000          | 5000            | 1100    | 17      | 180               | 41      | NA    |
| 6/24/94          | 660           | 8000            | 1200    | 21      | 210               | 54      | NA    |
| 10/16/94         | 850           | 6300            | 870     | 14      | 140               | 49      | NA    |
| 2/13/95          | 1000          | 5500            | 1000    | 17      | 210               | 55      | NA    |
| 6/20/95          | 1400          | 9100            | 1300    | 24      | 240               | 79      | NA    |
| 10/16/95         | 770           | 3000            | 590     | 8.8     | 84                | 24      | 2.8   |
| 2/15/96          | 1500          | 3900            | 460     | 11      | 110               | 23      | NA    |
| 6/13/96          | 1300          | 4800            | 630     | 14      | 140               | 37      | 4.1   |
| 9/17/96          | 1300          | 4700            | 550     | 14      | 120               | 38      | NA    |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |
|                  |               |                 |         |         |                   |         |       |

MW-6 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

Table 6B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-6

| Sampling<br>Date | Chloro-<br>benzene | Chloro-<br>ethane | 1,2-1)4<br>Chioro-<br>rthage | Clv 1,2<br>Dichloru-<br>ethene | Trans 1,2<br>Dichloro-<br>ethene | PCE  | TUE | Vingi<br>Chioride |
|------------------|--------------------|-------------------|------------------------------|--------------------------------|----------------------------------|------|-----|-------------------|
| 3/27/94          | NA                 | NA                | NA                           | NA                             | NA                               | NA   | NA  | NA                |
| 6/24/94          | NA                 | NA                | NA                           | NA                             | NA                               | NA   | NA  | NA                |
| 10/16/94         | NA                 | NA                | NA                           | NA                             | NA                               | NA   | NA  | NA                |
| 2/13/95          | ND                 | ND                | ND                           | 40                             | 13                               | ND   | 99  | 87                |
| 6/20/95          | ND                 | ND                | ND                           | 26                             | 17                               | ND   | 29  | 130               |
| 10/16/95         | ND<5               | ND<5              | ND<5                         | 75                             | 16                               | ND<5 | 110 | 54                |
| 2/15/96          | ND                 | ND                | ND                           | 110                            | 25                               | ND   | 160 | 46                |
| 6/13/96          | ND<2               | ND<2              | ND<2                         | 72                             | 20                               | ND<2 | 83  | 33                |
| 9/17/96          | ND<1               | 2.7               | ND<1                         | 73                             | 25                               | ND<1 | 59  | 48                |
|                  |                    |                   |                              |                                |                                  |      |     |                   |
|                  |                    |                   |                              |                                |                                  |      |     |                   |
| 1                |                    |                   |                              |                                |                                  |      |     |                   |
|                  |                    |                   | :                            |                                |                                  |      |     |                   |
|                  |                    |                   |                              |                                |                                  |      |     |                   |
|                  |                    |                   |                              |                                |                                  |      |     |                   |
|                  |                    | ,                 |                              |                                |                                  |      |     |                   |
|                  |                    |                   |                              |                                |                                  |      |     |                   |
|                  |                    |                   |                              |                                |                                  |      |     |                   |
|                  |                    |                   |                              |                                |                                  |      |     |                   |

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.5 PPB for this well.

Table 7A-Summary of Hydrocarbon Concentrations (in PPB) Detected in EW-1

| Sampling<br>Date | TPH<br>Diesel | TPH<br>Gasoline | Веплоне                                      | Toluene | Ethyl-<br>benzene | Xylenes | TRPH* |
|------------------|---------------|-----------------|----------------------------------------------|---------|-------------------|---------|-------|
| 3/27/94          | 920           | 1200            | 270                                          | 6.2     | 30                | 13      | ND    |
| 6/24/94          | 1200          | 4600            | 410                                          | 5.6     | 78                | 22      | NA    |
| 10/16/94         | 1200          | 4900            | 310                                          | 5.2     | 30                | 32      | 6.4   |
| 2/13/95          | 1000          | 3900            | 380                                          | 5.9     | 41                | 22      | ND    |
| 6/20/95          | 1800          | 7800            | 710                                          | 14      | 260               | 52      | 6.5   |
| 10/16/95         | 940           | 3200            | 310                                          | 3.3     | 32                | 16      | 5,5   |
| 2/15/96          | 2400          | 5000            | 270                                          | 7.5     | 50                | 20      | 4.2   |
| 6/13/96          | 1800          | 5700            | 450                                          | 11      | 75                | 19      | 8.3   |
| 9/17/96          | 1300          | 5300            | 300                                          | 15      | 67                | 29      | 7.2   |
|                  |               |                 |                                              |         |                   |         |       |
|                  |               |                 |                                              |         |                   |         |       |
|                  |               |                 | <u>                                     </u> |         |                   |         |       |

EW-1 is a 4 inch PVC well installed 3/16/94 to a total depth of 30 feet.

NOTE: NA is not analyzed; ND is not detected above detection limits which are typically 50 PPB for diesel and gasoline and 0.5 PPB for BTEX; \*TRPH is Total Recoverable Petroleum Hydrocarbons as oil and grease. Results for TRPH is presented in PPM with a detection limit of 5 PPM.

Page 1 of 1

Table 7B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in EW-1

| Sampling<br>Date | Chloro-<br>benzene | Chloro-<br>ethane | 1,2-194<br>Chloro-<br>ethane | Cls 1.2<br>Dichloro-<br>efficae | Frans 1,2<br>Dichloro-<br>efficiie | PCE  | TCE | Vinel<br>Chloride |
|------------------|--------------------|-------------------|------------------------------|---------------------------------|------------------------------------|------|-----|-------------------|
| 3/27/94          | ND                 | ND                | ND                           | ND                              | ND                                 | ND   | 40  | ND                |
| 6/24/94          | ND                 | ND                | 1,3                          | 42                              | 11                                 | ND   | 68  | 3.2               |
| 10/16/94         | ND                 | ND                | ND                           | 36                              | ND                                 | ND   | 74  | ND                |
| 2/13/95          | ND                 | ND                | ND                           | 13                              | 4.4                                | ND   | 53  | ND                |
| 6/20/95          | ND                 | 2.0               | ND                           | 4.3                             | 2,0                                | ND   | 6.0 | 2.8               |
| 10/16/95         | ND<2               | ND<2              | ND<2                         | 24                              | 7.1                                | ND<2 | 46  | ND<2              |
| 2/15/96          | ND                 | 1.0               | ND                           | 17                              | 6.4                                | ND   | 33  | 2.3               |
| 6/13/96          | ND<1               | ND<1              | ND<1                         | 25                              | 9.8                                | ND<1 | 38  | 4.9               |
| 9/17/96          | ND<2               | 2.3               | ND<2                         | 25                              | 9.0                                | ND<2 | 39  | 5.4               |
|                  |                    |                   |                              |                                 |                                    |      |     |                   |
|                  |                    |                   |                              |                                 |                                    |      |     |                   |
|                  |                    |                   |                              |                                 |                                    |      |     |                   |
|                  |                    |                   |                              |                                 |                                    |      |     |                   |
|                  |                    |                   |                              |                                 |                                    |      |     |                   |
|                  |                    | -                 |                              |                                 |                                    |      |     |                   |

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.0 PPB for this well.









## APPENDIX A

## CERTIFIED LABORATORY REPORT

09/27/96

Dear John:

#### Enclosed are:

- 1). the results of 7 samples from your #96-008; 2301 East 12th St., Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

| Epigene Ir | nternational                    |        | Client Proje        |             | 5-008; 2301 | East 12th  | Date Samp                                         | led: 09/17/ | 96                  |  |
|------------|---------------------------------|--------|---------------------|-------------|-------------|------------|---------------------------------------------------|-------------|---------------------|--|
| 38750 Pase | eo Padre Pkwy,                  | # A-11 | St., Oakland        | i           |             |            | Date Received: 09/19/96  Date Extracted: 09/22/96 |             |                     |  |
| Fremont, ( | CA 94536                        |        | Client Cont         | act: John A | Alt         |            |                                                   |             |                     |  |
|            |                                 |        | Client P.O:         |             | Date Analy  | zed: 09/22 | /96                                               |             |                     |  |
|            | ne Range (C6-C                  |        |                     |             |             |            |                                                   |             | BTEX*               |  |
| Lab ID     | Client ID                       | Matrix | TPH(g) <sup>+</sup> | МТВЕ        | Benzene     | Toluene    | Ethylben-<br>zene                                 | Xylenes     | % Rec.<br>Surrogate |  |
| 69223      | EW-1                            | W      | 5300,a,h            |             | 300         | 15         | 67                                                | 29          | 117#                |  |
| 69224      | MW-1                            | w      | 7000,c/j,h          |             | 1200        | 29         | 86                                                | 55          | 94                  |  |
| 69225      | MW-2                            | w      | 15,000,a,h          |             | 1600        | 66         | 480                                               | 460         | 104                 |  |
| 69226      | MW-3                            | w      | 10,000,a,h          |             | 68          | 20         | 61                                                | 42          | 100                 |  |
| 69227      | MW-4                            | w      | 3100,a,h            |             | ND          | 15         | 78                                                | 12          | 100                 |  |
| 69228      | MW-5                            | w      | 5200,c/d,b          |             | 140         | 7.5        | 18                                                | 21          | 105                 |  |
| 69229      | MW-6                            | w      | 4700,a              |             | 550         | 14         | 120                                               | 38          | 95                  |  |
|            |                                 |        |                     |             |             |            |                                                   |             |                     |  |
|            |                                 |        | ·                   |             |             |            |                                                   |             |                     |  |
|            |                                 |        |                     |             |             |            |                                                   |             |                     |  |
|            |                                 |        |                     |             |             |            |                                                   |             |                     |  |
|            |                                 | -      |                     |             |             |            |                                                   |             |                     |  |
| Reporting  | g Limit unless<br>se stated; ND | w      | 50 ug/L             | 5.0         | 0.5         | 0.5        | 0.5                                               | 0.5         |                     |  |
| means      | not detected<br>reporting limit | S      | 1.0 mg/kg           | 0.05        | 0.005       | 0.005      | 0.005                                             | 0.005       |                     |  |

<sup>\*</sup> water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP extracts in mg/L

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

| Epigene Interna                  | ntional                                 |                    | # 96-008; 2301 East 12th                               | Date Sampled: 09/17/96   |                      |  |
|----------------------------------|-----------------------------------------|--------------------|--------------------------------------------------------|--------------------------|----------------------|--|
| 38750 Paseo Pac                  | dre Pkwy, # A-11                        | St., Oakland       |                                                        | Date Received:           | 09/19/96             |  |
| Fremont, CA 94                   | 1536                                    | Client Contact: Jo | hn Alt                                                 | Date Extracted: 09/19/96 |                      |  |
|                                  |                                         | Client P.O:        |                                                        | Date Analyzed:           | 09/19/96             |  |
| EPA methods mod                  |                                         |                    | actable Hydrocarbons as<br>B (SF Bay Region) method GC |                          | )(3510)              |  |
| Lab ID                           | Client ID                               | Matrix             | TPH(d) <sup>+</sup>                                    |                          | % Recovery Surrogate |  |
| 69223                            | EW-1                                    | w                  | 1300,d,b,h                                             |                          | 101                  |  |
| 69224                            | MW-1                                    | w                  | 3100,d,h                                               |                          | 106                  |  |
| 69225                            | MW-2                                    | w                  | 13,000,d,h                                             |                          | 104                  |  |
| 69226                            | MW-3                                    | W                  | 15,000,d,h                                             | <del></del>              | 103                  |  |
| 69227                            | MW-4                                    | w                  | 2500,d,h                                               |                          | 107                  |  |
| 69228                            | MW-5                                    | W                  | 1600, <b>d</b> , <b>b</b>                              |                          | 105                  |  |
| 69229                            | MW-6                                    | w                  | 1300,d                                                 |                          | 106                  |  |
|                                  |                                         |                    |                                                        |                          |                      |  |
|                                  |                                         |                    |                                                        |                          |                      |  |
|                                  |                                         |                    |                                                        |                          |                      |  |
| Reporting Li                     | mit unless other-                       | w                  | 50 ug/L                                                |                          |                      |  |
| wise stated; N<br>tected above t | ID means not de-<br>the reporting limit | S                  | 1,0 mg/kg                                              |                          |                      |  |

<sup>\*</sup> water samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP and STLC extracts in mg/L

<sup>&</sup>quot; cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>&</sup>lt;sup>+</sup> The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

| Epigene International |                                                 |                 | D: # 96-008; 2301 East 12th           | Date Sampled: 09/17/96                            |                      |  |
|-----------------------|-------------------------------------------------|-----------------|---------------------------------------|---------------------------------------------------|----------------------|--|
| 38750 Paseo I         | Padre Pkwy, # A-11                              | St., Oakland    |                                       | Date Received: 09/19/96                           |                      |  |
| Fremont, CA 94536     |                                                 | Client Contact: | John Alt                              | Date Extracted: 09/24/96  Date Analyzed: 09/24/96 |                      |  |
|                       |                                                 | Client P.O:     |                                       |                                                   |                      |  |
|                       | rable Petroleum Hy<br>3.1 or 9073; Standard Met | t               | & Grease (with Silica Gel<br>rometry* | Clean-up) by S                                    | canning IR Spec-     |  |
| Lab ID                | Client ID                                       | Matrix          | TRPH <sup>+</sup>                     |                                                   | % Recovery Surrogate |  |

| Lab ID                       | Client ID                                                    | Matrix | TRPH <sup>+</sup> | % Recovery Surrogate |
|------------------------------|--------------------------------------------------------------|--------|-------------------|----------------------|
| 69223                        | EW-I                                                         | w      | 7.2,h             | #                    |
| 69225                        | MW-2                                                         | w      | 13,h              | #                    |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   | ļ                    |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
|                              |                                                              |        |                   |                      |
| Reporting L                  | mit unless other-                                            | w      | 1.0 mg/L          | 1000                 |
| wise stated; Niected above t | mit unless other-<br>ND means not de-<br>the reporting limit | S      | 10 mg/kg          | -                    |

<sup>\*</sup> water samples are reported in mg/L and soils and sludges in mg/kg

<sup>#</sup> surrogate diluted out of range or not applicable to this sample

At the laboratory's discretion, one positive sample may be run by direct injection chromatography with FID detection. The following comments pertain to this GC result: a) gasoline-range compounds (C6-C12) are present; b) diesel range compounds (C10-C23) are present; c) oil-range compounds (> C18) are present; d) other patterned solvent (?); e) isolated peaks; f) GC compounds are absent or insignificant relative to TRPII inferring that complex biologically derived molecules (lipids?) are the source of IR absorption; h) a lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

| Enigana International               | lor               |                      |                      |                                |  |  |
|-------------------------------------|-------------------|----------------------|----------------------|--------------------------------|--|--|
| Epigene International               |                   | ): # 96-008; 2301 Ea | ist 12th Date Sample | Date Sampled: 09/17/96         |  |  |
| 38750 Paseo Padre Pkwy, # A-11      | St., Oakland      |                      | Date Receiv          | ed: 09/19/96                   |  |  |
| Fremont, CA 94536                   | Client Contact: J | John Alt             | Date Extrac          | Date Extracted: 09/20-09/21/96 |  |  |
|                                     | Client P.O:       |                      | Date Analyz          | ed: 09/20-09/21/96             |  |  |
|                                     | Volatil           | e Halocarbons        |                      |                                |  |  |
| EPA method 601 or 8010              | <del>,</del>      |                      | n · · ·              |                                |  |  |
| Lab ID                              | 69223             | 69224                | 69225                | 69226                          |  |  |
| Client ID                           | EW-I              | MW-1                 | MW-2                 | MW-3                           |  |  |
| <u> Matrix</u>                      | W                 | W                    | W                    | W                              |  |  |
| Compound                            |                   | Concen               | tration              |                                |  |  |
| Bromodichloromethane                | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Bromoform <sup>(b)</sup>            | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Bromomethane                        | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Carbon Tetrachloride <sup>(c)</sup> | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Chlorobenzene                       | ND< 1.8           | ND< 3                | 8.2                  | ND< 5                          |  |  |
| Chloroethane                        | 2.3               | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 2-Chloroethyl Viny l Ether (d)      | ND < 1.8          | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Chloroform <sup>(e)</sup>           | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Chloromethane                       | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Dibromochloromethane                | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,2-Dichlorobenzene                 | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,3-Dichlorobenzene                 | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,4-Dichlorobenzene                 | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Dichlorodifluoromethane             | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,1-Dichloroethane                  | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,2-Dichloroethane                  | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,1-Dichloroethene                  | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| cis 1,2-Dichloroethene              | 25                | ND< 3                | ND< 4                | 11                             |  |  |
| trans 1,2-Dichloroethene            | 9.0               | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,2-Dichloropropane -               | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| cis 1,3-Dichloropropene             | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| trans 1,3-Dichloropropene           | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Methylene Chloride <sup>(f)</sup>   | ND< 6             | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,1,2,2-Tetrachloroethane           | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Tetrachloroethene                   | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,1,1-Trichloroethane               | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| 1,1,2-Trichloroethane               | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Trichloroethene                     | 39                | 11                   | ND< 4                | 13                             |  |  |
| Trichlorofluoromethane              | ND< 1.8           | ND< 3                | ND< 4                | ND< 5                          |  |  |
| Vinyl Chloride <sup>(g)</sup>       | 5.4               | ND< 3                | ND< 4                | ND< 5                          |  |  |
| % Recovery Surrogate                | 99                | 100                  | 100                  | 100                            |  |  |
| Comments                            | h,j               | h,j                  | h,j                  | h,j                            |  |  |

<sup>\*</sup> water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil and sludge, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

<sup>(</sup>c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.; (j) sample diluted due to high organic content Edward Hamilton, Lab Director

DHS Certification No. 1644

| Epigene International                     | , ,                | : # 96-008; 2301 Ea | ast 12th Date Sampl | ed: 09/17/96                    |  |  |  |  |
|-------------------------------------------|--------------------|---------------------|---------------------|---------------------------------|--|--|--|--|
| 38750 Paseo Padre Pkwy, # A-11            | St., Oakland       |                     | Date Recei          | ved: 09/19/96                   |  |  |  |  |
| Fremont, CA 94536                         | Client Contact: Jo | ohn Alt             | Date Extra          | Date Extracted: 09/20-09/21/96  |  |  |  |  |
|                                           | Client P.O:        |                     | Date Analy          | zed: 09/20-09/21/96             |  |  |  |  |
| Volatile Halocarbons                      |                    |                     |                     |                                 |  |  |  |  |
| EPA method 601 or 8010  Lab ID            | 60007              | <022B               | 60220               | 1                               |  |  |  |  |
|                                           | 69227              | 69228               | 69229               | -                               |  |  |  |  |
| Client ID Matrix                          | MW-4               | MW-5                | MW-6                |                                 |  |  |  |  |
| Matrix Compound                           | W                  | W                   | W                   | <u> </u>                        |  |  |  |  |
| Bromodichloromethane                      | ND< 5              | Concer<br>ND        |                     |                                 |  |  |  |  |
| Bromoform <sup>(b)</sup>                  | ND< 5              |                     | ND< 1               |                                 |  |  |  |  |
| Bromomethane                              |                    | ND<br>ND            | ND< 1               | · · · · · · · · · · · · · · · · |  |  |  |  |
| Carbon Tetrachloride (c)                  | ND< 5              |                     | ND< 1               |                                 |  |  |  |  |
| Chlorobenzene Chlorobenzene               | ND< 5<br>ND< 5     | ND<br>0.83          | ND< 1               |                                 |  |  |  |  |
| Chloroethane                              |                    | 0.83                | ND< 1               |                                 |  |  |  |  |
| 2-Chloroethyl Viny I Ether <sup>(d)</sup> | ND< 5              | ND                  | 2.7                 |                                 |  |  |  |  |
| Chloroform (e)                            | ND< 5              | ND<br>ND            | ND< 1               |                                 |  |  |  |  |
| Chloromethane                             | ND< 5<br>ND< 5     | ND<br>ND            | ND< 1               |                                 |  |  |  |  |
| Dibromochloromethane                      |                    | ND<br>ND            | ND< 1               |                                 |  |  |  |  |
|                                           | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| 1,2-Dichlorobenzene                       | ND < 5             | ND                  | ND< 1               | .,                              |  |  |  |  |
| 1,3-Dichlorobenzene                       | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| 1,4-Dichlorobenzene                       | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| Dichlorodifluoromethane                   | ND< 5              | ND ND               | ND< 1               |                                 |  |  |  |  |
| 1,1-Dichloroethane                        | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| 1,2-Dichloroethane                        | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| 1,1-Dichloroethene                        | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| cis 1,2-Dichloroethene                    | ND< 5              | 4.5                 | 73                  |                                 |  |  |  |  |
| trans 1,2-Dichloroethene                  | ND< 5              | 2.7                 | 25                  |                                 |  |  |  |  |
| 1,2-Dichloropropane                       | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| cis 1,3-Dichloropropene                   | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| trans 1,3-Dichloropropene                 | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| Methylene Chloride <sup>(f)</sup>         | ND< 6              | ND                  | ND                  |                                 |  |  |  |  |
| 1,1,2,2-Tetrachloroethane                 | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| Tetrachloroethene                         | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| 1,1,1-Trichloroethane                     | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| 1,1,2-Trichloroethane                     | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| Trichloroethene                           | ND< 5              | ND                  | 59                  |                                 |  |  |  |  |
| Trichlorofluoromethane                    | ND< 5              | ND                  | ND< 1               |                                 |  |  |  |  |
| Vinyl Chloride <sup>(g)</sup>             | ND< 5              | 7.3                 | 48                  |                                 |  |  |  |  |
| % Recovery Surrogate                      | 97                 | 95                  | 100                 | <u> </u>                        |  |  |  |  |
| Comments                                  | h,j                |                     | 200                 |                                 |  |  |  |  |

<sup>\*</sup> water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil and sludge, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

<sup>(</sup>c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.(j) sample diluted due to high organic content Edward Hamilton, Lab Director

DHS Certification No. 1644

#### QC REPORT FOR HYDROCARBON ANALYSES

Date: 09/19/96

Matrix: Water

|                          | Concentration (ug/L)    |            |            | % Recovery         |            |            |            |
|--------------------------|-------------------------|------------|------------|--------------------|------------|------------|------------|
| Analyte                  | Sample<br> (#69200)<br> | MS         | MSD        | Amount<br>  Spiked | MS         | MSD        | RPD        |
| TPH (gas)<br>Benzene     | N/A<br>N/A              | N/A        | N/A        | N/A                | N/A        | N/A        | N/A        |
| Toluene                  | N/A                     | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A         | N/A<br>N/A | N/A<br>N/A | N/A<br>N/A |
| Ethyl Benzene<br>Xylenes | N/A<br>N/A              | N/A<br>N/A | N/A        | N/A                | N/A        | N/A        | N/A        |
|                          |                         | N/A        | N/A        | N/A                | N/A        | N/A<br>——— | N/A<br>    |
| TPH (diesel)             | 0                       | 177        | 176        | 150  <br>  150     | 118        | 117        | 0.8        |
| TRPH<br>(oil & grease)   | 0                       | 22600      | 22400      | 23700              | 95         | 95         | 0.9        |

% Rec. = (MS - Sample) / amount spiked  $\times$  100

RPD =  $(MS - MSD) / (MS + MSD) \times 2 \times 100$ 

### QC REPORT FOR HYDROCARBON ANALYSES

Date: 09/22/96

Matrix: Water

| * • • 1 · · · ·      | Concentration (ug/L) |             |              | 1 Recovery         |              |                |            |
|----------------------|----------------------|-------------|--------------|--------------------|--------------|----------------|------------|
| Analyte              | Sample<br> (#69048)  | MS          | MSD          | Amount<br>  Spiked | <br>  Ms<br> | MSD            | RPD        |
| TPH (gas)<br>Benzene | 0.0                  | 94.4        | 92.4         | 100.0              | 94.4         | 92.4           | 2.2        |
| Toluene              | 0.0                  | 10.0<br>9.8 | 10.7<br>10.5 | 10.0               | 100.0        | 107.0          | 6.8        |
| Ethyl Benzene        | 0.0                  | 9.9         | 10.5         | 10.0  <br>  10.0   | 98.0<br>99.0 | 105.0<br>104.0 | 6.9<br>4.9 |
| Xylenes              | 0.0                  | 30.9        | 32.3         | 30.0               | 103.0        | 107.7          | 4.4        |
| TPH (diesel)         | N/A                  | N/A         | N/A          | N/A                | N/A          | N/A            | N/A        |
| TRPH (oil & grease)  | N/A                  | N/A         | N/A          | N/A                | N/A          | N/A            | N/A        |

<sup>%</sup> Rec. = (MS - Sample) / amount spiked x 100

RPD =  $(MS - MSD) / (MS + MSD) \times 2 \times 100$ 

#### QC REPORT FOR HYDROCARBON ANALYSES

Date: 09/24/96-09/25/96 Matrix: Water

. . . . . .

|                     | Concent  | ration | (ug/L) | 1          | ∤ Reco | very  |      |
|---------------------|----------|--------|--------|------------|--------|-------|------|
| Analyte             | Sample   |        |        | Amount     |        |       | RPD  |
|                     | (#69240) | MS     | MSD    | Spiked<br> | MS<br> | MSD   |      |
| TPH (gas)           | 0.0      | 89.1   | 98.5   | 100.0      | 89.1   | 98.5  | 10.0 |
| Benzene             | 0.0      | 10.1   | 10.2   | 10.0       | 101.0  | 102.0 | 1.0  |
| Toluene             | 0.0      | 10.2   | 10.1   | 10.0       | 102.0  | 101.0 | 1.0  |
| Ethyl Benzene       | 0.0      | 10.2   | 10.4   | 10.0       | 102.0  | 104.0 | 1.9  |
| Xylenes             | 0.0      | 31.6   | 31.4   | 30.0       | 105.3  | 104.7 | 0.6  |
| TPH (diesel)        | 0        | 159    | 155    | 150        | 106    | 103   | 2.4  |
| TRPH (oil & grease) | 0        | 22300  | 21600  | 23700      | 94     | 91    | 3.2  |

<sup>%</sup> Rec. = (MS - Sample) / amount spiked x 100

RPD =  $(MS - MSD) / (MS + MSD) \times 2 \times 100$ 

### QC REPORT FOR EPA 8010/8020/EDB

Date:

09/20/96-09/21/96 Matrix: Water

| Analyte         | Concentration (ug/L) Sample Amoun |      |      |                    | % Recovery |     |     |
|-----------------|-----------------------------------|------|------|--------------------|------------|-----|-----|
|                 | (#69212)                          | MS   | MSD  | Amount<br>Spiked   | <br>  MS   | MSD | RPD |
| 1,1-DCE         | 0.0                               | 10.5 | 10.4 | 10.0               | 105        | 104 | 1.0 |
| Trichloroethene | 0.0                               | 9.5  | 9.3  | 10.0               | 95         | 93  | 2.1 |
| EDB             | 0.0                               | 9.3  | 9.2  | 10.0               | 93         | 92  | 1.1 |
| Chlorobenzene   | 0.0                               | 10.7 | 10.4 | 10.0               | 107        | 104 | 2.8 |
| Benzene         | 0.0                               | 11.0 | 10.7 | 10.0   10.0   10.0 | 110        | 107 | 2.8 |
| Toluene         | 0.0                               | 10.4 | 10.3 |                    | 104        | 103 | 1.0 |
| Chlorobz (PID)  | 0.0                               | 10.3 | 10.9 |                    | 103        | 109 | 5.7 |

Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / (MS + MSD)  $\times$  2  $\times$  100

# CHAIN OF CUSTODY 7223 AET 103

| Laboratory:                           | McCampbell Analytical     |                     |
|---------------------------------------|---------------------------|---------------------|
|                                       | 110 2nd Avenue South, D-7 |                     |
| · · · · · · · · · · · · · · · · · · · | Pacheco, California 94553 | <del></del>         |
|                                       | telephone: (510) 798-1620 | FAX: (510) 798-1622 |
| Contact:                              | Ed Hamilton               | 1704 (310) 770-1622 |



## **Epigene International**

CONSULTING GEOLOGISTS

38750 Paseo Padre, Parkway, Suite A-II Fremont, California, 94536

| Pacheco, California 94553. |                                               |            |                                                  |                           |          |                          | Business: (510) 791-1986 FAX: (510) 791-3306 |        |                  |           |                  |                |                                                  |             |  |
|----------------------------|-----------------------------------------------|------------|--------------------------------------------------|---------------------------|----------|--------------------------|----------------------------------------------|--------|------------------|-----------|------------------|----------------|--------------------------------------------------|-------------|--|
|                            | telephone: (510) 798-1620 FAX: (510) 700 1400 |            |                                                  |                           |          |                          | ontac                                        | t:     | Joh              |           | Sampler: JNA /M) |                |                                                  |             |  |
| Contact                    | Ed Hamil                                      | ton        | 020 17                                           | FAX: (510) 798-1622       |          |                          | Project Name: 2301 E. 17 Project no. 96-000  |        |                  |           |                  |                | ZESt., Oakland                                   |             |  |
|                            |                                               |            |                                                  | <del></del>               |          | PP                       | Oject                                        | no.    | 76 -             | 008       |                  | Date:          |                                                  | 96          |  |
|                            |                                               |            | •                                                | •                         |          |                          |                                              |        |                  | Reque     | equested         |                |                                                  |             |  |
|                            |                                               |            |                                                  |                           |          |                          |                                              | ino    |                  | <u>``</u> | /0               | / 3/           | 7                                                |             |  |
| Sample                     | I.D. Date/2                                   | ime Matrix | Contai                                           | ner                       |          | /                        | AI GREC                                      | Stat   | 2H/0109          | 01/8010   | 10020<br>10020   | Citedes        | //                                               |             |  |
| <u> </u>                   | Samp                                          | ed Desc.   | No. of                                           | Гуре                      | Comments | /2                       | */                                           | /4     | **/ <sub>6</sub> | 0, 60     | A Gra O          |                |                                                  | 100         |  |
| 1. Ew.                     |                                               | 96 HzO     | 3 V                                              | 045                       | W/4C1    | ×                        | ×                                            |        |                  |           | ~ /              | <del>-/-</del> | <del>/                                    </del> | Lab. ≠      |  |
| 2. Ew.                     | -1 9/17/9                                     | 26 10      |                                                  | offles                    |          | 1                        |                                              |        | X                |           |                  |                | <b></b>                                          | 69223       |  |
| 3. Mw-                     |                                               | u          | . T                                              |                           | 1/4      | -                        |                                              | $\leq$ |                  |           | <u> </u>         |                | ļ                                                | 03223       |  |
| 4. Nw -                    |                                               |            | <del>                                     </del> | OAS                       | W/HC1    |                          | ᆺ                                            |        | X                |           |                  |                |                                                  |             |  |
| 5. NW-                     |                                               | "(         | 1 -                                              | the                       |          |                          |                                              | X      |                  |           |                  |                |                                                  | 69224       |  |
| ·                          |                                               | /(         |                                                  |                           | W/He1    | ×                        | <u>بر</u>                                    |        | X                |           |                  |                |                                                  |             |  |
| 8. Mw -                    | 2 4                                           | 1(         | 2 li                                             | HLE                       |          |                          |                                              |        | <del>- ^  </del> |           |                  |                | La constant                                      | 69225       |  |
| 7. MW-                     | -3 4                                          | l(         |                                                  | DAS                       | 11/1/4   |                          |                                              | X      |                  |           | 시_               | <del></del>    | <u> </u>                                         |             |  |
| 8. Mw-                     | 3 11                                          | t (        |                                                  |                           | WHEI     | ᆇ                        | ×                                            |        | 싀                | _         |                  |                |                                                  |             |  |
| 9. Mw-                     |                                               |            | . )                                              | ttle.                     |          |                          |                                              | X      |                  |           |                  |                |                                                  | 69226       |  |
| 10. Mw -                   |                                               |            |                                                  |                           | W/HeI    | X                        | $\vee$                                       |        |                  |           |                  |                |                                                  |             |  |
| γω-                        | 4 1 11                                        | 11         | 1 100                                            | the                       | '        | T                        |                                              | X      |                  |           |                  |                |                                                  | 69227       |  |
| Relinquist                 | ed by:                                        | Luant      | - Date: G/                                       | / /  -                    |          |                          |                                              |        | 7 /              | <u>_</u>  |                  |                |                                                  |             |  |
| Relinquish                 |                                               | 111        |                                                  | Date: 9/19/96 Time: 12:05 |          | Received by: what Homers |                                              |        |                  |           |                  | Da             | to:9/19/96                                       | Time: 12'05 |  |
| Relinquished by:           |                                               |            |                                                  | Date: 9/9/8 Time: 1308    |          | Received by Whide Thuca  |                                              |        |                  |           |                  | Da             | 10:9/19/94                                       | Time:/308   |  |
|                            |                                               |            | Date:                                            | Date: Time:               |          |                          | Received by:                                 |        |                  |           |                  |                | •                                                | 1           |  |
| Turneround Time: Standard  |                                               |            |                                                  |                           |          |                          |                                              |        |                  |           |                  | 0.8            | te:                                              | Time:       |  |
| Additional                 |                                               |            | <u> </u>                                         |                           |          |                          | <del></del>                                  |        |                  |           |                  |                |                                                  |             |  |
| omments:                   | =                                             |            |                                                  |                           |          |                          |                                              |        |                  |           |                  |                |                                                  |             |  |

## CHAIN OF CUSTODY 7223AET 103

| Laboratory: | McCampbell Analytical      |                     |
|-------------|----------------------------|---------------------|
|             | 110 2nd Avenue South, D-7  | ···                 |
|             | Pacheco, California 94553. |                     |
| <del></del> | telephone: (510) 798-1620  | FAX: (510) 798-1622 |
| Contact:    | Ed Hamilton                | 1022                |

Matrix

HZO

11

16

10

Desc. No. of | Type

Date:

Date/Time

Sampled

11

11

11

Sample J.D.

1. Mw -5

2. MW -5

3.MW-6

4. MW-6

Relinquished by:

Relinquished by:

Relinquished by:

Turnaround Time:

Additional Comments:

5.

6.

7.

8.

9.

10.



Comments

Hc I

Time: 12:05

Time: /308

Time:

### **Epigene International**

CONSULTING GEOLOGISTS

38750 Paseo Padre Parkway, Suite A-ij Fremont, California, 94536 Business: (510) 791-1988 EAV. (540)

|                |                              |          |             |            |      | 731 |              | 700           |                        |          | 10) 791-330 |  |
|----------------|------------------------------|----------|-------------|------------|------|-----|--------------|---------------|------------------------|----------|-------------|--|
|                | ntac                         |          | بهان ک      |            | ALF  |     |              |               | Sa                     | mplei    | : JNA/MI)   |  |
| Pr             | ojeci                        | Nam      | ح :ه        | 301        | E.   | 127 | <u> </u>     | 5             | ١                      | Oal      | Eland       |  |
|                | olect                        | no.      | 76 -        | <u>008</u> | 3    |     | Dat          | 0;            | 9/1                    | 7/       | 96          |  |
|                | Analyses Requested           |          |             |            |      |     |              |               |                        |          |             |  |
|                |                              |          |             |            |      |     |              |               |                        |          |             |  |
|                | /30°                         | STE+     | /o\•°       | /,80       | `_&° | /   | હ્યું        | 7             |                        |          |             |  |
| 7              | NR/                          | *//      | 541/°       | ۸۱/۵       | 021/ | » o |              | /             |                        |          |             |  |
| <del>- ^</del> |                              | <u> </u> | _           |            | /40  | Z   | _/           | _             |                        | $\angle$ | Lab. +      |  |
| 乂              | *                            |          | <b>≥</b> <  |            | l    |     | -            |               |                        |          |             |  |
|                |                              | X        |             | -          |      |     | 1            |               |                        | 1        | 69228       |  |
|                |                              |          |             |            |      | -   | +-           | -             |                        | <u> </u> |             |  |
| X              | $\mathcal{L}$                |          | <u> </u>    |            |      |     |              |               |                        | 1        |             |  |
|                |                              | メ        |             |            |      |     |              |               |                        | ]        | 69229       |  |
|                |                              |          |             |            |      |     |              |               |                        |          |             |  |
|                |                              |          | <del></del> |            |      |     | <del> </del> |               | <u> </u>               | <u> </u> |             |  |
|                |                              |          |             |            |      |     |              | _             |                        |          |             |  |
| 1              | ĺ                            |          |             |            |      |     |              |               |                        |          |             |  |
|                |                              |          |             |            |      |     | ├            |               | <del>.</del>           | <u> </u> |             |  |
|                |                              |          |             |            |      |     | ᆫ            |               |                        |          |             |  |
|                |                              |          |             |            |      |     |              | -             |                        |          | -           |  |
|                |                              |          |             |            |      |     |              | $\dashv$      |                        |          | <del></del> |  |
|                |                              |          |             |            | .2   |     |              |               |                        |          |             |  |
| Rece           | Received by: Rolf Kennis. Da |          |             |            |      |     |              | Da            | ate: 9/19/9 Time: 1205 |          |             |  |
| Rece           | Received by: Weide Ruce      |          |             |            |      |     |              | Date: 9/19/94 |                        |          | Time: /308  |  |
| Rece           | Received by:                 |          |             |            |      |     |              | Date:         |                        |          | Time:       |  |
|                |                              |          |             |            |      |     |              |               |                        |          |             |  |
|                |                              |          |             |            |      |     |              |               |                        |          |             |  |

Page Zot Z